

 ARL-TR-8302 ● FEB 2018

 US Army Research Laboratory

Expansion and Automation of the Energy
Conserving Orientational Force for Calculation
of Grain Boundary Mobility

by Matthew Guziewski, Shawn P Coleman, and
Mark A Tschopp

Approved for public release; distribution is unlimited.

NOTICES

Disclaimers

The findings in this report are not to be construed as an official Department of the
Army position unless so designated by other authorized documents.

Citation of manufacturer’s or trade names does not constitute an official
endorsement or approval of the use thereof.

Destroy this report when it is no longer needed. Do not return it to the originator.

 ARL-TR-8302 ● FEB 2018

 US Army Research Laboratory

Expansion and Automation of the Energy
Conserving Orientational Force for Calculation
of Grain Boundary Mobility

by Matthew Guziewski
Colorado State University, Fort Collins, CO

by Shawn P Coleman and Mark A Tschopp
Weapons and Materials Research Directorate, ARL

Approved for public release; distribution is unlimited.

ii

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the
data needed, and completing and reviewing the collection information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing the
burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302.
Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently
valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY)

February 2018
2. REPORT TYPE

Technical Report
3. DATES COVERED (From - To)

May–August 2017
4. TITLE AND SUBTITLE

Expansion and Automation of the Energy Conserving Orientational Force for
Calculation of Grain Boundary Mobility

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)

Matthew Guziewski, Shawn P Coleman, and Mark A Tschopp
5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

US Army Research Laboratory
ATTN: RDRL-WMM-E
Aberdeen Proving Ground, MD 21005-5069

8. PERFORMING ORGANIZATION REPORT NUMBER

ARL-TR-8302

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

10. SPONSOR/MONITOR'S ACRONYM(S)

11. SPONSOR/MONITOR'S REPORT NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited.

13. SUPPLEMENTARY NOTES

14. ABSTRACT

An algorithm is developed that automates the application of the energy conserving orientational (ECO) force bicrystal grain
boundaries. This will allow for simpler and more rapid calculations of grain boundary mobility values at varying orientations
and temperatures. Additionally, the ECO driving force is expanded from its original implementation for only face-centered
cubic crystals to body-centered cubic structures.

15. SUBJECT TERMS

HCP, grain boundary, molecular dynamics, synthetic driving force, microstructure evolution

16. SECURITY CLASSIFICATION OF:
17. LIMITATION
 OF
 ABSTRACT

UU

18. NUMBER
 OF
 PAGES

42

19a. NAME OF RESPONSIBLE PERSON

Shawn P Coleman
a. REPORT

Unclassified
b. ABSTRACT

Unclassified

c. THIS PAGE

Unclassified

19b. TELEPHONE NUMBER (Include area code)

410-306-0697
 Standard Form 298 (Rev. 8/98)

 Prescribed by ANSI Std. Z39.18

Approved for public release; distribution is unlimited.
iii

Contents

List of Figures v

List of Tables v

Acknowledgments vi

1. Introduction 1

2. Background 2

2.1 Artificial Driving Forces 2

2.1.1 Janssens et al. Method 3

2.1.2 Ulomek et al. Method 4

2.2 Grain Boundary Mobility 6

3. Workflow 7

3.1 Required Software 7

3.2 Initialization Steps 7

3.3 ECO Artificial Driving Force Simulations 8

3.3.1 Simulation Cell Edges 8

3.3.2 Orientation File 8

3.3.3 Temperature Equilibration 9

3.3.4 File Submission 9

3.4 Data Analysis 10

4. Examples 11

4.1 FCC Crystal 11

4.2 BCC Crystal 12

5. Future Applications: Mobility in HCP Crystals 12

6. Conclusion 13

Approved for public release; distribution is unlimited.
iv

7. References 14

Appendix. Grain Boundary Mobility Scripts 17

List of Symbols, Abbreviations, and Acronyms 33

Distribution List 34

Approved for public release; distribution is unlimited.
v

List of Figures

Fig. 1 a) Plot of the orientation parameter vs. position commonly seen with
the Janssens artificial driving force. b) Energy to be applied based on
the orientation parameter. ... 4

Fig. 2 a) Plot of the orientation parameter vs. position commonly seen with
the ECO artificial driving force. b) Energy to be applied based on the
orientation parameter. ... 5

Fig. 3 Basis vectors within the unit cells of a) FCC and b) BCC. For these
crystal types, the basis vectors and primitive unit cells are the same. .. 9

Fig. 4 Orientation parameter generated by the fix ECO command. Blue
represents –1 and red 1 with the region between containing
intermediate values. .. 10

Fig. 5 a) Position of the grain boundary as determined by the tracking
algorithm. Output of the bicrystal at times b) 0 ps, c) 150 ps, and d)
300 ps. ... 10

Fig. 6 a) Orientation parameter values at the Σ5 Cu interface at 200 K. b)
Comparison of displacement vs. time plots for the various driving
energies. c) Plot of velocities at the various driving pressures and the
curve fit using Eq. 7. ... 11

Fig. 7 a) Primitive unit cell for the HCP crystal structure. b) Basis vector
required to be used in the fix ECO command for HCP 13

List of Tables

Table 1 Calculated mobility values for an FCC Cu Σ5 tilt boundary at different
temperatures and using different driving forces 11

Table 2 Calculated mobility values for a BCC Fe Σ5 tilt boundary at different
temperatures and using different driving .. 12

Approved for public release; distribution is unlimited.
vi

Acknowledgments

This research is supported through funding from High Performance Computing
Modernization Program (HPCMP) Department of Defense (DOD) Next Generation
Workforce Development and made possible through an appointment at the US
Army Research Laboratory (ARL) administered by the Oak Ridge Institute for
Science and Education through an interagency agreement between the US
Department of Energy and ARL. This work was supported in part by computer time
from the DOD HPCMP at the ARL DOD Supercomputing Resource Center
(DSRC), the Navy DSRC, the US Army Corps of Engineers Research and
Development Center DSRC, and the US Air Force Research Laboratory DSRC.
Also, special thanks to Dr Stephen Foiles (Sandia National Laboratories) for
providing the initial Large-scale Atomic/Molecular Massively Parallel Simulator
energy conserving orientational code that was used in these simulations.

Approved for public release; distribution is unlimited.
1

1. Introduction

In the study of nanoscale systems, grain boundary structure, energy, and mobility
can influence a wide range of material properties, such as strength, damage
tolerance, and electrical conductivity.1–3 The grain boundary properties are
functions of its geometry, composition, strain state, defect content, and the like.
Considering geometry alone, there are 5 macroscopic degrees of freedom to
describe the relative misorientation between adjacent grains and the grain boundary
plane. Three additional degrees of freedom then describe the nanoscale translation
space relative to each grain. A comprehensive experimental study exploring grain
boundary geometry effects on structure, energy, and mobility is not possible due to
these unbounded degrees of freedom and difficulty in sample processing.4
However, systematic computational investigations using molecular dynamics
simulations have provided insights into particular grain boundary property-
structure relationships.5–7

Molecular dynamics simulations are ideal methods for calculating grain boundary
structure, energy, and mobility due to their capacity to model atomic positions and
trajectories over the nanoscale. Using molecular dynamics, it is a relatively
straightforward endeavor to create flat grain boundary models to systematically
explore varying grain boundary geometries at different temperatures and under
boundary conditions. Tracking the atomic structure of the grain boundary over time
and under different conditions allows researchers to gain understanding of the
specific mechanisms that influence their evolution and properties. These specific
data and insights from atomistic models can then be used to generate more realistic
mesoscale materials simulations. For example, recent Potts Monte Carlo
simulations that incorporated multiple boundary characteristics show how grain
growth can stagnate in pure metals.8 These results point to a need for even more
grain boundary structure-property data to better predict other realistic material
behavior that can dominate material performance, such as abnormal grain growth.

This technical report discusses algorithmic advancements made to conduct high-
throughput grain boundary mobility calculations using flat bicrystal atomistic
models. Specifically, this technical note highlights the expansions to the energy
conserving orientational (ECO) artificial driving force developed by Ulomek et al.9
The ECO method applies a synthetic driving force to atoms located at the grain
boundary plane to accelerate its motion. In its original form, the ECO artificial
driving force was developed for only face-centered cubic (FCC) systems. The
current work expands its functionality to body-centered cubic (BCC) materials and
makes recommendations for expansion to hexagonal close-packed (HCP) systems.

