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1. Summary

This final technical report covers the two-year duration of this project, from April 16, 2015 
through April 15, 2017. 

As Air Force warfighting missions incorporate increased distributed autonomy, emergent 
global behavior may arise from interactions between individual autonomous agents. Example Air 
Force systems that may in the coming years incorporate increased autonomy resulting in little-to-
no direct human monitoring and intervention include drone (UAV) swarms [1] and satellite 
constellations [2]. Novel methods are needed to ensure such distributed cyber-physical systems 
(DCPS) have trusted assurance to meet their mission requirements and only their mission 
requirements in spite of potential emergent distributed behavior, attacks, and failures. 
Understanding distributed emergence and being able to respond to it through trusted and assured 
responses will allow warfighters to continue fighting and adapting through engagements, enabling 
strategic agility in Air Force missions. Ultimately, developing theoretical and practical tools for 
understanding and responding to the fundamental phenomena of emergence will enable the Air 
Force goal to fly, fight, and win … in air, space, and cyberspace. 

This project suggested and developed the use of scalable formal methods in mission (1) 
specification and verification, (2) runtime monitoring, and (3) trusted and assured control, all 
conducted in conjunction with (4) a rigorous evaluation on DCPS with prototypical features of 
modern Air Force systems such as UAV swarms and satellite constellations. The primary research 
objectives undertaken were to: 

• Objective 1: Develop scalable automated formal verification methods for specifying and
verifying trusted global DCPS mission behaviors along with distributed emergent
behavior, alleviating state-space explosion by exploiting symmetries.

• Objective 2: Develop scalable runtime verification and monitoring methods relying on
both formal tools and heuristic systems to detect emergent behaviors and violations of
global mission specifications during mission operation.

• Objective 3: Develop runtime assurance (RTA)-like trusted control methods for these
distributed systems building upon the foundational theory of self-stabilization of
distributed systems [3-6] and the Simplex architecture [7] to ensure mission specifications
are maintained in spite of emergent distributed behaviors at execution time.

• Objective 4: Evaluate the formal specification and verification, runtime monitoring, and
control methods developed in the other objectives on challenging DCPS case studies with
Air Force relevance, particularly swarm robot systems.

2. Introduction

2.1. Motivation 
Physical systems are becoming increasingly dependent upon computers and software, such 

as in emerging embedded and cyber-physical systems (CPS), where networked software interacts 
with physical processes. For instance, typical modern cars utilize dozens-to-hundreds of 
microprocessors, many communications buses, and a complex interconnection between sensors, 
actuators, and processors [8-10]. In the design and development process for most engineered 
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systems today (including CPS), the vast majority of resources are devoted to ensuring systems 
meet their specifications [11, 12]. In spite of significant technical advances for design verification 
and validation—such as model checking, hardware-in-the-loop testing, automatic test case 
generation for software, and sophisticated simulators—there are frequent safety recalls across CPS 
industries due to problems between cyber and physical subcomponents. For example, the 
Consumer Product Safety Commission (CPSC) has recalled between 2010-2012 fire alarm and 
control systems from Bosch, Tyco-Grinnel, and Honeywell for failure to sound alarms and/or 
notify fire departments [13-15], the Food and Drug Administration (FDA) has reported the leading 
cause of recent medical device recalls are cyber-related (tied with manufacturing defects) [16, 17], 
and the National Highway Traffic Safety Administration (NHTSA) has recalled hundreds of 
thousands of 2004-2005 and 2010-2014 Toyota Priuses due to drivetrain software problems 
causing unexpected stalls [18, 19] and millions of 2005-2010 Hondas due to electronic control 
model software causing transmission damage [20].  Given that such recalls are due to increased 
risk of physical safety (and not yet, e.g., for privacy issues), all such problems are inherently cyber-
physical. As future networked systems like robot swarms, the smart grid, satellite constellations, 
and the intelligent transportation system increasingly couple distributed agents together, emergent 
behavior will be seen to spontaneously arise. Demonstrated areas of distributed emergence through 
local interaction in natural and engineered systems include fish schools [21], herds [22], highways 
[23, 24], swarm robotics [25-27], and distributed computing [4, 28, 29]. 

2.2. Air Force and Department of Defense Relevance 
Air Force Relevance for Strategic Agility: In the July 2014 report, “America’s Air Force: A Call 
to the Future,” Secretary of the Air Force Deborah Lee James outlines a three decades long 
strategic plan for the Air Force, centered around the theme of strategic agility. In this strategy, two 
technical areas of relevance to this project are highlighted, namely autonomous systems and 
unmanned systems. From a technical standpoint for unmanned systems, strategic agility will 
enable systems with little human supervision to “swarm, suppress, deceive, or destroy.” For 
autonomous systems, strategic agility will enable moving from today’s systems that are “able to 
execute a set of pre-programmed functions” to tomorrow’s systems that “will be better able to 
react to their environment and perform more situational-dependent tasks as well as synchronized 
and integrated with other autonomous systems.” The work completed through this project brings 
a formal perspective to what it means for systems to have emergent behavior, such as what may 
arise in the challenging environments of the battlefield. 
Department of Defense Relevance: In the January 2013 report “Resilient Military Systems and 
the Advanced Cyber Threat” from the Defense Science Board, a number of broad cyber challenges 
and opportunities are outlined in current and future defense systems. Specific recommendations of 
the task force report include “use of emerging technology developments for system resilience, such 
as trust anchors, minimal functionality components, simplified operating systems, developing a 
means to verify compromise of fielded systems contributing to critical missions, creating trust in 
systems built with un-trusted components, and restoring to a known state.” 

Many Air Force and DoD projects are currently underway related to these areas. For 
example, the High-Assurance Cyber Military Systems (HACMS) projects aims in part to develop 
verified components, the BEDROCK project, high-assurance microprocessors are in development, 
techniques for determining computer component intrusion and counterfeiting, etc. Verified 
operating systems like seL4 and verified optimizing compilers like CompCert are new seminal 
results toward this goal. However, the work completed in this project is uniquely differentiated 
from all existing work in several ways. First, this work focuses on emergent behaviors and 
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properties that may arise in distributed systems, while most if not all of these other projects and 
existing approaches focus on non-distributed systems. We are not yet to the state where distributed 
systems may be fully verified (e.g., at every layer of the OSI network model), although progress 
is being made as outlined above (and in e.g., verification of cryptographic protocols, key 
exchanges, etc.). Second, the work of this project is not a clean-slate approach like HACMS and 
BEDROCK. The results of this project may operate within the constraints defined by existing 
development environments practices, and the reality that for a variety of reasons (e.g., budgetary), 
there is additional use of commercial off-the shelf components (COTS) in military systems. To 
operate within these constraints, we investigated both fully formal approaches and semi-formal 
approaches augmented with heuristic approaches. 
2.3. High-Level Technical Summary 

The underlying formal, mathematical framework used in this project is that of hybrid 
automata [30], which are finite-state machines augmented with real-valued variables that evolve 
continuously over intervals of real time. Asynchronous networks composed of hybrid automata 
[31] are useful for modeling distributed systems that interact with the physical world, such as robot
swarms [5, 6], air traffic control systems [32, 33], autonomous satellites and constellations [2], and
distributed electrical microgrids [34].  Desired emergent behaviors include phenomena like
flocking, while undesired emergent behavior may lead to catastrophic mission failure.
Objective 1: Scaling Formal Specification and Verification for Emergence in DCPS

Objective 1 developed design-time formal specification and verification methods for 
emergence in DCPS modeled as networks of hybrid automata with linear and nonlinear dynamics. 
For specifying emergence, new specification languages for CPS using hyperproperties were 
developed allowing specification of frequency-domain behavior and real-time, real-valued 
behaviors through hyperproperties for signal temporal logic (HyperSTL) [35-37]. The Passel 
verification tool [31, 38], in conjunction with a small model theorem [39], an invariant synthesis 
procedure [32], and a symmetry-reduction reachability method [40], enabled the first fully 
automatic verification of safety (aircraft separation) for the Small Aircraft Transportation System 
(SATS) landing protocol (a part of the NASA/FAA NextGen program [41-48]). Through this 
objective, we built upon these approaches for addressing the state-space explosion problem to scale 
verification methods to larger DCPS than previously possible, as well as developed a new 
verification tool, HyST [49]. 
Objective 2: Detecting Emergence at Runtime: Specification-Based Runtime Monitoring 

Objective 2 developed formal and heuristic runtime monitoring verification methods for 
emergence in DCPS, using both model-based and model-free approaches. Model-based methods 
rely on formal methods tools and inherently are subject to scalability problems, while model-free 
approaches are heuristic, as they are both unsound and incomplete, but scale better. Together, the 
methods rely on monitoring asynchronous distributed and hybrid systems at runtime and in real-
time, and build upon both model-free and model-based approaches developed by our group [1, 7, 
50]. For DCPS, we extended an invariant inference tool called Hynger (HYbrid iNvariant 
GEneratoR) [50] that instruments arbitrary MathWorks Simulink/Stateflow (SLSF) models to 
generate candidate invariants over input and output variables [51]. 
Objective 3: Assured Control in Spite of Emergence with Real-Time Reachability and Self-
Stabilization for Distributed Simplex 

Objective 3 developed control methods to ensure desirable or avoid undesirable emergent 
distributed behavior at runtime, by leveraging the Simplex-based RTA framework using real-time 
reachability of networks of hybrid automata in conjunction with self-stabilization [3-6, 52, 53] of 
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the distributed system. Monitoring predicates over 
physical variables and their continuous evolution over 
time was performed with real-time hybrid systems 
reachability and runtime monitoring of emergent 
behavior specified and detected in Objectives 1 and 2. 
Objective 4: Evaluating Analysis, Monitoring, and 
Control of Emergence in DCPS 
Objective 4 is evaluating the novel methods for 
distributed emergence developed in the previous 
objectives. We performed analytical analysis, 
simulations, laboratory experiments, and 
demonstrations using a swarm of autonomous agents, 
particularly commercially available quadrotor drones. 
Typical safety properties that arise are collision 
avoidance and convergence to some desired 
configuration and/or location [52], and emergent 
properties may be consensus, flocking, or unwanted 
oscillatory movements due to failures, attacks, communication delays, etc. Our results in similar 
studies include verification of autonomous satellite maneuvers [2], flocking in swarm robotics in 
spite of failures [5, 6], and planar robotics [52]. 

3. Methods, Assumptions, and Procedures

3.1. Overview 
The objectives summarized in the previous section were undertaken through the following 

technical procedures and methods. 
3.2. Technical Procedures 
3.2.1. Scaling Formal Specification and Verification for Emergence in DCPS 

We first developed design-time formal specification and verification methods for 
emergence in DCPS modeled as networks of hybrid automata with linear and nonlinear dynamics. 
We developed a verification framework for modeling DCPS as networks of hybrid automata that 
interact through discrete transitions [31, 32, 39, 40].  The Passel verification tool [31, 38], in 
conjunction with a small model theorem [39] and an invariant synthesis procedure [32], enabled 
the first fully automatic verification of safety (aircraft separation) for the Small Aircraft 
Transportation System (SATS) landing protocol (a part of the NASA/FAA NextGen program [41-
48]).  Extending Passel and its theoretical framework to emergence properties for swarm robotics 
first requires developing formal definitions and specifications of emergence properties in DCPS. 
3.2.1.1. Formally Defining and Specifying Emergent Behavior in DCPS 

The approach is to specify emergence as sets of invariant properties over the local states of 
individual automata, to describe the global behavior of the entire distributed systems. For example, 
invariants allow specifying either creation or absence of emergence of consensus or flocking 
behavior. DCPS are naturally parameterized by a number of interacting agents, for instance, the 
number of robots in a swarm. We define absence and presence of emergence properties using 
invariants, integrate the formal specification of emergence into an extension of the Passel 
verification tool [31, 38] with a new software tool HyST [49], and evaluate synthesizing 
implementations in a correct-by-construction manner [54]. 

Figure 1: High-level overview of the DCPS 
modeling framework, where each agent 
(participant) in the distributed system is modeled 
as a hybrid automaton, and a network is composed 
of these automata that may communicate through 
a potentially lossy and adversarial channel. 
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Figure 2 shows emergent flocking behavior in a simulation of the Olfati-Saber algorithms 
[25-27] that rely only on local communication between the agents. Flocking is not specified 
anywhere in the system description, instead, it emerges dynamically as a property of the system 
over its execution. One definition of flocking is that all agents are spaced equally from all their 
neighbors, which may be specified mathematically as: 

∀𝑖𝑖 ∈ [𝑁𝑁],∀𝑗𝑗 ∈ 𝐶𝐶𝑖𝑖: �𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑗𝑗� = 𝑟𝑟𝑓𝑓, (1) 

where 𝑖𝑖, 𝑗𝑗  come from a set of agent identifiers [𝑁𝑁] ≜ {1, … ,𝑁𝑁} , 𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑗𝑗  are real vectors of an 
appropriate dimensionality (e.g., 3 for the example of Figure 2), ‖ ⋅ ‖ is an appropriate norm (e.g., 
say the 2-norm), 𝐶𝐶𝑖𝑖 is a set of communication neighbors of 𝑖𝑖 (e.g., 𝐶𝐶𝑖𝑖 ≜ {𝑗𝑗 ∈ [𝑁𝑁]: �𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑗𝑗� ≤ 𝑟𝑟𝑐𝑐} 
for some communication radius 𝑟𝑟𝑐𝑐), and 𝑟𝑟𝑓𝑓 > 0 is some desired flocking spacing [1, 5, 6]. Note 
that non-ideal spacing may easily be incorporated, e.g., to define a flock as states where agents are 
approximately spaced by 𝑟𝑟𝑓𝑓, such as 𝑟𝑟𝑓𝑓 ± 𝜖𝜖𝑓𝑓 for some small 𝜖𝜖𝑓𝑓. Control algorithms to enable such 
emergent behavior do not a prior specify anything about the behavior, rather it arises 
spontaneously. Other emergent properties of interest for such systems include collision avoidance, 
which may be specified in a similar format, such as: 

∀𝑖𝑖, 𝑗𝑗 ∈ [𝑁𝑁]: �𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑗𝑗� ≥ 𝑟𝑟𝑠𝑠, (2) 

where all quantities are as before and 𝑟𝑟𝑠𝑠 ≤ 𝑟𝑟𝑓𝑓 is a desired spacing amount. Note that these emergent 
behaviors are potentially in conflict with one another: flocking mandates agents come sufficiently 
close together, while safety mandates agents do not come too close together. 

From a specification standpoint of these two different forms of emergent behavior 
described in (1) and (2), there are several similarities. First, the class of formulas these 
specifications come from is quite similar. These are both specified using universal quantification 

Figure 2: Example of emergent flocking behavior in three dimensions with a system of N = 64 agents. The left frame 
is at an initial condition and the right frame illustrates the flocking formation after 36 seconds of runtime. The agent 
positions are denoted by green circles, their velocities by green vectors, and a red vector indicates their desired 
heading. Blue lines between agents are drawn if their distances are approximately spaced by some desired flocking 
spacing 𝑟𝑟𝑓𝑓. 
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followed by a quantifier-
free formula over reals. 
Both of these 
specifications of 
emergent behavior 
almost fall into the 
restricted class of first-
order logic (FOL) 
supported in the 
theoretical framework 
developed for uniform 
verification of safety 
properties in networks of 
hybrid automata, with 
automated reasoning 

methods implemented in the Passel software tool [31, 32, 39]. To highlight one subtlety, note that 
an alternative way to represent the set of communication neighbors of an agent is using a set-
valued variable, i.e., an array. 

However, extensions are needed to support planar and three-dimensional specifications of 
flocking, extensions to the restricted class of FOL supported by the small model theorem [39] 
exploited by Passel. Specifically, the specification of the two-norm is a polynomial expression 
over the reals, while Passel has only been used so far on linear 
expressions. Thus, a first objective is to extend Passel to support 
polynomial expressions. Next, realistic systems have continuous 
dynamics specified by linear or nonlinear ordinary differential 
equations (ODEs), while the modeling language supported by Passel 
does not currently allow this. Additionally, an extension of the small 
model theorem for these scenarios is required, as it also only allows 
linear expressions, while the solutions of ODEs may generally 
involve special functions and transcendentals. This extension to the 
theoretical basis of Passel was made and integrated within HyST 

Figure 5: Emergent flocking
with four groups of agents using 
platooning algorithms. 

Figure 3: The left image shows divergent emergent behavior when trying to use 
distributed flocking control algorithms with realistic system constraints, particularly 
(1) actuator saturation, (2) asynchrony, and (3) communication delays, and the right
image shows partial emergence of flocking for these factors.

Figure 4: Alternative specifications of flocking emergence exist like bird vees. This is a planar scenario created by 
adjoining two one-dimensional flocks (platoons) about an appropriate angle. The middle figure shows a phase space 
plot of the trajectories of all agents, and the right figure shows the planar coordinates of all agents as they evolve over 
time while moving and rotating in the plane. By composing formally verified primitives (the exponentially stable one-
dimensional flocking algorithm), sophisticated and verified planar formation control is achieved. High-level mission 
specifications and flock formation parameters (such as the angles, where to move, etc.) may be specified in a temporal 
logic like linear temporal logic (LTL). 
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[49]. This extension is feasible, 
under the assumption that the 
continuous dynamics of an agent 𝑖𝑖 
do not directly depend upon those 
of an another agent 𝑗𝑗. That is to 
say, their continuous interactions 
are decoupled. They may however 
interact discretely, through for 
instance communication or 
computer-sampled sensing. This 
together leads to the next 
approach, of extending the 

modeling language and theoretical basis of Passel to support both decoupled linear and nonlinear 
ODEs. 

3.2.1.2. Formal Verification using State-Space Reductions in Hybrid Automata Networks 
Previous limitations of verification methods for DCPS required each automaton in the 

network to have rectangular dynamics (�̇�𝑥 ∈ [𝑎𝑎, 𝑏𝑏] for real constants 𝑎𝑎 ≤ 𝑏𝑏). While many systems’ 
dynamics may be reasonably over-approximated as rectangular differential inclusions, it is critical 
to extend the framework and results to support linear and nonlinear differential equations. The 
Passel verification tool and its theoretical basis was extended within HyST to support DCPS with 
linear and nonlinear continuous dynamics, enabling it to realistically specify and verify swarm 
robotics case studies with emergence by exploiting symmetry-reduction methods for reachability 
[31, 40, 55-63] and small model theorems [39] for proving inductive invariants to establish. Since 
these methods are sound and consider all system behaviors and permutations, they have the 
capability to establish the presence or absence of emergence over the evolution of these DCPS. 

The main technical challenge in utilizing such methods (for any formal model) is the state-
space explosion problem (referred to as the “curse of dimensionality” in other fields) [31, 55-57, 
64-68], which is that the size of the state-space grows exponentially in the number of components 
(see Figure 7). For example, small model theorems [31, 39, 67, 69-75] allow for formally verifying 
safety and liveness properties of arbitrarily large parameterized networks of communicating 
automata using finite (and typically small) equivalent systems. The “small model” here refers to 
the size of models in the formal logic sense that are necessary to consider in deductive proofs. That 
is, a model is a satisfying assignment to a sentence, and the size refers to the largest size of 
satisfying assignments that need be considered, and not to the size of the system model itself, 
although there is clearly a relationship between the two.  

State-space explosion is a challenging problem in verification, and in [39] we developed a 
small model method for verifying safety properties of arbitrarily large networks of hybrid automata 
by verifying finite networks. For example, in an air traffic control system, each aircraft may be 
modeled as a hybrid automaton and a safety specification is that no two aircraft ever come too 
close to one another to establish that aircraft never collide. A major focus of this research 
community is to develop mathematical and software tools to verify that CPS design models meet 
their requirements. Of course, automation is challenging for a variety of reasons, such as the state-
space explosion problem and the combinations of discrete and continuous dynamics. Significant 
effort was spent developing a software tool called Passel—a collective noun meaning a large group 
of indeterminate number—for automatic verification of parameterized CPS, and all methods in 
this project were implemented algorithms in publicly available tools (HyST, Hynger, StarL, 

Figure 6: Emergent planar flocking behavior under ideal conditions 
required by existing distributed control algorithms without attacks, 
failures, control/actuation saturation, asynchrony, or communication 
failures. 
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rtreach, specified in the deliverables). Systems are 
modeled in Passel as hybrid automata, and the 
tool generates the CPS semantics in a restricted 
subclass of first-order logic (FOL) over reals, 
bitvectors, and integers. Passel leverages recent 
advances in satisfiability modulo theories (SMT) 
solvers. Passel exploits the small model theorem 
we developed to reduce verification for networks 
composed of arbitrarily many (countably infinite) 
hybrid automata to checking a network with a 
(small) finite number [39].  Abstraction results 
like this enable scalable verification, and allow 
Passel to automatically prove inductive invariants 
by checking validity of appropriate FOL 
formulas. Passel has been applied to verify CPS 
examples like the Small Aircraft Transportation 
System (SATS) landing protocol in NASA/FAA NextGen program [41-48].   
Reductions in Formal Verification: Symmetry-reduction methods [31, 40, 55-63] similarly allow 
for formally verifying systems with large spaces by only exploring small equivalences classes of 
the large state space.  For example, in preliminary results [31, 40] shown in Figure 8 allow for 
verification of significantly larger networks of hybrid automata than existing methods (e.g., in 
PHAVer [76] or SpaceEx [77]). In preliminary results [31, 40] consider systems that have on the 
order of 𝟐𝟐𝟏𝟏𝟏𝟏𝟏𝟏 discrete states (growing at 𝑁𝑁(4𝑁𝑁)𝑁𝑁, see Figure 7) as well as on the order of 𝑵𝑵 =
𝟐𝟐𝟏𝟏 to hundreds of continuous variables, where 𝑁𝑁 is the number of automata in the network (the 
x-axis in Figure 7 and Figure 8).  No other tool can support such large state spaces with a
combination of both complex discrete and continuous behaviors (e.g., [76-79]) and the closest
comparable tool is Uppaal [80] (but that does not support as general dynamics). Leveraging these
results, we developed the first formal verification of emergent properties like flocking in DCPS.
3.2.2. Detecting Emergence at
Runtime: Specification-
Based Runtime Monitoring

Objective 2 was the 
development of runtime 
monitoring verification 
methods for emergence in 
DCPS, using both model-based 
and model-free approaches. 
Model-based methods rely on 
formal methods tools and 
inherently are subject to 
scalability problems, while 
model-free approaches are 
heuristic, as they are both 
unsound and incomplete, but 
scale better. Together, the 
methods rely on monitoring 

Figure 8: Symmetry-reduced reachability of hybrid automata networks 
implemented in the Passel verification tool [31, 40, 38], which addresses the 
state-space explosion problem and allows significantly larger problem size 
than existing state-of-the-art methodology (in PHAVer). 
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asynchronous distributed and 
hybrid systems at runtime and 
in real-time, and builds upon 
both model-free and model-
based approaches developed 
by our group [1, 7, 50]. While 
the model-based design 
framework and typical formal 
verification problem assumes 
a system model 𝒜𝒜  with 
formal semantics is available, 
this is rarely the case in the 
current state of engineering 
practice. We developed an 
invariant synthesis tool called 
Hynger (HYbrid iNvariant 
GEneratoR) [50] that instruments arbitrary Simulink/Stateflow (SLSF) block diagrams for input to 
the Daikon invariant finder [81, 82] to generate candidate invariants over the input and output 
variables of every block in a diagram. The internals of the SLSF blocks may be unknown, be 
compiled machine code, actual systems, etc. Such heuristic methods scale better than formal 
methods alone. However, if the internals are known and formal models are available, the 
candidates may then be checked to be actual invariants using tools like Passel [31], HyCreate [83], 
SpaceEx [77], etc., so these heuristic methods enable scalable usage of formal tools for monitoring 
invariants. 
3.2.2.1. Model-Free and Model-Based Invariant Inference and Synthesis for Emergence in DCPS 

We first extend the invariant inference methodology to distributed CPS from individual 
systems currently supported. Combined with emergence specified as invariants, this allows for 
identifying the presence or absence of emergent behavior in DCPS at runtime. While not all 
interesting specifications of emergent behavior may be found as invariants, many examples can, 
such as those for flocking and collision avoidance in (1) and (2). 

The overall methodology is depicted in Figure 9. A CPS model or implementation is 
provided as a SLSF diagram  𝒜𝒜. The SLSF diagram is instrumented, then the SLSF diagram is 
executed to generate a set of sampled, finite-precision traces Τ for each initial condition 𝜃𝜃 in a set 
of initial conditions Θ, which effectively corresponds to a test suite. The traces are analyzed using 
dynamic analysis methods, such as Daikon, to generate a set of candidate invariants  Φ� , each 
element 𝜑𝜑�  of which may be checked as actual invariants if 𝒜𝒜 corresponds to a formal model (e.g., 
a hybrid automaton), then a model checker may be employed to see if it is an actual invariant 𝜑𝜑, 
and the set of actual invariants Φ is collected. Next, each candidate invariant  𝜑𝜑� ∈ Φ�  is projected 
(restricted) onto the subset of physical variables to yield a candidate physical invariant 𝜑𝜑�P and 
corresponding set Φ�P. Now, 𝛷𝛷�𝑃𝑃 corresponds to the candidate, inferred physical invariants from 
the perspective of the DCPS. The candidate sets of invariants and proved invariants are used for 
runtime monitoring and verification (RMV) and runtime assurance (RTA). 

To formalize the problem, an extension of hybrid input/output automata (HIOA) was 
developed [53, 84-86], called cyber-physical input/output automata (CPIOA) [35]. In addition to 
partitioning variables into local, input, and output sets, each of these sets of variables are further 

Figure 9: Hynger-based formal and heuristic-based invariant inference for 
emergent behavior in DCPS. Sets of candidate invariants are generated to either 
monitor the sets of invariants themselves and how they change over time, as 
well as prove that these candidates are actual invariants for RTA. 
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partitioned into cyber and physical variables. Then, when states 
(or formulas used to symbolically represent states) are restricted 
to the set of cyber (respectively, physical) variables, the 
specifications then correspond to the cyber (respectively, 
physical) specification. In practical software implementations 
using e.g., C and SLSF models, the physical variables can be 
specified using a subtyping of the usual types for approximation 
of reals (e.g., a physical variable is a subtype of double floating-
point or fixed-point types). Techniques building on taint analysis 
of programs are used to identify the effects of all physical 
variables in CPS [87]. 

We utilize both dynamic and static analyses of CPS 
models to infer the cyber-physical specifications of emergence. When models with formal 
semantics (e.g., CPIOA) are available, static analysis in the form of reachability analysis may be 
employed to determine invariant specifications. If no such formal models (or potentially no models 
and even only black-box implementations are available), one may employ dynamic analysis by 
executing (or simulating) the systems under consideration to generate sets of executions (or 
sampled approximate traces, due to inherent inaccuracies of simulation on finite-precision digital 
computers). We developed a methodology within Hynger for instrumenting arbitrary SLSF 
diagrams (that may potentially have known or unknown models or system implementations) to 
generate output traces in the format compatible with the Daikon dynamic invariant inference tool 
[81, 82]. The SLSF blocks may be unknown models or even system implementations since from 
the point of view of SLSF, the only information required for blocks are variable values at block 
inputs and outputs and when that information is updated. For instance, SLSF may be integrated 
with hardware/software-in-the-loop simulation, and for these purposes, some blocks represent 
models to be simulated and have information necessary to perform simulation, while other blocks 
actually correspond to implementations that have been interfaced to provide necessary data to 
SLSF. Since physical variables evolve according to ODEs, their invariants may involve nonlinear 
and transcendental functions. Nonlinear (polynomial) invariants [88], disjunctive/max-plus 
invariants [89, 90], and simulation-based verification (which effectively define invariants from 
dynamic analysis) [91] may be used to greatly expand the classes of invariants that may be found.  
If formal models are available, one may check if the inferred invariants are actual invariants using 
hybrid systems model checkers such as SpaceEx [77], HyCreate [83], and Passel [31, 38]. Physical 
dynamics and specifications thereof are formalized in a mechanized manner, similar to the 
numerical simulations formalized in ACSL [92] for Frama-C [93]. 

Using the formalized distributed emergence inference methods, offline algorithms to 
identify emergence were developed.  As detailed in Figure 9, this results in SMT validity and 
satisfiability checks over formulas symbolically representing the candidate invariants. We 
implemented specification inference methods in software tools.  A software tool is developed 
implementing the algorithms developed in the other objectives to solve the emergence inference 
problem at design time. The software tool is called Hynger (for Hybrid iNvariant GEneratoR) and 
integrates with typical CPS development environments (Mathworks Matlab/Simulink) as well as 
formal analysis tools for hybrid systems, such as Passel [31, 38] and SpaceEx [77].  This leverages 
extensive experience using SMT solvers [94, 95] such as Z3 [96] used by the Passel tool [31, 38, 
40] for the satisfiability/validity checks.  Case study models (and the testbed described in Objective
4) are developed to evaluate the inference methods.

Figure 10: Correct-by-construction 
implementations of DCPS, starting 
from a formal model (e.g., as a 
SpaceEx hybrid automaton network) 
using a sound translation to 
implementations as Simulink 
models. 
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We investigated richer specification languages, such as temporal logics (e.g., linear 
temporal logic [LTL] or computation-tree logic [CTL], etc.), as well as real-time temporal logics 
(e.g., metric temporal logic [MTL], metric interval temporal logic [MITL], signal temporal logic 
[STL] [97], etc. [98]).  With richer specification languages like LTL, richer techniques are be 
necessary, and ideas such as Angluin’s learning algorithm [99, 100] or counterexample-guided 
synthesis [97, 101] to infer specifications (i.e., finite-state automata for LTL and parameters for 
STL) from executions were investigated. The detection of emergence becomes more complex, as 
instead of satisfiability checks between invariants to determine inclusions, language inclusions 
must be checked. To work with C code, Daikon must utilize appropriately instrumented binaries 
using Valgrind via its Kvasir/Fjalar frontends [82]. This makes it difficult to use on non-x86/x86-
64 platforms, which is a serious limitation, as most embedded platforms utilize other architectures 
(e.g., ARM, AVR, PIC, 8051, MSP430, etc.). Due in part to these limitations, the methodology 
instruments architecture-independent SLSF diagrams to generate traces in the input format 
compatible with dynamic analysis tools like Daikon. The Hynger tool takes an arbitrary SLSF 
model, instrument it, then analyze the resulting traces with dynamic analysis to identify broad 
classes of emergent behavior. 

3.2.2.2. Runtime Assurance and Runtime Verification for Emergence in DCPS 
Next, the candidate invariants detected using the Hynger and Daikon tools may be 

monitored at runtime to enable a runtime assurance framework like the ClearView system for 
distributed (purely software) systems [102, 103]. While technically unsound and incomplete, 
practically, given a sufficiently large test database, the candidate invariants correspond well to the 
expected behaviors of the system, and serve as abstractions of all internal behavior. At runtime 
when analyzing traces over finite times, if the candidate invariants inferred are not implied by 
known candidates then a suspicious scenario is flagged (such as an attack [102, 103], emergent 
behavior, etc.). We investigated and use distributed global predicate and state detection algorithms 
that rely on minimal communication, building upon seminal results of Chandy, Misra, and 
Lamport [104-106]. Self-stabilization [4] is used as a tool to formalize the emergence specifications 
and their evolution over time in the distributed systems (as invariants, i.e., predicates of state 
space). 
3.2.3. Assured Control in Spite of Emergence with Real-Time Reachability and Self-
Stabilization for Distributed Simplex 

Objective 3 is the development of control methods to ensure desirable or avoid undesirable 
emergent distributed behavior at runtime, by leveraging the Simplex-based RTA framework using 
real-time reachability of networks of hybrid automata in conjunction with self-stabilization [3-6, 
52, 53] of the distributed system. Monitoring predicates over physical variables and their 
continuous evolution over time is performed with real-time hybrid systems reachability. We 
developed a methodology for runtime assurance in Simplex-architecture RTA systems using real-
time reachability for a single hybrid automaton [7]. These results are restricted to a single hybrid 
automaton, and require extensions to DCPS. Since modern DCPS are complex, it may be infeasible 
to determine all specifications and possible emergence between all subcomponents at design time. 
We developed online runtime monitoring and verification methods for the inferred candidate 
specifications of emergence, and combine these monitoring methods with real-time algorithms for 
detecting emergence at runtime. When emergence is identified at runtime, a runtime assurance 
framework building on supervisory control ensures safe DCPS runtime operation in spite of 
emergence. 
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For some of the analysis, we assume formal hybrid 
automata models are available, which may not be the 
case for practical CPS that are designed using more 
typical industrial tools such as Mathworks 
Simulink/Stateflow (SLSF). To alleviate this issue, we 
investigated a new design paradigm, where the plant, 
controller, and their interfaces are designed formally as 
hybrid automata, then are translated to 
implementations as SLSF diagrams (see Figure 10) 
[54]. This paradigm of designing with formal models, 
then instantiating implementations is attractive, as both 
simulation and verification may be conducted with the 
formal model, then an implementation may be derived 
that is guaranteed to have the same behaviors. The 
sound translation framework from formal hybrid automata models to SLSF diagrams (in particular, 
continuous-time Stateflow diagrams, which have behaviors similar to hybrid automata) has 
numerous theoretical and practical challenges. For instance, typical hybrid automata models do 
not support urgency (although hybrid automata with urgency have been investigated recently 
[107]), while transitions in SLSF are urgent (i.e., transitions are taken as soon as they are enabled, 
which is further complicated in SLSF due to actually happening at zero-crossing event points in 
the simulation loop). SLSF diagrams do not support invariants, while hybrid automata do. SLSF 
diagrams (without stochastic models) are typically deterministic (in both discrete transitions and 
continuous trajectories), while hybrid automata are nondeterministic (in both discrete transitions 
being nondeterministic similar to in nondeterministic finite-state automata [NFAs], and continuous 
trajectories being described using differential inclusions, which allow for nondeterministic 
families of solutions). Time-dependent switching is used to abstract more general state-dependent 
switching. Addressing these issues to ensure a notion of behavior preservation when translating 
from hybrid automata to SLSF (using an appropriate assumption on the behavior of the SLSF 
simulation loop and its inherently sampled-time and finite-precision limitations) to enable formal 
guarantees in implementations. 

Next, algorithms were developed for an online, runtime implementation of the overall 
distributed emergence detection as candidate invariants architecture depicted in Figure 9. For the 
dynamic analysis, the specification inference methodology is implemented online, to infer 
specifications at runtime.  Such methods have been used for identifying security attacks in 
ClearView [102], but CPS have a different set of challenges (real-time, real value approximations, 
etc.) [51].  For the static analysis, we built upon preliminary results (Figure 13) for real-time 
reachability of a single hybrid automaton [7].   

The Simplex Architecture (see Figure 11) ensures the safe use of an unverifiable complex 
controller by using a verified safety controller and verified switching logic [108-113]. This 
architecture enables the safe use of high-performance, untrusted, and complex control algorithms 
without requiring them to be formally verified. Simplex incorporates a supervisory controller and 
safety controller that may take over control if the unverified logic misbehaves. The supervisory 
controller should guarantee the system never enters an unsafe state (safety), but also use the 
complex controller as much as possible (minimize conservatism).  In preliminary results [7], we 
establish a combined online/offline approach that uses a real-time reachability computation 
enables a proof of safety, but with significantly less conservatism, so the upgraded controller is 

Figure 11: Overview of the Simplex architecture 
where an unverified, complex controller with 
verified switching logic (decision module) 
switches to a verified safety controller in time to 
prevent mishaps. We extended the architecture to 
distributed Simplex for DCPS leveraging tools 
from self-stabilizing distributed systems. 
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used more frequently as in Figure 13.  In this objective, a 
runtime assurance framework is developed, where the 
safety controller is used if distributed emergent behavior 
is detected online. 

Hynger has been extended for runtime assurance 
tasks like detecting and thwarting security violations and 
attacks, similar to the ClearView tool that also relies on 
dynamic analysis to detect changes in candidate 
specifications [51, 102]. Finding and monitoring sets of 
candidate invariants (even if not verified as actual 
invariants) may be useful for runtime assurance and 
resiliency methods for embedded systems. If candidate 
invariants are checked at runtime using a real-time 
reachability method [7], formal and dynamic runtime 
assurance may be feasible. Rather than purely sensing 
feedback in the Simplex decision, using changes in sets of 
inferred candidate invariants may determine mode 
changes to enable runtime assurance in DCPS. 
3.2.3.1. Real-Time Reachability for Networks of Hybrid 
Automata 
The next research objective is to extend real-time 
reachability to DCPS modeled as networks of hybrid automata, which is the first step in developing 
an RTA framework for DCPS. Existing methods have only been developed for a single hybrid 
automaton, so the focus is on developing a distributed runtime verification method building on the 
real-time reachability of networks of hybrid automata. This is enabled by extending the symmetry-
reducing reachability framework for networks of hybrid automata [40] to those with linear and 
nonlinear dynamics and specifications, developed in Objective 1. 
3.2.3.2. RTA for Emergence in DCPS with Distributed Simplex and Self-Stabilization 

Leveraging both the real-time reachability for 
hybrid automata networks and the Hynger-based 
emergence monitoring methods from Objective 2, the 
next objective is to apply these monitoring methods in 
RTA control of emergence, which is specified as 
maintaining system state within a given region of the 
state-space (i.e., property invariance). We build on the 
theory and tools of self-stabilizing distributed systems 
(see Figure 12), which ensures eventually returning to 
desirable sets of states in spite of failures, attacks, etc. 
Together with the Simplex RTA methods, thus yields 
the development of a Distributed Simplex RTA 
architecture for DCPS. This combines global and local 
state estimation and invariant monitoring. For 
example, each agent may deploy its own Simplex 
architecture, but what emergent behaviors occur if say 
all agents start to use fallback controllers? What is a 
fallback controller for the entire distributed system? 

Figure 12: Illustration of self-stabilization. 
The DCPS starts from a set of initial states 𝑄𝑄0 
and if it evolves over an arbitrary execution 
without failures (attacks, emergent behavior, 
etc.) 𝛼𝛼𝑛𝑛𝑓𝑓, is guaranteed to self-stabilize to a 
set of desirable states 𝑆𝑆  where mission 
progress is ensured and remain there. As the 
DCPS operates, if failures occur and 
executions 𝛼𝛼𝑓𝑓 are followed outside the set 𝑆𝑆, 
they are guaranteed to remain in a set 𝑇𝑇 that 
at least maintains safety. Once failures stop, 
the DCPS again self-stabilizes to 𝑆𝑆 and may 
make mission progress. 

Figure 13: Verifiably safe regions of state-space 
when using complex controller for an inverted 
pendulum example, illustrating real-time 
reachability’s advantages to offline verification 
methods (unverified simulation or LMI-based 
methods that yield ellipsoidal safe sets) in results 
of a Simplex RTA framework.  
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These questions have been addressed in our resulting publications. We leverage preliminary results 
[5-7, 52, 53, 114] in this direction to develop a Simplex architecture for emergence in DCPS. 
3.2.4. Evaluating Analysis, Monitoring, and Control of Emergence in DCPS Testbeds 

To evaluate the methods from the previous objectives, we performed simulations, 
laboratory experiments, and demonstrations using a swarm of autonomous agents, particularly 
commercially available quadrotor drones. Typical safety properties that arise are collision 
avoidance [5, 6, 31-33, 39, 52] and convergence to some desired configuration and/or location [52], 
and emergent properties may be consensus, flocking, or unwanted oscillatory movements due to 
failures, attacks, communication delays, etc.  Our results in similar studies include verification of 
autonomous satellite maneuvers [2], flocking in swarm robotics in spite of failures [5, 6], and planar 
robotics [52]. 
3.2.4.1. Evaluation of Emergence Methods through Simulation Studies 

We evaluated the specification, verification, monitoring, and control methods analytically, 
using software tools, and in simulation. We extended the StarL framework that provides simulation 
capability of DCPS. Additionally, StarL was used to deploy to actual swarm robot systems, so 
altogether this enables evaluation of a correct-by-construction framework for establishing or 
avoiding emergence in DCPS. The StarL [114, 115] platform and its offline simulator allows the 
DCPS to have similar levels of concurrency, asynchrony, and other realistic effects as 
implementations. We used the hybrid automaton translation framework (Figure 10) to convert 
from formal models to StarL programs and SLSF diagrams for simulation. 
3.2.4.1: Experimental Evaluation of Emergence Methods through Lab Demonstrations 

We experimentally analyzed the specification, verification, monitoring, and control 
methods for emergent behavior in DCPS using an indoor swarm robotics system of quadrotors. 
This includes scenarios with emergent behavior such as flocking, flocking in spite of failures of 
physical, cyber, and communication components, and emergent behavior like collision avoidance 
that should be invariant. This serves to validate the analytical, verification, and simulation results, 
and leverages the implementation of StarL programs [114, 115] on hardware. 

4. Results and Discussion

4.1. Key Results and Findings 
The key results and findings of this project for each objective are as follows. 

Objective 1: Specification and Verification 
The first is in specifying behaviors for DCPS, and this resulted in the creation of a novel 

formal specification language called hyperproperties for signal temporal logic (HyperSTL), which 
arguably is the most complete specification language for formally describing behaviors of DCPS 
[36]. Also for specification of behavior, the perspective of considering cyber, physical, and cyber-
physical specifications in DCPS is a key insight [35]. The second is in addressing the state-space 
explosion problem for DCPS, particularly through the use of order-reduction [116]. 
Objective 2: Monitoring 

For monitoring DCPS behavior, the runtime monitoring framework built using Hynger to 
check if behaviors observed at runtime is the key result. By monitoring whether specifications may 
be violated at runtime gives an indication that emergent behavior, or some other anomalous 
behavior, may be occurring [51]. 
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Objective 3: Control 
The perspective of runtime assurance using the Simplex architecture seems particularly 

powerful for mitigating emergent behavior, if it is undesirable [117]. This approach may be 
impactful and useful when artificial intelligence (AI) and machine learning (ML) components are 
incorporated in DCPS, and this direction of research was a key outcome. 
Objective 4: Evaluation 

The methods above were evaluated in several case studies, particularly within the 
distributed robotics framework of StarL. Videos of scenarios are included with the deliverables. 
Numerous benchmark case studies were published [118-122]. 
4.2. Related Work 

Model-based verification typically develops a model of a system and properties 
(specifications) are (manually, semi-automatically, or automatically) checked for that model. 
However, most safety issues induced by software bugs are not a result of design errors, but are the 
result of implementation, reuse, upgrade, and maintenance errors. While a 
priori model-based design (MBD) and clean-slate approaches like 
DARPA’s HACMS, seL4, Bedrock, and CompCert [123-127] are of 
critical important and especially useful for subcomponent verification, 
most systems being designed today utilize a development process where 
engineers write software and systems are integrated from numerous 
components.  Additionally, while there are many standards to help 
improve CPS safety in various domains (like ISO 26262 functional safety 
standard for road vehicles [128] and MISRA C [129]), as CPS have exponential gains in software 
embedded in them, these reliability problems will only become exacerbated [8, 9]. Rare cyber-
physical failure scenarios and distributed emergence motivate runtime contingencies to assure 
safe, if degraded, operation.   
Dynamic Specification Inference: There are many benefits of dynamic analysis such as using 
implementations instead of models [81, 82, 130] to find dynamic program specifications [130]. The 
limitation is results are unsound without additional reasoning. Finding specifications of systems is 
a maturing field within software engineering [81, 82, 130-133], and recent simulation-based 
approaches in hybrid systems and CPS like those used in S-TaLiRo, Breach, and C2E2 can be 
viewed as dynamic analysis [91, 97, 134-139]. Invariants are properties of a system that always 
hold, while conditional invariants may hold at certain program points, for example, at the 
beginning or end of a function call (pre/post conditions). Daikon has found candidate invariants of 
hybrid models of biological system [140] and distributed systems [141, 142], and this illustrates a 
proof-of-concept to use it for hybrid systems. Alternative approaches analyze simulation traces 
from complex Matlab/Simulink models [97, 114, 138, 139], but require a priori specifications or 
require templates from restricted classes of logic. 
Verification of Hybrid Systems: Formal verification aims to solve the problem posed in Figure 
14: does a given formal system model (often an automaton) 𝓐𝓐  satisfy a given specification 
(property) 𝑃𝑃? Automated formal verification (as instantiated, for example, in model checkers), 
aims to develop an algorithm to solve the formal verification problem, instead of using semi-
automated methods such as interactive theorem provers. A hybrid automaton [30, 31, 84, 143, 144] 
is a formal model, and is essentially a finite-state machines with additional continuous variables 
that may evolve according to ordinary differential equations (ODEs) or inclusions that may differ 
in each state. Hybrid automata provide a formal mathematical semantics for formal verification of 
properties specified in some formal language using many techniques [31, 76-78, 144]. While 

Figure 14: General formal
verification problem. 
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automated formal verification is undecidable for many interesting classes of systems (such as 
general software or general hybrid automata), numerous advances have been made in the past few 
decades. Explicit-state and symbolic model checking [68, 145-149] is common place in numerous 
industrial semiconductor development processes, aided in part by automata-theoretic advances and 
developments like efficient representations like BDDs [150], DDDs [151], SAT-encodings [152, 
153], and recently, SMT-encodings [94, 95, 154-157] and quantified encodings [158].  Embedded 
and hybrid systems have likewise benefited from advances such as those implemented in HyTech 
[78], KRONOS [159], Charon [160], Checkmate [161], the ellipsoidal toolbox [162], PHAVer [76], 
KeYmaera [163, 164], SpaceEx [77, 165], and simulation-based verification [134-136, 139, 166-168].  
SMT-based techniques have been used for reachability analysis of hybrid systems in SAT-modulo-
ODEs [79, 169-171], and for automatically discharging deductive proofs of safety by inductive 
invariance in Passel [31, 32, 38-40]. 
Translating Hybrid Automata to Implementations: Efforts have recently been investigated for 
translating timed automata to Mathworks Simulink/Stateflow (SLSF) diagrams, such as UPP2SF 
that converts UPPAAL’s timed automata to SLSF diagrams while maintaining certain properties 
of executions (i.e., a form of soundness) [172-175]. A vast amount of existing work exists in the 
opposite direction, of translating from SLSF to formal models like hybrid automata, extended finite 
state machines (EFSMs), etc. and between hybrid systems formalisms [176-187].  However, tools 
translating from SLSF are impractically difficult to build, in part since SLSF does not have a 
formal semantics (although efforts have tried to define some [188, 189]), and commercially 
available tools such as Ansys/Esterel’s SCADE Lustre [190] converter tool (that translates SLSF 
to Lustre with precise semantics) are not only impracticably large to build in an academic setting 
(e.g., Esterel’s converter has millions of lines of code), but are theoretically unsound, albeit very 
useful.  Additionally, all commercially viable converters only support discrete SLSF diagrams (or 
discretizations thereof), and may not include continuous-time blocks like continuous-time 
Stateflow diagrams [183, 185, 191]. Academic efforts exist to translate from SLSF to hybrid 
models (such as HyLink [192-194] and others [176, 184]), but the vast effort in creating viable 
translators make it impractical. 
4.3. Deliverables 

Table 1 describes the deliverables produced through this project, which includes quarterly 
status reports, final technical reports, software deliverables including source code and prototypes, 
and APIs including documentation. 
Objective  Deliverables 
Objective 1: 
Modeling and 
Analysis 

HyST/Passel software tool, with extensions to linear and nonlinear local 
dynamics allowing modeling of the swarm robotics DCPS case study and 
emergent properties in general DCPS. Software deliverables with source code 
and prototypes, and APIs including documentation. 
 
Online: https://github.com/verivital/hyst  

Objective 2: 
Monitoring 

Hynger invariant inference software tool for distributed emergence 
monitoring. Software deliverables with source code and prototypes, and APIs 
including documentation. 
 
Online: https://bitbucket.org/verivital/hynger  

https://github.com/verivital/hyst
https://bitbucket.org/verivital/hynger
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Objective 3: 
Control 

Real-time reachability tool and RTA framework for emergence in DCPS 
relying on self-stabilization. Software deliverables with source code and 
prototypes, and APIs including documentation. 
 
Online: https://bitbucket.org/verivital/rtreach  

Objective 4: 
Evaluation 

Models of the swarm robot case studies; source code for the control software; 
source code and design files for the overall swarm robot evaluation system. 
Software deliverables with source code and prototypes, and APIs including 
documentation. 
 
Online: https://github.com/verivital/starl  
Videos: https://www.youtube.com/channel/UC1-RPjoacWVNLQKjuxrbn9A  

Table 1: Deliverables for analysis, monitoring, and control of emergence in DCPS. 
 

5. Conclusion 
 
 This project studied emergent behavior in DCPS by developing formal specification 
languages, formal verification methods within the HyST software tool, heuristic-based runtime 
monitoring within the Hynger software tool, and Simplex-based runtime assurance. Together, the 
project demonstrates the capability to detect, monitor, and control emergent behavior in DCPS. 
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Abstract—Cyber-physical systems (CPS) consist of physical
entities that obey dynamical laws and interact with software
components. A typical CPS implementation includes a discrete
controller, where software periodically samples physical state and
produces actuation commands according to a real-time schedule.
Such a hybrid system can be modeled formally as a hybrid
automaton. However, reachability tools to verify specifications
for hybrid automata do not perform well on such periodically-
scheduled models. This is due to a combination of the large
number of discrete jumps and the nondeterminism of the
exact controller start time. In this paper, we demonstrate this
problem and propose a solution, which is a validated abstraction
mechanism where every behavior of the original sampled system
is contained in the behaviors of a purely continuous system with
an additive nondeterministic input. Reachability tools for hybrid
automata can better handle such systems. We further improve
the analysis by considering local analysis domains. We automate
the proposed technique in the Hyst model transformation tool,
and demonstrate its effectiveness in a case study analyzing the
design of a yaw-damper for a jet aircraft.

I. INTRODUCTION

Periodic real-time scheduling is a widespread method used
to control a physical plant as part of a cyber-physical system
(CPS). Typical schedulers, such as rate-monotonic (RM) or
earliest deadline first (EDF) [1], give a guarantee of peri-
odic execution. In each period, sensors are read, the control
algorithm is run, and actuator outputs are set. The physical
world, on the other hand, evolves continuously. Models of the
physical world may be given using differential equations that
are obeyed at all times.

In this work, we analyze the periodically-scheduled con-
troller subsystems of CPS using hybrid automata [2] and
associated analysis tools. A hybrid automaton can directly
model both the continuous behaviors and discrete aspects
that arise when real-time scheduling and sampled control is
combined with a continuously-evolving physical plant. The
set of reachable states of a hybrid automaton, if it can be
computed or overapproximated, can be used to formally prove
control-theoretic properties about the system’s transient and
steady-state behavior. The controller subsystem models, after
being proven correct, could then be integrated with hybrid
automaton models of other parts of the system using modeling
methods like hybrid input/output automata (HIOA) [3]. Rea-
soning about properties of the combined system could then be
performed using assume-guarantee reasoning [4]. With such
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hybrid systems analysis, properties can be formally proven
about sets of initial states as well as behaviors under bounded
sensor error, actuator error, and other uncertainties. This has
the potential to detect errors not found during simulation
and testing, which deal with single initial states and specific
execution traces.

Directly analyzing the controller subsystems of CPS using
hybrid automaton reachability tools, unfortunately, does not
usually work. One issue is that a large number of controller
updates need to be considered in the analysis. The control code
may need to be run tens or hundreds of times a second, and
the physical system may need to evolve for tens of seconds
to show the properties of interest. The number of discrete
transitions that occur thus becomes extremely large. Real-time
schedulers may also have variability in the exact scheduling
time of the controller. Hybrid automaton reachability analysis
tools perform poorly in such cases, with error bounds growing
unacceptably large in the presence of many discrete transitions
and timing uncertainty [5], [6].

In order to overcome these challenges, we apply a variant of
the continuization technique [7], where a fast-switching hybrid
system is abstracted by a continuous system with an additive
nondeterministic input. We provide theoretical methods to
compute bounds on the nondeterminism input needed for the
continuization of periodically-scheduled controllers, which is
essential for abstraction soundness. The developed approach is
then automated using the Hyst [8] model transformation tool.
In this way, we provide both a theoretical method that enables
controller analysis with hybrid automaton reachability tools,
and a practical way to use it.

The main contributions of this paper are:
• the modeling of periodically-controlled CPS using hybrid

automata, with several models proposed based on possi-
ble implementation variations,

• the validated use of continuization to enable the analysis
of these models, and a theoretical method to compute the
bound on the nondeterminism globally as well as within
local analysis domains,

• the implementation of the proposed technique in the Hyst
model transformation tool, which allows rapid application
to new hybrid automaton models, and

• a demonstration of the effectiveness of the proposed
analysis approach on the design of a yaw damper system
for a 747 jet aircraft.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 
32



In the next section, we present a brief background on mod-
eling hybrid systems, give direct approaches for modeling real-
time-scheduled controllers with hybrid automata, and provide
reachability results showing scalability issues with these direct
models. Next, Sec. III describes continuization and methods
for computing the nondeterministic bounds it uses, which are
essential for method accuracy. Then Sec. IV briefly describes
the Hyst model transformation tool and the illustrates the
continuization pass that implements the technique developed in
this paper. Sec. V provides a case study showing the advantage
of the analysis on a yaw damper control system for a 747
aircraft. A brief discussion of related techniques, especially a
comparison versus classical control theoretic methods is given
in Sec. VI, followed by a conclusion.

II. HYBRID SYSTEMS MODELING

The controller subsystem of a cyber-physical system (CPS)
consists of a physical system interacting with a software
controller, running periodically on a system using a real-time
scheduler. A specific implementation can be formalized using
a hybrid automaton model, and then its behavior, as well as
the behavior of a composition of these subsystem models,
can be analyzed using hybrid automata reachability tools. In
this section, we elaborate on modeling controller subsystems
using the hybrid automaton formalism. We first review hybrid
automata (Sec. II-A), then propose three models that capture
different possible implementations of a controller subsystem
of a CPS (Sec. II-B). Finally, we attempt to directly perform
reachability analysis of these systems using reachability anal-
ysis tools (Sec. II-C), which is shown to be challenging.

A. Preliminaries

A hybrid automaton is a formal model that captures both
discrete behaviors as well as continuous dynamics present in
a hybrid system. Roughly, it is a finite state machine with
ordinary differential equations defined in each mode for a set
of real-valued continuous variables.

Definition 1 (Hybrid Automaton). A Hybrid Automaton is a
tuple
H = (Loc, Var, Init, Flow, Trans, Inv) that defines:
• a finite set of locations Loc,
• a set of n real-valued continuous variables Var =
{x1, . . . , xn},

• an initial condition Init ⊆ Rn for each ` ∈ Loc,
• for each location `, a relation Flow(`) relating variables

and their derivatives,
• a set of discrete transitions Trans, where each element is

a tuple (`, g, r, `′) with source location `, guard g given
as constraint on Rn, reset r given as a function from
Rnto Rn, and destination location `′,

• an invariant Inv(`) ⊆ Rn for each location `.

A state of a hybrid system is a tuple (`,X), where the
discrete state is ` ∈ Loc and the continuous state X is a
valuation—a mapping from a variable name to a point in the
reals—of the continuous variables in Var.

Definition 2 (Trajectory). A trajectory of a hybrid system is
an alternating sequence of continuous evolutions and discrete
transitions, starting from a state in Init. Trajectories are
subject to the following restrictions:
• the first state of the trajectory is an element of Init,
• during each continuous evolution, the continuous state

evolves over an interval of real-valued time in accordance
with the differential equations defined by Flow,

• during each continuous evolution, the continuous states
always satisfy the location’s invariant1, and

• during each discrete transition, the prestate is contained
in transition’s guard, and the change in state corresponds
to applying the reset function to the continuous prestate
and updating the location to `′.

Definition 3 (Reachable Set). The set of all states that exist in
any trajectory is called the reachable set. For a given hybrid
automaton H, we use REACH(H) to denote the reachable set
of H. Given a subset of the variables Y ⊆ Var of hybrid
automaton H, the reach set projected onto those variables is
written as REACH(H) ↓ Y . Typically we will be concerned
with time-bounded reachable sets, where the amount of time
that has elapsed during the continuous evolution portions of
each trajectory is less than or equal to some given bound.

B. CPS Modeling

We now describe three different ways that a CPS con-
troller subsystem can be modeled using the hybrid automaton
formalism, which correspond to different possible system
implementations. First, we introduce the notion of a Sampled
CPS, which has a continuous portion governed by differential
equations, and a controller update function that updates the
discretely-controlled variables.

Definition 4 (Sampled CPS). A Sampled CPS is a system
with n continuous variables divided into two groups. The
first np ≤ n variables are the physical variables, and the
remaining nc = n − np variables are the cyber variables.
The set of variables V ar = {x1, x2, . . . , xn} is partitioned
into physical variables Xp = {p1, p2, . . . , pnp} and cyber
variables Xc = {c1, c2, . . . , cnc}, where each variable xi ∈ R.
Each physical variable has an associated differential equa-
tion, ṗ1 = f1, ṗ2 = f2, . . ., ṗnp = fnp, where each
ṗi = fi is a function Rn → R. To ensure existence and
uniqueness of the solutions, the differential equations are
assumed to be Lipschitz continuous in the domain of interest.
The dynamics for the physical variables are provided, so
Fp = (f1, f2, . . . , fnp) is given. The remaining nc variables
are set periodically in control software, and remain constant
between updates (zero-order hold). Their differential equa-
tions are given as ċ1 = 0, ċ2 = 0, . . ., ċcn = 0. The
control software is defined by a function controller update :
Rn → Rnc, which updates the cyber variables based on the

1If at some point the invariant were to become false, a discrete transition
must be taken immediately. If no transition’s guards are enabled, the model
is said to deadlock as time cannot advance.
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Ẋp = Fp(Xp, Xc)

Ẋc = 0
ċ = 1

Inv: c ≤ T

Guard: c = T?
Xc := controller update(Xp, Xc)

c := 0

(a) Model 1

Ẋp = Fp(Xp, Xc)

Ẋs = 0

Ẋc = 0
ċ = 1

Inv: c ≤ T

Guard: c = T?
Xc := controller update(Xs, Xc)

Xs := Xp

c := 0

(b) Model 2

Ẋp = Fp(Xp, Xc)

Ẋc = 0
ċ = 1

Inv: c ≤ T

Ẋp = Fp(Xp, Xc)

Ẋc = 0
ċ = 1

Inv: c ≤ T

Guard: True?
Xc := controller update(Xp, Xc)

Guard: c = T?
c := 0

(c) Model 3

Fig. 1: Various hybrid automaton models formalize different implementations of a periodically-sampled CPS.

system state. The controller update function can be decom-
posed into nc functions where each one updates a single
cyber variable, c1 := controller update1(Xp, Xc), . . . , cnc :=
controller updatenc(Xp, Xc). In this work, we will restrict the
controller update functions to ones that are differentiable and
locally Lipschitz continuous in the input arguments, in the
domain of interest (for example, discrete approximations of
continuous controllers).

Model 1: The simplest model is for a strict periodic
controller, where the control software runs with a given period,
T . This could correspond to a system using a time-division
multiple-access (TDMA) or other time-triggered scheduler,
where the control task is nonpreemptive and the worst-case
execution time (WCET) fairly short. In the model, a single
location exists where time can elapse. An extra clock variable,
c, is added to the hybrid automaton that ticks at rate one
(ċ = 1). When the clock reaches the period, a transition is
forced by an invariant in the single location that c ≤ T ,
which prevents continuous evolutions from continuing. The
transition executes the controller logic when the clock reaches
the period, then resets the clock to 0, and subsequently repeats
periodically. A hybrid automaton visualization of this model
is shown in Fig. 1(a). The strict periodic controller, however,
does not exactly capture the behavior of a system using a
real-time scheduler. A scheduler like rate-monotonic (RM) or
earliest deadline first (EDF), provides a guarantee of execution
at some point within the period.

Model 2: An alternative implementation, which uses a real-
time scheduler such as RM or EDF would sample the system
at the start of the period, and write the actuation values at
the end of the period. This can be modeled using a hybrid
automaton by starting with the strictly periodic system (Model
1) and adding np additional cyber variables, which we call Xs,
with derivatives equal to zero that model the sampled state.
On the actuator assignment (controller update) at the end of
each period, the controller logic will then compute on the state
sampled from the start of the period. After updating the cyber
variables, the physical state would then be sampled again and
stored into Xs for use at the end of the next period. The
hybrid automaton model of this system is given in Fig. 1(b).
The downside of such a controller is there is a one period

delay introduced into the system, which may affect control
performance, as well as np additional variables in the model,
which may affect analysis scalability.

Model 3: An alternative implementation may consider
directly sampling and actuating at some point during each
period, where the sampling point is nondeterministic. This
would be a reasonable model if the control task’s execution
is short and the task is non-preemptive. This model is similar
to the strictly periodic Model 1 (Fig. 1(a)), except that: (1)
a second mode is added to indicate if the controller has
run yet during the period, (2) the first transition (the call
to controller update) happens nondeterministically up to the
period T owing to the invariant c ≤ T , and (3) the second
transition (the end of the control period) happens when the
clock reaches T time. The modified automaton is shown
in Fig. 1(c). This model uses nondeterminism in discrete
transitions to capture the type of guarantee provided by a real-
time scheduler: that the control logic will execute and finish
at some point within each period.

More complicated models could also be considered. For ex-
ample, if the execution time was non-negligible or the task was
preemptive, the state could be sampled nondeterministically
at some point during the period minus the WCET, and then
actuation could be performed nondeterministically up to the
end of the period.

C. Preliminary Reachability Analysis

Although hybrid automata can model real-time scheduled
controllers and plants as shown above, an important factor
is tractability of analysis. Since analysis of even moderately-
complicated hybrid automata is undecidable [9], tools often
compute an overapproximation of the reachable states, which
is sufficient for safety analysis (making sure unsafe states are
not reachable). If the set of reachable states may be computed
for unbounded time (if the reachability algorithm reaches a
fixed-point) and the resulting set of states is bounded, then
conclusions can also be drawn about system stability. In the
presence of a large number of discrete switches, reachability
analysis tools may significantly overapproximate the reachable
set of states, due to the need to perform intersections of
reachable sets with surfaces representing guard conditions [6].
These intersections are typically done geometrically, and result
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(a) Simulations from x ∈ {0, 0.1} (b) SpaceEx Reachability (c) Flow* Reachability

Fig. 2: The response for the periodically-controlled double-integrator system from Example 1 converges in
simulation, but appears to diverge during reachability analysis.

in an overapproximation of the actual intersection, introducing
some error at every discrete transition. Due to this concern, we
empirically evaluate the performance of two modern reacha-
bility tools, SpaceEx [5] and Flow* [10], [11], on a simple
control system using the approach from Model 1 (Fig. 1(a)).

Example 1 (Double-Integrator System). A double-integrator
system, such as point moving along a 1-d line controlled
through its acceleration, has two physical variables: x, its
position, v, its velocity, and a single cyber variables a, its
acceleration. The dynamics are ẋ = v, v̇ = a, and the
acceleration a is set periodically by the control logic. There is
a fixed setpoint the system tries to move towards at x = 1. The
acceleration is set using a PD controller with gains P = 10
and D = 3. The controller update function periodically
assigns a := P ∗ (1− x) +D ∗ −v. The period of the control
task is T = 0.005 seconds (200 Hz). The initial states are
x ∈ [0, 0.1] and v = 0.

Using the system in Example 1, we construct the corre-
sponding hybrid automaton (shown in the Appendix in Fig. 8)
and examine the controller’s response. A control Lyapunov
function may be derived to show stabilization of the purely
continuous system to the setpoint of x = 1 and v = 0. In
Matlab simulations of the periodically-sampled system from
the boundary of the initial states (from both x = 0 and
x = 0.1), the system easily converges to the setpoint. When
performing reachability, however, both SpaceEx and Flow*
produce divergent reachable sets, due to overapproximation
error introduced at each of the discrete transitions. The simu-
lations and reachability visualization are shown in Fig. 2.

Although effort was taken to optimize various tool parame-
ters, they could likely be further adjusted to get a slightly better
response. For this particular system, if the tools had built-in
support for time-triggered transitions and could infer that the
clock acts as a time-trigger for the discrete transition, the error
in the computation could likely be reduced (although we could
not find time-triggered support in either tool’s documentation).
However, this would not work for the nondeterministic switch
in Model 3 (Fig. 1(c)), since that discrete transition (invocation
of controller update) can occur at any time within the period,
based on the guarantees provided by schedulers like RM and

EDF. The problem of accumulated error in reachability from
many discrete transitions, in general, cannot be eliminated.

III. CONTINUIZATION FOR IMPROVED ANALYSIS

The occurrence of many discrete transitions leads to accu-
mulated error during reachability analysis because of a need
to repeatedly take intersections of sets of states with the
transition guards. One idea to get better accuracy, therefore,
is to eliminate the discrete transitions altogether. Intuitively,
this process relies on the observation that the behavior of the
periodically-sampled system is contained in the behavior of the
continuously-controlled system with some additional bounded
nondeterministic input.

This process of validated abstraction of the sampled hybrid
automaton by a continuous one is called continuization [12],
and is briefly reviewed in the next subsection (Sec. III-A).
Here, we apply the continuization idea in order to analyze
periodic control systems, which has not been done before. This
process relies on having a bound on the speed of changes of the
cyber variables, and computing this bound is then described
(Sec. III-B).

A. Continuization

Continuization is the process of abstracting a system with
many discrete switches by a continuous one with an extra
nondeterministic input. Previously, it was used to analyze
rapidly-switching electric circuits [12], specifically locking
time and stability properties for charge-pump phase-locked
loops. The key challenge when performing continuization
is determining the amount of nondeterministic input that is
necessary in order to guarantee that all behaviors of the
sampled system are captured by the continuous one, but not
too much that analysis accuracy suffers.

In the earlier circuit work, this was done by solving for
the change of state in one cycle with a known switching time.
Since there was no closed-form solution for the switching time,
interval analysis was performed using the ranges of possible
switching times, and then this was used to derive conservative
bounds on the change in state.

We want to apply continuization in order to analyze
periodically-controlled CPS. We formalize this process by
using sampling deviation functions.
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Definition 5 (Sampling Deviation). A sampling deviation ωi
is a function R → R × R, which, given a time, produces an
upper and lower bound on the difference of a cyber variable
ci ∈ Xc, between its value in a sampled CPS and the update
function controller update(Xp, Xc).

