AFRL-RI-RS-TR-2018-041

FORMAL MODELING, MONITORING, AND CONTROL OF
EMERGENCE IN DISTRIBUTED CYBER-PHYSICAL SYSTEMS

UNIVERSITY OF TEXAS AT ARLINGTON
FEBRUARY 2018
FINAL TECHNICAL REPORT

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

STINFO COPY

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE

B AIR FORCE MATERIEL COMMAND B UNITED STATES AIR FORCE B ROME, NY 13441

NOTICE AND SIGNATURE PAGE

Using Government drawings, specifications, or other data included in this document for any purpose other
than Government procurement does not in any way obligate the U.S. Government. The fact that the
Government formulated or supplied the drawings, specifications, or other data does not license the holder
or any other person or corporation; or convey any rights or permission to manufacture, use, or sell any
patented invention that may relate to them.

This report is the result of contracted fundamental research deemed exempt from public affairs security
and policy review in accordance with SAF/AQR memorandum dated 10 Dec 08 and AFRL/CA policy
clarification memorandum dated 16 Jan 09. This report is available to the general public, including
foreign nations. Copies may be obtained from the Defense Technical Information Center (DTIC)
(http://www.dtic.mil).

AFRL-RI-RS-TR-2018-041 HAS BEEN REVIEWED AND IS APPROVED FOR PUBLICATION IN
ACCORDANCE WITH ASSIGNED DISTRIBUTION STATEMENT.

FOR THE CHIEF ENGINEER:

IS/ IS/
WILLIAM D. LEWIS JULIE BRICHACEK
Work Unit Manager Chief, Information Systems Division

Information Directorate

This report is published in the interest of scientific and technical information exchange, and its publication
does not constitute the Government’s approval or disapproval of its ideas or findings.

REPORT DOCUMENTATION PAGE e 0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite
1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information
if it does not display a currently valid OMB control number.

PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY) 2. REPORT TYPE 3. DATES COVERED (From - To)
FEB 2018 FINAL TECHNICAL REPORT APR 2015 - APR 2017

4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

FA8750-15-1-0105

FORMAL MODELING, MONITORING, AND CONTROL OF
5b. GRANT NUMBER

EMERGENCE IN DISTRIBUTED CYBER-PHYSICAL SYSTEMS

N/A
5c. PROGRAM ELEMENT NUMBER
62788F
6. AUTHOR(S) 5d. PROJECT NUMBER
S2MA
Taylor T. Johnson
5e. TASK NUMBER
VU
5f. WORK UNIT NUMBER
TA
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
Vanderbilt University University of Texas at Arlington REPORT NUMBER
1025 16 Ave. S. 500 UTA Bivd

Nashville, TN 37212

Arlington, TX 76019-0015

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

10. SPONSOR/MONITOR'S ACRONYM(S)

AFRL/RI
11. SPONSOR/MONITOR’S REPORT NUMBER

Air Force Research Laboratory/RISC
525 Brooks Road
Rome NY 13441-4505

AFRL-RI-RS-TR-2018-041

12. DISTRIBUTION AVAILABILITY STATEMENT

Approved for Public Release; Distribution Unlimited. This report is the result of contracted fundamental research
deemed exempt from public affairs security and policy review in accordance with SAF/AQR memorandum dated 10 Dec
08 and AFRL/CA policy clarification memorandum dated 16 Jan 09

13. SUPPLEMENTARY NOTES

14. ABSTRACT

This project studied emergent behavior in distributed cyber-physical systems (DCPS). Emergent behavior does not a
priori appear in the descriptions of such systems. The approach undertaken is to characterize this perspective as invalid:
any behavior not a prior specified by the requirements and specifications of a system is emergent. With this perspective
and using formal methods, formal verification with reachability analysis and inductive invariance, as well as architectural
runtime monitoring and runtime assurance, this project developed and demonstrated novel ways to specify, verify,
monitor, and control behavior in DCPS, such as groups of unmanned autonomous systems (UASS).

15. SUBJECT TERMS
Formal methods; emergent behavior; learning; autonomy; cyber-physical systems; distributed systems

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF [18.NUMBER _ |19a. NAME OF RESPONSIBLE PERSON
ABSTRACT OF PAGES WILLIAM D. LEWIS
a REPORT b. ABSTRACT _|c. THIS PAGE 19b. TELEPHONE NUMBER (Include area code)
U U U uu 367

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. 239.18

Table of Contents

LIS OF FIQUIES ..ttt ettt et e se e et et e e s e te et e e st e sseestenneenteensesneenneennenres ii
[T o) I o] LTSS PSPPSR ii
Lo SUIMMIAIY .ttt a et e bt e kbt e ek b e e e b b e e ea b e e e sabe e e nnbe e e nnb e e e bbeeebneeentnee s 1
P22 1 10T L1 T £ [o SR 1
FZ0 1Y/ (0 €LY 11 [0] o PSP SPPPPRRS 1
2.2. Air Force and Department of Defense ReIEVANCE...........ccecveveiieviiic e, 2
2.3. High-Level Technical SUMMAIYcccoiiiiiiic e 3
Objective 1: Scaling Formal Specification and Verification for Emergence in DCPS........... 3

Obijective 2: Detecting Emergence at Runtime: Specification-Based Runtime Monitoring... 3
Obijective 3: Assured Control in Spite of Emergence with Real-Time Reachability and Self-

Stabilization for Distributed SIMPIEX.........ccvoiiiiiiiiieie e 3
Obijective 4: Evaluating Analysis, Monitoring, and Control of Emergence in DCPS............. 4

3. Methods, AsSUumMptions, aNd PrOCEAUIESeoiiiiiiieiieie ettt 4
3L OVEIVIBW ...ttt sttt bttt b ekt se et e bt e s e e b e bt e s e e bt e ke e st e e bt e bt e nbenbeenbeaneeaneenne e 4
3.2. TECHNICAI PrOCRAUIES ..ottt bbbt 4
3.2.1. Scaling Formal Specification and Verification for Emergence in DCPS...................... 4
3.2.2. Detecting Emergence at Runtime: Specification-Based Runtime Monitoring.............. 8
3.2.3. Assured Control in Spite of Emergence with Real-Time Reachability and Self-
Stabilization for Distributed SIMPIEX.........cciiiiiiiiiiie s 11
3.2.4. Evaluating Analysis, Monitoring, and Control of Emergence in DCPS Testbeds...... 14

4. RESUITS AN DISCUSSION ..veuviiiiieiieieie sttt sttt bbbttt bbbt e e e 14
4.1. Key ReSUItS aNd FINAINGS......ccviiiiiiiie e 14
Objective 1: Specification and VerifiCationccooeiieiiineeiese e 14

(@] o =Tot AT |V, (] T o] [oo SRS SSPRRSR 14
ODJECHIVE 3: CONLIOL ...ttt nneas 15
ODJECHIVE 42 EVAIUALION ...ttt sttt nneas 15

4.2, REIAIE WOTK......eiiiiiiieiieeest bbbttt b ettt 15
4.3, DEIVEIADIES. ...ttt bbbt re et e 16
ST O] 0 (o] (1] [0 o TSRS PPURRTRN 17
B, RETEIEINCES ...ttt bbbttt bbb bbbt 17
A Y 0] 1<) Lo Lol USRS PPRTRRTRN 31
8.List of Symbols, Abbreviations, and ACIONYMSccuiiiiiiiieiie et 361

List of Figures

Figure 1: High-level overview of the DCPS modeling framework, where each agent (participant)
in the distributed system is modeled as a hybrid automaton, and a network is composed
of these automata that may communicate through a potentially lossy and adversarial
CRANNELL ..ttt b e nb et ae e 4

Figure 2: Example of emergent flocking behavior in three dimensions with a system of N = 64
agents. The left frame is at an initial condition and the right frame illustrates the flocking
formation after 36 seconds of runtime. The agent positions are denoted by green circles,
their velocities by green vectors, and a red vector indicates their desired heading. Blue
lines between agents are drawn if their distances are approximately spaced by some
desired flOCKING SPACING 7'f . .eouviiieieeiere e e 5

Figure 3: The left image shows divergent emergent behavior when trying to use distributed
flocking control algorithms with realistic system constraints, particularly (1) actuator
saturation, (2) asynchrony, and (3) communication delays, and the right image shows
partial emergence of flocking for these factors.ccceeiieieiieier e, 6

Figure 4: Alternative specifications of flocking emergence exist like bird vees. This is a planar
scenario created by adjoining two one-dimensional flocks (platoons) about an
appropriate angle. The middle figure shows a phase space plot of the trajectories of all
agents, and the right figure shows the planar coordinates of all agents as they evolve
over time while moving and rotating in the plane. By composing formally verified
primitives (the exponentially stable one-dimensional flocking algorithm), sophisticated
and verified planar formation control is achieved. High-level mission specifications and
flock formation parameters (such as the angles, where to move, etc.) may be specified
in a temporal logic like linear temporal 10giC (LTL). coovviiieiiiie e 6

Figure 5: Emergent flocking with four groups of agents using platooning algorithms. 6

Figure 6: Emergent planar flocking behavior under ideal conditions required by existing
distributed control algorithms without attacks, failures, control/actuation saturation,
asynchrony, or communication failures. ... 7

Figure 7: Illlustration of the state-space explosion problem for the Small Aircraft Transportation
System (SATS) case study modeled as networks of hybrid automata [31, 39, 33], and
using a small model theorem to address the problem. ..., 8

Figure 8: Symmetry-reduced reachability of hybrid automata networks implemented in the Passel
verification tool [31, 40, 38], which addresses the state-space explosion problem and
allows significantly larger problem size than existing state-of-the-art methodology (in
e 1 T o TSRS 8

Figure 9: Hynger-based formal and heuristic-based invariant inference for emergent behavior in
DCPS. Sets of candidate invariants are generated to either monitor the sets of invariants
themselves and how they change over time, as well as prove that these candidates are
actual INVariants for RTA. ..o st 9

Figure 10: Correct-by-construction implementations of DCPS, starting from a formal model (e.g.,
as a SpaceEx hybrid automaton network) using a sound translation to implementations
aS SIMUIINK MOGEIS. ... 10

file://lfs-staff/Staff_L-R/lewisw/RISC/MIMFA/V&V/53403_UTA_Formal_Modeling_of_Emergence/FTR/afrl-baa-10-01-rika-johnson-ftr.docx#_Toc506301215
file://lfs-staff/Staff_L-R/lewisw/RISC/MIMFA/V&V/53403_UTA_Formal_Modeling_of_Emergence/FTR/afrl-baa-10-01-rika-johnson-ftr.docx#_Toc506301215
file://lfs-staff/Staff_L-R/lewisw/RISC/MIMFA/V&V/53403_UTA_Formal_Modeling_of_Emergence/FTR/afrl-baa-10-01-rika-johnson-ftr.docx#_Toc506301215
file://lfs-staff/Staff_L-R/lewisw/RISC/MIMFA/V&V/53403_UTA_Formal_Modeling_of_Emergence/FTR/afrl-baa-10-01-rika-johnson-ftr.docx#_Toc506301215
file://lfs-staff/Staff_L-R/lewisw/RISC/MIMFA/V&V/53403_UTA_Formal_Modeling_of_Emergence/FTR/afrl-baa-10-01-rika-johnson-ftr.docx#_Toc506301216
file://lfs-staff/Staff_L-R/lewisw/RISC/MIMFA/V&V/53403_UTA_Formal_Modeling_of_Emergence/FTR/afrl-baa-10-01-rika-johnson-ftr.docx#_Toc506301216
file://lfs-staff/Staff_L-R/lewisw/RISC/MIMFA/V&V/53403_UTA_Formal_Modeling_of_Emergence/FTR/afrl-baa-10-01-rika-johnson-ftr.docx#_Toc506301216
file://lfs-staff/Staff_L-R/lewisw/RISC/MIMFA/V&V/53403_UTA_Formal_Modeling_of_Emergence/FTR/afrl-baa-10-01-rika-johnson-ftr.docx#_Toc506301216
file://lfs-staff/Staff_L-R/lewisw/RISC/MIMFA/V&V/53403_UTA_Formal_Modeling_of_Emergence/FTR/afrl-baa-10-01-rika-johnson-ftr.docx#_Toc506301216
file://lfs-staff/Staff_L-R/lewisw/RISC/MIMFA/V&V/53403_UTA_Formal_Modeling_of_Emergence/FTR/afrl-baa-10-01-rika-johnson-ftr.docx#_Toc506301216
file://lfs-staff/Staff_L-R/lewisw/RISC/MIMFA/V&V/53403_UTA_Formal_Modeling_of_Emergence/FTR/afrl-baa-10-01-rika-johnson-ftr.docx#_Toc506301217
file://lfs-staff/Staff_L-R/lewisw/RISC/MIMFA/V&V/53403_UTA_Formal_Modeling_of_Emergence/FTR/afrl-baa-10-01-rika-johnson-ftr.docx#_Toc506301217
file://lfs-staff/Staff_L-R/lewisw/RISC/MIMFA/V&V/53403_UTA_Formal_Modeling_of_Emergence/FTR/afrl-baa-10-01-rika-johnson-ftr.docx#_Toc506301217
file://lfs-staff/Staff_L-R/lewisw/RISC/MIMFA/V&V/53403_UTA_Formal_Modeling_of_Emergence/FTR/afrl-baa-10-01-rika-johnson-ftr.docx#_Toc506301217
file://lfs-staff/Staff_L-R/lewisw/RISC/MIMFA/V&V/53403_UTA_Formal_Modeling_of_Emergence/FTR/afrl-baa-10-01-rika-johnson-ftr.docx#_Toc506301218
file://lfs-staff/Staff_L-R/lewisw/RISC/MIMFA/V&V/53403_UTA_Formal_Modeling_of_Emergence/FTR/afrl-baa-10-01-rika-johnson-ftr.docx#_Toc506301218
file://lfs-staff/Staff_L-R/lewisw/RISC/MIMFA/V&V/53403_UTA_Formal_Modeling_of_Emergence/FTR/afrl-baa-10-01-rika-johnson-ftr.docx#_Toc506301218
file://lfs-staff/Staff_L-R/lewisw/RISC/MIMFA/V&V/53403_UTA_Formal_Modeling_of_Emergence/FTR/afrl-baa-10-01-rika-johnson-ftr.docx#_Toc506301218
file://lfs-staff/Staff_L-R/lewisw/RISC/MIMFA/V&V/53403_UTA_Formal_Modeling_of_Emergence/FTR/afrl-baa-10-01-rika-johnson-ftr.docx#_Toc506301218
file://lfs-staff/Staff_L-R/lewisw/RISC/MIMFA/V&V/53403_UTA_Formal_Modeling_of_Emergence/FTR/afrl-baa-10-01-rika-johnson-ftr.docx#_Toc506301218
file://lfs-staff/Staff_L-R/lewisw/RISC/MIMFA/V&V/53403_UTA_Formal_Modeling_of_Emergence/FTR/afrl-baa-10-01-rika-johnson-ftr.docx#_Toc506301218
file://lfs-staff/Staff_L-R/lewisw/RISC/MIMFA/V&V/53403_UTA_Formal_Modeling_of_Emergence/FTR/afrl-baa-10-01-rika-johnson-ftr.docx#_Toc506301218
file://lfs-staff/Staff_L-R/lewisw/RISC/MIMFA/V&V/53403_UTA_Formal_Modeling_of_Emergence/FTR/afrl-baa-10-01-rika-johnson-ftr.docx#_Toc506301218
file://lfs-staff/Staff_L-R/lewisw/RISC/MIMFA/V&V/53403_UTA_Formal_Modeling_of_Emergence/FTR/afrl-baa-10-01-rika-johnson-ftr.docx#_Toc506301219
file://lfs-staff/Staff_L-R/lewisw/RISC/MIMFA/V&V/53403_UTA_Formal_Modeling_of_Emergence/FTR/afrl-baa-10-01-rika-johnson-ftr.docx#_Toc506301220
file://lfs-staff/Staff_L-R/lewisw/RISC/MIMFA/V&V/53403_UTA_Formal_Modeling_of_Emergence/FTR/afrl-baa-10-01-rika-johnson-ftr.docx#_Toc506301220
file://lfs-staff/Staff_L-R/lewisw/RISC/MIMFA/V&V/53403_UTA_Formal_Modeling_of_Emergence/FTR/afrl-baa-10-01-rika-johnson-ftr.docx#_Toc506301220
file://lfs-staff/Staff_L-R/lewisw/RISC/MIMFA/V&V/53403_UTA_Formal_Modeling_of_Emergence/FTR/afrl-baa-10-01-rika-johnson-ftr.docx#_Toc506301221
file://lfs-staff/Staff_L-R/lewisw/RISC/MIMFA/V&V/53403_UTA_Formal_Modeling_of_Emergence/FTR/afrl-baa-10-01-rika-johnson-ftr.docx#_Toc506301221
file://lfs-staff/Staff_L-R/lewisw/RISC/MIMFA/V&V/53403_UTA_Formal_Modeling_of_Emergence/FTR/afrl-baa-10-01-rika-johnson-ftr.docx#_Toc506301221
file://lfs-staff/Staff_L-R/lewisw/RISC/MIMFA/V&V/53403_UTA_Formal_Modeling_of_Emergence/FTR/afrl-baa-10-01-rika-johnson-ftr.docx#_Toc506301222
file://lfs-staff/Staff_L-R/lewisw/RISC/MIMFA/V&V/53403_UTA_Formal_Modeling_of_Emergence/FTR/afrl-baa-10-01-rika-johnson-ftr.docx#_Toc506301222
file://lfs-staff/Staff_L-R/lewisw/RISC/MIMFA/V&V/53403_UTA_Formal_Modeling_of_Emergence/FTR/afrl-baa-10-01-rika-johnson-ftr.docx#_Toc506301222
file://lfs-staff/Staff_L-R/lewisw/RISC/MIMFA/V&V/53403_UTA_Formal_Modeling_of_Emergence/FTR/afrl-baa-10-01-rika-johnson-ftr.docx#_Toc506301222
file://lfs-staff/Staff_L-R/lewisw/RISC/MIMFA/V&V/53403_UTA_Formal_Modeling_of_Emergence/FTR/afrl-baa-10-01-rika-johnson-ftr.docx#_Toc506301223
file://lfs-staff/Staff_L-R/lewisw/RISC/MIMFA/V&V/53403_UTA_Formal_Modeling_of_Emergence/FTR/afrl-baa-10-01-rika-johnson-ftr.docx#_Toc506301223
file://lfs-staff/Staff_L-R/lewisw/RISC/MIMFA/V&V/53403_UTA_Formal_Modeling_of_Emergence/FTR/afrl-baa-10-01-rika-johnson-ftr.docx#_Toc506301223
file://lfs-staff/Staff_L-R/lewisw/RISC/MIMFA/V&V/53403_UTA_Formal_Modeling_of_Emergence/FTR/afrl-baa-10-01-rika-johnson-ftr.docx#_Toc506301223
file://lfs-staff/Staff_L-R/lewisw/RISC/MIMFA/V&V/53403_UTA_Formal_Modeling_of_Emergence/FTR/afrl-baa-10-01-rika-johnson-ftr.docx#_Toc506301224
file://lfs-staff/Staff_L-R/lewisw/RISC/MIMFA/V&V/53403_UTA_Formal_Modeling_of_Emergence/FTR/afrl-baa-10-01-rika-johnson-ftr.docx#_Toc506301224
file://lfs-staff/Staff_L-R/lewisw/RISC/MIMFA/V&V/53403_UTA_Formal_Modeling_of_Emergence/FTR/afrl-baa-10-01-rika-johnson-ftr.docx#_Toc506301224

Figure 11: Overview of the Simplex architecture where an unverified, complex controller with
verified switching logic (decision module) switches to a verified safety controller in
time to prevent mishaps. We extended the architecture to distributed Simplex for DCPS
leveraging tools from self-stabilizing distributed SysStems.ccccccevieveeveiieieeieenn, 12

Figure 12: Illustration of self-stabilization. The DCPS starts from a set of initial states Q0 and if it
evolves over an arbitrary execution without failures (attacks, emergent behavior, etc.)
anf, is guaranteed to self-stabilize to a set of desirable states S where mission progress
is ensured and remain there. As the DCPS operates, if failures occur and executions af
are followed outside the set S, they are guaranteed to remain in a set T that at least
maintains safety. Once failures stop, the DCPS again self-stabilizes to S and may make
IMISSION PIOGIESS. ...vviteertieseesteeteaseesteesteeseesbeebesseesbeeseeaseesbeenbesseesbeesbesseesbeaneesseenseaneenrens 13

Figure 13: Verifiably safe regions of state-space when using complex controller for an inverted
pendulum example, illustrating real-time reachability’s advantages to offline
verification methods (unverified simulation or LMI-based methods that yield ellipsoidal

safe sets) in results of a Simplex RTA framework.ccccovveveiieiveie e, 13
Figure 14: General formal verification problem.c.ccooeoi i, 15
List of Tables

Table 1: Deliverables for analysis, monitoring, and control of emergence in DCPS................... 17

file://lfs-staff/Staff_L-R/lewisw/RISC/MIMFA/V&V/53403_UTA_Formal_Modeling_of_Emergence/FTR/afrl-baa-10-01-rika-johnson-ftr.docx#_Toc506301225
file://lfs-staff/Staff_L-R/lewisw/RISC/MIMFA/V&V/53403_UTA_Formal_Modeling_of_Emergence/FTR/afrl-baa-10-01-rika-johnson-ftr.docx#_Toc506301225
file://lfs-staff/Staff_L-R/lewisw/RISC/MIMFA/V&V/53403_UTA_Formal_Modeling_of_Emergence/FTR/afrl-baa-10-01-rika-johnson-ftr.docx#_Toc506301225
file://lfs-staff/Staff_L-R/lewisw/RISC/MIMFA/V&V/53403_UTA_Formal_Modeling_of_Emergence/FTR/afrl-baa-10-01-rika-johnson-ftr.docx#_Toc506301225
file://lfs-staff/Staff_L-R/lewisw/RISC/MIMFA/V&V/53403_UTA_Formal_Modeling_of_Emergence/FTR/afrl-baa-10-01-rika-johnson-ftr.docx#_Toc506301226
file://lfs-staff/Staff_L-R/lewisw/RISC/MIMFA/V&V/53403_UTA_Formal_Modeling_of_Emergence/FTR/afrl-baa-10-01-rika-johnson-ftr.docx#_Toc506301226
file://lfs-staff/Staff_L-R/lewisw/RISC/MIMFA/V&V/53403_UTA_Formal_Modeling_of_Emergence/FTR/afrl-baa-10-01-rika-johnson-ftr.docx#_Toc506301226
file://lfs-staff/Staff_L-R/lewisw/RISC/MIMFA/V&V/53403_UTA_Formal_Modeling_of_Emergence/FTR/afrl-baa-10-01-rika-johnson-ftr.docx#_Toc506301226
file://lfs-staff/Staff_L-R/lewisw/RISC/MIMFA/V&V/53403_UTA_Formal_Modeling_of_Emergence/FTR/afrl-baa-10-01-rika-johnson-ftr.docx#_Toc506301226
file://lfs-staff/Staff_L-R/lewisw/RISC/MIMFA/V&V/53403_UTA_Formal_Modeling_of_Emergence/FTR/afrl-baa-10-01-rika-johnson-ftr.docx#_Toc506301226
file://lfs-staff/Staff_L-R/lewisw/RISC/MIMFA/V&V/53403_UTA_Formal_Modeling_of_Emergence/FTR/afrl-baa-10-01-rika-johnson-ftr.docx#_Toc506301226
file://lfs-staff/Staff_L-R/lewisw/RISC/MIMFA/V&V/53403_UTA_Formal_Modeling_of_Emergence/FTR/afrl-baa-10-01-rika-johnson-ftr.docx#_Toc506301227
file://lfs-staff/Staff_L-R/lewisw/RISC/MIMFA/V&V/53403_UTA_Formal_Modeling_of_Emergence/FTR/afrl-baa-10-01-rika-johnson-ftr.docx#_Toc506301227
file://lfs-staff/Staff_L-R/lewisw/RISC/MIMFA/V&V/53403_UTA_Formal_Modeling_of_Emergence/FTR/afrl-baa-10-01-rika-johnson-ftr.docx#_Toc506301227
file://lfs-staff/Staff_L-R/lewisw/RISC/MIMFA/V&V/53403_UTA_Formal_Modeling_of_Emergence/FTR/afrl-baa-10-01-rika-johnson-ftr.docx#_Toc506301227
file://lfs-staff/Staff_L-R/lewisw/RISC/MIMFA/V&V/53403_UTA_Formal_Modeling_of_Emergence/FTR/afrl-baa-10-01-rika-johnson-ftr.docx#_Toc506301228

1. Summary

This final technical report covers the two-year duration of this project, from April 16, 2015
through April 15, 2017.

As Air Force warfighting missions incorporate increased distributed autonomy, emergent
global behavior may arise from interactions between individual autonomous agents. Example Air
Force systems that may in the coming years incorporate increased autonomy resulting in little-to-
no direct human monitoring and intervention include drone (UAV) swarms [1] and satellite
constellations [2]. Novel methods are needed to ensure such distributed cyber-physical systems
(DCPS) have trusted assurance to meet their mission requirements and only their mission
requirements in spite of potential emergent distributed behavior, attacks, and failures.
Understanding distributed emergence and being able to respond to it through trusted and assured
responses will allow warfighters to continue fighting and adapting through engagements, enabling
strategic agility in Air Force missions. Ultimately, developing theoretical and practical tools for
understanding and responding to the fundamental phenomena of emergence will enable the Air
Force goal to fly, fight, and win ... in air, space, and cyberspace.