Approved for public release; distribution is unlimited.
2

When possible, results obtained from the ECO driving force are compared directly
to the other driving force methods. In order to facilitate high-throughput grain
boundary property calculations using the ECO method, a workflow is developed to
automate mobility calculations over multiple grain boundaries by applying varying
driving force conditions at different temperatures.

2. Background

2.1 Artificial Driving Forces

Natural grain boundary motion often occurs on timescales not traditionally
accessible by molecular dynamics simulations. In order for molecular dynamics
simulations to model grain boundary motion within the typical nanosecond time
span, the motion must be driven by either external or internal forces. The initial
methods of producing this driving force mirrored those used experimentally (i.e.,
shearing the crystals,10 using curvature,11 using gradients in dislocation density,12
or using gradients in temperature13). These methods often greatly overestimated
grain boundary mobility as compared with the experiments they intended to mimic
and were often limited by the specific conditions used to drive grain boundary
motion.

More recently, artificial driving force approaches have been created to widen the
applicability of grain boundary mobility calculations. The artificial driving force
promotes flat grain boundary motion in bicrystal models by making one of the
grains more energetically favorable than the other. In molecular dynamics
simulations, forces on the atoms are computed using the equation,
F = –∇u, where u is the energy value assigned to the atoms. During artificial
driving force simulations, atoms located within the bulk of each grain have a
constant added energy; thus, no force is added to these atoms. Atoms located at the
boundary, however, have an added energy that smoothly transitions from one grain
to the next using an orientation parameter defined by the artificial driving force
method. Thus, atoms at the boundary are provided an extra force to drive the motion
of the grain boundary.

Two variations of artificial driving force methods have been developed that use
different approaches to identify grain orientations. The first, developed by Janssens
et al., uses the centrosymmetric positions of the atom neighbors to calculate an
orientation parameter for each atom.14 In select cases, this direct approach is not
sufficient for accurately determining the boundary atoms. The second artificial
driving force method, developed by Ulomek et al.,9 calculates the orientations more
robustly within a neighboring envelope using reciprocal space vectors. The

Approved for public release; distribution is unlimited.
3

following sections provides more details about each method and its implementation
in the Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS)
molecular dynamics code.15

2.1.1 Janssens et al. Method

In the Janssens et al.14 artificial driving force method, the desired low-energy
crystal orientation is defined as the reference state. For each atom in the system, its
orientation parameter is defined as

 𝜉𝜉𝑖𝑖 = ∑ �𝑟𝑟𝑗𝑗 − 𝑟𝑟𝑗𝑗𝐼𝐼�𝑗𝑗 . (1)

Here rj is the relative positions of the nearest neighbors (12 for FCC, 8 for BCC) to
particle i, and rj

I is the reference state positions. This value is then normalized by
using the positions of the second orientation for rj. At 0 K, the result will be
orientation factors of slightly more than 0 in the bulk of the reference orientation
and values of 1 within the bulk of the second orientation. Between the grains, in the
grain boundary regions, the orientation factor transitions between 0 and 1. As the
simulation temperature increases, thermal noise can become an issue as the atoms
are rarely in their ideal lattice positions due to vibrations (Fig. 1a). To address the
vibrations, filtering parameters are used, ξlo and ξhi, to which orientation parameters
between these values are assigned.

In order to promote the motion of the boundary, Janssens et al.14 add a synthetic
energy, ui, to each atom based off the orientation parameter, using the expression

 𝑢𝑢𝑖𝑖 = �

0 𝜉𝜉𝑖𝑖 < 𝜉𝜉𝑙𝑙𝑙𝑙
𝑉𝑉
2

(1 − cos 2𝜔𝜔𝑖𝑖) 𝑤𝑤𝑤𝑤𝑤𝑤ℎ 𝜔𝜔𝑖𝑖 = 𝜋𝜋
2
𝜉𝜉𝑖𝑖−𝜉𝜉𝑙𝑙𝑙𝑙
𝜉𝜉ℎ𝑖𝑖−𝜉𝜉𝑙𝑙𝑙𝑙

𝜉𝜉𝑙𝑙𝑙𝑙 < 𝜉𝜉𝑖𝑖 < 𝜉𝜉ℎ𝑖𝑖
𝑉𝑉 𝜉𝜉ℎ𝑖𝑖 < 𝜉𝜉𝑖𝑖

 . (2)

Figure 1 shows the resultant energy profile that is added to the simulation. The
added energy smoothly transitions from one grain to the next and its form is
continuous and differentiable. These properties enable additional forces to be
computed and applied to the atoms within the grain boundary region based off the
synthetic energy.

Approved for public release; distribution is unlimited.
4

Fig. 1 a) Plot of the orientation parameter vs. position commonly seen with the Janssens
artificial driving force. b) Energy to be applied based on the orientation parameter.

2.1.2 Ulomek et al. Method

The ECO artificial driving force method developed by Ulomek et al.9 uses
reciprocal space values for the basis vectors to aid in the calculation of the
orientation factors, an approach inspired by diffraction theory. This methodology
defines an orientation parameter

 𝜒𝜒𝑗𝑗 = 1
𝑁𝑁
�∑ �∑ 𝜔𝜔�𝑅𝑅𝑗𝑗𝑗𝑗�𝑒𝑒𝑖𝑖𝑄𝑄𝛼𝛼𝑅𝑅𝑗𝑗𝑗𝑗𝑘𝑘 �

2
𝛼𝛼 − ∑ �∑ 𝜔𝜔�𝑅𝑅𝑗𝑗𝑗𝑗�𝑒𝑒𝑖𝑖𝑄𝑄𝛽𝛽𝑅𝑅𝑗𝑗𝑗𝑗𝑘𝑘 �

2
𝛽𝛽 � , (3)

where N is the number of particles in the local neighborhood, Rjk are the
displacement vectors between these particles, and Qα and Qβ are sets of reciprocal
space lattice vectors for the 2 orientations. The local neighborhood for this
formulation is defined by a cutoff radius, Rcut, which is an additional user input for
the ECO method. The 𝜔𝜔�𝑅𝑅𝑗𝑗𝑗𝑗�terms are envelope functions that drop smoothly to
zero as the distance between particles j and k, respectively, approaches Rcut. It is
given by

 𝜔𝜔�𝑅𝑅𝑗𝑗𝑗𝑗� =
�𝑅𝑅𝑗𝑗𝑗𝑗�

4

𝑅𝑅𝑐𝑐𝑐𝑐𝑐𝑐4 − 2
�𝑅𝑅𝑗𝑗𝑗𝑗�

2

𝑅𝑅𝑐𝑐𝑐𝑐𝑐𝑐2 + 1 for 𝑅𝑅𝑗𝑗𝑗𝑗 < 𝑅𝑅𝑐𝑐𝑐𝑐𝑐𝑐 (4)

for Rjk > Rcut, wjk is defined as zero.

The resulting orientation parameter, χj, will vary between –1 and 1 in the bulk of
the 2 grains, with values transitioning between the 2 at the grain boundary. Thermal
noise also causes variation from these values; however, as seen in Fig. 2a, it is
significantly less than that seen with the Janssens et al.14 method. Nevertheless, a
filtering parameter, η, is used to eliminate any noise effects due to vibrations,
whereby orientation parameters below –η and above η are assigned values of –1
and 1, respectively.

Approved for public release; distribution is unlimited.
5

Fig. 2 a) Plot of the orientation parameter vs. position commonly seen with the ECO
artificial driving force. b) Energy to be applied based on the orientation parameter.

The ECO artificial driving force method adds a synthetic energy to each atom using
the expression

 𝑢𝑢𝑗𝑗�𝜒𝜒𝑗𝑗� = 𝑢𝑢0
2
�

1 𝜒𝜒𝑗𝑗 > 𝜂𝜂

sin �2𝜋𝜋
𝜂𝜂
𝜒𝜒𝑗𝑗� −𝜂𝜂 < 𝜒𝜒𝑗𝑗 < 𝜂𝜂

−1 𝜒𝜒𝑗𝑗 < −𝜂𝜂
 . (5)

Figure 2 shows the energy profile of the crystal for using the ECO formulation.
During implementation within LAMMPS, this energy is never added to the system.
Instead, forces are computed for each atom using the gradient of this added energy,
and these forces are added to those already present from the interatomic potential.