Given a sampling deviation function ωi for each cyber vari-
able, we can construct an overapproximation of the sampled
CPS. First, we construct a continuous approximation of the
sampled CPS.

Definition 6 (Continuous Approximation). A continuous ap-
proximation of a sampled CPS is a hybrid automaton where
the controller logic is run continuously. That is, the discrete
update for each cyber variables in ci ∈ Xc is removed from
the system, and each cyber variable’s differential equation is
set to ċi = d

dtcontroller updatei(Xp, Xc). The variable ci’s
initial value is set to the value when the controller is run at
the original initial state, controller updatei(Xp(0), Xc(0)).

The continuous approximation differs from the original
sampled CPS. A continuized abstraction accounts for this
difference by adding nondeterminism to every occurrence of
each cyber variable within the continuous approximation.

Definition 7 (Continuized Abstraction, Continuization). A
continuized abstraction Hc of a sampled CPS H is constructed
starting from H’s continuous approximation. Each occurrence
of a cyber-variable ci in the continuous approximation gets an
extra term added equal to the sampling deviation ωi. If any
of the ωi change over time, an additional time variable t is
added to the system that starts at 0 and ticks at rate 1 forever.

The model constructed using the above continuization ap-
proach will have trajectories of the physical variables that
contain all the behaviors in the original sampled CPS.

Theorem 1 (Soundness of Continuization). Given a sampled
CPSH as well as its continuized abstractionHc, REACH(H) ↓
Xp ⊆ REACH(Hc) ↓ Xp.

Proof. Consider any cyber variable ci ∈ Xc. Let Valsampled(ci)
be the value of the variable in the sampled CPS, and
Valabstract(ci) be the value of the variable in the continuized
abstraction. At any time t in a trajectory, we first show that
Valsampled(ci) ∈ Valabstract(ci) + ωi(t).

By the definition of the sampling deviation function, the dif-
ference between Valsampled(ci) and controller updatei(Xp, Xc)
at time t must be contained in the interval ωi(t). Therefore,
Valsampled(ci) is contained in controller updatei(Xp, Xc) +
ωi(t). The continuous approximation at time t is equal to
controller updatei(Xp, Xc), and by the construction of the
continuized abstraction from the continuous approximation,
the inclusion Valsampled(ci) ∈ Valabstract(ci) + ωi(t) holds.

In the construction of the continuous abstraction, each
cyber variable ci in the continuous approximation was re-
placed by ci + ωi(t). Since, as shown above, Valsampled(ci) ∈
Valabstract(ci) + ωi(t), the derivatives for every variable in

the sampled CPS will be contained in the derivatives of
continuized abstraction. In particular, the physical variable
values in the continuized abstraction also contain the sampled
CPS physical variable values. The discrete transitions between
the two systems are identical, except for the removal of the
periodic cyber-variable updates in the continuized abstraction.
Thus, any discrete transition (other than controller updates,
which only update cyber variables and for which we already
showed containment) taken by the sampled CPS can also
be taken by the continuized version. Since a trajectory is
an alternating sequence of continuous evolutions and discrete
transitions, and the initial states are the same, by induction on
the length of a trajectory, the values of the physical variables
in the sampled CPS are always contained in the values of the
physical variables in the continuized abstraction. Therefore,
REACH(H) ↓ Xp ⊆ REACH(Hc) ↓ Xp.

B. Producing Sampling Deviation Functions
The key to continuization is to construct sampling deviation

functions that provide an upper and lower bound on the
difference of each cyber variable between the sampled CPS
and the controller update function. One way to compute such
a function is by looking at the maximum rate of change
(bounded by a Lipschitz constant) of the derivative of each
cyber variable in the continuous approximation. This process
makes use of standard interval arithmetic multiplication, [a, b]∗
[c, d] = [min(a∗c, a∗d, b∗c, b∗d),max(a∗c, a∗d, b∗c, b∗d)].

Lemma 1 (Sampling Deviation using Lipschitz Constant).
Given interval bounds, K = [Kmin,Kmax], on the rate of
change of the derivative of ci in the continuous approximation,
and the period of the associated strictly-periodic (Model 1
from Fig. 1) controller, T , a sampling deviation function is
ωi = [−T, 0] ∗K.

Proof. The sampling deviation function needs to bound the
difference of the value of the variable ci in a sampled
CPS and controller updatei(X). The difference between
controller updatei at the last sample time (which is the
current value of the cyber variable in the sampled CPS), and
controller updatei at the current time (which is its value in
the continuous approximation) is at most a product of the
maximum rate of change K, and the time since the last sample.
The difference between the last controller update and the
current time must be in the interval [−T, 0], since it is a strictly
periodic controller with period T . Assuming the first sample
occurs at time 0, by induction on the number of samples, this
property will hold for every sampling period and therefore
over all time.

In this case, we had considered a strictly periodic controller,
such as the one given by Model 1 in Sec. II-B. To compute
the function for a nondeterministic controller such as Model
3, all that would need to be adjusted is the time of the last
controller update. In the worst case, a sample will occur at the
start of one period, and at the end of the next period. In that
case, the maximum time between updates is 2 ∗ T , so using
an interval of [−2 ∗ T, 0] in Lemma 1 would be adequate.
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Fig. 3: The main idea behind the proposed continuization
approach is that a nondeterministic continuous system contains
the behaviors of a periodically sampled system.

To provide some intuition on the construction of sampling
deviation functions, we provide an simple illustrative example.

Example 2 (Sine Wave). Consider a system with a single
cyber variable c1 where the controller update function is given
by sin(t), and t is a clock (physical variable with ṫ = 1) ticking
from 0 to π. The period of the cyber-variable is T = 0.2.

The rate of change of controller update (the derivative) is
equal to cos(t), and the bound on cos in [0, π] is K = [−1, 1].
Given this bound and the period of T = 0.2, each occurrence
of ci in the continuous approximation is replaced by ci +
[−0.2, 0.2] in the continuized abstraction. A visual depiction
of this is given in Fig. 3.

One nice property of the sampling deviation function con-
structed by Lemma 1 is that no matter how large the bounds
are on the rate of change of the controller update function, the
sampling deviation function can be made arbitrarily small by
choosing a small enough controller period T . This is because
of the multiplication in the sampling deviation function by
the interval [−T, 0]. Intuitively, this makes sense, since the
continuous system is more closely approximated as we sample
and actuate at a higher frequency. This is in contrast, however,
to reachability analysis done directly on the sampled CPS
models, where smaller periods lead to more discrete transi-
tions, which lead to more error.

The width of the interval given by deviation function does
affect the amount of overapproximation in the constructed
model, and therefore it is desirable to have this function be as
tight as possible. One way to improve the bound on the rate of
change of the cyber variable is by considering smaller domains
(time intervals). For example, we could take advantage of the
time dependence of each sampling deviation function ωi, and
define corresponding sampling deviation functions within local
analysis domains.

Lemma 2 (Sampling Deviation in Local Analysis Domains).
For a cyber variable ci with period T , given a sequence of
interval bounds on the rate of change of the controller update
function, K1, K2, . . ., Km, and an associated sequence of

overlap
of time 
T=0.2

Fig. 4: The continuization approach as applied to four local
analysis domains has an overlap of one period length between
domains.

increasing and pointwise-intersecting time intervals (which we
call local analysis domains) where the bounds are valid, [t0 =
0, t1], [t1, t2], . . . , [tm−1, tm], a sampling deviation function up
to time tm can be computed as:

ωi(t) = [−T, 0] ∗ [min({Kmin
j | t ∈ [tj−1, tj + T ]}),

max({Kmax
j | t ∈ [tj−1, tj + T ]})].

Proof. Notice the time intervals have the controller period
T added to the upper time bound. This is because when a
new time interval is entered in a trajectory, the sampled CPS
could have taken the most-recent sample in either the current
time interval, or in the previous one. The sampling deviation
function, therefore, must account for both possibilities until T
time has elapsed in the new interval. Other than this caveat,
the proof follows that of Lemma 1, except that the analysis is
done at each time interval.

In the sine wave system from Example 2, we can ap-
ply this approach in four analysis domains (time inter-
vals), [0, π4 ], [

π
4 ,

π
2 ], [

π
2 ,

3π
4 ], [ 3π4 , 1]. Solving for the cos(t) (the

derivative of sin(t)) in these domains, we can come up with
the associated interval bounds on ċ1 in the continuous approx-
imation, K1 = [

√
2
2 , 1],K2 = [0,

√
2
2 ],K3 = [−

√
2
2 , 0],K4 =

[−1,−
√
2
2 ]. Using the period T = 0.2, we then obtain the

piecewise continuization of the system, shown in Fig. 4.
In Fig. 4, when the derivative bounds are positive, the

difference between the sampled CPS and the continuous
approximation is negative, which is why an interval of [−T, 0]
was used to bound the difference. Also, without the presence
of the overlap between time domains, the continuized abstrac-
tion would be wrong immediately after time π

2 . In this case,
the new domain has a strictly negative derivative, but because
the sample occurred before π

2 , the bound from the previous
domain must be used.

There are two considerations when applying continuization
with local analysis domains. First, the result is only valid until
the maximum time of the last analysis domain. If this time
is finite, this means only bounded-time reachability can be
computed. Second, there is a trade off between the accuracy
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of the computation and the number of domains considered.
Continuization was originally used to eliminate large numbers
of discrete transitions in a sampled CPS. Using local analysis
domains, however, brings back discrete transitions, although
now the number of transitions can be controlled by adjusting
the number of domains. Using too many domains may lead to
similar problems with tool performance as when we directly
considered a sampled CPS model for reachability analysis.
We could solve this problem by having sampling deviation
functions that vary as continuous functions of time, although
the way to create these is less clear, and left as possible future
work.

IV. AUTOMATION IN HYST

Hyst [8] is a model transformation and translation tool
for hybrid automaton models. Hyst performs both model
translation, which converts between formats of different reach-
ability tools, as well as model transformations, which serve to
improve reachability computation results. The continuization
approach described in the previous section has been imple-
mented as a model transformation pass in Hyst, which permits
easy application of the developed technique.

A. Transformation Pass

The implemented model transformation pass performs con-
tinuization starting given a continuous approximation of the
system. The user provides (1) a target model file describing
the hybrid automaton, (2) the controller period, T , (3) the
name of the cyber variable of interest, ci, (4) a sequence of
m increasing times used to construct local analysis domains,
(5) a corresponding sequence of m bloating terms, which will
be described shortly, and (6) the name of the time variable
(optional; only used if multiple local analysis domains are
used to create transitions between them).

Given these inputs, the pass first simulates the continuous
abstraction from the center of the initial states, in order to
approximate the interval bounds on the rate of change of
the derivative of ci. For each time interval, the bound during
that time is then expanded by the corresponding user-provided
bloating term. We call the new intervals candidate Lipschitz
bounds for the cyber variable’s derivative. The candidate
Lipschitz bounds are used as described in Lemma 2, along
with the time domains, in order to produce the sampling
deviation function ωi(t).

The sampling deviation function consists of piecewise con-
stant intervals. For each piece, a mode is created in the output
hybrid automaton, with dynamics equal to the continuous
approximation, except with every occurrence of ci replaced
by ci + ωi(t). Transitions are then added between the modes
when the appropriate amount of time has elapsed.

The bound given by ωi is only valid, however, if the candi-
date Lipschitz bounds are actually upper and lower bounds on
the derivative of the cyber variable. This can happen because
the bounds are constructed from a single simulation using the
continuous approximation, whereas the reachable set of states
considers all initial points as well as the expanded set of values

for the cyber-variable in the dynamics, ci + ωi(t) instead of
just ci. To check if the bounds are respected, invariants and
guards are added to the output hybrid automaton to check if
the derivative exceeds the candidate Lipschitz bounds. If a
violation occurs, a transition to an error state is taken, which
is added as a forbidden location in the model. In this way,
performing reachability computation will not only give the set
of states reachable by the continuized abstraction, but will also
check that the candidate Lipschitz bounds are actual bounds
on the derivative of the cyber variable. If they are not, the
transition to the error state will be detected when performing
a reachability computation, and the transformation pass can
be re-run with larger bloating terms, which will increase the
size of the candidate Lipschitz bounds.

B. Example

We apply the continuization approach in Hyst to the double-
integrator system given in Example 1. The controller update
function in this case is P ∗ (1 − x) +D ∗ −v, with P = 10
and D = 3. The time derivative is −10 ∗ ẋ − 3 ∗ v̇. After
substituting in the derivatives (ẋ = v, v̇ = a), the derivative
of a in the continuous abstraction is: −10 ∗ v − 3 ∗ a. The
initial value of a is the value assigned when controller update
is evaluated at the initial states, a := 10∗(1−x)+3∗−v. The
hybrid automaton of the continuous approximation shown in
the appendix, in Fig. 9.

The pass implemented in Hyst performs a simulation of the
system starting from the center of the initial set of states, in
this case, at x = 0.05, v = 0, a = 9.5. The value of ȧ in
the simulation is observed to be in the interval [−28.64, 5.27].
This interval is then bloated by the provided bloating term,
for which we consider +−1, +−2 and +−4.

When running reachability with a bloating term of 1, Flow*
immediately (at time 0) detects that the constructed error
states are reachable, which means that the candidate Lipschitz
bounds do not contain all the encountered values of ȧ. Com-
putationally, we can show this to be the case. Initially, x =
[0, 0.1], which means the initial value of a is [9, 10]. The initial
value of ȧ is −10∗v−3∗a = [−30,−27]. The interval values
of ȧ in the simulation were [−28.64, 5.27], which bloated by 1
give candidate Lipschitz bounds of [−29.64, 6.27]. The lower
bound of the derivative of the cyber variable (−30) is initially
outside of the candidate bounds, which was detected by the
transition to the error state.

Using a bloating term of 2, the candidate Lipschitz bounds
are [−30.64, 7.27], which contain the above-computed initial
values of ȧ. When performing reachability, however, at time
0.04 an error state is reached again. At this time, the reachable
set contains a state where a = 8.79 and v = 0.382. In this
case, the derivative ȧ = −10 ∗ v− 3 ∗ a+ωi = −10 ∗ 0.382−
3 ∗ 8.79 + [−0.45, 0.11] has a lower value of −30.66, which
is below the candidate Lipschitz bound of −30.64.

When the larger bloating term of 4 is used, the candidate
Lipschitz bound is respected by the reachable set, and Flow*
does not reach the out-of-bounds error states. Thus, the reach
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(a) Continuized System (b) Two Analysis Domains

Fig. 5: The response for the continuized periodically-
controlled double-integrator system from Example 1 is sig-
nificantly tighter than direct analysis (Fig. 2).

set of the continuized abstraction is a validated overapproxi-
mation of the reach set of the sampled CPS.

Recall, however, that directly computing the reach set of
the sampled CPS, as shown in Fig. 2, resulted in a large
exponential blow up in the size of the reachable set due to
accumulation of overapproximation error. Even with a single
analysis domain, the reachable set is significantly smaller,
as shown in Fig. 5(a). Using multiple analysis domains, the
reachable set can be further reduced. The hybrid automaton of
the continuized system with two local analysis domains [0, 1.5]
and [1.5, 5] is shown in the appendix in Fig. 10. The reach set
of the response for this system is shown in Fig. 5(b). Thus, the
continuization method developed in this paper enables a more
precise formal analysis of this system using hybrid automaton
reachability tools.

In terms of overhead, the runtime of the pass itself is small,
taking about 100 ms. The reachability computation takes 0.9
seconds for the single-domain case, and about 1.3 seconds for
the two-domain system, which is significantly faster than the
12 minutes needed for SpaceEx to produce Fig. 2(b).

V. CASE STUDY

In this section, we apply the technique developed from
Sec. III in order to perform reachability analysis of a hybrid
system model of a yaw-damper for a 747 aircraft.

A. System and Controller Model

The model and controller we analyze in this case study
are taken from the Control Systems Toolbox case studies in
Matlab [13]. In brief, the system is a multiple-input multiple-
output (MIMO) system that uses the aileron and rudder in
order to reduce oscillations in the yaw and roll angle.

The analysis of the yaw damper is done on the sys-
tem’s aileron-to-bank angle impulse response. Three different
systems are considered: (1) the original, undamped system,
which experiences oscillations upon an impulse input, (2)
the system with proportional compensator, which eliminates
the oscillations but also over-stabilizes the spiral mode (a
desired characteristic for the control), and (3) the system with
a washout filter, which eliminates the oscillations but keeps
the spiral mode.

We use this case study to evaluate the developed con-
tinuization technique so as to evaluate properties about the
response of the final (washout filter) system. There are four

Fig. 6: The impulse response for the washout filter design of
a yaw damper demonstrates the spiral mode in simulation.

physical variables in this system, sideslip angle (x1), yaw rate
(x2), roll rate (x3), and bank angle (x4), represented by the
column vector x. The two inputs u, are the rudder (u1) and
aileron (u2). The outputs are the yaw rate and bank angle.
The dynamics for the physical system are the standard linear
time-invariant dynamics, ẋ = Ax+Bu (the A and B matrices
are provided in the in Sec. B of the appendix).

This physical system is put into a feedback loop with a
washout filter. The washout filter has a single variable, w,
with dynamics ẇ = x2 − 0.2 ∗ w. The washout filter variable
is combined with the yaw to produce an effect on the rudder
input. That is, the washout filter adds to u1 the value 2.34 ∗
(x2 − 0.2 ∗ w).

A simulation of the aileron-to-bank angle impulse response
from this system, with and without the washout filter, is given
in Fig. 6. In particular, the two control properties of interest
are a lack of oscillations (quick settling time), and the presence
of the spiral mode. The spiral mode is a desirable flight
characteristic demonstrated by the apparent2 steady-state offset
in the rudder-to-bank angle impulse response.

A property to check is that the aileron to bank angle impulse
response remains around the simulated value of 0.08, between
20 and 40 seconds, and thus maintains the spiral mode without
significant oscillation. We consider a controller running at 20
Hz (T = 0.05), using the implementation that samples and
actuates when the real-time scheduled controller runs (Model
3 from Sec. II-B).

B. Reachability Analysis

Neither SpaceEx nor Flow* can effectively compute reach-
ability on the periodically-actuated system model (Fig. 11 in
the appendix). The reachable set of states explodes almost
immediately, and neither tool can compute accurate time-
bounded reachability for the required 40 seconds.

We apply the continuization approach developed in this
paper by using the Hyst transformation pass on the continuous
approximation of the model. First, we apply the technique over
the whole time range. Initially, we try a small bloating term,
and increase it until error states are no longer reachable during
analysis. For the period parameter given to the pass, we use
twice the control period, as this is needed to account for the

2The steady state is actually zero, but the convergence is very slow over
hundreds of seconds.
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(a) Reachability in Flow* of
the Continuized Model

(b) Reachability with Local
Domains and Halving Period

Fig. 7: Flow* can successfully compute reachability on the
continuized model. When a smaller period and local analysis
domain is used, the result is tighter.

maximum delay in sampling in Model 3, as discussed earlier
in Sec. II-B. Flow* successfully computes reachability for the
model, and confirms that the final bloating term (0.0007) was
sufficiently large. The output plot is shown in Fig. 7(a).

Although the computation completes, which is an improve-
ment over the direct computation, the set of states appears to
be diverging slowly. The reachability result can be improved
by using local analysis domains, or by reducing the controller
period. To demonstrate this, we halve the controller period, and
use two analysis domains. For time [0, 8] we use a bloating
term of 0.0004, and for time [8, 40] we use 0.0003. Hyst
creates the associated model file for Flow*, which we then use
to compute reachability. Flow*, in about 5 seconds, confirms
that the candidate domains are sufficient, and the resultant
reachability plot is tighter than the previous one, as shown in
Fig. 7(b). Furthermore, the spiral mode can be observed from
the reachable set plot, along with the absence of oscillations
in the time range [20, 40].

VI. RELATED WORK

In this paper, we have focused on controller analysis using
hybrid automata reachability tools, although there are existing
methods in control theory to design and analyze controllers.
The design of a controller for a continuous-time system often
occurs in continuous-time, and the controller is subsequently
discretized3 to be implemented in a software controller that
operates periodically.

Continuous-Time Controller Design: There are many
methods for control design in continuous-time. For example, a
common strategy for linear time-invariant (LTI) systems is to
design a stabilizing linear state-feedback controller of the form
u = Kx for a vector K [16]. Assuming the system is both
controllable and observable, the strategy yields a new closed-
loop system: ẋ = Ax + Bu for u = Kx. After substituting
this gives ẋ = Ax+B(Kx) and then ẋ = (A+BK)x. This
strategy is also known as pole placement [16]. Finding the
vector K such that (A+BK) is exponentially stable can be
formulated in a variety of ways, such as by solving a linear ma-
trix inequality (LMI) [17]. Linear quadratic regulator (LQR)

3In this paper, we only focus on the conversion from continuous-time to
discrete-time, and do not consider full digitization [14], [15], for example,
the conversion from continuous-time and continuous-state to discrete-time and
discrete-state through quantization.

design is another linear system design technique that also
incorporates a cost function to yield an optimal controller [18].
LQR is used within the Linear Quadratic Gaussian (LQG)
problem that robustly tolerates Gaussian additive noise inputs
from disturbances. Other control design methods for linear
systems are performed in the frequency domain, where pole
and zero placement may also be performed to ensure stability
and analyze performance criteria such as gain margins, phase
margins, and use graphical tools like Nyquist diagrams and
Bode plots. Design of controllers for nonlinear systems is
challenging, but many approaches exist, such as linearizing
and using gain-scheduled linear controllers, backstepping,
feedback linearization, and many others [19].

Discretization of Continuous Controllers: Discretization
typically consists of several steps. First, a sampling period
must be selected at which measurements of the physical
system are taken and made available to the software controller.
Second, a control period must be selected to specify the rate
at which control decisions are produced by the software con-
troller and sent to actuators to influence the plant. Typically,
these periods are selected in accordance with the speeds of the
dynamics, and a common rule of thumb is to use the Nyquist
frequency of the physical process to determine the minimum
sampling period. The Nyquist frequency is twice the highest
waveform frequency.

Given these periods, a discrete-time version of the plant
can be constructed (using the sampling period) and a discrete-
time version of the controller can be constructed (using the
control period). Both discretizations are needed, as from
the perspective of the controller, it will only receive state
measurements of the plant at the points in time specified by
the sampling period.

Discrete Controllers with Continuous Plants: While from
the perspective of the software controller, the changes to the
plant occur discretely, in reality, the plant evolves continuously
according to differential equations. Controller performance
with such constraints has been extensively investigated, and
tools like JitterBug and TrueTime can characterize controller
performance with real-time constraints and delays [20]. More
recent works aid in synthesizing embedded software from
hybrid systems models [21]. Giotto aids in this process of
moving from control models to embedded real-time code [22].

Reachability: The elimination of large numbers of dis-
crete transitions in hybrid automata was previously accom-
plished by continuization [7]. The earlier work was used to an-
alyze properties about fast-switching electronic circuits. This
work, in contrast, applied continuization to enable the analysis
of fast-switching hybrid automata resulting from the periodic
interactions with the real-time scheduler. We also considered
using local analysis domains to construct the nondeterministic
term, which was shown to increase the accuracy of the model.

Periodically Controller Hybrid Automata (PCHA) is one
formalism for periodically-controlled embedded systems [23].
Automated analysis of PCHAs is possible only if the vector
fields are polynomial, whereas, using the developed Hyst
pass, continuization can be automatically applied to a broader
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class of systems. Combinations of reachability tools and SMT
solvers have been used to model both physical-world dynamics
and software behavior [24]. A limitation of this approach is
that cyber-variables are represented with intervals, and that
only strictly-periodic systems can be analyzed (Model 1 from
Sec. II-B).

VII. CONCLUSION

Analysis of large CPS using formal hybrid systems anal-
ysis techniques remains difficult. A challenge problem was
recently proposed to the research community by Toyota on
the verification of a powertrain control system [25]. Although
initial progress has been made on simplified versions of the
system [26], the full benchmark model presents four main
challenges for verification tools: (1) controllers that periodi-
cally actuate the plant, (2) lookup tables to describe the system
dynamics, (3) the presence of time delays in the model, and
(4) large system scale.

In this paper, we addressed the first of these issues, by using
continuization in order to soundly abstract the periodically-
controlled dynamics. This permits initial analysis of these
systems using reachability tools for hybrid automata. Without
our approach, existing tools produce exponentially divergent
reach sets on these models, and often fail before reaching the
desired time bound. Since the accuracy of analysis depends on
the tightness of the difference between the discrete system and
continuized abstraction, a possible future improvement would
be to compute these bounds in local domains based on the
system state, in addition to time as proposed in this paper.
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ẋ = v
v̇ = a
ȧ = 0
ċ = 1

Inv: c ≤ 0.05

Guard: c = 0.05?
a := 10 ∗ (1− x) + 3 ∗ (−v)

c := 0

Fig. 8: Hybrid automaton model for sampled CPS of the
double-integrator system in Example 1.

ẋ = v
v̇ = a

ȧ = −10 ∗ v − 3 ∗ a

Fig. 9: Hybrid automaton model for continuous approximation
of the double-integrator system in Example 1.

ẋ = v
v̇ = a+ [−0.046, 0.163]
ȧ = −10 ∗ v − 3 ∗ a+

[−0.490, 0.139]
ṫ = 1

Inv: t ≤ 1.505

ẋ = v
v̇ = a+ [−0.036, 0.025]
ȧ = −10 ∗ v − 3 ∗ a+

[−0.075, 0.109]
ṫ = 1

Guard: t ≥ 1.5

Fig. 10: Hybrid automaton model for continuized abstraction
with two analysis domains (with error modes and transitions
omitted) of the double-integrator system in Example 1.

APPENDIX

A. Double-Integrator Example

The hybrid automata for the double-integrator system (Ex-
ample 1) are shown in Figs. 8, 9, and 10. In the continuous
approximation and the continuized abstraction, the initial value
of a is taken to be the value when controller update is
evaluated at the initial states, a := 10 ∗ (1− x) + 3 ∗ −v.

The continuized abstraction shown in Fig. 10 is constructed
from two time domains, [0, 1.5] and [1.5, 5], using a bloating
term of 4 for each of the domains. The ranges of ȧ in simula-
tion for the two domains are [−28.65, 5.27] and [−0.97, 3.24],
which give interval bounds of K1 = [−32.65, 9.27], and
K2 = [−4.97, 7.24]. With a period of T = 0.005, this gives in-
terval values for ω of [−0.046, 0.163] and [−0.036, 0.025]. The
derivative ȧ uses a value of −3 multiplied by these intervals
due to the substitution of a by a+ω (since a is multiplied by
−3 in the derivative). The derivative could have equivalently
been written as ȧ = −10 ∗ v − 3 ∗ (a+ [−0.036, 0.025]).

(a) SpaceEx (b) Flow*

Fig. 11: Neither SpaceEx (left) nor Flow* (right) can directly
compute reachability accurately on the yaw-damper model.

Fig. 12: The continuous approximation of the yaw-damper
system demonstrates the spiral mode.

In Fig. 10, the error modes and transitions were not drawn.
The guard conditions to enter an error mode in the first domain
are −10∗v−3∗a+0.139 ≥ 9.27 or −10∗v−3∗a+−0.490 ≤
−32.65. In the second domain, the guard conditions are 10 ∗
v−3∗a+0.109 ≥ 7.24 or −10∗v−3∗a+−0.075 ≤ −4.97.

B. Yaw-Damper Example

The dynamics of the yaw-damper system from Sec. V are
standard linear time-invariant dynamics, ẋ = Ax+Bu, with:

A =


−0.0558 −.9968 0.0802 0.0415
0.598 −0.115 −0.0318 0
−3.05 0.388 −0.4650 0

0 0.0805 1 0



B =


0.00729 0
−0.475 0.00775
0.153 0.143
0 0

 .
Neither SpaceEx nor Flow* can compute reachability on the

periodically-actuated system. The reachability plots produced
by the reachability tools on the real-time actuated model
(Model 3) are given in Fig. 11.

The continuous approximation of the system demonstrates
the spiral mode and is close to the reach set for the
periodically-actuated washout filter system. The plot for the
continuous approximation is shown in Fig. 12. This is the
system that is used as input to the Hyst continuization pass.
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ABSTRACT
Hybridization methods enable the analysis of hybrid au-
tomata with complex, nonlinear dynamics through a sound
abstraction process. Complex dynamics are converted to
simpler ones with added noise, and then analysis is done us-
ing a reachability method for the simpler dynamics. Several
such recent approaches advocate that only “dynamic” hy-
bridization techniques—i.e., those where the dynamics are
abstracted on-the-fly during a reachability computation—
are effective. In this paper, we demonstrate this is not the
case, and create static hybridization methods that are more
scalable than earlier approaches.
The main insight in our approach is that quick, numeric

simulations can be used to guide the process, eliminating
the need for an exponential number of hybridization do-
mains. Transitions between domains are generally time-
triggered, avoiding accumulated error from geometric inter-
sections. We enhance our static technique by combining
time-triggered transitions with occasional space-triggered
transitions, and demonstrate the benefits of the combined
approach in what we call mixed-triggered hybridization. Fi-
nally, error modes are inserted to confirm that the reachable
states stay within the hybridized regions.
The developed techniques can scale to higher dimensions

than previous static approaches, while enabling the paral-
lelization of the main performance bottleneck for many dy-
namic hybridization approaches: the nonlinear optimization
required for sound dynamics abstraction. We implement our
method as a model transformation pass in the HYST tool,
and perform reachability analysis and evaluation using an
unmodified version of SpaceEx on nonlinear models with up
to six dimensions.
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1. INTRODUCTION
A hybrid automaton [7] is an expressive mathematical

model useful for describing complex dynamic processes in-
volving both continuous and discrete states and their evolu-
tion. Efficient algorithms and analysis tools for linear and
affine systems have recently emerged [24]. However, the be-
haviour of many real-world systems can only be modeled
with nonlinear differential equations.
Hybridization methods attempt to address this issue, en-

abling the application of existing algorithms for simpler dy-
namics (such as constant or affine dynamics) on the analy-
sis of hybrid automata with nonlinear differential equations.
Alternative recent approaches for analyzing nonlinear sys-
tems include simulation-based verification [22] or using effi-
cient representations such as Taylor models [17]. Most hy-
bridization methods work by dividing the state space into a
set of domains. In each domain, the nonlinear dynamics are
then converted to simpler ones with added noise to account
for the abstraction error within the domain. Hybridization
is also known as conservative approximation [8], which il-
lustrates that it is a sound (or conservative) abstraction.
Hybridization has been used to verify properties for several
types of systems, from analog/mixed-signal circuits [19] to
autonomous satellite maneuvers in space [14, 31].
We classify existing hybridization approaches along two

axes as shown in Table 1: static versus dynamic, and space-
triggered versus time-triggered. Static hybridization ap-
proaches use a fixed partitioning, and can make use unmod-
ified, off-the-shelf analysis tools. In contrast, dynamic meth-
ods exploit runtime information to perform hybridization,
and therefore must be tightly integrated within an analysis
tool. On the other axis, space-triggered techniques perform
geometric intersections along hybridization domain bound-
aries. Time-triggered hybridization, on the other hand,
avoids this operation by creating a series of overlapping
domains, and switches between them at specific points in
time.
Based on this classification, a gap exists in existing re-

search: no methods exist that perform static, time-triggered
hybridization. The main contribution of this paper is the
investigation of this category, and demonstrating that such
methods can overcome some of the drawbacks of existing
hybridization methods. Notably, the new hybridization
methods are more scalable than existing space-triggered
approaches. Furthermore, the expensive dynamics abstrac-
tion step, which is generally a global optimization problem,
is easily parallelizable, which is not the case in dynamic
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Space- Time- Mixed-
Triggered Triggered Triggered

Static [8, 10,29, 31] this paper this paper
Dynamic [8, 9] [1–3,5, 20, 28] none

Table 1: Breakdown of hybridization approaches into static
versus dynamic, and space-triggered versus time-triggered,
as well as combinations thereof (mixed-triggered).

approaches. We further enhance our static technique by
combining time-triggered transitions with occasional space-
triggered transitions, and demonstrate the benefits of the
combined approach in what we call mixed-triggered hy-
bridization.
The static mixed-triggered hybridization approach works

by hybridizing only a part of the state space. We use quick
numeric simulations to guide the partitioning process. In
this way, we mitigate the problem of exponential growth in
the number of partitions. In addition, we generally use time-
triggered guards in the transitions between partitions. This
prevents costly geometric intersection computations which
typically add overapproximation error to the result. We en-
sure the soundness of the constructed abstraction by adding
error modes to guarantee that the computed reachable states
remain within the hybridized region (which is constructed
from simulations that may be imprecise).
We implement the hybridization method described in this

paper as a model transformation pass in the Hyst source-to-
source translation tool. Since it is a static approach, we can
use unmodified reachability tools on the hybridized models.
We create affine abstractions of nonlinear dynamics, and use
to perform reachability analysis.

Contributions and Paper Organization. The main con-
tribution of this paper is the development of the first static
time-triggered and mixed-triggered hybridization methods.
Of critical importance in the proposed approaches is the
choice of hybridization parameters, and a second contribu-
tion is an algorithm which uses simulations to generate these
values. This algorithm is implemented in the Hyst [12]
model transformation tool, which allows it to quickly be
applied to new systems and with new simulation param-
eters. Finally, we validate our claims that the method is
more scalable than existing static approaches by evaluat-
ing it on nonlinear models, including a six-dimensional wa-
ter tank model, and then using an unmodified version of
SpaceEx [13, 15, 24], which does not natively support non-
linear dynamics, to compute the set of reachable states.
This paper first reviews and classifies existing hybridiza-

tion methods in Section 2. Section 3 then presents math-
ematical background and formalisms, which are used in
Section 4 to give formal descriptions and correctness ar-
guments for several hybrid automaton transformations. A
simulation-based algorithm to create the hybridization pa-
rameters used by the transformations is described next in
Section 5. Section 6 discusses the implementation in Hyst
and experimental reachability results in SpaceEx, followed
by a conclusion in Section 7.

2. HYBRIDIZATION METHODS
In this section, we discuss and classify previous research

on hybridization. Hybridiziation is the process of using sim-
ple dynamics with noise to create an abstraction of a system
with more complicated, usually nonlinear, dynamics. This is

done to enable the analysis of systems with the more compli-
cated dynamics by methods which work exclusively on the
simpler ones.
This process is typically targeted for flow-pipe construc-

tion methods, where the set of reachable states is iteratively
computed or overapproximated at monotonically increasing
instances in time, starting from an initial set of states. Com-
putational approaches maintain some representation of the
set of states at each time instances, which we informally
refer to as the currently-tracked set of states.

Static Space-Triggered Hybridization. Early hybridiza-
tion methods were both static and space-triggered [29]. In
these approaches, the state space is partitioned using a
(typically uniform) grid or mesh, and transitions are added
along the partition boundaries, resulting in state-dependent
switching. The advantage of this approach is that exist-
ing termination checking techniques can be used, which is
particularly useful in the case of periodic systems where
linearizing a bounded subset of the state-space is reason-
able [31].
There are, however, three main drawbacks. First, static

mesh construction is traditionally done without knowledge
of the reachable states. Therefore, it requires computing the
mesh over the entire state space (or bounded subset thereof),
which scales exponentially with the number of continuous
dimensions in the system. Second, the geometric intersec-
tions required by space-triggered approaches may introduce
error during reachability computation [4, 17]. This is be-
cause such intersections can require tools to convert from
precise internal representations such as zonotopes [25], sup-
port functions [27], or Taylor models [17], to simpler repre-
sentations where intersection operations can be computed,
such as polytopes [6]. After intersection, the simpler rep-
resentation is then converted back to the internal represen-
tation for subsequent computation [26]. These conversions
can result in overapproximations of the original currently-
tracked set of states, adding error each time they are per-
formed. Since hybridization can be done more accurately
when domains are small, many intersection operations may
be necessary and this can quickly lead to error explosion,
as well as an explosion in the number of modes of the hy-
brid automaton. Third, the currently-tracked set of reach-
able states may leave a hybridization domain along multiple
facets, requiring splitting and, later, possibly remerging the
set of reachable states, which can be both computationally
expensive and inaccurate [20].

Dynamic Space-Triggered Hybridization. In order to
help increase scalability, methods were developed that per-
form hybridization during reachability analysis [8]. This
results in dynamic methods where the domain construction
and the abstraction process is performed on-the-fly and only
on states that are reachable [9]. Although dynamic space-
triggered methods scale better into higher dimensions, they
still suffer from the other two problems mentioned above:
error accumulation due to many geometric intersections,
and the splitting of the currently-tracked set of states along
multiple facets.

Dynamic Time-Triggered Hybridization. To address the
other two drawbacks, dynamic time-triggered approaches
were developed [5, 20, 28]. These methods avoid geometric
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intersections by choosing hybridization domains around the
currently-tracked set of states. As time is advanced, the hy-
bridization domains are updated to be near the new position
of the currently-tracked set of states, without requiring an
intersection operation. This can be done at each step [28],
or whenever the currently-tracked set of states leaves the hy-
bridization domain [20]. This can be viewed as the mode of
the abstract hybrid automaton changing at specific instances
in time to a mode with new dynamics, which corresponds
to a time-triggered transition.
Although dynamic time-triggered methods perform well,

they also suffer from certain drawbacks. The most impor-
tant drawback is that, in the earlier static approaches, per-
forming the dynamics abstraction step was an embarrass-
ingly parallel problem, so parallelism could be leveraged
to reduce total runtime (or equivalently, increase precision
for a fixed runtime). In dynamic methods, the bounds of
each new abstraction domain depend on the set of reachable
states in the previous domain, forcing this expensive step to
be performed serially. For example, abstracting nonlinear
dynamics using polynomial differential inclusions can yield
an accurate hybridization, but it requires bounding the La-
grange remainder of the dynamics’ Taylor expansion [1]. In
previous work, this step was reported to take 1121 out of
1180 seconds on a nine-dimensional biological aging model
(about 95% of the runtime), and 1155 out of 1296 seconds
on hybrid variant of the same model (about 89%), although
it was mentioned that some implementation optimizations
were possible [1]. Some parallelization of reachability com-
putation was considered to enable online reachability of car
manoeuvres [2,3]. However, the crucial step of dynamics ab-
straction (computing the linearization errors) was still per-
formed serially because the overapproximation of the La-
grange remainders of the Taylor expansions of the dynamics
at each step was based on the Lagrange remainders at the
previous step. This serial step dominated the reported run-
time of the technique.
A second drawback of time-triggered approaches is that, if

the currently-tracked set of states becomes large (which can
be a property of the system regardless of the method used),
the domains over which dynamics abstraction is performed
also become large. This, in turn, increases the dynamics
approximation error that must be added to the simpler dy-
namics to result in a sound abstraction, increasing error in
the overapproximation of the set of reachable states. This
can be overcome by splitting the set of reachable states [21],
although this may yield an exponential number of sets that
need to be tracked, and possibly redundant computation.
This problem can be partially mitigated through extra track-
ing to perform cancellation of redundant sets of reachable
states, which requires (expensive and error-introducing) in-
tersection operations on the internal representations [5].
Space-triggered approaches do not suffer from this prob-
lem. In fact, introducing occasional artificial space-triggered
transitions can serve to reduce the size and complexity of
the currently-tracked set of reachable states [11].

Novel Hybridization Approaches. A classification of ex-
isting hybridization research is shown in Table 1. A research
gap is noticeable in the static time-triggered category. This
paper attempts to fill this gap by developing, to the best
of the authors’ knowledge, the first static time-triggered hy-
bridization method. The approach is static, and therefore

can perform the bottleneck step of dynamics abstraction in
a parallel fashion. Since the approach is time-triggered, it
can scale to larger numbers of dimensions while avoiding
the accumulation of intersection error. Additionally, as the
method is static and modifies the model directly, it can work
with unmodified reachability tools, yielding immediate ben-
efit of its application using the latest reachability methods.
There are also no fundamental reasons why a method

could not use both time-triggered and space-triggered tran-
sitions during analysis. We develop such a mixed-triggered
hybridization approach, which generally uses time-triggered
transitions, but occasionally performs a state-triggered tran-
sition to attempt to reduce the size and complexity of the
currently-tracked set of states. In our review of existing
research, no such approaches currently exist.

Other Hybridization Factors. Research in hybridization
also explores other aspects that are important, but less criti-
cal to the methods developed in this paper. One choice when
performing hybridization is the shape of space-triggered do-
mains. Rectangular domains are simple to reason about,
although manual region selection [29], simplexes [9, 21, 31],
and nonuniform meshes [8,10,31] have been considered. The
sound and tight abstraction of dynamics within each domain
is critical to control error when performing hybridization.
The main reason to consider alternative domains is in or-
der to reduce this error. For general nonlinear dynamics,
this often requires solving constrained nonlinear optimiza-
tion problems, which can be impossible in theory and ex-
pensive in practice. For rectangular domains, interval anal-
ysis [30] can be used to provide guaranteed bounds for this
problem. For other types of domains, the success of the
method depends on the system being analyzed. For exam-
ple, to perform the nonlinear optimization step for simplicial
domains, one can use knowledge of the system’s Lipschitz
constant (which will be sound but inaccurate), or compute
bounds on the second partial derivatives (the elements of
the Hessian matrix) [8, 9, 21]. In general, this is a nonlin-
ear optimization problem with linear constraints, but for
specific cases it can be efficiently solved. For example, for
quadratic dynamics [20,21], the Hessian matrix is constant.
The choice of domains is not critical to the methods be-
ing developed in this paper, so for simplicity, we considered
rectangular domains.
A second choice when performing hybridization is the

type of ‘simpler’ dynamics. Choices range from constant
bounds [16, 29, 31, 32], linear and affine bounds [9, 21, 31],
to polynomial bounds [1, 18]. In this paper, we target an
unmodified implementation of the SpaceEx tool [24], and
therefore simplify from nonlinear dynamics to affine dynam-
ics.

3. PRELIMINARIES
In order to define and justify the soundness of the model

transformation steps used in our approach, we need to
first precisely define the syntax and semantics of hybrid
automata.

Definition 1. A hybrid automaton H is defined by a tuple
H ∆= (Modes,Var , Init,Flow,Trans, Inv), where: (a) Modes
is a finite set of modes. (b) Var = {x1, . . . , xn} is a set of
real-valued variables. (c) Init(m) ⊆ Rn is the set of initial
values for x1, . . . , xn for each mode m ∈ Modes. (d) For
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each m ∈ Modes, the flow relation Flow(m) is a relation
over the variables in x and their derivatives ẋ = fm(x),
where x(t) ∈ Rn and f : Rn → 2Rn

, i.e., differential inclu-
sions are allowed. (e) Trans is a set of discrete transitions
t = (m, g, υ,m′), where m and m′ are the source and the
target modes, g is the guard of t, and υ is the update of t.
(f) Inv(m) ⊆ Rn is an invariant for each mode m ∈ Modes.

For a time interval T , we define a trajectory of H from
state s = (m,x) to state s′ = (m′,x′) as a tuple (L,X). In
this tuple, the function L : T → Modes and X : T → Rn are
functions that define for each time point in T the mode and
values of the continuous variables, respectively.
A state s′ is reachable from a state s if there exists a

trajectory starting with s and ending with s′. A state s′
is reachable if s′ is reachable from a state s where s is an
initial state. We denote the set of states reachable from
the set X in mode m by ReachH(m,X). Reach(H) of H is
defined as the set of states that are reachable from the set
of initial states. We use Reachc

H(m,X) and Reachc(H) to
denote the versions of the these operators that return only
the continuous part of the computed state space. We refer
to Reachc(H) as the continuous reachable state space of H.
We denote the projection of the set R ⊆ Rn over variables
Var to the subset Var ′ ⊆ Var by R �Var′ . Throughout the
paper, we always refer to time-bounded reachability, i.e., we
consider trajectories which evolve up to the time horizon
Tmax. In order to simplify notations, we implicitly take this
assumption for granted in our reasoning. Finally, given a
mode m of the automaton H, we refer to the set of outgoing
transitions as TransH(m).

4. TRANSFORMATIONS
We are interested in methods to compute an overapprox-

imation of the time-bounded set of reachable states, which
produce tight overapproximations, yet are feasible from the
computational point of view. The proposed approaches rely
on several hybrid automaton transformations. A source-to-
source transformation takes as input a hybrid automaton H,
a mode m ∈ Modes,1 possibly some additional parameters,
and returns as output another hybrid automaton θ(H). The
four described transformations are (1) time-triggered split-
ting, (2) space-triggered splitting, (3) domain contraction,
and (4) dynamics abstraction. In time-triggered splitting, a
given mode of H is split into possibly multiple modes via
a time-triggered splitting of the modes. Similarly, in space-
triggered splitting, a mode is split by augmenting the mode
invariant with a constraint induced by a space trigger func-
tion. Domain contraction adds auxiliary invariants called
contraction domains to a mode by intersecting them with
the existing invariants of the mode. Dynamics abstraction
overapproximates the dynamics in a mode of the automaton,
which in this paper, abstracts nonlinear differential equa-
tions by linear differential inclusions, in particular a linear
differential equation with an additive set-valued (interval
vector) input.
As hybridization of the continuous dynamics of hybrid

automata is the most challenging part of the hybridization
1For simplicity of presentation, each transformation is de-
fined for a given mode of the hybrid automaton H, and their
application to multiple modes of H is straightforward by it-
erating over each element of Modes.

process, we focus on the continuous dynamics of hybrid sys-
tems in the rest of the paper and assume that an input
hybrid automaton has only one mode. Our approach over-
approximates the behavior of the original system by a hy-
brid automata consisting of multiple modes. Therefore, only
reachable continuous states are relevant for the soundness
of the transformations. This fact allows us to to conclude
that the inclusion of the original continuous reachable state
space into the transformed one is enough to show sound-
ness of our transformations. Note, however, that although
the input hybrid automaton for the whole hybridization ap-
proach is assumed to be a singleton, our transformations are
defined in terms of general hybrid automata.
In this section, each of these four transformations is pre-

cisely defined. After, these will be combined in order to per-
form static time-triggered and mixed-triggered hybridiza-
tion.

4.1 Time-Triggered Splitting
The time-triggered splitting transformation, informally,

separates the handling of system behavior in the first τ time
units, and the rest of the trajectory up to the time hori-
zon. In order to achieve this goal, the transformation splits
a given mode of a hybrid automaton into two and imposes
constraints that guarantee that the system dwells in the first
mode for τ time units and proceeds to the second one once
the time threshold has been reached.

Definition 2. A time-triggered splitting is a transforma-
tion θtt of a hybrid automaton H, that takes as input an
automaton H, a mode m ∈ Modes that has no outgoing
transitions2, and a real positive time τ , a time-trigger thresh-
old. The hybrid automaton Htt

∆= θtt(H) is defined as:
(a) ModesHtt

∆= ModesH ∪ {mtt}, where mtt is a fresh (i.e.,
unique) mode name, (b) VarHtt

∆= VarH ∪ {t}, where t is
known as the time-trigger variable and is fresh, i.e., assume
without loss of generality that t is a unique variable name,3
(c) the initial states are copied; in addition, if InitH(m) is
not the empty set (i.e.,m is an initial mode), then InitHtt (m)
∆= InitH(m) ∧ t = τ , and otherwise InitHtt (m) ∆= InitH(m);
InitHtt (mtt)

∆= ∅, (d) the flows are copied, and FlowHtt (mtt)
∆= FlowH(m), so mode mtt copies the original dynamics of
m, and in m, ṫ = −1, and in all modes other than m, ṫ = 0,
(e) the transitions are copied; in addition, TransHtt (mtt)

∆=
TransH(m), with an additional transition created from m to
mtt with the guard t = 0; moreover, every incoming tran-
sition to m has the reset t := τ added, (f) the invariants
are copied; in addition t ≥ 0 is added to InvHtt (m) and
InvHtt (mtt)

∆= InvH(m) (mtt copied the original invariant of
m).

Figure 1 illustrates the time-triggered splitting for a single
mode. A time-triggered transition corresponds to any tran-
sition with guard t = 0 taken when the time-trigger variable
2In order to make the presentation of our transformation
clearer, we consider a mode with no outgoing transitions.
Our construction can be easily generalized to also accom-
modate this feature.
3 If the time-triggered splitting transformation θtt is applied
to an automaton multiple times, the time-trigger variable
may be reused in each splitting, as it needs only to be fresh
on the first application of the transformation. This opti-
mization is done in our implementation.
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Mode: m

ẋ = fm(x)

Inv: x ∈ Inv(m)

Mode: m

ẋ = fm(x)
ṫ = −1

Inv: x ∈ Inv(m)
t ≥ 0

Mode: mtt

ẋ = fm(x)
ṫ = 0

Inv: x ∈ Inv(m)

t := τ

Guard:
t = 0?

Figure 1: The time-triggered splitting transformation applied to the original automaton (left, blue) produces the output
automaton (right, yellow). An additional time-trigger variable t is added that counts down to zero from an initial time τ .

t = 0. In contrast to general guards, the reachability along
time-triggered transitions can be computed computationally
efficient as many reachability algorithms automatically cap-
ture time dependencies as part of their workflow. For ex-
ample, the STC scenario [23] of the hybrid model checker
SpaceEx computes time-dependent piecewise-linear approx-
imations of the support functions evolution.
The following lemma connects the time-triggered splitting

transformation with the original hybrid automaton.

Lemma 4.1. Let H be a hybrid automaton with a set of
continuous variables Var , m ∈ Modes be a mode without
outgoing transitions, and τ ∈ R>0 be a time-trigger thresh-
old. Then it holds that Reachc(H) ⊆ Reachc(θtt(H)) �Var .

Here, we note that we need to project away the auxiliary
variable t in order to ensure that the sets of reachable states
of H and θtt(H) can be compared.

4.2 Space-Triggered Splitting
Space-triggered splitting, similar to time-triggered split-

ting, breaks a given mode into several modes. However,
in contrast to the time-triggered transformation, it uses a
space-trigger function to define criteria for mode splitting.

Definition 3. A space-triggered splitting is a transforma-
tion θst of a hybrid automaton H, that takes as input an
automaton H, a mode m ∈ Modes that has no outgoing
transitions, and a function π : Rn → R called the space-
trigger function. The function π must satisfy the condition
that upon entering mode m, π(x) ≥ 0, where x is the cur-
rent state. This means that if m is an initial mode, for all
states x ∈ Init(m), π(x) ≥ 0. The hybrid automaton Hst

∆=
θst(H) defined as: (a) ModesHst

∆= ModesH ∪ {mst}, where
mst is a fresh (i.e., unique) mode name, (b) VarHst

∆= VarH,
(c) the initial states are copied; InitHst (mst)

∆= ∅, (d) the
flows are copied; in addition, FlowHst (mst)

∆= FlowH(m),
(e) the transitions are copied; in addition, TransHst (mst)
∆= TransH(m); moreover, an additional transition created
from m to mst with the guard π(x) = 0, and (f) the in-
variants are copied, with π(x) ≥ 0 added to InvHst (m) and
InvHst (mst)

∆= InvH(m) (mst copied the original invariant
of m).

The space-triggered splitting transformation adapts the
idea of pseudo-invariants [11] to the hybridization setting.
In our setting, a space-trigger function π basically plays a
role of a pseudo-invariant.
The resulting automaton overapproximates the continu-

ous reachable state space of the original one which is for-
mally stated in the following lemma.

Lemma 4.2. Let H be a hybrid automaton, m ∈ Modes
be a mode without outgoing transitions, and π : Rn → R be
a function satisfying the assumptions in Definition 3. Then
Reachc(H) ⊆ Reachc(θst(H)).

4.3 Domain Contraction
Domain contraction adds auxiliary invariants known as

contraction domains that should contain the set of reachable
states. Given a set D and a mode m of a hybrid automaton
H where ẋ = fm(x), if ReachH(m,X) ⊆ D for X ⊆ Inv(m),
i.e. the set of reachable states from mode m starting from a
subset X ⊆ Inv(m) is contained in D, then D may safely be
added as an invariant of m. Of course, the set of reachable
states is not available and is what is being computed or
approximated, so error modes known as domain contraction
error modes (DCEMs) are used to maintain soundness if
the system leaves the states represented by these auxiliary
invariants.

Definition 4. A domain contraction is a transformation
θdc of a hybrid automaton H, that takes as input an au-
tomaton H, a mode m ∈ Modes, and a set D ⊆ Rn called
the contraction domain auxiliary invariant.
The transformed hybrid automaton Hdc

∆= θdc(H) is de-
fined as: (a) ModesHdc

∆= ModesH ∪ {err}, the modes are the
copied, with a new domain contraction error mode (DCEM)
err added, (b) VarHdc

∆= VarH, (c) the initial states are
copied; additionally, if m is an initial mode, and Init(m) is
not entirely contained in D, then add the err DCEM to the
initial states; in this way, we capture a degenerate case if
the initial set has states outside of the contraction domain.
(d) the flows are copied; additionally, FlowHdc (err) of the
form ẋ = 0 are added, (e) the transitions are copied, with
additional transformations of the following form: given an
incoming transition d = (n, g, υ,m) to mode m in H, (1)
augment the guard of the transition d with x ∈ D, and (2)
add an additional transition d′ = (n, g ∧ x ∈ cl(D̄), err)
with an extra condition x ∈ cl(D̄) on the guard and leading
to the DCEM err, where D̄ denotes the complement of D
and cl(·) stands for topological closure and (3) add an addi-
tional transition d′′ = (m,x ∈ cl(D̄), err), (f) the invariants
are copied, except for the invariant InvHdc (m) ∆= InvH(m)
∩ x ∈ D.

A visualization of the domain contraction transformation
is given in Figure 2.
The conditions to enter a DCEM together ensure that

regardless of the choice of the contraction domain, if the
DCEM err is not reached, then the overapproximation of the
reachable states is sound. Additionally, the condition that
the dynamics are zero in the DCEM err ensures that during
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Mode: m

ẋ = fm(x)

Inv: x ∈ Inv(m)

Mode: m

ẋ = fm(x)

Inv: x ∈ Inv(m)
∩ D

Mode: err

ẋ = 0

x ∈ cl(D̄)?

x ∈ D

Guard:
x ∈ cl(D̄)?

Figure 2: The domain contraction transformation applied to the original automaton (left, blue) produces the output automa-
tion (right, yellow). The contraction domain D is added to the invariant, with DCEM err inserted to detect if the reachable
set of states leaves D.

a reachability computation, the exploration of the err will
terminate and be a dead-end in the exploration of the state-
space. Note that the notion of topological closure is required
to ensure that the intersection of guard and invariant is non-
empty.

Lemma 4.3. Let H be a hybrid automaton, m ∈ Modes
be a mode, and D ⊆ Rn be a contraction domain. Then, if
no DCEM is reachable, Reachc(H) ⊆ Reachc(θdc(H)).

The contraction domain auxiliary invariants may be arbi-
trary and may be determined using any method, so they may
not actually contain the set of reachable states. To main-
tain soundness, the DCEMs are added such that if the con-
traction domains do not contain the set of reachable states,
transitions to the DCEMs may be taken.4 If no DCEMs
are reached, then the domain contraction transformation is
sound, but otherwise, if a DCEM is reached, the resultant
set of set of reachable states may not be subset of the original
automaton’s set of reachable states. If it is known that the
set of reachable states will not leave the contraction domain
by some other analysis, then the DCEMs are not necessary
and the invariants may simply be augmented (conjuncted)
with the contraction domain. In summary, if the contrac-
tion domains do not contain the set of reachable states for a
given mode, then a state with a mode equal to the DCEM
will be reached.

4.4 Dynamics Abstraction
Continuous dynamics are abstracted by transforming the

flows of the original hybrid automaton into flows with in-
creased nondeterminism. In this paper, nonlinear differ-
ential inclusions are overapproximated using linear differ-
ential inclusions, specifically linear ODEs with an additive
set-valued input.

Definition 5. A dynamics abstraction is a transformation
θda of a hybrid automatonH, that takes as input an automa-
ton H, a mode m ∈ Modes, and a set-valued function g :
Rn → 2Rn

called the abstract dynamics, where, for the flow
ẋ = fm(x) of mode m with invariant Inv(m), gm(x) is such
that ∀x ∈ Inv(m): fm(x) ⊆ gm(x). The hybrid automa-
ton Hda

∆= θda(H) is defined as: (a) ModesHda
∆= ModesH,

(b) VarHda
∆= VarH, (c) the initial states are copied, (d) the

flows are copied, except for FlowHda (m) which is set to
ẋ = g(x), (e) the transitions are copied, (f) the invariants
are copied.
4Since the semantics of hybrid automata defined do not sup-
port urgency or must transitions, we exploit the fact that
the reachability computation explores all paths to ensure
soundness.

Similarly to other transformations we have considered, we
formulate a lemma relating the original and transformed sys-
tems.

Lemma 4.4. Let H be a hybrid automaton, m ∈ Modes
be a mode, g : Rn → 2R be a set-valued function satis-
fying the assumptions in Definition 5. Then it holds that
Reachc(H) ⊆ Reachc(θda(H)).

5. MIXED-TRIGGERED HYBRIDIZATION
Now we present the central result of the paper, a static

mixed-triggered hybridization that combines the four trans-
formations we have introduced.

Definition 6. A static mixed-triggered hybridization is a
transformation θmt of a hybrid automaton H and has the
following input:

• a single-mode automaton H,
• a list of splitting elements E1. . . . En−1, where each
element Ei is either a real number to be used for time-
triggered splitting, or a π function to be used for space-
triggered splitting (list 1),
• D1, . . . , Dn are the contraction domains (sets) for each
new location (list 2), and
• g1, . . . , gn are the dynamics abstraction functions for
each location (list 3).

The mixed-triggered hybridization transformation con-
sists of the following three steps:

• Apply either time-triggered splitting or space-triggered
splitting based on the list E1. . . . En−1. We apply each
transformation to the most-recently constructed mode,
which has no outgoing transitions. The result of this
step is a chain of modes.
• For each mode in the chain, apply N domain contrac-
tions based on the list D1, . . . , Dn.
• For each mode in the chain, apply N dynamics ab-
stractions based on the list g1, . . . , gn.

If the list of splitting elements (list 1) contains only time-
triggered splitting elements (and no space-triggered splitting
elements), then it is a static time-triggered hybridization.

The following theorem establishes the soundness of the
mixed-triggered hybridization.

Theorem 5.1. For hybrid automaton H, if no DCEM are
reachable, then the continuous reachable state space of the
mixed-triggered transformation θmt(H) overapproximates the
continuous reachable state space of the original automaton:
Reachc(H) ⊆ Reachc(θmt(H)).
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Proof. The proof follows by a straight-forward applica-
tion of Lemmas 4.1, 4.2, 4.3, and 4.4.

We observe that the mixed-triggered hybridization ap-
proach contains a number of parameters which must be
carefully chosen in order to guarantee a sound abstraction,
which is ensured when no error modes (DCEMs) are reach-
able. If the contraction domains are too small, then the set
of reachable states will exit the domain and the DCEM will
be reached. If the contraction domains are too large, then
the dynamics abstraction will be a large overapproximation,
and the set of reachable states will become both large and
inaccurate. In modes copied during time-triggered splitting,
whenever the time-triggered variable t reaches zero, the set
of reachable states at each mode must be contained in the
domains (invariants) of both the source and target locations.
Space-triggered splitting requires as input the π functions
which determine the splitting structure.
In the following, we describe an approach to generate the

parameters for proposed hybridization approach in a way
that will satisfy the above requirements. Again, the ap-
proach is described assuming a single-location hybrid au-
tomaton, where the initial set of states is a rectangle, al-
though generalizations are not difficult.

5.1 Parameter Selection Algorithm
In order to construct the three lists to be used as hy-

bridization parameters, an algorithm is proposed which uses
numerical simulations. The proposed approach has its own
user-provided parameters:
• T is the maximum time,
• S a simulation strategy, one of {point, star, star-

corners}
• δtt is the simulation time in a time-triggered transfor-
mation step,
• npi is the number of space-triggered transformation
steps to use,
• δpi is the maximum simulation time when performing
a space-triggered transformation step,
• ε is a bloating term to account for the difference be-
tween the simulated points the set of reachable states.

The algorithm first selects a finite set of simulation points
sampled from the initial set of states. If S is point, only the
center of the initial rectangle is used. If S is star, the center
is used, as well as the center of every face of the rectangle,
1 + 2n points, where n is the number of variables. If S is
starcorners, the center is used, as well as the centers of
every face, as well as the corners of the initial rectangle,
1 + 2n + 2n points. Selecting more points may permit a
smaller ε, but since the number of points is exponential, the
starcorners strategy may not always be practical. The
collection of points are stored in a variable, sims.
The algorithm proceeds in iterations, at each iteration

doing either a space-triggered step, or a time-triggered step.
The three parameter lists (the output) are initially empty. A
current time variable ct, initially zero, is maintained which
tracks the amount of time elapsed during time-triggered
steps (space-triggered steps do not add to ct). A second
variable next_st tracks the time at which to insert the next
space-triggered value. If npi > 0, next_st is initialized to 0,
otherwise it is set to ∞.
At each iteration, if the current time ct variable is greater

than or equal to next space-triggered time variable next_st,

a space-triggered step is attempted and next_st is increased
by T

npi
. Otherwise, a time-triggered transition is performed

and ct is increased by δtt. The process completes when ct
exceeds the maximum time T .
A time-triggered step adds δtt to output list 1. Then,

it computes the bounding box of sims, bloats it by ε, and
stores it in start. Each point in sims is numerically simu-
lated for δtt time. The bounding box of sims is computed
again, bloated by ε, and stored in end. The bounding box of
start and end is then computed, and put into output list 2
(contraction domains).
A visualization of two consecutive time-triggered steps is

shown in Figure 3. Here, S = point, so sims is just a
single point. Initially, sims is α. After δtt time, the point
β is reached; after δtt further time, the simulation reaches
γ. The modification of the output lists after these two steps
would be the time-triggered value δtt twice inserted into list
1, the red rectangle set inserted into list 2, followed by the
green rectangle set inserted into list 2.
A space-triggered step attempts to use numerical sim-

ulations to find a function π for space-triggered splitting,
but may, in certain cases, be aborted without modifying the
output lists. First, the bounding box of sims is computed,
bloated by ε, and stored in start. The center point in sims,
which we call p, is numerically simulated until either, (1) the
plane induced by the point lies entirely on one side of start,
or (2) the space-triggered time limit δpi is reached. If con-
dition (2) occurs, the space-triggered step returns without
modifying the output lists, and reverts the status of sims.
For condition (1), the plane induced by a point p is a hyper-
plane that both contains p and is orthogonal to the gradient
at p. The function π is created from the equation of the
hyperplane, where π is zero along the plane and positive on
the side of start (in the opposite direction of the gradient
at p). Forcing transitions along hyperplanes orthogonal to
the gradient was previously shown as effective in reducing
the size of the currently-tracked set of reachable states in
the context of pseudo-invariants [11, 12]. Each of the other
points in sims are then numerically simulated until either (1)
they reach a point along the constructed hyperplane where
π evaluates to zero, or (2) they are simulated for the space-
triggered time limit δpi. If for any point condition (2) occurs,
again, the space-triggered step aborts without modifying the
output lists, and reverts the status of sims. If condition (1)
occurs for every point in sims, the bounding box of all the
points in sims (which are all along the hyperplane) is taken,
bloated by ε, and assigned to end. The bounding box of
start and end is then computed, and put into output list
2 (contraction domains). The hyperplane function π is put
into output list 1.
At the end of the iterative construction, output list 3 is

created by performing linearization in each of the contrac-
tion domains in list 2, and then solving for the difference
between the nonlinear dynamics function and its lineariza-
tion. This is, in general, a global optimization problem,
although guaranteed bounds can be computed using, for ex-
ample, interval arithmetic. This is also an embarrassingly
parallel problem, which can be exploited to speed up this
computationally expensive step.
Finally, the last element of list 1 is removed, so that the

last mode in the constructed chain will not be split. This
process results in three lists, the first of size N − 1, and the
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Figure 3: Two time-triggered steps use numerical simula-
tions to create two contraction domains.

other two of size N , as is needed by the proposed mixed-
triggered hybridization approach.

5.2 Generalizations
The proposed construction approach is simple in that only

a small number of user-parameters are required. However,
fine-tuning is possible which can create more precise abstrac-
tions, at the cost of requiring more input from the user.
First, the time step δtt could be changed for each domain.

In Figure 3 this would correspond to the case where the dif-
ference in simulation times between points α and β is not
the same as the difference between β and γ. Next, a per-
domain bloating term ε is possible. Furthermore, each do-
main’s bloating term could be further parameterized based
on the face of the rectangular domain.
The domains need not be rectangles aligned to axes. Do-

mains which are rotated rectangles, aligned with the direc-
tion of the flow, could reduce the error in the dynamics
abstraction step. As with other hybridization work [21], do-
mains which are triangles (simplices), or rotated variants
could also be used. The complication with these approaches
is that the global optimization step of domain abstraction,
which is necessary for soundness, can become more compli-
cated. For example, the simplex-based approach requires
optimizing the Hessian matrix of the dynamics in a simplex
domain, which may be difficult depending on the specific
location’s dynamics.

6. EVALUATION
As stated by Theorem 5.1, in order to soundly reason

about the set of reachable states of the original automa-
ton, the output automaton from the mixed-triggered hy-
bridization process must not reach any DCEMs. The main
purpose of the evaluation, therefore, is (1) to demonstrate
that the hybridization parameters derived from simulations
can result in models where DCEMs are not reached during
reachability analysis of the output automaton. Additionally,
we aim to (2) demonstrate the benefits of occasional space-
triggered transitions compared with a pure time-triggered
approach. Finally, we (3) demonstrate improved scalability
by running our developed static approach on a higher dimen-
sional model, at a granularity that would be impossible for
existing static approaches. The evaluation was performed
with these three goals in mind.
The proposed hybridization method was implemented in

the Hyst model translation and transformation tool [12]5.
The developed transformation pass implements the algo-
rithm described in Section 5 leveraging the transformations
5SpaceEx model files for the examples evaluated, both
before and after hybridization, are available at: http://
verivital.com/hyst/pass-hybridization/.