This project suggested and developed the use of scalable formal methods in mission (1)
specification and verification, (2) runtime monitoring, and (3) trusted and assured control, all
conducted in conjunction with (4) a rigorous evaluation on DCPS with prototypical features of
modern Air Force systems such as UAV swarms and satellite constellations. The primary research
objectives undertaken were to:

e Objective 1: Develop scalable automated formal verification methods for specifying and
verifying trusted global DCPS mission behaviors along with distributed emergent
behavior, alleviating state-space explosion by exploiting symmetries.

e Objective 2: Develop scalable runtime verification and monitoring methods relying on
both formal tools and heuristic systems to detect emergent behaviors and violations of
global mission specifications during mission operation.

e Objective 3: Develop runtime assurance (RTA)-like trusted control methods for these
distributed systems building upon the foundational theory of self-stabilization of
distributed systems [3-6] and the Simplex architecture [7] to ensure mission specifications
are maintained in spite of emergent distributed behaviors at execution time.

e Objective 4: Evaluate the formal specification and verification, runtime monitoring, and
control methods developed in the other objectives on challenging DCPS case studies with
Air Force relevance, particularly swarm robot systems.

2. Introduction

2.1. Motivation

Physical systems are becoming increasingly dependent upon computers and software, such
as in emerging embedded and cyber-physical systems (CPS), where networked software interacts
with physical processes. For instance, typical modern cars utilize dozens-to-hundreds of
microprocessors, many communications buses, and a complex interconnection between sensors,
actuators, and processors [8-10]. In the design and development process for most engineered

Approved for Public Release; Distribution Unlimited.
1

systems today (including CPS), the vast majority of resources are devoted to ensuring systems
meet their specifications [11, 12]. In spite of significant technical advances for design verification
and validation—such as model checking, hardware-in-the-loop testing, automatic test case
generation for software, and sophisticated simulators—there are frequent safety recalls across CPS
industries due to problems between cyber and physical subcomponents. For example, the
Consumer Product Safety Commission (CPSC) has recalled between 2010-2012 fire alarm and
control systems from Bosch, Tyco-Grinnel, and Honeywell for failure to sound alarms and/or
notify fire departments [13-15], the Food and Drug Administration (FDA) has reported the leading
cause of recent medical device recalls are cyber-related (tied with manufacturing defects) [16, 17],
and the National Highway Traffic Safety Administration (NHTSA) has recalled hundreds of
thousands of 2004-2005 and 2010-2014 Toyota Priuses due to drivetrain software problems
causing unexpected stalls [18, 19] and millions of 2005-2010 Hondas due to electronic control
model software causing transmission damage [20]. Given that such recalls are due to increased
risk of physical safety (and not yet, e.g., for privacy issues), all such problems are inherently cyber-
physical. As future networked systems like robot swarms, the smart grid, satellite constellations,
and the intelligent transportation system increasingly couple distributed agents together, emergent
behavior will be seen to spontaneously arise. Demonstrated areas of distributed emergence through
local interaction in natural and engineered systems include fish schools [21], herds [22], highways
[23, 24], swarm robotics [25-27], and distributed computing [4, 28, 29].

2.2. Air Force and Department of Defense Relevance

Air Force Relevance for Strategic Agility: In the July 2014 report, “America’s Air Force: A Call
to the Future,” Secretary of the Air Force Deborah Lee James outlines a three decades long
strategic plan for the Air Force, centered around the theme of strategic agility. In this strategy, two
technical areas of relevance to this project are highlighted, namely autonomous systems and
unmanned systems. From a technical standpoint for unmanned systems, strategic agility will
enable systems with little human supervision to “swarm, suppress, deceive, or destroy.” For
autonomous systems, strategic agility will enable moving from today’s systems that are “able to
execute a set of pre-programmed functions” to tomorrow’s systems that “will be better able to
react to their environment and perform more situational-dependent tasks as well as synchronized
and integrated with other autonomous systems.” The work completed through this project brings
a formal perspective to what it means for systems to have emergent behavior, such as what may
arise in the challenging environments of the battlefield.

Department of Defense Relevance: In the January 2013 report “Resilient Military Systems and
the Advanced Cyber Threat” from the Defense Science Board, a number of broad cyber challenges
and opportunities are outlined in current and future defense systems. Specific recommendations of
the task force report include “use of emerging technology developments for system resilience, such
as trust anchors, minimal functionality components, simplified operating systems, developing a
means to verify compromise of fielded systems contributing to critical missions, creating trust in
systems built with un-trusted components, and restoring to a known state.”

Many Air Force and DoD projects are currently underway related to these areas. For
example, the High-Assurance Cyber Military Systems (HACMS) projects aims in part to develop
verified components, the BEDROCK project, high-assurance microprocessors are in development,
techniques for determining computer component intrusion and counterfeiting, etc. Verified
operating systems like seL4 and verified optimizing compilers like CompCert are new seminal
results toward this goal. However, the work completed in this project is uniquely differentiated
from all existing work in several ways. First, this work focuses on emergent behaviors and

Approved for Public Release; Distribution Unlimited.
2

properties that may arise in distributed systems, while most if not all of these other projects and
existing approaches focus on non-distributed systems. We are not yet to the state where distributed
systems may be fully verified (e.g., at every layer of the OSI network model), although progress
is being made as outlined above (and in e.g., verification of cryptographic protocols, key
exchanges, etc.). Second, the work of this project is not a clean-slate approach like HACMS and
BEDROCK. The results of this project may operate within the constraints defined by existing
development environments practices, and the reality that for a variety of reasons (e.g., budgetary),
there is additional use of commercial off-the shelf components (COTS) in military systems. To
operate within these constraints, we investigated both fully formal approaches and semi-formal
approaches augmented with heuristic approaches.

2.3. High-Level Technical Summary

The underlying formal, mathematical framework used in this project is that of hybrid
automata [30], which are finite-state machines augmented with real-valued variables that evolve
continuously over intervals of real time. Asynchronous networks composed of hybrid automata
[31] are useful for modeling distributed systems that interact with the physical world, such as robot
swarms [5, 6], air traffic control systems [32, 33], autonomous satellites and constellations [2], and
distributed electrical microgrids [34]. Desired emergent behaviors include phenomena like
flocking, while undesired emergent behavior may lead to catastrophic mission failure.
Objective 1: Scaling Formal Specification and Verification for Emergence in DCPS

Objective 1 developed design-time formal specification and verification methods for
emergence in DCPS modeled as networks of hybrid automata with linear and nonlinear dynamics.
For specifying emergence, new specification languages for CPS using hyperproperties were
developed allowing specification of frequency-domain behavior and real-time, real-valued
behaviors through hyperproperties for signal temporal logic (HyperSTL) [35-37]. The Passel
verification tool [31, 38], in conjunction with a small model theorem [39], an invariant synthesis
procedure [32], and a symmetry-reduction reachability method [40], enabled the first fully
automatic verification of safety (aircraft separation) for the Small Aircraft Transportation System
(SATS) landing protocol (a part of the NASA/FAA NextGen program [41-48]). Through this
objective, we built upon these approaches for addressing the state-space explosion problem to scale
verification methods to larger DCPS than previously possible, as well as developed a new
verification tool, HyST [49].
Objective 2: Detecting Emergence at Runtime: Specification-Based Runtime Monitoring

Obijective 2 developed formal and heuristic runtime monitoring verification methods for
emergence in DCPS, using both model-based and model-free approaches. Model-based methods
rely on formal methods tools and inherently are subject to scalability problems, while model-free
approaches are heuristic, as they are both unsound and incomplete, but scale better. Together, the
methods rely on monitoring asynchronous distributed and hybrid systems at runtime and in real-
time, and build upon both model-free and model-based approaches developed by our group [1, 7,
50]. For DCPS, we extended an invariant inference tool called Hynger (HYbrid iNvariant
GEneratoR) [50] that instruments arbitrary MathWorks Simulink/Stateflow (SLSF) models to
generate candidate invariants over input and output variables [51].
Objective 3: Assured Control in Spite of Emergence with Real-Time Reachability and Self-
Stabilization for Distributed Simplex

Objective 3 developed control methods to ensure desirable or avoid undesirable emergent
distributed behavior at runtime, by leveraging the Simplex-based RTA framework using real-time
reachability of networks of hybrid automata in conjunction with self-stabilization [3-6, 52, 53] of

Approved for Public Release; Distribution Unlimited.
3

the distributed system. Monitoring predicates over ™ Agent) Agent
physical variables and their continuous evolution over
time was performed with real-time hybrid systems |{_“omPuter®) Ji g s (s
reachability and runtime monitoring of emergent | =

behavior specified and detected in Objectives 1 and 2. || Actuator(s)

Sensor(s)
Actuator(s)

|

Objective 4: Evaluating Analysis, Monitoring, and Channel
Control of Emergence in DCPS Agent Agent
Objective 4 is evaluating the novel methods for

msgs msgs ,

distributed emergence developed in the previous |LSomPer®
objectives. We performed analytical analysis, Sensor(s)
simulations, laboratory experiments, and || Actuator(s)
dem_onstratlons using a swarm of autonomous agents, Figure 1. High-level overview of the DCPS
part!cularly commeruall_y available _quadrotor drc_)n'es. modeling framework, where each agent
Typical safety properties that arise are collision (participant) in the distributed system is modeled
avoidance and convergence to some desired asahybrid automaton, and a network is composed
configuration and/or location [52], and emergent of these automata that may communicate through
properties may be consensus, flocking, or unwanted @ Potentially lossy and adversarial channel.
oscillatory movements due to failures, attacks, communication delays, etc. Our results in similar
studies include verification of autonomous satellite maneuvers [2], flocking in swarm robotics in
spite of failures [5, 6], and planar robotics [52].

(@

3. Methods, Assumptions, and Procedures

3.1. Overview
The objectives summarized in the previous section were undertaken through the following
technical procedures and methods.

3.2. Technical Procedures
3.2.1. Scaling Formal Specification and Verification for Emergence in DCPS

We first developed design-time formal specification and verification methods for
emergence in DCPS modeled as networks of hybrid automata with linear and nonlinear dynamics.
We developed a verification framework for modeling DCPS as networks of hybrid automata that
interact through discrete transitions [31, 32, 39, 40]. The Passel verification tool [31, 38], in
conjunction with a small model theorem [39] and an invariant synthesis procedure [32], enabled
the first fully automatic verification of safety (aircraft separation) for the Small Aircraft
Transportation System (SATS) landing protocol (a part of the NASA/FAA NextGen program [41-
48]). Extending Passel and its theoretical framework to emergence properties for swarm robotics
first requires developing formal definitions and specifications of emergence properties in DCPS.

3.2.1.1. Formally Defining and Specifying Emergent Behavior in DCPS

The approach is to specify emergence as sets of invariant properties over the local states of
individual automata, to describe the global behavior of the entire distributed systems. For example,
invariants allow specifying either creation or absence of emergence of consensus or flocking
behavior. DCPS are naturally parameterized by a number of interacting agents, for instance, the
number of robots in a swarm. We define absence and presence of emergence properties using
invariants, integrate the formal specification of emergence into an extension of the Passel
verification tool [31, 38] with a new software tool HyST [49], and evaluate synthesizing
implementations in a correct-by-construction manner [54].

Approved for Public Release; Distribution Unlimited.
4

120 / 910
100 — 905
80 i 900
L

895
60

890
40 -

885
20

880
0 875

200 950

a0 0 80— 900
20 0 20 40 60 80 100 120 200 870 875 880 885 890 895 ©00 gos g1 880

Figure 2: Example of emergent flocking behavior in three dimensions with a system of N = 64 agents. The left frame
is at an initial condition and the right frame illustrates the flocking formation after 36 seconds of runtime. The agent
positions are denoted by green circles, their velocities by green vectors, and a red vector indicates their desired
heading. Blue lines between agents are drawn if their distances are approximately spaced by some desired flocking
spacing 7¢.

Figure 2 shows emergent flocking behavior in a simulation of the Olfati-Saber algorithms
[25-27] that rely only on local communication between the agents. Flocking is not specified
anywhere in the system description, instead, it emerges dynamically as a property of the system
over its execution. One definition of flocking is that all agents are spaced equally from all their
neighbors, which may be specified mathematically as:

Vi € [N],V] € Ci: ||xi —x]” =Ty, (1)

where i,j come from a set of agent identifiers [N] £ {1, ..., N}, x;, x; are real vectors of an
appropriate dimensionality (e.g., 3 for the example of Figure 2), || - || is an appropriate norm (e.g.,
say the 2-norm), C; is a set of communication neighbors of i (e.g., C; 2 {j € [N]: ||xl- - xj|| <r}
for some communication radius r.), and rr > 0 is some desired flocking spacing [1, 5, 6]. Note
that non-ideal spacing may easily be incorporated, e.g., to define a flock as states where agents are
approximately spaced by 7y, such as ry & €7 for some small €;. Control algorithms to enable such
emergent behavior do not a prior specify anything about the behavior, rather it arises
spontaneously. Other emergent properties of interest for such systems include collision avoidance,
which may be specified in a similar format, such as:

Vi,j € [N]:||x; —]| = 7,)

where all quantities are as before and r; < 77 is a desired spacing amount. Note that these emergent

behaviors are potentially in conflict with one another: flocking mandates agents come sufficiently
close together, while safety mandates agents do not come too close together.

From a specification standpoint of these two different forms of emergent behavior
described in (1) and (2), there are several similarities. First, the class of formulas these
specifications come from is quite similar. These are both specified using universal quantification

Approved for Public Release; Distribution Unlimited.
5

300
%0 100
- 9 . 71
25 £ 200
20) . , 100 \
> o o] > Ve
15 Yl
10 6 5 200
© 100 7
3 0 60 80 100
1 100 y -100 " _gp-40-200 20 40
00 1510 5 0 5 10 15 20 60 40 20 0 20 40 60 80 100 x

X X
Figure 4: Alternative specifications of flocking emergence exist like bird vees. This is a planar scenario created by
adjoining two one-dimensional flocks (platoons) about an appropriate angle. The middle figure shows a phase space
plot of the trajectories of all agents, and the right figure shows the planar coordinates of all agents as they evolve over
time while moving and rotating in the plane. By composing formally verified primitives (the exponentially stable one-
dimensional flocking algorithm), sophisticated and verified planar formation control is achieved. High-level mission
specifications and flock formation parameters (such as the angles, where to move, etc.) may be specified in a temporal
logic like linear temporal logic (LTL).

X0 followed by a quantifier-
, s20 free formula over reals.
00 Both of these
" specifications of
0 460 emergent behavior
I 440 almost fall into the
°f 20 restricted class of first-
400 order logic (FOL)
0 supported in the
sl M a0 w0 e a w0 so o theoretical framework

developed for uniform

Figure 3: The left image shows divergent emergent behavior when trying to use verification of safety
distributed flocking control algorithms with realistic system constraints, particularly properties in networks of
(1) actuator saturation, (2) asynchrony, and (3) communication delays, and the right . .
image shows partial emergence of flocking for these factors. hybrid automata, V\{Ith
automated reasoning

methods implemented in the Passel software tool [31, 32, 39]. To highlight one subtlety, note that
an alternative way to represent the set of communication neighbors of an agent is using a set-
valued variable, i.e., an array.

However, extensions are needed to support planar and three-dimensional specifications of
flocking, extensions to the restricted class of FOL supported by the small model theorem [39]
exploited by Passel. Specifically, the specification of the two-norm is a polynomial expression
over the reals, while Passel has only been used so far on linear
expressions. Thus, a first objective is to extend Passel to support 4)i
polynomial expressions. Next, realistic systems have continuous % ~ *.s f”ﬂ
dynamics specified by linear or nonlinear ordinary differential _* N

equations (ODEs), while the modeling language supported by Passel 12 Al

does not currently allow this. Additionally, an extension of the small -« 4 e
model theorem for these scenarios is required, as it also only allows = I

linear expressions, while the solutions of ODEs may generally o 4 g0 00

|nvolve_ speual_functlons and transcendenta_ls. This exter_1$|9n to the Figure 5: Emergent flocking
theoretical basis of Passel was made and integrated within HyST with four groups of agents using
platooning algorithms.

Approved for Public Release; Distribution Unlimited.
6

900

/ [49]. This extension is feasible,
under the assumption that the
continuous dynamics of an agent i
do not directly depend upon those
of an another agent j. That is to
say, their continuous interactions
are decoupled. They may however
e interact discretely, through for
Figure 6: Emergent planar flocking behavior under ideal conditions Instance — communication or
required by existing distributed control algorithms without attacks, computer-sampled sensing. This
failures, control/actuation saturation, asynchrony, or communication together leads to the next
failures. approach, of extending the
modeling language and theoretical basis of Passel to support both decoupled linear and nonlinear
ODEs.

3.2.1.2. Formal Verification using State-Space Reductions in Hybrid Automata Networks

Previous limitations of verification methods for DCPS required each automaton in the
network to have rectangular dynamics (x € [a, b] for real constants a < b). While many systems’
dynamics may be reasonably over-approximated as rectangular differential inclusions, it is critical
to extend the framework and results to support linear and nonlinear differential equations. The
Passel verification tool and its theoretical basis was extended within HyST to support DCPS with
linear and nonlinear continuous dynamics, enabling it to realistically specify and verify swarm
robotics case studies with emergence by exploiting symmetry-reduction methods for reachability
[31, 40, 55-63] and small model theorems [39] for proving inductive invariants to establish. Since
these methods are sound and consider all system behaviors and permutations, they have the
capability to establish the presence or absence of emergence over the evolution of these DCPS.

The main technical challenge in utilizing such methods (for any formal model) is the state-
space explosion problem (referred to as the “curse of dimensionality” in other fields) [31, 55-57,
64-68], which is that the size of the state-space grows exponentially in the number of components
(see Figure 7). For example, small model theorems [31, 39, 67, 69-75] allow for formally verifying
safety and liveness properties of arbitrarily large parameterized networks of communicating
automata using finite (and typically small) equivalent systems. The “small model” here refers to
the size of models in the formal logic sense that are necessary to consider in deductive proofs. That
is, @ model is a satisfying assignment to a sentence, and the size refers to the largest size of
satisfying assignments that need be considered, and not to the size of the system model itself,
although there is clearly a relationship between the two.

State-space explosion is a challenging problem in verification, and in [39] we developed a
small model method for verifying safety properties of arbitrarily large networks of hybrid automata
by verifying finite networks. For example, in an air traffic control system, each aircraft may be
modeled as a hybrid automaton and a safety specification is that no two aircraft ever come too
close to one another to establish that aircraft never collide. A major focus of this research
community is to develop mathematical and software tools to verify that CPS design models meet
their requirements. Of course, automation is challenging for a variety of reasons, such as the state-
space explosion problem and the combinations of discrete and continuous dynamics. Significant
effort was spent developing a software tool called Passel—a collective noun meaning a large group
of indeterminate number—for automatic verification of parameterized CPS, and all methods in
this project were implemented algorithms in publicly available tools (HyST, Hynger, StarL,

100 890

80 a80

0
870[|-
40 -
geo|
20+

850
o

Approved for Public Release; Distribution Unlimited.
7

rtreach, specified in the deliverables). Systems are 140

modeled in Passel as hybrid automata, and the ;-0

tool generates the CPS semantics in a restricted 8100

subclass of first-order logic (FOL) over reals, ¢

bitvectors, and integers. Passel leverages recent 80

advances in satisfiability modulo theories (SMT) % 60 Small Model Theorem
solvers. Passel exploits the small model theorem @ 40 Bound (N = 6

we developed to reduce verification for networks g 20

composed of arbitrarily many (countably infinite) 0
hybrid automata to checking a network with a
(small) finite number [39]. Abstraction results
like this enable scalable verification, and allow
Passel to automatically prove inductive invariants
by checking validity of appropriate FOL
formulas. Passel has been applied to verify CPS
examples like the Small Aircraft Transportation
System (SATS) landing protocol in NASA/FAA NextGen program [41-48].
Reductions in Formal Verification: Symmetry-reduction methods [31, 40, 55-63] similarly allow
for formally verifying systems with large spaces by only exploring small equivalences classes of
the large state space. For example, in preliminary results [31, 40] shown in Figure 8 allow for
verification of significantly larger networks of hybrid automata than existing methods (e.g., in
PHAVer [76] or SpaceEx [77]). In preliminary results [31, 40] consider systems that have on the
order of 2139 discrete states (growing at N(4N)", see Figure 7) as well as on the order of N =
20 to hundreds of continuous variables, where N is the number of automata in the network (the
x-axis in Figure 7 and Figure 8). No other tool can support such large state spaces with a
combination of both complex discrete and continuous behaviors (e.g., [76-79]) and the closest
comparable tool is Uppaal [80] (but that does not support as general dynamics). Leveraging these
results, we developed the first formal verification of emergent properties like flocking in DCPS.
3.2.2. Detecting Emergence at
Runtime: Specification-
Based Runtime Monitoring
Objective 2 was the

development of runtime
monitoring verification
methods for emergence in
DCPS, using both model-based
and model-free approaches.
Model-based methods rely on
formal methods tools and
inherently are subject to

. . i 6 11 1& 21 26 31
scalability problems, while o oo N
model-free approaches are w0

1 3 5 7 91113151719

Automata, N
Figure 7: lllustration of the state-space explosion
problem for the Small Aircraft Transportation System
(SATS) case study modeled as networks of hybrid
automata [31, 39, 33], and using a small model theorem
to address the problem.

10000.00

1000.00

100.00

Memary (MB)

10.00

= ol = W LIK-SEM Passe = = - MUX-SEM Phaver

e MLX-INDEX-RA Passel == MUX-INDEX-RA Phaver SSATS Passel B~ SSATS Phaver

= = MUN-SEM-RA Passel =@ = MUX-SEM-RA Phaver

heuristic, as they are both
unsound and incomplete, but
scale better. Together, the
methods rely on monitoring

Figure 8: Symmetry-reduced reachability of hybrid automata networks
implemented in the Passel verification tool [31, 40, 38], which addresses the
state-space explosion problem and allows significantly larger problem size
than existing state-of-the-art methodology (in PHAVer).

Approved for Public Release; Distribution Unlimited.

8

asynchronous distributed and

hybrid systems at runtime and | <& Cyber- | Becutes || Tl
. I-ti d builds on Physical Instrument Y Simulate |l Candidate
In real-time, an u up |\:.10defls (Hynger) (Simulink) Invariants
both model-free and model- | (simulink) T (Daikon)
based approaches developed el [ocd
by our group [1, 7, 50]. While _?UII‘:T By: Project § &: Actual
the model-based design Initial onto Physical Invariants
. Conditions Variables for RTA
frar_n_ewo_rk and typical formal on (Hynger)
verification problem assumes 19,3,
a system model A with Cyber-Physical
. . . Specifications
formal semantics is available, for RMV

this is rarely the case in the
current state of engineering Figure 9: Hynger-based formal and heuristic-based invariant inference for
practice. We developed an emer.gent behaV|or|r_1 DCI?S. Sets of candidate invariants are generated t(_) either
- . . monitor the sets of invariants themselves and how they change over time, as
Invariant synthes'ls tQOI Ca!IEd well as prove that these candidates are actual invariants for RTA.

Hynger (HYbrid iNvariant

GEneratoR) [50] that instruments arbitrary Simulink/Stateflow (SLSF) block diagrams for input to
the Daikon invariant finder [81, 82] to generate candidate invariants over the input and output
variables of every block in a diagram. The internals of the SLSF blocks may be unknown, be
compiled machine code, actual systems, etc. Such heuristic methods scale better than formal
methods alone. However, if the internals are known and formal models are available, the
candidates may then be checked to be actual invariants using tools like Passel [31], HyCreate [83],
SpaceEx [77], etc., so these heuristic methods enable scalable usage of formal tools for monitoring
invariants.

3.2.2.1. Model-Free and Model-Based Invariant Inference and Synthesis for Emergence in DCPS

We first extend the invariant inference methodology to distributed CPS from individual
systems currently supported. Combined with emergence specified as invariants, this allows for
identifying the presence or absence of emergent behavior in DCPS at runtime. While not all
interesting specifications of emergent behavior may be found as invariants, many examples can,
such as those for flocking and collision avoidance in (1) and (2).

The overall methodology is depicted in Figure 9. A CPS model or implementation is
provided as a SLSF diagram A. The SLSF diagram is instrumented, then the SLSF diagram is
executed to generate a set of sampled, finite-precision traces T for each initial condition 8 in a set
of initial conditions @, which effectively corresponds to a test suite. The traces are analyzed using
dynamic analysis methods, such as Daikon, to generate a set of candidate invariants ®, each
element ¢ of which may be checked as actual invariants if A corresponds to a formal model (e.g.,
a hybrid automaton), then a model checker may be employed to see if it is an actual invariant ¢,
and the set of actual invariants @ is collected. Next, each candidate invariant ¢ € ® is projected
(restricted) onto the subset of physical variables to yield a candidate physical invariant ¢p and
corresponding set ®p. Now, @, corresponds to the candidate, inferred physical invariants from
the perspective of the DCPS. The candidate sets of invariants and proved invariants are used for
runtime monitoring and verification (RMV) and runtime assurance (RTA).