Although both artificial driving force methods do induce grain boundary motion,
the ECO artificial driving force is superior for multiple reasons. Perhaps most
importantly is its conservation of energy. The ECO method adds zero net energy to
the system due to its symmetric addition and subtraction of energy across the
boundary. Its more robust orientation calculation eliminates artificial energy jumps
that occurred in special cases with the Janssens method due to the grain boundary
structure.

Additionally, the ECO method is less influenced by thermal noise due to its
computation of orientation parameters using reciprocal space vectors. As a result,
the filtering parameter can remain the same for almost every simulation, a value of
η = 0.25 is suggested by Ulomek et al.9 Conversely, the variability in orientation
parameters computed using the method by Janssens et al.14 often requires a
preprocessing step to select appropriate χ values. This additional step hinders the
generation of an automatic workflow for high-throughput calculations. Lastly, the
Janssens et al.14 method only considers a set number of nearest neighbors, while
the ECO driving force considers all particles in the local neighborhood. This allows

Approved for public release; distribution is unlimited.
6

for a better understanding of local structures. For these reasons, the ECO
formulation was chosen as the preferred artificial driving force method in this work.

2.2 Grain Boundary Mobility

Grain boundary mobility defines the relationship between the normal grain
boundary velocity and the driving force behind the motion. From rate theory, grain
boundaries move as a concerted set of atomic jumps happening across the
boundary. The grain boundary velocity, v, at varying temperatures, T, and driving
forces p, can be described through a traditional Arrhenius relationship of the form

 𝑣𝑣 = 𝑏𝑏𝑣𝑣0 exp �− 𝐻𝐻𝐺𝐺𝐺𝐺𝐺𝐺
𝑘𝑘𝐵𝐵𝑇𝑇

� (exp � 𝑝𝑝𝑝𝑝
𝑘𝑘𝐵𝐵𝑇𝑇

� − 1) , (6)

where, b is the atomic jump distance, ν0 is the attempt frequency, and HGBM is the
activation enthalpy for the boundary motion. With the exception of the driving
pressure, all the other values in this Arrhenius equation are constants; thus, the
boundary velocity can be simplified by the equation

 𝑣𝑣 = 𝐴𝐴(exp(𝐵𝐵𝐵𝐵) − 1) , (7)

where A and B are constants. Using the ECO artificial driving force methods, the
driving pressure can easily be related to the energy values added to the grains using
the expression

 𝑝𝑝 = 𝑢𝑢0
Ω

 , (8)

where Ω is the atomic volume.

Grain boundary mobility, m, is calculated from the derivative of the boundary
velocity with respect to the driving force, in the low driving force limit:

 𝑚𝑚 = 𝛿𝛿𝛿𝛿
𝛿𝛿𝛿𝛿
�
𝑝𝑝→0

 . (9)

To calculate grain boundary mobility at a specific temperature, multiple
simulations are run using varying energies. For each simulation, the boundary
velocities are calculated by tracking the grain boundary position over time. A curve
of the form of Eq. 7 is then fit to the driving force and velocity data. Finally, grain
boundary mobility is computed as the product m = AB from this fit.

Approved for public release; distribution is unlimited.
7

3. Workflow

This section summarizes the various scripts that are used to perform and analyze
artificial driving force simulations. These scripts are constructed with high-
throughput studies in mind. While all scripts are made with the ECO driving force
in mind, they could be altered with minimal effort to produce simulations that use
other driving force methods as well.

3.1 Required Software

All scripts presented were tested and developed using Python 2.7.9 with NumPy,
SciPy, and matplotlib packages enabled. The molecular dynamics simulations are
conducted using the LAMMPS molecular dynamic code and require the artificial
driving force commands be compiled. The ECO artificial driving force method uses
the commands fix_eco_force.cpp and fix_eco_force.h, whereas the original
Janssens et al.14 method requires the commands fix_orient_fcc.cpp,
fix_orient_fcc.h, fix_orient_bcc.cpp, and fix_orient_bcc.h (available through the
MISC package).

3.2 Initialization Steps

Two inputs are required before the grain boundary mobility simulations can begin:
the initial bicrystal structure and the temperature-dependent lattice constant for the
given material. Grain boundaries can being generated using LAMMPS itself;
however, for any survey of a large number of differing grain boundary geometries,
it is recommended that a grain boundary builder be used to streamline the process.
The mobility calculation workflow uses a LAMMPS data file as the input; however,
this can be easily changed to other data types if necessary. The inputted grain
boundary structure should be periodic in all directions, but with free surfaces at the
ends of the box in the direction normal to the grain boundary plane.

An accurate, temperature-dependent lattice constant is needed as the second input
to correctly calculate the orientation parameter. For this work, a simple algorithm
is developed (Appendix A.1) to compute the lattice constant at increments of 50 K
in the range of 0 to 1000 K. This algorithm generates a bulk equilibration simulation
from an inputted material, crystal prototype, approximated 0 K lattice constant, and
interatomic potential. The equilibration script uses an isothermal-isobaric (NPT)
ensemble to perform 10-ps ramps and 5-ps holds at each of the targeted
temperatures. The results are unique for every set of material, crystal prototype, and
potential.

Approved for public release; distribution is unlimited.
8

3.3 ECO Artificial Driving Force Simulations

The scripts for systematic grain boundary motion studies using ECO artificial
driving force are included in Appendix A.2. For simplicity, the discussions of each
step in the following subsections only include a single applied energy at a single
temperature. The complete workflow repeats this process to generate the full data
set mapping velocity as a function of driving force, which is necessary to compute
grain boundary mobility.

The required inputs are as follows: Miller indices, material, crystal type, cutoff
radius, thermal filtering parameter, interatomic potential, timesteps, temperatures,
energies, and grain boundary data file.

3.3.1 Simulation Cell Edges

The free surfaces that lie normal to the grain boundary plane within the flat bicrystal
structures allow for the study of more general boundaries without worry of possible
force-coupling effects. However, because the local environment at the free surface
is different from that of the bulk, spurious nonunity orientation values will emerge.
In order to avoid adding improper driving forces to these atoms located at the
simulation edges, particles within 1 cutoff radius, Rcut, are detected and assigned
zero force and velocity values normal to the grain boundary plane. By fixing the
force and velocity normal to the grain boundary, the simulation becomes anchored
in space while allowing the atoms to rearrange as necessary along the planar
directions.

3.3.2 Orientation File

The ECO artificial driving force method requires an input of an orientation file that
contains the oriented basis vectors for both crystals in the system. These oriented
basis vectors are used within the ECO method to both calculate the reciprocal space
values and to determine the normalization value for the orientation parameter. The
workflow algorithm generates orientation files with the appropriate oriented basis
vectors for the given crystal prototype (FCC and BCC) and rotation matrices for
each grain, R1∕2. For crystal types in which the basis vectors and the primitive unit
cells are the same (e.g., FCC [Fig. 3a] and BCC [Fig. 3b]), the orientation file
consists simply of the following vectors:

Approved for public release; distribution is unlimited.
9

FCC
b1 = R1[a/2, a/2, 0]
b2 = R1[a/2, 0, a/2]
b3 = R1[0, a/2, a/2]
b1 = R2[a/2, a/2, 0]
b2 = R2[a/2, 0, a/2]
b3 = R2[0, a/2, a/2]

BCC
b1 = R1[–a/2, a/2, a/2]
b2 = R1[a/2, –a/2, a/2]
b3 = R1[a/2, a/2, –a/2]
b1 = R2[-a/2, a/2, a/2]
b2 = R2[a/2, –a/2, a/2]
b3 = R2[a/2, a/2, -a/2]

Fig. 3 Basis vectors within the unit cells of a) FCC and b) BCC. For these crystal types, the
basis vectors and primitive unit cells are the same.