(a) Computed reachability
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Figure 4: The limit cycle for the Van der Pol system was
computed with SpaceEx using our hybridization approach.

of Section 4. We target the latest version of the SpaceEx
tool, which supports time-triggered transitions using the
map-zero-duration-jump-sets flag. In order to derive the
dynamics abstraction function, we use a global optimiza-
tion routine from the scipy.optimize library. Other op-
tions are possible, for example interval arithmetic, interval
arithmetic with grid-paving, SMT solvers, or combinations
of these methods. Since the optimizations in each domain
are run in parallel, more effort can be taken to derive tighter
bounds without significant effects on overall runtime. The
reported times were measured on a computer with an Intel
Core 2 Quad CPU (Q9650) at 3.00 GHz with 4 GB RAM.

6.1 Van der Pol Oscillator
The first set of experiments consider a Van der Pol oscil-

lator, which is a two-dimensional system with the following
nonlinear dynamics:

ẋ = y

ẏ = (1− x2) ∗ y − x

We use the same initial states as evaluated in other hy-
bridization approaches [1], (x, y) ∈ [1.25, 1.55]× [2.28, 2.32].
A maximum time of 5.5 was used, which is sufficient to com-
plete one cycle of the oscillator, as in the earlier work.
We used numerical simulations based on the S = star

strategy, a time-triggered step of δtt = 0.05, a bloating term
of ε = 0.05, a number of space-triggered transformation
steps of npi = 31, and a maximum simulation time in a
space-triggered transformation step of δpi = 1. Analyzing
the generated model with SpaceEx resulted in no DCEMs
being reached, which means that the set of reachable states
overapproximates the set of reachable states in the the orig-
inal automaton. This demonstrates goal (1) of the evalua-
tion. The combined hybridization and computation process
took 10.3 seconds. A visualization of the resultant set of
reachable states produced by SpaceEx is given in Figure 4a,
and can be compared to a streamplot of the dynamics given
in Figure 4b.
It is insightful to examine the bounding box of the numer-

ical simulations upon entering each mode, and compare it to
the bounding box of the set of reachable states at the same
times. In particular, by looking at the maximum width in
any dimension of the bounding box of sims and comparing
it with the maximum width of bounding box of the set of
reachable states, we can estimate how close the set of reach-
able states was to the boundaries of the contraction domains
where a DCEM would be reached. A plot of these widths
upon entering each mode is shown in Figure 5.
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Figure 5: The maximum width of the bounding boxes of the
reachable states and simulations upon entering each mode
remains within 2 ∗ ε = 0.1, which is necessary to avoid en-
tering a DCEM.
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Figure 6: Space-triggered transitions serve to reduce the size
of the tracked set of states.
Since we used a bloating term of ε = 0.05, it is nec-

essary that maximum width of the simulated states plus
2 ∗ ε = 0.1 is greater than the maximum width of the set of
reachable states at all times, otherwise, an error state will
be reached. Additionally, from the plot we can see that the
starcorners strategy has slightly better tracking of widths
of the set of reachable states near the start of the computa-
tion, although it makes less of a difference later on.
In order to show the effect of space-triggered transitions,

we consider the same system using a shorter time bound
of 2.0, a time step of δtt = 0.01, and the same value of
ε = 0.05. We run the system with no space-triggered tran-
sitions, a single space-triggered transition at the start, and
four space-triggered transitions. The widths of the tracked
set of reachable states, and the bounding box of the simu-
lated points is shown in Figure 6. Without space-triggered
transitions, the width of the set of reachable states quickly
gets larger than the simulated bounding box, and around
time 0.29, a DCEM is reached. With a single space-triggered
transition at the start, the tracked set of states is smaller,
and a DCEM is not reached until around time 1.66. With
four space-triggered transitions, the full 2.0 seconds is com-
puted without reaching a DCEM. Furthermore, the decrease
in the size of the tracked states is apparent at the space-
triggered times 0.0 (mode #0), 0.5 (mode #51), 1.0 (mode
#102), and 1.5 (mode #153). This demonstrates the effec-
tiveness of space-triggered transitions in reducing the size of
the currently-tracked set of states, goal (2) of the evaluation.

6.2 Nonlinear Water Tank
The next model we consider is a nonlinear tank model [5].

This model is parameterized on the number of tanks, n,

1.5 2.0 2.5 3.0 3.5
x1

1.5

2.0

2.5

3.0

3.5

4.0

4.5

x2

Nonlinear Tank Reachability

(a) Computed Reachability (b) Result from [5] (includes
input disturbances)

Figure 7: A plot of a projection of the computed reachable
states for x1 and x2 for the 6-D non-linear tank model.

where we use n = 6. Each tank i adds a single variable xi to
the model, which represents the height of the water in the
tank. The input to the first tank is based on the level of
the last tank, xn. We analyze a deterministic version of the
model, with no disturbance input and fixed tank parameters.
The dynamics for x1 and every other xi>1 are:

ẋ1 = 0.1 + 0.01(4− xn) + 0.015
√

2gx1

ẋi = 0.015
√

2gxi−1 − 0.015
√

2gxi

We used the same initial set of states as the earlier work,
x1 ∈ [1.9, 2.1], x2 ∈ [3.9, 4.1], x3 ∈ [3.9, 4.1], x4 ∈ [1.9, 2.1],
x5 ∈ [9.9, 10.1], and x6 ∈ [3.9, 4.1]. Using the simulation
strategy S = starcorners, a maximum time of T = 400, a
step size of δtt = 4, a bloating term value of ε = 0.2, a num-
ber of space-triggered transformation steps of npi = 10, and
a maximum simulation time in a space-triggered transfor-
mation step of δpi = 10, the hybridized model was created.
SpaceEx was used to analyze this model, and indicated that
no DCEMs were reached. The whole process took about 430
seconds. Figure 7 shows a projection of the set of reachable
states onto x1 and x2, as well as a result from the earlier
hybridization work.
This demonstrates goal (3) of the evaluation, that static-

based hybridization approaches can scale to higher dimen-
sions. Although only a six-dimensional model was consid-
ered, this is higher than we could find for any published
static hybridization method.

7. CONCLUSION
In this paper, we developed the first static time-triggered

and mixed-triggered hybridization approaches. The devel-
oped methods use simulations to guide the hybridization
process and modify an input model for analysis with off-the-
shelf verification tools, unlike dynamic hybridization meth-
ods that require tool modification. Additionally, we can per-
form the expensive dynamics abstraction (linearization) step
for each mode in parallel, which can improve the speed of
the method. We have shown the effectiveness of the method
by hybridizing example nonlinear systems and computing
the set of reachable states using SpaceEx, a tool that is only
capable of reasoning with linear and affine systems.
Since this is the first paper investigating this category of

hybridization techniques, we believe significant further op-
timization is possible. Extending the approach from single-
mode input automata to multiple-mode systems would be
a straightforward enhancement, and has been done in other
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hybridization approaches [1]. Dynamic mixed-triggered ap-
proaches, have also yet to be investigated. Parameter se-
lection for the approach can also be challenging and could
be further automated, perhaps by using a CEGAR-like ap-
proach to detect when DCEMs (error modes) are reached,
and performing additional simulations from violation re-
gions. Finally, the simulation-based parameter construc-
tion algorithm does not track the set of reachable states
well when nondeterminism or disturbances are present, and
other approaches from hybrid automaton falsification may
work better in these cases.
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Abstract Hybrid automata are an important formal-
ism for modeling dynamical systems exhibiting mixed
discrete-continuous behavior such as control systems and
are amenable to formal verification. However, hybrid au-
tomata lack expressiveness compared to integrated
model-based design (MBD) frameworks such as the
MathWorks’ Simulink/Stateflow (SLSF). In this paper,
we propose a technique for correct-by-construction com-
positional design of cyber-physical systems (CPS) by
embedding hybrid automata into SLSF models. Hybrid
automata are first verified using verification tools such
as SpaceEx, and then automatically translated to em-
bed the hybrid automata into SLSF models such that
the properties verified are transferred and maintained in
the translated SLSF model. The resultant SLSF model
can then be used for automatic code generation and de-
ployment to hardware, resulting in an implementation.
The approach is implemented in a software tool build-
ing on the HyST model transformation tool for hybrid
systems. We show the effectiveness of our approach on a
CPS case study—a closed-loop buck converter—and val-
idate the overall correct-by-construction methodology:
from formal verification to implementation in hardware
controlling an actual physical plant.

1 Introduction

In this paper, we present the theory and associated im-
plementation for the translation of hybrid automaton
models (used for verification) to the MathWorks Simu-
link/Stateflow (SlSf) models, subsequently used for de-
sign refinement, simulation, implementation, and code
generation for target embedded hardware. Our approach
is particularly useful if the design process is structured

DISTRIBUTION A. Approved for public release; Distribution
unlimited. (Approval AFRL PA #88ABW-2015-2402)
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Figure 1: High-level overview of the model-based de-
sign process enabled by this work. Verification using the
hybrid automaton is first performed in a hybrid sys-
tems model checker, then we automatically generate a
trajectory-equivalent SlSf diagram. The diagram can
then be embedded into a more complex system, possi-
bly with other, unverified, components (because they are
too large to verify, exist for legacy reasons, etc.), and can
then be used for code generation and implementation in
actual systems.

in a bottom-up fashion. In other words, we assume that
the individual system components are first modeled in
detail, such as modeling a control algorithm as a hybrid
automaton and verifying properties (typically safety) for
it. These components are then linked together to form
the whole system under consideration within SlSf. This
leads to overall system models consisting of heteroge-
neous components where a number of components are
modeled as hybrid automata, but the entire system may
be too complex to formally model and verify. In the
last decade, a number of powerful formal design, anal-
ysis, and verification tools for hybrid automata such as
SpaceEx [9–12,22] and Flow∗ [17] have emerged. In our
proposed approach, a designer can ensure the correct-
ness of individual components before using our transla-
tion process to link the system together in SlSf (see
Fig. 1).
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We introduce a technique to automatically convert
the hybrid automata into trajectory-equivalent SlSf di-
agrams. By trajectory-equivalent, we mean that behav-
iors (trajectories) of the translated SlSf diagram match
those of the original hybrid automaton. One technical
challenge is that hybrid automata and SlSf differ in se-
mantics: a hybrid automaton is typically defined with
may-semantics with respect to the discrete transitions,
whereas SlSf employs must-semantics. In other words,
a transition in SlSf is taken as soon as the transition
guard is enabled subject to some numerical aspects with
zero-crossing detection, whereas the hybrid automaton
still has the freedom to stay in the current location as
long as the location invariant has not been violated. In
case of non-deterministic hybrid automata, trajectory-
equivalence means that the behaviors of the original hy-
brid automaton will be exhaustively explored. Our ap-
proach incorporates additional randomization steps into
the resulting SlSf diagram. In this way, in every run,
the diagram produces a possibly different trace that still
reflects a trajectory from the original hybrid automaton
semantics. After running more and more simulations, we
get a better and better approximation of the reachable
state space of the original hybrid automaton.

Related Work Significant research has been done on the
translation of SlSf diagrams into other analysis tools,
such as hybrid systems model checkers [2, 4, 8, 14, 15,
29–31, 36, 37, 40, 42]. Agrawal et al. [2] suggest an al-
gorithm to translate SlSf diagrams into the equivalent
HSIF [14, 15, 36, 37] models. The Compositional Inter-
change Format (CIF) provides a common input language
focused on model compositionality for networks of hy-
brid automata [3]. Alur et al. translated SlSf to linear
hybrid automata for applying symbolic analysis to im-
prove test coverage of SlSf [4]. In a different setting,
Schrammel et al. [40] consider the translation problem
for complex SlSf diagrams where involved treatment of
zero-crossings is needed. Manamcheri et al. [29] have de-
veloped the tool HyLink to translate a restricted class of
SlSf to hybrid automata. Minopoli et al. [30, 31] have
developed a theory of urgent semantics for hybrid au-
tomata and the SL2SX tool that translates a restricted
subset of SlSf diagrams to hybrid automata. The ap-
plication of the above techniques is restricted by the fact
that no complete semantics of SlSf is provided (in spite
of recent progress [8, 13,23,24,29,38]).

In contrast to all these existing works, we consider
the converse direction, i.e., to translate a given hybrid
automaton into an SlSf diagram. Sanfelice et al. [39]
have developed the hybrid equations toolbox (HyEQ)
to approximately simulate the hybrid systems that may
include Zeno, zero-crossing, and non-deterministic be-
haviors. However, the applicability of the Simulink De-
sign Verifier (SDV) model checker1 integrated with SlSf

1 http://www.mathworks.com/products/sldesignverifier/

does not apply to this class of models, so verification is
not possible. In our setting, we benefit from clear and un-
ambiguous hybrid automata semantics and may formally
verify properties of the hybrid automata prior to trans-
lating them to SlSf diagrams. Pajic et al. [25, 33–35]
consider a similar problem of converting timed automata
encoded in Uppaal [27] to SlSf diagrams. However,
in their translation, they consider only runs of Uppaal
models that obey the must-semantics. In our work, be-
yond considering the much more expressive framework
of hybrid automata (as timed automata are a subclass
of hybrid automata), we provide a translation handling
the non-determinism by producing trajectory-equivalent
SlSf diagrams. Operational semantics of (purely dis-
crete) Stateflow have been developed [24], and alterna-
tive formalizations of discrete semantics have been inves-
tigated using, e.g., translation from Stateflow to C [38].
In contrast to these prior works, we focus on continuous-
time Stateflow diagrams. Another recent line of research
focusses on the translation from Hybrid Communicat-
ing Sequential Processes (HCSP) to Simulink block dia-
grams [16,43,44]. In our work we consider the translation
of the hybrid automaton model which is extensively used
in the industry for CPS modeling.

Contributions. This paper has four primary contribu-
tions.

(a) This is the first work, as far as we are aware,
to provide a translation scheme from hybrid automata
to SlSf diagrams, which is useful as part of a mod-
el-based design (MBD) process. (b) In order to overcome
the difference in semantics between the modeling frame-
works, we introduce the notion of trajectory-equivalence,
and show how the conversion preserves trajectory-equiv-
alence with respect to several sources of non-determin-
ism in hybrid automata. (c) We provide an implementa-
tion of the trajectory-equivalent translation scheme as a
part of the HyST model translation framework [6], which
enables completely automatic translation of existing hy-
brid automaton models. (d) We show the applicability
of our contributions in several case studies where hybrid
automata are automatically translated to SlSf for sim-
ulation, use in larger SlSf diagrams, and deployment to
actual hardware. For one case study—a closed-loop buck
converter—the entire correct-by-construction MBD pro-
cess is illustrated, from verification through implemen-
tation in hardware. This includes formal verification of
the hybrid automaton in SpaceEx, translation to SlSf,
code generation for the controller in SlSf, then subse-
quent compilation, and finally execution in embedded
hardware controlling the physical plant.

Paper Organization. The remainder of the paper is orga-
nized as follows. After introducing the necessary back-
ground in Sect. 2, we present our trajectory-equivalent
translation scheme in Sect. 3. In Sect. 4, we evaluate our
approach on four case studies. We conclude in Sect. 5.
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2 Preliminaries

In this section, we introduce the preliminaries that are
needed for this work. We first define a hybrid automaton
model and discuss its semantics, and then do the same
for SlSf diagrams.

2.1 Hybrid Automata

A hybrid automaton is formally defined as follows.

Definition 1 (Hybrid Automaton). A hybrid auto-

maton is a tuple H ∆
= (Loc,Var , Init ,Flow ,Trans, Inv)

with: (a) the finite set of locations Loc, (b) the set of con-

tinuous variables Var
∆
= {x1, . . . , xn} from Rn, (c) the

initial condition, given by Init(`) ⊆ Rn for each loca-
tion `, (d) the flow, a deterministic function Flow(`)
from the variables to their derivatives for each location
`, (e) the discrete transition relation Trans, where every
transition is a tuple (`, g, υ, `′) with: (i) the source loca-
tion ` and the target location `′, (ii) the guard, given by
a constraint g, (iii) the update, given by a mapping υ
that modifies the variable valuation, and (f) the invari-
ant Inv(`) ⊆ Rn for each location `.

We use the common . (dot) notation to specifically indi-
cate components of H as necessary, e.g., H.Var are the
variables of H.

The semantics of a hybrid automaton H is defined
in terms of trajectories as follows. A state of H is a pair
(`,x) that consists of a location ` ∈ Loc and a point x ∈
Rn. Formally, x is a valuation of the continuous variables
in Var . For the following definitions, let T = [0, ∆] be
an interval for some ∆ ≥ 0.

Definition 2. A trajectory ofH from state s = (`,x) to

state s′ = (`′,x′) is a pair ρ
∆
= (L,X), where L : T → Loc

and X : T → Rn are functions that define for each time
point in T the location and the values of the continuous
variables, respectively. A sequence of time points where
location switches happen in ρ is denoted by (τi)i=0...k ∈
T k+1. In this case, we define the length of ρ as |τ | = k.
Trajectories ρ = (L,X), and the corresponding sequence
(τi)i=0...k, must satisfy the following conditions:

(a) τ0 = 0, τi < τi+1, and τk = ∆ – the sequence of
switching points increases, starts with 0 and ends
with ∆,

(b) L(0) = `, X(0) = x, L(∆) = `′, X(∆) = x′ – the
trajectory starts in s = (`,x) and ends in s′ = (`′,x′),

(c) ∀ i ∀ t ∈ [τi, τi+1) : L(t) = L(τi) – the location is not
changed during the continuous evolution,

(d) ∀ i ∀ t ∈ [τi, τi+1) : (X(t), Ẋ(t)) ∈ Flow(L(τi))
holds and thus the continuous evolution is consistent
with the differential equations of the corresponding
location,

(e) ∀ i ∀ t ∈ [τi, τi+1) : X(t) ∈ Inv(L(τi)) – the contin-
uous evolution is consistent with the corresponding
invariants, and

(f) ∀ i < k ∃ (L(τi), g, υ, L(τi+1)) ∈ Trans : Xend(i) ∈ g
∧ X(τi+1) = υ(Xend(i)) ∧Xend(i) = limτ→τ−

i+1
X(τ)

– every continuous transition is followed by a discrete
one, where Xend(i) defines the values of continuous
variables immediately before the discrete transition
at the time moment τi+1.

A state s′ is reachable from state s if there exists a tra-
jectory from s to s′.

A symbolic state s
∆
= (`,R) is a pair, where ` ∈ Loc

and R is a convex and bounded set consisting of points
x ∈ Rn. The continuous partR of a symbolic state is also
called region. The symbolic state space of H is called the
region space. The initial set of states Sinit of H is defined
as
⋃
`(`, Init(`)). The reachable state space Reach(H) of

H is defined as the set of symbolic states that are reach-
able from some initial state in Sinit , where the defini-
tion of reachability is extended accordingly for symbolic
states. We refer to the set of all the trajectories of H
starting in Sinit by Traj(H). A safety specification P is
a given set of symbolic states. A hybrid automaton H
satisfies a safety specification P iff Reach(H) ⊆ P . We
are interested in ensuring that the hybrid automaton is
correct, i.e., satisfies P , and then subsequently trans-
late it for simulation, integration, and implementation
in SlSf as discussed in the next sections.

2.2 Continuous-Time Stateflow Diagrams

Simulink is a graphical modeling language for control
systems, plants, and software. Stateflow is a state-based
graphical modeling language integrated within Simulink.
Continuous-time Stateflow diagrams provide methods for
modeling hybrid systems that consist of continuous and
discrete states and behaviors. In this section, we describe
a restricted subclass of continuous-time Stateflow dia-
grams to which we translate a hybrid automaton. In
particular, we focus only on continuous-time Stateflow
state transition diagrams and we do not consider mod-
els with hierarchical states.

Roughly, a Stateflow state transition diagram may
be thought of as an extended state machine with vari-
ables of various types. In addition to states, Stateflow
diagrams may have junctions that are instantaneous. A
transition between states may occur at each simulation
time step, whereas multiple junction transitions may oc-
cur in a single simulation time step.

A continuous-time Stateflow diagram (see Fig. 2) is
roughly analogous to a hybrid automaton, but their be-
havior differs in several ways. In particular, Stateflow di-
agrams (1) are deterministic, (2) have urgent transitions
with priorities, and (3) have events such as enabled tran-
sitions that are determined at runtime by zero-crossing
detection algorithms.

We define Stateflow diagrams more formally now.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 
55



4 Stanley Bak et al.: Hybrid automata: from verification to implementation

`S
entry:
entryStatements
during:
duringStatements
exit:
exitStatements

. . . j

[ GuardS(τ3) ]
{UpdateS(τ3)}

[ GuardS(τ4) ]
{UpdateS(τ4)}

[ GuardS(τ2) ]
{UpdateS(τ2)}

[GuardS(τ1)]

1

Figure 2: Snippet of a general continuous-time Stateflow
diagram with a state `S , a junction j, and four transi-
tions τ1 − τ4.

Definition 3 (Stateflow diagram). The tuple S ∆
=

(LocS , JuncS , VarS , TransS , ActionsS) defines the State-
flow diagram. Here, (a) LocS is a finite set of states (also
known as locations), (b) the junctions JuncS are like
locations, but all of which may be evaluated in a sin-
gle simulation event step (i.e., they are instantaneous
“states”), (c) VarS is a finite set of variables of vari-
ous types, and for our formalization we assume they are
real-valued, (d) the ActionsS(`S) for each location `S
are actions described by Matlab or C statements that
are performed at different event times subdivided into
entry, during, and exit actions, where the entry (resp.
exit) action is executed only once when entering (resp.
exiting) the state and the during action performs the
continuous-time evolution of the variables of VarS ac-
cording to a differential equation (this happens strictly
between entering and exiting), (e) the discrete transition
relation TransS where every transition τ ∈ TransS is for-
mally defined as a tuple (`S ,GuardS ,UpdateS ,TPS , `

′
S):

(i) the source location or junction `S ∈ LocS ∪ JuncS
and the target location or junction `′S ∈ LocS ∪ JuncS ,
(ii) the guard, given by a constraint GuardS , must be
satisfied for a transition to be taken, (iii) the update,
given by a mapping UpdateS , defines which variables in
VarS are modified, and to what value (unmodified vari-
ables keep their value), and (iv) the priority, given by
TPS , is a natural number between 1 and od(`S)—the
outdegree of (number of transitions leaving) the state or
junction `S—that indicates the order in which transi-
tions are taken if more than one is enabled.

Simulating an SlSf diagram produces a simulation
trajectory, which is closely related to a trajectory of a
hybrid automaton.

Definition 4 (Simulation trajectory). For an initial
state x0, a time bound Tmax, error bound δ ≥ 0, and time
step τ > 0, a simulation trajectory (of length k) is a

sequence α
∆
= ((Ri, ti))i=1...k, where R0 = {x0}, t0 = 0,

Ri ⊆ Rn, ti ∈ R≥0, and (a) ∀ i : 0 ≤ ti+1 − ti ≤ τ ,
tk = Tmax, (b) ∀ i ∀ t ∈ [ti, ti+1] : the simulation state
after time t is in Ri, and (c) ∀ i : dia(Ri) ≤ δ.

Here dia(·) denotes the diameter and δ is used to
bloat the simulation trajectory to handle numerical er-
rors; picking δ = 0 represents the typical result of a

(idealized) numerical simulation of an SlSf diagram. We
note that the various actions (e.g., entry, during, and
exit actions, and transition updates) are evaluated se-
quentially, while hybrid automaton actions are executed
concurrently. By Tracδ(S) we denote the set of all simu-
lation trajectories of an SlSf diagram S with parameter
δ. A simulation trajectory α satisfies a safety specifica-
tion P if every element α.Ri ⊆ P , i.e., P contains the
states of the simulation trajectory with time projected
away. An SlSf diagram S satisfies a safety specifica-
tion P if all simulation trajectories Tracδ(S) satisfy P .
Note that in practice, any simulation trajectory is finite-
length, although we avoid a finite-length assumption in
the definition of simulation trajectories to relate possibly
infinite trajectories of a hybrid automaton with similar
possibly infinite simulation trajectories. Moreover note
that our definition of a trajectory does not allow instan-
taneous location switches in the hybrid automaton. This
restriction is necessary for practical purposes because
SlSf requires executing a (however small) simulation
step in each state.

3 Translating a Hybrid Automaton to a
Continuous-Time Stateflow Diagram

We describe our main contribution, namely how to trans-
late from a hybrid automaton to an SlSf diagram. For
different classes of hybrid automata, different transla-
tions may be used, and we discuss two classes primarily
based on whether the hybrid automaton is deterministic
or not.

To compare simulation trajectories of an SlSf di-
agram with trajectories of a hybrid automaton, we in-
troduce the concept of correspondence. Here we assume
that the δ parameter of a simulation trajectory is equal
to zero.

Definition 5 (Correspondence). A trajectory ρ of a
hybrid automatonH and a simulation trajectory α (with
δ = 0) of an SlSf diagram S correspond to each other if
the sequences of discrete locations, transitions, and tran-
sition times encountered in both are the same, and the
continuous points of the trajectory and the simulation
trajectory match.

The primary goal of our construction is to ensure
that the set of simulation trajectories Tracδ(S) for the
SlSf diagram can be trajectory-equivalent to the origi-
nal hybrid automaton.

Definition 6 (Trajectory-Equivalence). An SlSf
diagram S is trajectory-equivalent to a hybrid automa-
ton H if, for every trajectory ρ of H, there exists a cor-
responding (Definition 5) simulation trajectory α of S,
and for every simulation trajectory α of S, there exists
a corresponding trajectory ρ of H.
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3.1 Translating different classes of hybrid automata

As already outlined in Sect. 1, one main difference be-
tween hybrid automata and SlSf diagrams is the ab-
sence of non-determinism in SlSf diagrams. There are
several sources of non-determinism in the general hybrid
automaton formalism.
1. Transitions. If there is more than one outgoing tran-

sition in a location, any of them can be taken as long as
the guard is enabled and the target location’s invariant
is satisfied after applying the transition update.
2. Dwell times. The amount of time that a hybrid au-

tomaton remains in a location is only determined by the
invariant and the transition guards – it is forced to leave
the location only by the invariant. It is not sufficient for
the guard to be enabled at some point in time, as the
automaton can still choose to remain in the location un-
til the invariant becomes false.
3. Initial states. A hybrid automaton is allowed to start

in a whole region, which may be an uncountable number
of possible initial states.
4. Updates. Updates in transitions may be non-deter-

ministic. This gives a (possibly uncountable) number of
successor states after a discrete transition.
5. Flows. Flow definitions in locations may be uncer-

tain. We do not consider this source of non-determinism
in this paper.

For the translations, we make the following assump-
tions on the original hybrid automaton.

Assumption 1 The hybrid automaton H is Zeno-free,
which means that only finitely many discrete transitions
may be taken in finite time.

Translating deterministic hybrid automata is fairly
straightforward, so we first discuss how to translate de-
terministic hybrid automata, and then discuss the more
complex non-deterministic scenario. There may be addi-
tional numerical issues with SlSf that are outside the
scope of this work. For example, the integration of the
differential equations in SlSf may not be exact, which
may cause differences in observed behavior. In practice,
simulations can be made arbitrarily accurate by reduc-
ing the simulation time step at a computational cost.

3.1.1 Translating a deterministic hybrid automaton

The next definition states when a hybrid automaton is
deterministic.

Definition 7. A hybrid automaton H is deterministic
if, for any initial state (`, x0) ∈ Sinit for any point x0 ∈
Init(`), there is one unique trajectory ρ starting from
(`, x0). Otherwise, H is non-deterministic.

Syntactic restrictions may be enforced on a hybrid au-
tomaton to ensure it is deterministic. For example, a
sufficient condition for a hybrid automaton to be de-
terministic includes all of the following being satisfied:

(1) at most one discrete transition is enabled simulta-
neously, (2) a discrete transition guard is enabled when
the continuous flow exits the invariant, and (3) no state
can be mapped onto two different states by the transi-
tion updates [26, Lemma 2]. Note that requirement (2)
is not an urgent definition of semantics, but it is a condi-
tion that ensures an enabled transition is forced to occur
once it becomes enabled, so it is in essence a syntactic
restriction that enforces urgency.

Under such assumptions that enforce a hybrid au-
tomaton to be deterministic, the translation from the
deterministic hybrid automaton to an SlSf diagram is
straightforward and proceeds as follows. Let S = (LocS ,
JuncS , VarS , TransS , ActionsS) be the SlSf diagram.
Instantiate LocS = H.Loc, JuncS = ∅, and VarS =
H.Var . For each location ` ∈ Loc and each correspond-
ing location `S ∈ LocS , and for each variable v ∈ Var
and the corresponding variable vS ∈ VarS , we set the
ActionsS(`S , vS) during action for vS to be equal to the
flow Flow(`, v) for variable v, and do not instantiate the
entry and exit actions. For continuous-time Stateflow
models, the during action is used to specify an ordinary
differential equation for variables, so in essence this just
copies the flow from H to S for each location and each
variable, and the other action types (entry and exit)
are unused.

Finally, we instantiate the transitions as follows. For
each location ` ∈ Loc and corresponding location `S ∈
LocS , and for each transition (`, g, υ, `′) ∈ Trans with a
natural number i indicating the iteration count over the
transitions, we instantiate a transition γ ∈ TransS as the
tuple (`S ,GuardS ,UpdateS ,TPS , `

′
S), where γ.`S = `,

γ.GuardS = g, γ.UpdateS = υ, TPS = i, and γ.`′S = `′.
Since H is deterministic, the choice of the transition pri-
ority TPS is unimportant as only at most one transition
is enabled at a time, so it is in essence set arbitrarily
to i based on whatever iteration order is chosen. Ad-
ditionally, the restriction on guards and invariants to
ensure determinism means the invariant translation is
naturally handled through the translation of the guard
as described above.

There are some additional minor syntactic transla-
tions that also must occur which we discuss briefly. The
first is due to the fact that updates in SlSf are evalu-
ated sequentially, whereas in a hybrid automaton they
are evaluated concurrently, so additional temporary vari-
ables are introduced to handle this as necessary (e.g., the
hybrid automaton update x′ := x+ 1∧ y′ := x is rewrit-
ten to the SlSf update x′tmp := x;x′ := xtmp + 1; y′ :=
xtmp, where xtmp is a fresh temporary variable).

The second more significant difference is related to
how SlSf identifies events during execution or simula-
tion, which is influenced in part by the simulator not be
infinitely precise and have numerical errors. In particu-
lar, this influences event detection such as when transi-
tions are enabled and may be taken, and this is imple-
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mented using zero-crossing detection algorithms inside
the simulation routines of SlSf.

In particular, if a guard is only enabled at one (sin-
gular) point in time, it will almost surely not be de-
tected by the zero-crossing mechanisms used by SlSf,
and the transition is usually missed. In order to not ex-
clude certain behaviors systematically, we consider an ε-
relaxation of each guard constraint, similar to the relax-
ations considered in translations from SlSf to hybrid au-
tomata [30]. For instance, a guard constraint of the form
x = c∧y ≤ x becomes c− ε ≤ x ≤ c+ ε∧y ≤ x− ε. The
simulation time step can then be chosen small enough
such that, based on the value of ε and the Lipschitz con-
stant of the dynamics, no transitions will be missed.

Although this may permit more behaviors than the
original hybrid automaton, it critically prevents transi-
tions from being missed, which is necessary for trajec-
tory-equivalence. The extra behaviors introduced from
this necessary step can be reduced by considering smaller
values of ε, which will require a smaller simulation time
step. Reducing the time step, however, will be at the
cost of additional simulation runtime.

Example Translation. We illustrate the translation pro-
cess with a running case study evaluated in more de-
tail later (Section 4.1). A deterministic hybrid automa-
ton for this example appears in Figure 3, which is a
model of a closed-loop control system. Specifically, here a
periodically-updated hysteresis controller is used to reg-
ulate a voltage VC by controlling the state of a switch.
This is a flattened (composed) model of the closed-loop
system, originally consisting of a timed automaton model
of the hysteresis controller which has periodic updates
every 20 microseconds, and a hybrid automaton model
with affine dynamics of the plant, which is a circuit
known as a buck converter. The resulting continuous-
time Stateflow diagram for the buck converter created
using our translator appears in Figure 4 (with no ε-
relaxations).

3.1.2 Translating a non-deterministic hybrid
automaton

For a non-deterministic hybrid automaton, we achieve
trajectory-equivalence by replacing non-determinism in
the hybrid automaton by (uniformly distributed) ran-
dom number generation in the SlSf diagram. In this
way, by executing multiple SlSf simulations we can ap-
proximate the reachable states of the original hybrid au-
tomaton.

In our converter, we currently support initial regions
and non-deterministic updates to hyper-rectangles, as
well as deterministic updates which can be arbitrary
functions. When non-deterministic assignments or initial
states are used, they must be strict subsets of the invari-
ant of the target or initial location, respectively, which
we note can be statically checked. Under this assump-
tion, the choice of the initial continuous state and the

non-determinism possible during updates can be done by
randomly choosing one point from the set of all points
available.

In the rest of this section, we focus on the harder
problem of non-determinism from the transitions and
dwell time. We first give an overview of the translation
scheme. Here it is helpful to regard the trajectory of
a hybrid automaton as a sequence of jumps, and after
each jump, the automaton chooses the next transition
and dwell time. The crucial difference in our conversion
is that the choices might be infeasible, i.e., violating the
invariant. To account for this, we incorporate a back-
tracking mechanism, where the current state of all vari-
ables is stored when entering a new location. Note that
time is an entity which is implicitly present in all hy-
brid automaton models and we can always add a (fresh)
time variable t with flow ṫ = 1. This allows for a general
translation scheme without further knowledge about the
hybrid automaton under consideration.

We translate a hybrid automaton location ` into a
corresponding location cluster ˆ̀, comprising of a number
of SlSf states, junctions, and transitions. The clusters
are then connected by the same transitions as in the
original hybrid automaton. A simulation trajectory of
the resulting SlSf diagram then visits those clusters.
Inside a cluster, the execution consists of three phases,
depicted in Fig. 5.

Three phases in a location cluster. In the first phase, we
randomly choose a transition out from the transitions
currently available. In the second phase, we choose a
time threshold T . In the final phase, we incorporate the
original continuous dynamics of the location `.

In the translated model, the transition tries to be
taken by checking the original guard condition, but only
after dwelling in ˆ̀ for at least until time moment T . If
the transition out cannot be taken – possibly due to an
invariant violation – in the time frame [T , Tmax], where
Tmax is the maximum simulation time, we backtrack2

and return to the second phase, and select a new time
threshold T which is strictly less than the previously-
chosen threshold. To ensure termination, we bound the
number of times backtracking may occur before trying
T = 0. If the chosen transition can still not be taken, we
can conclude that it cannot be taken at all, and go back
to the first phase, this time trying another transition.

3.2 Trajectory-Equivalence

The translation process described above maintains the
defined notion of trajectory-equivalence. For this, we
consider an idealized conversion, where there are no nu-
merical errors in the simulation, the value of ε is zero,

2 We note that our notion of backtracking is different from the
one that occurs with multiple junctions in SlSf. In particular,
we require allowing some dwell time to elapse in states, whereas
junctions are instantaneous.
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start

Figure 3: Composed hybrid automaton model of the closed-loop feedback control system for the buck converter. The
buck converter plant is originally modeled as a hybrid automaton and the hysteresis controller is modeled as a timed
automaton(see Figure 11).
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Figure 4: Composed SlSf diagram for the translated closed-loop feedback control system for the buck converter.

choose
transition out

choose
threshold T

continuous
evolution

· · ·

transition
out not
possible

in [0, Tmax]

transition out not possible in [T , Tmax]

check t ≥ T
check g`out
apply υ`

out

Figure 5: High-level location cluster translation pattern
consisting of three phases. The location cluster ˆ̀denotes
a group of SlSf states and junctions which reflects the
behavior of the hybrid automaton in the location `.

and the SlSf diagram encodes the intended semantics
of the described transformation process.

Theorem 1. If H is a Zeno-free hybrid automaton and
S is the SlSf diagram created using our transformation
process, then S is trajectory-equivalent to H.

The proof for the more complex non-deterministic case
is given in the Section 3.3.4. From the theorem we can
conclude that our translation preserves safety properties.

Corollary 1. If a Zeno-free hybrid automaton H satis-
fies a safety specification P , then every simulation tra-

jectory of the translated SlSf diagram S also satisfies
P .

3.3 Additional Translation Details and Proof

3.3.1 Detailed Translator Description

We provide a detailed description of our translation. It
iteratively converts every location ` of a hybrid automa-
ton and its outgoing transitions into an SlSf diagram of
location clusters ˆ̀ in the following way (see Fig. 6). We
first describe the data structures we use in our construc-
tion. The list outList stores the ordering in which the
outgoing transitions of the location ` are considered in
the simulation. The variable out keeps track of the cur-
rently chosen outgoing transition. The variable Tv stores
the first time moment when the location invariant is vio-
lated. Tmax keeps the maximum simulation time, i.e., the
simulation is stopped as soon as this bound has been
reached. The variable T stores the time threshold af-
ter which the outgoing transition should be taken. The
variable R keeps the maximum number of backtrackings
we want to allow, whereas r stores the current number
of backtrackings in the location cluster ˆ̀. Finally, the
variable t stores the current time that is simulated. In-
troducing this variable allows us to model going back in
time when backtracking, which is not possible for the
actual simulation time that is tracked by SlSf.
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8 Stanley Bak et al.: Hybrid automata: from verification to implementation

We continue with the description of every individual
(SlSf) state in our construction. The current simula-
tion time and the hybrid automaton state when enter-
ing the location ` (and respectively the location cluster
ˆ̀) is stored in the (SlSf) state `in. Furthermore, the
algorithm randomly chooses the ordering in which the
outgoing transitions are considered. In this way, we han-
dle the non-determinism due to multiple simultaneously
enabled transition guards. Finally, the variable Tv is ini-
tialized to Tmax as we do not have any information about
the invariant violation at that moment.

The state `choose covers two kinds of non-determinism.
It takes care of the situation when the intersection of the
invariant and the transition guard is non-singular, i.e.,
when a switch to the next location can happen not only
at a particular time moment, but within a time interval.
Note that if the continuous dynamics are non-monotonic,
there can be multiple disjoint time intervals where the
guard is enabled. We resolve such situations by generat-
ing a random time threshold T in the state `choose and
allowing the discrete transition only from the time mo-
ment T onward, i.e., we add a constraint of the form
t ≥ T as a part of the transition guard for every outgo-
ing transition from the location `. Thus, we disable the
SlSf must-semantics up until time moment T to mimic
the original may-semantics of hybrid automata.

Note that we also use the state `choose for backtrack-
ing purposes. We observe that an unfortunate choice of
the outgoing transition out and the time threshold T can
lead to the simulation getting stuck, as the transition
guard of out is not enabled in the time frame [T , Tmax]
and thus the transition cannot be taken. In such cases,
we return to the state `choose to select a further time
threshold T . For this purpose, we restore the simulation
time t and the state of the hybrid automaton from the
moment we entered ` resp. ˆ̀. Afterward, we can choose
the next time threshold from the interval [t, T ]. Here we
observe that in general before reaching the time thresh-
old, the invariant can be violated. Thus, we actually se-
lect a new threshold from the interval [t,min(T , Tv)]. In
this way, we end up with a sequence of monotonically
decreasing thresholds. Still, as it is not guaranteed that
the chosen threshold is eventually equal to 0, we add a
further termination criterion by bounding the number
of backtracking by some user-defined constant R > 0.
The last time before exceeding this limit, we try out the
weakest threshold T = 0 to ensure that we have covered
all cases. If the transition cannot be taken at all, we
either proceed with a further outgoing transition (junc-
tion jin) or, if none is left, the simulation is stopped and
reports an actual deadlock in the model.

The continuous evolution corresponding to the loca-
tion ` is modeled by the state `dwell. We can leave this
state under two conditions. First, the invariant can be
violated. Then we store the time moment when the vio-
lation has happened in the variable Tv and move to the
state `choose (via junction jv). Note that if we have al-

ready considered all the outgoing transitions of `, we will
stop the simulation since a deadlock has been found. In
the other case, the time threshold T can be reached. We
take the transition to the successor location of ` if the
guard of the chosen transition out is enabled and after
applying the update, the target location’s invariant is
satisfied (junction jt). Furthermore, here we also check
whether the maximum simulation time Tmax has been
reached, in which case we stop the simulation.

In the following, we illustrate the translation process
using an example simulation.

3.3.2 Example

We consider an execution in some location cluster for a
simple location `1 with one continuous variable x and
two outgoing transitions, as depicted in Fig. 7. For sim-
plicity, assume that the location is entered at time t = 0
in state x = 0 and the total simulation time is Tmax = 20.

First we store the current continuous state (t, x) =
(0, 0). Next, in phase 1, we choose a transition, say, the
one to `2. Then, in phase 2, we choose a random mini-
mum dwell time in the range [0, 20], say T = 3. The sim-
ulation proceeds in phase 3 until an event occurs. In this
case, events are either violating the location invariant
x < 10 or enabling the guard condition of the selected
transition t ≥ 3∧ x ≥ 8. The guard condition is enabled
first, at state (t, x) = (4, 8). This transition cannot be
taken, however, as the target invariant would be violated
after applying the update x := 2.The simulation contin-
ues until the next event, when the state (t, x) = (5, 10) is
reached and a violation of the invariant is detected. That
is why the simulation goes back to phase 2, backtrack-
ing to the saved state (t, x) = (0, 0). At this point, it
was checked that for all T ≥ 3, the transition cannot be
taken. In phase 2, a new value for T is chosen from the
restricted interval [0, 3), and the simulation is run again
in phase 3. After reaching the same conclusion and af-
ter further backtracking, a finite threshold of attempts
is reached, and T = 0 is forced. Even with T = 0 there
will be a violation of the invariant before the transition
can be taken. Then, we will conclude that the selected
transition can never be taken when starting in the state
(t, x) = (0, 0). Thus we can safely ignore this transition,
go back to phase 1 and choose the transition leading to
`3, where the process repeats.

3.3.3 Translation Correctness and Discussion

Correctness. The proof of Theorem 1 required three as-
sumptions, mentioned before the theorem statement and
proven below. First, we assumed the simulations were
exactly accurate. Although real simulations will always
have some error, this can be reduced to arbitrarily small
values by reducing the time step used in the simula-
tion. Similarly, for the second assumption we can con-
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`in
entry: store variables(t,Var);
outList = permute(n);
Tv := Tmax;

jin

`choose
entry: t,Var := restore variables();
T = chooseT(t, T , Tv, r, R);

jv

`dwell

during: Flow(`);

jt · · ·

...

· · ·

[ |outList | > 0 ]
{ T := Tmax;
out := pop(outList);

r := 0; }
[r = R]

[ |outList | = 0]
{ T := Tmax;

out := 0; }

[r < R]

[out > 0 ]
{Tv := t;
r++; }

[out = 0]
{ stop(); }[¬Inv(`)]

[ t ≥ Tmax ]
{ stop(); }

1[t ≥ T ]

1

[out = 1]

[ g`1 ]

{υ`
1}

[out = n] [ g`n ]

{υ`
n}

Figure 6: General location cluster of some location ` with n outgoing transitions. (re-)store variables stores and
restores the current simulation state (including the time variable t) from when entering the cluster, respectively.
permute(n) returns a permuted list outList with all integers from 1 to n. pop(outList) removes and returns the first
element from outList . chooseT chooses a new time threshold T . A subscript “1” indicates that a transition has the
highest priority among all the outgoing transitions from a state/junction.

`1
x < 10
ẋ = 2

`2
x > 8

`3
x ≤ 3

x ∈ [0, 3]
x ≥ 8
x := 2

x ≤ 4

Figure 7: Snippet of an example hybrid automaton with
three locations `1 − `3.

sider smaller and smaller values of ε, although in de-
generate cases this might permit extra transitions in
the simulation. For example, a degenerate guard like
x < 5 ∧ x > 5 will always be false, but any positive
ε-relaxation will have a possible transition when 5− ε <
x < 5+ε. The third assumption is that the SlSf diagram
correctly encodes the described transformation process.
This means that correctness is subject to possible im-
plementation bugs in our conversion implementation in
HyST, as well as the semantics of Stateflow. In addi-
tion to the trajectory-equivalence theorem, we provide
empirical justification for the correctness of the imple-
mentation of our translation scheme, through extensive
case studies including the buck converter detailed in the
main body, and additional case studies presented later
in the appendix.

Non-determinism. By replacing non-determinism with
random number generation, some behaviors of the orig-
inal hybrid automaton might be obscured. For instance,
a non-deterministic die can roll a six forever, while the
probability of this behavior for a random die approaches
zero as more rolls are taken. We always deal with finite
executions in a simulation, and thus end up with a finite
number of choices, so there is still a nonzero chance that
the ‘right’ random values will be chosen, assuming that
the hybrid automaton is Zeno-free.

Generalizations. Although we consider a large class of
hybrid automata, further generalizations are possible.
For example, the initial sets and non-deterministic resets
in our framework were hyper-rectangles, whereas in gen-
eral the initial state could be in a non-convex set, and the
reset might be an arbitrary function which maps from a
single state to a non-convex set. To handle such systems,
we need a way to sample in the non-convex destination
sets, which may be possible in certain situations, but is
difficult in general. One possibility would be to require
the user to give this sampling function.

Another generalization possible is to consider non-
deterministic dynamics. More general hybrid automata
may include differential inclusions or other non-deter-
ministic ways for the continuous states to evolve. This
could be handled by adding ranged inputs to the sys-
tem, and at each time step choosing a random value in
the range for each input. However, as the time steps be-
come smaller, the random inputs will approximate the
main value in their ranges, which in practice results in
poor simulation coverage. An alternative is to choose a
time step where the inputs will vary, such that a trade-
off is possible between the amount of coverage possi-
ble, and the effect of this tendency towards the mean.
Other simulation methods, perhaps based on state ex-
ploration mechanisms such as rapidly-exploring random
trees (RRTs) [28] may also be possible.

3.3.4 Proof

Proof (Theorem 1). We first show the forward direc-
tion, i.e., given an arbitrary trajectory of the hybrid au-
tomaton, there exists a set of random decisions in the
constructed SlSf diagram that produce a correspond-
ing simulation trajectory.
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10 Stanley Bak et al.: Hybrid automata: from verification to implementation

Recall that correspondence (Definition 5) requires
that the encountered locations can be the same, and that
the deviation in continuous states can be bounded by an
arbitrarily small constant.

For the ordering of locations, notice that the ran-
dom choice of an outgoing transition in phase 1 of the
construction can pick the corresponding transition from
the trajectory. Since the minimum dwell time is chosen
randomly, it can be picked to be arbitrarily close to the
dwell time in the hybrid automaton trajectory. In this
way, as long as the continuous evolution in the simula-
tion remains close to the hybrid automaton trajectory’s
continuous evolution, every transition will be explored.

The second part of correspondence requires that the
deviation in the continuous states is bounded. We show
that this bound can be chosen to be arbitrarily small
across both every continuous evolution and after every
discrete transition. During a continuous evolution, if the
start state in a location in the simulation is chosen close
to the start state in the corresponding location in the
hybrid automaton trajectory, its deviation will also be
bounded as a function of the Lipschitz constant (see
Proposition 1 in [20]). Thus, for a single bounded con-
tinuous evolution and every nonzero final state deviation
desired, there is a corresponding nonzero initial state de-
viation that will achieve the desired closeness.

During initial state selection, since we consider hyper-
rectangles, the set of states is bounded. Randomly choos-
ing states, we will in finite time pick one arbitrarily close
to any trajectory’s start state in the hybrid automaton.

Finally, for updates, the dwell time of a simulation
can be made arbitrarily close to a hybrid automaton
trajectory, and since the state can be made arbitrarily
close, a deterministic update function (under assump-
tions of Lipschitz continuity) can also result in a state
arbitrarily close to the trajectory. For nondeterministic
updates, the argument is similar to the initial state se-
lection, and thus the continuous states of the simulation
remain arbitrarily close to the hybrid automaton trajec-
tory.

The sequence of discrete transitions between the tra-
jectory and simulation match. Since each trajectory is a
finite sequence of discrete transitions (due to Zeno-free
behavior) and continuous evolutions (each of which can
have arbitrarily small error between the trajectory and a
possible simulation), the accumulated error for the whole
trajectory can also be made arbitrarily small. Thus, the
constructed SlSf diagram has simulations which corre-
spond to any arbitrary hybrid automaton trajectory.

The reverse direction in the proof shows that any ar-
bitrary simulation has a corresponding hybrid automa-
ton trajectory. Again, we proceed by decomposing this
into showing that the sequence of locations is the same,
and that the deviation in the continuous state is bounded.

Since we assumed an idealized relaxation where ε is
zero, every transition in the simulation exactly matches
the guard conditions in the hybrid automaton, and thus

the hybrid automaton can match the simulation. Every
update in the constructed SlSf diagram is also copied
from the automaton, so that the automaton’s trajectory
can match the random choices made by a simulation.

For continuous trajectories, the simulation will choose
some dwell time where the invariant remains satisfied
until a guard becomes true. The hybrid automaton can
also pick the same dwell time, and its invariant will also
remain true until the same guard condition is reached.
Thus, the hybrid automaton can pick a trajectory which
corresponds to the simulation.

Since every trajectory of the hybrid automaton cor-
responds to a simulation trajectory of the SlSf diagram,
and every simulation trajectory corresponds to a trajec-
tory, the two models are trajectory-equivalent. �

4 Evaluation and Experimental Results

To evaluate the translation methodology presented in
this paper, we implemented a prototype translator that
uses the HyST intermediate representation for source-to-
source transformation of hybrid automata [6], and the
SlSf API within Matlab (tested with versions 2014a
through 2016a). The input to the translator is a hybrid
automaton H in the SpaceEx XML format. Networks
of hybrid automata are first composed within HyST to
yield a single hybrid automaton representing the net-
work. Once parsed in the tool, an object representing
the syntactic structure of H is traversed, and then the
tool applies the sequence of translation steps described
in Sect. 3. In the simulator, we varied the seeds of the
uniform pseudo-random number generator rng in Mat-
lab. We evaluated the prototype tool using several ex-
amples. For this we first computed the reachable states
of the models in SpaceEx or Flow∗, then performed the
translation and simulations in SlSf. The tool and ex-
amples are available for download [1].

4.1 Case Study: Buck Converter with Periodic
Hysteresis Controller

A buck converter is a DC-to-DC switched-mode power
supply that takes a DC input source voltage and lowers
(“bucks”) it to a smaller DC output voltage [32]. A stan-
dard model of the converter has three modes, where: the
switch is closed and the voltage source is connected, the
switch is open and the voltage source is disconnected,
and based on the possible dynamics of the converter,
a third mode, known as the discontinuous conduction
mode (DCM), where the current is not allowed to go
below zero (which is physically unrealizable, but may
occur without this third mode). Interested readers may
find detailed derivations of models in power electronics
textbooks [41]. A hybrid automaton model of the closed-
loop buck converter (plant and timed controller) appears
in Fig. 3.
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A standard closed-loop controller for the buck con-
verter is a hysteresis controller, which changes the mode
of the buck converter plant based on the measured out-
put voltage. Its operation depends on opening and clos-
ing the MOSFET switch. Intuitively, it operates like a
thermostat, i.e., the switch is toggled so that the source
voltage is connected to the circuit if the output voltage
is too low, and it is toggled in case if the output voltage
is too high to disconnect the voltage source. We note
that by Kirchhoff’s voltage law (KVL), VC = Vout [41].
In part to avoid switching too frequently, a hysteresis
band is typically used so switches occur when Vout ≥
Vref + Vtol or Vout ≤ Vref − Vtol . This creates a volt-
age ripple on the output voltage that should be within
a given range Vrip of the desired reference output volt-
age Vref . Together, these define a safety specification:

P (t)
∆
= t ≥ ts ⇒ Vout(t) = Vref ± Vrip , which projected

onto the phase space is P
∆
= Vref − Vrip ≤ Vout ≤

Vref + Vrip . SpaceEx is used to verify P by computing
the reachable states Reach(H) (to a fixed-point) from a
startup state where the initial states Sinit are iL = 0 and
VC = 0. For every time t ≥ ts after a startup trajectory
of duration ts, if Vref −Vrip ≤ Vout(t) ≤ Vref +Vrip , then
the converter satisfies the specification P .

For actual implementations, the measured voltage
values are sensed periodically through an analog-to-
digital converter (ADC), and subsequently, the control
signals are sent periodically to control the state of the
buck converter transistor (open/closed). We model this
periodic update process as a timed automaton for the
controller with a timer variable td that evolves at unit
rate and is upper bounded by T of 20 microseconds. The
reachable states of the closed-loop buck converter hybrid
automaton are computed with SpaceEx, and as shown
in Fig. 8, the model satisfies the safety specification P
for a sufficient choice of Vrip .

A hardware setup consisting of a buck converter plant
and a dSpace DS1103 is used to perform the experiments
with the physical buck converter plant. The DS1103 con-
tains a Power PC processor and a DSP board and is
used for implementation of the hybrid automata in both
hardware-in-the-loop (HiL) simulations with a “virtual
plant” (the plant model simulated on the DS1103 hard-
ware) and the actual buck converter plant.

The hysteresis controller is executed on the DS1103.
First, we generate C code using the translated SlSf di-
agram in Matlab, then compile it and download it onto
the DS1103. A discrete fixed-step solver with a time step
of 20 microseconds is used for the code generation pro-
cess and also for the DS1103’s sampling and control pe-
riods, which is sufficiently small to ensure ε is sufficiently
small, as discussed in Sect. 3. The measured voltage sig-
nal from the buck converter is periodically sensed and
sent to the embedded controller through an ADC. The
embedded controller generates Boolean valued signals
and these are converted to suitably spaced rectangular

Time, Sec
0 0.01 0.02 0.03

v C
, V

0

5

10

15

SpaceEx
dSPACE - Virtual
dSPACE - Actual
Stateflow

Figure 8: Reachable states of the hybrid automaton
computed with SpaceEx, verifying the voltage-regulation
property, along with HiL simulation results of the trans-
lated SlSf diagram on the DS1103 (“virtual plant”),
and control of the physical plant with the translated
SlSf diagram (“actual plant”). Our results validate the
high-level vision of correct-by-construction control im-
plementation from Fig. 1.

pulses to operate the MOSFET switch of the buck con-
verter plant. For the experiments with the actual plant,
the input signals fed to the controller (specifically the VC
voltage) are replaced from the simulation model with the
measurement of the actual plant, and the output signals
(the desired mode, open or closed) are fed to the actual
plant instead of the simulation model. The experimental
results are recorded and a comparison to SlSf simula-
tions is shown in Fig. 8. The experimental and simu-
lation traces are contained in the SpaceEx reach sets,
which validates the translation correctness (Theorem 1)
and that the safety property is maintained in the im-
plementation (Corollary 1). Note that in the hardware
experiments, the controller has essentially been deter-
minized, as the purpose of non-determinism in the hy-
brid automaton model was to model plant inaccuracies.

4.1.1 Additional Details

The buck converter circuit appears in Fig. 9(a). Parame-
ter values used for the case study appear in Figure 9(b).

A hybrid automata network model of the buck con-
verter plant and a timed automaton of the hysteresis
controller appears in Fig. 11, where θ is a synchroniza-
tion label and δ is a discrete control signal, and a bisimi-
lar hybrid automaton model after flattening (composing)
the network was shown earlier in Fig. 3. The composed
model from Fig. 3 is used for verification, translation,
and code generation purposes as discussed earlier, while
the network model is conceptually simpler and illustrates
the decomposition between the physical plant hardware
and the controller. The physical hardware used in the
evaluation appears in Fig. 10.

Fig. 13 shows the reachable states in the phase space,
and illustrates that the SLSF simulations are contained
in the reachable states computed with SpaceEx and gives
empirical evidence for the correctness of the translation.
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(a)

Component / Parameter Name Symbol Value

Source Input Voltage VS 24 V

Desired Output (Reference) Voltage Vref 12 V

Actual Output Voltage VC = Vout 12 V ± Vrip

Hysteresis Band Tolerance Vtol 0.1 V

Voltage Ripple Tolerance Vrip 0.6 V

Load Resistance with Parameter Variation R 10± 2% Ω

Capacitor Value with Parameter Variation C 2.2± 2% mF

Inductor Value with Parameter Variation L 2.65± 2% mH

Periodic Updation Parameter T 20 µ sec

(b)

Figure 9: (a) Buck converter circuit—a DC input VS is decreased to a lower DC output VC = Vo = Vout . (b) Buck
converter parameter values and variations.

Laptop installed 
with dSpace and 
MATLAB Software

Load

dSpace 
CP1103 
Connector 
Panel

dSpace 
DS1103 
System 

Experimental Buck 
Converter

Figure 10: The buck converter plant controlled with a
dSPACE DS1103 system. Our results controlling the ac-
tual plant with the translated controller validate the
high-level vision of correct-by-construction control im-
plementation from Fig. 1.

4.2 Case Study: Yaw Damper Controller for 747
Aircraft

A yaw damper is modeled as a multiple-input multiple-
output (MIMO) system which uses the aileron and rud-
der in order to reduce oscillations in the yaw and roll
angle of an aircraft. In this section, we use the proposed
method to analyze the control design of a yaw damper
for a 747 aircraft, taken from the Control Systems Tool-
box case studies in Matlab.

In particular, we analyze the final designed controller,
which includes a washout filter capable of eliminating
oscillations, but maintaining the spiral mode. The spiral
mode is a desired control characteristic in yaw damper
systems, where an impulse input from the aileron will
result in a bank angle which does not immediately de-
crease to zero.

The model for the system is given at Mach 0.8 at
40,000 ft using standard linear time-invariant dynam-

ics, ẋ = Ax + Bu. There are four physical variables in
the system x = (x1, x2, x3, x4)T , which are sideslip an-
gle (x1), yaw rate (x2), roll rate (x3), and bank angle
(x4), represented by the column vector x. The two in-
puts u = (u1, u2)T , are the rudder (u1) and aileron (u2).
The outputs are the yaw rate and bank angle.

The specific values for A and B are:

A =


−0.0558 −.9968 0.0802 0.0415

0.598 −0.115 −0.0318 0

−3.05 0.388 −0.4650 0

0 0.0805 1 0

, B =


.00729 0

−0.475 0.00775

0.153 0.143

0 0


This physical system is put into a feedback loop with

a washout filter, which has a single variable w and dy-
namics ẇ = x2 − 0.2 · w. The filter variable is combined
with the yaw to produce an effect on the rudder input.
In particular, the washout filter adds to u1 the value
2.34 · (x2 − 0.2 · w).

We consider analysis of a system model which has the
guarantees given by a real-time scheduler, which periodi-
cally executes the washout filter and sets the output val-
ues. Between controller executions we take the output of
the washout filter to be constant (zero-order hold). The
control task is guaranteed to execute every period using a
common scheduler like Rate Monotonic (RM) or Earliest
Deadline First (EDF). There is non-determinism in the
exact time the controller runs, however, due to the offset
of the execution of the control task within each period.
Since the control logic is simple, we take the control task
to be nonpreemptive and short, so that the model will
sample the physical system and update the filter output
at a single point in time, but that point in time may vary
within each period. Furthermore, we look at the system
response due to an impulse input from the aileron from a
range of start conditions. We take the initial bank angle
to be between 0 and 0.1.

This system was modeled in SpaceEx, and reachabil-
ity analysis was attempted in both SpaceEx and Flow∗.
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]
=

[
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L
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] [
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[
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]
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]
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[
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] [
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VC

]
σ = 1 ∧ iL ≤ 0 ∧ VC ≥ 0

θ

θ θ
iL ≤ 0

θstart

Plant

Opened
σ = 1 ∧ VC ≥ Vref − Vtol

Closed
σ = 2 ∧ VC ≤ Vref + Vtol

θ
VC ≤ Vref − Vtol ∧ td ≥ T

σ := 2 ∧ td := 0

θ
VC ≥ Vref + Vtol ∧ td ≥ T

σ := 1 ∧ td := 0

θ
VC > Vref − Vtol ∧ td ≥ T

td := 0

θ
VC < Vref + Vtol ∧ td ≥ T

td := 0

start

Controller
VCσ

Figure 11: Hybrid automaton model of the buck converter plant with timed automaton of the hysteresis controller
as a network.

Figure 12: Left: Buck converter VC versus time, with
SpaceEx reach set for the hybrid automatom model in
red, and black points from 10 simulation traces of the
translated SlSf diagram. Right: Detailed and zoomed
view illustrating multiple simulation trajectories.

Figure 13: Left: Buck converter VC versus iL (phase
space), with SpaceEx reach set in red, and black points
from 100 simulation traces. Right: Detailed and zoomed
view illustrating multiple simulation trajectories.

Due to the large number of discrete switches, however,
neither tool is able to directly compute reachability (the
computed reach sets grow exponentially).

Instead, we investigate the system using our conver-
sion to SlSf and randomized execution. Since the main
source of non-determinism in this model is the discrete
switches, we can investigate simulations of the system

where they occur at varying offsets from the start of
each period.

The simulations showed the expected response of the
system when using a controller period of T = 0.1. The
response of the system is shown in Fig. 14. Here, the im-
pulse response from the aileron to the bank angle is plot-
ted, which does not immediately converge (spiral mode),
and does not contain excessive oscillations. Thus, using
the technique proposed in this paper we are able to an-
alyze a system which cannot be directly analyzed using
reachability tools.

This system can be analyzed formally, however this
requires a non-trivial model transformation using the
technique of continuization, as well as using a smaller
control period. Continuization converts the periodically-
actuated model into a continuous one with bounded
noise, where the bound is based on the controller period
and maximum rate of change of the output signal [7].
The same model can be used as the basis for the con-
version using continuization, as well as the conversion
to SlSf for simulation and further Matlab-based anal-
ysis and code generation. In this way, the conversion to
SlSf is one part of a larger toolflow, where models are
first created in SpaceEx, possibly converted for formal
analysis using HyST, and then can be directly imported
into SlSf after the conversion described in this paper for
simulation and controller synthesis, as well as embedding
in a larger CPS model.

4.3 Case Study: Glycemic Control in Diabetics

Glycemic control is an approach to control the blood
glucose levels in insulin dependent diabetes mellitus pa-
tients. There are several different mathematical models
of glycemic control used to design insulin infusion de-
vices that help diabetic patients control their blood glu-
cose levels [21]. Here we investigate a nonlinear hybrid
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14 Stanley Bak et al.: Hybrid automata: from verification to implementation

Figure 14: 50 simulations of the yaw damper sys-
tem. Left: The spiral mode is confirmed. Right: Non-
determinism in controller execution time causes simu-
lated trajectories to cross.

system of the glycemic control in diabetic patients such
that all dynamics are defined by polynomials. The math-
ematical model is described by the following ODEs:

Ġ = −0.01G −X (G + GB ) + g(t) (1)

Ẋ = −0.025X + 0.000013I (2)

İ = −0.093(I + IB ) + u(t)/12 (3)

In Equation 1 and Equation 3, G and I are the plasma
glucose concentration and the plasma insulin concentra-
tion above their basal value GB and IB , which are equal
to 4.5 and 15, respectively. The variable X shown in
Equation 2 is the insulin concentration in an intersti-
tial chamber. Moreover, g(t) and u(t) are the influx of
glucose and the insulin control input, presented in Equa-
tion 4 and Equation 5, respectively.

g(t) =


t/60 if t ≤ 30

(120− t)/180 if 30 < t ≤ 120

0 if t > 120

(4)

u(t) =


25/3 if G(t) ≤ 4

25/3(G(t)− 3) if 4 < G(t) ≤ 8

125/3 if G(t) > 8

(5)

The glycemic control was first modeled in SpaceEx and
then translated to Flow∗ by using the HyST model con-
verter. This model is nonlinear, non-deterministic, and
includes 4 variables, 9 locations and 18 discrete transi-
tions in total. The simulations of the glycemic control
model translated to SLSF are shown in Fig. 15. We sim-
ulated the translated model with 100 different random-
ized executions. All simulation traces of G are contained
in the reach set computed by Flow∗, which validates the
translation.

4.4 Case Study: Fischer Mutual Exclusion

Fischer mutual exclusion is a timed distributed algo-
rithm that ensures a mutual exclusion safety property,

Figure 15: 100 simulations of the glycemic control model
with simulations and reach set computed by Flow∗

(gray) for variable G .

rem
ẋi = 1start

try
ẋi = 1
xi ≤ A

waits
ẋi = 1

cs
ẋi = 1

g = ⊥
xi := 0

g := i; xi := 0
g 6= i ∧ xi ≥ B

xi := 0

g = i ∧ xi ≥ B
xi := 0

g := ⊥

Figure 16: Fischer’s mutual exclusion algorithm for a
process with identifier i ∈ {1, . . . , N}. Here, g is a global
variable of type {⊥, 1, . . . , N}, xi is a local variable of
type R, and both A and B are constants of type R.

namely that at most one process in a network of N pro-
cesses may enter a critical section simultaneously. An au-
tomaton for Fischer appears in Fig. 16. Fischer involves
two real timing parameters, A and B, and mutual exclu-

sion is ensured iffA < B. Let Loc
∆
= {rem, try ,waits, cs}.

We translated a network of two automata (N = 2) from
SpaceEx to SLSF. In one instance, we ensured A <
B by picking A = 5 and B = 70, so mutual exclu-
sion was maintained, which we verified in SpaceEx using
the PHAVer scenario. In the other instance, we ensured
A > B by picking A = 75 and B = 70, and mutual
exclusion was not maintained. Consequently, we could
not verify this instance using SpaceEx’s PHAVer sce-
nario since a location cs ∼ cs was reachable, corre-
sponding to the case where both processes are in the
critical section. We conducted K = 1000 simulations
with maximum time T = 1000s of the translated SLSF
model in each case. In Fig. 17 we show respectively the
property satisfaction and violation through the auto-
matic translation from SpaceEx to SLSF by plotting
the corresponding locations versus time, where differ-
ent colors correspond to different simulations. In the
safe case (A < B), the locations reached via simulations
all maintained the mutual exclusion property and were
Loc2 \ {cs ∼ cs, try ∼ cs, cs ∼ try}. In the unsafe case
(A > B), the locations reached via simulation included
every location (e.g., all 16 locations of the permutations
of LocN for N = 2) and violated the mutual exclusion
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Figure 17: Locations reached for 1000 SlSf simulations
of Fischer, where different colors indicate different tra-
jectories. Left: safe case (A < B). Right: unsafe case
(A > B).

property. These results give further empirical evidence
for the correctness of the translation procedure.