To formalize the problem, an extension of hybrid input/output automata (HIOA) was
developed [53, 84-86], called cyber-physical input/output automata (CPIOA) [35]. In addition to
partitioning variables into local, input, and output sets, each of these sets of variables are further

Approved for Public Release; Distribution Unlimited.
9

partitioned into cyber and physical variables. Then, when states
(or formulas used to symbolically represent states) are restricted
to the set of cyber (respectively, physical) variables, the
specifications then correspond to the cyber (respectively, —7 -~
physical) specification. In practical software implementations Simulation
using e.g., C and SLSF models, the physical variables can be Code generation
specified using a subtyping of the usual types for approximation Figure 10: Correct-by-construction
of reals (e.g., a physical variable is a subtype of double floating- 'fmplememat'ons of DCPS, starting
. . . . A . > from a formal model (e.g., as a
point or fixed-point types). Techniques building on taint analysis gpaceEx hybrid automaton network)
of programs are used to identify the effects of all physical using a sound translation to
variables in CPS [87]. implementations as Simulink

We utilize both dynamic and static analyses of CPS models.
models to infer the cyber-physical specifications of emergence. When models with formal
semantics (e.g., CPIOA) are available, static analysis in the form of reachability analysis may be
employed to determine invariant specifications. If no such formal models (or potentially no models
and even only black-box implementations are available), one may employ dynamic analysis by
executing (or simulating) the systems under consideration to generate sets of executions (or
sampled approximate traces, due to inherent inaccuracies of simulation on finite-precision digital
computers). We developed a methodology within Hynger for instrumenting arbitrary SLSF
diagrams (that may potentially have known or unknown models or system implementations) to
generate output traces in the format compatible with the Daikon dynamic invariant inference tool
[81, 82]. The SLSF blocks may be unknown models or even system implementations since from
the point of view of SLSF, the only information required for blocks are variable values at block
inputs and outputs and when that information is updated. For instance, SLSF may be integrated
with hardware/software-in-the-loop simulation, and for these purposes, some blocks represent
models to be simulated and have information necessary to perform simulation, while other blocks
actually correspond to implementations that have been interfaced to provide necessary data to
SLSF. Since physical variables evolve according to ODEs, their invariants may involve nonlinear
and transcendental functions. Nonlinear (polynomial) invariants [88], disjunctive/max-plus
invariants [89, 90], and simulation-based verification (which effectively define invariants from
dynamic analysis) [91] may be used to greatly expand the classes of invariants that may be found.
If formal models are available, one may check if the inferred invariants are actual invariants using
hybrid systems model checkers such as SpaceEx [77], HyCreate [83], and Passel [31, 38]. Physical
dynamics and specifications thereof are formalized in a mechanized manner, similar to the
numerical simulations formalized in ACSL [92] for Frama-C [93].

Using the formalized distributed emergence inference methods, offline algorithms to
identify emergence were developed. As detailed in Figure 9, this results in SMT validity and
satisfiability checks over formulas symbolically representing the candidate invariants. We
implemented specification inference methods in software tools. A software tool is developed
implementing the algorithms developed in the other objectives to solve the emergence inference
problem at design time. The software tool is called Hynger (for Hybrid iNvariant GEneratoR) and
integrates with typical CPS development environments (Mathworks Matlab/Simulink) as well as
formal analysis tools for hybrid systems, such as Passel [31, 38] and SpaceEx [77]. This leverages
extensive experience using SMT solvers [94, 95] such as Z3 [96] used by the Passel tool [31, 38,
40] for the satisfiability/validity checks. Case study models (and the testbed described in Objective
4) are developed to evaluate the inference methods.

- Model analysis
SpacebEx model
Verilication

Approved for Public Release; Distribution Unlimited.
10

We investigated richer specification languages, such as temporal logics (e.g., linear
temporal logic [LTL] or computation-tree logic [CTL], etc.), as well as real-time temporal logics
(e.g., metric temporal logic [MTL], metric interval temporal logic [MITL], signal temporal logic
[STL] [97], etc. [98]). With richer specification languages like LTL, richer techniques are be
necessary, and ideas such as Angluin’s learning algorithm [99, 100] or counterexample-guided
synthesis [97, 101] to infer specifications (i.e., finite-state automata for LTL and parameters for
STL) from executions were investigated. The detection of emergence becomes more complex, as
instead of satisfiability checks between invariants to determine inclusions, language inclusions
must be checked. To work with C code, Daikon must utilize appropriately instrumented binaries
using Valgrind via its Kvasir/Fjalar frontends [82]. This makes it difficult to use on non-x86/x86-
64 platforms, which is a serious limitation, as most embedded platforms utilize other architectures
(e.g., ARM, AVR, PIC, 8051, MSP430, etc.). Due in part to these limitations, the methodology
instruments architecture-independent SLSF diagrams to generate traces in the input format
compatible with dynamic analysis tools like Daikon. The Hynger tool takes an arbitrary SLSF
model, instrument it, then analyze the resulting traces with dynamic analysis to identify broad
classes of emergent behavior.

3.2.2.2. Runtime Assurance and Runtime Verification for Emergence in DCPS

Next, the candidate invariants detected using the Hynger and Daikon tools may be
monitored at runtime to enable a runtime assurance framework like the ClearView system for
distributed (purely software) systems [102, 103]. While technically unsound and incomplete,
practically, given a sufficiently large test database, the candidate invariants correspond well to the
expected behaviors of the system, and serve as abstractions of all internal behavior. At runtime
when analyzing traces over finite times, if the candidate invariants inferred are not implied by
known candidates then a suspicious scenario is flagged (such as an attack [102, 103], emergent
behavior, etc.). We investigated and use distributed global predicate and state detection algorithms
that rely on minimal communication, building upon seminal results of Chandy, Misra, and
Lamport [104-106]. Self-stabilization [4] is used as a tool to formalize the emergence specifications
and their evolution over time in the distributed systems (as invariants, i.e., predicates of state
space).
3.2.3. Assured Control in Spite of Emergence with Real-Time Reachability and Self-
Stabilization for Distributed Simplex

Obijective 3 is the development of control methods to ensure desirable or avoid undesirable
emergent distributed behavior at runtime, by leveraging the Simplex-based RTA framework using
real-time reachability of networks of hybrid automata in conjunction with self-stabilization [3-6,
52, 53] of the distributed system. Monitoring predicates over physical variables and their
continuous evolution over time is performed with real-time hybrid systems reachability. We
developed a methodology for runtime assurance in Simplex-architecture RTA systems using real-
time reachability for a single hybrid automaton [7]. These results are restricted to a single hybrid
automaton, and require extensions to DCPS. Since modern DCPS are complex, it may be infeasible
to determine all specifications and possible emergence between all subcomponents at design time.
We developed online runtime monitoring and verification methods for the inferred candidate
specifications of emergence, and combine these monitoring methods with real-time algorithms for
detecting emergence at runtime. When emergence is identified at runtime, a runtime assurance
framework building on supervisory control ensures safe DCPS runtime operation in spite of
emergence.

Approved for Public Release; Distribution Unlimited.
11

For some of the analysis, we assume formal hybrid .
. . Decision
automata models are available, which may not be the Module

case for practical CPS that are designed using more Complex
typical industrial tools such as Mathworks Controller w
Simulink/Stateflow (SLSF). To alleviate this issue, we Commands Plant

Sensor
Data

investigated a new design paradigm, where the plant, Safety |
controller, and their interfaces are designed formally as r Controller
.hyb“d au_tomata’ then . are transla_\ted to Figure 11: Overview of the Simplex architecture
implementations as SLSF diagrams (see Figure 10) \here an unverified, complex controller with
[54]. This paradigm of designing with formal models, verified switching logic (decision module)
then instantiating implementations is attractive, as both switches to a verified safety controller in time to
simulation and verification may be conducted with the Prevent mishaps. We extended the architecture to
formal model, then an implementation may be derived ?ﬁgﬁn”k;ﬁf?itféfﬂg'.ﬁz g?;trﬁ)ife% li\slgfngsllng tools
that is guaranteed to have the same behaviors. The

sound translation framework from formal hybrid automata models to SLSF diagrams (in particular,
continuous-time Stateflow diagrams, which have behaviors similar to hybrid automata) has
numerous theoretical and practical challenges. For instance, typical hybrid automata models do
not support urgency (although hybrid automata with urgency have been investigated recently
[107]), while transitions in SLSF are urgent (i.e., transitions are taken as soon as they are enabled,
which is further complicated in SLSF due to actually happening at zero-crossing event points in
the simulation loop). SLSF diagrams do not support invariants, while hybrid automata do. SLSF
diagrams (without stochastic models) are typically deterministic (in both discrete transitions and
continuous trajectories), while hybrid automata are nondeterministic (in both discrete transitions
being nondeterministic similar to in nondeterministic finite-state automata [NFAs], and continuous
trajectories being described using differential inclusions, which allow for nondeterministic
families of solutions). Time-dependent switching is used to abstract more general state-dependent
switching. Addressing these issues to ensure a notion of behavior preservation when translating
from hybrid automata to SLSF (using an appropriate assumption on the behavior of the SLSF
simulation loop and its inherently sampled-time and finite-precision limitations) to enable formal
guarantees in implementations.

Next, algorithms were developed for an online, runtime implementation of the overall
distributed emergence detection as candidate invariants architecture depicted in Figure 9. For the
dynamic analysis, the specification inference methodology is implemented online, to infer
specifications at runtime. Such methods have been used for identifying security attacks in
ClearView [102], but CPS have a different set of challenges (real-time, real value approximations,
etc.) [51]. For the static analysis, we built upon preliminary results (Figure 13) for real-time
reachability of a single hybrid automaton [7].

The Simplex Architecture (see Figure 11) ensures the safe use of an unverifiable complex
controller by using a verified safety controller and verified switching logic [108-113]. This
architecture enables the safe use of high-performance, untrusted, and complex control algorithms
without requiring them to be formally verified. Simplex incorporates a supervisory controller and
safety controller that may take over control if the unverified logic misbehaves. The supervisory
controller should guarantee the system never enters an unsafe state (safety), but also use the
complex controller as much as possible (minimize conservatism). In preliminary results [7], we
establish a combined online/offline approach that uses a real-time reachability computation
enables a proof of safety, but with significantly less conservatism, so the upgraded controller is

Approved for Public Release; Distribution Unlimited.
12

used more frequently as in Figure 13. In this objective, a
runtime assurance framework is developed, where the
safety controller is used if distributed emergent behavior
is detected online.

Hynger has been extended for runtime assurance
tasks like detecting and thwarting security violations and
attacks, similar to the ClearView tool that also relies on
dynamic analysis to detect changes in candidate
specifications [51, 102]. Finding and monitoring sets of
candidate invariants (even if not verified as actual
invariants) may be useful for runtime assurance and
resiliency methods for embedded systems. If candidate
invariants are checked at runtime using a real-time
reachability method [7], formal and dynamic runtime
assurance may be feasible. Rather than purely sensing
feedback in the Simplex decision, using changes in sets of
inferred candidate invariants may determine mode
changes to enable runtime assurance in DCPS.

3.2.3.1. Real-Time Reachability for Networks of Hybrid
Automata
The next research objective is to extend real-time

Figure 12: Illustration of self-stabilization.
The DCPS starts from a set of initial states Q,
and if it evolves over an arbitrary execution
without failures (attacks, emergent behavior,
etc.) a,, is guaranteed to self-stabilize to a
set of desirable states S where mission
progress is ensured and remain there. As the

DCPS operates, if failures occur and
executions a, are followed outside the set S,
they are guaranteed to remain in a set T that
at least maintains safety. Once failures stop,
the DCPS again self-stabilizes to S and may
make mission progress.

reachability to DCPS modeled as networks of hybrid automata, which is the first step in developing
an RTA framework for DCPS. Existing methods have only been developed for a single hybrid
automaton, so the focus is on developing a distributed runtime verification method building on the
real-time reachability of networks of hybrid automata. This is enabled by extending the symmetry-
reducing reachability framework for networks of hybrid automata [40] to those with linear and
nonlinear dynamics and specifications, developed in Objective 1.

3.2.3.2. RTA for Emergence in DCPS with Distributed Simplex and Self-Stabilization

Leveraging both the real-time reachability for

Velocity, v (m/s)

-1 -0.5 0
Position, p (m)

Figure 13: Verifiably safe regions of state-space
when using complex controller for an inverted

0.5 1

pendulum example, illustrating real-time
reachability’s advantages to offline verification
methods (unverified simulation or LMI-based
methods that yield ellipsoidal safe sets) in results
of a Simplex RTA framework.

hybrid automata networks and the Hynger-based
emergence monitoring methods from Objective 2, the
next objective is to apply these monitoring methods in
RTA control of emergence, which is specified as
maintaining system state within a given region of the
state-space (i.e., property invariance). We build on the
theory and tools of self-stabilizing distributed systems
(see Figure 12), which ensures eventually returning to
desirable sets of states in spite of failures, attacks, etc.
Together with the Simplex RTA methods, thus yields
the development of a Distributed Simplex RTA
architecture for DCPS. This combines global and local
state estimation and invariant monitoring. For
example, each agent may deploy its own Simplex
architecture, but what emergent behaviors occur if say
all agents start to use fallback controllers? What is a
fallback controller for the entire distributed system?

Approved for Public Release; Distribution Unlimited.

13

These questions have been addressed in our resulting publications. We leverage preliminary results
[5-7, 52, 53, 114] in this direction to develop a Simplex architecture for emergence in DCPS.
3.2.4. Evaluating Analysis, Monitoring, and Control of Emergence in DCPS Testbeds

To evaluate the methods from the previous objectives, we performed simulations,
laboratory experiments, and demonstrations using a swarm of autonomous agents, particularly
commercially available quadrotor drones. Typical safety properties that arise are collision
avoidance [5, 6, 31-33, 39, 52] and convergence to some desired configuration and/or location [52],
and emergent properties may be consensus, flocking, or unwanted oscillatory movements due to
failures, attacks, communication delays, etc. Our results in similar studies include verification of
autonomous satellite maneuvers [2], flocking in swarm robotics in spite of failures [5, 6], and planar
robotics [52].

3.2.4.1. Evaluation of Emergence Methods through Simulation Studies

We evaluated the specification, verification, monitoring, and control methods analytically,
using software tools, and in simulation. We extended the StarL framework that provides simulation
capability of DCPS. Additionally, StarL was used to deploy to actual swarm robot systems, so
altogether this enables evaluation of a correct-by-construction framework for establishing or
avoiding emergence in DCPS. The StarL [114, 115] platform and its offline simulator allows the
DCPS to have similar levels of concurrency, asynchrony, and other realistic effects as
implementations. We used the hybrid automaton translation framework (Figure 10) to convert
from formal models to StarL programs and SLSF diagrams for simulation.

3.2.4.1: Experimental Evaluation of Emergence Methods through Lab Demonstrations

We experimentally analyzed the specification, verification, monitoring, and control
methods for emergent behavior in DCPS using an indoor swarm robotics system of quadrotors.
This includes scenarios with emergent behavior such as flocking, flocking in spite of failures of
physical, cyber, and communication components, and emergent behavior like collision avoidance
that should be invariant. This serves to validate the analytical, verification, and simulation results,
and leverages the implementation of StarL programs [114, 115] on hardware.

4. Results and Discussion

4.1. Key Results and Findings

The key results and findings of this project for each objective are as follows.
Objective 1: Specification and Verification

The first is in specifying behaviors for DCPS, and this resulted in the creation of a novel
formal specification language called hyperproperties for signal temporal logic (HyperSTL), which
arguably is the most complete specification language for formally describing behaviors of DCPS
[36]. Also for specification of behavior, the perspective of considering cyber, physical, and cyber-
physical specifications in DCPS is a key insight [35]. The second is in addressing the state-space
explosion problem for DCPS, particularly through the use of order-reduction [116].
Objective 2: Monitoring

For monitoring DCPS behavior, the runtime monitoring framework built using Hynger to
check if behaviors observed at runtime is the key result. By monitoring whether specifications may
be violated at runtime gives an indication that emergent behavior, or some other anomalous
behavior, may be occurring [51].

Approved for Public Release; Distribution Unlimited.
14

Objective 3: Control

The perspective of runtime assurance using the Simplex architecture seems particularly
powerful for mitigating emergent behavior, if it is undesirable [117]. This approach may be
impactful and useful when artificial intelligence (Al) and machine learning (ML) components are
incorporated in DCPS, and this direction of research was a key outcome.
Objective 4: Evaluation

The methods above were evaluated in several case studies, particularly within the
distributed robotics framework of StarL. Videos of scenarios are included with the deliverables.
Numerous benchmark case studies were published [118-122].

4.2. Related Work

Model-based verification typically develops a model of a system and properties
(specifications) are (manually, semi-automatically, or automatically) checked for that model.
However, most safety issues induced by software bugs are not a result of design errors, but are the
result of implementation, reuse, upgrade, and maintenance errors. While a A, P l
priori model-based design (MBD) and clean-slate approaches like
DARPA’s HACMS, selL4, Bedrock, and CompCert [123-127] are of
critical important and especially useful for subcomponent verification,
most systems being designed today utilize a development process where
engineers write software and systems are integrated from numerous rigure 14: General formal
components. Additionally, while there are many standards to help verification problem.
improve CPS safety in various domains (like ISO 26262 functional safety
standard for road vehicles [128] and MISRA C [129]), as CPS have exponential gains in software
embedded in them, these reliability problems will only become exacerbated [8, 9]. Rare cyber-
physical failure scenarios and distributed emergence motivate runtime contingencies to assure
safe, if degraded, operation.
Dynamic Specification Inference: There are many benefits of dynamic analysis such as using
implementations instead of models [81, 82, 130] to find dynamic program specifications [130]. The
limitation is results are unsound without additional reasoning. Finding specifications of systems is
a maturing field within software engineering [81, 82, 130-133], and recent simulation-based
approaches in hybrid systems and CPS like those used in S-TaLiRo, Breach, and C2E2 can be
viewed as dynamic analysis [91, 97, 134-139]. Invariants are properties of a system that always
hold, while conditional invariants may hold at certain program points, for example, at the
beginning or end of a function call (pre/post conditions). Daikon has found candidate invariants of
hybrid models of biological system [140] and distributed systems [141, 142], and this illustrates a
proof-of-concept to use it for hybrid systems. Alternative approaches analyze simulation traces
from complex Matlab/Simulink models [97, 114, 138, 139], but require a priori specifications or
require templates from restricted classes of logic.
Verification of Hybrid Systems: Formal verification aims to solve the problem posed in Figure
14: does a given formal system model (often an automaton) <A satisfy a given specification
(property) P? Automated formal verification (as instantiated, for example, in model checkers),
aims to develop an algorithm to solve the formal verification problem, instead of using semi-
automated methods such as interactive theorem provers. A hybrid automaton [30, 31, 84, 143, 144]
is a formal model, and is essentially a finite-state machines with additional continuous variables
that may evolve according to ordinary differential equations (ODES) or inclusions that may differ
in each state. Hybrid automata provide a formal mathematical semantics for formal verification of
properties specified in some formal language using many techniques [31, 76-78, 144]. While

Approved for Public Release; Distribution Unlimited.
15

automated formal verification is undecidable for many interesting classes of systems (such as
general software or general hybrid automata), numerous advances have been made in the past few
decades. Explicit-state and symbolic model checking [68, 145-149] is common place in numerous
industrial semiconductor development processes, aided in part by automata-theoretic advances and
developments like efficient representations like BDDs [150], DDDs [151], SAT-encodings [152,
153], and recently, SMT-encodings [94, 95, 154-157] and quantified encodings [158]. Embedded
and hybrid systems have likewise benefited from advances such as those implemented in HyTech
[78], KRONOS [159], Charon [160], Checkmate [161], the ellipsoidal toolbox [162], PHAVer [76],
KeYmaera [163, 164], SpaceEx [77, 165], and simulation-based verification [134-136, 139, 166-168].
SMT-based techniques have been used for reachability analysis of hybrid systems in SAT-modulo-
ODEs [79, 169-171], and for automatically discharging deductive proofs of safety by inductive
invariance in Passel [31, 32, 38-40].
Translating Hybrid Automata to Implementations: Efforts have recently been investigated for
translating timed automata to Mathworks Simulink/Stateflow (SLSF) diagrams, such as UPP2SF
that converts UPPAAL’s timed automata to SLSF diagrams while maintaining certain properties
of executions (i.e., a form of soundness) [172-175]. A vast amount of existing work exists in the
opposite direction, of translating from SLSF to formal models like hybrid automata, extended finite
state machines (EFSMs), etc. and between hybrid systems formalisms [176-187]. However, tools
translating from SLSF are impractically difficult to build, in part since SLSF does not have a
formal semantics (although efforts have tried to define some [188, 189]), and commercially
available tools such as Ansys/Esterel’s SCADE Lustre [190] converter tool (that translates SLSF
to Lustre with precise semantics) are not only impracticably large to build in an academic setting
(e.q., Esterel’s converter has millions of lines of code), but are theoretically unsound, albeit very
useful. Additionally, all commercially viable converters only support discrete SLSF diagrams (or
discretizations thereof), and may not include continuous-time blocks like continuous-time
Stateflow diagrams [183, 185, 191]. Academic efforts exist to translate from SLSF to hybrid
models (such as HyLink [192-194] and others [176, 184]), but the vast effort in creating viable
translators make it impractical.
4.3. Deliverables

Table 1 describes the deliverables produced through this project, which includes quarterly
status reports, final technical reports, software deliverables including source code and prototypes,
and APIs including documentation.

Objective Deliverables

Objective 1: | HyST/Passel software tool, with extensions to linear and nonlinear local
Modeling and | dynamics allowing modeling of the swarm robotics DCPS case study and
Analysis emergent properties in general DCPS. Software deliverables with source code
and prototypes, and APIs including documentation.

Online: https://github.com/verivital/hyst

Objective 2: | Hynger invariant inference software tool for distributed emergence
Monitoring monitoring. Software deliverables with source code and prototypes, and APIs
including documentation.

Online: https://bitbucket.org/verivital/hynger

Approved for Public Release; Distribution Unlimited.
16

https://github.com/verivital/hyst
https://bitbucket.org/verivital/hynger

Objective 3: | Real-time reachability tool and RTA framework for emergence in DCPS
Control relying on self-stabilization. Software deliverables with source code and
prototypes, and APIs including documentation.

Online: https://bitbucket.org/verivital/rtreach

Obijective 4: | Models of the swarm robot case studies; source code for the control software;
Evaluation source code and design files for the overall swarm robot evaluation system.
Software deliverables with source code and prototypes, and APIs including
documentation.

Online: https://github.com/verivital/starl
Videos: https://www.youtube.com/channel/UC1-RPjoacWVNLQKjuxrbn9A
Table 1: Deliverables for analysis, monitoring, and control of emergence in DCPS.

5. Conclusion

This project studied emergent behavior in DCPS by developing formal specification
languages, formal verification methods within the HyST software tool, heuristic-based runtime
monitoring within the Hynger software tool, and Simplex-based runtime assurance. Together, the
project demonstrates the capability to detect, monitor, and control emergent behavior in DCPS.

6. References

[1] L. Bobadilla, T. T. Johnson, and A. LaViers, “Verified planar formation control algorithms
by composition of primitives,” in AIAA SciTech. Kissimmee, Florida: AIAA, Jan. 2015.

[2] T. T. Johnson, J. Green, S. Mitra, R. Dudley, and R. S. Erwin, “Satellite rendezvous and
conjunction avoidance: Case studies in verification of nonlinear hybrid systems,” in Proceedings
of the 18th International Conference on Formal Methods (FM 2012), D. Giannakopoulou and
D. Méry, Eds. Paris, France: Springer Berlin Heidelberg, Aug. 2012, vol. 7436, pp. 252—-266.

[3] A. Arora and M. Gouda, “Closure and convergence: A foundation of fault-tolerant
computing,” vol. 19, pp. 1015-1027, 1993.

[4] S. Dolev, Self-stabilization. Cambridge, MA: MIT Press, 2000.

[5] T. T. Johnson and S. Mitra, “Safe flocking in spite of actuator faults using directional
failure detectors,” Journal of Nonlinear Systems and Applications, vol. 2, no. 1-2, pp. 73-95, Apr.
2011.

[6] ——, “Safe flocking in spite of actuator faults,” in 12th International Symposium on
Stabilization, Safety, and Security of Distributed Systems (SSS 2010), ser. Lecture Notes in
Computer Science, S. Dolev, J. Cobb, M. Fischer, and M. Yung, Eds. Springer Berlin /
Heidelberg, Sep. 2010, vol. 6366, pp. 588-602.

[7] S.Bak, T.T. Johnson, M. Caccamo, and L. Sha, “Real-time reachability for verified
simplex design,” in IEEE Real-Time Systems Symposium (RTSS). Rome, Italy: IEEE Computer
Society, Dec. 2014.

[8] M. Broy, “Challenges in automotive software engineering,” in Proceedings of the 28th
International Conference on Software Engineering, ser. ICSE *06. New York, NY, USA: ACM,
2006, pp. 33-42.

Approved for Public Release; Distribution Unlimited.
17

https://bitbucket.org/verivital/rtreach
https://github.com/verivital/starl
https://www.youtube.com/channel/UC1-RPjoacWVNLQKjuxrbn9A

[9] M. Broy, I. Kruger, A. Pretschner, and C. Salzmann, “Engineering automotive software,”
Proceedings of the IEEE, vol. 95, no. 2, pp. 356-373, Feb. 2007.

[10] R. N. Charette, “This car runs on code,” IEEE Spectrum, 20009.

[11] B. Beizer, Software testing techniques (2nd ed.). New York, NY, USA: Van Nostrand
Reinhold Co., 1990.

[12] G. Tassey, “The economic impacts of inadequate infrastructure for software test,” National
Institute of Standards and Technology, Tech. Rep. Planning Report 02-3, May 2002.

[13] Consumer Product Safety Commission, “Fire alarm control panels recalled by fire-lite
alarms due to alert failure (alert #11-702),” Oct. 2010. [Online]. Available: http://www.cpsc.gov/-
en/Recalls/2011/Fire-Alarm-Control-Panels-Recalled-by-Fire-Lite-Alarms-Due-to-Alert-Failure/
[14] ——, “Simplex fire alarm control panels recalled by tyco safety products westminster due
to failure to alert monitoring centers (alert #11-721),” Feb. 2011. [Online]. Available: http://-
www.cpsc.gov/en/Recalls/2011/Simplex-Fire-Alarm-Control-Panels-Recalled-by-Tyco-Safety-
Products-Westminster-Due-to-Failure-to-Alert-Monitoring-Centers/

[15] ——, “Fire control panels recalled by bosch security systems corp. due to alarm failure
posing a fire hazard (alert #12-721),” Feb. 2012. [Online]. Available: http://www.cpsc.gov/en/-
Recalls/2012/Fire-Control-Panels-Recalled-by-Bosch-Security-Systems-Corp-Due-to-Alarm-
Failure-Posing-a-Fire-Hazard/

[16] H. Alemzadeh, R. lyer, Z. Kalbarczyk, and J. Raman, “Analysis of safety-critical computer
failures in medical devices,” Security Privacy, IEEE, vol. 11, no. 4, pp. 14-26, 2013.