3.3.3 Temperature Equilibration

In order to calculate grain boundary mobility at a given temperature, multiple
simulations at varying driving forces must be explored. To ensure consistent results,
all simulations performed at the specified temperature start from the same initial
state. This initial state is generated from the inputted bicrystal structure (assumed
to be at 0 K). The inputted bicrystal structure is ramped up to the desired
temperature using the isobaric-isothermal (NPT) ensemble at a ramp rate of 5 K/ps.
At the desired temperature, the simulation is allowed to equilibrate for 5 ps using
the NPT thermostat. After this equilibration period, a LAMMPS restart file is
written to enable subsequent simulations to be initiated using the same atomic
positions and trajectories.

3.3.4 File Submission

To fully automate the process, it is necessary to automate the process of submitting
the jobs, as there can often be dozens or more simulations to be run at any given
time. An example of the script used to write the submit files for the Excalibur
computing cluster at the US Army Research Laboratory is included in
Appendix A.3. This should be appropriately adjusted to match the requirements for
the cluster in use.

Approved for public release; distribution is unlimited.
10

3.4 Data Analysis

The algorithm described previously outputs a large amount of data for each energy
simulated, on the scale of hundreds of atomic position files in addition to the input
files, submit files, and an output file describing the state of the system. As a result,
it is also necessary to automate the postprocessing of the data, specifically
determining the velocity of the grain boundary (Appendix A.4). In addition to
position and velocity of each atom, the orientation parameter is also outputted in
the dump files of the simulation. As at the grain boundary is the only region that
the orientation parameter is not –1 or 1 (Fig. 4), by scanning each dump file for
values between these values it is possible to determine the particles that form the
boundary. This can be done for each timestep, thus allowing for a plot of position
against time (Fig. 5). The velocity can then be determined by finding the slope using
least-squares linear regression. Additionally, to speed up computation time and
allow for more accurate line fits, once the grain boundary is within 2 cutoff radii of
the end of the bicrystal, the algorithm ends, as there is no longer any useful data to
be gleamed from the simulation. The calculated velocity values are then plotted
against driving pressure, and using the procedure outlined in Section 2.2, a curve is
fit to the data and a mobility value is determined.

Fig. 4 Orientation parameter generated by the fix ECO command. Blue represents –1 and
red 1 with the region between containing intermediate values.

Fig. 5 a) Position of the grain boundary as determined by the tracking algorithm. Output
of the bicrystal at times b) 0 ps, c) 150 ps, and d) 300 ps.

Approved for public release; distribution is unlimited.
11

4. Examples

4.1 FCC Crystal

Mobility calculations were made for a Σ5 tilt boundary in FCC copper (Cu) from
literature16 using both the ECO driving force and Janssens driving force methods.
Simulations were run at 200 and 500 K with u0 driving energy values ranging from
0.025 to 0.05 eV/atom using the Mishin embedded atom method (EAM)
interatomic potential.17 Figure 6 shows the results of the 200 K ECO simulations,
which yielded a mobility value of 181.1 m/s⋅GPa.

Fig. 6 a) Orientation parameter values at the Σ5 Cu interface at 200 K. b) Comparison of
displacement vs. time plots for the various driving energies. c) Plot of velocities at the various
driving pressures and the curve fit using Eq. 7.

A comparison of the mobility results derived from the different driving force
methods are shown in Table 1. Two trends can be discerned from these values.
First, mobility increases with temperature. Second, the values for the ECO driving
force are lower than those of the Janssens driving force method. The first is to be
expected as, with the exception of more exotic athermal grain boundaries, mobility
should increase with more energy in the system. The differences in calculated
mobility between the 2 driving forces are consistent with the range found in
Ulomek’s original work, which is generally attributed to nonconservation of energy
with Janssens method.

Table 1 Calculated mobility values for an FCC Cu Σ5 tilt boundary at different
temperatures and using different driving forces

Temperature ECO
(m/s⋅GPa)

Janssens
(m/s⋅GPa)

200 K 181 196
500 K 231 252

Approved for public release; distribution is unlimited.
12

4.2 BCC Crystal

A bicrystal with the same orientations as those used in Section 4.1 was constructed
for BCC iron (Fe), and simulations were run using the Hepburn EAM interatomic
potential.18 Thermal noise at 500 K was too large for the Janssens method, thus the
evaluated temperatures were reduced to 50 and 200 K. Due to difference in material
and crystal structure, the driving energies necessary to initiate grain growth differ
from that of the FCC simulations, so here values ranging from 0.30 to 0.50 eV/atom
were used. Table 2 results show that the same trends emerge here as observed in
the FCC simulations. Specifically, increased mobility as temperature increases and
finding larger mobility values using the Janssens method. Despite having the same
orientation relationship and temperature, the Cu and Fe simulations at 200 K have
different mobility values. This suggests additional variables are at play (e.g., grain
boundary energy, cohesive energy, and mass).

Table 2 Calculated mobility values for a BCC Fe Σ5 tilt boundary at different temperatures
and using different driving

Temperature ECO
(m/s⋅GPa)

Janssens
(m/s⋅GPa)

50 K 10.9 12.4
200 K 15.4 17.6

5. Future Applications: Mobility in HCP Crystals

As stated in Section 3.3.2, creating the orientation files for crystal structures in
which the primitive unit cells and basis vectors are the same is a relatively simple
endeavor. In HCP, however, the basis and the primitive unit cell are different. In
order to define all the nearest neighbors, a fourth basis vector is needed (Fig. 7):

HCP
b1=[a, 0, 0]
b2=[–a/2, a√3/2, 0]
b3=[0, –a√3/3, c/2]
b4=[0, –a√3/3, –c/2]

Approved for public release; distribution is unlimited.
13

Fig. 7 a) Primitive unit cell for the HCP crystal structure. b) Basis vector required to be
used in the fix ECO command for HCP

This also requires a reformulation of the ECO LAMMPS command to allow an
extra basis vector to be inputted. As a result of the new formulation of reciprocal
space volume, the number of reciprocal basis vectors for each crystal orientation
increases from 3 in FCC and BCC materials to 11 in HCP. Furthermore, this
approach is only valid if the cutoff radius is less than the c lattice constant, as at
values greater than c, this basis no longer defines the atomic positions of the system.
A cutoff radius of 0.75c is suggested to allow the maximum amount of thermal
noise without influencing the results. This cutoff radius produces a local
neighborhood of 12 atoms, which is more than sufficient to describe the orientation
parameter. This formulation has shown the ability to calculate appropriate
orientation factor values and to drive grain growth. However, further testing and
comparison to other driving force methods is required to validate this method.

6. Conclusion

The algorithm outlined here allows for the automated and efficient calculation of
mobility values for a wide variety of crystallographic systems. Through the use of
the ECO force, grain boundary motion is initiated. This motion is then tracked with
the resulting velocities used to calculate the grain boundary mobility. This process
can then be repeated for as many simulations as desired. Grain boundary mobility
is an extremely important value with regard to the behavior of grain structure in
metals. The algorithm developed and discussed in this work can be a very useful
tool for researchers studying mobility and how it relates to the character of various
grain boundaries. Additionally, the ability to more quickly calculate various
mobility values allows them to be used as inputs to mesoscale models that may
better model grain growth.

Approved for public release; distribution is unlimited.
14

7. References

1. Greuter F, Blatter G. Electrical properties of grain boundaries in polycrystalline
compound semiconductors. Semiconductor Science and Technology.
1990;5(2):111.

2. Schiøtz J, Jacobsen KW. A maximum in the strength of nanocrystalline copper.
Science. 2003;301(5638):1357–1359.

3. Beyerlein IJ, Caro A, Demkowicz MJ, Mara NA, Misra A, Uberuaga BP.
Radiation damage tolerant nanomaterials. Materials Today. 2013;16(11):443–
449.

4. Yonehara T, Nishigaki Y, Mizutani H, Kondoh S, Yamagata K, Ichikawa T.
Control of grain boundary location by selective nucleation over amorphous
substrates. Cambridge University Press. 1987;106:21.

5. Van Swygenhoven H, Caro A, and Farkas F. A molecular dynamics study of
polycrystalline FCC metals at the nanoscale: grain boundary structure and its
influence on plastic deformation. Materials Science and Engineering: A.
2001;309:440–444.

6. Hasnaoui A, Van Swygenhoven H, Derlet PM. On non-equilibrium grain
boundaries and their effect on thermal and mechanical behaviour: a molecular
dynamics computer simulation. Acta Materialia. 2002;50(15):3927–3939.