4.5 Additional Case Studies

Table 1 summarizes the different types of benchmarks
that were all successfully translated and checked for tra-
jectory-equivalence in addition to the previously pre-
sented case studies. The experiments were performed on
an Intel I5 2.4GHz machine with 8GB RAM. All the
benchmarks are available in the supplementary mate-
rial [1].

5 Conclusion

In this paper, we presented a trajectory-equivalent trans-
formation of a hybrid automaton into a continuous-time
SlSf diagram, and described its implementation in a
prototype software tool. For non-deterministic models,
our approach adds auxiliary randomization for various
sources of non-determinism to mimic the semantics of
hybrid automata. We have empirically validated our ap-
proach on a number of challenging benchmarks. To ac-
count for zero-crossing issues in the simulation engine,
our translation is parametrized by an ε relaxation; for
ε = 0 we obtain an under-approximation of the hybrid
automaton trajectories (which is precise assuming a per-
fect simulation engine), while for ε > 0 we obtain an
over-approximation.

For the future, it will be interesting to further refine
and extend our approach by, e.g., considering the trans-
lation of networks of hybrid automata—directly with-
out first composing them—into SlSf diagrams and ex-
ploring further sources of non-determinism such as non-
deterministic flows. Another gainful direction would be
to make the distribution over all possible executions uni-
form. A focus on rare events in the line of [18] could also
be considered, and evaluating the SlSf diagrams us-
ing tools integrated with SlSf such as S-TaLiRo [5] or
Breach [19] would be useful.
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No. Name Type |Var | |Loc| |Trans| tc ts

1 biology 1 NLC 7 1 0 8.894 20.912

2 biology 2 NLC 9 1 0 7.892 12.939

3 bouncing ball LC 2 1 1 8.149 11.960

4 brusselator NLC 2 1 0 7.428 10.650

5 buckling column NLC 2 1 0 7.738 11.056

6 coupledVanderPol NLC 4 1 0 8.202 11.746

7 E5 NLC 5 1 0 8.230 36.635

8 fischer N2 flat safe LH 6 16 82 20.158 54.145

9 fischer N2 flat unsafe LH 6 16 82 19.287 59.627

10 glycemic control 1 NLH 5 3 4 8.319 15.385

11 glycemic control 2 NLH 5 3 4 8.301 15.567

12 glycemic control poly1 NLH 4 9 18 10.528 23.938

13 glycemic control poly2 NLH 4 6 10 9.237 19.341

14 helicopter LC 28 1 0 10.096 14.897

15 Hires NLC 9 1 0 7.912 9.001

16 jet engine NLC 2 1 0 7.667 11.816

17 lac operon NLC 2 1 0 7.586 13.257

18 lorentz NLC 3 1 0 7.739 11.253

19 lotka volterra NLC 2 1 0 7.740 11.025

20 circuits n2 NLH 3 3 2 9.39 13.895

21 circuits n4 NLH 5 3 2 8.506 14.202

22 circuits n6 NLH 7 3 2 8.585 15.113
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28 Rober NLC 4 1 0 8.266 16.999

29 roessler NLC 3 1 0 9.144 12.771

30 small circuit NLC 5 1 0 10.265 13.660

31 spiking neuron NLH 2 2 2 8.703 13.559

32 spring pendulum NC 4 1 0 9.861 6.251

33 vanderpol NLC 2 1 0 8.119 12.226

Table 1: Overview of the benchmark problems successfully translated to SLSF by using the method in this paper.
Column Type presents different classes of dynamics, where LC, NLC, LH, and NLH are abbreviations for linear
continuous, nonlinear continuous, linear hybrid, and nonlinear hybrid, respectively. Columns |Var |, |Loc|, and |Trans|
show the number of variables, locations, and transitions, respectively, while tc and ts show respectively the time our
tool required to translate the model, and the time to simulate the translated SlSf diagram twice.
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Charge Pump Phase-Locked Loops and Full Wave
Rectifiers for Reachability Analysis

(Benchmark Proposal)
Omar Ali Beg, Ali Davoudi, and Taylor T. Johnson

University of Texas at Arlington, USA

Abstract

Analog-mixed signal (AMS) circuits are widely used in various mission-critical applications neces-
sitating their formal verification prior to implementation. We consider modeling two AMS circuits as
hybrid automata, particularly a charge pump phase-locked loop (CP-PLL) and a full-wave rectifier
(FWR). We present executable models for the benchmarks in SpaceEx format, perform reachability
analysis, and demonstrate their automatic conversion to MathWorks Simulink/Stateflow (SLSF) format
using the HyST tool. Moreover, as a next step towards implementation, we present the VHDL-AMS
description of a circuit based on the verified model.
Category: academic Difficulty: medium

1 Context and Origins
Many analog-mixed signal (AMS) circuits are widely used in various mission cicritical ap-
plications and require formal verification prior implementation. Formal verification methods
construct a mathematical modelM with precise semantics, provide extensive analysis with re-
spect to some correctness requirement P, and verify thatM |= P [2]. This can be ascertained
through reachability analysis [1]. As an example of circuitry that can benefit from formal ver-
ification prior to field implementation and deployment, we provide two potential benchmarks
for hybrid verification research community, i.e., charge pump phase-locked loop (CP-PLL), and
full-wave rectifier (FWR).

CP-PLL integrated circuits are widely used in modern mobile, radio, and wireless com-
munication applications to synchronize a high-frequency signal with a low-frequency reference
signal. In [8], the auhtors use SpaceEx model checking tool [6] to verify the global convergence
with respect to phase and frequency lock for a digital PLL. An FWR converts an AC electric
input signal to a DC output signal, and formal verification through reachability analysis has
been reported using different model checking tools in [5], except SpaceEx. We develop hy-
brid automaton models of CP-PLL and FWR, and used SpaceEx [6], a reachability analysis
tool, to compute the over-approximated sets of reachable states 1. This a classical fixed point
computation tool that operates on symbolic states.

We also use HyST (Hybrid Source Transformer) [3] to automatically convert the hybrid au-
tomaton models developed in SpaceEx to MathWorks Simulink/Stateflow (SLSF) models 2. It
is a source-to-source translation tool that takes input in the SpaceEx model format, and trans-
lates it to the formats of HyCreate,Flow*, dReach, C2E2, Passel 2.0, and HyComp. Additional
tool support is being added from time to time. Verification and validation research community
may use HyST to automatically transform the hybrid automaton models in SpaceEx format to

1The tool is available online from the SpaceEx website at: http://spaceex.imag.fr/.
2The executable models are included on the ARCH website and are also available online from the HyST

website at: http://verivital.com/hyst/.

1
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Figure 2.1: Block diagram of the PLL circuit with a PI controller.

other formats and perform reachability analysis using aforesaid model checking tools. Finally,
we present VHDL-AMS description of an FWR.

2 Hybrid Automaton Modeling of CP-PLL and FWR
In this section, we present the hybrid automaton modeling of CP-PLL and FWR.

2.1 CP-PLL Modeling
We consider a third-order CP-PLL as described in [1]. It consists of a reference frequency
signal generator, a phase frequency detector (PFD), a charge pump, a proportional-integral
(PI) controller, a voltage- controlled oscillator (VCO) and a frequency divider as shown in
Figure 2.1. The state variables are defined by the voltages across the capacitors Ci, Cp1, and
Cp3, i.e., vi, vp1, and vp respectively. Two more state variables are defined by the dynamics of
VCO and reference frequencies, i.e., φv and φref , respectively. CP-PLL is designed such that
φv locks on to φref , that may constitute the property of CP-PLL to be verified. This locking
is ensured by PFD using the phase difference of φref and φv to generate ’UP’ or ’DN’ signal
for the charge pump.

The ODEs from the CP-PLL circuit diagram can be readily formed using the traditional
circuit analysis techniques, i.e., Kirchoff’s voltage law (KVL) and Kirchoff’s current law (KCL).
We apply KCL at node 1 of the circuit used to implemented the analog PI controller shown in
Figure 2.1

ii = iCi (2.1)

We can write the above equation in terms of voltage across capacitor Ci as

Ci.v̇i = ii. (2.2)

Rearranging the above equation, we obtain

v̇i = ii
Ci

(2.3)

2
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We apply KCL at node 2 of the the circuit used to implemented the analog PI controller in
Figure 2.1 to get

ip = iCp1 + iRp2 + iRp3 (2.4)

Replacing the current terms with voltage terms in right hand side of above equation, we get

ip = Cp1v̇p1 + vp1

Rp2
+ (vp1 − vp)

Rp3
. (2.5)

Rearranging the above equation for v̇p1, we get

v̇p1 = − vp1

Cp1

(
1
Rp2

+ 1
Rp3

)
+ vp

Cp1Rp3
+ ip
Cp1

. (2.6)

Next, we may apply KCL at node 3 to get

iCp3 = iRp3 (2.7)

Re-writing the above equation in terms of voltages, we get

Cp3v̇p = vp1 − vp

Rp3
(2.8)

Rearranging the above equation leads to

v̇p = vp1

Cp3Rp3
− vp

Cp3Rp3
. (2.9)

For the VCO, the output phase φv is the integral of the frequency and the input voltages, i.e.,
vi, and vp [7]. We also include the frequency division factor N to obtain the ODE as

φ̇v = Ki

N
vi + Kp

N
vp + 2π

N
f0 (2.10)

and
φ̇ref = 2πfref . (2.11)

Here, Ki and Kp are the voltage-to-frequency gains for vi and vp respectively, and f0 is the
frequency of VCO. These ODEs depict the continuous dynamics within each discrete location.
The input to the PI controller, i.e., [ii, ip]T , is generated by the charge pump depending upon
the relative phase of φv and φref . This phase difference is measured by PFD, which generates
an ‘UP’ signal if φref leads φv, and ‘DN’ signal if φv leads φref . An ’UP’ signal will charge the
capacitors, hence increasing the voltages across the capacitors of the proportional and integrator
channel, i.e., vp and vi, respectively, leading to an increased VCO frequency. On the other hand,
a ’DN’ signal from PFD will tend the charge pump to produce current in reverse direction to
discharge the capacitors, hence reducing the voltages in the PI channel. The reduced vp and
vi voltages will result in a reduced φv to make it track φref . Depending upon the status of
Up/Down signals, there may be four discrete locations (i.e., the input varies for each discrete
location) as follows:

1 Both0 (i.e. Both OFF): The input vector is given by [ii, ip]T = [0, 0]T

2 Up1 (i.e. UP ON): The input vector is given by [ii, ip]T =
[
Iup

i , Iup
p

]T

3 Both1 (i.e. Both ON): The input vector is given by [ii, ip]T =
[
Iup

i + Idn
i , Iup

p + Idn
p

]T

3
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�̇�𝑣𝑖𝑖 = 0; ∅̇𝑟𝑟𝑟𝑟𝑟𝑟 = 2𝜋𝜋𝑓𝑓𝑟𝑟𝑟𝑟𝑟𝑟
�̇�𝑣𝑝𝑝𝑝 =
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𝑣𝑣𝑝𝑝𝑝(0)
𝑣𝑣𝑝𝑝(0)
∅𝑣𝑣(0)

∅𝑟𝑟𝑟𝑟𝑟𝑟 == 2𝜋𝜋

∅𝑣𝑣 ≔ ∅𝑣𝑣 − 2𝜋𝜋;
∅𝑟𝑟𝑟𝑟𝑟𝑟 ≔ 0;

∅𝑣𝑣 == 0
𝑡𝑡 ≔ 0;

𝑡𝑡 == 𝑡𝑡𝑑𝑑
∅𝑣𝑣 == 2𝜋𝜋

∅𝑟𝑟𝑟𝑟𝑟𝑟 ≔ ∅𝑟𝑟𝑟𝑟𝑟𝑟 − 2𝜋𝜋;
∅𝑣𝑣 ≔ 0;

𝑖𝑖𝑖𝑖𝑣𝑣𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑡𝑡𝑖𝑖: 0 ≤ ∅𝑟𝑟𝑟𝑟𝑟𝑟 ≤ 6.283 ˄
−2.527 ≤ ∅𝑣𝑣 ≤ 3.756 ˄ 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 == 1

𝑖𝑖𝑖𝑖𝑣𝑣𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑡𝑡𝑖𝑖: 0 ≤ ∅𝑟𝑟𝑟𝑟𝑟𝑟 ≤ 6.283 ˄
−2.527 ≤ ∅𝑣𝑣 ≤ 3.756 ˄ 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 == 2

𝑖𝑖𝑖𝑖𝑣𝑣𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑡𝑡𝑖𝑖: 0 ≤ ∅𝑟𝑟𝑟𝑟𝑟𝑟 ≤ 6.283 ˄
−2.527 ≤ ∅𝑣𝑣 ≤ 3.756 ˄ 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 == 3

𝑖𝑖𝑖𝑖𝑣𝑣𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑡𝑡𝑖𝑖: 0 ≤ ∅𝑟𝑟𝑟𝑟𝑟𝑟 ≤ 6.283 ˄
−2.527 ≤ ∅𝑣𝑣 ≤ 3.756 ˄ 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 == 4

∅𝑟𝑟𝑟𝑟𝑟𝑟 == 0

𝑡𝑡 ≔ 0;

Figure 2.2: Hybrid automaton model for CP-PLL system.

4 Dn1 (i.e. DN ON): The input vector is given by [ii, ip]T =
[
Idn

i , Idn
p

]T

Accordingly, using the above ODEs and the inputs defined, a hybrid automaton is shown in
Figure 2.2. The component values used in the model are as per Table 1 of [1]. Moreover, the
input values are: Iup

i = 10.1µA, Idn
i = −10.1µA, and Iup

p = 505µA, Idn
p = −505µA. The guard

conditions for discrete transitions are formed depending upon φref and φv. As discussed earlier,
the PFD output depends on whether φref leads or lags with respect to φv. If the initial discrete
location is Both0, the automaton jumps to Up1 if φref leads as φref = 2π, otherwise it jumps
to Dn1 if φv leads as φv = 2π. There is a design requirement to introduce a time delay, td,
required to switch off both the charge pumps. This is represented by the location Both1. Once
the lagging signal reaches zero, the automaton jumps to this location and, once t = td, the
automaton transitions back to Both0.

2.2 FWR Modeling

We consider an FWR as described in [5]. It is basically a full-wave diode bridge, that consists
of two diodes D1 and D2, a capacitor C and the load resistor R as shown in Figure 2.3. An AC
input signal is supplied to the circuit through a center-tapped transformer. For the modeling
purpose, and without the lack of generality, we use two AC sources as shown in Figure 2.3. This
circuit converts the input AC voltage Vin to a DC voltage Vo, at its output measured across R.
We may need to verify that Vo is stable within ±1%Vmax for the steady-state operation, where
Vmax is the maximum value of the input AC signal.

For modeling purposes, we consider Rd as the forward resistance of each diode. Let the
current through Rd, C, and R be iRd, iC , and iR, respectively. The input sinusoidal voltage
be Vin = Vmaxsin(2πft), and the output voltage across the load resistor R be Vo, where, Vmax

is the maximum amplitude of the sinusoidal signal and f is its frequency. For model checking
purposes, we use SpaceEx that requires hybrid automaton model with linear dynamics, so we
model the input AC signal using a second-order differential equation [5]. We define another
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Figure 2.3: Schematic diagram of FWR.
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Figure 2.4: Hybrid automaton model for FWR system.

state variable x0 and model the AC input by ODEs defined as

ẋ0 = Vin (2.12)

and
V̇in = − (2πf)2

x0 (2.13)

The solution of above system is Vin = Vmaxsin(2πft) such that the initial conditions are
x0 = −Vmax

2πf and Vin = 0. Next, we consider the FWR circuit dynamics to form ODE for Vo.
The circuit dynamics depend upon the operation of diodes D1 and D2. Accordingly, we may
form three different topological instances, i.e., D1 ON and D2 OFF, D1 OFF and D2 ON, and
both the diodes OFF when Vin ≤ Vo. There could be a fourth topological instance, i.e., both
the diodes ON at the same time, but this is not practical due to the nature of the sinusoidal
input. Therefore, we may consider three topologies one by one to form the ODEs and start
with the topology with D1 ON and D2 OFF. The invariants for this topological instance are
Vin ≥ Vo ∧ −Vin ≤ Vo. Applying KCL at the node joining C and R in Figure 2.3, we get

iRd = iC + iR (2.14)

and we can express the above equation in terms of voltages as

Vin − Vo

Rd
= CV̇o + Vo

R
. (2.15)
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Figure 3.1: SLSF plots for PLL showing stable limit cycles and φv locking onto φref within 0.2
mSec.
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Figure 3.2: Comparison of SpaceEx reach sets and SLSF trajectories for PLL.

Rearranging the above equation provides

V̇o = Vin

RdC
− Vo

(
1

RdC
+ 1
RC

)
. (2.16)

By the same token, for D1 OFF and D2 ON with invariants Vin ≤ Vo∧−Vin ≥ Vo, we use KCL
at the same node in Figure 2.3 to get

V̇o = − Vin

RdC
− Vo

(
1

RdC
+ 1
RC

)
. (2.17)

For the topology when both D1 and D2 are OFF, the sinusoidal input signal is cut off from the
entire circuit and the load voltage is only provided by the capacitor. The invariants for this
topological instance are Vin ≤ Vo ∧ −Vin ≤ Vo. Therefore, we get

V̇o = − Vo

RC
. (2.18)

Accordingly, the hybrid automaton model of FWR is shown in Figure 2.4. In addition, we
consider the VHDL-AMS description of FWR in Section A, where the circuit is externally
supplied by Vin.

3 SLSF Simulations and Reachability Analysis
Formal verification of CP-PLL constitutes verifying its frequency-locking property, i.e., whether
φv locks onto φref . For this purpose, we need to compute the phase difference between φv and
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Figure 3.3: Comparison of SpaceEx and SLSF for the output voltage of FWR in the steady
state, showing the simulation trace containment within overapproximated sets of reachable
states.

φref . The SLSF plots for the phase difference vs. integrator voltage, voltage of capacitor p1 vs.
integrator voltage vi, and the phase difference versus time are shown in Figure 3.1. The first
two plots depict a stable limit cycle highlighting stability properties of CP-PLL. In the third
plot, we show that the phase difference between φref and φv reaches zero within 0.2 mSec.,
signifying that φv locks onto φref within such time intervals.

We also analyze the hybrid automaton using SpaceEx, and a comparison of the first few
iterations for SpaceEx and SLSF is shown in Figure 3.2. We show that SLSF simulation
traces, and the over-approximated sets of reachable states computed using SpaceEx, match
for the first five iterations. CP-PLL requires thousands of cycles to lock, hence there will be
thousands of discrete transitions for the switching logic resulting inaccuracy due to SpaceEx
overapproximations [1]. It is evident from comparing the first five iterations in Figure 3.2 that
SLSF simulation traces are contained within the over-approximated sets of reachable states.
We also conclude that the SLSF traces exhibit stable limit cycles, and that frequency locking
is achieved within 0.2 mSec.

As evident from this benchmark, the performance of reachability analysis tools is not satis-
factory due to the high number of discrete transitions (practically being in order of thousands).
It is pertinent to highlight that in [4], the authors have used a variant of continuization [1]
to address this problem for the design of a yaw damper system for a 747 jet aircraft. Con-
tinuization is a process whereby the abstraction of a hybrid system having large number of
discrete transitions is obtained by a continuous system with an extra non-deterministic input.
The authors use HyST to automatically transform the model and perform reachability analysis
using Flow* and SpaceEx to display satisfactory results in [4]. A similar approach can be used
for this benchmark so as to perform reachability analysis using SpaceEx and Flow*.

We perform the reachability analysis using SpaceEx under the steady-state conditions for
FWR, i.e., Vmax = 4V , Vo (0) = 4V , and f = 50Hz, as shown in Figure 3.3. The steady-state
SLSF time traces for the output voltage are contained within the over-approximated sets of
reachable states computed using SpaceEx.

During conversion from SpaceEx to SLSF using HyST, the conversion time noted for CP-
PLL is 1.633077 seconds and that for FWR is 1.936676 seconds. We used MATLAB Release
2015a on a Windows 7, 64 bit operating system with Intel Core i7-2600 CPU at 3.40 GHz and
16 GB RAM.

7
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4 Key Observations
Hybrid automaton modeling and reachability analysis of CP-PLL using traditional model check-
ing tools, such as SpaceEx, is an extensive challenge. This is due to the reason that CP-PLL
requires thousand of cycles to lock, resulting in thousand of discrete transitions in the switch-
ing logic. Therefore, the SpaceEx analysis did not produce accurate reachability results if the
analysis is run for an extended duration of time. This requires some advanced techniques,
such as continuization [1] that is demostarted in [4] using HyST, SpaceEx, and Flow*. For
FWR, SpaceEx produced a run-time error due to non-affine dynamics as the model had pure
sinusoidal time-dependent signal as an input. Therefore, we have modeled the sinusoidal input
signal using the second-order ODEs to successfully compute the reachability analysis results.

5 Benchmark Outlook
Overall, these verification benchmarks have medium difficulty level, and can serve as a first step
towards a benchmark library to evaluate reachability and verification methods for AMS circuits.
These benchmarks are open to the continuous and hybrid systems verification community to
evaluate their methods and tools.
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A Appendix: VHDL-AMS Description of FWR
As discussed in Section 2, the FWR circuit behavior depends upon the state of the diodes being ON or OFF
due to the input sinusoidal signal. We assume that this signal is supplied externally, and form the description
as per Equation 2.16, Equation 2.17, and Equation 2.18. It should be mentioned that, in VHDL-AMS, we must
minimize the use of the division operation. VHDL-AMS models are typically comprised of two sections, i.e.,
an entity and an architecture. Entity describes the model interface to the outside world, whereas, architecture
describes the function or behavior of the model. A VHDL-AMS description is given below:
library ieee;
use ieee.electrical_systems.all;
use ieee.math_real.all;
entity fwr is

port ( terminal input: electrical;
terminal output: electrical );

end entity fwr;
----------------------------------------------------------------
architecture dot of fwr is

quantity vin across input to electrical_ref;
quantity vout across output to electrical_ref;
constant r : real := 1000; -- load resistance
constant rd : real := 0.1; -- diode forward resistance
constant cap : real := 0.001; -- capacitance

begin
if vin >= vout and -vin <= vout use

vin == vout’dot * r * rd + vout + vout * rd / r; -- diode D1 ON
elseif vin <= vout and -vin >= vout use

- vin == vout’dot * r * rd + vout + vout * rd / r; -- diode D2 ON
elseif vin <= vout and - vin <= vout use

vout == - vout’dot * r * cap; -- Both OFF
end if;

end architecture dot;
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Abstract
Various mission-critical applications necessarily require a transformer in switching con-

verters to obtain DC isolation between the converters’ input and output. Since DC-DC
converters are the switching devices, these are modeled as hybrid automata. We present
hybrid automaton modeling of two main types of transformer isolated DC-DC converters,
namely, flyback and forward converters. We have also catered the non-determinism for
both. We use HyST (Hybrid Source Transformation) tool to automatically generate the
models in SpaceEx format, perform reachability analysis, and then automatically convert
the models into Mathworks Simulink Stateflow (SLSF) using HyST. Thus we demonstrate
effectiveness of HyST tool in the model-based design process. The HyST user needs not
to manually construct or modify the models thus saving significant amount of time and
efforts.
Category: academic Difficulty: medium

1 Context and Origins
DC-DC converters are the power electronics devices that are extensively used in automotives,
industrial, and defense related applications and their mission-critical nature necessitates for-
mal verification prior implementation. Over the period, there has been a drastic rise in power
electronics-related safety recalls in the automotive industry. For example, the main cause for
recall of around 700,000 Toyota Prius cars in 2014 was attributed to an error in the interaction
between a boost converter and its software controller [11]. Likewise, more than 100,000 Toyota
Prius cars were recalled due to an inverter failure [12]. Therefore, this mission-critical domain
would require significant confidence in the modeling accuracy. This can be ensured through
reachability analysis [1, 6, 7]. We present two potential benchmarks related to transformer-
isolated DC-DC converters for hybrid verification research community. Transformer isolation is
implemented by introducing a transformer at the converter input. In addition to the electrical
isolation between the input and the output, transformer-isolated DC-DC converters have some
other advantages compared to their non-isolated counterparts such as high efficiency and low

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 
80



Transformer-Isolated DC-DC Converters Beg, Davoudi and Johnson

manufacturing cost [4]. Due to their advantages, these are preferred for the DC-DC applica-
tions in industrial and defense-related control/communication systems and distributed power
networks. This work is based on hybrid automaton modeling of two main types of transformer-
isolated DC-DC converters, i.e., flyback converter and forward converter. This is a series of
benchmarks [6–8] that are being developed to benefit from formal verification prior to field
implementation and deployment.

Flyback converter may be regarded as a transformer-isolated buck-boost converter, whereas,
forward converter acts as a transformer-isolated buck converter. We develop hybrid automaton
models of flyback and forward converters, and use SpaceEx [5], a reachability analysis tool,
to compute the over-approximated sets of reachable states 1. This is a classical fixed point
computation tool that operates on symbolic states.

We also use HyST (Hybrid Source Transformation) tool [2] to automatically convert the
hybrid automaton models developed in SpaceEx to MathWorks Simulink/Stateflow (SLSF)
models 2. It is a source-to-source translation tool that takes input in the SpaceEx model
format, and translates it to the formats of HyCreate, Flow*, dReach, C2E2, Passel 2.0, and
HyComp. In addition, it is also used to automatically generate the hybrid automaton models in
SpaceEx format as per user-defined parameters and settings. Additional tool support is being
added from time to time. Verification and validation research community may use HyST to
automatically transform the hybrid automaton models in SpaceEx format to other formats and
perform reachability analysis using aforesaid model checking tools.

2 Hybrid Automaton Modeling of Transformer-Isolated
DC-DC Converters

We present the hybrid automaton modeling of flyback and forward converters in this section.
We assume that transformer losses are negligible with perfect coupling among the windings.
The transformer is modeled using a parallel magnetizing inductance Lm at the input side, called
the primary side. The winding towards the output is called the secondary winding. Let n be the
turns ratio of primary to secondary windings. Let v1 and v2 be the voltage across primary and
secondary windings, i1 and i2 be the respective currents, and let n1 and n2 be the respective
number of turns. Following relations hold for an ideal transformer

v1

n1
= v2

n2
, (2.1)

and

n1i1 = n2i2. (2.2)

2
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n: [12 -5]

Lm
L: 0.001

C: 500e-6

V: 12

D1

R: 1 V5 V

1

In1

1

Out1

Figure 2.1: Schematic diagram of the flyback converter.

�̇�𝑋 = 𝐴𝐴1 + 𝐵𝐵1𝑢𝑢

Mode 1
𝑖𝑖𝐿𝐿𝐿𝐿(0);
𝑣𝑣𝑐𝑐(0);
𝑡𝑡(0);

𝑡𝑡 ≥ 𝐷𝐷𝐷𝐷
Mode 2

𝑡𝑡 ≥ (1 − 𝐷𝐷)𝐷𝐷
𝑖𝑖𝑖𝑖𝑣𝑣𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑡𝑡: 𝑡𝑡 ≤ 𝐷𝐷𝐷𝐷 𝑖𝑖𝑖𝑖𝑣𝑣𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑡𝑡: 𝑡𝑡 ≤ (1 − 𝐷𝐷)𝐷𝐷

�̇�𝑋 = 𝐴𝐴2 + 𝐵𝐵2𝑢𝑢

𝑡𝑡 ≔ 0

𝑡𝑡 ≔ 0

Figure 2.2: Hybrid automaton model for flyback converter.

2.1 Flyback Converter Modeling
We consider the flyback converter in open-loop configuration as shown in Figure 2.1 exported
from PLECS software [9], a power electronics circuit simulator. The switching is realized by
the MOSFET switch and the diode D1. The state variables are defined by the voltage across
the capacitor vC , and current through the magnetizing inductor inductor iLm. The MOSFET
switch is operated by a pulse generator of constant duty cycle D, over the switching time period
T . The operation of this circuit is dependent upon the state of the MOSFET switch, i.e., being
ON and OFF, resulting into two modes:

1. Mode 1: In this mode, the MOSFET switch is ON during the switching cycle 0 < t ≤ DT ,
wherein, the input DC voltage Vin is connected to the primary of the transformer. This
induces the current in the secondary winding in opposite polarity to reverse bias the
diode (setting it to OFF state). In this mode, the primary of the transformer is charged,
wheres, the diode acts as an open switch causing the capacitor to discharge through the
load resistance. We model the MOSFET switching loss by a series resistor rsw. The
ordinary differential equations (ODEs) for iLm and vC for this mode are formed using
conventional Kirchoff’ voltage law (KVL) and Kirchoff’s current law (KCL). Applying
KVL on the left loop gives

diLm

dt
= rsw

Lm
iLm + Vin

Lm
, (2.3)

whereas, applying KVL on the loop containing R and C gives
dvC

dt
= 1
RC

vC . (2.4)

1The tool is available online from the SpaceEx website at: http://spaceex.imag.fr/.
2The executable models are included on the ARCH website and are also available online from the HyST

website at: http://verivital.com/hyst/.

3
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The state space matrices, during the switching cycle 0 < t ≤ DT , are thus given by

A1 =

 rsw

Lm
0

0 1
RC

 , B1 =

 1
Lm

0

 , X =

iLm

vC

 , u = Vin, (2.5)

2. Mode 2: In this mode, the MOSFET switch is OFF during the switching cycle DT <
t ≤ T , thus the input DC power supply is disconnected from the primary of the trans-
former. The current in the secondary flows in upward direction hence diode is forward
biased (in ON state). We first consider the primary winding loop and apply KVL. Using
Equation 2.1, the voltage across the primary is given by

v1 = −nvC , (2.6)

such that the negative sign is due to its opposite direction. Applying KVL in the primary
winding loop, we obtain following relation for the magnetizing inductor current

diLm

dt
= − n

Lm
vC . (2.7)

The current through primary winding is the same as current through Lm. From Equa-
tion 2.2, the current through the secondary winding is given by

i2 = niLm. (2.8)

Consider the node joining R and C. The current entering this node is i2. Applying KCL
on this node, we get

dvC

dt
= n

C
iLm − 1

RC
vC . (2.9)

The corresponding state space matrices, during the switching cycle DT < t ≤ T , are thus
given by

A2 =

 0 − n
Lm

n
C − 1

RC

 , B2 =

0

0

 . (2.10)

We have formulated a hybrid automaton model of flyback converter using the above ODEs as
shown in Figure 2.2. The component values used in the model are mentioned in Figure 2.1, and
adopted from [9].

2.2 Forward Converter Modeling
The forward converter may be regarded as a transformer-isolated buck converter, as illustrated
in Figure 2.3 sketched using PLECS [9]. It has a MOSFET switch, and three diodes D1, D2,
and D3 to realize the switching operation. We consider three state variables, i.e, magnetizing
current iLm, inductor current iL, and capacitor voltage vC . Let n1, n2, and n3 be the number
of turns in three windings of the transformer. The switching modes depend on the state of the
MOSFET switch as well as the fact that whether inductor current iL ≤ 0 and the magnetizing
current iLm ≤ 0. This results in six different modes as under.

4
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V: 100

D1

L: 80e-6

R: 30C: 1e-6

‹1›

s

V 1

v_L

D2

D3

LmM3

Figure 2.3: Schematic diagram of forward converter.

1. Mode 1: In this mode, the MOSFET switch is ON during the switching cycle 0 < t ≤ DT ,
wherein, the input DC voltage Vin is connected to the primary winding of the transformer.
This causes D2 to become forward biased (ON), and D1 and D3 to become reverse biased
(OFF). Applying KVL to left most loop results in

diLm

dt
= Vin

Lm
, (2.11)

whereas, the voltage across D3 is n3
n1
Vin. Applying KVL to the loop containing L and C,

results
diL
dt

= n3

n1L
Vin − 1

L
vC . (2.12)

Consider the node common to L, C, and R. Applying KCL here results

dvC

dt
= 1
C
iL − 1

RC
vC . (2.13)

The corresponding state space matrices, during the switching cycle 0 < t ≤ DT , are thus
given by

A1 =


0 0 0

0 0 − 1
L

0 1
C − 1

RC

 , B1 =


1

Lm

n3
n1L

0

 , X =


iLm

iL

vC

 , u = Vin. (2.14)

2. Mode 2: The MOSFET switch is OFF during the switching cycle DT < t ≤ (1 − D)T
such that Vin is disconnected from the primary winding, and both iLm > 0 and iL > 0.
The diodes D1 and D3 are ON, whereas, D2 is OFF. The input voltage is applied to the
winding 2 of the transformer such that the voltage across Lm is −Vin

n1
n2

. This results in
decrease of iLm such that

diLm

dt
= −n1Vin

n2Lm
, (2.15)

Since L discharges through the load resistor, D3 remains ON, such that Vin is not available
to charge the inductor L. This gives us

diL
dt

= − 1
L
vC ,

dvC

dt
= 1
C
iL − 1

RC
vC . (2.16)

5
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�̇�𝑋 = 𝐴𝐴1𝑋𝑋 + 𝐵𝐵1𝑢𝑢

Mode 1

𝑡𝑡(0)
𝑖𝑖𝐿𝐿𝐿𝐿(0)
𝑖𝑖𝐿𝐿(0)
𝑣𝑣𝑐𝑐(0)

𝑡𝑡 ≥ (1 − 𝐷𝐷)𝑇𝑇
𝑡𝑡 ≔ 0;

𝑖𝑖𝑖𝑖𝑣𝑣𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑡𝑡𝑖𝑖:
𝑡𝑡 ≤ 𝐷𝐷𝑇𝑇 ˄ 𝑖𝑖𝐿𝐿 > 0 ˄ 𝑖𝑖𝐿𝐿𝐿𝐿 > 0

𝑡𝑡 ≥ 𝐷𝐷𝑇𝑇
𝑡𝑡 ≔ 0;

�̇�𝑋 = 𝐴𝐴2𝑋𝑋 + 𝐵𝐵2𝑢𝑢

Mode 2

𝑖𝑖𝑖𝑖𝑣𝑣𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑡𝑡𝑖𝑖:
𝑡𝑡 ≤ (1 − 𝐷𝐷)𝑇𝑇 ˄ 𝑖𝑖𝐿𝐿 > 0 ˄ 𝑖𝑖𝐿𝐿𝐿𝐿 > 0

�̇�𝑋 = 𝐴𝐴3𝑋𝑋 + 𝐵𝐵3𝑢𝑢

Mode 3

𝑖𝑖𝑖𝑖𝑣𝑣𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑡𝑡𝑖𝑖:
𝑡𝑡 ≤ (1 − 𝐷𝐷)𝑇𝑇 ˄ 𝑖𝑖𝐿𝐿 > 0 ˄ 𝑖𝑖𝐿𝐿𝐿𝐿 ≤ 0

�̇�𝑋 = 𝐴𝐴5𝑋𝑋 + 𝐵𝐵5𝑢𝑢

Mode 5

𝑖𝑖𝑖𝑖𝑣𝑣𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑡𝑡𝑖𝑖:
𝑡𝑡 ≤ (1 − 𝐷𝐷)𝑇𝑇 ˄ 𝑖𝑖𝐿𝐿 ≤ 0 ˄ 𝑖𝑖𝐿𝐿𝐿𝐿 > 0

�̇�𝑋 = 𝐴𝐴4𝑋𝑋 + 𝐵𝐵4𝑢𝑢

Mode 4

𝑖𝑖𝑖𝑖𝑣𝑣𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑡𝑡𝑖𝑖:
𝑡𝑡 ≤ (1 − 𝐷𝐷)𝑇𝑇 ˄ 𝑖𝑖𝐿𝐿 ≤ 0 ˄ 𝑖𝑖𝐿𝐿𝐿𝐿 ≤ 0

𝑖𝑖𝐿𝐿𝐿𝐿 ≤ 0
𝑡𝑡 ≔ 𝑡𝑡;

𝑖𝑖𝐿𝐿 ≤ 0
𝑡𝑡 ≔ 𝑡𝑡;

𝑖𝑖𝐿𝐿𝐿𝐿 ≤ 0
𝑡𝑡 ≔ 𝑡𝑡;

𝑡𝑡 ≥ 1 − 𝐷𝐷 𝑇𝑇 𝑡𝑡 ≔ 0;

𝑖𝑖𝐿𝐿 ≤ 0 𝑡𝑡 ≔ 𝑡𝑡;

𝑡𝑡 ≥ 1 − 𝐷𝐷 𝑇𝑇 𝑡𝑡 ≔ 0;

Error 
Mode

𝐷𝐷 >0.5

Figure 2.4: Hybrid automaton model for forward converter.

The corresponding state space matrices are

A2 =


0 0 0

0 0 − 1
L

0 1
C − 1

RC

 , B2 =


− n1

n2Lm

0

0

 . (2.17)

3. Mode 3: The MOSFET switch is still OFF during the switching cycle DT < t ≤ (1−D)T
such that iLm ≤ 0 and iL > 0. As iLm ≤ 0, diodeD1 becomes OFF. Overall, the MOSFET
switch and diodes D1 and D2 are OFF. We can form another set of ODEs as

diLm

dt
= 0, diL

dt
= − 1

L
vC ,

dvC

dt
= 1
C
iL − 1

RC
vC . (2.18)

The corresponding state space matrices are

A3 =


0 0 0

0 0 − 1
L

0 1
C − 1

RC

 , B3 =


0

0

0

 . (2.19)

4. Mode 4: The MOSFET switch is OFF during the switching cycle DT < t ≤ (1 − D)T
such that both and iLm ≤ 0 and iL ≤ 0. Following set of ODEs can be formed

diLm

dt
= 0, diL

dt
= 0, dvC

dt
= − 1

RC
vC . (2.20)

The corresponding state space matrices are

A4 =


0 0 0

0 0 0

0 0 − 1
RC

 , B4 =


0

0

0

 . (2.21)

6
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5. Mode 5: The MOSFET switch is OFF during the switching cycle DT < t ≤ (1 − D)T .
There is another possibility that iL approaches zero while iLm is still non-zero, thus we
have another condition iLm > 0 and iL ≤ 0. This gives us

diLm

dt
= −n1Vin

n2Lm
,
diL
dt

= 0, dvC

dt
= − 1

RC
vC . (2.22)

The corresponding state space matrices are

A5 =


0 0 0

0 0 0

0 0 − 1
RC

 , B5 =


− n1

n2Lm

0

0

 . (2.23)

6. Error Mode: Inherently, the maximum possible duty cycle for the forward converter is
D ≤ 0.5. Accordingly, we have added the error mode in the model to accommodate any
deadlocks due to wrong selection of parameters.

Using the above ODEs and modes, the hybrid automaton model of forward converter is
formulated and shown in Figure 2.4. The component values used in the model are mentioned
in Figure 2.3 and adopted from [10].

2.3 Closed-loop Forward Converter
We have also modeled the forward converter in closed-loop configuration and typically used the
hysteresis control methodology as outlined in [3]. In this control methodology, the capacitor
voltage vC is allowed to vary within a hysteresis band. The hysteresis band is formed by defining
an upper switching boundary, Vref + ∆, and a lower switching boundary, Vref − ∆, where Vref

is the desired output voltage, and ∆ is the tolerance level. The state space description of
the model remains the same as discussed in Section 2.3 and shown in Figure 2.2, whereas
the guards t ≥ DT and t ≥ (1 − D)T are changed to vC ≥ Vref + ∆ and vC ≤ Vref − ∆,
respectively. Moreover, the invariants t ≤ DT and t ≤ (1 −D)T are changed to vC ≤ Vref + ∆
and vC ≥ Vref − ∆, respectively.

3 SLSF Simulations and Reachability Analysis
We have automatically generated the hybrid automaton models in SpaceEx format using HyST
tool and analyze these in SpaceEx environment. Moreover, we have automatically translated
the same SpaceEx models into SLSF format using HyST. Formal verification of the flyback and
forward converters includes verifying the corresponding capacitor voltage and inductor current
to attain a stable limit cycle in settling time. For the flyback converter, we require that vC and
iLm should exhibit a stable limit within settling time tS . For the forward converter, we require
that vC and iL should exhibit a stable limit within settling time tS .

SpaceEx, PLECS, and SLSF results for the capacitor voltage and inductor current are shown
in Figure 3.1. It is evident from the results in Figure 3.1 that PLECS and SLSF simulation
traces are contained within the over-approximated sets of reachable states. We also conclude
that these results exhibit stable limit cycle, and that stable voltage is attained within 5 ms.
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Figure 3.1: Comparison of SpaceEx reach sets, PLECS and SLSF trajectories for the flyback
converter showing the simulation trace containment within overapproximated sets of reachable
states: (a) Inductor current vs time (b) Capacitor voltage vs time (c) Phase-plane plot of
capacitor voltage and inductor current.
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Figure 3.2: Comparison of SpaceEx overapproximations and SLSF trajectories for the open-loop
forward converter, showing the simulation trace containment within overapproximated sets of
reachable states: (a) Inductor current vs time (b) Capacitor voltage vs time (c) Phase-plane
plot of capacitor voltage and inductor current.

We perform the reachability analysis using SpaceEx for forward converter as shown in Fig-
ure 3.2. The SLSF time traces are contained within the over-approximated sets of reachable
states computed using SpaceEx. We also conclude that these results exhibit a stable limit cycle
within 100 µs.

There are various sources of non-determinism in both the models such as the input voltage
(Vin), initialization values of various state variables, the duty cycle of the PWM signal (D),
and the time period of PWM signals (T ). We have modeled the non-determinism of these
parameters for both types of converters.

3.1 Reachability Analysis Results - Non-Determinism in Flyback
Converter

First we consider the non-determinism in Vin for the flyback converter, such that it is allowed
to vary from 11.9 − 12.1 V . The reachability analysis results are computed using SpaceEx and
shown in Figure 3.3. We consider the variations in initial values of all the states variables,
i.e., iLm and vC . The state variable iLm is initialized for a range of 0 − 0.5 A, whereas vC is
initialized for 0 − 0.5 V . The reachability analysis results are computed using SpaceEx and
shown in Figure 3.4. Next we consider non-determinism in D, such that it is allowed to vary
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Figure 3.3: For the flyback converter model, we cater the non-determinism for the input voltage
Vin and overapproximations are computed using SpaceEx: (a) Inductor current vs time (b)
Capacitor voltage vs time (c) Phase-plane plot of capacitor voltage and inductor current.
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Figure 3.4: For the flyback converter model, we cater the non-determinism in initial values of
iLm and vC and overapproximations are computed using SpaceEx: (a) Inductor current vs time
(b) Capacitor voltage vs time (c) Phase-plane plot of capacitor voltage and inductor current.

from 0.449−0.501 s. The overapproximations computed using SpaceEx are shown in Figure 3.5.
In the last, we consider the variations in T and obtain the reachability analysis results using
SpaceEx as T varies between 19.96 − 20.04 µs, as shown in Figure 3.6.
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Figure 3.5: For the flyback converter model, we cater the non-determinism in the duty cycle
D and overapproximations are computed using SpaceEx: (a) Inductor current vs time (b)
Capacitor voltage vs time (c) Phase-plane plot of capacitor voltage and inductor current.
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Figure 3.6: For the flyback converter model, we cater the non-determinism in the sampling
time T and overapproximations are computed using SpaceEx: (a) Inductor current vs time (b)
Capacitor voltage vs time (c) Phase-plane plot of capacitor voltage and inductor current.
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Figure 3.7: For the forward converter model, we cater the non-determinism for the input
voltage Vin and overapproximations are computed using SpaceEx: (a) Inductor current vs time
(b) Capacitor voltage vs time (c) Phase-plane plot of capacitor voltage and inductor current.

3.2 Reachability Analysis Results - Non-Determinism in Forward
Converter

We consider the non-determinism in Vin for the forward converter, such that it is allowed to
vary from 98−102 V . The reachability analysis results are computed using SpaceEx and shown
in Figure 3.7. We model the variations in initial values of all the states variables, i.e., iLm, iL,
and vC . The state variables iLm and iL are both initialized for a range of 0 − 0.4 A, and vC

is initialized for 0 − 0.4 V . The reachability analysis results are computed using SpaceEx and
shown in Figure 3.8. Next we consider non-determinism in D, such that it is allowed to vary
from 0.39 − 0.41 s. The overapproximations computed using SpaceEx are shown in Figure 3.9.
In the last, we consider the variations in T and obtain the reachability analysis results using
SpaceEx as T varies between 24.39 − 25.64 µs, as shown in Figure 3.10.

3.3 Reachability Analysis Results - Closed-loop Forward Converter

In the last part, we present the reachability analysis results for the closed-loop forward converter
using hysteresis control in Figure 3.11. For the hystersis-controlled forward converter we require
that iL and vC should exhibit a stable limit cycle within the settling time tS . As evident
in Figure 3.11, both iL and vC exhibit a stable limit cycle within 50 µs.
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Figure 3.8: For the forward converter model, we cater the non-determinism in initial values
of iL, iLm and vC and overapproximations are computed using SpaceEx: (a) Inductor current
vs time (b) Capacitor voltage vs time (c) Phase-plane plot of capacitor voltage and inductor
current.
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Figure 3.9: For the forward converter model, we cater the non-determinism in the duty cycle
D and overapproximations are computed using SpaceEx: (a) Inductor current vs time (b)
Capacitor voltage vs time (c) Phase-plane plot of capacitor voltage and inductor current.
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Figure 3.10: For the forward converter model, we cater the non-determinism in the sampling
time T and overapproximations are computed using SpaceEx: (a) Inductor current vs time (b)
Capacitor voltage vs time (c) Phase-plane plot of capacitor voltage and inductor current.
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Figure 3.11: Comparison of SpaceEx and SLSF results for the hysteresis-controlled forward
converter, showing the simulation trace containment within overapproximated sets of reachable
states: (a) Inductor current vs time (b) Capacitor voltage vs time (c) Phase-plane plot of
capacitor voltage and inductor current.

4 Key Observations

Hybrid automaton modeling and reachability analysis of transformer-isolated flyback converter
has medium difficulty level. However, modeling and analysis of forward converter is more
complex with three state variables and five modes. We have only used SpaceEx to perform
the reachability analysis. In addition other reachability analysis tools may also be used for the
reachability analysis.

We have not considered the parasitics in modeling of transformer-isolated DC-DC converters
that will further increase the difficulty level of this benchmark.

5 Benchmark Outlook

On the whole, these verification benchmarks can serve as a first step towards a benchmark
library to evaluate reachability and verification methods for various types of DC-DC converters.
These benchmarks are open to the continuous and hybrid systems verification community to
evaluate their methods and tools.
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Abstract—Formal verification requires extensive analysis of
a given mathematical model with respect to some correctness
requirements using various tools and techniques. Manually con-
structing models of a given device in various formats requires
considerable time and efforts. Thus we automatically generate
the hybrid automaton models in SpaceEx format using HyST
(Hybrid Source Transformer) tool, which is a source-to-source
transformation and translation tool. We then automatically trans-
late these SpaceEx models into Mathworks Simulink Stateflow
(SLSF) for analysis thus saving significant amount of time and
efforts. We present various power electronics circuits benchmarks
to demonstrate the efficiency and effectiveness of HyST in model-
based design process. Safe and reliable operation of these circuits
in safety-critical applications necessitates a rigorous modeling
and verification process. In this work, we use SpaceEx reachabil-
ity analysis tool for formal verification of such circuits. We have
used this computer-aided modeling technique to automatically
generate and translate the models and verify that the output of
a given model remains within a defined stable region in steady
state.

I. INTRODUCTION

Formal verification involves constructing a mathematical
model M with precise semantics, extensive analysis with
respect to some correctness requirement P , and verifying that
M |= P [1]. Reachability analysis has been used for formal
verification of pre-defined correctness requirements for analog
mixed signal circuits [2]. In this work, we use SpaceEx [3],
a reachability analysis tool, for formal verification of power
electronics circuits1. Since one needs to build the model of
a given device in various formats so as to perform extenive
analysis using various tools for formal verification. Manually
building the models in various formats requires significant
time and efforts. Therefore, we have used a new tool HyST
(Hybrid Source Transformer) [4] to automatically generate the
hybrid automaton models in SpaceEx compatible format. We
also use HyST to automatically convert the hybrid automaton
models developed in SpaceEx to MathWorks Simulink/State-

1The tool is available online from the SpaceEx website at: http://spaceex.
imag.fr/.

flow (SLSF) models 2. It is a source-to-source transformation
and translation tool that takes input in the SpaceEx model
format, and translates it to various other formats such as
HyCreate, Flow*, dReach, C2E2, Passel 2.0, and HyComp.
HyST tool is being updated over the time to add support for
other analysis tools. The verification and validation research
community is encouraged to use HyST as this computer-
automated analysis saves significant time and efforts in model-
based design process.

Power electronics form the energy middle-ware and used
in automobiles, industrial automation, aerospace, and defense.
Power electronics devices, such as DC-DC power converters
contain switching components which lead to discrete behav-
iors, and have passive components that exhibit continuous
dynamics within each discrete event. Such devices can be
modeled as hybrid automata to perform reachability analysis.
A signifcant rise in the safety recalls of cars manufactured by
automotive industry due to malfunction of power electronics
devices has been reported. As an exmaple, about 700,000
Toyota Prius cars were recalled in year 2014 due to an error
in interaction between a boost converter and its software
controller [5]. Later in year 2015, more than 100,000 Toyota
Prius cars were recalled due to an inverter malfunction [6].
Therefore, such mission-critical devices would require formal
verification prior implementation.

In this paper, we demonstrate effectiveness of HyST tool in
automatic model-based design and formal verification process
using four case studies of power electronics circuits. First two
being special types of DC-DC power converters called center-
tapped Buck and boost converters. In the last two case studies,
we use two improved models of the transformer-isolated
DC-DC power converters that were earlier presented in [7],
namely, flyback converter (that acts as a Buck-boost converter)
and forward converter (that acts as a Buck converter). This
work is continuation of a series of benchmarks for power

2The executable models are available online from the HyST website at:
http://verivital.com/hyst/.
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Fig. 1. Overview of the HyST conversion process.

electronics circuits [8]–[10] that are being developed to benefit
from formal verification prior to field implementation and
deployment.

II. AUTOMATIC MODEL GENERATION USING HYST

HyST is an automatic source-to-source model translation
and transformation tool that takes input in SpaceEx format
and generates models in SLSF, HyCreate, Flow*, dReach,
C2E2, Passel, and HyComp formats [4]. The support for other
reachability analysis tools will be added from time to time.
HyST can be beneficial to the hybrid systems verification
community in following ways:

1. The user may automatically generate a model file for
numerous other tools, carry out the analysis, and choose
the best suitable tool for the system under consideration.

2. The researcher involved in development of hybrid sys-
tems model checkers may quickly compare the perfor-
mance of the newly developed tool with other tools.

HyST takes input in SpaceEx source format, parses it into an
intermediate representation (IR), and finally prints the output
source in a format specified by the user. This conversion
architecture is shown in Fig. 1. IR is implemented as Java data
structures to encode the hybrid automaton model components,
whereas, transformation passes may be regarded as the model-
to-model conversions. More details regarding HyST can be
found in [4].

In this paper, we use HyST as a benchmark generator for
automatic generation of hybrid automata models in SpaceEx
format. Thus the user needs not to manually create the hybrid
automata models through SpaceEx model editor saving con-
siderable time and effort. We use MATLAB’s API (application
program interface) for Java that enables MATLAB to interact
with Java programs synchronously or asynchronously. In this
automatic model generation process, we need to instantiate the
model components per Definition 2.1.

Definition 2.1: We define a hybrid automaton model by a
tuple M = 〈L,X, Init, T , Inv, F 〉, where:

• L = {l1, l2, ...., lN} is a finite set of discrete locations.
• X is a finite set of continuous state variables, such that
∀ x ∈ X ∃ val(x) ∈ �, where val(x) is a vluation of x
resulted due to function mapping.

• Init ⊆ L0 × X0 is a set of initial conditions, such that
L0 ⊆ L and X0 ⊆ X .

MATLAB

Load Model 
Parameters

HyST

Define HA Model:
  - Discrete locations
  - State variables
  - Initial conditions
  - Discrete transitions
  - Invariants
  - ODEs

SpaceEx 
Model Format

MATLAB’s Java API

Fig. 2. Overview of automatic model generation in SpaceEx format.

• T = 〈ls, le, g, r〉 is a set of feasible discrete transitions
allowed among the discrete locations, where the corre-
sponding elements of the tuple are the start location,
end location, relevant guard, and the subsequent reset,
respectively.

• Inv is a finite set of invariants for each discrete location.
• F is a set of ordinary differential equations (ODEs) that

are defined for each location l ∈ L over the continuous
variables x ∈ X .

We implement following steps (Fig. 2) to automatically gen-
erate the hybrid automaton model using MATLAB:

1. Instantiate the matrix/string to define various components
of the hybrid automaton model as per Definition 2.1.

2. Load parameter values and initialize the state variables.
3. Call the parser in HyST to represent these components

into SpaceEx data structures.
4. Print into the SpaceEx model format, i.e., ’.cfg’, and

’.xml’ files.
5. Translate and print the model into the SLSF format.

III. HYBRID AUTOMATON MODEL FORMULATION

The power electronics devices can be modeled as hybrid
automata as these exhibit both the continuous and discrete
behaviors due to the inherent passive elements and switches,
respectivley [11]. In this section, we discuss the modeling of
such circuits for use in automatic SpaceEx model generation
process and translation to SLSF format. We demonstrate the
effectiveness of HyST tool in model-based design process
using four different types of power electronics circuits.

For the model formulation, we assume the transformer
losses to be negligible. The winding at the input is called
primary, whereas that towards the output is called secondary.
The dynamics of such circuits depends on the operation of the
MOSFET switch, i.e., being ON and OFF. We consider open
loop DC-DC power converters such that the MOSFET switch
is operated by a pulse generator of constant duty cycle D, over
the switching time period T . The state variables are defined
by the voltage across the capacitor vC , and current through
the inductor iL.

A. Center-Tapped Buck Converter Model

It is a special type of DC-DC Buck converter, wherein, the
inductor is center-tapped, i.e., a contact is made to a point
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Fig. 3. Schematic diagram of center-tapped Buck converter.

halfway along the winding of an inductor. The schematic of
the converter is shown in Fig. 3. Let n be the turns ratio of
primary to secondary windings, n1 be the number of turns
before the center-tap, and n2 after the center-tap. For a tapped
inductor, let vL be the overall voltage across the entire number
of turns, then

n =
vL
v2

=
n1 + n2

n2
= 1 +

n1

n2
. (1)

The state of the MOSFET switch, i.e., being ON and OFF,
results into two modes. The third mode results, when the
MOSFET switch is OFF and iL ≤ 0.

1. Mode 1: During the switching cycle 0 < t ≤ DT ,
MOSFET switch is ON and diode is OFF. The input DC
voltage source Vin supplies the primary of the inductor.
In this mode, the entire inductor is charged and diodes
acts as an open switch to charge the capacitor and
supply the load resistance. The ODEs for iL and vC may
be formulated using conventional Kirchoff’ voltage law
(KVL) and Kirchoff’s current law (KCL). We use KVL
on the outer loop containing L, R, and C that results in

diL
dt

= − 1

L
vC +

Vin

L
, (2)

whereas, applying KCL on the node joining L, R, and C
results

dvC
dt

=
1

C
iL − 1

RC
vC . (3)

The state space matrices, during the switching cycle 0 <
t ≤ DT , are thus given by

A1 =

[
0 − 1

L
1
C − 1

RC

]
, B1 =

[
1
L

0

]
, X =

[
iL

vC

]
, u = Vin.

(4)
2. Mode 2: In this mode, the MOSFET switch is OFF

during the switching cycle DT < t ≤ T , thus Vin

is disconnected from the primary of the transformer.
However, the current in the secondary (equivalent to niL
as derived from (1)) still flows hence the diode is forward
biased (in ON state). We first consider the secondary
winding loop, apply KVL and use (1) to form ODE
as

diL
dt

= −n

L
vC . (5)

Applying KCL on the node joining L, R, and C, we
obtain following ODE.

dvC
dt

= − n

C
iL − 1

RC
vC . (6)

Fig. 4. Hybrid automaton model in SpaceEx format is automatically generated
using HyST for center-tapped Buck converter.

mode3
du:
il_dot = 0;
vc_dot = a22m1 * vc;
t_dot = 1;
gt_dot = 1;
mode_dot = 0;
il_out=il;
vc_out=vc;
t_out=t;
gt_out=gt;
mode_out=mode;
commontap_location =3;

mode2
du:
il_dot = a12m2 * vc;
vc_dot = a21m2 * il + a22m1 * vc;
t_dot = 1;
gt_dot = 1;
mode_dot = 0;
il_out=il;
vc_out=vc;
t_out=t;
gt_out=gt;
mode_out=mode;
commontap_location =2;

mode1
du:
il_dot = a12m1 * vc + b1m1 * Vin;
vc_dot = a21m1 * il + a22m1 * vc;
t_dot = 1;
gt_dot = 1;
mode_dot = 0;
il_out=il;
vc_out=vc;
t_out=t;
gt_out=gt;
mode_out=mode;
commontap_location =1;

[il <= 0]
{t = 0;
gt = gt;
vc = vc;
il = il;
mode = 3;}

2

[t >= (1 - D) * T]
{t = 0;
gt = gt;
vc = vc;
il = il;
mode = 1;}

1

{il = 0;
vc = 0;
t = 0;
gt = 0;
mode = 1;}

[t >= D * T]
{t = 0;
gt = gt;
vc = vc;
il = il;
mode = 2;}

[t >= (1 - D) * T]
{t = 0;
gt = gt;
vc = vc;
il = il;
mode = 1;}

Fig. 5. SLSF model is automatically generated using HyST for center-tapped
Buck converter.

The corresponding state space matrices, during the
switching cycle DT < t ≤ T , are thus given by

A2 =

[
0 −n

L
n
C − 1

RC

]
, B2 =

[
0

0

]
. (7)

We skip the ODEs for the third mode being quite straight-
forward. Using HyST, we have automatically generated the
models of Buck converter based on above ODEs in SpaceEx
and SLSF formats as shown in Fig. 4 and Fig. 5, respectively.
The component values used in the model are mentioned
in Fig. 3, and adopted from [12].

B. Center-Tapped Boost Converter Model

It is a special type of DC-DC boost converter with a
center-tapped inductor as shown in Fig. 6. As in the above
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Fig. 6. Schematic diagram of the center-tapped boost converter.

Fig. 7. Schematic diagram of flyback converter.

case, the dynamics of the circuit depends on the operation
of the MOSFET switch resulting in two modes. We have
automatically generated the models of center-tapped boost
converter in SpaceEx and SLSF formats using HyST. Due
to space limitation, we skip the formulation of ODEs and
corresponding model figures. The component values used in
the model are mentioned in Fig. 6.

C. Improved Model of Flyback Converter

For flyback and forward transformer-isolated DC-DC power
converters, we model the transformer by Lm, a parallel
magnetizing inductance, at the input side. The magnetizing
current through Lm is denoted by iLm. In case of the flyback
converter there are two state variables (i.e., iLm and vC) and
two modes. A simple model was presented in [7] for this
type of transformer-isolated converter. This model may be
improved by adding an ESR (equivalent series resistor) for
the capacitor [13] as shown in Fig. 7. For space limitation, we
skip the detailed model formulation. We have automatically
generated SpaceEx and SLSF models of flyback converter
as shown in Fig. 8 and Fig. 9, respectively. The component
values used in the model are mentioned in Fig. 7, and adopted
from [12].

Fig. 8. Hybrid automaton model in SpaceEx format is automatically generated
using HyST for flyback converter.

charging
du:
il_dot = b1c * Vin;
vc_dot = a22c * vc;
t_dot = 1;
gt_dot = 1;
mode_dot = 0;
il_out=il;
vc_out=vc;
t_out=t;
gt_out=gt;
mode_out=mode;
flyback_openloop_losses_location =1;

discharging
du:
il_dot = a12o * vc;
vc_dot = a21o * il + a22o * vc;
t_dot = 1;
gt_dot = 1;
mode_dot = 0;
il_out=il;
vc_out=vc;
t_out=t;
gt_out=gt;
mode_out=mode;
flyback_openloop_losses_location =2;

[t >= D * T]
{t = 0;
gt = gt;
vc = vc;
il = il;
mode = 2;}

[t >= (1 - D) * T]
{t = 0;
gt = gt;
vc = vc;
il = il;
mode = 1;}{il = 0;

vc = 0;
t = 0;
gt = 0;
mode = 1;}

Fig. 9. SLSF model is automatically generated using HyST for flyback
converter.

Fig. 10. Schematic diagram of forward converter.

D. Improved Model of Forward Converter

We present an improved model of the forward converter that
was earlier presented in [7] to include the MOSFET switching
loss (modeled by a series resistance rsw) and ESR (rL) for
the inductor, as illustrated in Fig. 10. There are three state
variables, i.e., iLm, iL, and vC . The switching modes depend
on the state of the MOSFET switch as well as the fact that
whether iL ≤ 0 and iLm ≤ 0. This results in five different
modes as shown in Fig. 11 and Fig. 12 for SpaceEx and SLSF
models, respectively. Due to space limitation, we skip the ODE
formulation. The component values used in the model are
mentioned in Fig. 10.

E. Formal Requirements for Verification of Power Electronics
Circuits

Formal verification requires that a given model of a power
electronics device does not violate a predefined stability
specification. We use the Lyapunov stability to define this

Fig. 11. Hybrid automaton model in SpaceEx format is automatically
generated using HyST for forward converter.
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mode4
du:
im_dot = 0;
il_dot = 0;
vc_dot = a33m1 * vc;
t_dot = 1;
gt_dot = 1;
mode_dot = 0;
im_out=im;
il_out=il;
vc_out=vc;
t_out=t;
gt_out=gt;
mode_out=mode;
forward_conv_losses_location =4;

mode5
du:
im_dot = b1m2 * Vin;
il_dot = 0;
vc_dot = a33m1 * vc;
t_dot = 1;
gt_dot = 1;
mode_dot = 0;
im_out=im;
il_out=il;
vc_out=vc;
t_out=t;
gt_out=gt;
mode_out=mode;
forward_conv_losses_location =5;

mode3
du:
im_dot = 0;
il_dot = a22m1 * il + a23m1 * vc;
vc_dot = a32m1 * il + a33m1 * vc;
t_dot = 1;
gt_dot = 1;
mode_dot = 0;
im_out=im;
il_out=il;
vc_out=vc;
t_out=t;
gt_out=gt;
mode_out=mode;
forward_conv_losses_location =3;

mode2
du:
im_dot = b1m2 * Vin;
il_dot = a22m1 * il + a23m1 * vc;
vc_dot = a32m1 * il + a33m1 * vc;
t_dot = 1;
gt_dot = 1;
mode_dot = 0;
im_out=im;
il_out=il;
vc_out=vc;
t_out=t;
gt_out=gt;
mode_out=mode;
forward_conv_losses_location =2;

mode1
du:
im_dot = a11m1 * im + b1m1 * Vin;
il_dot = a21m1 * im + a22m1 * il + a23m1 * vc + b2m1 * Vin;
vc_dot = a32m1 * il + a33m1 * vc;
t_dot = 1;
gt_dot = 1;
mode_dot = 0;
im_out=im;
il_out=il;
vc_out=vc;
t_out=t;
gt_out=gt;
mode_out=mode;
forward_conv_losses_location =1;

[il <= 0]
{t = 0;
gt = gt;
vc = vc;
il = il;
im = im;
mode = 4;}

2

[t >= (1 - D) * T]
{t = 0;
gt = gt;
vc = vc;
il = il;
im = im;
mode = 1;}

[t >= (1 - D) * T]
{t = 0;
gt = gt;
vc = vc;
il = il;
im = im;
mode = 1;}

1

[t >= (1 - D) * T]
{t = 0;
gt = gt;
vc = vc;
il = il;
im = im;
mode = 1;}

1

[im <= 0]
{t = 0;
gt = gt;
vc = vc;
il = il;
im = im;
mode = 4;}

{im = 0;
il = 0;
vc = 0;
t = 0;
gt = 0;
mode = 1;}

[t >= D * T]
{t = 0;
gt = gt;
vc = vc;
il = il;
im = im;
mode = 2;}

[im <= 0]
{t = 0;
gt = gt;
vc = vc;
il = il;
im = im;
mode = 3;}

2

[il <= 0]
{t = 0;
gt = gt;
vc = vc;
il = il;
im = im;
mode = 5;}

3

Fig. 12. SLSF model is automatically generated using HyST for forward
converter.

specification, i.e., ẋ = f(x(t)) is stable if ∀ ε > 0 ∃ δ > 0
such that if ‖x(0)‖ ≤ δ ⇒ ‖x(t)‖ ≤ ε ∀ t ≥ 0. Therefore,
we may define a bounded region and verify that the output
of the power electronics device eventually reaches and always
remains in this stable region. This is hypothetically equivalent
to requiring that both the state variables of interest, i.e., iL and
vC attain a stable limit cycle in finite time. Accordingly, we
define the stability specification for DC-DC power converters
in steady state, such that iL and vC should attain a stable limit
cycle within a finite settling time tS .

IV. SLSF SIMULATIONS AND REACHABILITY ANALYSIS

We have automatically generated SpaceEx models using
HyST tool and analyze these in SpaceEx environment. We
have also automatically translated the same SpaceEx models
into SLSF format using HyST. For the flyback converter,
we require that vC and iLm should exhibit a stable limit
within settling time tS . For the center-tapped Buck, boost, and
forward converters, we require that vC and iL should exhibit
a stable limit within settling time tS .

For center-tapped Buck, center-tapped boost, flyback, and
forward converters, the SpaceEx and SLSF results for the
capacitor voltage and inductor current are shown in Fig. 13,
Fig. 14, Fig. 15, and Fig. 16, respectively. SLSF simulation
traces are contained within the over-approximated sets of
reachable states computed using SpaceEx. We also conclude
that these results exhibit stable limit cycle, and that stable
voltage is attained within 1.5 ms, 5 ms, 3 ms, and 2 ms for
the respective power converters.