[17] *Fda medical device recall report 2003 to 2012,” Food and Drug Administration, Tech.
Rep., Mar. 2014. [Online]. Available: http://www.fda.gov/downloads/AboutFDA/-
CentersOffices/OfficeofMedicalProductsandTobacco/CDRH/CDRHTransparency/-

UCM388442.pdf
[18] National Highway Traffic Safety Administration (NHTSA), “(action #pe05029),” Oct.
2005. [Online]. Available: http://www-odi.nhtsa.dot.gov/cars/problems/defect/-

results.cfm?action_number=PE05029&SearchType=QuickSearch&summary=true

[19] A. Saadat, “Defect information report (NHTSA Recall 14V-053),” Feb. 2014. [Online].
Available: http://www-odi.nhtsa.dot.gov/acms/cs/jaxrs/download/doc/UCM450071/RCDNN-
14V053-0945.pdf

[20] National Highway Traffic Safety Administration (NHTSA), “Honda automatic
transmission control module software (recall #11v395000),” Aug. 2011.

[21] E. Shaw, “Fish in schools,” Natural History, vol. 84, no. 8, pp. 40-45, 1975.

[22] C.W. Reynolds, “Flocks, herds and schools: A distributed behavioral model,” in
SIGGRAPH ’87: Proceedings of the 14th annual conference on Computer graphics and interactive
techniques. New York, NY, USA: ACM, 1987, pp. 25-34.

[23] C.F.Daganzo, “The cell transmission model: A dynamic representation of highway traffic
consistent with the hydrodynamic theory,” Transportation Research Part B: Methodological,
vol. 28, no. 4, pp. 269 — 287, 1994.

[24] W. Jones, “Forecasting traffic flow,” Spectrum, IEEE, vol. 38, no. 1, pp. 90-91, 2001.
[25] R. Olfati-Saber and R. Murray, “Consensus problems in networks of agents with switching
topology and time-delays,” vol. 49, no. 9, pp. 1520-1533, Sep. 2004.

[26] R. Olfati-Saber, “Flocking for multi-agent dynamic systems: algorithms and theory,”
vol. 51, no. 3, pp. 401-420, Mar. 2006.

[27] R. Olfati-Saber, J. Fax, and R. Murray, “Consensus and cooperation in networked multi-
agent systems,” Proceedings of the IEEE, vol. 95, no. 1, pp. 215-233, Jan. 2007.

Approved for Public Release; Distribution Unlimited.
18

[28] T.D.ChandraandS. Toueg, “Unreliable failure detectors for reliable distributed systems,”
J. ACM, vol. 43, pp. 225-267, Mar. 1996.

[29] M. J. Fischer, N. A. Lynch, and M. S. Paterson, “Impossibility of distributed consensus
with one faulty process,” J. ACM, vol. 32, no. 2, pp. 374-382, 1985.

[30] R.Alur, C.Courcoubetis, N.Halbwachs, T.A. Henzinger, P.-H. Ho, X. Nicollin,
A. Olivero, J. Sifakis, and S. Yovine, “The algorithmic analysis of hybrid systems,” Theoretical
Computer Science, vol. 138, no. 1, pp. 3-34, 1995.

[31] T.T. Johnson, “Uniform verification of safety for parameterized networks of hybrid
automata,” Ph.D. dissertation, University of Illinois at Urbana-Champaign, Electrical and
Computer Engineering, Urbana, IL 61801, 2013.

[32] T.T.Johnson and S. Mitra, “Invariant synthesis for verification of parameterized cyber-
physical systems with applications to aerospace systems,” in Proceedings of the AIAA Infotech at
Aerospace Conference (AIAA Infotech 2013), Boston, MA, Aug. 2013.

[33] ——, “Parameterized verification of distributed cyber-physical systems: An aircraft
landing protocol case study,” in ACM/IEEE 3rd International Conference on Cyber-Physical
Systems, Apr. 2012.

[34] L.V. Nguyen and T. T. Johnson, “Virtual prototyping and distributed control for solar
array with distributed multilevel inverter,” CoRR, vol. abs/1404.2259, 2014.

[35] L.V. Nguyen, K.Hoque, S.Bak, S.Drager, and T.T. Johnson, “Cyber-physical
specification mismatches,” ACM Transactions on Cyber-Physical Systems (TCPS), 2018.

[36] L.V. Nguyen, J. Kapinski, X. Jin, J. Deshmukh, and T. T. Johnson, “Hyperproperties of
real-valued signals,” in 15th ACM-IEEE International Conference on Formal Methods and Models
for System Design (MEMOCODE 2017). IEEE, Oct. 2017.

[37] L.V.Nguyen, J. Kapinski, X. Jin, J. Deshmukh, K. Butts, and T. T. Johnson, “Abnormal
data classification using time-frequency temporal logic,” in 20th Intl. Conf. on Hybrid Systems:
Computation and Control (HSCC 2017). ACM, Apr. 2017.

[38] [Online]. Available: http://publish.illinois.edu/passel-tool/

[39] T.T. Johnson and S. Mitra, “A small model theorem for rectangular hybrid automata
networks,” in Proceedings of the IFIP International Conference on Formal Techniques for
Distributed Systems, Joint 14th Formal Methods for Open Object-Based Distributed Systems and
32nd Formal Techniques for Networked and Distributed Systems (FMOODS-FORTE), ser. LNCS.
Springer, June 2012, vol. 7273.

[40] ——, “Anonymized reachability of rectangular hybrid automata networks,” in Formal
Modeling and Analysis of Timed Systems (FORMATS), 2014.

[41] T.S. Abbott, M. C. Consiglio, B. T. Baxley, D. M. Williams, K. M. Jones, and C. A.
Adams, “Small aircraft transportation system higher volume operations concept,” NASA, Tech.
Rep. NASA/TP-2006-214512, L-19215, Oct. 2006.

[42] T.S. Abbott, K. M. Jones, M. C. Consiglio, D. M. Williams, and C. A. Adams, “Small
aircraft transportation system, higher volume operations concept: Normal operations,” NASA,
Tech. Rep. NASA/TM-2004-213022, Aug. 2004.

[43] C.A. Adams, J. L. Murdoch, M. C. Consiglio, and D. M. Williams, “Incorporating data
link messaging into a multi-function display to support the small aircraft transportation system
(sats) and the self-separation of general aviation aircraft,” Applied Ergonomics, vol. 38, no. 4, pp.
465-471, 2007.

Approved for Public Release; Distribution Unlimited.
19

[44] V. Carrefio and C. Mufioz, “Safety verification of the small aircraft transportation system
concept of operations,” in Proceedings of the AIAA 5th Aviation, Technology, Integration, and
Operations Conference, AIAA-2005-7423, Arlington, Virginia, 2005.

[45] C. Mufoz, V. Carrefio, and G. Dowek, “Formal analysis of the operational concept for the
small aircraft transportation system,” in Rigorous Development of Complex Fault-Tolerant
Systems, ser. LNCS, M. Butler, C. Jones, A. Romanovsky, and E. Troubitsyna, Eds. Springer,
2006, vol. 4157, pp. 306-325.

[46] S.Umeno and N. Lynch, “Proving safety properties of an aircraft landing protocol using
1/0 automata and the PV'S theorem prover: A case study,” in Formal Methods, ser. LNCS, J. Misra,
T. Nipkow, and E. Sekerinski, Eds. Springer, 2006, vol. 4085, pp. 64-80.

[47] ——, “Safety verification of an aircraft landing protocol: A refinement approach,” in
Hybrid Systems: Computation and Control, ser. LNCS. Springer, 2007, vol. 4416, pp. 557-572.
[48] S. Viken and F. Brooks, “Demonstration of four operating capabilities to enable a small
aircraft transportation system,” in The 24th Digital Avionics Systems Conference (DASC 2005),
vol. 2, Oct. 2005.

[49] S.Bak, S. Bogomolov, and T. T. Johnson, “HyST: A source transformation and translation
tool for hybrid automaton models,” in Proc. of the 18th Intl. Conf. on Hybrid Systems:
Computation and Control (HSCC). ACM, 2015.

[50] T.T. Johnson, S.Bak, and S.Drager, “Cyber-physical specification mismatch
identification with dynamic analysis,” in International Conference on Cyber-Physical Systems
(ICCPS), 2015. [Online]. Available: http://verivital.uta.edu/hynger

[51] O. A. Beg, T.T. Johnson, and A. Davoudi, “Detection of false-data injection attacks in
cyber-physical dc microgrids,” IEEE Transactions on Industrial Informatics, 2017.

[52] T.T. Johnson, S. Mitra, and K. Manamcheri, “Safe and stabilizing distributed cellular
flows,” in Proceedings of the 30th IEEE International Conference on Distributed Computing
Systems (ICDCS). Genoa, Italy: IEEE, June 2010, pp. 577-586.

[53] T.T. Johnson, “Fault-tolerant distributed cyber-physical systems: Two case studies,”
Master’s thesis, Department of Electrical and Computer Engineering, University of Illinois at
Urbana-Champaign, Urbana, IL 61801, May 2010.

[54] S.Bak, O. A. Beg, S. Bogomolov, T. T. Johnson, L. V. Nguyen, and C. Schilling, “Hybrid
automata: from verification to implementation,” Software Tools for Technology Transfer (STTT),
Aug. 2017.

[55] E.A. Emerson and A. P. Sistla, “Symmetry and model checking,” Formal Methods in
System Design, vol. 9, no. 1-2, pp. 105-131, 1996.

[56] C.N.lIpandD. L. Dill, “Better verification through symmetry,” Formal Methods in System
Design, vol. 9, pp. 41-75, 1996.

[57] D.Tang, S.Malik, A.Gupta, and C.Ip, “Symmetry reduction in sat-based model
checking,” in Computer Aided Verification, ser. Lecture Notes in Computer Science, K. Etessami
and S. Rajamani, Eds. Springer Berlin Heidelberg, 2005, vol. 3576, pp. 125-138.

[58] E. M. Clarke, R. Enders, T. Filkorn, and S. Jha, “Exploiting symmetry in temporal logic
model checking,” Formal Methods in System Design, vol. 9, pp. 77-104, 1996.

[59] W. D. Obaland W. H. Sanders, “Measure-adaptive state-space construction,” Performance
Evaluation, vol. 44, no. 1-4, pp. 237-258, 2001.

[60] M. Hendriks, G. Behrmann, K. G. Larsen, P. Niebert, and F. W. Vaandrager, “Adding
symmetry reduction to UPPAAL,” in Formal Modeling and Analysis of Timed Systems

Approved for Public Release; Distribution Unlimited.
20

(FORMATS °03), ser. LNCS, K. G. Larsen and P. Niebert, Eds., no. 2791. Springer—Verlag, 2004,
pp. 46-59.

[61] E.Emersonand T. Wahl, “Dynamic symmetry reduction,” in Tools and Algorithms for the
Construction and Analysis of Systems, ser. LNCS, N. Halbwachs and L. Zuck, Eds. Springer, 2005,
vol. 3440, pp. 382-396.

[62] W.D. Obal, M. McQuinn, and W. Sanders, “Detecting and exploiting symmetry in
discrete-state Markov models,” Reliability, IEEE Transactions on, vol. 56, no. 4, pp. 643-654,
Dec. 2007.

[63] T.Wahl, N.Blanc, and E.Emerson, “SVISS: Symbolic verification of symmetric
systems,” in Tools and Algorithms for the Construction and Analysis of Systems, ser. LNCS,
C. Ramakrishnan and J. Rehof, Eds. Springer, 2008, vol. 4963, pp. 459-462.

[64] E. M. Clarke and O. Grumberg, “Avoiding the state explosion problem in temporal logic
model checking,” in Proceedings of the sixth annual ACM Symposium on Principles of distributed
computing, ser. PODC ’87. New York, NY, USA: ACM, 1987, pp. 294-303. [Online]. Available:
http://doi.acm.org/10.1145/41840.41865

[65] K. McMillan, “Using unfoldings to avoid the state explosion problem in the verification of
asynchronous circuits,” in Computer Aided Verification, ser. Lecture Notes in Computer Science,
G. von Bochmann and D. Probst, Eds. Springer Berlin / Heidelberg, 1993, vol. 663, pp. 164-177.
[66] H. Ejersbo Jensen, K. Guldstrand Larsen, and A. Skou, “Scaling up UPPAAL,” in Formal
Techniques in Real-Time and Fault-Tolerant Systems, ser. Lecture Notes in Computer Science,
M. Joseph, Ed. Springer Berlin / Heidelberg, 2000, vol. 1926, pp. 641-678.

[67] K.S. Namjoshi, “Model Checking in Bits and Pieces,” ArXiv e-prints, Sep. 2013.

[68] E. M. Clarke, O. Grumberg, and D. Peled, Model Checking. MIT Press, 1999.

[69] A.Pnueli, S.Ruah, and L.Zuck, “Automatic deductive verification with invisible
invariants,” in Tools and Algorithms for the Construction and Analysis of Systems, ser. LNCS.
Springer, 2001, vol. 2031, pp. 82-97.

[70] T. Arons, A.Pnueli, S.Ruah, Y. Xu, and L. Zuck, “Parameterized verification with
automatically computed inductive assertions?” in Computer Aided Verification, ser. LNCS,
G. Berry, H. Comon, and A. Finkel, Eds. Springer, 2001, vol. 2102, pp. 221-234.

[71] A.Pnueli, Y. Rodeh, O. Strichman, and M. Siegel, “The small model property: How small
can it be?” Information and Computation, vol. 178, no. 1, pp. 279-293, 2002.

[72] L. Zuck and A.Pnueli, “Model checking and abstraction to the aid of parameterized
systems,” Computer Languages, Systems, and Structures, vol. 30, no. 3-4, pp. 139-169, 2004.
[73] Y. Fang, N. Piterman, A. Pnueli, and L. Zuck, “Liveness with incomprehensible ranking,”
in Tools and Algorithms for the Construction and Analysis of Systems, ser. LNCS, K. Jensen and
A. Podelski, Eds. Springer, 2004, vol. 2988, pp. 482-496.

[74] ——, “Liveness with invisible ranking,” International Journal on Software Tools for
Technology Transfer (STTT), vol. 8, pp. 261-279, 2006.

[75] K. Namjoshi, “Symmetry and completeness in the analysis of parameterized systems,” in
Verification, Model Checking, and Abstract Interpretation, ser. Lecture Notes in Computer
Science, B. Cook and A. Podelski, Eds. Springer Berlin / Heidelberg, 2007, vol. 4349, pp. 299-
313.

[76] G. Frehse, “PHAVer: Algorithmic verification of hybrid systems past HyTech,”
International Journal on Software Tools for Technology Transfer (STTT), vol. 10, pp. 263-279,
2008.

Approved for Public Release; Distribution Unlimited.
21

[77] G. Frehse, C. Le Guernic, A. Donzé, S. Cotton, R. Ray, O. Lebeltel, R. Ripado, A. Girard,
T. Dang, and O. Maler, “SpaceEx: Scalable verification of hybrid systems,” in Computer Aided
Verification (CAV), ser. LNCS. Springer, 2011.

[78] T.A. Henzinger, P.-H. Ho, and H. Wong-Toi, “HyTech: A model checker for hybrid
systems,” Journal on Software Tools for Technology Transfer, vol. 1, pp. 110-122, 1997.

[79] S.Gao, S.Kong, and E. Clarke, “Satisfiability modulo ODEs,” in International
Conference on Formal Methods in Computer-Aided Design (FMCAD), Oct. 2013.

[80] J.Bengtsson, K. Larsen, F. Larsson, P. Pettersson, and W. Yi, “UPPAAL.: A tool suite for
automatic verification of real-time systems,” in Hybrid Systems Ill, ser. LNCS, R. Alur,
T. Henzinger, and E. Sontag, Eds. Springer, 1996, vol. 1066, pp. 232-243.

[81] M. Ernst, J. Cockrell, W. G. Griswold, and D. Notkin, “Dynamically discovering likely
program invariants to support program evolution,” Software Engineering, IEEE Transactions on,
vol. 27, no. 2, pp. 99-123, 2001.

[82] M. D. Ernst, J. H. Perkins, P.J. Guo, S. McCamant, C. Pacheco, M. S. Tschantz, and
C. Xiao, “The Daikon system for dynamic detection of likely invariants,” Science of Computer
Programming, vol. 69, no. 1-3, pp. 35-45, Dec. 2007.

[83] S.Bak. (2013) HyCreate: A tool for overapproximating reachability of hybrid automata.
[Online]. Available: http://stanleybak.com/projects/hycreate/hycreate.html

[84] N.Lynch, R.Segala, and F.Vaandrager, “Hybrid 1/O automata,” Information and
Computation, vol. 185, no. 1, pp. 105-157, 2003.

[85] N.Lynch and M. Tuttle, “An introduction to Input/Output automata,” CWI-Quarterly,
vol. 2, no. 3, pp. 219-246, Sep. 1989.

[86] D.K. Kaynar, N.Lynch, R.Segala, and F.Vaandrager, The Theory of Timed 1/O
Automata, ser. Synthesis Lectures in Computer Science. Morgan & Claypool, 2006.

[87] E. Schwartz, T. Avgerinos, and D. Brumley, “All you ever wanted to know about dynamic
taint analysis and forward symbolic execution (but might have been afraid to ask),” in Security
and Privacy (SP), 2010 IEEE Symposium on, May 2010, pp. 317-331.

[88] T.Nguyen, D. Kapur, W. Weimer, and S. Forrest, “Using dynamic analysis to discover
polynomial and array invariants,” in Proceedings of the 34th International Conference on Software
Engineering, ser. ICSE ’12. Piscataway, NJ, USA: IEEE Press, 2012, pp. 683-693.

[89] ——, “Using dynamic analysis to generate disjunctive invariants,” in Proceedings of the
36th International Conference on Software Engineering, ser. ICSE 2014. New York, NY, USA:
ACM, 2014, pp. 608-6109.

[90] ——, “DIG: A dynamic invariant generator for polynomial and array invariants,” ACM
Transactions on Software Engineering and Methodology, to appear, 2014.

[91] Z.Huang and S. Mitra, “Proofs from simulations and modular annotations,” in
Proceedings of the 17th International Conference on Hybrid Systems: Computation and Control,
ser. HSCC "14. New York, NY, USA: ACM, 2014, pp. 183-192.

[92] ANSI C Specification Language (ACSL), ANSI Std.

[93] S.Boldo, F. Clément, J.-C. Filliatre, M. Mayero, G. Melquiond, and P. Weis, “Wave
equation numerical resolution: A comprehensive mechanized proof of a ¢ program,” Journal of
Automated Reasoning, vol. 50, no. 4, pp. 423-456, 2013.

[94] L.DeMoura and N. Bjgrner, *“Satisfiability modulo theories: Introduction and
applications,” Commun. ACM, vol. 54, pp. 69-77, Sep. 2011.

[95] C.Barrett and C. Tinelli, “Satisfiability modulo theories,” in Handbook of Model
Checking, E. Clarke, T. Henzinger, and H. Veith, Eds., 2014.

Approved for Public Release; Distribution Unlimited.
22

[96] L. De Mouraand N. Bjgrner, “Z3: An efficient SMT solver,” in Proc. of 14th International
Conference on Tools and Algorithms for the Construction and Analysis of Systems, ser. TACAS
"08/ETAPS ’08. Springer-Verlag, 2008, pp. 337-340.

[97] X.Jin, A. Donzé, J. V. Deshmukh, and S. A. Seshia, “Mining requirements from closed-
loop control models,” in Proceedings of the 16th international conference on Hybrid systems:
computation and control, ser. HSCC *13. New York, NY, USA: ACM, 2013, pp. 43-52.

[98] J. Ouaknine and J. Worrell, “Some recent results in metric temporal logic,” in Formal
Modeling and Analysis of Timed Systems, ser. LNCS, F. Cassez and C. Jard, Eds. Springer Berlin
Heidelberg, 2008, vol. 5215, pp. 1-13.

[99] D. Angluin, “Learning regular sets from queries and counterexamples,” Information and
Computation, vol. 75, no. 2, pp. 87 — 106, 1987.

[100] T.Berg, B.Jonsson, M. Leucker, and M. Saksena, “Insights to angluin’s learning,”
Electronic Notes in Theoretical Computer Science, vol. 118, no. 0, pp. 3 — 18, 2005, proceedings
of the International Workshop on Software Verification and Validation (SVV 2003) Software
Verification and Validation 2003.

[101] A. Solar-Lezama, L. Tancau, R.Bodik, S. Seshia, and V. Saraswat, “Combinatorial
sketching for finite programs,” in Proceedings of the 12th International Conference on
Architectural Support for Programming Languages and Operating Systems, ser. ASPLOS XII.
New York, NY, USA: ACM, 2006, pp. 404-415.

[102] J.H. Perkins, S. Kim, S. Larsen, S. Amarasinghe, J. Bachrach, M. Carbin, C. Pacheco,
F. Sherwood, S. Sidiroglou, G. Sullivan, W.-F. Wong, Y. Zibin, M. D. Ernst, and M. Rinard,
“Automatically patching errors in deployed software,” in Proceedings of the ACM SIGOPS 22Nd
Symposium on Operating Systems Principles (SOSP *09). New York, NY, USA: ACM, 2009, pp.
87-102.

[103] B. Demsky, M. D. Ernst, P. J. Guo, S. McCamant, J. H. Perkins, and M. Rinard, “Inference
and enforcement of data structure consistency specifications,” in Proceedings of the 2006
International Symposium on Software Testing and Analysis, ser. ISSTA *06. New York, NY, USA:
ACM, 2006, pp. 233-244.

[104] K. Chandy and J. Misra, “Distributed simulation: A case study in design and verification
of distributed programs,” Software Engineering, IEEE Transactions on, vol. SE-5, no. 5, pp. 440-
452, Sep. 1979.

[105] J. Misra and K. Chandy, “Proofs of networks of processes,” Software Engineering, IEEE
Transactions on, vol. SE-7, no. 4, pp. 417-426, Jul. 1981.

[106] K.M. Chandy and L. Lamport, “Distributed snapshots: determining global states of
distributed systems,” ACM Trans. Comput. Syst., vol. 3, no. 1, pp. 63-75, 1985.

[107] S. Minopoli and G. Frehse, “Non-convex invariants and urgency conditions on linear
hybrid automata,” in Formal Modeling and Analysis of Timed Systems - 12th International
Conference, FORMATS, 2014, pp. 176-190.

[108] D. Seto, B. Krogh, L. Sha, and A. Chutinan, “The simplex architecture for safe on-line
control system upgrades,” in Proc. American Control Conference, Philadelphia, PA, June 1998,
pp. 3504-3508.

[109] ——, “Dynamic control system upgrade using the simplex architecture,” Control Systems
Magazine, IEEE, vol. 18, no. 4, pp. 72-80, Aug. 1998.

[110] T.L. Crenshaw, E. Gunter, C. L. Robinson, L. Sha, and P.R. Kumar, “The simplex
reference model: Limiting fault-propagation due to unreliable components in cyber-physical
system architectures,” in RTSS *07, Washington, DC, USA, 2007, pp. 400-412.

Approved for Public Release; Distribution Unlimited.
23

[111] X. Liu, Q. Wang, S. Gopalakrishnan, W. He, L. Sha, H. Ding, and K. Lee, “ORTEGA: An
efficient and flexible online fault tolerance architecture for real-time control systems,” vol. 4,
no. 4, pp. 213-224, Nov. 2008.

[112] S.Bak, D. K. Chivukula, O. Adekunle, M. Sun, M. Caccamo, and L. Sha, “The system-
level simplex architecture for improved real-time embedded system safety,” in Real-Time and
Embedded Technology and Applications Symposium, IEEE, vol. 0. Los Alamitos, CA, USA: IEEE
Computer Society, 2009, pp. 99-107.

[113] S.Bak, A. Greer, and S. Mitra, “Hybrid cyberphysical system verification with simplex
using discrete abstractions,” in Real-Time and Embedded Technology and Applications
Symposium, IEEE, vol. 0. Los Alamitos, CA, USA: IEEE Computer Society, 2010, pp. 143-152.
[114] P.S.Duggirala, T. T. Johnson, A. Zimmerman, and S. Mitra, “Static and dynamic analysis
of timed distributed traces,” in Proceedings of the 33rd IEEE Real-Time Systems Symposium
(RTSS 2012), San Juan, Puerto Rico, Dec. 2012.

[115] A. Zimmerman, “StarL for programming reliable robotic networks,” Master’s thesis,
University of Illinois at Urbana-Champaign, 2012.

[116] H.-D. Tran, L. V. Nguyen, W. Xiang, and T. T. Johnson, “Order-reduction abstractions for
safety verification of high-dimensional linear systems,” Discrete Event Dynamic Systems (DEDS),
2017. [Online]. Available: http://rdcu.be/q8Xd

[117] T.T. Johnson, S.Bak, M. Caccamo, and L. Sha, “Real-time reachability for verified
simplex design,” ACM Transactions on Embedded Computing Systems (TECS), Feb. 2016.

[118] H.-D. Tran, L. V. Nguyen, and T. T. Johnson, “Large-scale linear systems from order-
reduction (benchmark proposal),” in 3rd Applied Verification for Continuous and Hybrid Systems
Workshop (ARCH), Vienna, Austria, Apr. 2016.

[119] O. A. Beg, L. V. Nguyen, A.Davoudi, and T.T. Johnson, “Computer-aided formal
verification of power electronics circuits,” in 8th International Workshop on Frontiers in Analog
CAD (FAC), Frankfurt, Germany, 2017.

[120] O. A. Beg, A. Davoudi, and T. T. Johnson, “Reachability analysis of transformer-isolated
dc-dc converters (benchmark proposal),” in 4th Applied Verification for Continuous and Hybrid
Systems Workshop (ARCH), Pittsburgh, PA, Apr. 2017.

[121] A. Sogokon, K. Ghorbal, and T. T. Johnson, “Non-linear continuous systems for safety
verification (benchmark proposal),” in 3rd Applied Verification for Continuous and Hybrid
Systems Workshop (ARCH), Vienna, Austria, Apr. 2016.