7. Cao A, Wei Y, Ma E. Grain boundary effects on plastic deformation and
fracture mechanisms in Cu nanowires: molecular dynamics simulations.
Physical Review B. 2008;77(19):195429.

8. Holm EA, Foiles SM. How grain growth stops: a mechanism for grain-growth
stagnation in pure materials. Science. 2010;328(5982):1138–1141.

9. Ulomek F, O’Brien CJ, Foiles SM, Mohles V. Energy conserving orientational
force for determining grain boundary mobility. Modelling and Simulation in
Materials Science and Engineering. 2015;23(2):025007.

10. Schönfelder B, Wolf D, Phillpot SR, Furtkamp M. Molecular-dynamics
method for the simulation of grain-boundary migration. Interface Science.
1997;5(4):245–262.

11. Zhang H, Upmanyu M, Srolovitz DJ. Curvature driven grain boundary
migration in aluminum: molecular dynamics simulations. Acta Materialia.
2005;53(1):79–86.

Approved for public release; distribution is unlimited.
15

12. Trautt Z, Upmanyu M. Atomic-scale simulation of grain boundary kinetics
during recrystallization. Cambridge University Press. 2004;819:N6.7.

13. Bai X-M, Zhang Y, Tonks MR. Testing thermal gradient driving force for grain
boundary migration using molecular dynamics simulations. Acta Materialia.
2015;85:95–106.

14. Janssens KGF, Olmsted D, Holm EA, Foiles SM, Plimpton SJ, Derlet PM.
Computing the mobility of grain boundaries. Nature Materials. 2006;5(2):124–
127.

15. Plimpton S. Fast parallel algorithms for short-range molecular dynamics.
Journal of Computational Physics. 1995;117(1):1–19.

16. Tschopp MA, McDowell DL. Asymmetric tilt grain boundary structure and
energy in copper and aluminum. Philosophical Magazine. 2007;87(25):3871–
3892.

17. Mishin Y, Mehl MJ, Papaconstantopoulos DA, Voter AF, Kress JD. Structural
stability and lattice defects in copper: ab initio, tight-binding, and embedded-
atom calculations. Physical Review B. 2001;63(22):224106.

18. Hepburn DJ, Ackland GJ. Metallic-covalent interatomic potential for carbon in
iron. Physical Review B. 2008;78(16):165115.

Approved for public release; distribution is unlimited.
16

INTENTIONALLY LEFT BLANK.

Approved for public release; distribution is unlimited.
17

Appendix. Grain Boundary Mobility Scripts

 This appendix appears in its original form, without editorial change.

Approved for public release; distribution is unlimited.
18

A.1 ThermalData.py

import numpy
import math
import os
from submit_maker import *
import time

#Crystalography
material='Fe'
crystaltype='bcc' #bcc, fcc, or hcp
a=2.86 #Lattice constant approximation
 #c will be assumed to be ideal, relaxation will find actual

unitcell_dump='' #Only if not bcc, fcc, or hcp
unit_timestep=0

#Potential
pair_style='eam/fs'
pair_coeff='* * Potentials/Fe-C_Hepburn_Ackland.eam.fs '+material
mass=24.305

os.system('mkdir ThermalData')
os.system('mkdir ThermalData/'+material+'_'+crystaltype)

#Calculate temperature dependent lattice constants
#Create LAMMPS input script ramping up temperature
f = open('ThermalData/'+material+'_'+crystaltype+'/temp_'+material+'.in','w')
f.write('#LAMMPS input file to calculate temperature dependent lattice constants of
'+material+' \n')
f.write('dimension 3 \n')
f.write('boundary p p p \n')
f.write('units metal \n')
f.write('atom_style atomic \n')
if crystaltype=='fcc' or crystaltype=='bcc' or crystaltype=='hcp':
 f.write('lattice '+crystaltype+' '+repr(a)+' origin .01 .01 .01 \n')
 f.write('region box block 0 8 0 8 0 8 units lattice \n')
 f.write('create_box 1 box \n')
 f.write('create_atoms 1 box \n')
else:
 f.write('lattice bcc '+repr(a)+' origin .01 .01 .01 \n')
 f.write('region box block 0 8 0 8 0 8 units lattice \n')
 f.write('create_box 1 box \n')
 f.write('read_dump '+unitcell_dump+' '+repr(unit_timestep)+' box yes replace yes \n')
 f.write('replicate 8 8 8 \n')
 f.write('reset_timestep 0 \n')
 f.write('pair_style '+pair_style+'\n')
 f.write('pair_coeff '+pair_coeff+'\n')

Approved for public release; distribution is unlimited.
19

f.write('mass 1 '+repr(mass)+' \n')
f.write('variable Lx equal lx/8 \n')
f.write('variable Ly equal ly/8 \n')
f.write('variable Lz equal lz/8 \n')
f.write('variable T equal temp \n')
f.write('thermo 1000 \n')
f.write('thermo_style custom step temp etotal press \n')
f.write('fix zeroK all box/relax x 0.0 y 0.0 z 0.0 \n')
f.write('minimize 1e-12 1e-12 100000 100000 \n')
f.write('fix 2 all print 1 "${T} ${Lx} ${Ly} ${Lz}" file
ThermalData/'+material+'_'+crystaltype+'/LatticeConst title "Temperature dependent
lattice constants (T a b c)" \n')
f.write('run 1 \n')
f.write('reset_timestep 0 \n')
f.write('unfix zeroK \n')
f.write('unfix 2 \n')
f.write('timestep 0.001 \n')
f.write('velocity all create 5 1 \n')
for j in range(0,20):
 X=int(j*50)
 Y=int((j+1)*50)
 if j==0:
 f.write('fix integrator all npt iso 0 0 1 temp 1 '+repr(Y)+' .1 \n')
 else:
 f.write('fix integrator all npt iso 0 0 1 temp '+repr(X)+' '+repr(Y)+' .1 \n')
 f.write('run 10000 \n')
 f.write('unfix integrator \n')
 f.write('fix integrator all npt iso 0 0 1 temp '+repr(Y)+' '+repr(Y)+' .1 \n')
 f.write('fix 3 all print 1 "${T} ${Lx} ${Ly} ${Lz}" file
ThermalData/'+material+'_'+crystaltype+'/Temp'+repr(Y)+'.out title "" screen no \n')
 f.write('run 5000 \n')
 f.write('unfix 3 \n')
 f.write('unfix integrator \n')
f.write('dump check all atom 1 SimDone \n')
f.write('run 0')
f.close()

write_submit_excalibur('LatticeCompute.bash',material+'_lattice',16,'00:30:00','debug
','/work/mcg84/test','ThermalData/'+material+'_'+crystaltype+'/temp_'+material+'.in','T
hermalData/'+material+'_'+crystaltype+'/Temp.out')
os.system('qsub LatticeCompute.bash')
while not os.path.exists('SimDone'):
 time.sleep(10)
 print('Waiting for restart file')

os.system('rm SimDone')
os.system('rm LatticeCompute.bash')

#Average out data from constant temperature holds

Approved for public release; distribution is unlimited.
20

for j in range(0,20):
 Y=int((j+1)*50)
 f = open('ThermalData/'+material+'_'+crystaltype+'/Temp'+repr(Y)+'.out','r')
 f.readline()
 T=0; Lx=0; Ly=0; Lz=0;
 for k in range(0,5000):
 line=f.readline()
 data=line.split(' ')
 T=T+float(data[0]); Lx=Lx+float(data[1]); Ly=Ly+float(data[2]);
Lz=Lz+float(data[3]);
 os.system('rm ThermalData/'+material+'_'+crystaltype+'/Temp'+repr(Y)+'.out')
 T=T/5000; Lx=Lx/5000; Ly=Ly/5000; Lz=Lz/5000;
 g = open('ThermalData/'+material+'_'+crystaltype+'/LatticeConst','a')
 g.write(repr(T)+' '+repr(Lx)+' '+repr(Ly)+' '+repr(Lz)+'\n')
 g.close()
f.close()

A.2 ECO_Builder.py

import numpy
import math
import os
from submit_maker import *
import time
from decimal import *

#NOTE: ThermalData.py for the given material and crystaltype must have previously
been run