V. CONCLUSION

HyST significantly reduces the time and efforts in model-
based design process and formal verification. Verification and
validation research community may use HyST to automatically
transform the hybrid automaton models in SpaceEx format to
other formats and perform reachability analysis using aforesaid
model checking tools. The hybrid automaton models of power
electronics circuits that we provide in this paper form part
of a benchmark library. It is being developed to evaluate
various reachability analysis and verification methods. This

benchmark library is open to the continuous and hybrid
systems verification community for testing and evaluation of
their methods and tools.
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Fig. 13. Comparison of SpaceEx reach sets and SLSF trajectories for the center-tapped Buck converter showing the simulation trace containment within
overapproximated sets of reachable states: (a) Inductor current vs time (b) Capacitor voltage vs time (c) Phase-plane plot of capacitor voltage and inductor
current.
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Fig. 14. Comparison of SpaceEx reach sets and SLSF trajectories for the center-tapped boost converter showing the simulation trace containment within
overapproximated sets of reachable states: (a) Inductor current vs time (b) Capacitor voltage vs time (c) Phase-plane plot of capacitor voltage and inductor
current.
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Fig. 15. Comparison of SpaceEx reach sets and SLSF trajectories for the flyback converter showing the simulation trace containment within overapproximated
sets of reachable states: (a) Inductor current vs time (b) Capacitor voltage vs time (c) Phase-plane plot of capacitor voltage and inductor current.
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Fig. 16. Comparison of SpaceEx overapproximations and SLSF trajectories for the forward converter, showing the simulation trace containment within
overapproximated sets of reachable states: (a) Inductor current vs time (b) Capacitor voltage vs time (c) Phase-plane plot of capacitor voltage and inductor
current.
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Model Validation of PWM DC-DC Converters

Abstract—This paper presents hybrid automaton mo-
deling, comparative model validation, and formal verifica-
tion of stability through reachability analysis of PWM DC-
DC converters. Conformance degree provides a measure of
closeness between the proposed hybrid automata models
and experimental data. Non-determinism due to variations
in circuit parameters is modeled using interval matrices.
In direct contrast to the unsound and computationally-
intensive Monte Carlo simulation, reachability analysis is
introduced to overapproximate the set of reachable states
and ensure stable operation of PWM DC-DC converters.
Using a 200 W experimental prototype of a buck conver-
ter, hybrid automata models of open-loop and hysteresis-
controlled converters are first validated against experimen-
tal data using their conformance degrees. Next, converter
stability is formally verified through reachability analysis
and informally validated using Monte Carlo simulations and
experimental results.

Index Terms—DC-DC converter, formal verification, hy-
brid automaton, model validation, reachability analysis.

I. INTRODUCTION

ABSTRACT models of PWM DC-DC converters should
reasonably match the experimental data obtained from

a hardware prototype despite parametric uncertainty. More-
efficient stochastic simulation techniques are based on po-
lynomial chaos, where parametric uncertainties are accoun-
ted for by a series of orthogonal polynomials that depends
upon their probability distributions [1]. Series coefficients are
computed using various intrusive (e.g., stochastic Galerkin
[1]) or non-intrusive (e.g., stochastic collocation [2]) methods.
Examples of such stochastic methods for electrical circuits
and power systems include Galerkin-based generalized poly-
nomial chaos [3], SPICE-compatible stochastic Galerkin [4],
Galerkin-based generalized decoupled polynomial chaos [5],
stochastic testing [6], and SPICE-compatible stochastic collo-
cation approach [7]. In general, polynomial chaos methods
suffer from the curse of dimensionality, slow convergence
with discontinuous solutions, and substantial computational
overhead [8]–[11].

Another conventional approach is the simulation-based
Monte Carlo paradigm [12], [13], wherein considering
all possible parameter variations and initial conditions is
computationally-prohibitive. Moreover, for a higher level of
confidence in results produced by the Monte Carlo analysis,
greater number of simulation runs are required. Generally,
the total number of Monte Carlo simulations, σ, has to be
increased by 100-fold to achieve additional decimal place
of precision, owing to the O( 1√

σ
) convergence rate [14].

Conceptually, to have a full confidence in Monte Carlo results,
one would require infinite number of simulation runs [15],
[16]. The level of required modeling fidelity depends on the
critical nature of the application domain. For example, the
root cause of the 2014 recall of around 700,000 Toyota Prius

rs rL

Vin

vc

vc

Vref

vc

Fig. 1. Closed-loop DC-DC buck converter with main parasitic elements.

cars was attributed to an error in the interaction between a
boost converter and its software controller [17]. Likewise,
more than 100,000 Toyota Prius cars were recalled due to
an inverter failure [18]. Therefore, this mission-critical domain
would require significant confidence in the modeling accuracy.
At the same time, the utilized model validation tool should be
conservative enough to overapproximate all possible sets of
states reachable by the model execution.

The formal verification community has been using reacha-
bility analysis-based model checking tools to have sufficient
confidence in the model. Therefore, we first use rigorous
model validation paradigms [19] to quantify the closeness
between the abstract model waveforms and experimental data
using the conformance degree [20]. Stable converter operation
is then formally verified on the model using reachability
analysis. The boundaries of state trajectories can be found
from average-value models [21], [22]. Reachability analysis
overapproximates the set of all possible reachable states (i.e.,
the reach sets) from a given set of initial states and parameter
values. One can then confidently ascertain a stable converter
operation if the reach sets remain within a desired region
of the state space for a given time span. Without loss of
generality, we have considered a DC-DC buck converter, with
main parasitic elements, as shown in Fig. 1.

General reachability analysis tools include, but are not
limited to, HyTech [23], PHAVer [24], UPPAAL [25], HSolver
[26], d/dt [27], Flow* [28], and SpaceEx [29]. To effectively
use such model checking tools, hybrid automata models of
DC-DC converters are required [30]. Hybrid automaton mo-
deling of DC-DC converters is presented in [31]–[36]. Ho-
wever, [33]–[35] do not consider component losses/variations
and the discontinuous conduction mode (DCM), and do not
perform the reachability analysis. PHAVer in [37] computes
the reach sets for an open-loop boost converter but does
not include DCM or component losses. MATLAB/Ellipsoidal
Toolbox is used in [38] for the reachability analysis of DC-DC
converters. However, Ellipsoidal-based set computations suffer

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 
99



IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS

from the curse of dimensionality. SpaceEx (the successor of
PHAVer) scales quite efficiently and is used as the reachability
analysis tool in this paper.

We have formally defined a precise hybrid automaton model
for PWM DC-DC converters, that accommodates main circuit
parasitics, DCM, and the non-determinism due to parameter
variations, that have not been considered altogether in any
past work. We also use the notion of conformance degree
to compare different model abstractions, using their output
trajectories, that has not been used in any of the work
cited above. Moreover, all the hybrid automata models are
automatically generated. Herein, the proposed approach is
shown to outperform the traditional Monte Carlo simulation
in computation time. In summary, the main contributions of
this paper are:

• Hybrid automata models for DC-DC converters are auto-
matically generated, validated against Simulink/Stateflow,
PLECS simulations, and hardware measurements, and
verified using reachability analysis in SpaceEx. These
models include component nonidealities and different
operational modes.

• The conformance degree of the hybrid automata models
validates these against the experimental data, by provi-
ding a proximity measure between executions/behaviors
of these two in both time and space.

• Non-determinism due to parametric variations is modeled
using interval matrices, which results in a set-valued
additive input term in the system dynamics.

• The reachability analysis achieves a fixed point where
there are no other reach sets (i.e., the model output will
remain within reach sets as t → ∞). It is impossible to
get such success through Monte Carlo analysis.

The remainder of this paper is organized as follows: Hybrid
automaton modeling is discussed in Section II. Application
of conformance degree for model validation is discussed
in Section III. Section IV uses interval analysis to mo-
del the non-determinism caused by the parameter variation.
SpaceEx-based reachability analysis is discussed in Section V.
Section VI validates the developed models against a 200 W
buck converter prototype using the conformance degree, for-
mally verifies the model properties using reachability analysis,
and presents comparison with the Monte Carlo simulation.
Section VII concludes the paper.

II. HYBRID AUTOMATON MODELING

A. Preliminaries

DC-DC converters exhibit both continuous and discrete be-
haviors due to the presence of passive elements and switching
components, respectively. Hybrid automaton modeling [39]
integrates resulting differential equations and finite state ma-
chines in a single formalism. The state of a hybrid automaton
model may change in two ways, i.e., through a continuous
flow trajectory within a given topology (Definition 2.2), and
through a discrete transition between two given topologies
(Definition 2.3). A topology is defined as the circuit confi-
guration in each switching sub-interval (Fig. 2). We define
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Fig. 2. Topologies, operational modes, and hybrid automaton modeling
of a DC-DC buck converter.

R
n as the set of n-dimensional reals, and 2X as the power set

of a given set X , i.e., the set of all the subsets of X .

B. Hybrid Automaton Model Syntax and Semantics

We first formally define the model components in mathema-
tical set representation, and then define the model execution
as these components interact.

Definition 2.1: A hybrid automaton model is defined by a
tuple H = 〈Q,X, init, U,E, g,G, inv, h, F 〉, which has the
following components:
• Topologies: Q = {q1, q2, ...., qN} is a finite set of

topologies.
• State Variables: X ⊆ R

n is set of continuous state
variables. A state is defined by (q, x) ∈ Q×X .

• Initial Conditions: init ⊆ Q0 × X0 is a set of initial
conditions, such that Q0 ⊆ Q and X0 ⊆ X .

• Inputs: U = {u1, u2, ...uN} is the set of inputs for each
topology.

• Discrete Transitions: E ⊂ Q × Q is a set of feasible
discrete transitions allowed among the topologies, such
that an element eij = (qi, qj) ∈ E implies that a discrete
transition from ith topology to jth topology is allowed. It
might not be possible to visit the entire set of topologies
from one particular topology (Definition 2.3).

• Guard Function: g : E → G is the guard function that
maps each element eij ∈ E to its corresponding guard
g(eij) ∈ G.

• Guards: G ⊆ 2X is the guard set such that ∃ g(eij) ∈ G
for each eij ∈ E. A guard is a property of the hybrid
automaton model that must be satisfied by a state to take
a discrete transition from a given topology to another
pre-defined topology. A state (qk, xk) ∈ Q×X satisfies
g(eij) (i.e, (qk, xk) � g(eij)) iff qk = qi and xk ∈ g(eij).
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Fig. 3. Execution of the hybrid automaton model of DC-DC converters.

• Invariants: inv : Q → 2X is a mapping that assigns
an invariant inv (q) ⊆ X for each topology q ∈ Q. An
invariant is a property of the hybrid automaton model that
must be satisfied by all the states for a given topology.
A state (q, x) � inv(q) iff x ∈ inv(q).

• Reset of Continuous State: h : E × X → X resets the
continuous state, i.e., if a discrete transition takes place
from ith topology to jth topology as defined by eij ∈ E
with x ∈ X , the continuous state is reset to a new value
x′ = h(eij , x) ∈ X , such that x′ ∈ inv(qj).

• Set of ODEs: F is the set of ordinary differential equa-
tions (ODEs) that are defined for each topology q ∈ Q
over the continuous variables x ∈ X . The continuous
dynamics for each q ∈ Q is defined by F (q, x, u) over
a given time horizon t ∈ [τ1, τ2] that assigns a Lipschitz
continuous vector space in Rn.

Remarks: Here, x′ ∈ X symbolizes the new value of a
continuous state x ∈ X after a continuous flow or a discrete
transition. If a state (q, x) does not satisfy an invariant inv(q),
then real time τ is stopped, forcing the continuous state
x to stop evolving within a topology. The guard function
ensures discrete transition to an appropriate topology, once the
corresponding guard is satisfied. Here, invariants and guards
are defined in the form of bounds over continuous state
variables in Fig. 3.

Definition 2.2: The continuous flow trajectory T for a
hybrid automaton model H is defined by the valuations of
x ∈ X . For a given initial state (q, x0) ∈ Q×X and u ∈ U ,
∃ f(q, x, u) ∈ F that results in a final continuous state x′ ∈ X ,
whereas q remains unchanged with given invariant inv(q), iff
(q, x) � inv(q). ∀ t ∈ [τ1 τ2], T is given by

T (q, x′) = x0 +

τ2∫
τ1

f(q, x, u)dt. (1)

and denoted by (q, x0)
f−−→ (q, x′).

At each topology, converter dynamics can be modeled
by ODEs; e.g., system matrices Aq and Bq describe the
continuous flow trajectories in topology q ∈ {1, 2, 3} of Fig. 2.

Definition 2.3: The discrete transition for a hybrid automa-
ton model H is defined as: for a given state (qi, x) ∈ Q×X

and u ∈ U , there is a function h(eij , x) that resets the
continuous state to x′ ∈ X , and the topology to qj , iff
(qi, x) � inv(qi) and (qi, x) � g(eij) ∈ G, and ∃ eij ∈ E.
The discrete transition is denoted by (qi, x)

h−−→ (qj , x
′).

Definition 2.4: An execution of a hybrid automaton model
H is an alternating sequence of continuous flow trajectories
and discrete transitions.
The example of an execution is shown in Fig. 3.

The switching instance can be determined either externally
(e.g., by a duty cycle command for the MOSFET) or internally
(e.g., by meeting appropriate threshold conditions for the
diode). The sequence of topologies, observed periodically in
the steady state, defines an operational mode. Example of three
topologies and two operational modes for a buck converter are
shown in Fig. 2.

C. Model Instantiation for DC-DC Converters
We may now implement the syntax and semantics of the

hybrid automaton model developed above for DC-DC conver-
ters. We define D as the duty cycle, Tsw as the switching
period, and Vin as the DC input voltage. We can represent the
continuous dynamics for a given topology as a standard set of
state-space equations

dx

dt
= Aqx+Bqu (2)

where, x ∈ R
n is a vector of continuous states, Q is a

finite set of topologies, u ⊆ U such that U ⊆ R
m is a

set of input vectors, and Aq ∈ Rn×n and Bq ∈ Rn×m
are system matrices. Such formation can be readily created
for the buck converter in Fig. 2. The instantiation of the
hybrid automation model for an open-loop DC-DC converter,
as per Definition 2.1, is:
• Three topologies are denoted by Q = {q1, q2, q3}.
• The continuous state vector is x = [iL vC τ ]′, where τ

represents real time such that dτ
dt = 1.

• U = {[Vin, 0, 0]′, [0, 0, 0]′, [0, 0, 0]′} forms the input
vector set.

• E = {(q1, q2) , (q2, q1) , (q2, q3) , (q3, q1)} defines the
feasible discrete transitions, e.g., (q2, q3) means a discrete
transition from topology 2 to 3 is allowed.

• Guard set, for the corresponding elements of E, is defined
by G = {(τ ≥ DTsw) , (τ ≥ (1−D)Tsw) , (iL ≤ 0) ,
(τ ≥ (1−D)Tsw)}.

• The continuous flow trajectory is defined by (2), with
the corresponding state matrices for each topology. For
topology 1, this can be denoted by (q1, x0)

f−−→ (q1, x
′),

as shown in Fig. 3. Here, (q1, x0) is the initial state and
(q1, x

′) is the final state as the automaton continuously
evolves with the continuous flow dynamics f1(x).

• The reset function h defines a new continuous state x′′ for
the new topology. For example, if a transition is to take
place from topology 1 to topology 2 with some final state
x′ ∈ X ′ ⊂ X in topology 1, h assigns the new state x′′ ∈
X ′′ ⊂ X in topology 2. For topology 1 to topology 2, a
discrete transition is denoted by (q1, x

′)
h−−→ (q2, x

′′), as
shown in Fig. 3.
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Fig. 4. Output trajectories of capacitor voltage for the closed-loop
controlled buck converter - local mismatch for interval τc and ε.

The evolution of the hybrid automaton model starts with
initial conditions from set init, e.g., (q1, x0) ∈ init for a
given input u1 = [Vin, 0, 0]′ and, subsequently, the continuous
state evolves according to the set of ODEs defined by (2)
(i.e., F in Definition 2.1). The topology remains the same, i.e.,
q (t) = q1, as x0 evolves inside the invariant inv (q1), such
that it attains a final value x′ ∈ inv (q1). Once the continuous
state x′ satisfies the guard g (eq1q2) corresponding to the edge
eq1q2 ∈ E, the topology may transition from q1 to q2, and
the continuous state is reset with a new value x′′ in the new
invariant set inv (q2) ⊂ X with a new input u2 = [0, 0, 0]′.

This hybrid automaton model can be extended to closed-
loop DC-DC converters, e.g., hysteresis-controlled converters.
The tuple remains the same except that the guards are defined
in terms of switching boundaries. The hysteresis band is
formed by defining an upper switching boundary, Vref + δ,
and a lower switching boundary, Vref − δ, where Vref is
the desired output voltage, and δ is the tolerance level.
Thus, G = {(vC ≥ Vref + δ) , (vC ≤ Vref − δ) , (iL ≤ 0) ,
(vC ≤ Vref − δ)}.

It should be noted that time τ does not appear in the
guard expressions. Therefore, we have developed two hybrid
automata models for the closed-loop buck DC-DC converter,
i.e., one with variable τ (called the time-dependent hybrid
automaton model), and another without variable τ (called
the time-independent hybrid automaton model). For the time-
independent hybrid automaton model, we perform the reacha-
bility analysis for an unbounded time, i.e., compute the reach
sets as t→∞.

III. VALIDATION THROUGH CONFORMANCE DEGREE

Model validation of DC-DC converters requires comparing
output trajectory as defined by (1) for a given hybrid auto-
maton model H with the measured data from an experimental
prototype referred to as I.

Our goal is to find an appropriate measure of distance for
output trajectories of hybrid automata models. One can consi-
der the output trajectories of the capacitor voltage (vC) for a
closed-loop buck converter shown in Fig. 4. The experimental
data obtained from a prototype and output trajectory of the
hybrid automaton model in Simulink/Stateflow are overlaid.

Intuitively, the two output trajectories look similar; however,
the sup norm would give a large value to the distance between
them. This is, partly, because I and H might transition
among various topologies at slightly different moments in
time. Therefore, our distance measure should allow some
wiggle room in time. Rather than comparing only the states
that are exactly time-aligned, it should allow comparison of
states that are within some τc > 0 time units of each other.

Moreover, it is not appropriate to compare outputs when
two systems have executed different numbers of discrete
transitions. Thus, our distance measure must only compare
states after an equal number of discrete transitions between
topologies of the two systems. Note that within the time
window τc in Fig. 4, both the hardware prototype as well
as the Stateflow model exhibit two discrete transitions. To
this end, we introduce the parameter j ∈ N, that counts the
number of discrete transitions each system makes, where N is
the set of natural numbers. It is reasonable to require that the
transition times of the two systems be close to consider that
the systems themselves are close: the value τc will also bound
the difference in transition times. The distance measure will
account for the distance between output trajectories, captured
by the value ε > 0. Thus, we have a 2-value distance measure,
with values τc and ε capturing the time and space distance
between the two output trajectories as illustrated in Fig. 4.

The output trajectories of hybrid automata models are
parameterized with t and j. The time spent in a given converter
topology is t ∈ R>0, and j ∈ N counts the number of discrete
transitions between different topologies (where R>0 is the
set of positive real numbers). We write y(t, j) for the output
trajectory at the hybrid time (t, j) ∈ R>0 × N, i.e., at time
t and after j transitions. Let domy ⊂ R>0 × N denote the
domain of output trajectory y, i.e., the set of all (t, j), so that
(T, J, τc, ε)-closeness [20] can be formally defined.

Definition 3.1: Take an output trajectory for time T ∈ R>0,
a maximum number of discrete transitions J ∈ N, and
parameters τc, ε > 0. Two output trajectories y1 and y2 are
(T, J, τc, ε)-close, shown as y1 ≈(τc,ε) y2, if (a) for all (t, j) ∈
domy1 such that t ≤ T, j ≤ J , there exists (s, j) ∈ domy2
where |t− s| ≤ τc, and ‖y1(t, j)− y2(s, j)‖ ≤ ε, and (b) for
all (s, j) ∈ domy2 such that s ≤ T, j ≤ J , there exists (t, j) ∈
domy1 where |t− s| ≤ τc, and ‖y2(s, j)− y1(t, j)‖ ≤ ε.
(T, J, τc, ε)-closeness gives a proximity measure between the
two output trajectories in both time and space. It shows that for
every point y1(t, j), y2 has a point y2(s, j) which is ε-close to
it, and may occur anywhere in the window [t−τc, t+τc] (and
vice versa). Allowing this wiggle room in time is important
when comparing the output trajectories, because the discrete
transitions could occur at different times. The two values T
and J limit our testing horizon. (T, J, τc, ε)-closeness can be
lifted from output trajectories to systems. One can validate
the model through the conformance degree between its output
trajectory and measured data.

Definition 3.2: Let H1 and H2 be two hybrid automata
models. The conformance degree of H1 to H2, given τc, is
defined as the smallest ε such that for every trajectory y1 of
H1, there exists a trajectory y2 of H2, where y1 ≈(τc,ε) y2.
We denote this conformance degree by CDτ (H1,H2).
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We will use this definition intuitively for model validation
of DC-DC converters. We compute the conformance degree
CDτ (H1,H2) for some τc > 0 in different case studies of
Section VI, and effectively say that some local mismatch is
permissible within a window τc for the output trajectories of
the models and the hardware prototype.

IV. MODELING NON-DETERMINISM USING INTERVAL
ANALYSIS

The system matrices in the hybrid automata models of DC-
DC converters depend on component values. The variations
due to manufacturing tolerance, aging, and temperature result
in non-determinism of component values. Analysis of electri-
cal circuits with such variations has been reported in literature
using interval arithmetic-based genetic optimization [40] and
affine arithmetic [41]. We use the interval arithmetic [42] to
incorporate the parameter variations within the reachability
analysis framework. The range of component values are re-
presented in terms of intervals. A real interval v is a set of
real numbers given by

[v, v] = {v ∈ R : v ≤ v ≤ v}, (3)

where v is the infimum and v is the supremum. Given two
intervals, [u, u] and [v, v], their product is another interval
given by

[u, u] ∗ [v, v] = [min(uv, uv, uv, uv),max(uv, uv, uv, uv)].
(4)

The quotient of two intervals, with a non-zero divisor, is

[u, u]

[v, v]
= [u, u] ∗

(
1

[v, v]

)
, (5)

where (
1

[v, v]

)
=

[
1

v
,

1

v

]
. (6)

If [v, v] has both bounds negative, then(
1

[v, v]

)
=

[
1

v
,

1

v

]
. (7)

These intervals may also be defined by the midpoint-radius
representation

mid(v) =
1

2
(v + v), (8)

rad(v) =
1

2
(v − v). (9)

The interval matrix for the system matrix is A = [A,A].
System stability can be deferred by examining matrix extrema,
i.e., A and A [43]. Therefore, it is sufficient to consider
every combination of matrix extrema to overapproximate the
reach set. The overapproximation of an interval matrix A is
given by splitting it into two parts, i.e., a nominal part and a
symmetric part [44]. Consider a linear dynamic system with

n state variables having single deterministic input Vin, with
the following state-space representation
ẋ1
ẋ2
...
ẋn

 =


a11 a12 a13 . . . a1n
a21 a22 a23 . . . a2n

...
...

...
. . .

...
an1 an2 an3 . . . ann



x1
x2
...
xn

+


b1
b2
...
bn

Vin.
(10)

We use SpaceEx reachability analysis tool (discussed in
Section V) to compute the reach sets for non-deterministic
hybrid automaton model, with linear dynamics defined by (10)
for a given topology. It may be mentioned that SpaceEx, in
its present version, does not fully handle the matrix algebra
operations. Hence, we need to define the state dynamics as
scalar combination of other state variables. For example, for
the ith state variable in (10), one has

ẋi = ai1x1 + ai2x2 + ...+ aijxj + ...+ ainxn + biVin. (11)

To incorporate parameter variation, one can replace the above
coefficients with intervals, and write the expression as a
differential inclusion

ẋi ∈ [ai1, ai1]x1+ ...[aij , aij ]xi...+[ain, ain]xn+[bi, bi]Vin.
(12)

Since SpaceEx, in its present version, does not support
the interval arithmetic, the intervals [aij , aij ] of (12) are
computed outside the SpaceEx environment using (4), (5),
(6), and (7). Subsequently, these intervals are transformed
into the midpoint-radius representation to include the state
and parametric intervals before implementing in the SpaceEx
environment. Using (8) and (9), one can write (12) in a
midpoint-radius representation as

ẋi ∈ {mid(ai1)± rad(ai1)}x1 + ...+ {mid(aij)±
rad(aij)}xj + ...+ {mid(ain)± rad(ain)}xn
+ {mid(bi)± rad(bi)}Vin. (13)

The mid-points correspond to the nominal parameter values
that are constant terms, which can be separated as

ẋi ∈ (ai1x1 + ri1) + ...+ (aijxj + rij) + ...+

(ainxn + rin) + (biVin + rbi). (14)

This defines the continuous dynamics in the hybrid
automaton model for the state variable xi. The radii
ri1, ri2, ..., rij , ..., rin, and rbi are expressed as product of the
state and parametric intervals, such that rij is given by

rij ∈ [−rad(aij), rad(aij)] ∗ [xj , xj ], (15)

where, xj varies between xj and xj . For example, for the
hysteresis-controlled DC-DC buck converter considered here,
vC = 0 V and vC = 20 V in (15). Thus the coupling
between the state variables is accommodated in the amended
SpaceEx model by formulating rij in terms of [xj , xj ], and
incorporating it in the dynamics in (14). The product of the
two intervals in (15) is yet another interval, obtained using
(4). The intervals thus computed are used in the model to
define the lower and upper bounds for respective radii. Since
this treatment of the state variables as intervals is not catered
in Monte Carlo simulations, SpaceEx provides more reliable
results.
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Fig. 5. Reachability analysis using reach sets for formal verification of a
hybrid automaton model.

V. REACHABILITY ANALYSIS FOR HYBRID AUTOMATA

Reachability analysis has been used by the formal verifica-
tion community, and we have implemented it in its entirety
for PWM DC-DC converters modeled as hybrid automata. In
general, reachability analysis has been documented to produce
more reliable results than Monte Carlo simulations:

1. The reachability analysis is more efficient. Monte Carlo
analysis becomes computationally less tractable with in-
creased size and complexity of a given system [38].

2. Reachability analysis is conclusive. In contrast, infinitely
many Monte Carlo simulations are required to span the
entire design parameter space and operational conditions
and have full confidence in the final results [15], [16].

3. SpaceEx-based reachability analysis considers the entire
state space [45], while Monte Carlo simulations only
sample the parameter space. Generally, reachability ana-
lysis is theoretically superior and more sound [46].

We formally verify the stability properties of non-
deterministic hybrid automata models of PWM DC-DC con-
verters through the reachability analysis. We define the sta-
bility in the sense of Lyapunov, i.e., ẋ = f(x(t)) is stable
if ∀ θ > 0 ,∃ β > 0 such that if ‖x(0)‖ ≤ β ⇒ ‖x(t)‖ ≤
θ ∀ t ≥ 0. We may define a bounded region and verify that the
output of the hybrid automaton model eventually reaches, and
always remains, in this stable region, as seen in Fig. 5. We
define the stability specification such that from the settling
time ts, the output voltage VC(t) should remain bounded
within a tolerance γ of the reference voltage Vref (t), i.e., for
t ≥ ts ⇒ VC(t) = Vref (t)± γ.

Definition 5.1: State x is reachable iff ∃ an execution α
such that x ∈ α.

Definition 5.2: The set of reachable states contains all the
states that are reachable from a given set of initial conditions
for a given time.

Consider an example of an autonomous system ẋ = Ax.
The set of reachable states from initial time t0 to final time
tf , from a given initial set X0, is

Rtft0 (X0) =
⋃

t∈[t0,tf ]

eAtX0. (16)
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Fig. 6. Reach sets in different topologies with transitions imposed by
guards.

However, (16) does not cater to the discrete transitions asso-
ciated with the hybrid dynamical systems. Additionally, the
exact set of all reachable states is undecidable [29].

In practice, overapproximations of the reachable states are
computed using geometrical data structures (e.g, boxes, po-
lytopes, ellipsoids, or zonotopes [47]), and denoted by R.
For simplicity, we call these overapproximations as the reach
sets in this paper. This framework can be extended to hybrid
dynamical systems by including invariants and guard sets (Fig.
6), and implemented in various reachability analysis tools by
software research community as mentioned in Section I. The
reach sets for continuous dynamics can be computed using
continuous post-operators so long as the continuous dynamics
of DC-DC converter are contained within the invariant set
defined for the corresponding topology or do not enter the
guard set. Once the guard condition is satisfied within an
invariant, a transition takes place from topology 1 to topology
2 such that the next reach set is computed using discrete post-
operator. This process goes on until either the final time in a
local time horizon, or a fixed point, is reached. A fixed point
signifies that the reachability algorithm cannot find any new
reach set during the current iteration other than those computed
in the previous iteration. SpaceEx reachability tool computes
the reach sets of a hybrid dynamical system. It is a classical
fixed point algorithm based on computation of symbolic states
[29].

Definition 5.3: A symbolic state is defined as a pair (q,Θ),
where q is a topological instance, and Θ is the corresponding
convex continuous set.

The reach set R is obtained by computing the set of
symbolic states. This reach set is the fixed point of the
sequence Ro = postc (Init), and the successors are

Rk+1 := Rk
⋃
postc

(
postd

(
Rk
))

(17)

where, postd is the discrete post-operator that defines the
reach sets after a discrete transition fromRk. This corresponds
to the h function defined in Definition 2.1. The continuous
post-operator, postc, defines the reach sets for the continuous
states from Rk after an arbitrary amount of time is elapsed.
This corresponds to F in Definition 2.1.
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Fig. 7. Buck converter prototype controlled with dSPACE DS1103.

An approximated computation of Θk is given in [29] for
the kth time step. Hence, a sequence of convex continuous
sets Θ0,Θ1, ....ΘN−1 is computed to form a flowpipe that
covers the reach sets up to a pre-defined time such that N
represents the number of time steps. This flowpipe is then
used to compute the transition successors. Only those states
can take the transition that satisfy the guard associated with
the present topology and the invariant of the target topology.
This process is continued until a fixed point is reached, i.e.,
if all the reach sets that are computed in the present iteration,
are contained in reach sets computed in the previous iteration,
i.e., Rk+1 ⊆ Rk. This signifies that no new reach sets could
be found and the computation process may be terminated.

VI. CASE STUDIES

An experimental setup of a buck converter, controlled with
a dSpace DS1103 unit, has been prototyped, as shown in Fig.
7. The experimental results are used for benchmarking purpo-
ses against MATLAB/PLECS [48], Simulink/Stateflow [49],
Monte Carlo simulations, and SpaceEx reachability analysis.
Circuit parameters L = 2.65 mH, C = 2.2 mF, and R = 10
Ω are used throughout this study. The non-determinism due
to the parameter variations is modeled using the interval
matrices in SpaceEx model. For a coherent comparison in
terms of parameter variations in R, L, and C, we have
used 15% tolerance for Monte Carlo simulations and Spa-
ceEx reachability analysis. We have used the Hybrid Source
Transformer (HyST) which is a source-to-source conversion
tool for hybrid automata models [50]. The hybrid automaton
model is developed using the java interface in MATLAB, and
transformed into a SpaceEx compatible model using HyST
data structures. We use the conformance degree to validate
the hybrid automaton model against the experimental data.
Then, the reachability analysis results are provided for formal
verification of an open-loop and a hysteresis-controlled buck
converter.

A. Model Validation Using Conformance Degree Testing

We use notations IO and IC for hardware prototypes
in open-loop and closed-loop configurations, respectively.
PLECS and Stateflow models are denoted by HOP , HCP and

TABLE I
CONFORMANCE DEGREE ANALYSIS

Config. Type of Output Trajectories τc Value (s) ε Value ∆ Value

iL - PLECS vs Experiment 3 × 10−4 5.1515A 4.5570A

O
pe

n
L

oo
p iL - Stateflow vs Experiment 3 × 10−4 5.0008A 4.5570A

iL - Stateflow vs PLECS 3 × 10−4 0.1785A 0A

vC - PLECS vs Experiment 3 × 10−4 1.8945 V 1.7202 V

vC - Stateflow vs Experiment 3 × 10−4 2.3201 V 1.7202 V

vC - Stateflow vs PLECS 3 × 10−4 0.6666 V 0 V

iL - PLECS vs Experiment 8 × 10−4 3.6667A 3.0590A

C
lo

se
d

L
oo

p iL - Stateflow vs Experiment 8 × 10−4 3.6643A 3.0590A

iL - Stateflow vs PLECS 8 × 10−4 0.0878A 0A

vC - PLECS vs Experiment 8 × 10−4 2.8014 V 1.5905 V

vC - Stateflow vs Experiment 8 × 10−4 2.7677 V 1.5905 V

vC - Stateflow vs PLECS 8 × 10−4 0.0580 V 0 V

HOS , HCS , respectively, where subscript O denotes an open-
loop and C denotes a closed-loop configuration. The computed
ε values against τc (as defined in Section III) are tabulated
in Table I for the corresponding output trajectories. It is evident
from Table I that the ε values of HOP and HOS as well as
HCP and HCS are close enough (also, as seen in Fig. 8).
We have computed conformance degrees for the prototype
buck converters, i.e., IO and IC , in comparison with other
models, i.e., HOP , HOS and HCP , HCS . We also define the
absolute value of the maximum difference measured between
the two given output trajectories as ∆ for a given time duration
τc. The measured ∆ values are tabulated in Table I. The ε
values depicted in Table I provide enough wiggle room in
comparison with the corresponding ∆ to validate that HOP
and HOS are reasonable abstractions for IO, whereas HCP
and HCS are reasonable abstractions for IC . Consider, for
example, the case of a closed-loop buck converter. The 1st

row under closed-loop configuration in Table I provides the ε
value (i.e., ε = 3.6667 A) and ∆ value (i.e., ∆ = 3.0590 A),
as we compare the inductor current (iL) output trajectories
for PLECS and experimental prototype. ∆ of the two output
trajectories remain within ε (as also depicted in Fig. 9 (a)).
This is also true for the corresponding output trajectories
of capacitor voltage (vC). Accordingly, the hybrid automata
models are validated in conformance with both the open-loop
and the closed-loop converter prototypes.

B. Formal Verification of the Open-loop Buck Converter
We consider the voltage stability specification to perform

formal verification. For example, for ts = 0.025 s, and
Vref = 48 V, we define γ = 6 V. This results in an
upper voltage bound of 54 V, and lower voltage bound of
42 V, as shown in Fig. 8(b) by dotted lines. The input
parameters are Vin = 100 V, and fs = 60 kHz. The
output trajectories and phase-plane responses are considered
for the startup transients of the open-loop buck converter.
The parameters’ variations have been modeled using interval
analysis in SpaceEx model, and also included in the Monte
Carlo simulation. The reachability analysis results, obtained
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Fig. 8. Startup transients for an open-loop buck converter using interval matrices including Stateflow, PLECS, experiment, Monte Carlo, and
SpaceEx; (a) current vs. time, (b) voltage vs. time, and (c) phase portrait.

using SpaceEx, are plotted in Fig. 8. It can be seen that the
steady-state inductor current and capacitor voltage waveforms
lie within the reachability analysis results, i.e., the simulations
and measurement data are contained within the reach sets.
Moreover, we verify that vC(t) ∈ [42, 54] for t ≥ ts for
Stateflow, PLECS, measurement data, Monte Carlo analysis,
and SpaceEx analysis results.

C. Verification of the Hysteresis-controlled Converter

We define the voltage stability specification for the closed-
loop buck converter to perform formal verification. For ts =
0.012 s, and Vref = 12 V, we define γ = 1 V. This
leads to upper and lower voltage bounds of 13 and 11 V,
respectively, as shown by dotted lines in Fig. 9(b). In this case
study, the time-dependent and the time-independent models
(as mentioned in Section II) are considered. First, SpaceEx
reachability analysis is performed for the time-dependent
model. The new parameters are Vin = 24 V, Vref = 12 V,
and fs = 50 kHz. The trajectories are shown in Fig. 9 for
Stateflow, PLECS, and experimental data along with reach sets
computed using SpaceEx. The Stateflow, PLECS, and SpaceEx
results match right from the start until the steady state is
reached. Experimental results match that of Stateflow, PLECS,
and SpaceEx in the steady state. It can be observed in Fig. 9
that Stateflow, PLECS, and measured results remain within the
reach sets computed using SpaceEx, verifying vC(t) ∈ [11, 13]
for t ≥ ts.

We can formally verify the time-independent SpaceEx mo-
del for an unbounded time, i.e., t→∞, by excluding τ . This
would not be possible through Monte Carlo analysis as, even
for a limited time span, one has to take into account infi-
nite number of possible combinations. We have successfully
achieved a fixed point using SpaceEx, with unbounded time,
and with all possible parameter variations. The phase-plane
plots are given for the start-up transients in Fig. 10. As seen,
all results remain within the computed reach sets as t → ∞,
verifying vC(t) ∈ [11, 13] as t→∞.

A comparison of Monte Carlo analysis and SpaceEx re-
achability analysis, in term of computation times, is shown
in Table II. Both are run on a Windows 7 SP1 (64 bit)
platform, with Intel (R) core i7-2600 CPU with 3.40 GHz, 16.0
GB RAM, MATLAB version 8.5.0.197613 (R2015a), PLECS

version 3.7.3, and SpaceEx version 0.9.8d. While infinite ite-
rations are required to have full confidence in model validation
through Monte Carlo analysis, we have only used finite (i.e.,
2000) iterations as would be done in practice. Even then, it is
evident that the SpaceEx reachability outperforms the Monte
Carlo analysis in computation time, as seen in Table II.

VII. CONCLUSION

A hybrid automaton modeling approach for PWM DC-
DC converters is developed. We have used the conformance
testing for model validation when compared with a hardware
prototype of DC-DC converters. The interval matrices analysis
accommodates the model non-determinism caused by variati-
ons in component values. Reachability analysis frameworks
are developed for formal verification of the resulting hybrid
automata models. It is shown that the proposed reachability
analysis outperforms the brute force Monte Carlo analysis in
computation time and confidence level.
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Detection of False-data Injection Attacks in
Cyber-Physical DC Microgrids
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Abstract—Power electronics-intensive DC microgrids use in-
creasingly complex software-based controllers and communica-
tion networks. They are evolving into cyber-physical systems
(CPS) with sophisticated interactions between physical and com-
putational processes, making them vulnerable to cyber attacks.
This work presents a framework to detect possible false-data
injection attacks (FDIA) in cyber-physical DC microgrids. The
detection problem is formalized as identifying a change in
sets of inferred candidate invariants. Invariants are microgrids
properties that do not change over time. Both the physical
plant and the software controller of CPS can be described
as Simulink/Stateflow (SLSF) diagrams. The dynamic analysis
infers the candidate invariants over the input/output variables of
SLSF components. The reachability analysis generates the sets
of reachable states (reach sets) for the CPS modeled as hybrid
automata. The candidate invariants that contain the reach sets
are called the actual invariants. The candidate invariants are then
compared with the actual invariants, and any mismatch indicates
the presence of FDIA. To evaluate the proposed methodology,
the hybrid automaton of a DC microgrid, with a distributed
cooperative control scheme, is presented. The reachability anal-
ysis is performed to obtain the reach sets and, hence, the
actual invariants. Moreover, a prototype tool, HYbrid iNvariant
GEneratoR (Hynger), is extended to instrument SLSF models,
obtain candidate invariants, and identify FDIA.

Index Terms—Cyber-physical systems, dc microgrid, dis-
tributed control, false-data injection attack, hybrid automaton.

I. INTRODUCTION

ISLANDED multi-converter DC microgrids have advan-
tages over their AC counterparts, including higher reli-

ability, simpler control, and more efficient interfacing with
naturally-DC renewable energy sources, electronics loads,
and energy storage units [1], [2]. Therefore, DC microgrids
have emerged as a key technology for the future, and their
related control methodologies are also evolving. Given the
well-established advantages of distributed control schemes
over centralized control methodologies, the migration from
current central controllers to future distributed schemes is in-
evitable [3]–[8]. The centralized control systems require two-
way, high bandwidth communication links between the central
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controller and every other agent, and expose a single point-
of-failure. Moreover, sparsity of communication networks uti-
lized in distributed control schemes reduces the infrastructure
cost, and improves solution scalability compared to a fully-
connected communication network.

These DC microgrids are evolving into cyber-physical sys-
tems (CPS) with sophisticated software-based control and
communication networks. Such CPS are, however, vulnerable
to cyber attacks, as there is no central entity to monitor
activities of all DC-DC converters leading to a limited global
situational awareness. This vulnerability is analogous to the
situation in cyber-physical power systems that have faced
various types of cyber attacks, e.g., false-data injection attack
(FDIA) [9], denial of service [10], [11], jamming [12], and
random attacks [13]. Some prevention strategies for jamming
include frequency hopping, direct-sequence spread spectrum
technique, channel surfing, and protocol hopping [14]. In this
work, detection of FDIA in power electroncis-intensive DC
microgrids is considered that involves spoofing a signal, either
in sensors or the communication network, through an attack
vector that aims to disrupt the steady-state operation [9].
The attack vector formulation is a sophisticated process, and
requires expert knowledge of the entire system. The intruder
should have either physical access to a specified number of
meters, or a complete knowledge of the infrastructure and the
communication network [9].

The preventive measures against FDIA include physical
security, information security, and communication security.
With regards to the physical security, a minimum number
of strategically selected set of sensor measurements (called
as basic measurements) that need to be protected to thwart
FDIA has been proposed [15]. Moreover, phasor measurement
units (PMUs) can be strategically placed to protect power grids
against such attacks [16]. However, PMUs are also vulnerable
due to their use of global positioning systems [17]. With
regards to information security, a prevention strategy against
FDIA involves dynamically changing the information structure
of microgrids [18]. In general, the communication security
can be improved using stringent cryptographic techniques, i.e.,
encryption, authentication, and key management for power
systems [19]. For example, a communication security architec-
ture for distributed microgrid control [20] exchanges encrypted
information. A trusted sensing base is proposed in the form
of a current transformer that encrypts the AC power signal
before sending it to PMUs [21].

Recent work on FDIA detection, albeit in power sys-
tems [11], [13], [22]–[29], broadly employs state estima-
tion processes, e.g., using Kalman filters [13], sparse op-
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Fig. 1. The proposed FDIA detection framework bridges the gap between the
software-based anomaly detection techniques and power electronics-intensive
DC microgrids modeled as hybrid automata.

timization [22], generalized likelihood ratio [23], Kullback-
Leibler distance [24], Chi-square detector and similarity
matching [25], state forecasting [26], and machine-learning
techniques [27]. However, to the best of authors’ knowledge,
FDIA detection in software-intensive DC microgrids is not
systematically studied yet. This work aims to formalize the
FDIA detection problem as a change in sets of inferred
invariants; system properties that do not change over time.
Here, invariants are defined in terms of bounds over the output
voltage and current of individual converters.

The overall block diagram of the proposed FDIA detection
framework is shown in Fig. 1. The candidate invariants are
inferred from the Simulink/Stateflow (SLSF) model of the
DC microgrid. Hynger (HYbrid iNvariant GEneratoR) [30]
tool is used to provide an interface between the SLSF model
and the Daikon tool [31], [32]. Daikon is a software-based
invariant inference tool. Hynger takes the SLSF model as
an input, executes it to generate time traces, and transforms
them into a format compatible with Daikon to generate candi-
date invariants. Moreover, the cyber-physical DC microgrid
is formally modeled as multi-agent hybrid automata, and
the reachability analysis is performed using SpaceEx [33]
to obtain the reachable set of states (called the reach sets).
The Hynger/Daikon combination provides only the candidate
invariants. The SpaceEx tool is used concurrently in the pro-
posed framework to obtain the actual invariants. The candidate
invariants that contain the reach sets are called the actual
invariants. The candidate invariants are then compared with the
actual invariants, and any mismatch indicates the presence of
FDIA. A mitigation strategy can then disconnect the affected
converter and prevent the microgrid’s instability.

The remainder of this paper is organized as follows: The
hybrid automaton modeling of DC microgrids that includes
both physical and cyber layers is discussed in Section II. The
FDIA detection framework for DC microgrids is discussed
in Section III. Section IV studies a DC microgrid prototype,
with an analysis of FDIA effects, detection using the proposed
framework, and mitigation. Section V concludes the paper.
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Fig. 2. Hybrid automaton of a cyber-physical DC microgrid showing converter
and controller interactions. Each converter, its corresponding controller, and its
communication links are, altogether, considered as an agent. Each agent shares
its information with the neighboring agents on the communication graph.

II. CYBER-PHYSICAL DC MICROGRID AS MULTI-AGENT
HYBRID AUTOMATA

The proposed FDIA detection framework requires the CPS
modeled as SLSF diagrams and as hybrid automata to obtain
the candidate invariants and the reach sets, respectively. A
hybrid automaton [34] is a formal model, essentially a finite-
state machine with additional continuous dynamic variables.
Cyber-physical DC microgrids can be modeled as multi-agent
hybrid automata, where power electronics DC-DC converters
(referred to as converters) form the physical layer, and the
software-based controller with the communication network
among converters, altogether, form the cyber layer. Each con-
verter, with its corresponding controller and communication
links, is considered an agent, and its hybrid automaton is
shown in Fig. 2. This hybrid automaton exchanges information
with its two immediate neighbors, e.g., (i+ 1)th and (i− 1)th
agents in Fig. 2, through global variables to implement a
cooperative control protocol.

A. Modeling the Physical Layer

The output voltage vouti and output current iouti of the ith
converter are regulated by controlling the MOSFET switch
through the corresponding control layer. The switching state of
the MOSFET switch leads three different topologies (switch-
ing sub-interval) as shown in Fig. 2. The state of a hybrid
automaton may change either through a continuous flow tra-
jectory within a given topology, or through a discrete transition
between two given topologies.

1) Formal Hybrid Automaton: Let Rn be the set of n-
dimensional reals, and 2X be the power set of a given set
X , i.e., the set of all the subsets of X .

Definition 2.1: A hybrid automaton is defined by a tuple
H = 〈Q,X,Θ, U, F, T , E,G, inv〉:
• Q = {q1, q2, ...., qN} is a finite set of topologies.
• X is a finite set of continuous variables, with ∀ x ∈
X ∃ val(x) ∈ R, where val(x) is a valuation of x as a
result of a function mapping. X = Xg∪Xl, such that Xg

is the set of global variables and Xl is the set of local
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variables. Further, Xg = In ∪ O, where In is the set of
global input variables and O is the set of global output
variables. A state is defined by s = (q, val(x)) ∈ Q×R.

• Θ ⊆ Q×Rn is a set of initial conditions.
• U = {u1, u2, ...uN} is the set of inputs for each topology.
• F is a finite set of ODEs defined for each q ∈ Q over

the continuous variables x ∈ X . F (q, x) defines the
continuous dynamics for each q ∈ Q over a time period
T , and assigns a Lipschitz continuous vector space in Rn.

• T is a finite set of continuous flow trajectories that define
val(x) over [0 T ] from given initial conditions (q, x0) ∈
Θ, such that ∀ τ(q, x) ∈ T , ∃ s ∈ τ(q, x) that satisfies
inv(q) (i.e., s ∈ τ(q, x) � inv(q)). A continuous flow
trajectory is given by

τ(q, x) = x0 +

T∫
0

F (q, x)dt. (1)

• E is a finite set of feasible discrete transitions allowed
among the topologies. It is defined by a tuple e =
〈q, q′, g, x′〉, such that a discrete transition is allowed
from source topology q to the destination topology q′ only
when the associated guard condition g is satisfied, and the
continuous state is updated to x′ after the transition. It
might not be possible to visit the entire set of topologies
from one particular topology.

• G ⊆ 2X is the guard set such that ∀ e ∃ g ∈ G. A guard
must be satisfied by a state to take a discrete transition
from a given topology to another. A state s = (qk, val(x))
satisfies g (i.e, s � g) iff qk = ql ∈ e = (ql, q

′
l, g, x

′) and
val(x) ∈ g.

• inv is a finite set of invariants, where an invariant is as-
sociated to each given topology, i.e., ∀ q ∈ Q ∃ inv(q) ⊆
Rn. An invariant is a property of the hybrid automaton
that must be satisfied by all the states for a given topology.
A state s � inv(q) iff val(x) ∈ inv(q).

If a state (q, val(x)) does not satisfy an invariant inv(q),
the continuous state x stops evolving within a topology. The
guard function ensures a discrete transition to an appropriate
topology once the corresponding guard is satisfied. Here,
invariants and guards are defined in the form of bounds
over continuous state variables. The semantics of the hybrid
automaton H is defined by its execution, ε. An execution is
defined as a sequence of states, ε = s0, s1, s2, . . . , obtained as
a result of continuous flow trajectories and discrete transitions.

2) Instantiation of the Physical Layer: The hybrid automa-
ton of the ith buck converter is considered for instantiation,
where vini is the DC input voltage. The continuous dynamics,
for a given topology, is given by a set of state-space equations

dx

dt
= Aqx+Bqu. (2)

Aq ∈ Rn×n and Bq ∈ Rn×m are system matrices. Subscript
q denotes the appropriate topology. The instantiation of the
hybrid automaton for the ith agent, as per Definition 2.1, is
• Three topologies, shown in Fig. 2, are denoted by Q =
{q1, q2, q3}.

• X = {iLi , vCi , iouti , vouti , controli}, where Xl = {iLi , vCi }
and Xg = {iouti , vouti , controli}.

• U = {[vini , 0, 0, 0]′, [0, 0, 0, 0]′, [0, 0, 0, 0]′} forms the
input vector set.

• E = {(q1, q2, g12, x′) , (q2, q1, g21, x′) , (q2, q3, g23, x′) ,
(q3, q1, g31, x

′)} defines the feasible discrete transitions,
e.g., (q2, q3, g23, x

′) means that a discrete transition from
topology q2 to q3 is allowed, if the guard g23 = {(iLi ≤
0)} is satisfied and the continuous state is reset to x′.

• Guard set, for the corresponding elements of E, is defined
by G = {(controli == 0) , (controli == 1) ,

(
iLi ≤ 0

)
,

(controli == 1)}. Signals received from the control
layer are controli == 1 and controli == 0 to set the
MOSFET ON and OFF, respectively.

• The continuous flow trajectory is defined by (2), with
the corresponding state matrices for each topology.

The evolution of the hybrid automaton model starts with
initial conditions from the set init, e.g., (q1, x0) ∈ init for a
given input u1 = [vini , 0, 0, 0]′ and, subsequently, the continu-
ous state evolves according to the flow function. The topology
remains the same, i.e., q (t) = q1, as x0 evolves inside the
invariant inv (q1) and attains a final value x′ ∈ inv (q1).
Once the continuous state x′ satisfies the corresponding guard,
g12 = {(controli == 0)} corresponding to the topology q1,
the topology may transition from q1 to q2, and the continuous
state is reset with a new value x′′ in the new invariant set
inv (q2) with a new input u2 = [0, 0, 0, 0]′.

B. Modeling the Cyber Layer

Microgrid control hierarchy is divided into three levels,
i.e., primary, secondary, and tertiary [35]. Primary control
features the fastest response, and is based entirely on local
measurements with no communication. Secondary control
operates on a slower time scale, often with reduced commu-
nication bandwidth by using sampled measurements. In this
work, we consdier two control objectives: proportional load
sharing among converters, according to their power ratings,
and global voltage regulation of the distribution bus. These
objectives are implemented in the secondary control layer
through proportional load sharing sub-layer and global voltage
regulation sub-layer (which includes a voltage observer and
a noise cancellation module), as shown in Fig. 3. We use a
distributed cooperative control scheme, i.e., the output of a
particular agent depends only on its information and its Ni

neighbors on the communication graph [3]. A graph G is
defined as a pair (tuple) of a set of vertices and edges, i.e.,
G = (Λ, ε). Let Λ = {λ1, λ2, ....., λN} define a set of N
vertices (nodes), and ε ⊆ Λ×Λ a set of edges. An edge from
node λi to λj is a pair (λi, λj) ∈ ε. The graph is said to be
bi-directional if (λi, λj) ∈ ε =⇒ (λj , λi) ∈ ε, ∀ i, j ∈ Λ.

A graph may be represented by an adjacency matrix A =
[aij ] with weights aij > 0 if (λj , λi) ∈ ε, and aij = 0
otherwise. The local control protocol, ui for each agent i is

ui =
∑
j∈Ni

aij(xj − xi), (3)

such that the control of each agent depends only on the
difference between its state and those of its neighbors. This
protocol ensures that all agents reach a consensus.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 
111



1551-3203 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TII.2017.2656905, IEEE
Transactions on Industrial Informatics

4

Agent # 𝑖𝑖 + 1

𝑋𝑋 𝑖𝑖+1

C
yb

er
 L

ay
er

Ph
ys

ic
al

 L
ay

er

C
om

m
un

ic
at

io
n 

L
ay

er
C

on
tr

ol
 L

ay
er

𝑋𝑋𝑖𝑖

𝑋𝑋𝑖𝑖

𝑋𝑋 𝑖𝑖−1

Global Voltage Regulation Sublayer

Primary Control 
Sublayer

N
ei

gh
bo

rs
' D

at
a

Voltage Observer &
Noise Cancellation

+
+ ++ Voltage 

Controller

Proportional Load Sharing Sublayer
Local Voting

Protocol on Currents

𝑣𝑣𝑖𝑖
𝑟𝑟𝑟𝑟𝑟𝑟

𝑦𝑦𝑖𝑖

Agent # 𝑖𝑖 − 1 Agent # 𝑖𝑖

Secondary Control

- +

Fig. 3. Structure of the cyber-physical DC microgrid showing the cyber and
physical layers and the control sub-layers.

The global voltage reference for N agents is defined
as Vref = [vref1 , vref2 , ..., vrefN ]T , input DC voltage as
Vin = [vin1 , v

in
2 , ..., v

in
N ]T , output DC voltage vector as

Vout = [vout1 , vout2 , ..., voutN ]T , output current vector as Iout =
[iout1 , iout2 , ..., ioutN ]T , the voltage estimation vector for the
voltage observer module as Vest = [vest1 , vest2 , ..., vestN ]T , the
per-unit current vector as Xpu = [xpu1 , xpu2 , ..., xpuN ]T , and
the estimate of the voltage deviation vector for the noise
cancellation module as West = [west

1 , west
2 , ..., west

N ]T . Here,
xpui refers to the loading percentage of the ith agent. As shown
in Fig. 3, Xi depicts the information vector communicated
from the ith agent to the (i−1)th and (i+1)th agents, such that
Xi = [xpui , vesti , west

i ]T . Moreover, Xi−1, and Xi+1 of Fig. 3
are defined similarly. Communication links are modeled as
low-pass filters (T1 and T2 in Appendix) to emulate delays
inherent in the data exchange process, as in [3], [36], [37].
Here, iouti and vouti are passed through T1 to get the per-unit
current xpui and the voltage yvoi , respectively.

The control sub-layers are discussed next.
1) Proportional load sharing sub-layer: The ith agent

shares per-unit current information with its immediate neigh-
bors, i.e., (i − 1)th and (i + 1)th agents. This sub-layer has
a PI controller with parameters P (i, i, ) and I(i, i), where P
and I are N × N matrices that contain the proportional and
integral terms, respectively. If C is the adjacency matrix for the
cooperative control strategy, the per-unit current information
from (i − 1)th and (i + 1)th agents communicated to the PI
controller is processed as

xpui−1→i =
(
xpui−1 − x

pu
i

)
.C(i, i− 1) (4)

and
xpui+1→i =

(
xpui+1 − x

pu
i

)
.C(i, i+ 1), (5)

respectively. Let the state variable of the PI controller be xii,
then the corresponding ODE is given by

ẋii =
(
xpui−1→i + xpui+1→i.

)
.I(i, i). (6)

The output, vii , of this layer is given by

vii =
(
xpui−1→i + xpui+1→i

)
.P (i, i) + xii, (7)

which is passed to the primary control sub-layer.

2) Global voltage regulation sub-layer: If A is the adja-
cency matrix for the cooperative control strategy, the voltage
estimation information from (i− 1)th and (i+ 1)th agents is
further processed as

vesti−1→i =
(
vesti−1 − vesti

)
.A(i, i− 1) (8)

and
vesti+1→i =

(
vesti+1 − vesti

)
.A(i, i+ 1) (9)

respectively. This voltage estimate is then passed through an
integrator, with the state variable vestii , such that

v̇estii =
(
vesti−1→i + vesti+1→i

)
. (10)

In the noise-cancellation module, the ith agent shares the
estimate information of the voltage deviation west

i with its
immediate neighbors. The actual voltage deviation for the ith
agent is

wi =
(
vesti − vouti

)
. (11)

If B is the adjacency matrix for the cooperative control
strategy, the information about the estimate of the voltage
deviation from (i− 1)th and (i+ 1)th agents is

west
i−1→i =

(
west

i−1 − west
i

)
.B(i, i− 1) (12)

and
west

i+1→i =
(
west

i+1 − west
i

)
.B(i, i+ 1), (13)

respectively. This estimate is passed through an integrator, with
the state variable westi

i , such that

ẇesti
i =

(
west

i−1→i + west
i+1→i

)
. (14)

The estimate for the voltage deviation, west
i , is

west
i = wi + westi

i . (15)

This estimate is then passed to a second integrator with a gain
K of dimension N ×N , and with the state variable westii

i ,

ẇestii
i = west

i . (16)

The average voltage of the microgrid as estimated by the ith
agent, based on the neighbor information, is

vavgi = vesti = vestii + vouti − westii
i .K(i, i). (17)

This sub-layer has a PI controller with parameters P (i, i, ) and
I(i, i). The difference between the global reference voltage
and the global average voltage as determined by the ith agent
is passed through this PI controller. Let the state variable for
PI controller be denoted by vavgii , then the ODE is given by

v̇avgii = (vrefi − vavgi ).I(i, i). (18)

The voltage regulation term at the controller output is

vgregi = vavgii + (vrefi − vavgi ).P (i, i). (19)

3) Primary control sub-layer: There is a PI controller with
parameters Pmc and Imc, and a transfer function T2. The
output of T2 is denoted by ymc

i . The input umc
i is

umc
i = vrefi + vii + vgregi . (20)
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The expression for vii and vgregi are given by (7) and (19),
respectively. The ODE for the state variable xpii associated
with the PI controller is given by

ẋpii = (ymc
i − yvoi ) .Imc. (21)

The output of this sub-layer, yi, is given by

yi = Pmc.(y
mc
i − yvoi ) + xpii , (22)

that drives the MOSFET of the ith converter. The cyber layer
has two topologies, i.e., controli_1 and controli_0,
as shown in Fig. 2, to generate control signal, controli.
It may evaluate to controli == 1 and controli == 0,
that correspond to ‘ON’ and ‘OFF’ pulses for the MOSFET,
respectively. The hybrid automaton generates controli == 1
in controli_1, and controli == 0 in controli_0.
The ODEs developed for the cyber layer of DC microgrid
above are used to describe the continuous dynamics for the
two topologies. The switching logic, logici, is formulated
using (22), the elapsed time ti, and the time period Ti of
the ith agent. This is implemented in the hybrid automaton
model as a guard to enforce the discrete transition from
topology controli_1 to the topology controli_0, hence
generating control signal controli == 0. Whereas, transition
from controli_0 to controli_1 is entirely dependent
upon the time period Ti that forms the corresponding guard to
ensure a periodic switching. This transition is enforced by the
guard ti ≥ Ti, hence generating control signal controli == 1.

4) Instantiation of the cyber layer: The instantiation of the
hybrid automation model for the cyber layer of the ith agent,
as per Definition 2.1, is
• Two topologies are denoted by Q = {q4, q5}.
• The continuous state vector is X = Xl ∪ Xg ,

where, Xl = {xii, vestii , westi
i , vavgii , xpii } and Xg =

{xpui , vesti , west
i , iouti , vouti , xpui+1, v

est
i+1, w

est
i+1, x

pu
i−1, v

est
i−1,

west
i−1, controli}.

• E = {(q4, q5, g45, x′) , (q5, q4, g54, x′)} defines the fea-
sible discrete transitions, e.g., (q5, q4, g54, x

′) means a
discrete transition from the topology q5 to q4 is allowed,
if the guard g54 = {(ti ≥ Ti)} is satisfied and the
continuous state is reset to a new value x′.

• Guard set, for the corresponding elements of E, is defined
by G = {(logici ≤ 0) , (ti ≥ Ti)}.

• The continuous flow trajectory is given by ODEs in (6),
(10), (14), (16), (18), and (21) for both topologies.

The control layer and the physical layer both interact with each
other and exchange controli and Xout

i as shown in Fig. 2,
where Xout

i = [vouti , iouti ]T and controli drives the switching
in the physical layer. A 50 µs fixed time-step for the numerical
solver in the Simulink, and 4 µs sampling time are used in
the dSPACE platform.

C. Hybrid Input/Output Automata Conditions
The closed-loop control systems are modeled using hybrid

input/output automata (HIOA), to form as a singleton hybrid
automaton [38]. Here, the converter and the controller are
modeled as two hybrid automata, interacting with each other in
a parallel composition, provided that their local variables are
disjoint from each other and the two automata are compatible.

Definition 2.2: Let Hip and Hic denote the hybrid au-
tomata of the converter and the controller for the ith agent,
respectively. They are compatible if they meet following three
conditions

1) Inip ⊆ Oic ∪O(i+1)p ∪O(i−1)p,
2) Inic ⊆ Oip ∪O(i+1)c ∪O(i−1)c, and
3) Oip ∩Oic ∩O(i+1)c ∩O(i+1)p ∩O(i−1)c ∩O(i−1)p = ∅.
Subscripts p and c denote the plant (i.e., converter) and the

controller, respectively.
The corresponding input and output variables, for the ith agent,
are 

Inip = {controli},
Inic = {vouti , iouti , Xi−1, Xi+1},
Oip = {vouti , iouti },
Oic = {controli, Xi}.

(23)

The output variables for the (i+ 1)th and (i− 1)th agents are
O(i+1)p = {vouti+1, i

out
i+1},

O(i+1)c = {controli+1, Xi+1},
O(i−1)p = {vouti−1, i

out
i−1},

O(i−1)c = {controli−1, Xi−1}.

(24)

It is obvious that the ith agent (comprising converter and con-
troller) meets the compatibility conditions of Definition 2.2,
and a parallel composition can be formed. For the ith agent, the
parallel composition is Hi = Hip ‖ Hic. The DC microgrid
is a parallel composition of N agents, i.e, H1 ‖ H2 ‖ · · · ‖
Hi ‖ · · · ‖ HN ‖ H1, where ∀ i Hi = Hip ‖ Hic.

III. FDIA DETECTION USING HYNGER

A. FDIA Scenario Formulation

In cyber-physical DC microgrids, the information among the
agents is shared through the global variables (e.g., Xi) that are
vulnerable to the FDIA. An FDIA mixes the original data/mea-
surements vector with a malicious vector. The intruder may
target the global variables and the sensors data to disturb the
consensus procedure, as will be demonstrated in Section IV.
In an unconstrained scenario, the intruder has access to all
the global variables, and may randomly select some (or all).
Under constrained FDIA, the intruder has limited access to
one or a few global variables, and formulates the FDIA vector
to target these. Let Xg ∈ Rk be the vector containing the
global variables. FDIA vector W ∈ Rk may be formulated to
obtain the compromised vector Z = Xg + αW , where α is a
real valued multiplicative factor that defines the weight of the
FDIA vector. Each element of the FDIA vector is denoted by
wi, such that a nonzero entry signifies that the corresponding
global variable in Xg is targeted. For unconstrained FDIA, all
elements of W ∈ Rk are nonzero.

B. Hynger - An Overview

Hynger is a MATLAB-based software tool to produce in-
variants for cyber-physical systems modeled using SLSF. Hyn-
ger uses MATLAB’s application program interfaces (APIs)
to interact with SLSF models during simulations [30], and
inserts instrumentation points for selected state variables.
Instrumentation points may be regarded as the observation
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… …

(b)  Aperiodically controlled / event-triggered

(a)  Open-loop or periodically controlled / time-triggered (with period Δ)

Fig. 4. The instrumentation points are added by Hynger into open-loop,
periodically or aperiodically controlled SLSF models.

points to record state variable values at each simulation time-
step. Hynger can instrument both open-loop or periodic, and
aperiodic control actions, µ, as shown in Fig. 4. The instru-
mentation points are inserted into the SLSF diagram using
function calls through following two types of callbacks:

1) Precondition Callback: It is called before a Simulink
block output method executes, i.e., the valuation of the state
variable is recorded before the Simulink block execution.
Hence, the state valuation is recorded at time t.

2) Postcondition Callback: It is called after a Simulink
block output method executes, i.e., the valuation of a state
variable is recorded after the Simulink block execution. Hence,
the valuation of the state is recorded at time t+ δ, where δ is
the simulation time-step.

As the SLSF diagram is simulated using Hynger, these
instrumentation callback functions automatically insert the
instrumentation points to generate a trace file format compat-
ible with Daikon, a dynamic analysis tool used to generate
likely invariants for software programs [31]. The analysis
performed on a software program by actually executing it
on a host processor is called the dynamic analysis. As the
computational overhead for Hynger grows linearly with the
number of monitored state variables [30], the user can select
fewer state variables for monitoring (e.g., the output voltages
and currents in DC microgrid) to reduce the computational
overhead. Moreover, instead of selecting the entirety of the
Simulink model for instrumentation, the user can select fewer
Simulink blocks to further reduce the performance overhead.
C. FDIA Detection Framework

This framework involves inferring and checking sets of
invariants to determine if an FDIA is underway. While this
builds on the Hynger tool, extensions will be required to
execute the tool and analyze results at runtime. The FDIA
detection framework is shown in Fig. 5. A CPS model is
provided as an SLSF diagram A. The SLSF diagram is
instrumented (denoted as Â) using the Hynger tool, and is
executed to generate a set of sampled, finite-precision traces
T for given initial condition θ ∈ Θ. This adds instrumentation
points for every input and output signal in the SLSF diagram.
These generated traces are in Daikon compatible format that
are passed on to Daikon, and analyzed to generate a set of
candidate invariants Φ̂. However, Hynger/Daikon combination
provides only the candidate invariants when used as standalone
invariant generation tool. Each element ϕ̂ ∈ Φ̂ is then checked
as actual invariant using the reachability analysis. The SpaceEx
reachability analysis tool [33] is used to obtain the actual
invariants. Changes in Φ̂ over time indicates an FDIA.