[122] H.-D.Tran, L. V. Nguyen, W. Xiang, and T. T. Johnson, “Distributed autonomous systems
(benchmark proposal),” in 4th Applied Verification for Continuous and Hybrid Systems Workshop
(ARCH), Pittsburgh, PA, Apr. 2017.

[123] X. Leroy, “Formal verification of a realistic compiler,” Commun. ACM, vol. 52, no. 7, pp.
107-115, Jul. 2009.

[124] G. Klein, K. Elphinstone, G. Heiser, J. Andronick, D. Cock, P. Derrin, D. Elkaduwe,
K. Engelhardt, R. Kolanski, M. Norrish, T. Sewell, H. Tuch, and S. Winwood, “sel4: Formal
verification of an os kernel,” in Proceedings of the ACM SIGOPS 22Nd Symposium on Operating
Systems Principles, ser. SOSP ’09. New York, NY, USA: ACM, 2009, pp. 207-220.

[125] G. Klein, “From a verified kernel towards verified systems,” in Programming Languages
and Systems, ser. Lecture Notes in Computer Science, K. Ueda, Ed. Springer Berlin Heidelberg,
2010, vol. 6461, pp. 21-33.

Approved for Public Release; Distribution Unlimited.
24

[126] T.A.L. Sewell, M. O. Myreen, and G. Klein, “Translation validation for a verified os
kernel,” in Proceedings of the 34th ACM SIGPLAN Conference on Programming Language
Design and Implementation, ser. PLDI *13. New York, NY, USA: ACM, 2013, pp. 471-482.
[127] G. Klein, J. Andronick, K. Elphinstone, T. Murray, T. Sewell, R. Kolanski, and G. Heiser,
“Comprehensive formal verification of an os microkernel,” ACM Trans. Comput. Syst., vol. 32,
no. 1, pp. 2:1-2:70, Feb. 2014.

[128] ISO 26262-3: Road vehicles - Functional safety, International Organization for
Standardization (ISO) Std. ISO 26262, 2011.

[129] Guidelines for the safety analysis of vehicle-based programmable systems (MISRA
C:2012), Motor Industry Software Reliability Association (MISRA) Std., Mar. 2012. [Online].
Available: http://www.misra-c.com/

[130] J.W. Nimmer and M. D. Ernst, “Automatic generation of program specifications,” in
Proceedings of the 2002 ACM SIGSOFT international symposium on Software testing and
analysis, ser. ISSTA ’02. New York, NY, USA: ACM, 2002, pp. 229-2309.

[131] M. Boshernitsan, R. Doong, and A. Savoia, “From Daikon to Agitator: Lessons and
challenges in building a commercial tool for developer testing,” in Proceedings of the 2006
international symposium on Software testing and analysis, ser. ISSTA ’06. New York, NY, USA:
ACM, 2006, pp. 169-180.

[132] C. Csallner, N. Tillmann, and Y. Smaragdakis, “DySy: Dynamic symbolic execution for
invariant inference,” in Software Engineering, 2008. ICSE ’08. ACM/IEEE 30th International
Conference on, 2008, pp. 281-290.

[133] R.M. Hierons, K.Bogdanov, J.P. Bowen, R.Cleaveland, J.Derrick, J.Dick,
M. Gheorghe, M. Harman, K. Kapoor, P. Krause, G. Llttgen, A. J. H. Simons, S. Vilkomir, M. R.
Woodward, and H. Zedan, “Using formal specifications to support testing,” ACM Comput. Surv.,
vol. 41, no. 2, pp. 9:1-9:76, Feb. 20009.

[134] Y. Annpureddy, C. Liu, G. Fainekos, and S. Sankaranarayanan, “S-taliro: A tool for
temporal logic falsification for hybrid systems,” in Tools and Algorithms for the Construction and
Analysis of Systems. Springer, 2011.

[135] [Online]. Available: https://sites.google.com/a/asu.edu/s-taliro/s-taliro

[136] A. Donzé, “Breach, a toolbox for verification and parameter synthesis of hybrid systems,”
in Computer Aided Verification, ser. Lecture Notes in Computer Science, T. Touili, B. Cook, and
P. Jackson, Eds. Springer Berlin / Heidelberg, 2010, vol. 6174, pp. 167-170.

[137] [Online]. Available: http://www.eecs.berkeley.edu/~donze/breach_page.htmi

[138] H. Yang, B. Hoxha, and G. Fainekos, “Querying parametric temporal logic properties on
embedded systems,” in International Conference on Testing Software and Systems, ser. Lecture
Notes in Computer Science, B. Nielsen and C. Weise, Eds. Springer Berlin Heidelberg, 2012, vol.
7641, pp. 136-151.

[139] P.S. Duggirala, S. Mitra, and M. Viswanathan, “Verification of annotated models from
executions,” in Proceedings of the Eleventh ACM International Conference on Embedded
Software (EMSOFT ’13). Piscataway, NJ, USA: IEEE Press, 2013.

[140] F. Bernardini, M. Gheorghe, F.J. Romero-Campero, and N. Walkinshaw, “A hybrid
approach to modeling biological systems,” in Membrane Computing, ser. LNCS, G. Eleftherakis,
P. Kefalas, G. Paun, G. Rozenberg, and A. Salomaa, Eds. Springer Berlin Heidelberg, 2007, vol.
4860, pp. 138-159.

[141] T.N. Win, M. D. Ernst, S.J. Garland, D. Kyrly, and N. A. Lynch, “Using simulated
execution in verifying distributed algorithms,” in Verification, Model Checking, and Abstract

Approved for Public Release; Distribution Unlimited.
25

Interpretation, ser. Lecture Notes in Computer Science, L. D. Zuck, P. C. Attie, A. Cortesi, and
S. Mukhopadhyay, Eds. Springer Berlin Heidelberg, 2003, vol. 2575, pp. 283-297.

[142] N. Lynch, “Building blocks for high performance, fault-tolerant distributed systems,”
Massachusetts Institute of Technology, Tech. Rep. AFRL-SR-AR-TR-04-0138, Feb. 2004.

[143] R. Alurand D. L. Dill, “A theory of timed automata,” Theoretical Computer Science, vol.
126, pp. 183-235, 1994.

[144] S. Mitra, “A verification framework for hybrid systems,” Ph.D. dissertation, Massachusetts
Institute of Technology, Cambridge, MA 02139, Sep. 2007.

[145] K.L. McMillan, Symbolic Model Checking. Norwell Massachusetts: Kluwer Academic
Publishers, 1993.

[146] C. M. University, “Symbolic Model Verifier,” www.cs.cmu.edu/ modelcheck/ smv.html,
2009.

[147] S. Owre, S. Rajan, J. Rushby, N. Shankar, and M. Srivas, “PVS: Combining specification,
proof checking, and model checking,” in Computer-Aided Verification, CAV 96, ser. LNCS,
R. Alur and T. A. Henzinger, Eds., no. 1102. New Brunswick, NJ: Springer-Verlag, July/August
1996, pp. 411-414.

[148] G.J. Holzmann, The SPIN Model Checker: Primer and Reference Manual. Addison-
Wesley Professional, Sep. 2003.

[149] G. Holzmann, “The model checker SPIN,” Software Engineering, IEEE Transactions on,
vol. 23, no. 5, pp. 279-295, May 1997.

[150] R.E. Bryant, “Symbolic Boolean manipulation with ordered binary-decision diagrams,”
ACM Comput. Surv., vol. 24, no. 3, pp. 293-318, Sep. 1992.

[151] J. Moller, J. Lichtenberg, H. Andersen, and H. Hulgaard, “Difference decision diagrams,”
in Computer Science Logic, ser. Lecture Notes in Computer Science, J. Flum and M. Rodriguez-
Artalejo, Eds. Springer Berlin / Heidelberg, 2009, vol. 1683, pp. 826-826.

[152] E. Goldberg, M. Prasad, and R. Brayton, “Using sat for combinational equivalence
checking,” in Design, Automation and Test in Europe, 2001. Conference and Exhibition 2001.
Proceedings, 2001, pp. 114-121.

[153] A. Biere, A. Cimatti, E. Clarke, and Y. Zhu, “Symbolic model checking without BDDs,”
in Tools and Algorithms for the Construction and Analysis of Systems, ser. Lecture Notes in
Computer Science, W. Cleaveland, Ed. Springer Berlin / Heidelberg, 1999, vol. 1579, pp. 193-
207.

[154] H. Ganzinger, G. Hagen, R. Nieuwenhuis, A. Oliveras, and C. Tinelli, “DPLL(T): Fast
decision procedures,” in Computer Aided Verification, ser. Lecture Notes in Computer Science,
R. Alur and D. Peled, Eds. Springer Berlin / Heidelberg, 2004, vol. 3114, pp. 293-295.

[155] R. Nieuwenhuis, A. Oliveras, and C. Tinelli, “Solving SAT and SAT modulo theories:
From an abstract Davis—Putnam-Logemann—Loveland procedure to DPLL(T),” J. ACM, vol. 53,
no. 6, pp. 937-977, Nov. 2006.

[156] C. Barrett, R. Sebastiani, S. A. Seshia, and C. Tinelli, “Satisfiability modulo theories,”
Handbook of Satisfiability, pp. 737-797, 2008.

[157] L. Moura and N. Bjerner, “Satisfiability modulo theories: An appetizer,” in Formal
Methods: Foundations and Applications, ser. LNCS, M. M. Oliveira and J. Woodcock, Eds.
Springer Berlin Heidelberg, 2009, vol. 5902, pp. 23-36.

[158] H. Mangassarian, A. Veneris, and M. Benedetti, “Robust QBF encodings for sequential
circuits with applications to verification, debug, and test,” Computers, IEEE Transactions on,
vol. 59, no. 7, pp. 981-994, Jul. 2010.

Approved for Public Release; Distribution Unlimited.
26

[159] S. Yovine, “KRONOS: a verification tool for real-time systems,” International Journal on
Software Tools for Technology Transfer, vol. 1, no. 1-2, pp. 123-133, 1997.

[160] R. Alur,R. Grosu, Y. Hur, V. Kumar, and I. Lee, “Modular specification of hybrid systems
in Charon,” in Hybrid Systems: Computation and Control, ser. LNCS, N. Lynch and B. Krogh,
Eds. Springer Berlin Heidelberg, 2000, vol. 1790, pp. 6-19.

[161] A. Chutinan and B. Krogh, “Computational techniques for hybrid system verification,”
Automatic Control, IEEE Transactions on, vol. 48, no. 1, pp. 64-75, Jan. 2003.

[162] A. Kurzhanskiy and P. Varaiya, “Ellipsoidal toolbox,” in 45th IEEE Conference on
Decision and Control (CDC), Dec. 2006, pp. 1498-1503.

[163] [Online]. Available: http://symbolaris.com/info/KeYmaera.html

[164] A. Platzer and E. Clarke, “Formal verification of curved flight collision avoidance
maneuvers: A case study,” in Formal Methods, ser. LNCS, A. Cavalcanti and D. Dams, Eds.
Springer, 2009, vol. 5850, pp. 547-562.

[165] C. L. Guernic and A. Girard, “Reachability analysis of linear systems using support
functions,” Nonlinear Analysis: Hybrid Systems, vol. 4, no. 2, pp. 250-262, 2010.

[166] D. Dill, “What’s between simulation and formal verification?” in Design Automation
Conference, 1998. Proceedings, June 1998, pp. 328-329.

[167] N. Beckman, A. Nori, S. Rajamani, R. Simmons, S. Tetali, and A. Thakur, “Proofs from
tests,” Software Engineering, IEEE Transactions on, vol. 36, no. 4, pp. 495-508, 2010.

[168] K. Lata and S. K. Roy, “Formal verification of analog and mixed signal designs using
SPICE circuit simulation traces,” Journal of Electronic Testing, pp. 1-26, 2013.

[169] S. Gao, J. Avigad, and E. Clarke, “Delta-decidability over the reals,” in Logic in Computer
Science (LICS), 2012 27th Annual IEEE Symposium on, 2012, pp. 305-314.

[170] A. Eggers, M. Franzle, and C. Herde, “SAT modulo ODE: A direct SAT approach to
hybrid systems,” in Automated Technology for Verification and Analysis, ser. Lecture Notes in
Computer Science, S. Cha, J.-Y. Choi, M. Kim, I. Lee, and M. Viswanathan, Eds. Springer Berlin
/ Heidelberg, 2008, vol. 5311, pp. 171-185.

[171] A. Cimatti, S. Mover, and S. Tonetta, “A quantifier-free smt encoding of non-linear hybrid
automata,” in Formal Methods in Computer-Aided Design (FMCAD), 2012, 2012, pp. 187-195.
[172] M. Pajic, Z.Jiang, I. Lee, O.Sokolsky, and R.Mangharam, “From verification to
implementation: A model translation tool and a pacemaker case study,” in Real-Time and
Embedded Technology and Applications Symposium (RTAS), 2012 IEEE 18th. IEEE, 2012, pp.
173-184.

[173] Z.Jiang, M. Pajic, R. Alur, and R. Mangharam, “Closed-loop verification of medical
devices with model abstraction and refinement,” International Journal on Software Tools for
Technology Transfer, vol. 16, no. 2, pp. 191-213, 2014.

[174] M. Pajic, R. Mangharam, O. Sokolsky, D. Arney, J. Goldman, and I. Lee, “Model-driven
safety analysis of closed-loop medical systems,” Industrial Informatics, IEEE Transactions on,
vol. 10, no. 1, pp. 3-16, 2014.

[175] M. Pajic, Z. Jiang, I. Lee, O. Sokolsky, and R. Mangharam, “Safety-critical medical device
development using the upp2sf model translation tool,” ACM Trans. Embed. Comput. Syst., vol. 13,
no. 4s, pp. 127:1-127:26, Apr. 2014. [Online]. Available: http://doi.acm.org/10.1145/2584651
[176] A. Agrawal, G. Simon, and G. Karsai, “Semantic translation of simulink/stateflow models
to hybrid automata using graph transformations,” Electronic Notes in Theoretical Computer
Science, vol. 109, pp. 43-56, 2004.

Approved for Public Release; Distribution Unlimited.
27

[177] L. Carloni, M. D. Di Benedetto, A.Pinto, and A. Sangiovanni-Vincentelli, “Modeling
techniques, programming languages, design toolsets and interchange formats for hybrid systems,”
Tech. Rep., 2004.

[178] A.Pinto, A. L. Sangiovanni-Vincentelli, L. P. Carloni, and R. Passerone, “Interchange
formats for hybrid systems: Review and proposal,” in Hybrid Systems: Computation and Control,
ser. LNCS, M. Morari and L. Thiele, Eds. Springer Berlin Heidelberg, 2005, vol. 3414, pp. 526—
941.

[179] B. Meenakshi, A. Bhatnagar, and S. Roy, “Tool for translating simulink models into input
language of a model checker,” in Formal Methods and Software Engineering, ser. Lecture Notes
in Computer Science, Z. Liu and J. He, Eds. Springer Berlin Heidelberg, 2006, vol. 4260, pp. 606—
620. [Online]. Available: http://dx.doi.org/10.1007/11901433 33

[180] A. Pinto, L. Carloni, R. Passerone, and A. Sangiovanni-Vincentelli, “Interchange format
for hybrid systems: Abstract semantics,” in Hybrid Systems: Computation and Control, ser. LNCS,
J. P. Hespanha and A. Tiwari, Eds. Springer Berlin Heidelberg, 2006, vol. 3927, pp. 491-506.
[181] L.P. Carloni, R. Passerone, A. Pinto, and A. L. Sangiovanni-Vincentelli, “Languages and
tools for hybrid systems design,” Foundations and Trends in Electronic Design Automation, vol. 1,
2006.

[182] D.van Beek, M. Reniers, R. Schiffelers, and J. Rooda, “Foundations of a compositional
interchange format for hybrid systems,” in Hybrid Systems: Computation and Control, ser. LNCS,
A. Bemporad, A. Bicchi, and G. Buttazzo, Eds. Springer Berlin Heidelberg, 2007, vol. 4416, pp.
587-600.

[183] M. Liand R. Kumar, “Model-based automatic test generation for simulink/stateflow using
extended finite automaton,” in Automation Science and Engineering (CASE), 2012 IEEE
International Conference on, Aug. 2012, pp. 857-862.

[184] P. Schrammel and B. Jeannet, “From hybrid data-flow languages to hybrid automata: A
complete translation,” in Proceedings of the 15th ACM International Conference on Hybrid
Systems: Computation and Control, ser. HSCC ’12. New York, NY, USA: ACM, 2012, pp. 167-
176.

[185] M. Li and R. Kumar, “Reduction of automated test generation for simulink/stateflow to
reachability and its novel resolution,” in Automation Science and Engineering (CASE), 2013 IEEE
International Conference on, Aug. 2013, pp. 1089-1094.

[186] D.N. Agut, D.van Beek, and J. Rooda, “Syntax and semantics of the compositional
interchange format for hybrid systems,” The Journal of Logic and Algebraic Programming,
vol. 82, no. 1, pp. 1 - 52, 2013.

[187] S.Ran,J.Lin,Y.Wu,J. Zhang, and Y. Xu, “Converting ptolemy ii models to spaceex for
applied verification,” in Algorithms and Architectures for Parallel Processing, ser. LNCS, X.-h.
Sun, W. Qu, I. Stojmenovic, W. Zhou, Z. Li, H. Guo, G. Min, T. Yang, Y. Wu, and L. Liu, Eds.
Springer International Publishing, 2014, vol. 8630, pp. 669-683.

[188] G. Hamon and J. Rushby, “An operational semantics for stateflow,” International Journal
on Software Tools for Technology Transfer, vol. 9, no. 5-6, pp. 447-456, 2007.

[189] C. Chen, J.Sun, Y. Liu, J. Dong, and M. Zheng, “Formal modeling and validation of
stateflow diagrams,” International Journal on Software Tools for Technology Transfer, vol. 14,
no. 6, pp. 653-671, 2012,

[190] E.T. Inc, “Scade suite.” [Online]. Available: http://www.esterel-technologies.com/-
products/scade-suite/

Approved for Public Release; Distribution Unlimited.
28

[191] C. Zhou and R. Kumar, “Semantic translation of simulink diagrams to input/output
extended finite automata,” Discrete Event Dynamic Systems, vol. 22, no. 2, pp. 223-247, 2012.
[192] K. Manamcheri, S. Mitra, S. Bak, and M. Caccamo, “A step towards verification and
synthesis from Simulink/Stateflow models,” in Proc. of the 14th Intl. Conf. on Hybrid Systems:
Computation and Control (HSCC). ACM, 2011, pp. 317-318.

[193] [Online]. Available: https://wiki.cites.illinois.edu/wiki/display/MitraResearch/HyLink
[194] K. Manamcheri Sukumar, “Translation of simulink-stateflow models to hybrid automata,”
Master’s thesis, University of Illinois at Urbana-Champaign, 2011.

[195] L. V. Nguyen, C. Schilling, S. Bogomolov, and T. T. Johnson, “Runtime verification of
model-based development environments,” in 15th International Conference on Runtime
Verification (RV 2015), Vienna, Austria, Sep.
2015.

[196] M. U. Sardar, N. Afag, K. A. Hoque, T. T. Johnson, and O. Hasan, “Probabilistic formal
verification of the sats concept of operation,” in Proceedings of the 8th NASA Formal Methods
(<a href=, S. Rayadurgam and O. Tkachuk, Eds.

[197] S. A. Chowdhury, T.T. Johnson, and C. Csallner, “Cyfuzz: : A differential testing
framework for cyber-physical systems development environments,” in 6th International Workshop
Workshop on Design, Modeling and Evaluation of Cyber Physical Systems (CyPhy 2016), Pittsburgh, PA, Aug. 2016.

[198] A. Sogokon, K. Ghorbhal, and T. T. Johnson, “Operational models of piecewise-smooth
systems,” in 17th ACM SIGBED International Conference on Embedded Software (EMSOFT
2017), Oct. 2017.

[199] S.BakandT. T.Johnson, “Periodically-scheduled controller analysis using hybrid systems
reachability and continuization,” in 36th IEEE Real-Time Systems Symposium (RTSS). San
Antonio, Texas: IEEE Computer Society, Dec. 2015.

[200] S. Bak, S. Bogomolov, T. A. Henzinger, T. T. Johnson, and P. Prakash, “Scalable static
hybridization methods for analysis of nonlinear systems,” in Proc. of the 19th Intl. Conf. on Hybrid
Systems: Computation and Control (HSCC). ACM, Apr. 2016.

[201] O. A. Beg, A. Davoudi, and T. T. Johnson, “Charge pump phase-locked loops and full
wave rectifiers for reachability analysis (benchmark proposal),” in 3rd Applied Verification for
Continuous and Hybrid Systems Workshop (ARCH), Vienna, Austria, Apr. 2016.

[202] L. V.Nguyen, D. Maksimovic, T. T. Johnson, and A. Veneris, “Quantified bounded model
checking for rectangular hybrid automata,” in 9th International Workshop on Constraints in
Formal Verification (CFV 2015), Austin, Texas, Nov. 2015.

[203] A. Sogokon, P. Jackson, and T. T. Johnson, “Verifying safety and persistence properties of
hybrid systems using flowpipes and continuous invariants,” in 9th NASA Formal Methods
Symposium (NFM 2017), May 2017.

[204] A. Sogokon, K. Ghorbal, and T. T. Johnson, “Decoupled simulating abstractions of non-
linear ordinary differential equations,” in Proceedings of the 21st International Symposium on
Formal Methods (FM 2016), Limassol, Cyprus, Dec.
2016.

[205] W. Xiang, H.-D. Tran, and T. T. Johnson, “Reachable set estimation and control for
switched linear systems with dwell-time restriction,” in Proceedings of the 55th IEEE Conference
on Decision and Control (CDC 2016), Las Vegas,
NV, USA, Dec. 2016.

Approved for Public Release; Distribution Unlimited.
29

[206] W. Xiang, “EnglishEvent-triggered control for continuous-time switched linear systems,”
EnglishlET Control Theory and Applications, February 2017.

[207] W. Xiangand T. T. Johnson, “On reachable set estimation for discrete-time switched linear
systems under arbitrary switching,” in 30th IEEE American Control Conference (ACC 2017),
2017.

[208] W. Xiang, H.-D. Tran, and T. T. Johnson, “Output reachable set estimation for switched
linear systems and its application in safety verification,” IEEE Transactions on Automatic Control
(TAC), 2017.

[209] O. A. Beg, H. Abbas, T. T. Johnson, and A. Davoudi, “EnglishModel validation of pwm
dc-dc converters,” EnglishIEEE Transactions on Industrial Electronics. (TIE), June 2017.

Approved for Public Release; Distribution Unlimited.
30

7. Appendices

All publications resulting from this project are enclosed =[35-37, 54, 117, 119-121, 195-203] [51,
116, 118, 122, 204-209].

Approved for Public Release; Distribution Unlimited.
31

Periodically-Scheduled Controller Analysis using
Hybrid Systems Reachability and Continuization

Stanley Bak

Air Force Research Lab - Information Directorate

Rome, NY, USA

Abstract—Cyber-physical systems (CPS) consist of physical
entities that obey dynamical laws and interact with software
components. A typical CPS implementation includes a discrete
controller, where software periodically samples physical state and
produces actuation commands according to a real-time schedule.
Such a hybrid system can be modeled formally as a hybrid
automaton. However, reachability tools to verify specifications
for hybrid automata do not perform well on such periodically-
scheduled models. This is due to a combination of the large
number of discrete jumps and the nondeterminism of the
exact controller start time. In this paper, we demonstrate this
problem and propose a solution, which is a validated abstraction
mechanism where every behavior of the original sampled system
is contained in the behaviors of a purely continuous system with
an additive nondeterministic input. Reachability tools for hybrid
automata can better handle such systems. We further improve
the analysis by considering local analysis domains. We automate
the proposed technique in the Hyst model transformation tool,
and demonstrate its effectiveness in a case study analyzing the
design of a yaw-damper for a jet aircraft.

I. INTRODUCTION

Periodic real-time scheduling is a widespread method used
to control a physical plant as part of a cyber-physical system
(CPS). Typical schedulers, such as rate-monotonic (RM) or
earliest deadline first (EDF) [1], give a guarantee of peri-
odic execution. In each period, sensors are read, the control
algorithm is run, and actuator outputs are set. The physical
world, on the other hand, evolves continuously. Models of the
physical world may be given using differential equations that
are obeyed at all times.

In this work, we analyze the periodically-scheduled con-
troller subsystems of CPS using hybrid automata [2] and
associated analysis tools. A hybrid automaton can directly
model both the continuous behaviors and discrete aspects
that arise when real-time scheduling and sampled control is
combined with a continuously-evolving physical plant. The
set of reachable states of a hybrid automaton, if it can be
computed or overapproximated, can be used to formally prove
control-theoretic properties about the system’s transient and
steady-state behavior. The controller subsystem models, after
being proven correct, could then be integrated with hybrid
automaton models of other parts of the system using modeling
methods like hybrid input/output automata (HIOA) [3]. Rea-
soning about properties of the combined system could then be
performed using assume-guarantee reasoning [4]. With such

DISTRIBUTION A. Approved for public release; Distribution unlimited.
(Approval AFRL PA #38ABW-2015-2401, 15 MAY 2015)

Taylor T. Johnson
University of Texas at Arlington
Arlington, TX, USA

hybrid systems analysis, properties can be formally proven
about sets of initial states as well as behaviors under bounded
sensor error, actuator error, and other uncertainties. This has
the potential to detect errors not found during simulation
and testing, which deal with single initial states and specific
execution traces.

Directly analyzing the controller subsystems of CPS using
hybrid automaton reachability tools, unfortunately, does not
usually work. One issue is that a large number of controller
updates need to be considered in the analysis. The control code
may need to be run tens or hundreds of times a second, and
the physical system may need to evolve for tens of seconds
to show the properties of interest. The number of discrete
transitions that occur thus becomes extremely large. Real-time
schedulers may also have variability in the exact scheduling
time of the controller. Hybrid automaton reachability analysis
tools perform poorly in such cases, with error bounds growing
unacceptably large in the presence of many discrete transitions
and timing uncertainty [5], [6].