#Dump file from Shawn's GB (Output: id type x y z)
dumpfile='InitialDumpfiles/Fe_tilt.dump'

#Temperatures to be analyzed
Temps=[50,200]

#Driving energies to be considered (+/- u0/2 added to each crystal
u0=[0.10,0.20,0.30,0.40,.50,.75,1.0,1.25,1.5]

#Orientation Title
Orientation='Fe_sig5'

#Computational machine
machine='excalibur'

#Parameters
rcut=4 #ECO cutoff radius
eta=.7 #ECO cutoff parmater (.25 in most cases)
cutlo=.65 #orient cutoff parameters (between 0 and 1)
cuthi=.95

Approved for public release; distribution is unlimited.
21

timesteps=300000

#Crystalography
material='Fe'
crystaltype='bcc' #bcc, fcc, or hcp
a=2.86 #Lattice constant approximation

#y is normal direction Orientation 1 will grow
miller1x=numpy.array([0, 0, 1])
miller1y=numpy.array([-1, -3, 0])
miller1z=numpy.array([3, -1, 0])
miller2x=numpy.array([0, 0, 1])
miller2y=numpy.array([3, -1, 0])
miller2z=numpy.array([-1, -3, 0])

unitcell_dump='' #Only if not bcc, fcc, or hcp
unit_timestep=0

#Potential
pair_style='eam/fs'
pair_coeff='* * Potentials/Fe-C_Hepburn_Ackland.eam.fs Fe Fe Fe Fe'
mass=55.85

os.system('mkdir MobilityData')
os.system('mkdir MobilityData/'+material+'_'+crystaltype)
os.system('mkdir MobilityData/'+material+'_'+crystaltype+'/'+Orientation)
os.system('mkdir MobilityData/'+material+'_'+crystaltype+'/'+Orientation+'/InputScripts')
os.system('mkdir MobilityData/'+material+'_'+crystaltype+'/'+Orientation+'/Dumps')
os.system('mkdir MobilityData/'+material+'_'+crystaltype+'/'+Orientation+'/Outputfiles')
os.system('mkdir MobilityData/'+material+'_'+crystaltype+'/'+Orientation+'/Submitfiles')

#Create array of temperature dependent lattice constants
f = open('ThermalData/'+material+'_'+crystaltype+'/LatticeConst','r')
f.readline()
for i in range(0,21):
 line=f.readline()
 data=line.split(' ')
 if i == 0:
 TempData=numpy.array([float(data[0]),float(data[1]),float(data[3])])
 else:

TempData=numpy.vstack([TempData,[float(data[0]),float(data[1]),float(data[3])]])
f.close()

Approved for public release; distribution is unlimited.
22

#Find Particles on free surface
f = open(dumpfile,'r')
f.readline()
line2=f.readline()
data = line2.split(' ')
dump_timestep=int(data[0])
f.readline()
line4 = f.readline()
data=line4.split(' ')
N=int(data[0])
f.readline()
line6 = f.readline()
xdata=line6.split(' ')
Lx=float(xdata[1])-float(xdata[0])
line7 = f.readline()
ydata=line7.split(' ')
Ly=float(ydata[1])-float(ydata[0])
line8 = f.readline()
zdata=line8.split(' ')
Lz=float(zdata[1])-float(zdata[0])
f.readline()

#Use far side of box as starting points
ymin=float(ydata[1])
ymax=float(ydata[0])

#Find min and max values of particles in y-direction
for j in range(0,N):
 line = f.readline()
 data=line.split(' ')
 if float(data[3])<ymin:
 ymin=float(data[3])
 if float(data[3])>ymax:
 ymax=float(data[3])
f.close()

#Calculate regions for vy=0,fy=0 (Necessary to keep box stationary)
yhi=ymax-rcut
ylo=ymin+rcut

#For temperatures to be analyzed, perform linear interpolation to find a and c
for j in range(0,len(Temps)):
 temp=Temps[j]
 for i in range(0,21):
 if temp<TempData[i][0]:
 T1=TempData[i-1][0]
 T2=TempData[i][0]
 a1=TempData[i-1][1]
 a2=TempData[i][1]
 break

Approved for public release; distribution is unlimited.
23

 i=(temp-T1)/(T2-T1)
 a=(1-i)*a1+i*a2

 #Define basis vectors and rotation matrices
 if crystaltype=='fcc':
 a1=numpy.matrix([[a/2], [a/2],[0]])
 a2=numpy.matrix([[a/2], [0],[a/2]])
 a3=numpy.matrix([[0], [a/2],[a/2]])
 ori1x=miller1x
 ori1y=miller1y
 ori1z=miller1z
 ori2x=miller2x
 ori2y=miller2y
 ori2z=miller2z
 if crystaltype=='bcc':
 a1=numpy.matrix([[a/2], [a/2],[-a/2]])
 a2=numpy.matrix([[a/2], [-a/2],[a/2]])
 a3=numpy.matrix([[-a/2], [a/2],[a/2]])
 ori1x=miller1x
 ori1y=miller1y
 ori1z=miller1z
 ori2x=miller2x
 ori2y=miller2y
 ori2z=miller2z

 ori1x=ori1x.T/numpy.linalg.norm(ori1x)
 ori1y=ori1y.T/numpy.linalg.norm(ori1y)
 ori1z=ori1z.T/numpy.linalg.norm(ori1z)
 ori2x=ori2x.T/numpy.linalg.norm(ori2x)
 ori2y=ori2y.T/numpy.linalg.norm(ori2y)
 ori2z=ori2z.T/numpy.linalg.norm(ori2z)

 x=numpy.array([1,0,0])
 y=numpy.array([0,1,0])
 z=numpy.array([0,0,1])

R1=numpy.matrix([[float(numpy.dot(x,ori1x)),float(numpy.dot(y,ori1x)),float(numpy.do
t(z,ori1x))],[float(numpy.dot(x,ori1y)),float(numpy.dot(y,ori1y)),float(numpy.dot(z,ori1y
))],[float(numpy.dot(x,ori1z)),float(numpy.dot(y,ori1z)),float(numpy.dot(z,ori1z))]])

R2=numpy.matrix([[float(numpy.dot(x,ori2x)),float(numpy.dot(y,ori2x)),float(numpy.do
t(z,ori2x))],[float(numpy.dot(x,ori2y)),float(numpy.dot(y,ori2y)),float(numpy.dot(z,ori2y
))],[float(numpy.dot(x,ori2z)),float(numpy.dot(y,ori2z)),float(numpy.dot(z,ori2z))]])

 #Calculate Rotated Basis
 b1_1=R1*a1
 b2_1=R1*a2
 b3_1=R1*a3

Approved for public release; distribution is unlimited.
24

 b1_2=R2*a1
 b2_2=R2*a2
 b3_2=R2*a3

 #Write Orientation file (ECO)

f=open('MobilityData/'+material+'_'+crystaltype+'/'+Orientation+'/InputScripts/eco_'+r
epr(temp)+'K.ori','w')
 f.write(str(b1_1[0]).strip('[]')+' '+str(b1_1[1]).strip('[]')+' '+str(b1_1[2]).strip('[]')+'\n')
 f.write(str(b2_1[0]).strip('[]')+' '+str(b2_1[1]).strip('[]')+' '+str(b2_1[2]).strip('[]')+'\n')
 f.write(str(b3_1[0]).strip('[]')+' '+str(b3_1[1]).strip('[]')+' '+str(b3_1[2]).strip('[]')+'\n')
 f.write(str(b1_2[0]).strip('[]')+' '+str(b1_2[1]).strip('[]')+' '+str(b1_2[2]).strip('[]')+'\n')
 f.write(str(b2_2[0]).strip('[]')+' '+str(b2_2[1]).strip('[]')+' '+str(b2_2[2]).strip('[]')+'\n')
 f.write(str(b3_2[0]).strip('[]')+' '+str(b3_2[1]).strip('[]')+' '+str(b3_2[2]).strip('[]')+'\n')
 f.close()

 #Calculate necessary size of simulation

 repx=int(math.ceil(50/Lx))
 repz=int(math.ceil(50/Lz))

 cutoff=2*rcut
 ramp=int(math.ceil(temp/50)*10000)