Instrument
(Hynger)

Execute / 
Simulate
(SLSF)

Infer Candidate 
Invariants
(Daikon)

Yes: 
Actual Invariants

�𝑨𝑨

A

T

𝜑𝜑 ∈ Ф

Mismatch: Attack

�𝜑𝜑 ∈ �Ф

Anomaly: 
Mitigate action

(Containment)
𝑅𝑅𝐻𝐻 ⊆ �Ф?�𝜑𝜑 ∈ �Ф

�𝜑𝜑 ∈ �Ф

CPS Models
(SLSF)

Candidate 
Invariants

�Ф:

(Invariant Check)
�𝝋𝝋 ∈ Ф?

Actual 
Invariants

Ф:

Hybrid Automaton 
(SpaceEx)

Match: No Action

𝑅𝑅𝐻𝐻

Fig. 5. FDIA detection framework using Hynger/Daikon to infer the candidate
invariants and using SpaceEx reachability analysis to generate the reach sets..

For a given formal hybrid automaton H of a CPS, following
definitions are introduced to extract the actual invariants from
candidate invariants, as shown in Fig. 5:

Definition 3.1: For a hybrid automaton H, all states encoun-
tered during executions are called the reachable states of H.
A state is already defined in Definition 2.1. Since the exact
set of all reachable states is undecidable, reachability analysis
tools compute the overapproximated sets of reachable states
(called the reach sets for simplicity). In this work, SpaceEx
[33] is used to compute the reach sets for a formal hybrid
automaton H, denoted by RH.

Definition 3.2: The property ρ of a hybrid automaton H is
defined as a Boolean-valued expression, that contains some or
all state variables of H, and evaluates to True or False.

Definition 3.3: For a hybrid automaton H, a state s is said
to satisfy the property ρ (i.e., s � ρ) if ρ evaluates to True
when all state variables are assigned values as defined by the
state s.

Definition 3.4: For a hybrid automaton H, a property ρ is
an invariant of H if all its reach sets satisfy ρ, i.e., RH � ρ .
A candidate invariant ϕ̂ ∈ Φ̂ is also a property ofH. Therefore,
Definition 3.4 infers the actual invariants ϕ ∈ Φ.

Definition 3.5: A candidate invariant ϕ̂ ∈ Φ̂ of a hybrid
automaton H is the actual invariant φ ∈ Φ iff RH � ϕ̂ ∈ Φ̂.

The candidate invariants for DC microgrids are obtained
from Hynger in forms of bounds over the continuous state
variables, and denoted as [Bl, Bu]. It is assumed that SLSF
model depicts the hybrid automaton so that Hynger can find
the set of candidate invariants Φ̂. Each ϕ̂ ∈ Φ̂ is then
examined to ascertain whether it is an actual invariant as per
Definition 3.5, i.e., checking whether RH ⊆ ϕ̂ holds.

The FDIA tends to disturb the consensus and hence the
invariants as shown in case studies in Section IV. This change
is employed to detect FDIA on DC microgrids.

Definition 3.6: A hybrid automatonH is said to be operating
under FDIA scenario iff ϕ̂ 6∈ Φ.

IV. CASE STUDIES

A small-scale DC microgrid prototype is shown in Fig. 6,
with the system parameters given in the Appendix. A compar-
ison of the SLSF model simulation and the experimental data
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Two DC-DC Converters

Fig. 6. Experimental setup for a DC microgrid consisting of two dc-dc
converters and a dSpace DS1103 controller system.
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Fig. 7. SLSF simulation and experimental results for DC microgrid under no
FDIA scenario showing stable output current and output voltage.

is shown in Fig. 7, for a stable output under no FDIA scenario.
The effects of constrained FDIA on global variables, e.g., vest2 ,
and west

2 are shown in Fig. 8 and Fig. 9, respectively. The
intruder may also disturb the consensus protocol when the
current and voltage sensors are targeted as shown in Fig. 10
and Fig. 11, respectively. Unconstrained FDIA that involves
targeting the entire set of global variables, is very effective in
destabilizing the DC microgrid, as shown in Fig. 12.

A. FDIA Detection

For FDIA detection, the SLSF model formed using the
methodology in Section II is instrumented using Hynger, and
then simulated within the SLSF environment to generate traces
under no FDIA scenario. This process generates the trace
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Fig. 8. Experimental data for the constrained FDIA, targeting vest2 .
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Fig. 10. Experimental data for the constrained FDIA targeting current sensor.

files, in Daikon compatible format, that are passed on to
Daikon. Hence, the corresponding invariants are generated
automatically, and shown in Table I. The SpaceEx reachability
analysis tool computes the reach sets in the steady state,
as seen in Fig. 13. It is shown that the experimental data
and the simulation traces are contained within the reach
sets. Moreover, reach sets satisfy the candidate invariants
generated using Hynger under no FDIA scenario. Therefore,
the invariants without FDIA of Table I are found to be the
actual invariants as per Definition 3.5.

Next, FDIA detection approach is tested when the adversary
breaks into the communication link from agent 2 to agent 1. A
false data signal is spoofed into xpu2 , at time t = 0.6 s, through
the compromised communication link. xpu2 is the per-unit
current information of agent 2 that is communicated to agent 1.
The DC microgrid under FDIA scenario is again instrumented
using Hynger, and simulated in the SLSF environment to
generate traces and the corresponding invariants. The output
of the instrumented model under FDIA is plotted in Fig. 14
for both agents 1 and 2. It can be observed that the consensus
protocol is disturbed under FDIA.

The corresponding invariants for the DC microgrid under
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Fig. 12. Experimental data plots for the DC microgrid, under unconstrained
FDIA, targeting the entire set of global variables.
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Fig. 13. Phase-portrait comparison of Hynger generated invariants, SpaceEx,
SLSF, and experimental results, in the steady state, for DC microgrid under
normal conditions (i.e., without FDIA). The experimental and simulation
results are contained within the reach sets computed using SpaceEx. Moreover,
it is also shown that the SpaceEx reach sets satisfy the invariants.

FDIA scenario are generated automatically using Hynger. This
invariant set is then compared with the actual invariants, i.e.,
invariants under no FDIA scenario to detect intrusion. A
comparison of the invariants with and without FDIA scenario
is tabulated in Table I. It is evident by comparison that FDIA
detection condition mentioned in Definition 3.6, i.e., ϕ̂ /∈ Φ,
is satisfied for the two scenarios, detecting the FDIA.

B. FDIA Mitigation Strategies

Once an FDIA is detected, various mitigation strategies
can suppress the effects of the attack. As an example, three
possible mitigation strategies are experimentally demonstrated.

1) Physical mitigation strategy: The affected converter may
be taken offline after an FDIA is detected. Once the affected
converter 2 is disconnected, proper microgrid operation is
restored, as shown in Fig. 15.
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Fig. 14. The SLSF model of DC microgrid is instrumented using Hynger,
and the simulation output results for the instrumented model under FDIA
scenario are shown demonstrating that the consensus protocol is disturbed.
These instrumented traces are passed on to Daikon to generate invariants.

TABLE I
INVARIANTS WITHOUT AND WITH FDIA

Variable Without FDIA With FDIA

vout1 [47.874, 48.0818] [47.9917, 48.0486]

vout2 [47.8739, 48.0818] [47.9917, 48.5258]

iout1 [1.5071, 1.7187] [1.418, 1.6016]

iout2 [1.5071, 1.7187] [1.5997, 1.6175]
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Fig. 15. Experimental data for the constrained FDIA targeting the current
sensor of converter 2. The affected converter is disconnected to stabilize the
DC microgrid.

2) Communication-based mitigation strategy: The commu-
nication link of the effected agent (converter) can be discon-
nected so that other agents may not be effected. Once the
communication link between the affected converter 2 and non-
affected converter 1 is disconnected, the output of converter 1
is stabilized, as shown in Fig. 16. The output of converter 2
still remains unstable.

3) Control-based mitigation strategy: One can use a modi-
fied control scheme to reduce the effects of FDIA, by augment-
ing the controller with a false data suppressing mechanism
(e.g., filters [39]). As shown in Fig. 17, FDIA is initiated at
about 8.5 s, and the modified control scheme is put into action
at about 11.97 s to suppress FDIA effects, and the output of
the entire DC microgrid is stabilized.

C. Stealthy Attacks with Minimal Weights

The intruder could potentially fabricate an attack vector
to bypass the proposed FDIA detection framework, if the
changes in candidate invariants, and microgrid operation, are
negligible. This is demonstrated through the following two
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Fig. 16. Experimental data for the constrained FDIA targeting the current
sensor of converter 2. The communication link between the affected converter
and non-affected converter 1 is disconnected to stabilize converter 1.APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 
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Fig. 17. Experimental data for the constrained FDIA targeting the current
sensor of converter 2. As FDIA is detected, the control strategy is augmented
with a false data suppression mechanism. It is shown that this controller-based
mitigation action has stabilized the entire DC microgrid output.
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Fig. 18. FDIA, targeting the current sensor of converter 2, with the minimal-
weight attack vector that can be detected using this framework.

experiments. First, an attack vector with small weights is de-
signed that can be detected using the proposed framework. The
invariants for the output current generated using Hynger are
iout1 = [1.55, 1.77] and iout2 = [1.55, 1.77]. These invariants
are deviated from the corresponding actual invarinats tabulated
in Table I, indicating the presence of an FDIA. The negative
effects of this FDIA are shown in Fig. 18. It is demonstrated
that an FDIA with such minimal destabilizing effects can still
be detected using the proposed framework. Next, an attack
vector with smaller weights is fabricated to bypass through
this FDIA framework. The invariants for the output current
generated using Hynger are iout1 = [1.5071, 1.7187] and
iout2 = [1.5071, 1.7188] that are comparable with the actual
invariants in Table I, hence missing the FDIA. However, the
negative effects of this FDIA are negligible, as seen in Fig. 19,
as they do not disturb the microgrid operation.
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Fig. 19. FDIA, targeting the current sensor of converter 2, with extra minimal-
weight attack vector that can bypass the proposed FDIA detection framework.
As seen, the effects of FDIA are negligible and do not affect stability.

V. CONCLUSION

FDIA disturbs the consensus protocols used in the dis-
tributed control of cyber-physical DC microgrids. An FDIA
detection framework is presented whereby the attack detection
problem is formalized as identifying a change in the set of
candidate invariants. The candidate invariants are generated
using Hynger, that provides an interface between SLSF models
and the Daikon tool, which is an invariant inference tool.
The hybrid automaton of cyber-physical DC microgrid is
presented to obtain the reach sets through reachability anal-
ysis. Moreover, the SLSF model of a DC microgrid is also
developed to generate the candidate invariants. The actual
invariants are obtained after verifying whether the reach sets
are contained within the candidate invariants. The candidate
invariants generated by Hynger are compared with the actual
invariants to successfully detect FDIA.

APPENDIX

Buck converter parameters are L = 2.64mH , C = 2.2mF ,
and Fs = 60 kHz. The local loads are R1 = R2 = 30 Ω. The
transfer functions are given by:

T1 =
1

0.01s+ 1
, T2 =

1

0.05s+ 1
. (25)

The DC microgrid parameters are: Vref = [48 48]T , Imax =
[4 4]T , Vin = [80 80]T , Pmc = 0.01, Imc = 1, A =

25
[

0 1
1 0

]
, B = A,C = 0.5A, I = 3

[
1 0
0 1

]
, P =

0.05
[

1 0
0 1

]
,K =

[
1 0
0 2

]
.
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Abstract. Designing complex systems using graphical models in so-
phisticated development environments is becoming de-facto engineering
practice in the cyber-physical system (CPS) domain. Development envi-
ronments thrive to eliminate bugs or undefined behaviors in themselves.
Formal techniques, while promising, do not yet scale to verifying entire
industrial CPS tool chains. A practical alternative, automated random
testing, has recently found bugs in CPS tool chain components. In this
work we identify problematic components in the Simulink modeling en-
vironment, by studying publicly available bug reports. Our main contri-
bution is CyFuzz, the first differential testing framework to find bugs in
arbitrary CPS development environments. Our automated model gener-
ator does not require a formal specification of the modeling language.
We present prototype implementation for testing Simulink, which found
interesting issues and reproduced one bug which MathWorks fixed in sub-
sequent product releases. We are working on implementing a full-fledged
generator with sophisticated model-creation capabilities.

Keywords: Differential testing, cyber-physical systems, model-based
design, Simulink

1 Introduction

Widely used cyber-physical system (CPS) development tool chains are complex
software systems that typically consist of millions of lines of code [1]. For exam-
ple, the popular MathWorks Simulink tool chain contains model-based design
tools (in which models in various expressive modeling languages are used to
describe the overall system under control [2]), simulators, compilers, and auto-
mated code generators. Like any complex piece of code, CPS tool chains may
contain bugs and such bugs may lead to severe CPS defects.

The vast majority of resources in the CPS design and development phases are
devoted to ensure that systems meet their specifications [3, 4]. In spite of hav-
ing sophisticated design validation and verification approaches (model checking,
automated test case generation, hardware-in-the-loop and software-in-the-loop
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testing etc.), we see frequent safety recalls of products and systems among in-
dustries, due to CPS bugs [5–7].

Since many CPSs operate in safety-critical environments and have strict cor-
rectness and reliability requirements [8], it would be ideal for CPS development
tools to not have bugs or unintended behaviors. However, this is not generally
true as demonstrated by recent random testing projects finding bugs in a static
analysis tool (Frama-C) [9] and in popular C compilers (GCC and LLVM) [10],
which are widely used in CPS model-based design.

It would be extremely expensive or possibly even practically infeasible to
formally verify entire CPS tool chains. In addition to their sheer size in terms of
lines of code, a maybe more significant hurdle is the lack of a complete and up
to date formal specification of the CPS tool chain semantics, which may be due
to their complexity and rapid release cycles [1, 11].

Instead of formally verifying the absence of bugs in all CPS tool chain exe-
cution paths, we revert to showing the presence of bugs on individual paths (aka
testing), which can still be a major contributor to software quality [12]. Differen-
tial testing or fuzzing, a form of random testing, mechanically generates random
test inputs and presents them to comparable variations of a software [12]. The
results are then compared and any variation from the majority (if one exists)
likely indicates a bug [13]. This scheme has been effective at finding bugs in
compilers and interpreters of traditional programming languages. As an exam-
ple, various fuzzing schemes have collectively found over 1,000 bugs in widely
used compilation tools such as GCC [10, 11, 14].

While compiler testing is promising, when testing CPS tool chains we face
additional challenges beyond what is covered by testing compilers of traditional
programming languages (such as Csmith creating C programs), since CPS mod-
eling languages differ significantly from traditional programming languages. A
key difference is that the complete semantics of widely used commercial modeling
languages (e.g., MathWorks Simulink and Stateflow [15]) are not publicly avail-
able [1, 16, 17]. Moreover, modeling language semantics often depend on subtle
details, such as two-dimensional layout information, internal model component
settings, and the particular interpretation algorithm of simulators [1]. Finally,
random generation of test cases for CPS development environments has to ad-
dress a combination of programming paradigms (e.g., both graphical, data-flow
language and textual imperative programming language in the same model),
which is rare in traditional compiler testing.

Since existing testing and verification techniques are not sufficient for ensur-
ing the reliability of CPS tool chains, we propose CyFuzz: a novel conceptual
differential testing framework for testing arbitrary CPS development environ-
ments. We use the term system under test (SUT) to refer to the CPS tool chain
being tested. CyFuzz has a random model generator which automatically gener-
ates random CPS models the SUT may simulate or compile to embedded native
code. CyFuzz’s comparison framework component then detects dissimilarity (if
it exists) in the results obtained by executing (or, simulating) the generated
model, by varying components of the SUT.
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We also present an implementation for testing the Simulink environment,
which is widely used in CPS industries for model-based design of dynamic and
embedded systems [18, 19]. Although our current prototype implementation tar-
gets Simulink, the described conceptual framework is not tool specific and should
thus be applicable to related CPS tool chains, such as NI’s LabVIEW [20].

To the best of our knowledge, CyFuzz is the first differential testing frame-
work for fuzzing CPS tool chains. To address the problem of missing formal
semantics during model generation, we follow a simple, feedback-driven model
generation approach that iteratively fixes generated models according to the
SUT’s error descriptions. To summarize, this paper makes the following contri-
butions:

– To understand the types of Simulink bugs that affect users, we first analyze
a subset of the publicly available Simulink bug reports (Section 3).

– We present CyFuzz, a conceptual framework for (1) generating random but
valid models for a CPS modeling language, (2) simulating the generated
models on alternative CPS tool chain configurations, and (3) comparing the
simulation results (Section 4). We then describe interesting implementation
details and challenges of our prototype implementation for Simulink (Sec-
tion 5).

– We report on our experience of running our prototype tool on various Simulink
configurations (Section 6), identifying comparison errors and semi-independently
reproducing a confirmed bug in Simulink’s Rapid Accelerator mode.

2 Background: Model-based CPS Design and Simulink

This section provides necessary background information on model-based devel-
opment. We define the terms used for explaining a conceptual differential testing
framework and subsequently relate them with Simulink.

2.1 CPS Model Elements

The following concepts and terms are applicable to many CPS modeling lan-
guages (including Simulink). A model, also known as a block-diagram, is a math-
ematical representation of some CPS [18]. Designing a diagram starts with choos-
ing elementary elements called blocks. Each block represents a component of the
CPS and may have input and output ports. An input port accepts data on which
the block performs some operation. An output port passes data to other input
ports using connections. An output port can be connected to more than one in-
put port while the opposite is not true in general. A Block may have parameters,
which are configurable values that influence the block’s behavior. Somewhat sim-
ilar to a programming language’s standard libraries, a CPS tool chain typically
provides block libraries, where each library consists of a set of predefined blocks.

Since hierarchical models are commonly found in industry, CyFuzz supports
generating such models as well. This can be achieved by grouping some blocks
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of a model together and replacing them by a new block which We call a child,
whereas the original model is called parent.

When simulating, the SUT numerically solves the mathematical formulas
represented by the model [18]. Simulation is usually time bound and at each
step of the simulation, a solver calculates the blocks’ outputs. We use the term
signal to mean output of a block’s port at a particular simulation step.

The very first phase of the simulation process is compiling the model. This
stage also looks for incorrectly generated models and raises failures for syntactical
model errors, such as data type mismatches between connected output and input
ports. If an error is found in the compilation phase, the SUT does not attempt
simulating the model. After successful simulation, code generators can generate
native code, which may be deployed in target hardware [1].

2.2 Example CPS Development Environment: Simulink

While our conceptual framework uses the above terms, they also apply directly
in the context of Simulink [21]. Besides having a wide selection of built-in blocks,
Simulink allows integrating native code (e.g., Matlab or C code) in a model via
Simulink’s S-function interface, which lets users create custom blocks for use
in their models. Simulink’s Subsystem and Model referencing features enable
hierarchical models.

Simulink has three simulation modes. In Normal mode, Simulink does not
generate code for blocks, whereas it generates native code for certain blocks in
the Accelerator mode. Unlike in these two modes, the Rapid Accelerator

mode further creates for the model a standalone executable. To capture sim-
ulation results we use Simulink’s Signal Logging functionality as we found
implementing it quite feasible. However, for cases where the approach is not
applicable (see [21]), we use Simulink’s sim api to record simulation data.

3 Study of Existing Bugs: Incorrect Code Generation

To understand the types of bugs Simulink users have found and care about, we
performed a study on the publicly available bug reports from the MathWorks
website1. We identified commonalities in bug reports, which we call classifica-
tion factors. We limited our study to bug reports found via the search query
incorrect code generation, as earlier studies have identified code generation as
vulnerable [1, 22].

We investigated bug reports affecting Matlab/Simulink version 2015a as we
were using it in our experiments. As of February 17, 2016, there were 50 such bug
reports, among which 47 have been fixed in subsequent releases of the products.
Table 1 summarizes the findings. Our complete study data are available at:
http://bit.ly/simstudy

Table 1 shows only those classification factors that affect at least 20% of
all the bug reports that we have studied. We use insights obtained from the

1 Available: http://www.mathworks.com/support/bugreports/

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 
122



A Differential Testing Framework for CPS Development Environments 5

Table 1. Study of publicly available Simulink bug reports. The right column denotes
the percentage of bug reports affected by a the given classification factor. Each bug
report may be classified under multiple factors.

Classification factor Bugs [%]

Reproducing the bug requires a code generator to generate code 60
Reproducing the bug requires specific block parameter values and/or
port or function argument values and data-types

56

Reproducing the bug requires comparing simulation-result and gener-
ated code’s output

54

Reproducing the bug requires connecting the blocks in a particular way 36
Reproducing the bug requires specific model configuration settings 32
Reproducing the bug requires hierarchical models 24
Reproducing the bug requires built-in Matlab functions 20

study in our CyFuzz prototype implementation. For example, many of the bug
reports (54%) are related to simulation result and generated code execution out-
put mismatch. Thus, differential testing (e.g., by comparing simulation and code
execution) seems like a good fit for finding bugs in CPS tool chains. Further in-
sight that is reflected in our tool is that it is worth exploring the large space
of possible block connections (36% of bug reports) e.g., via random block and
connection generation. Other insights we want to use in the future are to incor-
porate random block parameter values and port data-types (56%) and model
configurations (32%).

4 Differential Testing of CPS Development Tool Chains

Fig. 1. Overview of the differential testing framework. The first three phases cor-
respond to the random model generator, while the rest belongs to the comparison
framework.

At a high level we can break our objective into two sub goals: creating a
random model generator and defining a comparison framework. We first present a
theory applicable to a conceptual CPS framework in this section. Fig. 1 provides
a schematic overview of CyFuzz’s processing phases. The first three phases belong
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to the random model generator, and the remaining two constitute the comparison
framework. The first two phases create a random model (which may violate
Simulink’s model construction rules). The third phase fixes many of these errors,
such that the model passes the SUT’s type checkers and the SUT can simulate
it. If it succeeds it passes the model to the fourth phase to simulate the model
in various SUT configurations and to record results. The final phase detects any
dissimilarities in the collected data, which we call comparison error bugs.

4.1 Conceptual Random Model Generator

Following are details on the generator’s three phases.

Listing 1.1. Select Blocks phase of the conceptual random model generator.

method select blocks (n, block libraries):
/∗ Choose n blocks from the given block libraries, place the blocks

in a new model, configure the blocks, and return the model. ∗/
m = create empty model() // New, empty model
blocks = choose blocks(n, block libraries) // N from block libraries
for each block b in blocks:

place block in model(m, b)
configure block(b, n, block libraries)

return m

Select Blocks. Listing 1.1 summarizes this phase, which selects, places, and
configures the model’s blocks. The generator has a list of block libraries and
for each library a predetermined weight. Using the weights, the choose blocks
method selects n random blocks. The value n can be fixed or randomly selected
from a range. On a newly created model the generator next places each of these
blocks using the place block in model method. For creating inputs, CyFuzz se-
lects various kinds of blocks, to, for example, provide random inputs to the
model.

The configure block method selects block parameter values and satisfies
some block constraints (e.g., by choosing blocks required for placing a certain
block). For creating hierarchical models, a child model is considered as a regular
block in the parent model and is passed as a parameter to configure block,
which calls select blocks to create a new child model. Here n is equal to the
parent model, but block libraries may not be the same (e.g., certain blocks are
not allowed in some Simulink child models).

Connect Ports. The second phase follows a simple approach to maximize the
number of ports connected. CyFuzz arbitrarily chooses an output and an input
port from the model’s blocks, prioritizing unconnected ports. It then connects
them and continues the process until all input ports are connected. Consequently,
some output ports may be left unconnected.
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Listing 1.2. fix errors tries to fix the model errors that the simulate method raises;
p is a SUT configuration; t denotes a timeout value.

method fix errors (m, p, attempt limit, t):
for i = 1 to attempt limit:

< rpstatus, r
p
data, errors > = simulate(m, p, t)

if rpstatus is error:
if fix model(m, errors) is false:

return < rpstatus, r
p
data, errors >

else:
return < rpstatus, r

p
data, errors >

return simulate(m, p, t)

Fix Errors. Because of their simplicity, CyFuzz’s first two phases may generate
invalid models that cannot be simulated successfully. The third phase tries to
fix these errors. Listing 1.2 outlines the approach. It uses method simulate to
simulate modelm up to time t ∈ IR+ (in milliseconds) using SUT configuration p.

The simulate output is a 3-tuple, where rpstatus is one of success, error,
or timed − out. Note that first step of simulation is compiling the model (see
Section 2). If m has errors, simulate will abort compilation, storing error-related
diagnostic information in errors. rpdata contains simulation results (time series
data of the model’s blocks’ outputs) if rpstatus = success.

At this point we assume that the error messages are informative enough
to drive the generator. For example, Simulink satisfies this assumption. Using
errors, fix model tries to fix the errors by changing the model. As it changes
the model this phase may introduce new errors. We try to address such sec-
ondary errors in subsequent loop iterations in Listing 1.2, up to a configurable
number attempt limit. While this approach is clearly an imperfect heuristic, it
has worked relatively well in our preliminary experience (as, e.g., is indicated by
the low error rate in Table 2).

4.2 Conceptual Comparison Framework

Here we explore simulating a randomly generated model varying SUT-specific
configuration options of a CPS tool chain, and thus testing it in two phases.

Log Signals. If simulation was successful in the Fix Errors phase, CyFuzz sim-
ulates the model varying configurations of the SUT in this phase; let P be such
a set of configurations. Using the simulate method introduced in Section 4.1, for
each p ∈ P we calculate < rpstatus, r

p
data, errors >= simulate(m, p, t) for a model

m and add rpdata to a set d only if rpstatus = success. We pass d to next phase
of the framework. rpdata should contain time series data of the output ports of
the model’s blocks at all available simulation steps. In the next phase, however,
we use only the values recorded at the last simulation step; we leave comparing
signal values at other simulation steps as future task.
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Compare. In its last phase, CyFuzz compares the recorded simulation results
d obtained in the previous phase using method compare (Listing 1.4). It uses
method retrieve, which returns the signal value of a particular block’s particular
port at a given time instance. If the value is not available (e.g., blocks that do
not have output ports do not participate in signal logging), it returns the special
value Nil . compare also uses method latest time which returns the time of the
last simulation step for a given block’s particular port. If no data is available, it
returns Nil .

Listing 1.3. Determining equivalence via tolerance limit ε.

method equiv (p, q):
if p and q are Nil: // Missing both data points

return true
if p or q is Nil: // Missing one data point

return false
return |p− q| < ε

Listing 1.4. This method compares two execution results (of model m) taken as first
two arguments and throws errors if it finds a dissimilarity.

method compare (rpdata, r
q
data, m):

for each block b of the model m:
for each output port y of the block b:

tp = latest time(rpdata, b, y)
tq = latest time(rqdata, b, y)
if equiv(tp, tq) is false:

throw ‘‘Time Mismatch’’ error
else if tp 6= Nil:

if equiv(retrieve(rpdata, b, y, tp), retrieve(rqdata, b, y, tq)) is false:
throw ‘‘Data Mismatch’’ error

Now, taking two elements from d at a time we form all possible pairs (rpdata, r
q
data)

where p 6= q and apply method compare on them. As comparing floating-point
numbers using straight equality checking is problematic [1, 23], eqiv (Listing 1.3)
method uses a tolerance limit to determine floating-point equivalence. If compare
reports an error, we mark m as a comparison error for p, q and submit it to
manual inspection.

5 CyFuzz Prototype Implementation for Simulink

We have developed a prototype implementation of CyFuzz mostly in Matlab.
The tool continuously generates one Simulink model at a time and then passes
it to the comparison framework. Source code, implementation and usage de-
tails, sample generated models, and detailed experiment results are available at:
https://github.com/verivital/slsf_randgen.
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Selecting and Configuring Blocks. Simulink itself has over 15 built-in libraries.
MathWorks also offers toolboxes, which add to Simulink additional libraries.
To date we have included in our experiments blocks from only four of these
libraries, Sources, Sinks, Discrete, and Concrete. We use default parameter
values for configuring most blocks. However, some Simulink blocks do not allow
placing multiple instances of the same block with the same default value in a
model. For these blocks we randomly choose parameter values.

Generating Hierarchical Models. Since hierarchical models are very popular
among Simulink users, our prototype can generate them. Currently, the generator
uses Model referencing and For each subsystems blocks to create hierarchi-
cal models. CyFuzz generates model hierarchies up to a configurable depth. In
doing so it places and configures related blocks. For example, CyFuzz automati-
cally puts input (output) related blocks in a new child model which are used to
accept (return) data from (to) the parent model. The number of blocks for the
top-level and child models are chosen randomly from user-provided ranges.

Fix Errors Phase. We utilize Matlab’s exception handling mechanism to learn
what prevented successful compilation of the model. Some information (e.g.,
the error type) can be directly collected from the exception. Collecting other
important information, such as the actual problematic block, can be nontrivial.
For example, for algebraic loop errors sometimes CyFuzz has to identify other
blocks (e.g., a parent block) to fix the problem. As another example, the current
CyFuzz version does not attempt to know the data types of the ports in the
Connect Ports phase. Rather, it collects such information when compiling the
model using diagnostic information returned by the SUT.

Models with Random Native Code. To facilitate blocks with custom behavior,
Simulink allows placing native code (C, Matlab etc.) directly in models. To gen-
erate such blocks we leverage Csmith, which generates random C programs [10].
We designed simple Simulink blocks using Matlab’s S-function interface that
use random code generated by a customized version of Csmith. Our customized
version is capable of generating many different C functions that can be called
from various simulation steps. We looked for both crash errors and “wrong code
errors” (similar to our comparison error). However, this is not fully integrated
with CyFuzz yet.

The Comparison Framework. CyFuzz starts with varying simulation modes (see
Section 2.2). and compiler optimization levels. For instance, “Normal mode”,
“Accelerator mode; optimization on”, and “Rapid Accelerator; optimization
off” are options to vary. Varying compilers, code generators, solver-specific set-
tings, and other possible SUT configuration options are future work.

6 Experience with CyFuzz

Here we analyze our prototype implementation based on experimental results.
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6.1 Research Questions (RQ), Experimental Setup, and Results

Throughout this work we explore the following research questions.

RQ1 Is the random model generator effective? Which portion of the generated
models can the SUT compile and simulate within a given time bound?

RQ2 Using the generated models, can the comparison framework effectively
find bugs (comparison errors or crashes) in the SUT ?

RQ3 What is the runtime of each of CyFuzz’s stages? Does the generator scale
with the generated model’s number of blocks?

To answer these questions we conducted experiments using Matlab 2015a on
Ubuntu 14.10 and varied simulation mode (Normal vs. Accelerator) and opti-
mizer (on vs. off) for the later mode. For the fix errors method (Listing 1.2)
we chose attempt limit 10 and timeout 12. For choosing blocks we used a tra-
ditional O(n) implementation of the fitness proportion selection algorithm [24].
We have not included in these experiments hierarchical models or custom blocks.

Table 2. Each row represents a separate experiment. Columns 3–6 is the percentage
of blocks selected per library (e.g., experiment A chose 80% of the blocks from the
Discrete library). Error denotes the number of models that failed to simulate. Timed-
out denotes the models that did not complete simulation within the time bound.

Exp. Total Discrete Concrete Source Sink error timed-out Confirmed

Label Models [%] [%] [%] [%] [%] [%] Bugs [%]

A 1172 80 0 10 10 9.73 0.60 0

B 1095 43 37 10 10 1.74 7.03 0

C 1449 0 80 10 10 12.01 8.63 0

Table 3. More information on experiments from Table 2. Columns 3-7 denotes the
time taken by the five phases of CyFuzz. Runtime denotes the average time CyFuzz
spent for a model.

Exp. Blocks/ Select Connect Fix Log Compare Runtime

Label Model Blocks [%] ports [%] Errors [%] Signals [%] [%] [sec]

A 35.00 7.85 0.64 16.00 74.55 0.96 40.37

B 34.96 6.06 0.39 16.06 76.86 0.63 51.87

C 35.05 8.09 0.51 11.02 79.58 0.80 42.51

Effectively Creating Random Models (RQ 1). As the experimental results in Ta-
ble 2 suggest, our tool can generate many models that Simulink can successfully
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simulate. For each row in the table we have a low error and timed-out rate. This
high success rate is crucial for the framework as it only uses such valid models in
the tool’s later comparison framework phases. We also observed that the number
of errors and timed-out models varied with the selected block libraries, but we
have not yet analyzed the reasons of these variations.

Effectiveness of Comparison Framework (RQ 2). We have not found new bugs
yet, however, our framework reproduced an existing bug and found interesting
cases (see Section 6.2).

Runtime Analysis (RQ 3). The Select Blocks algorithm of Listing 1.1 has run-
time O(n), n being the number of blocks in the model and using an O(1) block
selection algorithm. The random model generator scales linearly with the number
of blocks. But as the number of blocks grows, the number of timed-out models
and errors also grow. A preliminary analysis suggests that there are relatively
few distinct error causes. We group errors by their causes and fixing one cause
dramatically increased the overall number of successfully executed models.

Table 3 indicates that the Log Signals phase uses most of the runtime. This
result is not surprising, as in this phase the SUT simulates the model, generates
and executes code, and logs the data, all of which are time consuming tasks.

Using Native Code/Custom Blocks. In separate experiments we used a
fixed Simulink model with a custom block created using S-Function. We re-
peatedly generated random C code using a customized version of Csmith and
plugged this code in the S-function, which effectively ran the code once we sim-
ulated the model. We used different optimizer settings for GCC when compiling
and were able to reproduce crash and “wrong code” bugs of GCC 4.4.3. This
shows that incorporating Csmith in our framework is promising. However, more
work is needed to fully utilize Csmith-generated programs and create sophisti-
cated Simulink blocks using them. One limitation is that floating-point support
in Csmith is currently still basic and can only be used for detecting crash-bugs.

6.2 Interesting Comparison Framework Findings

Following are two interesting findings of our experiments, including one inde-
pendently rediscovered confirmed Simulink bug.

Comparison Error for Models with Algebraic Loops. In our experiments
we noticed comparison errors for some models where Simulink solved algebraic
loops. Investigating further we noticed that when Simulink solves an algebraic
loop it is not confident of its correctness [21]. For this, we did not classify this case
as a bug. CyFuzz now eliminates algebraic loops altogether rather than relying
on Simulink to solve them. We note that one can use our tool to opportunistically
discover such inaccuracies for models with algebraic loops and decide whether
to accept Simulink’s solution for solving the loops.
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Fig. 2. Screen-shot of generated top-level Simulink model which reproduced a bug

Bug in Simulink’s Rapid Accelerator Mode. In separate experiments with
hierarchical models, we noticed that for a model (see Fig. 2) values of a Simulink
Outport block are significantly different in Normal and Rapid Accelerator

mode. This was detected automatically by our comparison framework. After
submitting a bug report MathWorks confirmed that the case was already iden-
tified as a bug and they fixed it for later versions.

7 Future Work and Discussion

Our ultimate goal is to provide a full-fledged fuzz-testing framework for Simulink.
Our work on CyFuzz and our prototype implementation for Simulink are thus
both ongoing. Following is a sample of the opportunities for improvement.

The current prototype implementation has several limitations. Currently, the
tool chooses blocks from only four built-in libraries. Incorporating additional li-
braries will increase the expressiveness of generated models and thus its potential
for finding bugs. Also, we plan on integrating custom blocks developed using na-
tive code and perform experiments we were not able to conduct yet.

The comparison framework implementation is also not free from shortcom-
ings. So far, we have only used various simulation modes and compiler opti-
mization levels. However, we are interested in adding more variations (e.g. those
listed in Section 5). Finally, CyFuzz should compare signals in multiple simula-
tion steps, since it was also found effective in previous work [25].

8 Related Work

The following focuses on the most closely related work not covered by the intro-
duction section. Existing approaches for CPS testing mostly aim at generating
test cases for existing models (e.g., [26, 18]) and do not target testing of CPS tool
chains. Code generator testing ([1, 27]) only target a relatively small component
of the CPS tool chain but not an entire CPS tool chain.

Most of the compiler fuzzers perform random walks over a context-free gram-
mar, thus mainly focusing on generating syntactically valid [14] and well typed
programs in imperative languages [28, 10, 11, 29]. None of the works target data-
flow languages like Simulink. We find Csmith most related to our work, which is
state-of-the-art C compiler fuzzer. Csmith leverages the well-published C99 stan-
dard and can be used to test only a component of entire CPS tool chain [10]. Our
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test generation and comparison techniques differ fundamentally from Csmith.
Conceptually, CPS tool chain fuzzing is a super-set of the schemes presented in
Csmith. CPS tool chains typically contain a C compiler; thus CyFuzz leverages
Csmith as a component.

Earlier work includes a differential testing based runtime verification frame-
work, leveraging a random hybrid automata generator [30, 25]. Other works at-
tack code generators used in CPS tool chain. Stürmer et al. generate model tak-
ing specification of a code generator’s optimization rules in graph grammar [1].
But such specifications for code generators might not be available and white-
box testing in parts is undesirable [31]. Sampath et al. propose testing model-
processing tools taking semantic meta-model of Stateflow (a Simulink compo-
nent) [31]. But the approach does not scale and the complete specifications it
needs are not available. In contrast, we propose the first fuzz-testing framework
to test arbitrary CPS tool chains based on feasible model generation.

Many CPS model verification and safety checking approaches have been pro-
posed [8, 32]. Recent work verifies existing SL/Stateflow (SL/SF) models by gen-
erating test inputs for these models [18, 19]. Alur et al. analyze generated sym-
bolic traces of a SL/SF model, and combine simulation and symbolic analysis
for improving coverage of given SL/SF models [33]. The Simulink Code Inspector
compares generated code for a given model based on structural equivalence and
traceability [21]. However none of these approaches describe random generation
of Simulink models for fuzzing the CPS tool chain.

9 Conclusions

This work addresses the CPS tool chain quality problem using a differential test-
ing scheme. Existing work either does not test CPS development tool chains or
only tests small subsets. As CPS tool chains are actively developed and released,
formal specification based test generation schemes are not suitable for fuzzing
CPS tool chains. Rather, our approach follows a simple model generation strat-
egy applicable to arbitrary CPS modeling languages. Starting with a random
and possibly erroneous model, our generator fixes various errors in the model
using diagnostic information returned by the system under test. In our experi-
ments a high portion of the generated models could thus be executed without
errors.

We also define techniques to find bugs in CPS tool chains based on simulation
result comparison. The approach is effective as our prototype implementation
for Simulink found interesting cases and one bug. Although our model generator
is scalable and fully automatic, more work is needed to systematically search
the huge space of possible data-flow models and generate those models that are
likely to find bugs in modern CPS development environments.
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The Simplex Architecture ensures the safe use of an unverifiable complex/smart controller by using it in
conjunction with a verified safety controller and verified supervisory controller (switching logic). This ar-
chitecture enables the safe use of smart, high-performance, untrusted, and complex control algorithms to
enable autonomy without requiring the smart controllers to be formally verified or certified. Simplex incor-
porates a supervisory controller that will take over control from the unverified complex/smart controller if
it misbehaves and use a safety controller. The supervisory controller should (1) guarantee the system never
enters an unsafe state (safety), but should also (2) use the complex/smart controller as much as possible
(minimize conservatism). The problem of precisely and correctly defining the switching logic of the super-
visory controller has previously been considered either using a control-theoretic optimization approach, or
through an offline hybrid systems reachability computation. In this work, we show that a combined online/of-
fline approach that uses aspects of the two earlier methods along with a real-time reachability computation,
also maintains safety, but with significantly less conservatism, allowing the complex controller to be used
more frequently. We demonstrate the advantages of this unified approach on a saturated inverted pendulum
system, where the verifiable region of attraction is over twice as large compared to the earlier approach. Ad-
ditionally, to validate the claims that the real-time reachability approach may be implemented on embedded
platforms, we have ported and conducted embedded hardware studies using both ARM processors and At-
mel AVR microcontrollers. This is the first ever demonstration of a hybrid systems reachability computation
in real-time on actual embedded platforms, and required addressing significant technical challenges.

Categories and Subject Descriptors: C.3 [Computer systems organization]: Embedded and cyber-physical
systems

General Terms: Design, Verification

Additional Key Words and Phrases: formal verification,hybrid systems,cyber-physical systems
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Simplex Design. ACM Trans. Embedd. Comput. Syst. 1, 1, Article 1 (January 201X), 29 pages.
DOI:http://dx.doi.org/10.1145/0000000.0000000

1. INTRODUCTION
Modern cyber-physical systems are large complex systems of systems, where argu-
ments about the behavior of the whole system rely on guarantees about the individual
components. Individual components, however, may be designed using machine learn-
ing methods such as neural networks that are currently not amenable to formal anal-
ysis, or the components may simply be too large and complex for complete verification.
As such autonomy is incorporated into these increasingly smart systems that have the
ability to learn from their environments and interactions through sophisticated com-
plex/smart controllers, approaches are necessary to provide guarantees about their
behavior.

One approach to provide formally verified behavior despite the use of unverified,
complex, and smart control logic is the Simplex Architecture [Sha 2001]. Similar to
how a driving instructor’s car may have two steering wheels and two sets of brakes,

An earlier version of this work was presented at RTSS 2014 [Bak et al. 2014]. DISTRIBUTION A. Approved
for public release; Distribution unlimited. (Approval AFRL PA case number 88ABW-2015-4618, 28 SEP
2015)
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Fig. 1: The Simplex Architecture pro-
duces a verified system despite the use
of an unverified complex/smart con-
troller. The decision module should
switch between the controllers to pro-
vide overall system safety.

Operational
Constraints

Property
Violation
Region

Distance d

xTP x<1
Complex 

Controller
Region

Fig. 2: The LMI Simplex design ap-
proach uses switching logic based on
an ellipsoid within the system con-
straints in order to produce a verified
system.

a Simplex system contains two controllers and supervisory switching logic. As long
as the instructor intervenes to prevent dangerous situations, the untrusted student is
allowed to drive. Similarly in Simplex, an unverified controller can actuate the system,
as long as the verified one takes over quickly at potentially unsafe times.

In the Simplex Architecture, shown in Figure 1, unverified control logic (the com-
plex/smart controller) is wrapped with a verified controller (the safety controller) and
switching logic (the decision module). The complex/smart controller typically has bet-
ter performance, or is concerned with mission critical requirements, whereas the safety
controller is designed with simplicity and provability in mind, and may concern itself
only with safety-critical aspects. When the system is in danger of entering an unre-
coverable state, the decision module must switch control to the safety controller. In
this way, the complex/smart controller can be used while still maintaining the formal
guarantees of the safety controller. The key challenge when designing a system with
the Simplex Architecture is to properly create the decision module logic.

It is easy to design safe decision module switching logic; one can simply always use
the safety controller. This is undesirable, however, as mission-critical objectives might
be delayed or ignored since the complex/smart controller is never used. The key chal-
lenge, which is the focus of this paper, is to reduce the conservatism in the decision
module design. Control should not be switched too late, though, as the safety controller
may not be able to safely recover the system.

In earlier Simplex designs, the switching logic was designed in one of two ways.
From a control theoretic perspective, verified switching logic can be synthesized from
the solution of a linear matrix inequality (LMI) along with the system dynamics and
constraints [Seto and Sha 1999]. Alternatively, approaches based on hybrid systems
reachability can be used to produce a provably safe decision module [Bak et al. 2011].
These earlier approaches will be reviewed in Section 2. In this paper, we propose the
use of a unified approach, where the offline LMI result is combined with an online
reachability computation to produce a significantly less conservative Simplex system
that is still safe. We elaborate on this approach and prove its safety in Section 3.

The proposed approach requires computing reachability online for short time inter-
vals. Previous hybrid systems reachability algorithms, however, were not designed for
real-time computation and furthermore almost always require the use of numerous
complex libraries for either performing simulations or for representing sets of reach-
able states as some geometric data structure (such as support functions, polytopes,
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zonotopes, symbolic expressions, etc.). For this reason, in Section 4, we propose a real-
time reachability algorithm based on mixed face lifting [Dang 2000] that is compatible
with the imprecise computation model in the real-time scheduling literature [Lin et al.
1987]. Real-time reachability has applications beyond Simplex, and is presented as a
general online reachability approach. Next, we evaluate the proposed unified Simplex
design in Section 5, on both x86 and embedded microprocessors. In order to provide
a direct comparison, we use the existing system model from earlier Simplex work of
an inverted pendulum system with saturation. The run-time approach significantly
expands the space where the complex/smart controller may be used. Other research
efforts related to Simplex and reachability are then presented in Section 6, followed by
conclusions and directions for future work in Section 7.

2. BACKGROUND AND CONTRIBUTIONS
There have been several verified design methodologies for systems that use the Sim-
plex Architecture. Before going into their details, we first present useful definitions.

The system is defined with a set of operational constraints, such as limits of ac-
tuators, physical restrictions, invariant safety properties that cannot be violated, or
linearization boundaries where the model is considered valid.

DEFINITION 1. States that do not violate any of the operational constraints are
called admissible states. Those that violate the constraints are called inadmissible
states.

From this definition, we can define the set of states that are recoverable for a particular
control strategy, assumed to be a given safety controller in the Simplex architecture.

DEFINITION 2. The set of recoverable states is a subset of the admissible states,
such that if the given safety controller is used from these states, all future states will
remain admissible.

The recoverable states are used in the switching rule instead of the admissible states
due effectively to inertia in the system. That is, they are used to ensure that the safety
controller and actuators have enough time to prevent the system from leaving the
admissible states. Further, the intuition of defining the recoverable states as a subset
of the admissible states is as follows. To enhance performance, we wish to stay within
a small subset of highly desirable admissible states. The set of recoverable states is
the subset of the set of admissible states that a safety control is guaranteed not to
leave. However, the safety controller may not be able to keep the system inside the
subset of recoverable states, namely the desirable states, and hence the complex/smart
controller is needed. Their relation is illustrated in Figure 2, where the white ellipsoid
is the recovery set.

With these definitions, we now describe two earlier approaches for verified Simplex
design. The first is based on solving linear matrix inequalities (LMIs), and the second
is based on reachability analysis of hybrid systems.

2.1. Verified Design using LMIs
The first proposed way to design a verified decision module is based on solving linear
matrix inequalities (LMIs) [Seto and Sha 1999; Boyd et al. 1994], which has been used
to design Simplex systems as complicated as automated landing maneuvers for an F-
16 [Seto et al. 1999]. In this approach, system dynamics are approximated by a linear
model using the standard control-theoretic approach, where ẋ = Ax + Bu for state
vector x and input u.

In this approach, the operational constraints, as well as saturation limits are ex-
pressed as linear constraints in an LMI. These constraints, along with linear dynam-
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ics for the system are input into a convex optimization problem that produces both
linear proportional controller gains K as well as a positive-definite matrix P . The con-
troller produced is a linear-state feedback controller, u = Kx, yielding the closed-loop
dynamics ẋ = (A+BK)x. Given state x, when input Kx is used, the P matrix defines
a Lyapunov potential function (xTPx) which is positive-definite with negative-definite
derivative (so it is monotonically decreasing over time), thus guaranteeing stability of
the linear system using Lyapunov’s direct or indirect (if the plant is nonlinear and was
linearized) methods. Furthermore, the matrix P is constructed by the method such
that it defines an ellipsoid in the state space where all the constraints are satisfied
when xTPx < 1. Since the states where saturation occurs were used as constraints
in the method, any states inside the ellipsoid result in control commands that are not
beyond the actuator limits (where saturation would occur).

In this way, when the gains K define the safety controller, the ellipsoid of states
xTPx < 1 is a subset of the recoverable states. The situation is shown visually in Fig-
ure 2. The feasible region is a subset of the admissible states defined by the input
constraints (saturation), as well as the operational constraints. The stabilizable region
(also known as the region of attraction) is the region of the state-space within which a
given controller can stabilize the system. For the purpose of LMI-Simplex, this is also
known as the recoverable region or the recoverable states as defined in Definition 2.
For linear systems with constraints, this region may be under-approximated by solving
an LMI of the determinant maximization form [Vandenberghe et al. 1998]. For a ma-
trix that describes an ellipsoid xTPx = 1, this has the effect of maximizing the product
of the radii of the ellipsoid (which is related to the determinant of the matrix P ). The
volume of an ellipsoid, then, is proportional to this product. In this way, the optimiza-
tion is maximizing the volume of the ellipsoid such that all states inside do not leave
the ellipsoid, and all the constraints are satisfied for every state in the ellipsoid.

This approach is used to determine the proper behavior of the decision module. As
long as the system remains inside the ellipsoid, any unverified, complex/smart con-
troller can be used. If the state approaches the boundary of the ellipsoid, control can
be switched to the safety controller that will drive the system towards the equilibrium
point where xTPx = 0. Care must be taken to ensure control is switched to the safety
controller before the state leaves the ellipsoid. If the decision module simply checks
the Lyapunov potential of the current state, then, once the state is outside of the ellip-
soid, the system is not guaranteed to be recoverable without violating the operational
constraints. Thus, a smaller subset of the state space must be used to define the states
where the complex controller is allowed to actuate the system. In Figure 2, the distance
d defines this extra buffer that can be determined offline by computing the maximum
gradient for any control command inside the ellipsoid, multiplied by the period of the
decision logic. As long as d is no smaller than the maximum distance traveled in the
state-space over the time of one full control period, then d is large enough to ensure
switching to the safety controller can recover the system.

For safety it is sufficient to consider only a single switch to the safety controller and
never switching back. If switching back is desired, this should not be done arbitrarily
as the composed switched system might be unstable. Specifically, the safety controller
should be used at least until a state within the complex/smart controller region (as
shown in Figure 2) is reentered, before switching back to the complex/smart controller.

2.2. Verified Design using Reachability
An alternative method for verified Simplex design is based on reachability analysis
of hybrid systems [Bak 2013b], which has been used, for example, to create a Sim-
plex system to prevent off-road vehicle rollover [Bak et al. 2010]. In this approach, the
dynamics are defined using a hybrid automaton, which is a formal model for a sys-
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tem with both continuous and discrete behaviors. Mathematically, a hybrid automa-
ton [Alur et al. 1995] is a tuple, H = (X , L,X0, I, F, T ), where:

— X is the set of continuous states. For a system with n real-valued dimensions, the
continuous state is Rn.

— L is the set of discrete states (locations). The state of a hybrid automaton is an
element of X = L×X .

— X0 is a set of initial states, which is a subset of X.
— I is a set of invariants that defines the continuous states that are possible for each

location. It is a function L→ 2X .
— F is a set of flows, each of which defines the differential equations in each location.

It is a function X → 2R
n

.
— T is a set of discrete transitions, each of which defines switching between discrete

locations. A transition is composed of a guard condition for when the transition is
enabled, and a reset map that can reassign the continuous states from the prede-
cessor mode to the successor mode. In general, it is a relation T ⊆ X ×X.

Semantically, a hybrid automaton behaves by advancing time according to the differ-
ential equations defined in the mode of the current discrete state l ∈ L, then allowing
any enabled transitions to be taken, and repeating, yielding a sequence of states called
an execution. A state x ∈ X is reachable is there exists a finite execution ending in
x. The set of reachable states contains every reachable state. The guard conditions on
the outgoing transitions define when the location can change. The invariants of the
locations can be used to force transitions by preventing time from elapsing further in
the current mode. Together, these allow nondeterminsim in the discrete behavior. A
hybrid automaton can be graphically depicted as a finite-state machine with differen-
tial equations in each discrete state. The model also allows for nondeterminism in the
continuous behavior because a single state x ∈ X may be associated a set of derivatives
for each variable, via the set of flows F .

This modeling framework is very expressive, and computing exactly the sets of states
a hybrid automaton may enter, called the reachable set of states, is undecidable [Hen-
zinger et al. 1995]. Thus, analysis of hybrid systems often restricts either the contin-
uous dynamics or the discrete dynamics [Alur and Dill 1994; Lafferriere et al. 2000;
Branicky 1998]. In this paper, the reachability algorithm proposed in Section 4 con-
siders restricted hybrid automata models where (a) the state invariants are disjoint
and cover the continuous states Rn, (b) there are no reset maps in the transitions be-
tween discrete states, and (c) the guards of incoming transitions are defined by the
state invariants.

In addition to restrictions on dynamics, practical reachability approaches often over-
approximate the set of reachable states [Kapinski and Krogh 2002; Dang et al. 2010;
Frehse et al. 2011], which is sufficient for proving safety properties. If a sound over-
approximation of the reachable set of states for a hybrid automaton does not contain
any unsafe states, then the system is verified as safe since no unsafe states are in the
actual reachable set of states either. That is, the system is safe if the intersection of the
over-approximation of the set of reachable states and the set of unsafe states is empty.
This approach may, however, lead to spurious counterexamples where the error due to
the over-approximation contains unsafe states, but the actual reachable set of states
does not.

We define REACH∞(x,HA) to be the set of states reached in any amount of time from
state x in hybrid automaton HA, REACH≤t(x,HA) is the set of states reached from x in
up to t time, and REACH=t(x,HA) is the set of states reached after exactly t time has
elapsed. Also, we naturally extend REACH to initial sets of states, where the resultant
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set of reachable states is the union of the set of reachable states from each state in the
initial set.

In terms of Simplex design, the behavior of an optimal decision module can be de-
fined in terms of reachability. Optimal here means that the given safety controller
takes over only if it has to; if it did not take over, then the system remains in admis-
sible states and can enter the subset of recoverable states that can be pre-computed
offline e.g., using LMIs. Furthermore, it never takes over when the complex/smart
controller could safely be used. The switching condition (formalized as the transition’s
guard and invariant in the hybrid automaton) between the safety controller and com-
plex/smart controller modes is defined using the following theorem [Bak et al. 2011].

THEOREM 3. The optimal switching condition for Simplex is given when, at
every control iteration, the complex/smart controller is used if and only if
(1) REACH≤δ(x, CC) ∩ U = ∅ and (2) REACH∞(REACH=δ(x, CC), SC) ∩ U = ∅, where
x ∈ X is the current state and U ⊆ X is the set of inadmissible (unsafe) states.

The inner REACH=δ in part (2) is the time-bounded reachability of the system for one
decision logic switching interval time, δ, while using the complex/smart controller (CC).
The outer REACH∞ is the infinite-time reachability for the system under control of the
safety controller (SC).

Intuitively, this check is examining what happens if the complex/smart controller
is used for a single control interval of time δ, and then the safety controller is used
thereafter. If this set of states contains an inadmissible state (either before the switch
as in part (1) or after as in part (2)), then the complex/smart controller cannot be
used for one more control interval, and instead the safety controller must be used
right away. Assuming the system starts in a recoverable state, this guarantees it will
remain in the recoverable set for all time.

Several factors prevent the direct use of Theorem 3. The first is that the reason to
apply Simplex is that a precise model of the complex/smart controller is not available,
but rather an over-approximation must be used which can be computed, for exam-
ple, based on the plant model and actuator limits. Second, as discussed before, com-
puting reachability exactly for a general hybrid automaton is undecidable. However,
estimates of the set of recoverable states (Definition 2), can still be computed using
over-approximations, where the conservativeness of the resultant decision module de-
pends on the amount of over-approximation. Third, the switching condition is defined
in terms of a specific state x, which is not useful for offline computation since every
state would need to be enumerated. Instead, the condition can be rewritten in terms
of backwards reachability from the set of inadmissible states, which can then be com-
puted offline [Bak et al. 2011; Bak 2013b]. As with the LMI approach, the output is a
set of states which forms a guaranteed subset of the recoverable states.1. These con-
siderations are combined in order to provide a condition for effectively computing the
decision module logic as follows.

COROLLARY 4. A safe switching condition for Simplex is given when, at every
control iteration, the complex/smart controller is used if the current state x /∈
BACKREACH∗≤δ(BACKREACH∗(U, SC), CC′).

Here, BACKREACH∗ is an over-approximation of the exact set of backward reachable
states for all time (that is, to a fixed-point). The inner BACKREACH∗ defines the states

1The set of backward reachable states can be computed for deterministic systems (including linear systems)
by negating the differential equations and inverting the transitions in the hybrid automaton and using
standard forward reachability techniques. This technique is known as back-reachability.
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where, if the system were to start from the set of unsafe states U and use the safety
controller, it could still violate one or more of the safety constraints. Then, the outer
BACKREACH∗≤δ is the set of states that, within one control interval, can reach an un-
recoverable state. Since the unrecoverable states contain the unsafe states, and since
the outer BACKREACH∗≤δ checks up to δ time rather than exactly δ time, a separate
condition is not needed to check if the the complex/smart controller itself reaches the
unsafe states, as in part (1) of Theorem 3.

The pessimism in the resultant decision logic depends on both the accuracy of the
reachability computation as well as on how much CC′ over-approximates the exact
complex/smart controller model CC. The condition in Corollary 4 is more useful than
the one in Theorem 3 because it can be effectively computed using existing hybrid sys-
tems reachability algorithms. The set of states on the right-hand side can be computed
offline and encoded in some form (for example, using linear bounds [Bak 2009]) and
then, online, the decision module need only check if the current state exists within the
encoded set of states. If it does, then the safety controller must be immediately used.
If it does not, then the complex/smart controller can be used for one control interval,
after which the condition will be checked again on the new state.

2.3. Contributions
In this paper, building on our prior work [Bak et al. 2014], we show how to combine
the LMI-based Simplex method with a real-time reachability method into a unified
framework to ensure safety while drastically decreasing the overconservative use of
the safety controller. Specifically, if it is possible to use the set of recoverable states
computed using the LMI method for the switching condition, we do so. If not and
the system is at a state outside the recoverable states based on the LMI ellipsoids,
then we try to check safety using a novel real-time reachability method, in contrast to
the previous offline reachability approach. Together, we illustrate how this unified ap-
proach gives both real-time guarantees and reduces conservatism of when the safety
controller is used. A main contribution of our approach is the first ever demonstra-
tion of a reachability method in real-time, enabled by our careful design and imple-
mentation that does not use any dynamic memory allocation nor rely on sophisticated
(non-portable) libraries that many other methods use, such as the Parma Polyhedral
Library (PPL) [Bagnara et al. 2008], recent satisfiability-modulo theories (SMT) ap-
proaches [Gao et al. 2013], or validated integration tools [Duggirala et al. 2013]. To
validate the feasibility of actually implementing the method in real-time embedded
hardware, we have ported our prototype method from [Bak et al. 2014] that was im-
plemented on x86-64 platforms to several embedded platforms (namely a 32-bit ARM-
based system and an 8-bit Atmel AVR ATmega32u4-based Arduino system). This ef-
fort validates our claims from [Bak et al. 2014], which were not previously validated in
embedded hardware. The key result of this paper is the first ever demonstration of a hy-
brid systems reachability algorithm implemented in embedded hardware that can meet
real-time guarantees, which required carefully designing the reachability algorithm as
described in this paper. We have additionally added significant further details of the
approach and case study to the paper over [Bak et al. 2014], including code snippet
examples for the case study.

3. UNIFIED APPROACH FOR SIMPLEX DESIGN
The two existing approaches for Simplex design previously discussed each have their
own limitations. The LMI approach works when the system model is linear. If there
are actuator limits, and the input to the actuators u (from ẋ = Ax+ Bu) can saturate,
the output of the optimization will be a set of states where the command used by the
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safety controller is within the saturation limits. This is done by adding a constraint
based on the state-feedback gain as part of the optimization (the input is u = Kx,
which is bounded by the linear constraints Kx ≤ MAX_INPUT and Kx ≥ MIN_INPUT).

The set of states output by the LMI approach is safe, but may be pessimistic, since
a saturated safety controller may still be able to recover the system. Furthermore,
the resultant switching condition is based on a Lyapunov function which—due to con-
vexity and quadratic restrictions required in the optimization algorithms—has level
sets that are ellipsoidal. This is a sufficient but not necessary condition for stability
and therefore the switching set is almost certainly conservative. We demonstrate this
pessimism in our evaluation in Section 5.

The reachability-based Simplex approach is not restricted to linear systems, and can
have its conservatism decreased by increasing the accuracy of the reachability compu-
tation2. One downside of this approach is that over-approximation error occurs from
the need to abstract the complex/smart controller hybrid automaton by a hybrid au-
tomaton which takes into account any possible complex/smart controller command. A
second issue is the difficulty of succinctly and accurately encoding the result of the com-
putation, which in general may be a large non-convex set in many dimensions. Lastly,
hybrid systems reachability methods introduce over-approximation error, which can
be large when the initial set of states is large and the reachability time bound is large.
The back-reachability formulation of Theorem 3 includes a time-unbounded reacha-
bility computation from the set of inadmissible states, which can require significant
computation time.

We now present an alternative design for a verified Simplex system. The proposed
technique makes use of aspects from both of the previous verified design approaches
in order to overcome some of their individual limitations.

First, we formalize the connection of the ellipsoid from of the LMI approach with
that of a reachability computation of a hybrid automaton (which by the ellipsoid’s con-
struction remains in a single, unsaturated mode):

LEMMA 5. The output of the LMI approach, the potential function P and controller
gains K, define a safety controller SC and a subset of the recoverable set of states R =
{x|xTPx < 1}, where REACH∞(R, SC) ∩ U = ∅.
This is true because the potential function is guaranteed to satisfy the constraints
passed to the LMI solver, including avoidance of the inadmissible states, when
XTPX < 1. When the controller gain vector K output by the approach is used (which
defines the safety controller update u = Kx), the potential function is strictly decreas-
ing over time (i.e., it is a Lyapunov function). Therefore, it is guaranteed for unbounded
time that any state starting inside R will remain inside R. Since there are no inad-
missible states in R, no inadmissible states will ever be reached.

We can now define an alternate condition for safe switching logic:

THEOREM 6. A safe switching condition for Simplex is given when, at ev-
ery control iteration, the complex/smart controller is used if, for some α time,
(1) REACH≤δ(x, CC) ∩ U = ∅, (2) REACH≤α(REACH=δ(x, CC), SC) ∩ U = ∅, and
(3) REACH=α(REACH=δ(x, CC), SC) ⊆ R.

PROOF. Intuitively, this switching condition states that the complex/smart con-
troller may be used if: (1) the complex/smart controller cannot reach an unsafe state
before the next decision interval (at time δ), (2) if the safety controller takes over at
the next decision interval, it will avoid unsafe states until δ + α times passes, and (3)
after δ + α time, a state in R will be reached.

2Over-approximating reachability approaches typically have an accuracy / computation time trade off.
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More formally, assume by contradiction that this is not a safe switching condition,
so an inadmissible state is reached at some time. This time will be either less than δ,
more than δ and less than δ + α, or more than δ + α. The first two of these cases are
ruled out directly by conditions (1) and (2), so only the third case needs to be examined.

From Lemma 5 REACH∞(R, SC) ∩ U = ∅. If R′ ⊆ R, REACH∞(R′, SC) ⊆
REACH∞(R, SC), then the smaller set of states R′ = REACH=α(REACH=δ(x, CC), SC) ⊆
R will also satisfy the condition REACH(R′, SC)∩U = ∅. Therefore, every state reached
after δ + α is also admissible.

Since all three cases do not contain an inadmissible state, our assumption that an
inadmissible state is reached is violated, yielding a contradiction, and therefore this is
a safe switching condition.

In summary, the proposed approach is as follows: when the system is well-inside the
ellipsoid that represents the largest safe sublevel set of the Lyapunov function, we do
not need to invoke an extensive reachability analysis using the safety controller, as
we know the state is recoverable (even for the next control period). When the system
state is near the boundary of the ellipsoid, the reachability analysis is used to allow
the system to cross the boundary of the ellipsoid as long as the reachability compu-
tation shows that (1) no system constraints are violated when this is done (i.e., none
of the reachable states violate a system constraint), and (2) the state can be guaran-
teed to be brought back into the ellipsoid (i.e., the reachable states return inside the
ellipsoid). This allows the complex controller to be used in a larger region compared
with the LMI-approach because it can soundly reason about the behavior of the system
outside of the ellipsoid (remember that the Lyapunov function from the LMI method
is only a sufficient condition for safe switching). This condition can also be less conser-
vative than the pure reachability approach because the computation needed is from
a single state x, rather than the possibly large set of inadmissible states. Addition-
ally, it involves reasoning over a finite-time horizon (α + δ), rather than infinite-time
reachability needed in the method based on Theorem 3.

There are still two issues which need to be addressed before the condition in Theo-
rem 6 is usable. First, since we cannot compute reachability exactly for complex hybrid
automata due to decidability reasons [Henzinger et al. 1995], we will instead compute
an over-approximation. This will result in a conservative switching set depending on
the accuracy of the computation. Second, this computation is defined from the system’s
current state x, which is not available offline. In order to resolve this issue, we propose
an online, real-time reachability computation method in the next section. After that,
in Section 5, we will evaluate the conservatism in the switching set due to the over-
approximation in the proposed algorithm.

4. REAL-TIME REACHABILITY ALGORITHM
Hybrid systems reachability computations have been traditionally computed offline,
and are both memory and processor intensive operations. In Section 3, we have il-
lustrated several reasons to perform the reachability computation at runtime. This
requires a reachability algorithm capable of use within a real-time system. In this sec-
tion, we describe a real-time reachability algorithm with the following key features:

— High-performance for a quick runtime for short reachability times.
— The ability to check the three conditions from Theorem 6.
— No dynamic data structures (or large memory preallocation) or recursion, for us-

ability in a real-time system.
— No dependence on complex external libraries (only the C standard library) that most

if not all other reachability approaches use.
— Iterative improvement in accuracy with increased computation time.
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The last point is important because it allows the reachability task to be scheduled in
the framework of imprecise real-time system computation [Liu et al. 1994]. In this
framework, each task produces a partial result that is usable and improved upon as
more computation time is added (this is sometimes called an anytime algorithm). In
particular, the proposed reachability algorithm is based on the milestone approach [Lin
et al. 1987], where partial results are recorded at various points during the execution,
and the last-recorded values are used when the final result is needed. This is in con-
trast to the traditional real-time systems execution model where each task has a fixed
worst-case execution time (WCET) [Liu and Layland 1973].

We now present the real-time reachability algorithm that is suitable for real-time,
online, computation that satisfies the above requirements. We distinguish between
reach-time, which is the time we are computing reachability for, and runtime, which
is the duration of (wall) time the method is allowed to run. Recall that the types of
hybrid systems we consider are ones where the state invariants are disjoint and cover
the continuous state Rn, there are no reset maps in the transitions between discrete
states, and the guards of incoming transitions are defined by the state invariants. In
these piecewise systems, the state of the hybrid automaton can be determined solely
by the continuous state, although different differential equations can be used in dif-
ferent parts of the state space. This is applicable to many state-feedback continuous
systems with saturation (such as those using gain scheduling controllers) since the
states where saturation occurs are typically disjoint from the unsaturated states (be-
cause the actuator command is a function of the state), and the continuous states do
not jump along the saturation boundary.