In order to overcome these challenges, we apply a variant of
the continuization technique [7], where a fast-switching hybrid
system is abstracted by a continuous system with an additive
nondeterministic input. We provide theoretical methods to
compute bounds on the nondeterminism input needed for the
continuization of periodically-scheduled controllers, which is
essential for abstraction soundness. The developed approach is
then automated using the Hyst [8] model transformation tool.
In this way, we provide both a theoretical method that enables
controller analysis with hybrid automaton reachability tools,
and a practical way to use it.

The main contributions of this paper are:

« the modeling of periodically-controlled CPS using hybrid
automata, with several models proposed based on possi-
ble implementation variations,

« the validated use of continuization to enable the analysis
of these models, and a theoretical method to compute the
bound on the nondeterminism globally as well as within
local analysis domains,

« the implementation of the proposed technique in the Hyst
model transformation tool, which allows rapid application
to new hybrid automaton models, and

e a demonstration of the effectiveness of the proposed
analysis approach on the design of a yaw damper system
for a 747 jet aircraft.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

32

In the next section, we present a brief background on mod-
eling hybrid systems, give direct approaches for modeling real-
time-scheduled controllers with hybrid automata, and provide
reachability results showing scalability issues with these direct
models. Next, Sec. III describes continuization and methods
for computing the nondeterministic bounds it uses, which are
essential for method accuracy. Then Sec. IV briefly describes
the Hyst model transformation tool and the illustrates the
continuization pass that implements the technique developed in
this paper. Sec. V provides a case study showing the advantage
of the analysis on a yaw damper control system for a 747
aircraft. A brief discussion of related techniques, especially a
comparison versus classical control theoretic methods is given
in Sec. VI, followed by a conclusion.

II. HYBRID SYSTEMS MODELING

The controller subsystem of a cyber-physical system (CPS)
consists of a physical system interacting with a software
controller, running periodically on a system using a real-time
scheduler. A specific implementation can be formalized using
a hybrid automaton model, and then its behavior, as well as
the behavior of a composition of these subsystem models,
can be analyzed using hybrid automata reachability tools. In
this section, we elaborate on modeling controller subsystems
using the hybrid automaton formalism. We first review hybrid
automata (Sec. II-A), then propose three models that capture
different possible implementations of a controller subsystem
of a CPS (Sec. II-B). Finally, we attempt to directly perform
reachability analysis of these systems using reachability anal-
ysis tools (Sec. II-C), which is shown to be challenging.

A. Preliminaries

A hybrid automaton is a formal model that captures both
discrete behaviors as well as continuous dynamics present in
a hybrid system. Roughly, it is a finite state machine with
ordinary differential equations defined in each mode for a set
of real-valued continuous variables.

Definition 1 (Hybrid Automaton). A Hybrid Automaton is a
tuple
H = (Loc, Var, Init, Flow, Trans, Inv) that defines:
e a finite set of locations Loc,
e a set of n real-valued continuous variables Var =
{z1,..., 2.},
e an initial condition Init C R™ for each ¢ € Loc,
o for each location ¢, a relation Flow({) relating variables
and their derivatives,
o a set of discrete transitions Trans, where each element is
a tuple (£, g,r, ") with source location {, guard g given
as constraint on R", reset r given as a function from
R"to R™, and destination location ¢,
e an invariant Inv(f) C R™ for each location ¢.

A state of a hybrid system is a tuple (¢,X), where the
discrete state is ¢ € Loc and the continuous state X is a
valuation—a mapping from a variable name to a point in the
reals—of the continuous variables in Var.

Definition 2 (Trajectory). A trajectory of a hybrid system is
an alternating sequence of continuous evolutions and discrete
transitions, starting from a state in Init. Trajectories are
subject to the following restrictions:

o the first state of the trajectory is an element of Init,

o during each continuous evolution, the continuous state
evolves over an interval of real-valued time in accordance
with the differential equations defined by Flow,

o during each continuous evolution, the continuous states
always satisfy the location’s invariant', and

o during each discrete transition, the prestate is contained
in transition’s guard, and the change in state corresponds
to applying the reset function to the continuous prestate
and updating the location to (.

Definition 3 (Reachable Set). The set of all states that exist in
any trajectory is called the reachable set. For a given hybrid
automaton H, we use REACH(H) to denote the reachable set
of H. Given a subset of the variables Y C Var of hybrid
automaton H, the reach set projected onto those variables is
written as REACH(H) | Y. Typically we will be concerned
with time-bounded reachable sets, where the amount of time
that has elapsed during the continuous evolution portions of
each trajectory is less than or equal to some given bound.

B. CPS Modeling

We now describe three different ways that a CPS con-
troller subsystem can be modeled using the hybrid automaton
formalism, which correspond to different possible system
implementations. First, we introduce the notion of a Sampled
CPS, which has a continuous portion governed by differential
equations, and a controller_update function that updates the
discretely-controlled variables.

Definition 4 (Sampled CPS). A Sampled CPS is a system
with n continuous variables divided into two groups. The
first np < n variables are the physical variables, and the
remaining nc = n — np variables are the cyber variables.
The set of variables Var = {x1,xs,...,2,} is partitioned
into physical variables X, = {p1,p2,...,Pnp} and cyber
variables X. = {c1,ca, ..., Cnc}, Where each variable z; € R.
Each physical variable has an associated differential equa-
tion, p1 = fi1, P2 = fo, ..., Pnp = [fnp, where each
pi = fi is a function R® — R. To ensure existence and
uniqueness of the solutions, the differential equations are
assumed to be Lipschitz continuous in the domain of interest.
The dynamics for the physical variables are provided, so
Fp, = (f1, f2, ..., fnp) is given. The remaining nc variables
are set periodically in control software, and remain constant
between updates (zero-order hold). Their differential equa-
tions are given as ¢ = 0, ¢ = 0, ..., ¢en = 0. The
control software is defined by a function controller_update :
R™ — R", which updates the cyber variables based on the

1If at some point the invariant were to become false, a discrete transition
must be taken immediately. If no transition’s guards are enabled, the model
is said to deadlock as time cannot advance.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
33

Guard: ¢ =717

Guard: ¢ =T7
X := controller_update(X,, X) Xei= C(mtrg(lle'rfgy(dme(x‘“ Xe)
= o
X, = (X, X.) % = F06. %)
X. =0 (s =0
e=1 Xc=0
=1
iR @< 2 Inv: c<T
(a) Model 1 (b) Model 2

Guard: True?
X, = controller_update(X, X.)

\p = Fp(XpﬁXC) Xp = Fl’(XP'X(‘)
X.=0 X.=0

c=1 =1

Inv: c<T Inv: c<T

Guard: ¢ =177
c:=0

(c) Model 3

Fig. 1: Various hybrid automaton models formalize different implementations of a periodically-sampled CPS.

system state. The controller_update function can be decom-
posed into nc functions where each one updates a single
cyber variable, ¢, := controller_update,(X,, X.), ..., Cne =
controller_update,, .(X,, X.). In this work, we will restrict the
controller_update functions to ones that are differentiable and
locally Lipschitz continuous in the input arguments, in the
domain of interest (for example, discrete approximations of
continuous controllers).

Model 1: The simplest model is for a strict periodic
controller, where the control software runs with a given period,
T. This could correspond to a system using a time-division
multiple-access (TDMA) or other time-triggered scheduler,
where the control task is nonpreemptive and the worst-case
execution time (WCET) fairly short. In the model, a single
location exists where time can elapse. An extra clock variable,
¢, is added to the hybrid automaton that ticks at rate one
(¢ = 1). When the clock reaches the period, a transition is
forced by an invariant in the single location that ¢ < T,
which prevents continuous evolutions from continuing. The
transition executes the controller logic when the clock reaches
the period, then resets the clock to 0, and subsequently repeats
periodically. A hybrid automaton visualization of this model
is shown in Fig. 1(a). The strict periodic controller, however,
does not exactly capture the behavior of a system using a
real-time scheduler. A scheduler like rate-monotonic (RM) or
earliest deadline first (EDF), provides a guarantee of execution
at some point within the period.

Model 2: An alternative implementation, which uses a real-
time scheduler such as RM or EDF would sample the system
at the start of the period, and write the actuation values at
the end of the period. This can be modeled using a hybrid
automaton by starting with the strictly periodic system (Model
1) and adding np additional cyber variables, which we call X,
with derivatives equal to zero that model the sampled state.
On the actuator assignment (controller_update) at the end of
each period, the controller logic will then compute on the state
sampled from the start of the period. After updating the cyber
variables, the physical state would then be sampled again and
stored into X, for use at the end of the next period. The
hybrid automaton model of this system is given in Fig. 1(b).
The downside of such a controller is there is a one period

delay introduced into the system, which may affect control
performance, as well as np additional variables in the model,
which may affect analysis scalability.

Model 3: An alternative implementation may consider
directly sampling and actuating at some point during each
period, where the sampling point is nondeterministic. This
would be a reasonable model if the control task’s execution
is short and the task is non-preemptive. This model is similar
to the strictly periodic Model 1 (Fig. 1(a)), except that: (1)
a second mode is added to indicate if the controller has
run yet during the period, (2) the first transition (the call
to controller_update) happens nondeterministically up to the
period T' owing to the invariant ¢ < 7, and (3) the second
transition (the end of the control period) happens when the
clock reaches T time. The modified automaton is shown
in Fig. 1(c). This model uses nondeterminism in discrete
transitions to capture the type of guarantee provided by a real-
time scheduler: that the control logic will execute and finish
at some point within each period.

More complicated models could also be considered. For ex-
ample, if the execution time was non-negligible or the task was
preemptive, the state could be sampled nondeterministically
at some point during the period minus the WCET, and then
actuation could be performed nondeterministically up to the
end of the period.

C. Preliminary Reachability Analysis

Although hybrid automata can model real-time scheduled
controllers and plants as shown above, an important factor
is tractability of analysis. Since analysis of even moderately-
complicated hybrid automata is undecidable [9], tools often
compute an overapproximation of the reachable states, which
is sufficient for safety analysis (making sure unsafe states are
not reachable). If the set of reachable states may be computed
for unbounded time (if the reachability algorithm reaches a
fixed-point) and the resulting set of states is bounded, then
conclusions can also be drawn about system stability. In the
presence of a large number of discrete switches, reachability
analysis tools may significantly overapproximate the reachable
set of states, due to the need to perform intersections of
reachable sets with surfaces representing guard conditions [6].
These intersections are typically done geometrically, and result

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

34

2.0

15¢

x 1 /1\\/7“7__
/ 1ol
/

o5t /
i
/

051

Time 00—

(a) Simulations from = € {0,0.1}

2

(b) SpaceEx Reachability

0 1 2 3 4 5

1 1
3 4 5 t

(c) Flow* Reachability

Fig. 2: The response for the periodically-controlled double-integrator system from Example 1 converges in
simulation, but appears to diverge during reachability analysis.

in an overapproximation of the actual intersection, introducing
some error at every discrete transition. Due to this concern, we
empirically evaluate the performance of two modern reacha-
bility tools, SpaceEx [5] and Flow* [10], [11], on a simple
control system using the approach from Model 1 (Fig. 1(a)).

Example 1 (Double-Integrator System). A double-integrator
system, such as point moving along a 1-d line controlled
through its acceleration, has two physical variables: x, its
position, v, its velocity, and a single cyber variables a, its
acceleration. The dynamics are © = v, v = a, and the
acceleration a is set periodically by the control logic. There is
a fixed setpoint the system tries to move towards at x = 1. The
acceleration is set using a PD controller with gains P = 10
and D 3. The controller_update function periodically
assigns a := P x (1 —x) + D x —v. The period of the control
task is T = 0.005 seconds (200 Hz). The initial states are
x €10,0.1] and v = 0.

Using the system in Example 1, we construct the corre-
sponding hybrid automaton (shown in the Appendix in Fig. 8)
and examine the controller’s response. A control Lyapunov
function may be derived to show stabilization of the purely
continuous system to the setpoint of x = 1 and v = 0. In
Matlab simulations of the periodically-sampled system from
the boundary of the initial states (from both z 0 and
x = 0.1), the system easily converges to the setpoint. When
performing reachability, however, both SpaceEx and Flow*
produce divergent reachable sets, due to overapproximation
error introduced at each of the discrete transitions. The simu-
lations and reachability visualization are shown in Fig. 2.

Although effort was taken to optimize various tool parame-
ters, they could likely be further adjusted to get a slightly better
response. For this particular system, if the tools had built-in
support for time-triggered transitions and could infer that the
clock acts as a time-trigger for the discrete transition, the error
in the computation could likely be reduced (although we could
not find time-triggered support in either tool’s documentation).
However, this would not work for the nondeterministic switch
in Model 3 (Fig. 1(c)), since that discrete transition (invocation
of controller_update) can occur at any time within the period,
based on the guarantees provided by schedulers like RM and

EDF. The problem of accumulated error in reachability from
many discrete transitions, in general, cannot be eliminated.

III. CONTINUIZATION FOR IMPROVED ANALYSIS

The occurrence of many discrete transitions leads to accu-
mulated error during reachability analysis because of a need
to repeatedly take intersections of sets of states with the
transition guards. One idea to get better accuracy, therefore,
is to eliminate the discrete transitions altogether. Intuitively,
this process relies on the observation that the behavior of the
periodically-sampled system is contained in the behavior of the
continuously-controlled system with some additional bounded
nondeterministic input.

This process of validated abstraction of the sampled hybrid
automaton by a continuous one is called continuization [12],
and is briefly reviewed in the next subsection (Sec. III-A).
Here, we apply the continuization idea in order to analyze
periodic control systems, which has not been done before. This
process relies on having a bound on the speed of changes of the
cyber variables, and computing this bound is then described
(Sec. III-B).

A. Continuization

Continuization is the process of abstracting a system with
many discrete switches by a continuous one with an extra
nondeterministic input. Previously, it was used to analyze
rapidly-switching electric circuits [12], specifically locking
time and stability properties for charge-pump phase-locked
loops. The key challenge when performing continuization
is determining the amount of nondeterministic input that is
necessary in order to guarantee that all behaviors of the
sampled system are captured by the continuous one, but not
too much that analysis accuracy suffers.

In the earlier circuit work, this was done by solving for
the change of state in one cycle with a known switching time.
Since there was no closed-form solution for the switching time,
interval analysis was performed using the ranges of possible
switching times, and then this was used to derive conservative
bounds on the change in state.

We want to apply continuization in order to analyze
periodically-controlled CPS. We formalize this process by
using sampling deviation functions.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

35

Definition 5 (Sampling Deviation). A sampling deviation w;
is a function R — R x R, which, given a time, produces an
upper and lower bound on the difference of a cyber variable
c; € X, between its value in a sampled CPS and the update
function controller_update(X,, X.).

Given a sampling deviation function w; for each cyber vari-
able, we can construct an overapproximation of the sampled
CPS. First, we construct a continuous approximation of the
sampled CPS.

Definition 6 (Continuous Approximation). A continuous ap-
proximation of a sampled CPS is a hybrid automaton where
the controller logic is run continuously. That is, the discrete
update for each cyber variables in c¢; € X, is removed from
the system, and each cyber variable’s differential equation is
set to ¢; = %controller_updatei(Xp,XC). The variable c;’s
initial value is set to the value when the controller is run at
the original initial state, controller_update;(X,(0), X.(0)).

The continuous approximation differs from the original
sampled CPS. A continuized abstraction accounts for this
difference by adding nondeterminism to every occurrence of
each cyber variable within the continuous approximation.

Definition 7 (Continuized Abstraction, Continuization). A
continuized abstraction H. of a sampled CPS ‘H is constructed
starting from H’s continuous approximation. Each occurrence
of a cyber-variable c; in the continuous approximation gets an
extra term added equal to the sampling deviation w;. If any
of the w; change over time, an additional time variable t is
added to the system that starts at 0 and ticks at rate 1 forever.

The model constructed using the above continuization ap-
proach will have trajectories of the physical variables that
contain all the behaviors in the original sampled CPS.

Theorem 1 (Soundness of Continuization). Given a sampled
CPS H as well as its continuized abstraction H., REACH(H) |
X, € REACH(H,.) | X,

Proof. Consider any cyber variable ¢; € X.. Let Valgamplea(¢;)
be the value of the variable in the sampled CPS, and
Valypgract(c;) be the value of the variable in the continuized
abstraction. At any time ¢ in a trajectory, we first show that
Valsampled(ci) S Valabstract(ci) + w; (t)

By the definition of the sampling deviation function, the dif-
ference between Valgmplea(c;) and controller_update;(X,, X.)
at time ¢ must be contained in the interval w;(t). Therefore,
Valgamplea(c;) is contained in controller_update;(X,, X.) +
w;(t). The continuous approximation at time ¢ is equal to
controller_update;(X,, X.), and by the construction of the
continuized abstraction from the continuous approximation,
the inclusion Valgmpiea(¢i) € Valabgiract(¢i) + wi(t) holds.

In the construction of the continuous abstraction, each
cyber variable ¢; in the continuous approximation was re-
placed by ¢; + w;(t). Since, as shown above, Valgmpiea(¢i) €
Valpsiact(¢;) + wi(t), the derivatives for every variable in

the sampled CPS will be contained in the derivatives of
continuized abstraction. In particular, the physical variable
values in the continuized abstraction also contain the sampled
CPS physical variable values. The discrete transitions between
the two systems are identical, except for the removal of the
periodic cyber-variable updates in the continuized abstraction.
Thus, any discrete transition (other than controller updates,
which only update cyber variables and for which we already
showed containment) taken by the sampled CPS can also
be taken by the continuized version. Since a trajectory is
an alternating sequence of continuous evolutions and discrete
transitions, and the initial states are the same, by induction on
the length of a trajectory, the values of the physical variables
in the sampled CPS are always contained in the values of the
physical variables in the continuized abstraction. Therefore,
REACH(H) | X, € REACH(H.) | X,. O

B. Producing Sampling Deviation Functions

The key to continuization is to construct sampling deviation
functions that provide an upper and lower bound on the
difference of each cyber variable between the sampled CPS
and the controller_update function. One way to compute such
a function is by looking at the maximum rate of change
(bounded by a Lipschitz constant) of the derivative of each
cyber variable in the continuous approximation. This process
makes use of standard interval arithmetic multiplication, [a, b]*
[c,d] = [min(axc,ax*xd,bxc,bxd), max(axc,a*xd, bxc,bxd)].

Lemma 1 (Sampling Deviation using Lipschitz Constant).
Given interval bounds, K = [K™™ K™, on the rate of
change of the derivative of c; in the continuous approximation,
and the period of the associated strictly-periodic (Model 1
from Fig. 1) controller, T, a sampling deviation function is

w; = [-T,0] x K.

Proof. The sampling deviation function needs to bound the
difference of the value of the variable ¢; in a sampled
CPS and controller_update;(X). The difference between
controller_update; at the last sample time (which is the
current value of the cyber variable in the sampled CPS), and
controller_update; at the current time (which is its value in
the continuous approximation) is at most a product of the
maximum rate of change K, and the time since the last sample.
The difference between the last controller update and the
current time must be in the interval [T, 0], since it is a strictly
periodic controller with period 7. Assuming the first sample
occurs at time 0, by induction on the number of samples, this
property will hold for every sampling period and therefore
over all time. O

In this case, we had considered a strictly periodic controller,
such as the one given by Model 1 in Sec. I1I-B. To compute
the function for a nondeterministic controller such as Model
3, all that would need to be adjusted is the time of the last
controller update. In the worst case, a sample will occur at the
start of one period, and at the end of the next period. In that
case, the maximum time between updates is 2 * 7', so using
an interval of [—2 % T, 0] in Lemma 1 would be adequate.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
36

Continuization of a Sine Wave

1.2

— -Continuous Approximation
—Periodically Sampled CPS
Continuized Abstraction

L
1 1.5 2 2.5 3

t

Fig. 3: The main idea behind the proposed continuization
approach is that a nondeterministic continuous system contains
the behaviors of a periodically sampled system.

To provide some intuition on the construction of sampling
deviation functions, we provide an simple illustrative example.

Example 2 (Sine Wave). Consider a system with a single
cyber variable c1 where the controller_update function is given
by sin(t), and t is a clock (physical variable with t = 1) ticking
from 0 to w. The period of the cyber-variable is T = (0.2.

The rate of change of controller_update (the derivative) is
equal to cos(t), and the bound on cos in [0, 7] is K = [—1,1].
Given this bound and the period of T' = 0.2, each occurrence
of c¢; in the continuous approximation is replaced by c¢; +
[—0.2,0.2] in the continuized abstraction. A visual depiction
of this is given in Fig. 3.

One nice property of the sampling deviation function con-
structed by Lemma 1 is that no matter how large the bounds
are on the rate of change of the controller_update function, the
sampling deviation function can be made arbitrarily small by
choosing a small enough controller period 7. This is because
of the multiplication in the sampling deviation function by
the interval [T, 0]. Intuitively, this makes sense, since the
continuous system is more closely approximated as we sample
and actuate at a higher frequency. This is in contrast, however,
to reachability analysis done directly on the sampled CPS
models, where smaller periods lead to more discrete transi-
tions, which lead to more error.

The width of the interval given by deviation function does
affect the amount of overapproximation in the constructed
model, and therefore it is desirable to have this function be as
tight as possible. One way to improve the bound on the rate of
change of the cyber variable is by considering smaller domains
(time intervals). For example, we could take advantage of the
time dependence of each sampling deviation function w;, and
define corresponding sampling deviation functions within local
analysis domains.

Lemma 2 (Sampling Deviation in Local Analysis Domains).
For a cyber variable c; with period T, given a sequence of
interval bounds on the rate of change of the controller_update
function, K1, Ko, ..., K,,, and an associated sequence of

Piecewise Continuization of a Sine Wave

AN

— -Continuous Approximation A
Periodically Sampled CPS
Continuized Abstraction

overlap /
of time

T=0.2 \

0 0.5 1 15 2 25 3

t

Fig. 4: The continuization approach as applied to four local
analysis domains has an overlap of one period length between
domains.

increasing and pointwise-intersecting time intervals (which we
call local analysis domains) where the bounds are valid, [ty =
0,t1], [t1,t2], - - s [Em—1, tm], a sampling deviation function up
to time t,, can be computed as:

w;(t) = [T, 0] * [min({K"™ | t € [t;_1,t; + T1}),
max({KJ"** | t € [t;—1,t; + T]})].

Proof. Notice the time intervals have the controller period
T added to the upper time bound. This is because when a
new time interval is entered in a trajectory, the sampled CPS
could have taken the most-recent sample in either the current
time interval, or in the previous one. The sampling deviation
function, therefore, must account for both possibilities until 7"
time has elapsed in the new interval. Other than this caveat,
the proof follows that of Lemma 1, except that the analysis is
done at each time interval. O

In the sine wave system from Example 2, we can ap-
ply this approach in four analysis domains (time inter-
vals), [0, X1, [%, 2], [%, 37, [2F, 1]. Solving for the cos(t) (the
derivative of sin(¢)) in these domains, we can come up with
the associated interval bounds on ¢; in the continuous approx-
imation, K, = [¥2,1], Ky = [0, 2], K3 = [-¥2,0], K4 =
[fl,fg]. Using the period 7" = 0.2, we then obtain the
piecewise continuization of the system, shown in Fig. 4.

In Fig. 4, when the derivative bounds are positive, the
difference between the sampled CPS and the continuous
approximation is negative, which is why an interval of [—T', 0]
was used to bound the difference. Also, without the presence
of the overlap between time domains, the continuized abstrac-
tion would be wrong immediately after time 7. In this case,
the new domain has a strictly negative derivative, but because
the sample occurred before 7, the bound from the previous
domain must be used.

There are two considerations when applying continuization
with local analysis domains. First, the result is only valid until
the maximum time of the last analysis domain. If this time
is finite, this means only bounded-time reachability can be
computed. Second, there is a trade off between the accuracy

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

37

of the computation and the number of domains considered.
Continuization was originally used to eliminate large numbers
of discrete transitions in a sampled CPS. Using local analysis
domains, however, brings back discrete transitions, although
now the number of transitions can be controlled by adjusting
the number of domains. Using too many domains may lead to
similar problems with tool performance as when we directly
considered a sampled CPS model for reachability analysis.
We could solve this problem by having sampling deviation
functions that vary as continuous functions of time, although
the way to create these is less clear, and left as possible future
work.

IV. AUTOMATION IN HYST

Hyst [8] is a model transformation and translation tool
for hybrid automaton models. Hyst performs both model
translation, which converts between formats of different reach-
ability tools, as well as model transformations, which serve to
improve reachability computation results. The continuization
approach described in the previous section has been imple-
mented as a model transformation pass in Hyst, which permits
easy application of the developed technique.

A. Transformation Pass

The implemented model transformation pass performs con-
tinuization starting given a continuous approximation of the
system. The user provides (1) a target model file describing
the hybrid automaton, (2) the controller period, 7', (3) the
name of the cyber variable of interest, c;, (4) a sequence of
m increasing times used to construct local analysis domains,
(5) a corresponding sequence of m bloating terms, which will
be described shortly, and (6) the name of the time variable
(optional; only used if multiple local analysis domains are
used to create transitions between them).

Given these inputs, the pass first simulates the continuous
abstraction from the center of the initial states, in order to
approximate the interval bounds on the rate of change of
the derivative of c¢;. For each time interval, the bound during
that time is then expanded by the corresponding user-provided
bloating term. We call the new intervals candidate Lipschitz
bounds for the cyber variable’s derivative. The candidate
Lipschitz bounds are used as described in Lemma 2, along
with the time domains, in order to produce the sampling
deviation function wj ().

The sampling deviation function consists of piecewise con-
stant intervals. For each piece, a mode is created in the output
hybrid automaton, with dynamics equal to the continuous
approximation, except with every occurrence of c; replaced
by ¢; + w;(t). Transitions are then added between the modes
when the appropriate amount of time has elapsed.