 #Write restart file at temperature to be analyzed

f=open('MobilityData/'+material+'_'+crystaltype+'/'+Orientation+'/InputScripts/temp_e
quil_'+repr(temp)+'.in','w')
 f.write('#Thermal Equilibration Input File \n')
 f.write('dimension 3 \n')
 f.write('boundary p p p \n')
 f.write('units metal \n')
 f.write('atom_style atomic \n')
 f.write('lattice bcc '+repr(a)+' origin .01 .01 .01 \n')
 f.write('region box block 0 1 0 1 0 1 units lattice \n')
 f.write('create_box 4 box \n')
 f.write('read_dump '+dumpfile+' '+repr(dump_timestep)+' x y z box yes add yes \n')
 f.write('replicate '+repr(repx)+' 1 '+repr(repz)+' \n')
 f.write('reset_timestep 0 \n')
 f.write('pair_style '+pair_style+'\n')
 f.write('pair_coeff '+pair_coeff+' \n')
 f.write('comm_modify cutoff '+repr(cutoff)+'\n')
 f.write('comm_style tiled \n')
 f.write('balance 0.9 rcb \n')
 f.write('timestep 0.001 \n')
 f.write('thermo 1000 \n')
 f.write('velocity all create 5 1 \n')
 f.write('fix integrator all npt iso 0 0 1 temp 1 '+repr(temp)+' .1 \n')
 f.write('thermo_style custom step temp etotal press \n')
 f.write('run '+repr(ramp)+' \n')

Approved for public release; distribution is unlimited.
25

 f.write('unfix integrator \n')
 f.write('fix integrator all npt iso 0 0 1 temp '+repr(temp)+' '+repr(temp)+' .1 \n')
 f.write('run 5000 \n')
 f.write('write_restart
MobilityData/'+material+'_'+crystaltype+'/'+Orientation+'/Dumps/'+repr(temp)+'K.resta
rt \n')
 f.write('run 0')
 f.close()

write_submit_excalibur('MobilityData/'+material+'_'+crystaltype+'/'+Orientation+'/Sub
mitfiles/submit_excal_restartmaker'+repr(temp)+'K.bash',material+'_'+repr(temp)+'K_
restart',16,'00:30:00','debug','/work/mcg84/test','MobilityData/'+material+'_'+crystaltyp
e+'/'+Orientation+'/InputScripts/temp_equil_'+repr(temp)+'.in','MobilityData/'+material
+'_'+crystaltype+'/'+Orientation+'/Outputfiles/temp_equil_'+repr(temp)+'.out')
 os.system('qsub
MobilityData/'+material+'_'+crystaltype+'/'+Orientation+'/Submitfiles/submit_excal_re
startmaker'+repr(temp)+'K.bash')

 for k in range(0,len(u0)):
 u=format(u0[k], '.3f')
 #Write ECO Input file

f=open('MobilityData/'+material+'_'+crystaltype+'/'+Orientation+'/InputScripts/eco_'+r
epr(temp)+'K_'+u+'eV.in','w')
 f.write('#ECO input '+repr(temp)+'K_'+repr(u)+'eV \n')
 f.write('read_restart
MobilityData/'+material+'_'+crystaltype+'/'+Orientation+'/Dumps/'+repr(temp)+'K.restart \n')
 f.write('reset_timestep 0 \n')
 f.write('pair_style '+pair_style+'\n')
 f.write('pair_coeff '+pair_coeff+' \n')
 f.write('comm_modify cutoff '+repr(cutoff)+'\n')
 f.write('thermo 100 \n')
 f.write('fix integrator all nvt temp '+repr(temp)+' '+repr(temp)+' .1 \n')
 f.write('region ends block INF INF '+repr(ylo)+' '+repr(yhi)+' INF INF units box side out \n')
 f.write('group end region ends \n')
 f.write('fix eco all eco/force '+u+' '+repr(eta)+' '+repr(rcut)+'
MobilityData/'+material+'_'+crystaltype+'/'+Orientation+'/InputScripts/eco_'+repr(temp
)+'K.ori \n')
 f.write('fix edges end setforce NULL 0.0 NULL \n')
 f.write('velocity end set NULL 0.0 NULL \n')
 f.write('balance 1.1 shift y 5 1.02 \n')
 f.write('thermo_style custom step temp etotal press f_eco \n')
 f.write('dump save all custom 1000
MobilityData/'+material+'_'+crystaltype+'/'+Orientation+'/Dumps/eco_'+repr(temp)+'K
_'+u+'eV.* id x y z f_eco[1] f_eco[2] f_eco[3] f_eco[4] f_eco[5] fx fy fz vx vy vz \n')
 f.write('dump_modify save sort id \n')
 f.write('run '+repr(timesteps))
 f.close()

Approved for public release; distribution is unlimited.
26

write_submit_excalibur('MobilityData/'+material+'_'+crystaltype+'/'+Orientation+'/Sub
mitfiles/submit_excal_'+repr(temp)+'K_'+u+'eV.bash',material+'_'+repr(temp)+'K_'+u
+'eV',28,'11:20:00','standard','/work/mcg84/test','MobilityData/'+material+'_'+crystalty
pe+'/'+Orientation+'/InputScripts/eco_'+repr(temp)+'K_'+u+'eV.in','MobilityData/'+mat
erial+'_'+crystaltype+'/'+Orientation+'/Outputfiles/'+repr(temp)+'K_'+u+'eV.out')

 while not
os.path.exists('MobilityData/'+material+'_'+crystaltype+'/'+Orientation+'/Dumps/'+repr
(temp)+'K.restart'):
 time.sleep(10)
 print('Waiting for restart file')
 os.system('qsub
MobilityData/'+material+'_'+crystaltype+'/'+Orientation+'/Submitfiles/submit_excal_'+r
epr(temp)+'K_'+repr(u)+'eV.bash')

A.3 submit_maker.py

import math
import os

def write_submit_topaz(fname, jobname, procnum, walltime, qtype, directory, input,
output):
 cores = int(math.ceil(procnum / 36.0))
 f = open(fname, 'w')
 f.write('#!/bin/bash \n')
 f.write('#PBS -A xxxxxxxxxx \n')
 f.write('#PBS -q ' + qtype + ' \n')
 f.write('#PBS -l select=' + repr(cores) + ':ncpus=36:mpiprocs=36 \n')
 f.write('#PBS -l walltime=' + walltime + ' \n')
 f.write('#PBS -l application=LAMMPS \n')
 f.write('#PBS -j oe \n')
 f.write('#PBS -N ' + jobname + ' \n\n')
 f.write('cd ' + directory + ' \n\n')
 f.write('mpiexec_mpt -np ' + repr(procnum) + ' ~/LAMMPS/src/lmp_topaz < ' + input
+ ' > ' + output)
 f.close()

def write_submit_copper(fname, jobname, procnum, walltime, qtype, directory, input,
output):
 cores = int(math.ceil(procnum / 32.0))
 f = open(fname, 'w')
 f.write('#!/bin/bash \n')
 f.write('#PBS -A xxxxxxxxxx \n')
 f.write('#PBS -q ' + qtype + ' \n')
 f.write('#PBS -l select=' + repr(cores) + ':ncpus=36:mpiprocs=36 \n')
 f.write('#PBS -l walltime=' + walltime + ' \n')
 f.write('#PBS -l application=LAMMPS \n')
 f.write('#PBS -j oe \n')

Approved for public release; distribution is unlimited.
27

 f.write('#PBS -N ' + jobname + ' \n\n')
 f.write('cd ' + directory + ' \n\n')
 f.write('aprun -n ' + repr(procnum) + ' ~/Lammps/src/lmp_copper < ' + input + ' > ' +
output)
 f.close()

def write_submit_excalibur(fname, jobname, procnum, walltime, qtype, directory, input, output):
 cores = int(math.ceil(procnum / 32.0))
 f = open(fname, 'w')
 f.write('#!/bin/bash \n')
 f.write('#PBS -A xxxxxxxxxx \n')
 f.write('#PBS -q ' + qtype + ' \n')
 f.write('#PBS -l select=' + repr(cores) + ':ncpus=32:mpiprocs=32 \n')
 f.write('#PBS -l place=scatter:excl \n')
 f.write('#PBS -l walltime=' + walltime + ' \n')
 f.write('#PBS -l application=LAMMPS \n')
 f.write('#PBS -j oe \n')
 f.write('#PBS -N ' + jobname + ' \n\n')
 f.write('cd ' + directory + ' \n\n')
 f.write('aprun -n ' + repr(procnum) + ' ~/lammps-30Jul16/src/lmp_excalibur < ' + input + ' > '
+ output)
 f.close()