To employ the real-time reachability algorithm, as in our earlier work [Bak et al.
2011], the user defines the system dynamics through a function (a function written
in the C language in this implementation) that returns the minimum and maximum
derivative in each dimension given an arbitrary box of the state space. The derivative
needed in the algorithm is always in the outward direction of the box of states being
tracked. The tracked box has 2n faces, where n is the number of dimensions. For each
of the n dimensions, these faces are represented by a minimum face, and a maximum
face. That is, there are total 2n minimum and maximum faces, each of which refers to
particular faces of a hyperrectangle used to represent portions of the set of reachable
states. If the minimum face is being considered, the minimum of the derivative is used,
as this may (but not necessarily so) push the tracked states outward from the hyper-
rectangle. If the maximum face is being considered, the maximum of the derivative
is used for the same reason. Nonlinear dynamics are permitted in this approach, so
long as the user-provided function maximizes or minimizes the nonlinear derivatives
within an arbitrary box. Notice that this does not require solving the differential equa-
tions (which is generally a harder problem), since the bounds are on the derivatives
themselves. Furthermore, we require the derivatives are defined in the entire state
space, and that they are bounded.

The real-time reachability algorithm is based on mixed face lifting [Dang and Maler
1998; Dang 2000]. This approach is a flow-pipe construction method, which means that
snapshots of the reachable set of states are computed at increasing points in reach-
time, and reasoning is done about which states can be encountered between snapshots.

To create a real-time implementation, we use boxes (n-dimensional hyper-
rectangles) as our representation of the set of states. Over long reach-times, this repre-
sentation can be problematic because, if the actual reachable set of states is not a box,
error is introduced by over-approximating it as one (called the wrapping effect [Moore
1966]). However, since we only need to compute reachability for short reach-times (δ+α
from Theorem 6), a simpler, faster, representation is preferred to better long-term error
control. In mixed face lifting, the dynamics along each face are over-approximated by
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Algorithm 1 The real-time reachability algorithm uses a desired reach-time step to
tune its runtime based on the available computation time.

1 Box currentBox := in i t ia lBox

3 while ( reachTimeRemaining > 0)
Box [ ] nebs = constructNeighborhoods ( currentBox , reachTimeStep )

5
crossReachTime := minCrossReachTime ( nebs )

7 advanceReachTime := min( crossReachTime , reachTimeRemaining )
currentBox := advanceBox ( nebs , advanceReachTime )

9
reachTimeRemaining := reachTimeRemaining − reachTimeToAdvance

11 end while

the maximum derivative along that face. The reach-time is then advanced uniformly
along all faces (i.e., in all directions).

We modify the original mixed face lifting algorithm to make it usable in a real-
time setting. In particular, instead of using the desired error in order to control the
neighborhood width around each face [Dang 2000], we use a desired reach-time step
to control neighborhood widths. This parameter allows us to tune the total number
of steps used in the method, and therefore alter the runtime. After the given reach-
time is obtained, the desired step size is decreased (which reduces the width of the
neighborhoods, and therefore the derivative error at each step) and the computation is
restarted. In our algorithm, initially we use a time step which is some factor, say one
tenth, of the desired reach time. The decrease is computed by dividing the time step
by two. In this way, the algorithm will produce progressively more accurate answers,
for as much runtime as the task is given.

The high-level algorithm, given a fixed desired step size (reachTimeStep), is given
in Algorithm 1. For a box, there are two faces for every dimension (one for each of the
minimum and maximum faces along that dimension), and there are two corresponding
face neighborhoods (regions where the face may advance through during the current
time step) for every dimension. The neighborhoods, nebs, are constructed based on the
desired reach-time step. This neighborhood construction process will be elaborated on
shortly.

Next, the minimum reach-time for any point along each face to cross the correspond-
ing neighborhood in the corresponding direction is computed. What this means is that,
for example in the two-dimensional example of Figure 3, the minimum reach-time for
any point along the left face of currentBox to cross to the left side of nebs[0] in the
x direction is computed, as well as the minimum reach-time for any point along the
right face to cross nebs[1], as well as the neighborhoods in the y directions, and then
the minimum of all of these is returned. This is computed by looking at the minimum
or maximum derivative within the box for each neighborhood (from the user-provided
derivative bounds function), as well as the width of the neighborhood along the corre-
sponding dimension.

Finally, the currentBox at the next reach-time step is computed based on the neigh-
borhoods and computed reach-time to advance (which may be reduced if it exceeds
reachTimeRemaining). This is done by advancing each face by the maximum deriva-
tive in the outward direction in its neighborhood (from the user-provided derivative
bounds function) multiplied by advanceReachTime.

The novel aspect of this face lifting reachability algorithm is that the widths of the
neighborhoods are tunable by the reachTimeStep parameter. The neighborhood con-
struction (the constructNeighborhoods function) proceeds in three steps:
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currentBox
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nebs[2]

nebs[3]y

x

Fig. 3: The neighborhood
widths are determined by
reachTimeStep and the
derivatives along the faces of
currentBox.

nebs[1]

Fig. 4: Although the derivative along the face
may be inward-facing, the derivative in the
neighborhood can still be outward facing. The
first condition of step 3 in the neighborhood
construction process checks for this and recon-
structs the neighborhoods if such a situation oc-
curs. Here, nebs[1] would be updated to an
outward-facing neighborhood, which would re-
quire subsequent reconstruction of the other
neighborhoods (because the edges overlap).

(1) The maximum outward derivative along each face of currentBox is computed. One
neighborhood is constructed for each face, where the width of the corresponding
neighborhood is based on the derivative (the width is the derivative multiplied by
the passed-in desired reachTimeStep).

(2) The neighborhood boxes are all constructed based on the computed widths, such
that the edges overlap as shown in Figure 3. We call a neighborhood constructed
on the inside of the corresponding face an inward-facing neighborhood (such as
nebs[1] in the figure).

(3) The outward derivatives in the constructed neighborhoods are computed with the
user-provided function. If either (1) an inward-facing neighborhood contains an
outward-facing derivative, or (2) a derivative has doubled in value since the previ-
ous derivative computation for that neighborhood (which initially is the flat neigh-
borhood), the width of the neighborhood is recomputed and the process repeats by
returning to step 2.

The check in step 3 ensures two things. The first condition is necessary in case a
derivative was inward-facing in a previously-constructed neighborhood, but outward-
facing in the new, larger neighborhood. This case is shown visually in Figure 4. The
second condition guarantees that the reach-time to progress from a point on the face
through the corresponding face neighborhood is at least reachTimeStep/2. Due to
this, we can bound the maximum number of iterations of the while loop as the desired
reach time divided by reachTimeStep/2. Since the edges of the neighborhoods over-
lap, the neighborhoods of the other faces need to be reconstructed as well, which is
why the algorithm backtracks to step 2.

The number of times the neighborhood construction backtracks from step 3 to step 2
is also bounded. This is because a face can flip from inward-facing to outward-facing
only once, and since it was assumed there is a maximum derivative in the state space,
the observed derivative can only double a finite number of times.

The imprecise computation version of the algorithm proceeds by running Algo-
rithm 1 repeatedly, decreasing reachTimeStep after each repetition. In our imple-
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mentation, after each execution reachTimeStep was halved, although strategies
other than halving are also possible (this is a trade off between the time between
milestones and the error reduction obtained at each iteration). When the deadline is
reached (or the real-time reachability task is stopped), the most recent reachability
result is used as the output. For this reason, the exact number of iterations of the
neighborhood construction loop is not too useful, as long as it has an upper bound, and
we can adjust it with reachTimeStep.

If the derivative doubles several times, the tracked box will be pessimistic, since
the conservatism comes from over-approximating a derivative in a neighborhood by
its maximum value. For this reason, we also set a threshold in the loop for how large
the tracked boxes are allowed to get (not shown), and if it is exceeded we immediately
halve reachTimeStep and restart the loop. If the number of backtracks to step 2 is
small (which is true in practice), each advancement of time takes O(n) where n is the
number of dimensions in the system.

From the four desired properties of a real-time reachability algorithm mentioned
earlier, this algorithm is quick (no exponential complexity operations), requires no dy-
namic memory or recursion, and can iteratively provide a better answer. In order to
satisfy the remaining desired condition, we need to provide the ability to check the
three conditions from Theorem 6. Rather than first computing the reachable set of
states and then checking the conditions in that set (which would require dynamic stor-
age to store the reachable set), we instead modify the core algorithm in Algorithm 1
to do the checks during the computation. Conditions (1) and (2) of the theorem deal
with the safety of reachable states at intermediate reach-times. This can be checked
inside the while loop by taking the convex hull of currentBox before and after the
advanceTime call, and passing that to a function which ensures the hull does not con-
tain a state which violates the system constraints. For checking condition (3), the final
currentBox value can be used. Furthermore, these checks can be done at each itera-
tion of the refinement; if a reachTimeStep is found such that the three conditions of
the theorem are satisfied, no further refinement is necessary (and the complex/smart
controller can be used).

5. EVALUATION
We now present an evaluation of the proposed methodology.3 The real-time reachabil-
ity approach computes the set of reachable states for the safety controller as depicted
in the automaton representing the Simplex architecture in Figure 5. We demonstrate
the method through two related case studies: a nonlinear inverted pendulum and a
linear inverted pendulum. As another benefit of the real-time reachability method de-
scribed in this paper, it can also work even if the LMI approach cannot be used. We
note that the LMI approach in general cannot be used for nonlinear systems, so its
application is limited. In order to directly show the advantage of the approach in the
linear case, we use the same case study that demonstrated the earlier, LMI-based
Simplex work [Seto and Sha 1999]. The linear inverted pendulum model is obtained
by linearizing the nonlinear inverted pendulum model, and overall, their results are
comparable and were used to validate against one another. Both models are briefly
discussed here, with more details on the nonlinear and linear models in the earlier re-
port [Seto and Sha 1999]. The system is an inverted pendulum with state constraints
and input saturation. The physical system is shown in Figure 6 and consists of a DC-
motor driven cart that moves along a 1-d track with a pendulum arm attached by an

3As it is difficult to present all the details necessary to replicate our results in the form of a paper, the source
code implementation of the real-time reachability algorithm and our models are available as supplementary
material and online at: http://www.verivital.com/rtreach/.
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Fig. 5: Hybrid automaton for the Simplex architecture on which the real-time reacha-
bility computation is performed for the safety controller mode, where a formal model
is available. Here ∆ is a control period, c is a timer, GS is a guard governing the transi-
tion from the safety to complex controllers, Gc is a guard governing the transition from
the complex to safety controllers, and FS and FC respectively denote the dynamics of
the overall closed-loop system when using the safety and complex controllers.

Fig. 6: An inverted pendulum system keeps a rod upright at an unstable equilibrium
point by controlling a cart at its base.

angular joint to the cart. The control objective is to keep the angle θ of the pendulum
arm at 0◦ measured from the vertical (i.e., to keep the arm upright).

There are four state variables: cart position p, cart velocity v = ṗ, pendulum arm
angle θ, and pendulum arm angular velocity ω = θ̇. We denote x as the state vector
and p as the position, seen together next in Equation 1:

x =


p

v

θ

ω

 =


p

ṗ

θ

θ̇

 , yielding the dynamics ẋ =


ṗ

p̈

θ̇

θ̈

 =


v

v̇

θ̇

ω̇

 . (1)

The system is subject to physical constraints. The range of p is between [−1, 1] me-
ters, ṗ is between[−1.0, 1.0] meters/second, θ is between [−15, 15]

◦, and θ̇ is uncon-
strained although the constraints on ṗ do impose limits on θ̇). We ignore static friction
(with respect to the cart wheels and ground, and with respect to the pendulum arm and
joint) and take the armature inductance (La = 18 millihenries) to be 0 henries hence
reducing the order of the system by making the armature current state variable Ia a
function of only Va. Without this simplification, two control states would be necessary.
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(a) (b) (c)

Fig. 7: Overapproximation of the set of reachable states computed by the real-time
reachability method for the nonlinear inverted pendulum model Equation 2 and Equa-
tion 3 for different amounts of computation runtime, 2 ms in (a), 6 ms in (b), and 20
ms in (c).

5.1. Nonlinear Inverted Pendulum
The inverted pendulum’s state evolves according to a nonlinear differential equation
ẋ = f(x, u). Specifically,

f(x, u) =


ṗ

p̈

θ̇

θ̈

 =


v

−
1
3 l

2m (C1+fc)− 1
2 lm cos (θ) (C2+fp)

D

ω

− M̄ (C2+fp)− 1
2 lm cos (θ) (C1+fc)

D

 . (2)

Here, Dl = 4M̄ − 3m, B̄ =
KgBm
r2 +

K2
gKiKb
r2Ra

, Bl =
KgKi
rRa

, M̄ =
m+M+(KgJm)

r2 , fc =

Bx v+Ax e
−Cx |v| sign (v), fp = Bθ ω+Aθ e

−Cθ |ω| sign (ω), D = l2m
(
M
3 + m

3 +
JmKg

3 r2

)
−

l2m2 cos (θ)2

4 , C1 = v
(
BmKg
r2 +

KbKg
2Ki

Ra r2

)
− lmω2 sin (θ)

2 , and C2 = − g lm sin (θ)
2 . The pen-

dulum model involves the following parameters: g is gravity, Ra is the armature resis-
tance, r is the driving wheel radius, Jm is the motor rotor inertia, Bm is the motor’s
coefficient of viscous friction, Bθ is the pendulum joint’s coefficient of viscous friction,
Ki is the motor torque constant, Kb is the motor back-e.m.f. constant, Kg is the gear
ratio, M is the cart mass, m is the pendulum arm mass, l is the pendulum arm length,
fc is the static friction force, and fp is the viscous friction force. After evaluating values
for constant parameters (the same as those used in [Seto and Sha 1999]), we have:

f(x, u) =


ṗ

p̈

θ̇

θ̈

 =


v

− 0.020833ω2 sin(θ)−0.059221v+0.25 cos(θ)(0.0001ω+2.45 sin(θ))
0.0625 cos(θ)2−0.604167

ω
0.000725ω+17.7625 sin(θ)−0.25 cos(θ)(−0.25 sin(θ)ω2+0.710657v)

0.0625 cos(θ)2−0.604167

 . (3)

As illustrated in Figure 7 by the decreasing size of the overapproximation of the set
of reachable states, the more runtime given to the real-time reachability algorithm,
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the more accurate the result (see also Figure 8 and Tables I, II, and III). These results
illustrate that the real-time reachability algorithm presented in this paper is effective
even for hybrid systems with nonlinear differential equations. Thus, the results are
widely applicable to many realistic systems.

5.2. Linearized Inverted Pendulum
As discussed in Section 5.1, the system is in general nonlinear, ẋ = f(x, u), but to
apply the LMI-Simplex approach as a part of the unified Simplex method described
in this paper, we next work with a model linearized around the origin, which is the
equilibrium point:

ẋ = Ax+Bu.

The linearization is justified since the control objective is to stabilize the system in a
neighborhood of the vertical equilibrium, defined in this coordinate system as θ = 0◦,
which is at the origin.

The plant system matrix and input vector used in Equation 5.2 are:

A =


0 1 0 0

0 −a22 −a23 a24

0 0 0 1

0 a42 a43 −a44

 and B =


0

b2

0

−b4

 , (4)

where a22 = 4B̄
Dl

, a23 = 3mg
Dl

, a24 = 6Bθ
lDl

, a42 = 6B̄
lDl

, a43 = 6M̄g
lDl

, a44 = 12M̄Bθ
ml2Dl

, b2 = 4Bl
Dl

,
and b4 = 6B1

lDl
, for all the parameters defined in Section 5.1. Using the parameters from

the earlier Simplex report [Seto and Sha 1999], the A and B matrices used in Equa-
tion 5.2corresponding to Equation 4 are:

A =


0 1 0 0

0 −10.95 −2.75 0.0043

0 0 0 1

0 24.92 28.58 −0.044

 and B =


0

1.94

0

−4.44

 . (5)

The system is stabilized by linear state feedback of the form ẋ = (A+BK)x. The
control input, u = Kx is the armature voltage of a DC-motor (Va) and is constrained
between [−4.95, 4.95] volts. Additionally, this control saturation prevents the system
from being globally stable. The safety controller is designed following the LMI-based
Simplex approach described in Section 2. The LMI approach outputs a set of gains for
the safety control K, such that when the input u = Kx is used, the system will remain
inside the ellipsoid also output by the method. Without saturation, the system evolves
according to ẋ = (A+BK)x.

The solution to this is x(t) = e(A+BKσ)tx0 , where x0 ∈ R4×1 is an initial condition
vector. Note that, as only θ and p are observable (in the control theoretic sense, but that
is, are measured by sensors), θ̇ and ẋ are constructed by the first-order approximations
θ̇(t) = [θ(t)−θ(t−mTs)]

mTs
and ṗ(t) = [p(t)−p(t−mTs)]

mTs
, where m is an integer greater than one

(chosen as 2 by experimentation). In the safety and experimental controllers, this first-
order approximation is accomplished by storing a buffer of previous sampled values.
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(a) (b) (c)

Fig. 8: Overapproximation of the set of reachable states computed by the real-time
reachability method for the linearized inverted pendulum model Equation 4 and Equa-
tion 5 for different amounts of computation runtime, 3 ms in (a), 7 ms in (b), and 16
ms in (c). The plots illustrate 2-d projections of the reachable sets for the linearized
inverted pendulum from the state x = [−0.1, 0.85, 0, 0]T for reach-time 0.73. Here,
the initial state is outside of the LMI-recoverable ellipsoid (xTPx = 1.56), but can
be proven to reenter the ellipsoid after 0.73 reach-time, despite the presence of input
saturation.

5.3. Feasible and Stabilizable Regions
Next, we discuss how to compute the feasible and stabilizable regions, defined pre-
viously in Section 2.1. We use YALMIP [Löfberg 2004], the SDPT-3 [Toh et al. 1999]
solver, and Matlab to solve the following semidefinite quadratic programming problem
and under-approximate the recoverable states for the safety controller. For computing
the stabilizable region for the safety controller, we find the gain vector during the opti-
mization. The problem is to maximize the volume of the ellipsoid (and thus maximize
the set of recoverable states) defined by:

R = {x | xTPx ≤ 1}. (6)

The LMI to find the positive definite P may formulated as:

min log detQ−1

subject to QĀT + ĀTQ < 0, Q > 0, αTkQak ≤ 1, k = 1, . . . , n,

where Ā = A+BK, Q = P−1, and the αk for k ∈ {1, ..., n} encode the state and control
constraints. Full details of this process are given in Appendix A2 of the LMI-Simplex
technical report [Seto and Sha 1999].

Variants of this process may either take a given gain vector K or find a gain vector
K [Seto and Sha 1999]. For our use, the output of this process is both the gain vector K
and the matrix P defining a subset of the recoverable statesR, such that when the gain
matrix is used for the safety controller, and the state is in R, the state is guaranteed
to stay in R indefinitely (since V (x) = xTPx is a Lyapunov function). Furthermore, all
the constraints (including saturation limits) are satisfied for all states in R. The gain
vectorK produced for the described pendulum system is [0.4072, 7.2373, 18.6269, 3.6725].
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5.4. Real-Time Reachability Design
In order to make use of the real-time reachability algorithm described in Section 4,
the user must provide a function that minimizes / maximizes the derivative in an
arbitrary box of the state space. The model used of the system is the version described
above, linearized about the origin. Thus, the system dynamics are ẋ = Ax+Bu. When
computing reachability for the safety controller, the gain vector K computed using the
LMI approach is used, and u = Kx. However, due to saturation, u is limited to be in
the range [−4.95, 4.95] volts.

An alternative unified design could make use of the nonlinear pendulum model
from Section 5.1, since the described reachability algorithm is not limited to linear
systems. An advantage of such a design would be that it would permit the system
state to go outside of the linearization region (in our formulation with the LMI, the
recoverable region of Definition 2 specified in Lemma 5). It would be interesting as
a future investigation to see how much more could be gained by allowing states out-
side of the linearization region, although such a gain probably strongly depends on
the system being analyzed and the size of the linearization region. For our purposes,
Lyapunov’s indirect method ensures all states within the LMI ellipsoids are locally
asymptotically stable. We recall that roughly Lyapunov’s indirect method states that
a nonlinear system is locally (in a neighborhood of the equilibrium point) asymptot-
ically stable if its lineraization about an equilibrium point is globally asymptotically
stable [Khalil 2002]. The bound specified in the proof of Lyapunov’s indirect method
gives a conservative underapproximation of the linearization region (what is typically
called the domain of attraction). More sophisticated piecewise linear Lyapunov func-
tions would yield less conservative estimates of domain of attraction.

For linear systems, the minimum and maximum derivative for any box in the state
space occurs at a corner of the box. Thus, it is sufficient to sample all the corners and
take the minimum and maximum due to convexity and existence of optima of convex
(here, linear) functions over convex sets. This will scale exponentially with the number
of dimensions (in the four-dimensional model here, there are 16 corners to sample), so
for larger-dimension systems it may become necessary to examine the signs of the
linear matrix in order to pick out the min/max corner more efficiently. One additional
complication of the linearized model is the presence of saturation. This is handled by
computing the input u at each corner, and capping it at the saturation limits before
computing ẋ = Ax + Bu. To summarize, for each corner of the passed-in box, ẋ is
computed, and then the minimum or maximum is taken over all the corners. The C
language program that computes ẋ for a given dimension, given a point (corner of the
box), is provided in Algorithm 2.

Another function that must be provided by the user is used to determine whether a
given box is contained entirely inside the recoverable region R. This is used to check
whether the final state (box) is guaranteed to be recoverable. To do this for a single
point, it suffices to know the current state x and the potential matrix P that defines
the recoverable ellipsoid (output by the LMI optimization), and checking xTPx ≤ 1. To
check this condition for a box, we check every corner point of the box.

One further function provided by the user checks is, during computation, whether
the reachable region contains an unsafe state. In our case, this is a state that is outside
of the linearization region where the model is considered valid. Since the constraints
are all linear, it suffices to check if all of the corners of each box are in the lineariza-
tion region. This computation is done at runtime to prevent saving the reachable set
of states. The box passed in to this function consists of the bounding box of subse-
quent steps of the real-time reachability algorithm, which represents the sets of states
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Algorithm 2 This function returns the derivative at a given point. The min/max
derivative function would compute the derivative at each corner of a passed-in box,
and take the minimum/maximum. The inputs are a particular dimension dim, the
number of total dimensions n, a pointer to a state vector state, which is an array
of length n, and a control saturation u_sat. For the pendulum case study, n = 4 and
u_sat = 4.95.

1 double der ivat ive_at_point ( int dim , int n , double * state , double u_sat ) {
double rv = 0;

3 double u = 0;

5 / / ca l cu late the A * x part
for ( int i = 0 ; i < n ; ++ i )

7 rv += A[dim ] [ i ] * state [ i ] ;

9 / / ca l cu late the B * u part , s tart ing with u = K * x
for ( int i = 0 ; i < n ; ++ i )

11 u += K[ i ] * state [ i ] ;

13 / / account for input saturation
i f (u < −u_sat ) u = −u_sat ;

15 e lse i f (u > u_sat ) u = u_sat ;

17 / / B * u
rv += B[dim ] * u ;

19 return rv ;
}

reachable between two time steps, say ti and ti+δ, where δ is the advanceReachTime
in Algorithm 1.

5.5. Comparison between Simplex with LMI and Real-Time Reachability
We now provide a comparison between control based on the R from the LMI approach
above, and the switching condition produced by the proposed unified approach that
uses real-time reachability. For real-time reachability, we implemented the algorithm
from Section 4. In order to be usable in a real-time control system, our implementa-
tion was written in C and had no dynamic memory allocations or recursion, and used
no nonstandard external libraries. In our implementation, we would call the real-time
reachability C code from within Matlab on either Linux and Windows. For the ex-
periments described here, we first used a modern laptop with a quad-core Intel Core
i7-2800MQ processor and 32GB RAM (although the computation does not require sig-
nificant memory as described earlier). Next, we additionally evaluated the methods
on embedded platforms. The first embedded platform is a BeagleBone Black devel-
opment board with a 1GHz ARM processor and 512MB RAM running Debian Linux
with the Xenomai real-time Linux extensions. The second embedded platform is an
Arduino Yun, which has both a 400MHz MIPS processor and a 16MHz 8-bit Atmel
AVR ATmega32u4 processor, and we used the ATmega32u4 for our evaluation, in part
to validate our claims on minimal resources requirements. Together, these evaluations
validate our claims that the real-time reachability method is cross-platform and re-
quires minimal processing resources. The effort to port from the original x86 imple-
mentation [Bak et al. 2014] to both the ARM and AVR implementations took about
two weeks of development time, which from a systems development standpoint is min-
imal given the insurmountable difficulties that would exist in porting all the libraries
required in other existing hybrid systems reachability approaches.
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Fig. 9: Estimated projections are
shown of the LMI-Simplex recoverable
region R (cyan center set), real-time
reachability recoverable region (green
middle set), Simulink/Stateflow sim-
ulations that converge (yellow mid-
dle set), and simulations that diverge
(red exterior set) where θ = 0.19 rad
(~10.89◦) and θ̇ = 0.18 rad (~10.31◦) per
second.

Fig. 10: Estimation of LMI-Simplex re-
coverable region R (cyan center set),
real-time reachability recoverable re-
gion (green interior set), Simulink/S-
tateflow simulations that converge
(yellow middle set), and simulations
that diverge (red exterior set) shown
on the projection of θ and θ̇ = ω onto
the p = 0 m and v = 0 m/s plane.

One remaining input for the algorithm is the reach-time necessary for a specific state
to reenterR (the time δ+α from Theorem 6). This was approximated using Euler-based
simulation, which added a fixed overhead at the start of the computation. For states
slightly outside of R, the necessary reach-time was typically in the hundreds of mil-
liseconds. Since the reachability computation incurs error due to overapproximation,
we compute the set of reachable states for slightly more (1.2 times) than the time the
simulation took to reach R. If the Euler simulation did not enter R by some upper
bound (4 seconds reach-time), the state was considered unrecoverable. A projection of
the computed overapproximation of the set of reachable states for various runtimes is
shown in Figure 8. As more computation runtime is added, the accuracy increases, as
indicated by the size of the set decreasing.

One difference between the approaches is that the LMI-Simplex method needs to
reason about one-step reachability of the plant state for any complex/smart controller
command in order to compute the distance d in Figure 2. The proposed online ap-
proach, in contrast, knows what complex-controller command will be applied and can
use that as part of the reachability computation. For this reason, we restrict the com-
parison to only examine the recoverable region for the safety controller. In this way,
we do not give our approach the advantage of knowing exactly what command the
complex/smart controller is using.

Our comparison shows three different approaches for estimating the recoverable
region (Figures 9 and 10). First, using the LMI-only Simplex we get a subset of the
recoverable region R. Next, using a simulation-based analysis in Matlab, we can see
an approximation of all recoverable states, which would be an ideal switching set. If
the simulation returns to a steady state then the initial point is marked as existing in
the recoverable set. Finally, we show the states that the real-time reachability-based
approach can guarantee as recoverable, which is somewhere between the previous two
regions. For these experiments, in order to be runnable in the control loop, the runtime
for the reachability code was capped at 20 ms.
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The stabilizable regions for p and ṗ of the controller is seen in Figure 9 and the re-
gions for θ and θ̇ of each controller are in Figure 10. One reason why the runtime reach-
ability approach can recover more states is that the recoverable set contains states
where input saturation occurs, whereas the set R contains no such states. The largest
improvements in the switching set for the real-time approach occur under this satu-
ration situation, because reachability is able to reason about the behavior of the satu-
rated system. Another reason for the improvement is that the LMI-produced switching
set must be an ellipsoid, whereas the true set of recoverable states can be an arbitrary
(even non-convex) shape. This is seen in Figure 9, where, since the projection is near
the maximum values of θ and θ̇, the LMI ellipsoid projected onto this plane is small.
In Figure 10 the LMI-Simplex recoverable region is clearly ellipsoidal (as expected
from Equation 6). In both Figures 9 and 10, the benefit of using real-time reachability
is highlighted by the larger provably safe recoverable region. In both cases, even for a
20 ms runtime, the set of states proven recoverable using real-time reachability is very
close to the simulations that converge, which means that the real-time reachability is
close to optimal in estimating the actual recoverable region.

Next, we evaluated the effect of varying the runtime in real-time reachability
method on the resultant switching set, which is summarized in Table I. For this ta-
ble, we sampled the state-space uniformly between the state bounds presented ear-
lier using 15 points in each dimension (so 154 = 50625 points) in the hyper-rectangle
−1.25 ≤ p ≤ 1.25 (m), −1.2 ≤ ṗ ≤ 1.2 (m/s), −20 ≤ θ ≤ 20 (degrees), and −30 ≤ θ̇ ≤ 30
(degrees/s). The columns LMI, Real-Time, Sim, and Unrecov list the number of recov-
erable points for each approach (in terms of recoverable states, notice that LMI ⊆ Re-
alTime ⊆ Sim), as measured by the uniform sampling. The column Recoverable is the
comparison of the number of states verified safe in the proposed unified method with
real-time reachability over the earlier LMI-Simplex approach. The improvement is an
estimate of the increased state-space size (volume) allowed using our real-time reach-
ability method, over using only the LMI-based recoverable region. Since the real-time
recoverable states contain all the LMI-Simplex states, the improvement is calculated
as: (#RealTime Points + #LMI Points)/(#LMI Points). For a runtime of 20 ms, the im-
provement in volume of the switching set is estimated at 227%, whereas based on sim-
ulations we estimate the maximum possible improvement in Recoverable to be around
247% (calculated as (#Sim Points + #RealTime Points + #LMI Points)/(#LMI Points)).

We experimented with increasing the number of samples up to 30 points in each di-
mension, which yielded similar improvements, and in the limit as the number of sam-
ples tends to infinity, we would converge to the exact improvement. However, these
approximations are reasonable based on the consistency of our experimental results
(e.g., 20 ms runtime for 15 samples is about a 227% improvement, and it is also about a
230% improvement for 30 samples). As expected, as the runtime allowed for real-time
reachability increases, the improvement increases since the real-time reachability im-
plementation uses an anytime approach and refines the precision of the reachability
computation based on available runtime. Even for small runtimes (e.g., 5ms), the im-
provement is already significant at over 200% more provably recoverable states, which
makes the approach promising for implementation in real-time control loops.

5.6. Comparison on ARM and Arduino AVR ATmega32u4 Embedded Hardware Platforms
Next, we compare the benefit of using our real-time reachability approach versus the
LMI-Simplex method on actual embedded hardware platforms. The first hardware
platform is an ARM processor in the TI Sitara system-on-chip used in the CircuitCo
BeagleBone Black development kit. The specific ARM processor is an AM335x 1GHz
ARM Cortex-A8 with the NEON floating-point accelerator and access to 512 MB DDR3
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Table I. Intel Core i7 x86-64: PC evaluation summary of experiments varying run-
time.

Runtime (ms) LMI RealTime Sim Unrecov Recoverable

5 5473 5971 14323 24858 209%
20 5473 6753 13541 24858 223%
40 5473 6974 13320 24858 227%
50 5473 7081 13213 24858 229%
75 5473 7109 13185 24858 230%
100 5473 7183 13111 24858 231%
200 5473 7273 13021 24858 233%
500 5473 7338 12956 24858 234%

1000 5473 7382 12912 24858 235%
2000 5473 7424 12870 24858 236%
3000 5473 7428 12866 24858 236%
4500 5473 7448 12846 24858 236%
6000 5473 7455 12839 24858 236%

RAM. The experiments were conducted on a Debian Linux distribution with a kernel
modification to use the Xenomai real-time Linux extensions, enabling use of real-time
operating system (RTOS) features within Linux. A summary of experimental results
are reported in Table II. Here we can see that for reasonable runtimes even on an
embedded platform (tens of milliseconds), the approach presented in this paper has
an improvement of around 1.5 to 2 times over the LMI approach. For runtimes on
the order of hundreds of milliseconds to seconds, the approach yields similar improve-
ments to the desktop implementation. For this table (as with Table I), we sampled the
state-space uniformly between the state bounds presented earlier using 15 points in
each dimension (so 154 = 50625 points) in the same hyper-rectangle used in the earlier
experiment, specifically −1.25 ≤ p ≤ 1.25 (m), −1.2 ≤ ṗ ≤ 1.2 (m/s), −20 ≤ θ ≤ 20
(degrees), and −30 ≤ θ̇ ≤ 30 (degrees/s).

The second hardware platform is the Arduino Yun. The Yun has both a 400 MHz
MIPS processor and a 16 MHz 8-bit Atmel AVR ATmega32u4. For this evaluation,
we use the 16 MHz ATmega32u4 processor, which is representative of small, mem-
ory constrained embedded devices. The ATmega32u4 has available 2.5 KB SRAM, 32
KB of flash memory, but because the real-time reachability method does not use any
dynamic memory allocation and does not rely on any non-standard libraries, we are
able to run it on the platform in spite of the processing and memory constraints. Al-
though the implementation runs with the restricted resources, the runtime is notice-
ably higher than on the with other processors. In this case, the system would only
stand to benefit if the dynamics were sufficiently slow (so a runtime of seconds would
be tolerable), or if we further optimized parts of the implementation for the limited re-
sources (changing software floating-point computations to use fixed-point, since there
is no FPU on the ATmega32u4. A summary of experimental results for the AVR are
reported in Table III. For this table (unlike in Tables I and II), we sampled the state-
space uniformly between the state bounds presented earlier using 12 points in each
dimension (so 124 = 20736 points) in the same hyper-rectangle as the earlier experi-
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Table II. BeagleBone Black ARM: Embedded system evaluation summary of experi-
ments varying runtime.

Runtime (ms) LMI RealTime Sim Unrecov Recoverable

5 5473 2270 18024 24858 141%
20 5473 3832 16462 24858 170%
40 5473 4613 15681 24858 184%
50 5473 4617 15677 24858 184%
75 5473 5350 14944 24858 198%

100 5473 5361 14933 24858 199%
200 5473 5968 14326 24858 209%
500 5473 6721 13573 24858 223%
1000 5473 6952 13342 24858 227%
2000 5473 7107 13187 24858 230%
3000 5473 7110 13184 24858 230%
4500 5473 7216 13078 24858 232%
6000 5473 7216 13078 24858 232%

Table III. Arduino Atmel AVR ATmega32u4: Embedded system evaluation summary
of experiments varying runtime.

Runtime (ms) LMI RealTime Sim Unrecov Recoverable

100 2088 0 8226 10422 100%
500 2088 192 8034 10422 109%

1000 2088 566 7660 10422 127%
2000 2088 879 7347 10422 142%
3000 2088 882 7344 10422 142%
4500 2088 1198 7028 10422 157%

ments, specifically −1.25 ≤ p ≤ 1.25 (m), −1.2 ≤ ṗ ≤ 1.2 (m/s), −20 ≤ θ ≤ 20 (degrees),
and −30 ≤ θ̇ ≤ 30 (degrees/s). While the AVR is too resource constrained to be able
to improve the states usable in the control period time (of 20 ms) and requires on the
order of hundreds of milliseconds to seconds to yield an improvement, this is to the
best of our knowledge, the first demonstration of a reachability method in a resource
constrained embedded system of this scale. We also highlight that simply performing
a simulation on the AVR requires about hundreds of milliseconds of runtime.

6. RELATED WORK
The Simplex Architecture [Sha 2001; Seto and Sha 1999] has been used extensively
to provide guarantees for systems that use untrusted logic. It has been used for sys-
tems ranging from off-road vehicles [Bak 2009], to models of airplanes [Seto et al.
1999], to fleets of remotely controlled cars [Crenshaw et al. 2007], to networked con-
trol systems [Yao et al. 2013]. Recently, variants of Simplex have been proposed to
account for physical-system (plant) failures [Wang et al. 2013], faults in the OS or
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microprocessor [Bak et al. 2009], and to check for security intrusions [Mohan et al.
2013]. Simplex is closely related to Run-Time Assurance (RTA) methods [Clark et al.
2013; Murthy 2012]. RTA methods were used to construct a safe supervisory control
system for a simulation of a high-altitude unmanned aerial vehicle [Aiello et al. 2010].
Here, a transition function that projects the current state to a future state was used
to determine the switching boundary. This transition function as well as the recov-
erable states were determined through extensive simulation and online prediction of
trajectories. The proposed real-time reachability approach in this work could be used
to provide verified bounds on the transition function used in RTA methods. This work
also mentions the interesting idea of using an online/offline design for switching mod-
ule logic by leveraging a simplified model of the plant dynamics, and taking the model
error into account when doing the switching, which could reduce the complexity of the
online reachability computation.

Earlier work has also integrated traditionally non-real-time search approaches
within real-time systems [Musliner and Durfee 1995]. In this approach, AI planning
techniques were discussed in the context of real-time systems, and two categories of
possible integation were proposed: 1. the non-real-time algorithms were adapted to
run in a real-time fashion, or 2. they were run in a supervisory mode, not as part of
the real-time control loop. Real-time reachability would fall in the former category in
this classification.

A related notion to Simplex in control theory is that of a viability kernel [Aubin
1991]. A viability kernel is a set of states where there exists a trajectory that stays
within a predefined environment. Viability kernels can be approximated for linear sys-
tems, for example, by using analysis of random directions in the state space [Gillula
et al. 2014]. Reachability analysis of hybrid systems has also been extensively re-
searched in the last 20 years [Guéguen et al. 2009]. Reachability analysis tools exist
for classes of systems with timed [Bengtsson et al. 1996], rectangular [Henzinger et al.
1997; Frehse 2008; Johnson and Mitra 2014], linear [Frehse et al. 2011; Frehse 2008],
and nonlinear [Ratschan and She 2007; Tiwari 2008; Bak 2013a; Chen et al. 2012;
Benvenuti et al. 2014; Duggirala et al. 2015] dynamics, with varying degrees of accu-
racy and scalability. Other bounded model checking (BMC) tools for hybrid systems
built on satisfiability modulo theories (SMT) solvers also exist [Eggers et al. 2011; Gao
et al. 2013]. However, to the best of our knowledge, the algorithms in earlier reach-
ability and BMC tools were all designed for offline analysis, and not for real-time,
in-the-loop computation. Specifically, real-time reachability requires performance to
be predictable, which is difficult to ensure when there are large external libraries,
huge code bases, and signifanct use of dynamic memory. For example, one popular
reachability analysis tool for affine hybrid automata is SpaceEx, which requires at
least eight external libraries: Parma Polyhedra Library (PPL) [Bagnara et al. 2008],
Boost C++ Libraries, GNU Multiple Precision Arithmetic Library (gmplib), GNU Lin-
ear Programming Kit (glpk), SUNDIALS (Solver Suite) [Hindmarsh et al. 2005], aaflib,
ublasJama, and TinyXML [Frehse et al. 2011].4 Another recent tool, C2E2 relies on
at least eleven external libraries: GNU Linear Programming Kit (glpk and pyglpk),
GNU Parser Generator (Bison), Fast Lexical Analysis (FLEX), Python, Python Pars-
ing Libraries (Python-PLY), GTK Libraries for Python (PyGTK), Plotting Libraries for
Python (Matplotlib), Packing Configurations Library (pkg-config), GNU Autoconf (au-
toconf), Python XML Library (lxml), and Parma Polyhedral Library (PPL).5 While sev-
eral of these libraries would not need to be executed in the reachability computation
(such as those related to parsing and package management), several libraries (PPL,

4http://spaceex.imag.fr/licensing-45
5https://publish.illinois.edu/c2e2-tool/download/
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gmplib, glpk, and SUNDIALS) are fundamental to the reachability computations. For
these core libraries, it would be essentially impossible to convert SpaceEx or C2E2 to a
real-time implementation, as several of these libraries are incredibly complex (specifi-
cally PPL, gmplib, glpk, and SUNDIALS).

The real-time reachability approach described in this paper primarily solves the
problem of computing the continuous successors in a hybrid automaton, although it can
also be applied invariant-disjoint hybrid dynamics. Research in computing continuous
successors is related to validated integration, which traditionally has been done using
interval analysis [Moore 1966], as well as intervals with preconditioning to reduce
wrapping-effect error [Stauning 1997]. More recently, Taylor models have also been
proposed as an alternative shown to provide superior long-term error control [Neher
et al. 2007], and this is has been integrated into a more full hybrid automaton model
checker [Chen et al. 2012]. However, the challenge for runtime approaches such as
the one proposed in this paper is more with quick computation of reasonable accuracy
rather than long-term error control, and we are unaware of any previous real-time
validated integration approaches.

Some recent work performs online reachability computation with existing, non-real-
time algorithms. This can be used, for example, when systems do not have statically-
known models [Bu et al. 2011]. This work, however, treats the reachability computa-
tion as a black-box, which may or may not complete (because it does not use a real-time
reachability algorithm). Another work also uses existing reachability approaches such
as PHAVer [Frehse 2008] in a medical safeguard system [Li et al. 2012], and results in
a system which may add safety, but only if the computation completes on time. While a
theoretical upper bound on execution time may be formulated due to decidability of the
particular class of hybrid automata considered [Li et al. 2014], the implementation of
PHAVer does not provide such guarantees, and it is not clear that such a bound would
be usable or too pessimistic. A real-time reachability algorithm that always provides
an answer like our approach could be integrated into both of these approaches.

Finally, the results of formal approaches are only as good as the model they are pro-
vided. Accurate system identification [Söderström and Stoica 1988] is therefore essen-
tial. The approach here reduces pessimism in the switching logic for a given model. Ac-
curacy and validation of the model itself is an important problem, but beyond the scope
of this work. Recent approaches from the hybrid systems community, however, have be-
gun made use of runtime monitors to do online checking of model accuracy [Mitsch and
Platzer 2014].

7. CONCLUSION AND FUTURE WORK
In this work, we have proposed an alternate unified design for Simplex that leverages
two existing design methodologies based on control-theoretic LMI optimization and
hybrid systems reachability. Our unified approach extends the region where the com-
plex/smart controller enabling smart autonomy can be used by leveraging a real-time
reachability computation, and thus decreases conservatism in the switching logic. Us-
ing a runtime of 20ms (which matches the control loop period time), we were able to
expand the set of states where the complex/smart controller could be used by 227%,
whereas we estimated, through simulation, that the maximum improvement possi-
ble was approximately 247%. Even with a reduced real-time reachability runtime of
5ms, we were able to improve upon the LMI-based Simplex design by 213%. On em-
bedded processors, we were also able to increase the complex/smart controller region
by a factor of 1.5 to 2.0, although for an 8-bit microcontroller the current implemen-
tation was not fast enough for use at the frequency of the control loop. This improve-
ment was demonstrated in an evaluation that uses the exact system previously used
to demonstrate the LMI-based Simplex design approach, an inverted pendulum with
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input saturation. The real-time reachability computation is able to predict the behav-
ior of the system despite saturation, significantly expanding the usable complex/smart
controller region.

To the best of the authors’ knowledge, this is the first work to present a viable
real-time reachability algorithm based on the real-time systems notion of imprecise
computation. The algorithm will always return an over-approximation of the set of
reachable states, with better accuracy as more computation time is given. The key
difference between online reachability compared with offline reachability, besides con-
strained runtime and resources, is that quick results are preferable to long-term er-
ror control. In our evaluation, for example, we were able to demonstrate significant
improvement in the complex/smart controller region by using tens of milliseconds of
computation time to bound the future behavior of the system for the next hundreds of
milliseconds. Together, our evaluation on actual embedded hardware platforms includ-
ing ARM processors and Atmel AVR microcontrollers illustrates the embedded usage
feasibility of using the real-time reachability method. Other reachability algorithms
also contain parameters which could be tuned to have some control over the compu-
tation time, such as the sampling time used in the Le Geurnic-Girard (LGG) scenario
in SpaceEx [Frehse et al. 2011], and we plan to investigate better approaches for real-
time reachability.

Real-time reachability has applications beyond just determining Simplex switch-
ing logic, however. We foresee future applications involving online system identifica-
tion, detecting sensor spoofing, runtime verification, and enabling a variant of model-
predictive control (MPC). To enable these applications, we are implementing code gen-
eration capabilities in the HYST model transformation and translation tool for hybrid
automata [Bak et al. 2015], which will enable creating implementations of the real-
time reachability algorithm for large classes of hybrid automata.
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Abstract—Satisfiability Modulo Theories (SMT) solvers have
been successfully applied to solve many problems in formal veri-
fication such as bounded model checking (BMC) for many classes
of systems from integrated circuits to cyber-physical systems
(CPS). Typically, BMC is performed by checking satisfiability
of a possibly long, but quantifier-free formula. However, BMC
problems can naturally be encoded as quantified formulas over
the number of BMC steps. In this approach, we then use decision
procedures supporting quantifiers to check satisfiability of these
quantified formulas. This approach has previously been applied
to perform BMC using a Quantified Boolean Formula (QBF)
encoding for purely discrete systems, and then discharges the
QBF checks using QBF solvers. In this paper, we present a new
quantified encoding of BMC for rectangular hybrid automata
(RHA), which requires using more general logics due to the real
(dense) time and real-valued state variables modeling continuous
states. We have implemented a preliminary experimental proto-
type of the method using the HyST model transformation tool to
generate the quantified BMC (QBMC) queries for the Z3 SMT
solver. We describe experimental results on several timed and
hybrid automata benchmarks, such as the Fischer and Lynch-
Shavit mutual exclusion algorithms. We compare our approach
to quantifier-free BMC approaches, such as those in the dReach
tool that uses the dReal SMT solver, and the HyComp tool built
on top of nuXmv that uses the MathSAT SMT solver. Based on
our promising experimental results, QBMC may in the future be
an effective analysis approach for RHA as further improvements
are made in quantifier handling in SMT solvers such as Z3.

Index Terms—bounded model checking, hybrid automata,
timed automata, satisfiability modulo theories

I. INTRODUCTION

Boolean Satisfiability (SAT) is the canonical NP-complete
problem and is to determine if a given Boolean formula
is satisfiable, i.e., check if there exists an assignment of
values to variables where the formula is true. A Boolean
formula is given in Conjunctive Normal Form (CNF), that
is, a conjunction of clauses, each of which is a disjunction
of literals. Satisfiability modulo theories (SMT) is a gener-
alization of SAT, where literals are interpreted with respect
to a background theory (e.g., linear real arithmetic, nonlinear
integer arithmetic, bit-vectors, etc.).

Recently, SMT-based techniques have been developed to
formally verify hybrid systems [1]–[6]. Typically, these SMT-
based methods are used in bounded model checking (BMC),
which is to check for a transition system A and a specification
P whether I(s0) ∧

∧k−1
i=0 T (si, si+1) ∧ (

∨k
i=0 P (si)) is satis-

fiable. Here, I(s0) encodes an initial set of states over a set
of variables s0, T (si, si+1) represents the transition relation
from iteration i to i+1 over sets of variables si and si+1, and
P (si) encodes the specification at step i.

Hybrid automata are a modeling formalism used to verify
dynamical systems including both continuous states and dy-
namics as well as discrete states and transitions. Examples
of systems naturally modeled by hybrid automata arise in the
interaction of physical plants and software controllers in real-
time systems and cyber-physical systems (CPS). In essence,
hybrid automata augment finite state machines with a set of
real-valued variables that evolve continuously over intervals of
real time. In hybrid automata, a transition relation T = D∪T
encodes both discrete transitions D and continuous trajectories
T over intervals of real-time. Rectangular hybrid automata
(RHA) are a special class of hybrid automata with continuous
dynamics described by rectangular differential inclusions and
where all other quantities (guard conditions, invariants, resets,
etc.) of the automata are linear inequalities over constants [2],
[7]. Sets of states, as well as discrete transitions and continuous
trajectories of RHA, can be symbolically represented by SMT
formulas over real and Boolean variables.

Depending on the underlying logics supported, SMT solvers
may or may not support quantifiers. While quantifiers make
the language more expressive, they increase the complexity
of computations like checking satisfiability and may also
lead to undecidability. Techniques allowing quantifiers, such
as in quantified Boolean formula (QBF) solvers, have been
developed for BMC of purely discrete systems, such as finite
state machines [8], [9]. However, to the best of our knowledge,
there has been no effort to develop quantified BMC (QBMC)
methods for timed or hybrid automata, which we develop in
this paper. Of course, this is partially because the underlying
SMT solver requires support for complex combination theories
and efficient algorithms to check quantified formulas, which
until recently, were either not available or not scalable.

The logic used requires some finite sort for the discrete
states (such as a enumerated type or bitvectors) and reals
for the continuous states and trajectories. In this paper, we
use LRABV (linear real arithmetic with bit-vectors) for en-
coding QBMC for timed automata and RHA, and we note
that general hybrid automata would need NRABV (nonlinear
real arithmetic with bit-vectors) or beyond, such as those
whose solutions involve special (transcendental) functions like
sin, cos, exp, etc. While none of these logics are officially
supported in the SMT-LIB2 standard (nor the 2.5 draft) as of
the time of this writing [10], several solvers do have unofficial
support for this combination theory, such as the latest versions
of Z3, which is the SMT solver used in this paper [11].
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Related Work: When defining the semantics of hybrid
automata, first-order or higher logic is typically used and
quantifiers typically show up in several places. Existential
quantifiers over reals are used to specify that some amount
of real time may elapse in a given location of the hybrid au-
tomaton. Universal quantifiers over reals representing real time
are used to construct invariants that are enforced at all times,
while in a given location of the hybrid automaton; otherwise
real time is not allowed to advance, and a discrete transition
must be taken, if any are enabled based on the current state
and guards of the transitions. Alternative approaches to the one
described in this paper have previously been developed, where
the universal quantifiers used to define invariants’ semantics
are explicitly removed from the SMT expressions to create
quantifier-free formulas. This allows the use of existing SMT-
based procedures and avoids quantifier-elimination and other
quantifier-handling procedures [2], [3], [12]. We note that this
approach does not use quantifiers on the number of steps
k ≥ 0 in the BMC computation. which we do in this paper.
Specifically, we suggest that effectively encoding the BMC
problem in a quantified form over the number of steps k may
provide a more scalable approach in the future as quantifier
handling procedures are improved in the underlying solvers.
We accomplish this by extending existing results for BMC of
discrete systems with QBF solvers [9] to timed and hybrid
automata, specifically RHA.

Typical approaches to analyze timed and hybrid automata
use symbolic representations of states such as difference bound
matrices (DBMs) to represent clock regions in Uppaal [13] or
polyhedra in HyTech [14]. Several other formal verification
tools for hybrid automata focus on performing reachability
computations, and overapproximate the set of reachable states
using various data structures to symbolically represent geo-
metric sets of states, such as Taylor models in Flow* [15] and
support functions in SpaceEx [16]. Reachability analysis tools
like Flow* and SpaceEx focus on computing reachable states,
although there is a direct equivalence between time-bounded
reachability computations and BMC.

Several SMT-based approaches can verify properties of
timed and hybrid automata. dReal is an SMT-solver for first-
order logic formulas over the reals, and uses a δ-complete
decision procedure [17]. dReach is a BMC tool that queries
dReal to check satisfiability of SMT formulas encoding the
transitions and trajectories for hybrid automata [4]. HyComp
is a verification tool for networks (parallel compositions) of
hybrid automata with polynomial and other dynamics [6] and
is built on top of nuXmv [18]. For k-induction and IC3,
HyComp may perform unbounded model checking, but in the
BMC mode, it also allows a limit on the number of steps,
and also encodes the semantics of the network of hybrid
automata’s transition relation and trajectories. A very closely
related approach to this paper also encodes BMC problems
for timed automata using quantified formulas, but this quan-
tification is to encode unknown or incomplete components,
and is not a quantification over the BMC length [19]. Passel
is a parameterized verification tool for networks of RHA

that may prove properties regardless of the number N of
automata in the network [2]. Passel implements an extension
to hybrid automata of the invisible invariants approach for pa-
rameterized verification, and consists of an invariant synthesis
procedure [20] that relies on reachability computations [5].
Passel encodes the semantics of networks of hybrid automata
as SMT formulas and checks satisfiability and validity using
the Z3 SMT solver. Additionally, when performing reachabil-
ity computations, Passel makes use of quantifier elimination
procedures over the reals and bit-vectors [5].

Contributions: In this paper, we present a new SMT-
based verification technique that encodes the BMC problem
for RHA in a quantified form, which we call quantified
BMC (QBMC). We take hybrid automata in the SpaceEx
format [16], which are then translated to the QBMC encoding
proposed in this paper using the HyST model transformation
tool [21]. We then perform QBMC by querying the Z3 SMT
solver via its Python API and use its quantifier-handling proce-
dures [11]. We present preliminary experimental results where
the QBMC approach and Z3 perform competitively, when
compared to (a) the dReach tool that performs BMC using an
SMT check by querying the dReal δ-decidable SMT solver [4],
[17], and (b) the HyComp tool built on top of nuXmv that uses
the MathSAT SMT solver [22]. The examples include standard
ones such as Fischer and Lynch-Shavit mutual exclusion, as
well as an illustrative example to describe the encoding. The
main contribution of this paper is the first encoding of BMC as
a quantified problem for RHA. Our results subsume the case
for timed automata, as RHA are more expressive than timed
automata, and we note this is also the first QBMC approach
for timed automata.

II. HYBRID AUTOMATA SYNTAX AND SEMANTICS

A hybrid automaton is essentially a finite state machine
extended with a set of real-valued variables that evolve con-
tinuously over intervals of real-time.

Syntax: The syntactic structure of a hybrid automaton is
formally defined as follows.

Definition 1: A hybrid automaton H is a tuple, H ∆
=

〈Loc, Var , Inv , Flow , Trans , Init〉, with the components as
follows. (a) Loc is a finite set of discrete locations. (b) Var
is a finite set of n continuous, real-valued variables, and
Q ∆

= Loc × Rn is the state-space. (c) Inv is a finite set
of invariants, one for each discrete location, and for each
location ` ∈ Loc, Inv(`) ⊆ Rn. (d) Flow is a finite set
of ordinary differential inclusions, one for each continuous
variable x ∈ Var , and Flow(`, x) ⊆ Rn describes the
continuous dynamics in each location ` ∈ Loc. (e) Trans is
a finite set of transitions between locations. Each transition is
a tuple τ ∆

= 〈`, `′, g, u〉, where ` is a source location and `′

is a target location that may be taken when a guard condition
g is satisfied, and the post-state is updated by an update map
u. (f) Init is an initial condition, which consists of a set of
locations in Loc and a formula over Var , so that Init ⊆ Q.

For RHA, all the expressions appearing in invariants,
guards, and updates must be boolean combinations of constant

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 
164



inequalities, and the flows are rectangular differential inclu-
sions (ẋ ∈ [a, b] for a ≤ b) [7]. We use the dot (.) notation
to refer to different components of tuples e.g., H.Inv refers
to the invariants of automaton H and τ.g refers to the guard
of a transition τ . If clear from context, we drop H and τ and
refer to the individual components of the tuple.

Semantics: The semantics of a hybrid automaton H are
defined in terms of executions, which are sequences of states.
A state q of H is a tuple q

∆
= 〈`, v〉, where ` ∈ Loc is a

location, and v ∈ Rn is a valuation of all variables in Var .
Formally, for a set of variables Var , a valuation is a function
mapping each x ∈ Var to a point in its type—here, R. The
state-space Q is the set of all states of H. Updates of states
are described by a transition relation T ⊆ Q × Q. For a
transition 〈q, q′〉 ∈ T where q

∆
= 〈`, v〉 and q′

∆
= 〈`′, v ′〉,

we denote q → q′ ∈ T as the transition between the
current state q and the next state q′. The transition relation
T is partitioned into disjoint sets of discrete transitions and
continuous trajectories that respectively describe the discrete
and continuous behaviors of the automaton. Thus, T ∆

= D∪T ,
where: (a) D ⊆ Q×Q is the set of discrete transitions that
describe instantaneous updates of state, (b) T ⊆ Q × Q is
the set of continuous trajectories that describe updates of state
over real time intervals.

Discrete transitions. A discrete transition q → q′ ∈ D
models an instantaneous update from the current state q to
the next state q′. There is a discrete transition q → q′ ∈ D if
and only if (iff): ∃τ ∈ Trans : q.v |= τ .g∧q′.v ′ |= τ .u, where
τ .g, and τ .u are the guard condition and the update map of
the discrete transition τ , respectively.

Continuous trajectories. A continuous trajectory q → q′ ∈
T models the update of state q to q′ over an interval of real
time. The set-valued function ∆ returns a set of states and is
defined as: ∆(q.`, q.v, x, t) ∈ q.v.x+

∫ t
δ=t0

f (q.`, x)dδ, where
f ∈ Flow is a flow rate. A formula over Var ∪ ˙Var that
describes the evolution of a real variables x ∈ Var over a real
time interval J = [t0, t], and q.v.x is the value of continuous
variable x of the state q at t = t0. Then, there is a trajectory
q → q′ ∈ T iff: ∃tα ∈ R≥0 ∀tβ ∈ R≥0 ∃` ∈ Loc :
tβ ≤ tα ∧ ∆(q.`, q.v,Var , tβ) |= Inv(`) ∧ q′.v ′.Var ∈
∆(q.`, q.v,Var , tα). For each real variable x, q.v .x must
evolve to the valuation q′.v ′.x at precisely time tα and
corresponding to the flow rate of x in location `. Additionally,
all states along the trajectory must satisfy the invariant Inv(`)
i.e., at every point in the interval of real time tβ ≤ tα.

Executions. An execution of H is a sequence π
∆
= q0 →

q1 → q2 → ..., such that: (a) q0 ∈ Init is an initial state,
and (b) either qi → qi+1 ∈ D is a discrete transition or qi →
qi+1 ∈ T is a continuous trajectory for each consecutive pair
of states in the sequence π. A state qk

∆
= 〈`k, vk〉 is reachable

from initial state q0
∆
= 〈`0, v0〉 ∈ Init iff there exists a finite

execution π ∆
= q0 → q1 → ...→ qk.

Safety specifications. In this paper, we develop the QBMC
procedure to check whether safety properties of hybrid au-
tomata are satisfied up-to iteration k. A safety specification

φ is a formula over Loc and Var that describes a set of
states JφK ⊆ Q, where J·K is the set of states satisfying φ. For
an automaton H and a safety specification φ, the automaton
satisfies the specification, denoted H |= φ, iff for every
execution π, for every state q0, q1, . . . , qk in the execution π,
we have π.qk ∈ JφK. If H |= φ for every i ∈ {0, . . . , k},
then the system is safe up-to iteration k. If H |= φ for any
k, then the system is safe. For a safety specification φ, a
counterexample is an execution π where some state q ∈ π
violates φ, i.e., q 6|= φ, or equivalently, q /∈ JφK.

III. QUANTIFIED BMC FOR HYBRID AUTOMATA

Bounded model checking (BMC) has been used widely in
verification and falsification of safety and liveness properties
of various classes of systems, from finite state machines to
hybrid automata. The key idea is to search for a counterex-
ample execution whose length is bounded by a number of
steps k. In other words, BMC will explore all executions
from any initial state of the system Ψ to detect whether there
is a way to reach a bad state that violates a given property
(or to find a loop in the case of liveness). Then this path is
considered as a counterexample to the property that may help
the user to debug the system. For finite state systems, BMC
can be encoded as a propositional formula to be checked as
satisfiable or unsatisfiable using a Boolean SAT solver. For
hybrid automata, BMC can be encoded as a formula over reals
and finite sorts (such as Booleans, bitvectors, or enumerated
types). In this paper, we focus only on hybrid automata with
rectangular differential inclusion dynamics (ẋ ∈ [a, b] for real
constants a ≤ b), and for this class of automata, the formulas
are within linear real arithmetic (LRA). We first illustrate
BMC for hybrid automata using the traditional quantifier-free
encoding, and then describe the quantified BMC (QBMC),
which is the main contribution of this paper.

Quantifier-Free BMC for Hybrid Automata: Let P be a
set of given specifications of the hybrid automata, the BMC
problem will determine whether a specification P (qk) ∈ P is
safe after k steps, and it is:

Φ(k)
∆
= I(V0) ∧

k−1∧
i=0

Ti(V, V
′) ∧ (

k∨
i=0

P (Vi)), (1)

where Vi corresponds to the set of variables Var of the
automaton H appropriately renamed. For example, Vi contains
of every variable v ∈ Var syntactically renamed to vi,
etc., and V ′ consists of primed variables, e.g., v′ for each
v ∈ Var . In Equation 1, I(V0) encodes the initial set of
states, Ti(V, V ′) encodes the transition between consecutive
pairs of sets of states, and P (Vi) is a safety specification
at iteration i. We note that the sets of variables Vi for each
iteration i are implicitly existentially quantified and e.g., we
could equivalently prefix ∃V0, V1, . . . , Vk. We drop the sets of
variables for a shorter notation, e.g., Equation 1 is equivalent
to I0 ∧

∧k−1
i=0 Ti ∧ (

∨k
i=0 Pi).

Example 1: Consider the hybrid automaton H shown in Fig-
ure 1. Assume that the automaton starts at location `oc1 , and
the initial value of x is 0. The set of bad states are defined
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by: P ∆
=

∨k
i=0 ¬(qi.`i = `oc2 =⇒ x ≥ 2.5). Two

intervals [a1, b1] and [a2, b2] describe the rectangular differ-
ential inclusions for locations `oc1 , and `oc2 , respectively.
This automaton would be a timed automaton if all of the
constants values are equal, i.e., a1 = b1 = a2 = b2. This
automaton would be a multi-rate timed automaton if a1 = b1
and a2 = b2 but possibly a1 6= a2. Otherwise, this automaton
is a rectangular hybrid automaton. Suppose that a1 = 1,
b1 = 2, a2 = 3, and b2 = 4. We introduce k + 1 copies
x0, x1, ..., xk and `0, `1, ..., `k, where the variable xi gives the
value of the variable x, and `i indicates the location at the
state qi, representing the ith step of the BMC computation for
the automaton shown in Figure 1. The BMC computation of
H for each k up to 2 can be encoded as:

• k = 0: I0 := (`0 = `oc1 ∧ x0 = 0);
• k = 1 (D0): (`0 = `oc1 ∧ `1 = `oc2 ∧ x0 ≤ 5 ∧ x0 ≥

2.5 ∧ x1 = x0),
• k = 1 (T0): (`0 = `oc1 =⇒ (`1 = `0 ∧ x0 + a1δ ≤
x1 ∧ x1 ≤ x0 + b1δ ∧ x1 ≤ 5)),

• k = 2 (D1): (`1 = `oc1 ∧ `2 = `oc2 ∧ x1 ≤ 5 ∧ x1 ≥
2.5 ∧ x2 = x1),

• k = 2 (T1): (`1 = `oc1 =⇒ (`2 = `1 ∧ x1 + a1δ ≤
x2 ∧ x2 ≤ x1 + b1δ ∧ x2 ≤ 5)),

where δ is a fresh, real constant.1 We split the discrete
transitions and trajectories for clarity, but the entire formula to
be checked for iteration k = 1 would just be the disjunction
of these conjuncted with the formula representing k = 0 and
the bad set of states, i.e., I0 ∧ (D0 ∨ T0)∧ P . For k = 2, this
full formula would be I0 ∧ (D0 ∨ T0) ∧ (D1 ∨ T1) ∧ P .

For k = 1, we dropped the obviously infeasible transition
from `oc2 to `oc1 from D0, which would be found as being
unsatisfiable since `0 6= `oc2 . However, the transition from
`oc1 to `oc2 also cannot occur since x0 = 0, but x0 6≥ 2.5,
so that part is unsatisfiable and no discrete transitions may
be taken from the set of initial states. We also dropped the
continuous dynamics for `oc2 from T0 since this would also
be infeasible since `0 6= `oc2 . However, real time may elapse,
and as encoded, would correspond to any choice of time δ such
that x1 ∈ [a1δ, b1δ] and x1 ≤ 5. Since a1 = 1 and b1 = 2,
at most between 2.5 and 5 seconds of real time could elapse,
and either case would yield x1 ∈ [0, 5].

For k = 2, we also dropped the infeasible transition and
trajectory for clarity. In this case, the transition from `oc1
to `oc2 is enabled since x1 ∈ [0, 5], so the update to `oc2
may occur. However, now the continuous trajectory would
be infeasible since x1 could already be 5 and the invariant
requires x2 ≤ 5, so no real-time δ > 0 may elapse, as
otherwise x1+a1δ > 5 is unsatisfiable for x1 = 5. So, the only
state update would be to `oc2 owing to the discrete transition.

1In general, a universally quantified assertion that the invariant is satisfied
for every real time along the trajectory from time t0 to time t0 + δ, although
this is unnecessary for rectangular differential inclusions with linear guards
and invariants for convexity reasons [2], [6], which makes this assertion fall
into the combination theory of linear real arithmetic with bitvectors (or some
finite sort to encode the locations).

`oc1
x ≤ 5

ẋ ∈ [a1, b1]
start

`oc2
x ≤ 10

ẋ ∈ [a2, b2]

x ≥ 2.5

x ≥ 10
x := 0

Fig. 1. The hybrid automaton H for Example 1.

Quantified BMC (QBMC) for Hybrid Automata: Next, we
construct a quantified formula Ω(k) for BMC of H of length
k. We introduce a vector t =

〈
t1, t2, ..., tdlog2 ke

〉
to index each

iteration of the BMC of H. The current state q and next state
q′ under the transition relation T (V, V ′) are connected to the
current state and the next state for each particular iteration ti,
for i ∈ [1, dlog2 ke]. The quantified BMC formula is:

Ω(k)
∆
= ∃V0, V1, ..., Vk, δ∀t∃V, V ′ | I(V0) ∧ T (V, V ′) ∧

k−1∧
i=0

ti+1 → [(V = Vi) ∧ (V ′ = Vi+1)] ∧ (
k∨
i=0

P (Vi)),

where we note that the existential δ encodes the real time
elapse and would appear in the trajectories T of the disjunct
T = D ∨ T .