The bound given by w; is only valid, however, if the candi-
date Lipschitz bounds are actually upper and lower bounds on
the derivative of the cyber variable. This can happen because
the bounds are constructed from a single simulation using the
continuous approximation, whereas the reachable set of states
considers all initial points as well as the expanded set of values

for the cyber-variable in the dynamics, ¢; + w;(t) instead of
just ¢;. To check if the bounds are respected, invariants and
guards are added to the output hybrid automaton to check if
the derivative exceeds the candidate Lipschitz bounds. If a
violation occurs, a transition to an error state is taken, which
is added as a forbidden location in the model. In this way,
performing reachability computation will not only give the set
of states reachable by the continuized abstraction, but will also
check that the candidate Lipschitz bounds are actual bounds
on the derivative of the cyber variable. If they are not, the
transition to the error state will be detected when performing
a reachability computation, and the transformation pass can
be re-run with larger bloating terms, which will increase the
size of the candidate Lipschitz bounds.

B. Example

We apply the continuization approach in Hyst to the double-
integrator system given in Example 1. The controller_update
function in this case is P * (1 — z) + D * —v, with P = 10
and D = 3. The time derivative is —10 * © — 3 * ¥. After
substituting in the derivatives (¢ = v, v = a), the derivative
of a in the continuous abstraction is: —10 * v — 3 % a. The
initial value of a is the value assigned when controller_update
is evaluated at the initial states, a := 10% (1 —xz)+3%—v. The
hybrid automaton of the continuous approximation shown in
the appendix, in Fig. 9.

The pass implemented in Hyst performs a simulation of the
system starting from the center of the initial set of states, in
this case, at x+ = 0.05, v = 0, a = 9.5. The value of a in
the simulation is observed to be in the interval [—28.64,5.27].
This interval is then bloated by the provided bloating term,
for which we consider +1, 42 and +4.

When running reachability with a bloating term of 1, Flow*
immediately (at time 0) detects that the constructed error
states are reachable, which means that the candidate Lipschitz
bounds do not contain all the encountered values of a. Com-
putationally, we can show this to be the case. Initially, z =
[0, 0.1], which means the initial value of a is [9, 10]. The initial
value of @ is —10*v —3%a = [—30, —27]. The interval values
of @ in the simulation were [—28.64, 5.27], which bloated by 1
give candidate Lipschitz bounds of [—29.64, 6.27]. The lower
bound of the derivative of the cyber variable (—30) is initially
outside of the candidate bounds, which was detected by the
transition to the error state.

Using a bloating term of 2, the candidate Lipschitz bounds
are [—30.64, 7.27], which contain the above-computed initial
values of a. When performing reachability, however, at time
0.04 an error state is reached again. At this time, the reachable
set contains a state where a = 8.79 and v = 0.382. In this
case, the derivative @ = —10%xv —3%a+w; = —10%0.382 —
3% 8.79 + [—0.45,0.11] has a lower value of —30.66, which
is below the candidate Lipschitz bound of —30.64.

When the larger bloating term of 4 is used, the candidate
Lipschitz bound is respected by the reachable set, and Flow*
does not reach the out-of-bounds error states. Thus, the reach

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

38

¢/,,;aﬂ:]| ryw’)ﬂﬂ - TR

os} }1 st f

N 4 N4

(a) Continuized System (b) Two Analysis Domains

Fig. 5: The response for the continuized periodically-
controlled double-integrator system from Example 1 is sig-
nificantly tighter than direct analysis (Fig. 2).

set of the continuized abstraction is a validated overapproxi-
mation of the reach set of the sampled CPS.

Recall, however, that directly computing the reach set of
the sampled CPS, as shown in Fig. 2, resulted in a large
exponential blow up in the size of the reachable set due to
accumulation of overapproximation error. Even with a single
analysis domain, the reachable set is significantly smaller,
as shown in Fig. 5(a). Using multiple analysis domains, the
reachable set can be further reduced. The hybrid automaton of
the continuized system with two local analysis domains [0, 1.5]
and [1.5, 5] is shown in the appendix in Fig. 10. The reach set
of the response for this system is shown in Fig. 5(b). Thus, the
continuization method developed in this paper enables a more
precise formal analysis of this system using hybrid automaton
reachability tools.

In terms of overhead, the runtime of the pass itself is small,
taking about 100 ms. The reachability computation takes 0.9
seconds for the single-domain case, and about 1.3 seconds for
the two-domain system, which is significantly faster than the
12 minutes needed for SpaceEx to produce Fig. 2(b).

V. CASE STUDY

In this section, we apply the technique developed from
Sec. III in order to perform reachability analysis of a hybrid
system model of a yaw-damper for a 747 aircraft.

A. System and Controller Model

The model and controller we analyze in this case study
are taken from the Control Systems Toolbox case studies in
Matlab [13]. In brief, the system is a multiple-input multiple-
output (MIMO) system that uses the aileron and rudder in
order to reduce oscillations in the yaw and roll angle.

The analysis of the yaw damper is done on the sys-
tem’s aileron-to-bank angle impulse response. Three different
systems are considered: (1) the original, undamped system,
which experiences oscillations upon an impulse input, (2)
the system with proportional compensator, which eliminates
the oscillations but also over-stabilizes the spiral mode (a
desired characteristic for the control), and (3) the system with
a washout filter, which eliminates the oscillations but keeps
the spiral mode.

We use this case study to evaluate the developed con-
tinuization technique so as to evaluate properties about the
response of the final (washout filter) system. There are four

Response

—Original System
------ With Washout Filter

0 1‘0 2IO 30 40

Time
Fig. 6: The impulse response for the washout filter design of
a yaw damper demonstrates the spiral mode in simulation.

physical variables in this system, sideslip angle (x1), yaw rate
(x2), roll rate (x3), and bank angle (x4), represented by the
column vector x. The two inputs u, are the rudder (uq) and
aileron (ug). The outputs are the yaw rate and bank angle.
The dynamics for the physical system are the standard linear
time-invariant dynamics, © = Ax + Bu (the A and B matrices
are provided in the in Sec. B of the appendix).

This physical system is put into a feedback loop with a
washout filter. The washout filter has a single variable, w,
with dynamics w = x2 — 0.2 * w. The washout filter variable
is combined with the yaw to produce an effect on the rudder
input. That is, the washout filter adds to u; the value 2.34 x
(x2 — 0.2 % w).

A simulation of the aileron-to-bank angle impulse response
from this system, with and without the washout filter, is given
in Fig. 6. In particular, the two control properties of interest
are a lack of oscillations (quick settling time), and the presence
of the spiral mode. The spiral mode is a desirable flight
characteristic demonstrated by the apparent” steady-state offset
in the rudder-to-bank angle impulse response.

A property to check is that the aileron to bank angle impulse
response remains around the simulated value of 0.08, between
20 and 40 seconds, and thus maintains the spiral mode without
significant oscillation. We consider a controller running at 20
Hz (I' = 0.05), using the implementation that samples and
actuates when the real-time scheduled controller runs (Model
3 from Sec. II-B).

B. Reachability Analysis

Neither SpaceEx nor Flow* can effectively compute reach-
ability on the periodically-actuated system model (Fig. 11 in
the appendix). The reachable set of states explodes almost
immediately, and neither tool can compute accurate time-
bounded reachability for the required 40 seconds.

We apply the continuization approach developed in this
paper by using the Hyst transformation pass on the continuous
approximation of the model. First, we apply the technique over
the whole time range. Initially, we try a small bloating term,
and increase it until error states are no longer reachable during
analysis. For the period parameter given to the pass, we use
twice the control period, as this is needed to account for the

2The steady state is actually zero, but the convergence is very slow over
hundreds of seconds.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

39

iy
‘“ﬂwﬂ R T

(a) Reachability in Flow* of (b) Reachability with Local
the Continuized Model Domains and Halving Period

Fig. 7: Flow* can successfully compute reachability on the
continuized model. When a smaller period and local analysis
domain is used, the result is tighter.

maximum delay in sampling in Model 3, as discussed earlier
in Sec. II-B. Flow* successfully computes reachability for the
model, and confirms that the final bloating term (0.0007) was
sufficiently large. The output plot is shown in Fig. 7(a).

Although the computation completes, which is an improve-
ment over the direct computation, the set of states appears to
be diverging slowly. The reachability result can be improved
by using local analysis domains, or by reducing the controller
period. To demonstrate this, we halve the controller period, and
use two analysis domains. For time [0, 8] we use a bloating
term of 0.0004, and for time [8,40] we use 0.0003. Hyst
creates the associated model file for Flow*, which we then use
to compute reachability. Flow*, in about 5 seconds, confirms
that the candidate domains are sufficient, and the resultant
reachability plot is tighter than the previous one, as shown in
Fig. 7(b). Furthermore, the spiral mode can be observed from
the reachable set plot, along with the absence of oscillations
in the time range [20, 40].

VI. RELATED WORK

In this paper, we have focused on controller analysis using
hybrid automata reachability tools, although there are existing
methods in control theory to design and analyze controllers.
The design of a controller for a continuous-time system often
occurs in continuous-time, and the controller is subsequently
discretized® to be implemented in a software controller that
operates periodically.

Continuous-Time Controller Design: There are many
methods for control design in continuous-time. For example, a
common strategy for linear time-invariant (LTI) systems is to
design a stabilizing linear state-feedback controller of the form
u = Kz for a vector K [16]. Assuming the system is both
controllable and observable, the strategy yields a new closed-
loop system: & = Az 4+ Bu for v = K. After substituting
this gives & = Az 4+ B(Kx) and then & = (A + BK)x. This
strategy is also known as pole placement [16]. Finding the
vector K such that (A + BK) is exponentially stable can be
formulated in a variety of ways, such as by solving a linear ma-
trix inequality (LMI) [17]. Linear quadratic regulator (LQR)

3In this paper, we only focus on the conversion from continuous-time to
discrete-time, and do not consider full digitization [14], [15], for example,
the conversion from continuous-time and continuous-state to discrete-time and
discrete-state through quantization.

design is another linear system design technique that also
incorporates a cost function to yield an optimal controller [18].
LQR is used within the Linear Quadratic Gaussian (LQG)
problem that robustly tolerates Gaussian additive noise inputs
from disturbances. Other control design methods for linear
systems are performed in the frequency domain, where pole
and zero placement may also be performed to ensure stability
and analyze performance criteria such as gain margins, phase
margins, and use graphical tools like Nyquist diagrams and
Bode plots. Design of controllers for nonlinear systems is
challenging, but many approaches exist, such as linearizing
and using gain-scheduled linear controllers, backstepping,
feedback linearization, and many others [19].

Discretization of Continuous Controllers: Discretization
typically consists of several steps. First, a sampling period
must be selected at which measurements of the physical
system are taken and made available to the software controller.
Second, a control period must be selected to specify the rate
at which control decisions are produced by the software con-
troller and sent to actuators to influence the plant. Typically,
these periods are selected in accordance with the speeds of the
dynamics, and a common rule of thumb is to use the Nyquist
frequency of the physical process to determine the minimum
sampling period. The Nyquist frequency is twice the highest
waveform frequency.

Given these periods, a discrete-time version of the plant
can be constructed (using the sampling period) and a discrete-
time version of the controller can be constructed (using the
control period). Both discretizations are needed, as from
the perspective of the controller, it will only receive state
measurements of the plant at the points in time specified by
the sampling period.

Discrete Controllers with Continuous Plants: While from
the perspective of the software controller, the changes to the
plant occur discretely, in reality, the plant evolves continuously
according to differential equations. Controller performance
with such constraints has been extensively investigated, and
tools like JitterBug and TrueTime can characterize controller
performance with real-time constraints and delays [20]. More
recent works aid in synthesizing embedded software from
hybrid systems models [21]. Giotto aids in this process of
moving from control models to embedded real-time code [22].

Reachability: The elimination of large numbers of dis-
crete transitions in hybrid automata was previously accom-
plished by continuization [7]. The earlier work was used to an-
alyze properties about fast-switching electronic circuits. This
work, in contrast, applied continuization to enable the analysis
of fast-switching hybrid automata resulting from the periodic
interactions with the real-time scheduler. We also considered
using local analysis domains to construct the nondeterministic
term, which was shown to increase the accuracy of the model.

Periodically Controller Hybrid Automata (PCHA) is one
formalism for periodically-controlled embedded systems [23].
Automated analysis of PCHAs is possible only if the vector
fields are polynomial, whereas, using the developed Hyst
pass, continuization can be automatically applied to a broader

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

40

class of systems. Combinations of reachability tools and SMT
solvers have been used to model both physical-world dynamics
and software behavior [24]. A limitation of this approach is
that cyber-variables are represented with intervals, and that
only strictly-periodic systems can be analyzed (Model 1 from
Sec. II-B).

VII. CONCLUSION

Analysis of large CPS using formal hybrid systems anal-
ysis techniques remains difficult. A challenge problem was
recently proposed to the research community by Toyota on
the verification of a powertrain control system [25]. Although
initial progress has been made on simplified versions of the
system [26], the full benchmark model presents four main
challenges for verification tools: (1) controllers that periodi-
cally actuate the plant, (2) lookup tables to describe the system
dynamics, (3) the presence of time delays in the model, and
(4) large system scale.

In this paper, we addressed the first of these issues, by using
continuization in order to soundly abstract the periodically-
controlled dynamics. This permits initial analysis of these
systems using reachability tools for hybrid automata. Without
our approach, existing tools produce exponentially divergent
reach sets on these models, and often fail before reaching the
desired time bound. Since the accuracy of analysis depends on
the tightness of the difference between the discrete system and
continuized abstraction, a possible future improvement would
be to compute these bounds in local domains based on the
system state, in addition to time as proposed in this paper.

ACKNOWLEDGMENTS

This material is based on research sponsored by the Air Force
Research Laboratory under agreement number FA8750-15-1-0105, the Air
Force Office of Scientific Research (AFOSR), in part through the Summer
Faculty Fellowship Program (SFFP) and contract FA9550-15-1-0258. This
material is based upon work supported by the National Science Foundation
(NSF) under Grant Nos. 1464311 and 1527398. The U.S. government is
authorized to reproduce and distribute reprints for Governmental purposes
notwithstanding any copyright notation thereon. Any opinions, findings, and
conclusions or recommendations expressed in this publication are those of the
authors and do not necessarily reflect the views of AFOSR, AFRL, or NSE.

REFERENCES

[1] C.Liu and J. Layland, “Scheduling algorithms for multiprogramming in
a hard-real-time environment,” Journal of the Association for Computing
Machinery, vol. 20, no. 1, 1973.

[2] R. Alur, C. Courcoubetis, N. Halbwachs, T. A. Henzinger, P.-H. Ho,
X. Nicollin, A. Olivero, J. Sifakis, and S. Yovine, “The algorithmic
analysis of hybrid systems,” Theoretical Computer Science, vol. 138,
pp. 3-34, 1995.

[3] N. Lynch, R. Segala, and F. Vaandrager, “Hybrid i/o automata,” Inf.
Comput., vol. 185, no. 1, pp. 105-157, Aug. 2003.

[4] S. Bogomolov, G. Frehse, M. Greitschus, R. Grosu, C. S. Pasareanu,
A. Podelski, and T. Strump, “Assume-guarantee abstraction refinement
meets hybrid systems,” in Hardware and Software: Verification and
Testing - 10th International Haifa Verification Conference, HVC 2014,
Haifa, Israel, November 18-20, 2014. Proceedings, 2014, pp. 116-131.

[51 G. Frehse, C. Le Guernic, A. Donzé, S. Cotton, R. Ray, O. Lebeltel,
R. Ripado, A. Girard, T. Dang, and O. Maler, “Spaceex: Scalable
verification of hybrid systems,” in Proc. 23rd International Conference
on Computer Aided Verification (CAV), ser. LNCS. Springer, 2011.

[6] M. Althoff and B. H. Krogh, “Avoiding geometric intersection operations
in reachability analysis of hybrid systems,” in Proceedings of the 15th
ACM International Conference on Hybrid Systems: Computation and
Control, ser. HSCC 12. New York, NY, USA: ACM, 2012, pp. 45—
54.

[71 M. Althoff, S. Yaldiz, A. Rajhans, X. Li, B. Krogh, and L. Pileggi, “For-
mal verification of phase-locked loops using reachability analysis and
continuization,” in Computer-Aided Design (ICCAD), 2011 IEEE/ACM
International Conference on, Nov 2011, pp. 659-666.

[8] S. Bak, S. Bogomolov, and T. T. Johnson, “HyST: A source trans-
formation and translation tool for hybrid automaton models,” in /8th
International Conference on Hybrid Systems: Computation and Control
(HSCC 2015). Seattle, Washington: ACM, Apr. 2015.

[9] T. A. Henzinger, P. W. Kopke, A. Puri, and P. Varaiya, “What’s decidable
about hybrid automata?” in Journal of Computer and System Sciences.
ACM Press, 1995, pp. 373-382.

[10] X. Chen, E. Abraham, and S. Sankaranarayanan, “Taylor model flowpipe
construction for non-linear hybrid systems,” IEEE Real-Time Systems
Symposium, vol. 0, pp. 183-192, 2012.

[11] ——, “Flow*: An analyzer for non-linear hybrid systems,” in Interna-
tional Conference on Computer Aided Verification (CAV), 2013.

[12] M. Althoff, A. Rajhans, B. H. Krogh, S. Yaldiz, X. Li, and L. Pileggi,
“Formal verification of phase-locked loops using reachability analysis
and continuization,” Commun. ACM, vol. 56, no. 10, pp. 97-104, Oct.
2013.

[13] T. Mathworks, “Yaw damper design for a 747
jet aircraft,” Control System Toolbox Examples, 2015.
[Online]. Available: http://http://www.mathworks.com/help/control/
examples/yaw-damper-design-for-a-747-jet-aircraft.html

[14] R. Brockett and D. Liberzon, “Quantized feedback stabilization of linear
systems,” Automatic Control, IEEE Transactions on, vol. 45, no. 7, pp.
1279-1289, Jul. 2000.

[15] T. T. Johnson, S. Mitra, and C. Langbort, “Stability of digitally inter-
connected linear systems,” in Proceedings of the 50th IEEE Conference
on Decision and Control and European Control Conference (CDC ECC
2011), Orlando, Florida, USA, Dec. 2011, pp. 2687-2692.

[16] C. Chen, Linear System Theory and Design, 3rd ed. New York, NY:
Oxford University Press, 1999.

[17] J. Lofberg, “Yalmip : A toolbox for modeling and optimization in
MATLAB,” in Proceedings of the CACSD Conference, Taipei, Taiwan,
2004. [Online]. Available: http://users.isy.liu.se/johanl/yalmip

[18] F. L. Lewis, D. Vrabie, and V. L. Syrmos, Optimal control. John Wiley
& Sons, 2012.

[19] H. K. Khalil, Nonlinear Systems, 3rd ed.
Prentice Hall, 2002.

[20] A. Cervin, D. Henriksson, B. Lincoln, J. Eker, and K. Arzen, “How does
control timing affect performance? analysis and simulation of timing
using jitterbug and truetime,” Control Systems, IEEE, vol. 23, no. 3, pp.
16-30, June 2003.

[21] M. Anand, S. Fischmeister, Y. Hur, J. Kim, and I. Lee, “Generating reli-
able code from hybrid-systems models,” Computers, IEEE Transactions
on, vol. 59, no. 9, pp. 1281-1294, Sep. 2010.

[22] T. Henzinger, C. Kirsch, M. Sanvido, and W. Pree, “From control models
to real-time code using giotto,” Control Systems, IEEE, vol. 23, no. 1,
pp. 50-64, 2003.

[23] T. Wongpiromsarn, S. Mitra, A. Lamperski, and R. M. Murray, “Ver-
ification of periodically controlled hybrid systems: Application to an
autonomous vehicle,” ACM Trans. Embed. Comput. Syst., vol. 11, no. S2,
pp. 53:1-53:24, Aug. 2012.

[24] G. Simko and E. K. Jackson, “A bounded model checking tool for
periodic sample-hold systems,” in Proceedings of the 17th International
Conference on Hybrid Systems: Computation and Control, ser. HSCC
’14. New York, NY, USA: ACM, 2014, pp. 157-162.

[25] X. Jin, J. V. Deshmukh, J. Kapinski, K. Ueda, and K. Butts, “Powertrain
control verification benchmark,” in Proceedings of the 17th International
Conference on Hybrid Systems: Computation and Control, ser. HSCC
’14. New York, NY, USA: ACM, 2014, pp. 253-262.

[26] C. Fan, P. S. Duggirala, S. Mitra, and M. Viswanathan, “Progress on
powertrain verification challenge with C2E2,” in ARCH ’'15: Proc. of
the 2nd Workshop on Applied Verification for Continuous and Hybrid
Systems, April 2015.

Upper Saddle River, NI:

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

41

http://http://www.mathworks.com/help/control/examples/yaw-damper-design-for-a-747-jet-aircraft.html
http://http://www.mathworks.com/help/control/examples/yaw-damper-design-for-a-747-jet-aircraft.html
http://users.isy.liu.se/johanl/yalmip

Guard: ¢ = 0.057
a:=10% (1 —z) + 3% (—v)
c:=0

-

B=9
U =a
a=20
c=1
Inv: ¢ < 0.05

Fig. 8: Hybrid automaton model for sampled CPS of the
double-integrator system in Example 1.

T =v
v=a
a=—-10%xv—3%a

Fig. 9: Hybrid automaton model for continuous approximation
of the double-integrator system in Example 1.

Guard: t > 1.5
T=v

0 =a+ [—0.036,0.025]

a=—-10%xv —3*xa+
[=0.075,0.109]
i=1

B=Y
0 =a+ [—0.046,0.163]
a=-10%v—3*a+
[—0.490, 0.139]
t=1

Inv: ¢ < 1.505

Fig. 10: Hybrid automaton model for continuized abstraction
with two analysis domains (with error modes and transitions
omitted) of the double-integrator system in Example 1.

APPENDIX
A. Double-Integrator Example

The hybrid automata for the double-integrator system (Ex-
ample 1) are shown in Figs. 8, 9, and 10. In the continuous
approximation and the continuized abstraction, the initial value
of a is taken to be the value when controller_update is
evaluated at the initial states, a := 10 % (1 — z) + 3 * —v.

The continuized abstraction shown in Fig. 10 is constructed
from two time domains, [0, 1.5] and [1.5, 5], using a bloating
term of 4 for each of the domains. The ranges of @ in simula-
tion for the two domains are [—28.65,5.27] and [—0.97, 3.24],
which give interval bounds of K; = [—32.65,9.27], and
Ky = [—4.97,7.24]. With a period of T = 0.005, this gives in-
terval values for w of [—0.046, 0.163] and [—0.036, 0.025]. The
derivative @ uses a value of —3 multiplied by these intervals
due to the substitution of a by a+ w (since a is multiplied by
—3 in the derivative). The derivative could have equivalently
been written as @ = —10* v — 3 % (a + [-0.036,0.025]).

00 05 1.0 15 20

(b) Flow*

(a) SpaceEx

Fig. 11: Neither SpaceEx (left) nor Flow* (right) can directly
compute reachability accurately on the yaw-damper model.

7

Fig. 12: The continuous approximation of the yaw-damper
system demonstrates the spiral mode.

In Fig. 10, the error modes and transitions were not drawn.
The guard conditions to enter an error mode in the first domain
are —10xv—3xa+0.139 > 9.27 or —10%xv—3*xa+—0.490 <
—32.65. In the second domain, the guard conditions are 10 *
v—3%a+0.109 > 7.24 or —10*xv—3*xa+—0.075 < —4.97.

B. Yaw-Damper Example

The dynamics of the yaw-damper system from Sec. V are
standard linear time-invariant dynamics, @ = Az + Bu, with:

—0.0558 —.9968 0.0802 0.0415

A 0.598 —0.115 -0.0318 0
—3.05 0.388 —0.4650 0
0 0.0805 1 0

0.00729 0

B —0.475 0.00775
0.153 0.143
0 0

Neither SpaceEx nor Flow* can compute reachability on the
periodically-actuated system. The reachability plots produced
by the reachability tools on the real-time actuated model
(Model 3) are given in Fig. 11.

The continuous approximation of the system demonstrates
the spiral mode and is close to the reach set for the
periodically-actuated washout filter system. The plot for the
continuous approximation is shown in Fig. 12. This is the
system that is used as input to the Hyst continuization pass.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

42

Quality
Coverage

Instructions

Stanley Bak
Air Force Research Laboratory
Information Directorate, USA

Taylor T. Johnson
University of Texas at
Arlington, USA

ABSTRACT

Hybridization methods enable the analysis of hybrid au-
tomata with complex, nonlinear dynamics through a sound
abstraction process. Complex dynamics are converted to
simpler ones with added noise, and then analysis is done us-
ing a reachability method for the simpler dynamics. Several
such recent approaches advocate that only “dynamic” hy-
bridization techniques—i.e., those where the dynamics are
abstracted on-the-fly during a reachability computation—
are effective. In this paper, we demonstrate this is not the
case, and create static hybridization methods that are more
scalable than earlier approaches.

The main insight in our approach is that quick, numeric
simulations can be used to guide the process, eliminating
the need for an exponential number of hybridization do-
mains. Transitions between domains are generally time-
triggered, avoiding accumulated error from geometric inter-
sections. We enhance our static technique by combining
time-triggered transitions with occasional space-triggered
transitions, and demonstrate the benefits of the combined
approach in what we call mixed-triggered hybridization. Fi-
nally, error modes are inserted to confirm that the reachable
states stay within the hybridized regions.

The developed techniques can scale to higher dimensions
than previous static approaches, while enabling the paral-
lelization of the main performance bottleneck for many dy-
namic hybridization approaches: the nonlinear optimization
required for sound dynamics abstraction. We implement our
method as a model transformation pass in the HYST tool,
and perform reachability analysis and evaluation using an
unmodified version of SpaceEx on nonlinear models with up
to six dimensions.

*DISTRIBUTION A. Approved for public release; Distribu-
tion unlimited. (Approval AFRL PA #83ABW-2016-0181,
28 JAN 2016)

Publication rights licensed to ACM. ACM acknowledges that this contribution was
authored or co-authored by an employee, contractor or affiliate of the United States
government. As such, the Government retains a nonexclusive, royalty-free right to
publish or reproduce this article, or to allow others to do so, for Government purposes
only.