A.4 BoundaryTrack.py

import numpy
import math
import matplotlib
matplotlib.use('Agg')
import matplotlib.pyplot as plt
import scipy.optimize

Temp=50

dumpnames=['0.005','0.010','0.015','0.020','0.025']

#Atomic Volume of Element(cc/mol)
V=7.1

figname='ProcessedData/eco_sig5_11_'+repr(Temp)+'K'

v=0
p=0
for k in range(0,len(dumpnames)):
 labelplot=dumpnames[k]
#Dump filename and path

Approved for public release; distribution is unlimited.
28

filename='MobilityData/Cu_fcc/Cu_sigma5_11/Dumps/eco_'+repr(Temp)+'K_'+dump
names[k]+'eV'

 # Number of dump files
 dumps=200
 rcut=4

 #eta range to be examine (ECO spans -1 to 1,orient spans 0 to 1)
 elo=-.25
 ehi=.25

 #Find free surfaces of simulation
 f = open(filename+'.0','r')
 f.readline()
 f.readline()
 f.readline()
 line4 = f.readline()
 data=line4.split(' ')
 N=int(data[0])
 f.readline()
 line6 = f.readline()
 data=line6.split(' ')
 Lx=float(data[1])-float(data[0])
 line7 = f.readline()
 ydata=line7.split(' ')
 Ly=float(ydata[1])-float(ydata[0])
 line8 = f.readline()
 data=line8.split(' ')
 Lz=float(data[1])-float(data[0])
 f.readline()
 ymin=float(ydata[1])
 ymax=float(ydata[0])

 #Find min and max values of particles in y-direction
 for j in range(0,N):
 line = f.readline()
 data=line.split(' ')
 if float(data[2])<ymin:
 ymin=float(data[2])
 if float(data[2])>ymax:
 ymax=float(data[2])
 f.close()

 ylo=ymin+rcut
 yhi=ymax-rcut

 yend_hi=ymax-3*rcut
 yend_lo=ymin+3*rcut

 #For each dump file, find number of atoms and box size
 for i in range(0,dumps):

Approved for public release; distribution is unlimited.
29

 time=int(i)
 if time==0:
 times=time
 else:
 times=numpy.vstack([times,time])

 k=int(i*1000)
 f = open(filename+'.'+repr(k),'r')
 f.readline()
 f.readline()
 f.readline()
 line4 = f.readline()
 data=line4.split(' ')
 N=int(data[0])
 f.readline()
 line6 = f.readline()
 data=line6.split(' ')
 Lx=float(data[1])-float(data[0])
 line7 = f.readline()
 data=line7.split(' ')
 Ly=float(data[1])-float(data[0])
 line8 = f.readline()
 data=line8.split(' ')
 Lz=float(data[1])-float(data[0])
 f.readline()
 n=0
 Fdx=0
 Fdy=0
 Fdz=0

 #Find atoms within the specified f_eco(2) range Note: this will be a function of
eta input in LAMMPS
 for j in range(0,N):
 line = f.readline()
 data=line.split(' ')
 if float(data[2])<yhi and float(data[2])>ylo:
 if float(data[4])<ehi and float(data[4])>elo:
 Fdx=Fdx+float(data[6])
 Fdy=Fdy+float(data[7])
 Fdz=Fdz+float(data[8])
 n=n+1
 if n == 1:
 A=numpy.array([float(data[1]),float(data[2]),float(data[3])])
 else:
 newrow=numpy.array([float(data[1]),float(data[2]),float(data[3])])
 A=numpy.vstack([A,newrow])
 #Calculate centroids
 sizeA=A.shape[0]
 sum_xA=numpy.sum(A[:,0])
 sum_yA=numpy.sum(A[:,1])
 sum_zA=numpy.sum(A[:,2])

Approved for public release; distribution is unlimited.
30

 xA=sum_xA/sizeA
 yA=sum_yA/sizeA
 zA=sum_zA/sizeA
 if i==0:
 x0=xA
 y0=yA
 z0=zA

 centroid=numpy.array([xA-x0, yA-y0, zA-z0])

 #Create lists of centroids and norms at every timestep
 if int(i)==0:
 centroids=centroid

 else:
 centroids=numpy.vstack([centroids,centroid])
 Fd=numpy.array([Fdx, Fdy, Fdz])

 dim=centroids.shape[0]

 if yA>yend_hi:
 break
 elif yA<yend_lo:
 break

 t=numpy.vstack([times.T,numpy.ones(dim)]).T
 linpart=int(math.floor(dim/4))

 #Least Squares Regression of times vs centroid location in normal (y) direction,
slope yields velocity
 vel, c=numpy.linalg.lstsq(t[linpart:dim,:],centroids[linpart:dim,1])[0]
 print(vel)
 speed=abs(vel)
#Convert v to m/s and p to GPa
 v=numpy.hstack([v,speed*100])
 p=numpy.hstack([p,float(labelplot)*9.647e1/V])

 plt.plot(t[:,0],centroids[:,1],label=labelplot+' eV')
print(p)
print(v)

#Define function to be minimized: A(e^Bp-1)
def func(q,A,B):
 return A*(numpy.exp(B*q)-1)

popt=scipy.optimize.curve_fit(func,p,v)

print(popt)
p_curve=numpy.zeros(101)
v_curve=numpy.zeros(101)

Approved for public release; distribution is unlimited.
31

for k in range(0,101):
 p_curve[k]=p[len(p)-1]/100*k
 v_curve[k]=func(p_curve[k],popt[0][0],popt[0][1])

plt.legend(loc='lower left')
plt.ylabel('Displacement (A)',fontsize=18)
plt.xlabel('Time (ps)',fontsize=18)
plt.savefig(figname+'_displacements')

plt.figure()
plt.scatter(p,v)
plt.plot(p_curve,v_curve)
plt.xlabel('Driving Pressure (GPa)',fontsize=18)
plt.ylabel('GB Velocity (m/s)',fontsize=18)
plt.savefig(figname+'_mobility')

Approved for public release; distribution is unlimited.
32

INTENTIONALLY LEFT BLANK.

Approved for public release; distribution is unlimited.
33

List of Symbols, Abbreviations, and Acronyms

BCC body-centered cubic

Cu copper

DOD Department of Defense

DSRC DOD Supercomputing Resource Center

EAM embedded atom method

ECO energy conserving orientational

FCC face-centered cubic

Fe iron

HCP hexagonal close-packed

HPCMP High Performance Computing Modernization Program

LAMMPS Large-scale Atomic/Molecular Massively Parallel Simulator

NPT isobaric-isothermal

Approved for public release; distribution is unlimited.
34

 1 DEFENSE TECHNICAL
 (PDF) INFORMATION CTR
 DTIC OCA

 2 DIR ARL
 (PDF) IMAL HRA
 RECORDS MGMT
 RDRL DCL
 TECH LIB

 1 GOVT PRINTG OFC
 (PDF) A MALHOTRA

 1 COLORADO STATE
 (PDF) M GUZIEWSKI

 3 ARL
 (PDF) RDRL D
 M TSCHOPP
 RDRL WMM E
 S COLEMAN
 S SILTON

	List of Figures
	List of Tables
	Acknowledgments
	1. Introduction
	2. Background
	2.1 Artificial Driving Forces
	2.1.1 Janssens et al. Method
	2.1.2 Ulomek et al. Method

	2.2 Grain Boundary Mobility

	3. Workflow
	3.1 Required Software
	3.2 Initialization Steps
	3.3 ECO Artificial Driving Force Simulations
	3.3.1 Simulation Cell Edges
	3.3.2 Orientation File
	3.3.3 Temperature Equilibration
	3.3.4 File Submission

	3.4 Data Analysis

	4. Examples
	4.1 FCC Crystal
	4.2 BCC Crystal

	5. Future Applications: Mobility in HCP Crystals
	6. Conclusion
	7. References
	Appendix. Grain Boundary Mobility Scripts 0F(
	List of Symbols, Abbreviations, and Acronyms