HSCC’16, April 12 - 14, 2016, Vienna, Austria

(© 2016 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-3955-1/16/04. .. $15.00

DOL: http://dx.doi.org/10.1145/2883817.2883837

Sergiy Bogomolov
IST Austria

Scalable Static Hybridization Methods
for Analysis of Nonlinear Systems-

Thomas A. Henzinger
IST Austria

Pradyot Prakash
[IT Bombay, India

1. INTRODUCTION

A hybrid automaton [7] is an expressive mathematical
model useful for describing complex dynamic processes in-
volving both continuous and discrete states and their evolu-
tion. Efficient algorithms and analysis tools for linear and
affine systems have recently emerged [24]. However, the be-
haviour of many real-world systems can only be modeled
with nonlinear differential equations.

Hybridization methods attempt to address this issue, en-
abling the application of existing algorithms for simpler dy-
namics (such as constant or affine dynamics) on the analy-
sis of hybrid automata with nonlinear differential equations.
Alternative recent approaches for analyzing nonlinear sys-
tems include simulation-based verification [22] or using effi-
cient representations such as Taylor models [17]. Most hy-
bridization methods work by dividing the state space into a
set of domains. In each domain, the nonlinear dynamics are
then converted to simpler ones with added noise to account
for the abstraction error within the domain. Hybridization
is also known as conservative approximation [8], which il-
lustrates that it is a sound (or conservative) abstraction.
Hybridization has been used to verify properties for several
types of systems, from analog/mixed-signal circuits [19] to
autonomous satellite maneuvers in space [14, 31].

We classify existing hybridization approaches along two
axes as shown in Table 1: static versus dynamic, and space-
triggered versus time-triggered. Static hybridization ap-
proaches use a fixed partitioning, and can make use unmod-
ified, off-the-shelf analysis tools. In contrast, dynamic meth-
ods exploit runtime information to perform hybridization,
and therefore must be tightly integrated within an analysis
tool. On the other axis, space-triggered techniques perform
geometric intersections along hybridization domain bound-
aries. Time-triggered hybridization, on the other hand,
avoids this operation by creating a series of overlapping
domains, and switches between them at specific points in
time.

Based on this classification, a gap exists in existing re-
search: no methods exist that perform static, time-triggered
hybridization. The main contribution of this paper is the
investigation of this category, and demonstrating that such
methods can overcome some of the drawbacks of existing
hybridization methods. Notably, the new hybridization
methods are more scalable than existing space-triggered
approaches. Furthermore, the expensive dynamics abstrac-
tion step, which is generally a global optimization problem,
is easily parallelizable, which is not the case in dynamic

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

43

http://dx.doi.org/10.1145/2883817.2883837

Space- Time- Mixed-
Triggered Triggered Triggered
Static [8,10,29,31] this paper this paper
Dynamic [8,9] [1-3,5,20,28] none

Table 1: Breakdown of hybridization approaches into static
versus dynamic, and space-triggered versus time-triggered,
as well as combinations thereof (mixed-triggered).

approaches. We further enhance our static technique by
combining time-triggered transitions with occasional space-
triggered transitions, and demonstrate the benefits of the
combined approach in what we call mized-triggered hy-
bridization.

The static mixed-triggered hybridization approach works
by hybridizing only a part of the state space. We use quick
numeric simulations to guide the partitioning process. In
this way, we mitigate the problem of exponential growth in
the number of partitions. In addition, we generally use time-
triggered guards in the transitions between partitions. This
prevents costly geometric intersection computations which
typically add overapproximation error to the result. We en-
sure the soundness of the constructed abstraction by adding
error modes to guarantee that the computed reachable states
remain within the hybridized region (which is constructed
from simulations that may be imprecise).

We implement the hybridization method described in this
paper as a model transformation pass in the HyST source-to-
source translation tool. Since it is a static approach, we can
use unmodified reachability tools on the hybridized models.
We create affine abstractions of nonlinear dynamics, and use
to perform reachability analysis.

Contributions and Paper Organization. The main con-
tribution of this paper is the development of the first static
time-triggered and mixed-triggered hybridization methods.
Of critical importance in the proposed approaches is the
choice of hybridization parameters, and a second contribu-
tion is an algorithm which uses simulations to generate these
values. This algorithm is implemented in the HYsST [12]
model transformation tool, which allows it to quickly be
applied to new systems and with new simulation param-
eters. Finally, we validate our claims that the method is
more scalable than existing static approaches by evaluat-
ing it on nonlinear models, including a six-dimensional wa-
ter tank model, and then using an unmodified version of
SpaceEx [13, 15, 24], which does not natively support non-
linear dynamics, to compute the set of reachable states.

This paper first reviews and classifies existing hybridiza-
tion methods in Section 2. Section 3 then presents math-
ematical background and formalisms, which are used in
Section 4 to give formal descriptions and correctness ar-
guments for several hybrid automaton transformations. A
simulation-based algorithm to create the hybridization pa-
rameters used by the transformations is described next in
Section 5. Section 6 discusses the implementation in HysT
and experimental reachability results in SpaceEx, followed
by a conclusion in Section 7.

2. HYBRIDIZATION METHODS

In this section, we discuss and classify previous research
on hybridization. Hybridiziation is the process of using sim-
ple dynamics with noise to create an abstraction of a system
with more complicated, usually nonlinear, dynamics. This is

done to enable the analysis of systems with the more compli-
cated dynamics by methods which work exclusively on the
simpler ones.

This process is typically targeted for flow-pipe construc-
tion methods, where the set of reachable states is iteratively
computed or overapproximated at monotonically increasing
instances in time, starting from an initial set of states. Com-
putational approaches maintain some representation of the
set of states at each time instances, which we informally
refer to as the currently-tracked set of states.

Static Space-Triggered Hybridization. Early hybridiza-
tion methods were both static and space-triggered [29]. In
these approaches, the state space is partitioned using a
(typically uniform) grid or mesh, and transitions are added
along the partition boundaries, resulting in state-dependent
switching. The advantage of this approach is that exist-
ing termination checking techniques can be used, which is
particularly useful in the case of periodic systems where
linearizing a bounded subset of the state-space is reason-
able [31].

There are, however, three main drawbacks. First, static
mesh construction is traditionally done without knowledge
of the reachable states. Therefore, it requires computing the
mesh over the entire state space (or bounded subset thereof),
which scales exponentially with the number of continuous
dimensions in the system. Second, the geometric intersec-
tions required by space-triggered approaches may introduce
error during reachability computation [4,17]. This is be-
cause such intersections can require tools to convert from
precise internal representations such as zonotopes [25], sup-
port functions [27], or Taylor models [17], to simpler repre-
sentations where intersection operations can be computed,
such as polytopes [6]. After intersection, the simpler rep-
resentation is then converted back to the internal represen-
tation for subsequent computation [26]. These conversions
can result in overapproximations of the original currently-
tracked set of states, adding error each time they are per-
formed. Since hybridization can be done more accurately
when domains are small, many intersection operations may
be necessary and this can quickly lead to error explosion,
as well as an explosion in the number of modes of the hy-
brid automaton. Third, the currently-tracked set of reach-
able states may leave a hybridization domain along multiple
facets, requiring splitting and, later, possibly remerging the
set of reachable states, which can be both computationally
expensive and inaccurate [20].

Dynamic Space-Triggered Hybridization. In order to
help increase scalability, methods were developed that per-
form hybridization during reachability analysis [8]. This
results in dynamic methods where the domain construction
and the abstraction process is performed on-the-fly and only
on states that are reachable [9]. Although dynamic space-
triggered methods scale better into higher dimensions, they
still suffer from the other two problems mentioned above:
error accumulation due to many geometric intersections,
and the splitting of the currently-tracked set of states along
multiple facets.

Dynamic Time-Triggered Hybridization. To address the
other two drawbacks, dynamic time-triggered approaches
were developed [5, 20, 28]. These methods avoid geometric

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

44

intersections by choosing hybridization domains around the
currently-tracked set of states. As time is advanced, the hy-
bridization domains are updated to be near the new position
of the currently-tracked set of states, without requiring an
intersection operation. This can be done at each step [28],
or whenever the currently-tracked set of states leaves the hy-
bridization domain [20]. This can be viewed as the mode of
the abstract hybrid automaton changing at specific instances
in time to a mode with new dynamics, which corresponds
to a time-triggered transition.

Although dynamic time-triggered methods perform well,
they also suffer from certain drawbacks. The most impor-
tant drawback is that, in the earlier static approaches, per-
forming the dynamics abstraction step was an embarrass-
ingly parallel problem, so parallelism could be leveraged
to reduce total runtime (or equivalently, increase precision
for a fixed runtime). In dynamic methods, the bounds of
each new abstraction domain depend on the set of reachable
states in the previous domain, forcing this expensive step to
be performed serially. For example, abstracting nonlinear
dynamics using polynomial differential inclusions can yield
an accurate hybridization, but it requires bounding the La-
grange remainder of the dynamics’ Taylor expansion [1]. In
previous work, this step was reported to take 1121 out of
1180 seconds on a nine-dimensional biological aging model
(about 95% of the runtime), and 1155 out of 1296 seconds
on hybrid variant of the same model (about 89%), although
it was mentioned that some implementation optimizations
were possible [1]. Some parallelization of reachability com-
putation was considered to enable online reachability of car
manoeuvres [2,3]. However, the crucial step of dynamics ab-
straction (computing the linearization errors) was still per-
formed serially because the overapproximation of the La-
grange remainders of the Taylor expansions of the dynamics
at each step was based on the Lagrange remainders at the
previous step. This serial step dominated the reported run-
time of the technique.

A second drawback of time-triggered approaches is that, if
the currently-tracked set of states becomes large (which can
be a property of the system regardless of the method used),
the domains over which dynamics abstraction is performed
also become large. This, in turn, increases the dynamics
approximation error that must be added to the simpler dy-
namics to result in a sound abstraction, increasing error in
the overapproximation of the set of reachable states. This
can be overcome by splitting the set of reachable states [21],
although this may yield an exponential number of sets that
need to be tracked, and possibly redundant computation.
This problem can be partially mitigated through extra track-
ing to perform cancellation of redundant sets of reachable
states, which requires (expensive and error-introducing) in-
tersection operations on the internal representations [5].
Space-triggered approaches do not suffer from this prob-
lem. In fact, introducing occasional artificial space-triggered
transitions can serve to reduce the size and complexity of
the currently-tracked set of reachable states [11].

Novel Hybridization Approaches. A classification of ex-
isting hybridization research is shown in Table 1. A research
gap is noticeable in the static time-triggered category. This
paper attempts to fill this gap by developing, to the best
of the authors’ knowledge, the first static time-triggered hy-
bridization method. The approach is static, and therefore

can perform the bottleneck step of dynamics abstraction in
a parallel fashion. Since the approach is time-triggered, it
can scale to larger numbers of dimensions while avoiding
the accumulation of intersection error. Additionally, as the
method is static and modifies the model directly, it can work
with unmodified reachability tools, yielding immediate ben-
efit of its application using the latest reachability methods.

There are also no fundamental reasons why a method
could not use both time-triggered and space-triggered tran-
sitions during analysis. We develop such a mized-triggered
hybridization approach, which generally uses time-triggered
transitions, but occasionally performs a state-triggered tran-
sition to attempt to reduce the size and complexity of the
currently-tracked set of states. In our review of existing
research, no such approaches currently exist.

Other Hybridization Factors. Research in hybridization
also explores other aspects that are important, but less criti-
cal to the methods developed in this paper. One choice when
performing hybridization is the shape of space-triggered do-
mains. Rectangular domains are simple to reason about,
although manual region selection [29], simplexes [9, 21, 31],
and nonuniform meshes [8,10,31] have been considered. The
sound and tight abstraction of dynamics within each domain
is critical to control error when performing hybridization.
The main reason to consider alternative domains is in or-
der to reduce this error. For general nonlinear dynamics,
this often requires solving constrained nonlinear optimiza-
tion problems, which can be impossible in theory and ex-
pensive in practice. For rectangular domains, interval anal-
ysis [30] can be used to provide guaranteed bounds for this
problem. For other types of domains, the success of the
method depends on the system being analyzed. For exam-
ple, to perform the nonlinear optimization step for simplicial
domains, one can use knowledge of the system’s Lipschitz
constant (which will be sound but inaccurate), or compute
bounds on the second partial derivatives (the elements of
the Hessian matrix) [8,9,21]. In general, this is a nonlin-
ear optimization problem with linear constraints, but for
specific cases it can be efficiently solved. For example, for
quadratic dynamics [20,21], the Hessian matrix is constant.
The choice of domains is not critical to the methods be-
ing developed in this paper, so for simplicity, we considered
rectangular domains.

A second choice when performing hybridization is the
type of ‘simpler’ dynamics. Choices range from constant
bounds [16, 29, 31, 32], linear and affine bounds [9, 21, 31],
to polynomial bounds [1,18]. In this paper, we target an
unmodified implementation of the SpaceEx tool [24], and
therefore simplify from nonlinear dynamics to affine dynam-
ics.

3. PRELIMINARIES

In order to define and justify the soundness of the model
transformation steps used in our approach, we need to
first precisely define the syntax and semantics of hybrid
automata.

Definition 1. A hybrid automaton H is defined by a tuple
H 2 (Modes, Var, Init, Flow, Trans, Inv), where: (a) Modes
is a finite set of modes. (b) Var = {z1,...,zn} is a set of
real-valued variables. (c) Init(m) C R™ is the set of initial
values for z1,...,x, for each mode m € Modes. (d) For

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

45

each m € Modes, the flow relation Flow(m) is a relation
over the variables in x and their derivatives @ = fi,(z),
where #(t) € R and f : R* — 2% i.e., differential inclu-
sions are allowed. (e) Trans is a set of discrete transitions
t = (m,g,v,m'), where m and m’ are the source and the
target modes, g is the guard of ¢, and v is the update of t.
(f) Inv(m) C R™ is an invariant for each mode m € Modes.

For a time interval T, we define a trajectory of H from
state s = (m,x) to state s’ = (m/,x’) as a tuple (L, X). In
this tuple, the function L : T — Modes and X : T' — R" are
functions that define for each time point in 7' the mode and
values of the continuous variables, respectively.

A state s’ is reachable from a state s if there exists a
trajectory starting with s and ending with s’. A state s’
is reachable if s’ is reachable from a state s where s is an
initial state. We denote the set of states reachable from
the set X in mode m by Reachy (m, X). Reach(H) of H is
defined as the set of states that are reachable from the set
of initial states. We use Reach$,(m, X) and Reach®(H) to
denote the versions of the these operators that return only
the continuous part of the computed state space. We refer
to Reach®(H) as the continuous reachable state space of H.
We denote the projection of the set R C R" over variables
Var to the subset Var’ C Var by R |y,~. Throughout the
paper, we always refer to time-bounded reachability, i.e., we
consider trajectories which evolve up to the time horizon
Tmaz. In order to simplify notations, we implicitly take this
assumption for granted in our reasoning. Finally, given a
mode m of the automaton H, we refer to the set of outgoing
transitions as Transy (m).

4. TRANSFORMATIONS

We are interested in methods to compute an overapprox-
imation of the time-bounded set of reachable states, which
produce tight overapproximations, yet are feasible from the
computational point of view. The proposed approaches rely
on several hybrid automaton transformations. A source-to-
source transformation takes as input a hybrid automaton H,
a mode m € Modes,' possibly some additional parameters,
and returns as output another hybrid automaton 6(#). The
four described transformations are (1) time-triggered split-
ting, (2) space-triggered splitting, (3) domain contraction,
and (4) dynamics abstraction. In time-triggered splitting, a
given mode of H is split into possibly multiple modes via
a time-triggered splitting of the modes. Similarly, in space-
triggered splitting, a mode is split by augmenting the mode
invariant with a constraint induced by a space trigger func-
tion. Domain contraction adds auxiliary invariants called
contraction domains to a mode by intersecting them with
the existing invariants of the mode. Dynamics abstraction
overapproximates the dynamics in a mode of the automaton,
which in this paper, abstracts nonlinear differential equa-
tions by linear differential inclusions, in particular a linear
differential equation with an additive set-valued (interval
vector) input.

As hybridization of the continuous dynamics of hybrid
automata is the most challenging part of the hybridization

'For simplicity of presentation, each transformation is de-
fined for a given mode of the hybrid automaton #, and their
application to multiple modes of H is straightforward by it-
erating over each element of Modes.

process, we focus on the continuous dynamics of hybrid sys-
tems in the rest of the paper and assume that an input
hybrid automaton has only one mode. Our approach over-
approzimates the behavior of the original system by a hy-
brid automata consisting of multiple modes. Therefore, only
reachable continuous states are relevant for the soundness
of the transformations. This fact allows us to to conclude
that the inclusion of the original continuous reachable state
space into the transformed one is enough to show sound-
ness of our transformations. Note, however, that although
the input hybrid automaton for the whole hybridization ap-
proach is assumed to be a singleton, our transformations are
defined in terms of general hybrid automata.

In this section, each of these four transformations is pre-
cisely defined. After, these will be combined in order to per-
form static time-triggered and mixed-triggered hybridiza-
tion.

4.1 Time-Triggered Splitting

The time-triggered splitting transformation, informally,
separates the handling of system behavior in the first 7 time
units, and the rest of the trajectory up to the time hori-
zon. In order to achieve this goal, the transformation splits
a given mode of a hybrid automaton into two and imposes
constraints that guarantee that the system dwells in the first
mode for 7 time units and proceeds to the second one once
the time threshold has been reached.

Definition 2. A time-triggered splitting is a transforma-
tion 64 of a hybrid automaton #H, that takes as input an
automaton H, a mode m € Modes that has no outgoing
transitions?, and a real positive time 7, a time-trigger thresh-

old. The hybrid automaton Hy = 0u(H) is defined as:
(a) Modesy,, 2 Modesy U {my}, where my is a fresh (i.e.,
unique) mode name, (b) Vary, = Vary U {t}, where t is
known as the time-trigger variable and is fresh, i.e., assume
without loss of generality that ¢ is a unique variable name,*
(c) the initial states are copied; in addition, if Inity (m) is
not the empty set (i.e., m is an initial mode), then Inity, (m)
£ Inity(m) A t = 7, and otherwise Inity,,(m) = Inity (m);
Inity,, (mu) = 0, (d) the flows are copied, and Flows,, (m)

2 Flowy (m), so mode my copies the original dynamics of

m, and in m, { = —1, and in all modes other than m, £ = 0,

(e) the transitions are copied; in addition, Transs,, (ms) =

Transy (m), with an additional transition created from m to
my with the guard ¢ = 0; moreover, every incoming tran-
sition to m has the reset ¢ := 7 added, (f) the invariants
are copied; in addition ¢ > 0 is added to Invy,(m) and
Invy,, (M) 2 Invy (m) (my copied the original invariant of
m).

Figure 1 illustrates the time-triggered splitting for a single
mode. A time-triggered transition corresponds to any tran-
sition with guard ¢ = 0 taken when the time-trigger variable

’In order to make the presentation of our transformation
clearer, we consider a mode with no outgoing transitions.
Our construction can be easily generalized to also accom-
modate this feature.

3 If the time-triggered splitting transformation 6y is applied
to an automaton multiple times, the time-trigger variable
may be reused in each splitting, as it needs only to be fresh
on the first application of the transformation. This opti-
mization is done in our implementation.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

46

Mode: m

&= fm()

Inv: z € Inv(m)

Mode: m

Mode: my
. Guard:
&= fm(z))
i—_1 t =07 &= (])”m(y;)
> i—=

Inv: z € Inv(m)

t>0 Inv: z € Inv(m)

Figure 1: The time-triggered splitting transformation applied to the original automaton (left, blue) produces the output
automaton (right, yellow). An additional time-trigger variable ¢ is added that counts down to zero from an initial time 7.

t = 0. In contrast to general guards, the reachability along
time-triggered transitions can be computed computationally
efficient as many reachability algorithms automatically cap-
ture time dependencies as part of their workflow. For ex-
ample, the STC scenario [23] of the hybrid model checker
SpaceEx computes time-dependent piecewise-linear approx-
imations of the support functions evolution.

The following lemma connects the time-triggered splitting
transformation with the original hybrid automaton.

LEMMA 4.1. Let H be a hybrid automaton with a set of
continuous variables Var, m € Modes be a mode without
outgoing transitions, and T € Rsq be a time-trigger thresh-
old. Then it holds that Reach®(#H) C Reach®(0¢(#H)) |var-

Here, we note that we need to project away the auxiliary
variable t in order to ensure that the sets of reachable states
of H and 04 (H) can be compared.

4.2 Space-Triggered Splitting

Space-triggered splitting, similar to time-triggered split-
ting, breaks a given mode into several modes. However,
in contrast to the time-triggered transformation, it uses a
space-trigger function to define criteria for mode splitting.

Definition 3. A space-triggered splitting is a transforma-
tion #s of a hybrid automaton H, that takes as input an
automaton H, a mode m € Modes that has no outgoing
transitions, and a function 7 : R® — R called the space-
trigger function. The function m must satisfy the condition
that upon entering mode m, w(x) > 0, where z is the cur-
rent state. This means that if m is an initial mode, for all

states « € Init(m), m(x) > 0. The hybrid automaton H; =
0.(H) defined as: (a) Modesy,, = Modesy U {my}, where
mg is a fresh (i.e., unique) mode name, (b) Vars,, 2 Vary,
(c) the initial states are copied; Inity,, (m«) = 0, (d) the
flows are copied; in addition, Flows,, (mst) = Flowy (m),
(e) the transitions are copied; in addition, Transw,,(ms:)
£ Transy(m); moreover, an additional transition created
from m to ms with the guard w(z) = 0, and (f) the in-
variants are copied, with m(z) > 0 added to Invy,,(m) and
Invy, (M) = Invy (m) (ms: copied the original invariant
of m).

The space-triggered splitting transformation adapts the
idea of pseudo-invariants [11] to the hybridization setting.
In our setting, a space-trigger function 7« basically plays a
role of a pseudo-invariant.

The resulting automaton overapproximates the continu-
ous reachable state space of the original one which is for-
mally stated in the following lemma.

LEMMA 4.2. Let ‘H be a hybrid automaton, m € Modes
be a mode without outgoing transitions, and 7 : R™ — R be
a function satisfying the assumptions in Definition 3. Then

Reach®(H) C Reach®(0s(H)).

4.3 Domain Contraction

Domain contraction adds auxiliary invariants known as
contraction domains that should contain the set of reachable
states. Given a set D and a mode m of a hybrid automaton
‘H where & = f,(x), if Reachy (m, X) C D for X C Inv(m),
i.e. the set of reachable states from mode m starting from a
subset X C Inv(m) is contained in D, then D may safely be
added as an invariant of m. Of course, the set of reachable
states is not available and is what is being computed or
approximated, so error modes known as domain contraction
error modes (DCEMs) are used to maintain soundness if
the system leaves the states represented by these auxiliary
invariants.

Definition 4. A domain contraction is a transformation
O4c of a hybrid automaton #, that takes as input an au-
tomaton H, a mode m € Modes, and a set D C R" called
the contraction domain auxiliary invariant.

The transformed hybrid automaton H 4. 2 Oac(H) is de-

fined as: (a) Modesy,, £ Modesy U {err}, the modes are the
copied, with a new domain contraction error mode (DCEM)

err added, (b) Vary,, Vary, (c) the initial states are
copied; additionally, if m is an initial mode, and Init(m) is
not entirely contained in D, then add the err DCEM to the
initial states; in this way, we capture a degenerate case if
the initial set has states outside of the contraction domain.
(d) the flows are copied; additionally, Flows, (err) of the
form & = 0 are added, (e) the transitions are copied, with
additional transformations of the following form: given an
incoming transition d = (n,g,v,m) to mode m in H, (1)
augment the guard of the transition d with z € D, and (2)
add an additional transition d' = (n,g A x € cl(D),err)
with an extra condition 2 € cl(D) on the guard and leading
to the DCEM err, where D denotes the complement of D
and cl(-) stands for topological closure and (3) add an addi-

tional transition d” = (m,z € cl(D),err), (f) the invariants

are copied, except for the invariant Invy, (m) = Invy (m)
NzeD.

A visualization of the domain contraction transformation
is given in Figure 2.

The conditions to enter a DCEM together ensure that
regardless of the choice of the contraction domain, if the
DCEM err is not reached, then the overapproximation of the
reachable states is sound. Additionally, the condition that
the dynamics are zero in the DCEM err ensures that during

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

47

Mode: m

&= fm(2)

Inv: z € Inv(

m)

... x€c(D)?

Q
Mode: m Mode: err
Guard:
&= fm(z) x € cl(D)?
_— t=0

Inv: = € Inv(m)

nD

Figure 2: The domain contraction transformation applied to the original automaton (left, blue) produces the output automa-
tion (right, yellow). The contraction domain D is added to the invariant, with DCEM err inserted to detect if the reachable

set of states leaves D.

a reachability computation, the exploration of the err will
terminate and be a dead-end in the exploration of the state-
space. Note that the notion of topological closure is required
to ensure that the intersection of guard and invariant is non-
empty.

LEMMA 4.3. Let H be a hybrid automaton, m € Modes
be a mode, and D C R™ be a contraction domain. Then, if
no DCEM is reachable, Reach®(H) C Reach®(04.(H)).

The contraction domain auxiliary invariants may be arbi-
trary and may be determined using any method, so they may
not actually contain the set of reachable states. To main-
tain soundness, the DCEMs are added such that if the con-
traction domains do not contain the set of reachable states,
transitions to the DCEMs may be taken.* If no DCEMs
are reached, then the domain contraction transformation is
sound, but otherwise, if a DCEM is reached, the resultant
set of set of reachable states may not be subset of the original
automaton’s set of reachable states. If it is known that the
set of reachable states will not leave the contraction domain
by some other analysis, then the DCEMs are not necessary
and the invariants may simply be augment