For k = 3, the QBMC of the automaton of Example 1 is:
Ω(3) = ∃V0, V1, V2, V3, δ∀t1, t2∃V, V ′ | I(V0) ∧ T (V, V ′)

∧ {t̄1 → [(V = V0) ∧ (V ′ = V1)]}
∧ {t1 ∧ t̄2 → [(V = V1) ∧ (V ′ = V2)]}
∧ {t1 ∧ t2 → [(V = V2) ∧ (V ′ = V3)]}
∧ (P (V0) ∨ P (V1) ∨ P (V2) ∨ P (V3)), (2)

where V = V ′ is a shorthand indicating every variable v ∈ V
equals its corresponding counterpart v′ ∈ V . In Equation 2,
if the value of t1 is 0, then there is a continuous trajectory
that evolves from the initial state q0, where q0.`0 = `oc1
and x0 = 0, to the next state q1, where q1.`1 = `oc1 and
x1 ≤ 5. When t1 = 1 and t2 = 0, the system takes the
discrete transition from the current state q1 to the next state
q2, where q2.`2 = `oc2 and the value of x3 is not higher than
10. At k = 3, both t1, and t2 are true, then q2 becomes the
current state, and q3 is the next state, where q3.`3 = `oc1 ,
and x3 ≤ 5. The discrete transition taken from q2 to q3 when
x ≥ 10 will reset the value of x to 0.

If it terminates, an SMT solver supporting the combined
theory of bitvectors and reals with quantifiers will return SAT
for the QBMC formula iff there exists an execution from an
initial state to a bad state, i.e., if a bad state is reachable.
Otherwise, if it terminates, it will return UNSAT if a bad state
is not reachable in k steps. We note that the combination theory
of linear real arithmetic with bitvectors is decidable, and Z3
is in essence a decision procedure for this theory.

IV. EXPERIMENTAL RESULTS

We implement the method described in this paper as a
module within HyST [21]. HyST takes as input a hybrid
automaton model in an extended form of the SpaceEx XML
format [16] (supporting e.g., nonlinear functions instead of
only affine ones), and creates the transition relation as SMT
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TABLE I
EXAMPLE 1 PERFORMANCE COMPARISON.

Tools L
k ≤ 32 k ≤ 64 k ≤ 128

Time
(sec)

Mem
(MB)

Time
(sec)

Mem
(MB)

Time
(sec)

Mem
(MB)

QBMC 2 1.11 27.2 3.68 39.4 19.9 91.2

dReach 2 86.7 102.4 1176.4 284.7 20034 829.2

HyComp 2 0.4 97.3 0.6 101.8 1.44 109.3

formulas using the Z3 Python API. We evaluate the QBMC
method described in this paper on several examples.2 We
compare the results from the QBMC method of this paper
with that of dReach, which is a state-of-the-art BMC tool for
nonlinear hybrid automata [23], and with that of HyComp
that uses the MathSAT SMT solver [6]. All of the models
for dReach and HyComp are also generated using HyST. The
experiments are performed on Intel I5 2.4GHz processor with
3GB RAM, executing the method described in this paper and
dReach in a VirtualBox virtual machine running Ubuntu 64-
bit. Z3 version 4.3.2 was used in the evaluation. We collect the
running times (Time) in seconds and the peak memory usages
(Mem) in megabytes for different examples.

We first evaluate our QBMC encoding on the illustrative
hybrid automata presented in Example 1, and compare the
results to those of dReach and HyComp. The performances
of those three different methods are shown in Table I, where
QBMC denotes the QBMC presented in this paper, k is a
number of steps in the BMC computation, and L is the number
of discrete locations. The constants values are given as: a1 =
0, b1 = 1, a2 = 0, and b2 = 2. The results shown in Table I
preliminarily indicate that our QBMC approach is capable of
solving BMC significant faster than dReach, but slower than
HyComp. However, our approach requires less memory usage
compared to dReach and HyComp.

Next, we evaluate QBMC with several scenarios using
the Fischer mutual exclusion protocol [2]. Fischer mutual
exclusion is a timed distributed algorithm that ensures a mutual
exclusion safety property, namely that at most one process
in a network of N processes may enter a critical section
simultaneously. The set of bad states is defined by:
φ

∆
= ¬∀i, j ∈ {1, . . . , N} | (i 6= j ∧ qi = cs) → qj 6= cs,

where qi and qj are variables modeling the discrete location
of the automata, cs is the critical section location, and → is
logical implication. We compare the performance of QBMC
in solving the BMC of Fischer protocol with HyComp and
dReach. Figures 2 and 3 show, respectively, the runtime
and memory usage comparison among HyComp, dReach and
QBMC for different numbers of processes of Fischer protocol;
where QBMC-safe, QBMC-unsafe, HyComp-safe, HyComp-
unsafe, dReach-safe, and dReach-unsafe denote the BMC
of the safe and unsafe version of Fischer protocol using
QBMC, HyComp, and dReach, respectively. Overall, HyComp
is generally faster than QBMC. However, it requires a higher
memory consumption than QBMC. For instance, with k ≤ 16,

2The preliminary implementation described in this paper, along with all the
examples, is available online at: http://www.verivital.com/hyst/cfv2015.zip.

TABLE II
LYNCH-SHAVIT MUTUAL EXCLUSION PROTOCOL PERFORMANCE.

Tools L
k ≤ 4 k ≤ 8 k ≤ 16

Time
(sec)

Mem
(MB)

Time
(sec)

Mem
(MB)

Time
(sec)

Mem
(MB)

QBMC

92 3.7 52.2 5.1 52.3 25.9 52.7

93 15.5 65.6 31.3 87.5 1091.5 144.5

94 256.1 702.8 1062.1 708.9 43578 1196.2

HyComp

92 0.8 121.9 1.33 132.8 9.5 170.5

93 2.7 307.9 12.81 380.8 192.8 771.4

94 63.9 2655.4 N/A M/O N/A M/O

the BMC of the unsafe version of Fischer protocol with 5
processes cannot terminate in HyComp due to out of memory
(requiring more than 3GB). However, QBMC can solve it
using less than 500 MB. Thus, we can point out that QBMC
is superior than HyComp with respect to the memory usage.
Moreover, Figures 2 and 3 also indicate that QBMC is able to
solve BMC of hybrid automata faster and uses less memory
than dReach. Due to state-space (and formula) explosion,
the reduction of memory consumption is one of the major
challenges to address. Since QBMC requires a smaller amount
of memory usage than other quantifier-free BMC approaches,
it may be effective in solving BMC of large scale problems.

We also evaluate QBMC with the Lynch-Shavit mutual
exclusion protocol. The Lynch-Shavit protocol is a modi-
fied version of Fischer protocol where the mutual exclu-
sion property is time-independent. Each process of Lynch-
Shavit protocol has 9 states (locations), then the Lynch-Shavit
protocol with 4 processes includes 6561 discrete locations.
The performance analyzing the Lynch-Shavit protocol using
QBMC and Hycomp are shown in Table II, respectively. M/O
presents that the peak memory usage is higher than 3GB,
and N/A denotes that the information of running times is
not detected due to M/O. The set of bad states of Lynch-
Shavit protocol is defined similar to that of Fischer, where
two processes may be in the critical section. Again, we can
see the trade off between using QBMC or using HyComp.
HyComp is faster than QBMC, but requires a higher memory
usage. Therefore, the BMC of Lynch-Shavit protocol with 4
processes can be solved by QBMC up to k = 16, but cannot
be solved in HyComp up to k = 8 due to M/O.

V. CONCLUSION AND FUTURE WORK

In this paper, we present a new SMT-based technique
that encodes, in a quantified form, the BMC problem for
rectangular hybrid automata (RHA), which also subsumes this
encoding for timed automata. The preliminary results for the
Fischer mutual exclusion protocol and Lynch-Shavit protocol
indicate the capability of our method to solve the BMC
problem for hybrid systems including more than a thousand
locations. We compare these experimental results to those of
quantifier-free BMC approaches, such as in the dReach tool
that uses the dReal SMT solver, and the HyComp tool built
on top of nuXmv that uses the MathSAT SMT solver. As
solvers for fragments of many-sorted first-order logic such as
LRA, NRA, etc. continue to improve, QBMC encodings such

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 
167

http://www.verivital.com/hyst/cfv2015.zip


0 20 40
0

20

40

60

80

100

120

140
N = 2

0 20 40
0

100

200

300

400

500

600

700

800
N = 3

0 20 40
0

200

400

600

800

1000

1200
N = 4

0 10 20
0

500

1000

1500
N = 5

k

R
un

tim
e 

(s
)

 

 

QBMC-safe QBMC-unsafe HyComp-safe HyComp-unsafe dReach-safe dReach-unsafe

2 3 4 5
0

10

20

30

40

50

60

70

80

Number of Processes

R
un

tim
e 

(s
)

k ≤ 4

2 3 4 5
0

10

20

30

40

50

60

70

80

Number of Processes

R
un

tim
e 

(s
)

k ≤ 8

2 3 4 5
0

0.5

1

1.5

2

2.5
x 104

Number of Processes

R
un

tim
e 

(s
)

k ≤ 16

2 3 4
0

0.5

1

1.5

2
x 104

Number of Processes

R
un

tim
e 

(s
)

k ≤ 32

Fig. 2. Runtime comparison of HyComp, dReach and QBMC in solving the BMC of Fischer protocol.
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Fig. 3. Memory usage comparison of HyComp, dReach and QBMC in solving the BMC of Fischer protocol.

as the one described in this paper will become more effective,
similar to how QBMC for discrete systems has been shown
to be effective with QBF encodings [9]. In future work, we
will conduct additional experiments and compare the results
to other tools and techniques, such as UPPAAL, and also
investigate more general classes of hybrid automata, such as
those with linear or polynomial differential equations.
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APPENDIX

A. Appendix: Additional Experimental Results

In this appendix, we describe additional experimental results
of the BMC of the Fischer mutual exclusion protocol using
QBMC, HyComp and dReach. Figures 4 and 5 show, re-
spectively, the runtime and memory usage comparison among
HyComp, dReach and QBMC for BMC of Fischer protocol.
Vertical axises are runtime in seconds and memory usage in
megabytes, respectively, and horizontal axises are number of
steps, k. The details of running times and memory usages of
BMC for the Fischer protocol using these tools are also shown
in Table III, where FS, FU denote the safe and unsafe versions
of Fischer protocol, respectively, and the number following the
hyphen (-) describes a number of processes for each version.
In FS, a state where the set of bad states φ is satisfied is not

reachable, while in FU, a state where φ is satisfied is reachable.
For instance, FS-2, FU-2 are the safe and unsafe versions of
the Fischer protocol with 2 processes, respectively.

Table III shows that the BMC of Fischer protocol with 64
discrete locations can be checked completely up to k = 32.
Note that T/O means the computation time out (≥ 24 hours),
M/O presents that the peak memory usage is higher than 3GB,
and N/A denotes that the information of times or memory
usages are not detected due to M/O or T/O, respectively. The
results of the BMC for unsafe versions of Fischer protocol
indicate that QBMC is effective for bug detection. However,
as k increases, the higher running time and the greater memory
usage are required for the quantified encoding of BMC due
to the increasing number of all possible paths from an initial
state in the set of initial states to a bad state that does not
satisfy the set of safety specifications.
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Fig. 4. Runtime comparison of HyComp, dReach and QBMC in solving the BMC of Fischer protocol.

4 8 12 16 20 24 28 32
0

20

40

60

80

100

120

140

k

M
em

or
y 

U
sa

ge
 (

M
B

)

N = 2

4 8 12 16 20 24 28 32
0

100

200

300

400

500

600

700

800

k

M
em

or
y 

U
sa

ge
 (

M
B

)

N = 3

4 8 12 16 20 24 28 32
0

200

400

600

800

1000

1200

k

M
em

or
y 

U
sa

ge
 (

M
B

)

N = 4

4 8 12 16
0

500

1000

1500

k

M
em

or
y 

U
sa

ge
 (

M
B

)

N = 5

Fig. 5. Memory usage comparison of HyComp, dReach and QBMC in solving the BMC of Fischer protocol.

TABLE III
THE PERFORMANCE OF THE BMC OF FISCHER MUTUAL EXCLUSION PROTOCOL USING QBMC, HYCOMP, AND DREACH.

Tools Example L
k ≤ 4 k ≤ 8 k ≤ 16 k ≤ 32

Time
(sec)

Mem
(MB)

Time
(sec)

Mem
(MB)

Time
(sec)

Mem
(MB)

Time
(sec)

Mem
(MB)

QBMC

FS-2 42 1.11 22.3 1.6 25.2 6.4 30 60 45.2

FU-2 42 0.7 21.73 1.1 24.7 1.52 28.2 6.1 40.2

FS-3 43 4.02 48.7 8.3 48.7 117.8 52.4 19452 115.6

FU-3 43 3.97 48.7 6.9 48.7 22.7 49.7 94.3 74.6

FS-4 44 9.97 56.9 76.1 74.1 T/O N/A T/O N/A

FU-4 44 8.44 57 40.1 73.2 119.1 156.2 4197.1 254.1

FS-5 45 77.51 254.3 344.4 254.4 T/O N/A T/O N/A

FU-5 45 63.93 249.9 288.8 249.9 21456 473.8 T/O N/A

HyComp

FS-2 42 0.2 22.3 0.5 101.4 2.8 107.3 14.1 123.4

FU-2 42 0.2 21.7 0.4 100.9 0.5 101.4 0.53 101.5

FS-3 43 0.51 120.2 2.2 131.8 55.8 214.4 539.7 713.4

FU-3 43 0.51 121.5 2.1 131.8 6.7 149.6 6.5 167.1

FS-4 44 2.78 255 9.9 319.1 788 1010.4 T/O M/O

FU-4 44 2.53 255.2 13.3 318.2 569.4 895.4 568.4 897.1

FS-5 45 17.13 1067 172.4 1405.9 N/A M/O N/A M/O

FU-5 45 16.6 1066.7 109.1 1345.4 N/A M/O N/A M/O

dReach

FS-2 42 1.2 2.5 64.1 120.8 T/O M/O T/O M/O

FU-2 42 1.2 2.5 48.4 28.9 50.3 30.7 55.8 31.4

FS-3 43 1.4 2.5 2.7 26.4 T/O M/O T/O M/O

FU-3 43 1.3 2.5 2.7 26.8 959.3 235.3 966.8 241.2

FS-4 44 2.1 9.8 4.63 96.7 T/O M/O T/O M/O

FU-4 44 1.6 2.5 4.93 119.8 T/O M/O T/O M/O

FS-5 45 7.7 167.2 16.69 469.6 T/O M/O T/O M/O

FU-5 45 7.7 153.9 17 506.5 T/O M/O T/O M/O
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Abstract. In this paper, we present the first steps toward a runtime
verification framework for monitoring hybrid and cyber-physical sys-
tems (CPS) development tools based on randomized differential test-
ing. The development tools include hybrid systems reachability analysis
tools, model-based development environments like Simulink/Stateflow
(SLSF), etc. First, hybrid automaton models are randomly generated.
Next, these hybrid automaton models are translated to a number of
different tools (currently, SpaceEx, dReach, Flow*, HyCreate, and the
MathWorks’ Simulink/Stateflow) using the HyST source transformation
and translation tool. Then, the hybrid automaton models are executed
in the different tools and their outputs are parsed. The final step is the
differential comparison: the outputs of the different tools are compared.
If the results do not agree (in the sense that an analysis or verification
result from one tool does not match that of another tool, ignoring time-
outs, etc.), a candidate bug is flagged and the model is saved for future
analysis by the user. The process then repeats and the monitoring contin-
ues until the user terminates the process. We present preliminary results
that have been useful in identifying a few bugs in the analysis methods
of different development tools, and in an earlier version of HyST.

1 Introduction

Runtime verification is an approach to ensure the correctness and reliability of
a system during its execution. It can check and analyze executions of a sys-
tem under scrutiny that violate or satisfy a given correctness property by us-
ing a decision procedure called a monitor. A monitor can also be considered
as a device that can read finite traces and output a truth value derived from
a truth domain [3]. Runtime verification can be used broadly for many pur-
poses such as debugging, testing, verification, validation, fault protection, and
online system repair. In this paper, we describe a preliminary work toward a
randomized differential testing framework [5] that may be used as a runtime
monitor for various components (from parsers to analysis algorithms) in hybrid
and CPS analysis tools such as SpaceEx, dReach, Flow*, HyCreate and the
Mathworks’ Simulink/Stateflow (SLSF). A test subject is the hybrid automa-
ton randomly generated in the input format for SpaceEx using a prototype tool
called HyRG [4]4, which is then translated to other formats including dReach,

4 The tool and examples are available online: http://www.verivital.com/hyrg/
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Fig. 1: Overview of monitoring framework for hybrid systems analysis tools with
randomized differential testing.

Flow*, HyCreate and SLSF using the HyST model transformation tool [1]. Our
contributions include (a) the first steps toward a randomized differential testing
framework to monitor CPS development and verification tools, and (b) identify-
ing some bugs in existing tools, including a semantic difference between SpaceEx
and SLSF that we did not know about and some soundness bugs in the verifica-
tion tools that have been corrected by the tool authors [1].

2 Monitoring with Randomized Differential Testing

We first describe how the hybrid systems are randomly generated in HyRG
so they have diverse continuous and discrete behaviors. We then analyze these
examples with different hybrid systems development and verification tools, and
then compare their outputs to identify possible bugs in the tools. Figure 1 shows
the overview of our framework for randomized differential testing to monitor
hybrid systems development tools. First, a hybrid automaton AR is randomly
generated by HyRG, then AR is translated using HyST to equivalent automata
in different tools’ formats, denoted AS, AF, AD, AH, AM, and AO. Next, the
automata can be analyzed using the different tools, such as SpaceEx, Flow*,
dReach, and HyCreate, or simulated in SLSF. Then we compare all analysis
results by using a function reachCheck shown in Figure 2.

The reachCheck function has three inputs: Reach, Trace, and β, where β is
the reachability analysis and simulation time bound. Reach is a list of sets of
time-bounded reachable states computed by different tools (e.g., the output of
SpaceEx, Flow*, etc.). Each set of reachable states, R(t), is the set of states that
may be visited by following the model’s trajectories and transitions, for any time
t ∈ [0, β]. That is, for a given time t, R(t) is the set of states reachable at time t
(sometimes referred to as a time-slice). The input Trace is a set of all simulation
traces produced by SLSF up to a maximum simulation time β.
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3

1 function reachCheck(Reach,Trace, β)
foreach set of reachable states Ri in Reach

3 foreach set of reachable states Rj in Reach
if i 6= j and ∀ t ∈ [0, β] Ri(t) ∧Rj(t) is UNSAT then return UNSAT

5 foreach execution trace Tk in Trace
if ∀ t ∈ [0, β] Tk(t) ∧Ri(t) is UNSAT then return UNSAT

7 return SAT

Fig. 2: reachCheck checks whether the set of reachable states and traces computed
by different tools overlap (have non-empty intersection) at every time instant.

The reachCheck function can check whether the reachable states or simulation
traces computed by different tools at each time have non-empty intersections.
Although all of the reachable states and simulation traces are described in dif-
ferent formats such as support functions, Satisfiability Modulo Theories (SMT)
formulas, convex sets, etc., there still exists an equivalence among them. For
example, reachable sets computed by SpaceEx’s LGG algorithm are a represen-
tation of convex sets (support functions), but these could be compared to the
Taylor models of Flow*. If the reachable sets computed by different tools have a
non-empty intersection (pairwise over all the tools), then reachCheck will return
SAT, and the monitoring continues by generating a different random model.
Otherwise, there is possibly a bug in the HyST translation or the verification
tools. For the simulation traces, if some portions of a trace are not contained in
any of the reachable states, reachCheck will return UNSAT and there is again
possibly a bug in HyST, the verification tools, or SLSF. Obviously all these tools
have numerous parameters, so numerical issues, accuracies, etc. must be taken
into account by the user to determine whether a candidate bug is real.

Next, we define the structure of a hybrid automaton [2] and then summarize
the random generation framework.

Definition 1. A hybrid automaton H is a tuple, H ∆
= 〈Loc, Var, Flow, Inv,

Trans, Init〉, consisting of following components: (a) Loc: a finite set of dis-
crete locations. (b) Var: a finite set of n continuous, real-valued variables, where
∀x ∈ Var, v(x) ∈ R and v(x) is a valuation—a function mapping x to a

point in its type—here, R; and Q ∆
= Loc × Rn is the state space. (c) Inv:

a finite set of invariants for each discrete location, ∀ l ∈ Loc, Inv(l) ⊆ Rn.
(d) Flow: a finite set of derivatives for each continuous variable x ∈ Var, and
Flow(l, x) ⊆ Rn that describes the continuous dynamics in each location l ∈ Loc.
(e) Trans: a finite set of transitions between locations; each transition is a tuple
τ = 〈src, dst, Grd, Rst〉, which can be taken from source location src to destina-
tion location dst when a guard condition Grd is satisfied, and a state is updated
by an update map Rst. (f) Init: an initial condition, Init ⊆ Q.

We denote a hybrid automaton that has been randomly generated by AR. We
randomly generate each syntactic component of the automaton AR. Rather than
picking only random matrices and vectors for the affine functions used in flows,
guards, invariants, assignments, etc., we instead partition these affine functions
into classes. While we assume affine functions making up the automaton, the
general method may be extended to nonlinear functions. We highlight that all
structural components of the automaton are selected randomly (i.e., the tran-
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Loc1
t ≤ 7

ẋ1 = −0.7949x1 + 0.2722x2
ẋ2 = 0.2722x1 − 0.1835x2

ṫ = 1

Loc2
t ≤ 9

ẋ1 = −0.2936x1 − 0.1111x2
ẋ2 = −0.1111x1 − 0.4496x2

ṫ = 1

Loc3
t ≤ 5

ẋ1 = −0.5679x1 − 0.1359x2
ẋ2 = −0.1359x1 − 0.9269x2

ṫ = 1

start

t ≥ 7
t := 0 ∧ x1 := 2 ∧ x2 := 8

t ≥ 9
t := 0 ∧ x1 := x1 + 9 ∧ x2 := x2 + 15

t ≥ 10
t := 0
x1 := 7
x2 := 4

t ≥ 5
t := 0

x1 := x1 + 17
x2 := x1 + 18

Fig. 3: An example hybrid automaton AR with time-dependent switching that
was randomly generated using HyRG.

sitions and continuous dynamics), and are not simply parameters. For brevity,
we do not describe in detail the random generation of all structural components
here, but refer to our other preliminary results [4].

3 Preliminary Experimental Results

We evaluate our preliminary5 monitoring framework in several scenarios to
compare differences among several hybrid systems verification tools including
SpaceEx, dReach, and Flow*, as well as SLSF simulation. Consider a randomly
generated hybrid automaton AR shown in Figure 3. The initial state of AR is
Loc3, and the randomly generated initial values of its variables are respectively
x1 = 10, x2 = 17, and t = 0. Note that AR is nondeterministic. The results of
simulations and reachability analysis on AR are shown in Figure 4. The reachable
states restricted to x1 and x2 computed by Flow* as well as the STC and LGG
algorithms in SpaceEx do not contain a simulation trace for a supposedly equiv-
alent SLSF model created using HyST when AR takes a transition. In this case,
the reachCheck function in Figure 2 will return UNSAT. This happens because
of semantic differences in resets among Flow*, SpaceEx, and SLSF. In SLSF, the
variables x1 and x2 are updated sequentially, so that x1 will first be updated to a
new value, and then x2 will be updated using the new (already updated) value of
x1. However, these variables are updated concurrently in Flow* and SpaceEx [2],
so x2 will be updated by using the previous value of x1. Based on this, we fixed
this translation error in HyST.

4 Conclusion and Future Work
In this paper, we describe our preliminary results toward building a randomized
differential testing framework to monitor hybrid and CPS development tools like
SLSF and verification tools like SpaceEx, dReach, Flow*, etc. Our preliminary
results include identifying semantic mismatches between tools automatically that
have been integrated into subsequent versions of HyST. Additionally, we have
found a couple bugs in some of the verification tools that have been corrected by

5 Some of the steps are currently manual, particularly the parsing of reachable states
and comparison thereof, but the generation with HyRG and translation with HyST
is fully automatic.
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Fig. 4: SLSF simulation (blue), reachable states computed by Flow* (green),
SpaceEx’s STC algorithm (red), and SpaceEx’s LGG algorithm (gray) for AR

showing x1 and x2 versus time, respectively. The SLSF simulation traces and
the reachable states computed by Flow*, SpaceEx’s LGG and STC algorithms
do not line up (i.e., have an empty intersection) at some points in time (so
reachCheck returns UNSAT) due to a semantic difference.

the tool authors. Based on our promising preliminary results, we plan to fully
automate every step of the framework in the future.
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ABSTRACT
We present a technique to investigate abnormal behaviors of
signals in both time and frequency domains using an exten-
sion of time-frequency logic that uses the continuous wavelet
transform. Abnormal signal behaviors such as unexpected
oscillations, called hunting behavior, can be challenging to
capture in the time domain; however, these behaviors can
be naturally captured in the time-frequency domain. We in-
troduce the concept of parametric time-frequency logic and
propose a parameter synthesis approach that can be used to
classify hunting behavior. We perform a comparative anal-
ysis between the proposed algorithm, an approach based on
support vector machines using linear classification, and a
method that infers a signal temporal logic formula as a data
classifier. We present experimental results based on data
from a hydrogen fuel cell vehicle application and electro-
cardiogram data extracted from the MIT-BIH Arrhythmia
Database.

1. INTRODUCTION
For the last decade, signal temporal logic (STL) [11] has

been successfully extended and applied in many domains
such as exploring requirements for closed-loop control sys-
tems [8], identifying oscillatory behaviors of biology sys-
tems [5], and formalizing and recognizing music melodies [7].
Recently, Kapinski et al. introduced a new signal library
template for constructing formal requirements of automo-
tive control applications using STL [10]. These require-
ments involve various control signal behaviors such as set-
tling time, overshoot, and steady state errors. Although
most of such control signal behaviors can be characterized
in the time domain, some abnormal signal behaviors such
as hunting (undesirable oscillations) or spikes (abrupt, mo-
mentary jumps in signal values) are challenging to capture
without frequency information. In most practical control
systems, hunting behaviors are considered undesirable, or
at least not ideal, and care is taken to minimize or eliminate
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the behavior. In signal processing, hunting behavior can
manifest around sharp transitions, as a result of compres-
sion artifacts; this occurs, for example, in image processing,
resulting in ghostly bands near edges, or in audio compres-
sion, resulting in forward echo problems. In circuit design, a
hunting behavior can be the unwanted oscillation of an out-
put current or voltage, which may cause a significant rise
in power consumption, temperature, electromagnetic radia-
tion, or settling time [9]. Although some hunting behaviors
can be defined loosely as an oscillation around a given av-
erage and can be well captured using STL, some modulated
hunting signals are challenging to detect using only time
domain information [10]. Because hunting signals relate to
oscillatory properties, it is appropriate to investigate them
using time-frequency analysis.

The first attempt to introduce a specification formalism
for both time and frequency properties of a signal, called
time-frequency logic (TFL), was proposed by Donzé and
his collaborators [7]. There, a signal is preprocessed using
a Short-Time Fourier Transform (STFT) [4] to generate a
spectral signal that represents the evolution of the STFT
coefficients at some particular frequency over time. The
time-frequency predicates and arithmetic expressions con-
structed from this spectral signal are added into an STL
formula to yield a TFL formula. TFL was originally applied
to music, though it can be easily extended to other appli-
cation domains. A key limitation of the approach using the
STFT is the inherent trade-off required between resolution
in the time domain and resolution in the frequency domain;
it is difficult or impossible to obtain satisfactory resolution
in both time and frequency using the STFT for the analy-
sis. Such limitations can be overcome using the continuous
wavelet transform (CWT).

In the following, we extend the notion of TFL by using
the CWT to specify and check time-frequency properties
of signals. We introduce the concept of parametric time-
frequency logic (PTFL) and use it to perform parameter
synthesis for the purpose of classifying hunting behavior.
Previous efforts have focused on data classification of time-
series signals using STL [2, 3, 8], but identifying some ab-
normal behaviors such as hunting requires both time and
frequency information [10]. Moreover, existing classification
methods require an extensive amount of data, and the in-
ferred classifier is often difficult for engineers to interpret. In
contrast, our proposed method using PTFL can efficiently
classify abnormal behaviors with an interpretable data clas-
sifier and requires less data than existing techniques. We
note that although the below presentation is focused on one
behavior type, it is straightforward to extend the work to
detect other abnormal behaviors such as noise, spikes, or
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other anomalous behavior, in the time-frequency domain.
We evaluate the proposed algorithm by comparing the per-
formance against two existing classification techniques: a
traditional machine learning technique using a support vec-
tor machine with a linear kernel, and a method that infers
STL formulae as data classifiers [3]. To perform the eval-
uation, we use data sets from two different domains, the
automotive and medical domains.

2. TIME-FREQUENCY LOGIC USING CWT
Although many control system behaviors can be naturally

characterized in the time domain, there are some signal be-
haviors, such as hunting and spikes, that are challenging to
capture without frequency information. This is especially
true for non-stationary signals whose frequency components
vary over time; for this class of signals, it is essential to an-
alyze the signal properties in the time-frequency domain.
STFT is a popular transformation that has been widely
used in time-frequency analysis [4]. Using STFT to perform
time-frequency analysis, a signal is partitioned into small
segments (each segment is assumed to be stationary) whose
lengths are equal to the width of a chosen window function.
The window function is used to modulate the signal to em-
phasize the time instant associated with each segment. Un-
fortunately, the STSF provides a fixed time-frequency res-
olution so that it is not effective for signals that need to
be analyzed with different time-frequency resolutions [14].
Moreover, it is difficult to choose a proper window function
with an appropriate size that not only provides both desir-
able time and frequency resolutions but also does not violate
the stationarity condition [14]. To overcome the limitation
of the STFT, we use the CWT to analyze a signal in the
time-frequency domain.

2.1 Continuous Wavelet Transform
The CWT of a signal x(t) is formally defined as follows:

Wf(ζ, τ) =

∫ +∞

−∞
x(t)ψ∗ζ,τ (t), (1)

where ψ∗ζ,τ (t) is the complex conjugation of a basic wavelet
function ψζ,τ (t) which is derived from a mother-wavelet func-
tion ψ(t). This function has zero average in the time domain,

i.e.
∫ +∞
−∞ ψ(t)dt = 0. Furthermore, a basic wavelet function

ψζ,τ (t) can be written as:

ψζ,τ (t) =
1√
ζ
ψ

(
t− τ
ζ

)
, (2)

where ζ ∈ R>0 is a scale parameter representing the width of
the basic wavelet function, τ ∈ R is a translation factor rep-
resenting the location of the basic wavelet function, and 1√

ζ

is the energy normalization across different scales. Thus, the
CWT maps an original signal to a function of ζ and τ that
provides both time and frequency information. Note that
the scale factor is inversely proportional to the frequency of
a signal [14]. The CWT in Equation 1 measures the similar-
ity between a basic wavelet function and a signal. Indeed,
if a signal x(t) has a frequency component f corresponding
to a particular scale ζ of a wavelet function ψζ,τ (t), then
the portion of x(t) at some particular time interval where f
exists will be similar to ψζ,τ (t). As a result, the CWT co-
efficients of x(t) corresponding to f will be relatively large
over this time interval. Moreover, the time-frequency energy
density of the CWT is equivalent to the square norm of the
CWT coefficients:

PW f(ζ, τ) = |Wf(ζ, τ)|2. (3)

Time-frequency resolution. In contrast to the STFT,

the CWT can either dilate or compress the window size of
the wavelet function, and translate it along the time axis.
The Heisenberg box [12] is a range of times and frequencies
that indicates the accuracy of a time-frequency transforma-
tion. Although the area of the Heisenberg box does not
change, the time and frequency resolutions can be varied
depending on the value of ζ. As a result, the CWT can
analyze all frequency components within a signal by con-
sidering appropriate scales of the mother-wavelet function.
For instance, the CWT can use the wavelet function with
a short duration and low scale for analyzing high frequency
components, and vice versa. This advantage of the CWT al-
lows us to efficiently analyze a signal that includes abnormal
behaviors such as spikes and hunting.

2.2 Time-Frequency Logic
TFL is an extension of STL that can be used to specify

both time and frequency properties of a signal [7]. In TFL,
a signal predicate is defined over the signal representing the
evolution of the STFT coefficient at a particular frequency
over time. Given a pair (f, τ) of frequency and time, the
STFT of a signal x(t) is obtained by:

Sf,τ =

∫ +∞

−∞
x(t)ψL(t− τ)e−2iπftdt , (4)

where ψL(t) is a window function. A spectral signal y(t) =
|Sf,t|2 is the projection of the spectrogram of x(t) on a par-
ticular frequency f . Such a signal can be incorporated in
TFL formulae to form some interesting time-frequency spec-
ifications. We can see that a TFL formula is actually an STL
formula in which the signal predicate is defined over y(t) in-
stead of x(t). TFL has been used to formalize and recognize
music melodies, where time-frequency requirements are sim-

ply specified as ϕ
∆
= |Sfp,t|2 > θ, where fp is the pitch fre-

quency and θ is the STFT coefficient threshold [7]; however,
the shortcomings of the STFT mentioned previously may
reduce the ability of TFL to precisely specify and evaluate
time-frequency properties of a signal. We extend TFL to
use the CWT to obtain spectral signals from a given time-
series signal. In effect, we construct a TFL formula based
on the CWT coefficients of the spectral signals instead of
the STFT coefficients. Because the CWT can appropriately
use various scaling factors, ζ, to analyze all frequency com-
ponents at different time intervals, it gives us an ability to
study signals at flexible time-frequency resolutions.

Although the following presentation focuses on the clas-
sification of hunting behaviors, we note that the proposed
approach using TFL and CWT can be used to capture other
time-frequency specifications as well. For instance, consider
the property: “For some time in the future, the dominant
frequency of the signal is ω for 5 time units, and the domi-
nant frequency subsequently rises to twice of this value within
10-time units.” Here, the dominant frequency, f(t), of a sig-
nal x(t) is defined as the frequency corresponding to the
maximum magnitude frequency component of the signal at
time t, as provided by a CWT. Such a time-frequency prop-

erty can be written as a TFL formula, ϕ
∆
= ♦(�[0,5](f =

ω)∧♦[5,15](f = 2ω)). Then, the TFL formula ϕ can be eval-

uated as a normal STL formula using Breach1 [6]. Consider
another property such as “At some time in the future the
energy densities of the signal within a particular time inter-

1Breach [6] is a tool that allows evaluation of STL and TFL
formulae on signals.
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val and a particular frequency bandwidth are always greater
than some threshold value θ.” This property can be specified

as a TFL formula, φ
∆
= ♦�[t1,t2](z(f, t) > θ), where z(f, t)

is a spectral signal that captures the minimum value of the
CWT coefficients of a signal over some frequency bandwidth
[f1, f2].

Parametric Time-Frequency Logic. We introduce para-
metric time-frequency logic (PTFL), which is an extension
of TFL where the parameters in TFL template formulae are
symbolic parameters. Similar to the concept of parameter
signal temporal logic (PSTL) introduced in [1], PTFL allows
constants in intervals bounding the temporal operators and
constant values in the predicates of PTFL formulae to be
replaced with parameters.

The p parameters in a PTFL formula are classified into
two sets:

(a) Υ = {τ1, ..., τpt} is a set of pt time parameters occurring
in the time intervals of the temporal operators, and

(b) Θ = {θ1, ..., θp−pt} is a set of p− pt threshold parame-
ters occurring in the signal predicates.

For any fixed values of Υ and Θ, a PTFL formula ϕ(τ1, . . . , τpt ,
θ1, . . . , θp−pt) yields a TFL formula corresponding to the
fixed values of the parameters. For instance, consider a

PTFL formula ϕ(τ, θ)
∆
= �[0,τ ](y(t) > θ), where y(t) is a

spectral signal, τ and θ are time and threshold parameters,
respectively. The formula ϕ(5, 10) is defined as the TFL
formula �[0,5](y(t) > 10).

3. HUNTING CLASSIFICATION
In this section, we will describe three different approaches

using PTFL and TFL to efficiently classify hunting behav-
iors in signals. Informally, a hunting behavior is an unde-
sirable oscillation appearing within a signal over some time
interval.

3.1 Parameter Synthesis Approach
We now propose a method to classify hunting behavior

based on mining parameters of the following PTFL formula:

ϕh
∆
=

m∧
i=1

♦[0,τi](Wfi(t) > θi). (5)

Intuitively, this formula specifies that “the energy densities
of the given signal at particular frequencies are eventually
greater than some threshold value”. Here, Wfi(t) is a spec-
tral signal over time that captures the energy densities of the
CWT of an original time-series signal x(t) at a particular fre-
quency fi ∈ F . Note that F is a set of frequencies based on
the scales of the CWT. Each spectral signal, Wfi(t), is the
row vector of the matrix representing the energy densities
of the CWT of x(t); such a matrix is obtained using Equa-
tion 1 and Equation 3. Also, τi ∈ Υ and θi ∈ Θ denote a
time and threshold parameter corresponding to each spec-
tral signal Wfi(t). We note that the satisfaction value of
the property ϕh monotonically increases in τi and decreases
in θi. Because of monotonicity, we can exponentially reduce
the search over the parameter space so that the synthesis
procedure is efficient [8]. Figure 1 conceptually illustrates a
spectral signal Wfi(t), and an instance of a hunting behav-
ior that may occur within a signal. We say that a signal x(t)
contains hunting behavior if the property ϕh holds. Overall,
the hunting classification problem can be written as follows.

• Given the following inputs:

𝑊𝑓1

𝑊𝑓2

𝑊𝑓𝑚−1

𝑊𝑓𝑚

frequency

time

Hunting
𝜃𝑚

𝛿

energy density

Figure 1: A sketch illustrates the hunting classifica-
tion problem using time-frequency parameter syn-
thesis. The set of spectral signals Wfi is acquired
from the CWT of an original time-series signal.

2 a set of labeled traces Ψ
∆
= {Ψα,Ψβ}, where Ψα and

Ψβ denote a set of training and testing traces, respec-
tively. Moreover, we the notation Ψ.B and Ψ.G to
respectively denote the set of traces with and without
hunting behavior. Note that all traces in the training
set exhibit hunting behavior, so that Ψα = Ψα.B

2 a cut-off frequency δ.

2 sets of parameters Υ, and Θ.

• Find values for Υ and Θ, such that:

2 xj(t) |= ϕh(Υ,Θ) for all xj(t) ∈ Ψβ .B.

2 xj(t) 6|= ϕh(Υ,Θ) for all xj(t) ∈ Ψβ .G.

We introduce the cut-off frequency δ to reduce the effort to
exhaustively mine parameters over the entire time-frequency
domain. It is essential for the control engineers to indicate
that hunting behavior only occurs at some high-frequency
region above δ.
Classification Algorithm. Next, we propose a heuristic to
automatically obtain values for Υ and Θ that can be used to
separate the hunting and non-hunting signals. An overview
of the heuristic is described in Algorithm 1. The heuristic
can be interpreted as follows.

Line 2 initializes a matrix Σ that represents the k m-
dimensional spectral signals transformed from k original time-
series signals in the training set using the CWT. We iterate
over each trace in Ψα to construct sets of spectral signals
{Wf1(t), ...,Wfm(t)} using the CWT, and assign them to Σ.
Next, we call the function TruncateParam to reduce the effort
of exhaustively mining all parameters over the entire time-
frequency domain. Here, Σ′ represents the k n-dimensional
(n < m) matrix of Σ corresponding to the frequency range
above δ. Next, we call the function HuntingParamSyn incor-
porated inside Breach to mine values for Υ and Θ. Then,
we test the classifier with a given set of testing traces Ψβ .
The function Classifier checks the satisfaction of ϕh for each
trace in Ψβ , and returns the misclassification rate (MCR)
value and the set of misclassified traces Ψm. The values of
Υ, Θ and the set Ψm are then returned for further anal-
ysis. Furthermore, we can call EnhancedParam function to
strengthen the values Υ and Θ and reduce the MCR value
for the purpose of optimizing the classifier formula. Note
that in the case studies, we do not use this function to eval-
uate the performance of the classifier to avoid the bias in
our comparative analysis.

3.2 Decision Tree Approach
An approach based on decision trees to classify time se-

ries data using STL formulae was implemented in the tool
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Algorithm 1 Hunting Classification Using Parameter Syn-
thesis

1 function HuntingClassification(Ψα,Ψβ , δ)
Σ← 0

3 for each trace xj(t) ∈ Ψα, j ≤ k
Σ(j, :, :)←Wf1(t), ...,Wfm(t)← CWT (xj(t))

5 end for

Σ′ ← TruncateParam(δ,Σ)
7 Υ,Θ← HuntingParamSyn(Σ′)

MCR,Ψm ← Classifier(Υ,Θ,Ψβ)
9 return Υ, Θ, Ψm

end function
11 function EnhancedParam(Ψm,Ψα,Ψβ , δ)

if Ψm.B 6= ∅ then

13 Ψ′α ← Ψα ∪Ψm.B
HuntingClassification(Ψ′α,Ψβ , δ)

15 end if
end function

DT4STL [3]. That method uses a parameterized procedure
to infer STL formulae from labeled data. Given a two-class
training data and a set of PSTL templates, a decision tree
for classification is recursively built such that each node of
a tree is associated with a simple formula, selected from the
given PSTL templates. The parameter synthesis is then con-
ducted to find the STL formula that yields the best split for
the data at each node. This technique can be used to auto-
matically construct classifiers based on STL formula, but to
achieve a low MCR value, the inferred STL formulae may
be long and not easily interpretable by engineers. In this
section, we apply this approach to classify hunting versus
non-hunting signals. Instead of inferring an STL formula,
we intend to infer a TFL formula as a data classifier. Thus,
we transform original time series data into a collection of
time-frequency data (spectral signals).

We assume that control engineers initially designate the
frequency threshold separating hunting versus non-hunting
behavior. A hunting behavior is specified as any oscilla-
tory behavior occurring at frequencies above some specified
cut-off frequency δ. Thus, the time-frequency profile of a
hunting signal at some frequency component f > δ con-
tains larger values for the CWT coefficients compared to
those of non-hunting signals. So we define the spectral sig-
nal WThcoef based on the CWT coefficients of the signal in
a high-frequency region such that:

WThcoef(t) = max
ζ∈[ fc

TsFmax
, fc
Tsδ

)

PW f(ζ, t), (6)

where fc is a center frequency associated with the mother-
wavelet function, Fmax is the maximum frequency that ap-
pears in the CWT, and Ts is the sampling period. We use
such a spectral signal as an input for the DT4STL to infer a
simple TFL formula. Note that in this scenario, the inferred
TFL formula captures the non-hunting behavior of a signal.

3.3 Support Vector Machine Approach
Next, we present another approach that can solve the

problem of hunting classification: linear classification us-
ing support vector machines (SVM) [15]. A linear SVM is
a set of hyperplanes or decision boundaries that can cor-
rectly separate data into two classes. The general form of
hyperplanes is 〈w · x〉 + b = 0, where w is a normal to the
hyperplane, and b

||w|| is the perpendicular distance from the

hyperplane to the origin. The sign of the linear discriminant

function f(x)
∆
= 〈w · x〉+ b determines on which side of the

decision boundary the test data point is located. The dis-
tance from the decision boundary to the closest data point
determines the margin of the linear classifier. Suppose that
we have a set of n labeled training data (xi, ci), ..., (xn, cn)
where xi ∈ Rd and ci ∈ {1,−1}, the constrained optimiza-
tion problem of linear classification using SVM is written
as:

minimize
w,b

1

2
||w||2 + C

n∑
i=1

ζi

subject to ci(〈w · xi〉+ b) ≥ 1− ζi, i = 1, . . . , n

ζi ≥ 0. (7)

Here, ζ is a slack variable. If 0 < ζ ≤ 1, the data point lies
somewhere between the margin and the correct side of hy-
perplane, and the data point is misclassified if ζ > 1. C is a
regularization parameter that defines the trade-off between
errors of the SVM on training data and margin maximiza-
tion. A large value of C results in the low possibility of
misclassified training data points, because the optimization
in Equation 7 will choose a narrow margin hyperplane that
correctly separates training data points as much as possi-
ble. In contrast, a small value of C will result in a large
margin hyperplane, but it may yield a better result in terms
of correctly separating testing data points. Due to space
limitation, we will not discuss the formal optimization prob-
lem solved to obtain the SVM, but refer interested readers
to [15]. In this work, instead of applying the linear SVM di-
rectly to original time series signals, we need to preprocess
them to yield a corresponding set of time-frequency features.
For each time-series signal x(t), we collect a real-valued vec-

tor Wmax ∆
= [Wfmax1 , ...,Wfmaxm ] such that each element

Wfmaxi ∈ Wmax is the maximum value of a spectral sig-
nal Wfi(t). Such a vector will be used as a time-frequency
feature to design the SVM.

4. CASE STUDIES
In this section, we evaluate the capabilities of three dif-

ferent methods to classify hunting behavior for two case
studies. The first case study is based on data from an air
compressor motor speed (ACMS) system in a fuel cell (FC)
vehicle application. The second case study is based on elec-
trocardiogram (ECG) data. In both examples, we apply the
Morlet CWT [12] to the time-series signals.

4.1 ACMS Data
The ACMS system uses a compressor to regulate the air

intake of a hydrogen FC vehicle. An FC stack uses a mix-
ture of air and hydrogen to generate electrical power for the
vehicle. Accurate control of the compressor which translates
to control of the quantities of hydrogen and oxygen (air) is
required to achieve good performance and proper operation
from the FC stack. Also, the water balance (moisture level)
within the stack needs to be carefully regulated, which re-
quires regulation of the air pressure at the inlet of the stack.
The task of the ACMS system is to regulate air flow and air
pressure delivered to the inlet of the FC stack.

We consider ACMS data from an FC vehicle application.
Specifics of the data, such as units and descriptions of the
measured quantities are omitted here for proprietary rea-
sons. The ACMS data are partitioned into a collection of
traces that are 100 seconds in length and are labeled as ei-
ther good (the trace does not exhibit hunting behavior) or
bad (the trace does exhibit hunting behavior). The ACMS
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Figure 2: The classified testing data of the ACMS
signals using parameter synthesis approach.

data has a sampling period of 0.02 seconds. We note that
the same training data is used for all of the evaluations,
though the parameter synthesis approach only uses the bad
traces. In this experiment, we use the training data includ-
ing 50 total traces, in which 30 traces are labeled as good
and the others are labeled as bad. We also use the same
testing data including 10 good traces and 10 bad traces for
all of the evaluations.

Parameter Synthesis. We now illustrate the performance
of the classification heuristic shown in Algorithm 1 to clas-
sify hunting behavior for the ACMS signals. Because we
do not know the frequency range where a hunting behavior
may occur, we exhaustively mine all parameters τi ∈ Υ and
θi ∈ Θ. We choose the maximum frequency of the CWT
as Fmax = 25Hz. Here, the Algorithm 1 will search for the
best θi ∈ [0, 1] and τi ∈ [0, 100] such that all spectral signals
transformed from original time-series traces in the training
data satisfy ϕh. We then use Breach with the optimized
parameters of ϕh to classify good versus bad traces in the
testing set.

Figure 2 shows the experimental results of classifying ab-
normal ACMS signals, using the function HuntingClassification.
In the figure, we only show five representative signals in
which good traces correctly classified are shown in green,
and bad traces correctly classified are shown in blue. The
one good trace that is misclassified is shown in red. The total
running time of the classification process is approximately 3
minutes.

Decision Tree Approach. Next, we utilize the DT4STL
toolbox to infer TFL formulae that can be used to classify
hunting behavior for the ACMS data.

We preprocess the training data to yield the corresponding
set of spectral signals WThcoef with δ = 15Hz and Fmax =
25Hz. We then run the DT4STL toolbox with this set of
spectral signals using 2-fold cross-validation. As a result,
we obtain the two following TFL formulae:

ϕh1
∆
= �[37.4,98.2)(WThcoef < 0.0435)

ϕh2
∆
= �[1.29,91.3)(WThcoef < 0.0394).

The procedure takes approximately 75 seconds to infer each
formula. Using Breach, we then evaluate those formulae
with the set of testing data. The formula ϕh1 gives us all
misclassified traces that are bad traces with the MCR value
being equal to 25%. On the other hand, the formula ϕh2
results in one misclassified trace, which is a bad trace.

SVM Approach. We apply the SVM method to classify
normal versus abnormal ACMS data. We first transform all
of the traces in the training data into sets of time-frequency
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Figure 3: The classified testing data of the ECG
signals using parameter synthesis approach.

features. Next, we run the linear SVM to learn the deci-
sion boundaries that separate data as either good or bad.
Finally, we predict the testing data from the learned deci-
sion boundaries with different values of the SVM classifier
margin C.

The MCR of the hunting classification for the ACMS data
using SVM is 10% with C = 10 and reduces to 5% with
C = 100. In this case, a larger value of C gives a better result
for the classification. Moreover, the classification process
takes only 0.393 seconds.

4.2 ECG Data
An electrocardiogram (ECG) test is a noninvasive proce-

dure used to monitor the electrical activities of a heart via
a collection of electrodes attached to the patient’s skin. A
doctor can read an ECG output signal to diagnose abnor-
mal structure or function of the patient’s heart. A normal
ECG signal includes three signals: (a) the P wave repre-
senting the depolarization or contraction of the atrium (b)
the QRS complex (the R wave) indicating the ventricular
depolarization and (c) the T wave describing the ventricu-
lar repolarization. The distance between two consecutive R
peaks is considered as a heartbeat. A healthy patient has a
resting normal heartbeat (frequency) from 60 to 100 beats
per minute (bpm).

In this paper, we focus on classifying the ECG signal
that may contain a ventricular tachycardia (VT), a very
fast heart rhythm arising in the ventricles that may cause a
sudden heart failure. VT is defined as a sequence of three
or more ventricular beats with the frequency varying from
110 to 250 bpm. Thus, a VT can be considered as a hunting
behavior in an ECG signal. We conduct our classification
approaches on the MIT-BIH Arrhythmia ECG Database.
These data contain a variety of ECG signals collected from
patients 23 to 89 years of age, including patients who expe-
rience ventricular arrhythmia [13]. We transform ECG sig-
nals 20 seconds in duration (provided at a sampling period
of 0.0028 secs.) to spectral signals using the Morlet CWT.
Here, the maximum frequency of the CWT is Fmax = 4.5Hz
(∼ 270 bpm). For all of the evaluations, we use the same
training data including 20 bad traces (the traces do contain
a VT) and 40 good traces (the traces do not contain a VT),
and the same testing data including 10 good traces and 10
bad traces.

Parameter Synthesis. In this scenario, we only mine the
parameters for 20 bad traces in the training dataset. Here,
we will search for the best θi ∈ [0, 5] and τi ∈ [0, 20]. Fig-
ure 3 shows the experimental results of using the function
HuntingClassification to classify abnormal ECG signals that
contain VT. Here, we only show three signals for illustra-
tion. The approach results in one (5%) misclassified (red)
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PS DT4STL SVM

Interpretation of data classifier ©
a

×
Computation time × × ©
Bad behavior localization © © ×
Low misclassification rate

a a
©

Table 1: The comparison between parameter syn-
thesis (PS) using PTFL, DT4STL toolbox using TFL,
and linear SVM in classifying abnormal signals,
where ©,

a
, × respectively denote good, ok, bad.

trace, which is a bad trace. The total running time of the
classification process is approximately 1 minute.

Decision Tree Approach. Next, we utilize the DT4STL
toolbox to classify hunting behavior for the ECG data. We
first preprocess the training data to yield the corresponding
set of spectral signals WThcoef with δ = 1.5Hz. Then, we
run the DT4STL toolbox with this set of spectral signals
using 2-fold cross-validation. As a result, we obtain two
following TFL formulae:

φh1
∆
= �[1.73,17.3)(WThcoef < 3.16)

φh2
∆
= �[2.36,20)(WThcoef < 3.21).

The procedure takes approximately 105 seconds to infer each
formula. We then use Breach to evaluate these formulae with
a set of spectral data acquired from the CWT of 10 good
traces and 10 bad traces in the testing data. The MCR
values of using φh1 and φh2 to classify these data are both
equal to 5% (but misclassified traces are different).

SVM Approach. Finally, we apply the SVM approach to
classify hunting in the ECG data. Note that we use the same
training and testing data used for the other methods. The
hunting classification of the ECG data using an SVM results
in a 5% MCR for all values of C (the one misclassified trace
is a bad trace), and the classification procedure takes 0.3
seconds.

5. DISCUSSION
In this section, we discuss the trade-offs related to the

three classification approaches presented above to classify
normal versus abnormal signals. Table 1 shows an aggregate
performance evaluation between the approaches in four dif-
ferent categories, including (a) the ability to interpret the
structure and parameters used to define the classifier, (b)
the computation time, (c) the capacity to localize where
bad behavior occurs in a signal, and (d) the ability to cor-
rectly classify normal versus abnormal signals. Although the
linear SVM can classify abnormal signals much faster and
more accurately than the parameter synthesis and the deci-
sion tree approaches, the main drawback of this method is
that it cannot reveal where the bad behavior occurs within
a signal. We found that the decision tree approach can infer
specifications that accurately classify data as either good or
bad; however, it is not easy to interpret the inferred formula
unless the user has some expertise about the input data. If
a dataset is not homogeneous (i.e., both normal and abnor-
mal signals are very different from each other), the DT4STL
toolbox may infer a complicated formula that cannot be eas-
ily interpreted. The parameter synthesis using PTFL and
the decision tree approach using TFL have similar perfor-
mance except the former provides a clearer intuition about
the classifier, as the temporal logic formula that results is
usually simpler for the PTFL case. Overall, we conclude

that a traditional machine learning technique such as the
linear SVM is the best choice if the only goal is to classify
data as either good or bad, and the most important thing is
to select a proper feature on which to base the classification
algorithm. Otherwise, if the designer additionally wishes to
both understand the meaning of a data classifier and auto-
matically localize where abnormal behaviors occur within a
signal, we conclude that the parameter synthesis approach
is the best option, as a simple temporal logic formula that
defines the classifier results from the analysis.
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ABSTRACT
A hyperproperty is a property that requires two or more execution
traces to check. �is is in contrast to properties expressed using
temporal logics such as LTL, MTL and STL, which can be checked
over individual traces. Hyperproperties are important as they are
used to specify critical system performance objectives, such as
those related to security, stochastic (or average) performance, and
relationships between behaviors. We present the �rst study of hy-
perproperties of cyber-physical systems (CPSs). We introduce a new
formalism for specifying a class of hyperproperties de�ned over
real-valued signals, called HyperSTL. �e proposed logic extends
signal temporal logic (STL) by adding existential and universal trace
quanti�ers into STL’s syntax to relate multiple execution traces.
Several instances of hyperproperties of CPSs including stability,
security, and safety are studied and expressed in terms of HyperSTL
formulae. Furthermore, we propose a testing technique that allows
us to check or falsify hyperproperties of CPS models. We present a
discussion on the feasibility of falsifying or verifying various classes
of hyperproperties for CPSs. We extend the quantitative semantics
of STL to HyperSTL and show its utility in formulating algorithms
for falsi�cation of HyperSTL speci�cations. We demonstrate how
we can specify and falsify HyperSTL properties for two case studies
involving automotive control systems.
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and Taylor T. Johnson. 2017. Hyperproperties of Real-Valued Signals. In
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2017, 10 pages.
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1 INTRODUCTION
Hyperproperties were �rst proposed by Clarkson and Schneider
to characterize properties of security policies that cannot be de-
�ned over individual traces, such as service level agreements and
information-�ow properties [15]. In this work, we extend the no-
tion of hyperproperties to cover a broad range of requirements for
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cyber-physical systems (CPSs), and we present a taxonomy of hy-
perproperties used to address security and control design concerns
for CPSs. Also, we provide practical techniques for automating the
process of testing hyperproperties for CPSs.

In contrast to trace properties expressed over individual execu-
tion traces, hyperproperties are de�ned over multiple execution
traces. For example, one execution of a system cannot be checked
against a service level agreement property such as “the average
time elapsed between a user’s request and response over all executions
should be less than 1 second”; the property can only be evaluated
over all system execution traces. Moreover, we can consider an
information-�ow policy of noninterference speci�ed as “for all pairs
of traces of a system that have the same low-level security inputs,
they will also have the same low-level security output” [22, 41]. �is
noninterference property is a hyperproperty as it is expressed over
all pairs of traces of a system.

Hyperproperties generalize more traditional formal properties by
specifying relationships between disparate execution traces, instead
of behaviors of individual execution traces. Traditional logics that
consider traces individually, such as LTL, cannot be used to specify
hyperproperties, and thus, hyperproperties are more expressive.
Logics such as CTL and CTL* allow properties over multiple paths
of a computation tree, but they do not permit comparisons between
the paths themselves. Instead, to express and e�ciently check
hyperproperties, Clarkson et al., introduced notions of HyperLTL
and HyperCTL* [14]. Both logics directly extend LTL and allow us
to reason about more than one execution trace at a time. �e main
di�erence between HyperLTL and HyperCTL* is that the former
requires trace quanti�ers appearing at the beginning of a formula,
but the la�er allows us to specify them within a formula.

Although hyperproperties are well studied in the context of
security policies for so�ware systems, hyperproperties have not
been explored for CPSs. For a CPS that includes stochastic factors
such as noise, environment disturbance, or transducer inaccuracies,
it is realistic for design engineers to expect that the system has
some acceptable performance in a probabilistic sense rather than
requiring an absolute performance limit be met for all individual
behaviors. Acceptable performances de�ned over the averages of
se�ling time, overshoot, undershoot, or error bounds cannot be
speci�ed and checked using individual execution traces; they must
be quanti�ed over all execution traces.

Recently, security-aware function modeling of CPSs has emerged
as an important research topic in computer science and system
veri�cation. A CPS, which is an integration between cyber and
physical subcomponents, can be vulnerable to both cyber-based
and physical-based a�acks [5, 19, 39, 48]. For instance, consider a
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modern automobile, which is a complex CPS composed of many
computer units such as an Engine Control Unit (ECU), the Trans-
mission Control Module (TCM), and an Electronic Brake Control
Module (EBCM), all interacting with the physical world via sensors
and actuators. Cyber-based a�ackers can gain access to the com-
munication channels of a modern automobile through wireless or
in-vehicle networks. As a result, a�ackers can in�ltrate an ECU
or EBCM to stall the engine or disable the brake system [30, 45].
An alternative method of a�ack involves gaining physical access
to the system, for example by manipulating the signals processed
by the sensors (known as sensor spoo�ng), to compromise secure
information or to alter system behaviors [5, 46]. Instances of ac-
tive physical-based a�acks include vehicle braking system a�acks,
where faulty data is injected into the wheel speed sensor of a vehi-
cle to disrupt the braking function [48], and insulin delivery device
a�acks, where glucose level sensor data is corrupted to compromise
the function of the insulin delivery service [31]. A passive physical-
based a�ack, also called a side-channel a�ack, is based on physically
observing the system behavior and using leaked information to
gain insights into the system implementation [26, 28, 42]. Some
well-known side channel a�acks are power analysis a�acks [27],
timing a�acks [29], electromagnetic a�acks [43] and di�erential
fault analysis a�acks [10].

Designing a safety-critical CPS that is entirely secure from both
cyber-based and physical-based a�acks is challenging or impossi-
ble. A reasonable approach is to iteratively improve a CPS control
design using a falsi�cation technique. Falsi�cation is an automated
best-e�ort approach to identify system behaviors that violate a
given formal speci�cation [40]. �e design approach would be to
�rst formally specify safety properties of a CPS that protect the
system against possible cyber-based and physical-based a�acks
using formalisms such as temporal logic and to then iteratively
improve the design using falsi�cation, which would automatically
identify vulnerabilities in the design. Despite the a�ractiveness of
falsi�cation techniques, a�acks for CPSs o�en need to be de�ned
over multiple execution traces of the system, which is something
that cannot be expressed or falsi�ed using existing temporal log-
ics such as LTL, MTL, and STL. �us we propose an extension to
these logics that would be compatible with the appropriate spec-
i�cations. In this work, we present a study of hyperproperties
including stability, security and safety, as applied to CPSs. We
introduce several instances of hyperproperties capturing relation-
ships (e.g input-output relationships) between multiple traces of
a CPS. We extend the syntax and semantics of STL [17] to specify
hyperproperties over dense-time real-valued signals, which results
in a new logic called HyperSTL. Basically, we add quanti�ers at
the beginning of an STL formula to express relationships between
multiple traces. We also introduce a testing algorithm based on
a fragment of HyperSTL and apply it to �nd falsifying traces for
hyperproperties of industrial Simulink models. Moreover, we pro-
vide a discussion on the feasibility of falsifying or verifying various
classes of hyperproperties for CPSs.
Related work. �e study of hyperproperties for CPSs evaluated
in this paper was inspired by the previous work of Clarkson and
Schneider, who introduced hyperproperties to express security

policies such as secure information �ows and service level agree-
ments [15]. In [13], Bryans et. al. presented a general formalization
of opacity policies that prevent observers from deducing the truth
value of a predicate; those opacity policies require behaviors to
be speci�ed over multiple paths of a system. In earlier work [37],
McLean showed that some “possibilistic” security properties like
restrictiveness [35], noninterference[22] and nondeducibility [49]
are closure properties that cannot be expressed by individual exe-
cution traces. In [37], those properties are speci�ed with respect
to di�erent sets of trace contractors called selective interleaving
functions.

Following the introduction of hyperproperties [15], Clarkson
et al. introduced HyperLTL and HyperCTL*, which are exten-
sions to existing temporal logics, to express and check classes of
information-�ow hyperproperties [14]. �ese logics extended LTL
and CTL* by adding the path quanti�ers that permit speci�cations
involving multiple paths in the system. Model checking algorithms
and complexity of fragments of HyperLTL and HyperCTL* were
also given in [14], which were then further exploited and applied
to check some classes of information-�ow hyperproperties in [41].

Prototype implementations of model checkers for HyperLTL
and HyperCTL*, which assume the system is modeled as a Kripke
structure, can verify some information-�ow hyperproperties of a
discrete-time system, but extending that work to check hyperprop-
erties de�ned over continuous traces is a challenging endeavor.
For complex CPS models or for models built in frameworks with
proprietary or otherwise obfuscated semantics, such as Simulink®,
formal veri�cation of hyperproperties is e�ectively impossible, as
no corresponding Kripke structure may be obtained from those
models1. Alternatively, an easier but still di�cult task is to develop
an e�cient testing framework, which could be used to check hy-
perproperties for �nite collections of traces or could be used to
falsify hyperproperties of a CPS model; this is the contribution of
the work presented herein.

In [50], Xu et al. introduced a notion of CensusSTL that utilizes
STL by adding an outer logic to quantify the number of individual
agents of a multiagent system whose behaviors satisfy an inner STL
formula. CensusSTL is similar to the HyperSTL proposed in this
paper; however, the former is only able to specify group behaviors
from di�erent components of an individual trace while the la�er
allows us to express relationships between multiple traces.

�e remainder of the paper is organized as follows. Section 2 re-
views relevant background. Section 3 introduces several examples of
hyperproperties of CPSs including stability, security and safety. Sec-
tion 4 presents the syntax and semantics of HyperSTL. Section 5
and Section 6 describe the testing algorithm for two fragments of
HyperSTL. Section 7 applies the proposed approach to �nd falsify-
ing traces for some hyperproperties of industrial Simulink models,
and Section 8 concludes the paper.

1Some have created their own translation of Simulink models to modeling languages
with well-de�ned formal semantics (for example, see [3, 52]), but these translations
necessarily only handle a subset of the Simulink/State�ow modeling language. �is
is due to the fact that some Simulink constructs correspond to behaviors that cannot
be modeled using standard frameworks for hybrid systems. One such construct is
the Variable Transport Delay block, which, roughly speaking, corresponds to a delay
di�erential equation, a construct that is not handled by standard modeling frameworks
for hybrid systems.
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2 PRELIMINARIES
In this section, we review the concepts of signal, system, trace
property, falsi�cation, and veri�cation.
Signal. We de�ne a signal w as a function w : T → D, where
T ⊆ R≥0 is the time domain. If D = B, w is a Boolean signal whose
value is either true or false, and ifD = R, then we say that the signal
is real-valued. A trace, w : T→ D1 × . . . × Dn , is a collection of n
signals, where ∀t ∈ T,w(t) ∆

= (w1(t),w2(t), ...,wn (t)). Intuitively,
we can consider w as one execution trace of a continuous-time
system with n variables that describes an evolution of the system.
In what follows, we reserve the use of bold le�ers like w, w′ for
traces (i.e., tuples of signals), while we use lowercase italicized
le�ers such as wi to represent signals.
System. We de�ne a deterministic or nonstochastic2 cyber-physical
system Σ as a function mapping a given input trace in (T→ Dm )
to an output trace in (T→ Dn ). We denote by JΣK the set of traces
w such that the �rstm components of w correspond to them input
signals for JΣK, and the next n components correspond to the n
output signals.
Trace properties. A trace property φ is a �nite or in�nite set of
individual traces. A trace property is either satis�ed or violated by
any given set of traces [6, 41]. A set of tracesW satis�es the trace
property φ ifW ⊆ φ. As noted above, an individual trace can have
several components, for example, a trace could contain m input
signals and n output signals of a given system Σ. We say that the
trace property φ holds for a system Σ (denoted as Σ |= φ) if the set
of input-output traces compatible with the system description is
contained in the trace property, i.e., JΣK ⊆ φ.
Falsi�cation. Given a trace property φ and a CPS Σ, the falsi-
�cation problem is to �nd a non-empty set W ⊆ JΣK such that
W * φ.
Veri�cation. Given a trace property ϕ, the veri�cation problem of
a CPS Σ with respect to ϕ is to show that JΣK ⊆ ϕ.

3 HYPERPROPERTIES OF REAL-VALUED
SIGNALS

Hyperproperties generalize formal properties of a system by con-
sidering sets of sets of execution traces, instead of only sets of
execution traces.

De�nition 3.1 (Hyperproperty). Let S denote the set of all traces. Let
the power set of S be wri�en as P ∆

= P(S). A hyperproperty is any
subset of P(S).

We say a set of tracesW satis�es a hyperpropertyϕ ⊆ P ifW ∈ ϕ.
Given a hyperproperty ϕ and a system Σ, the falsi�cation task is to
�nd a non-empty setW ⊆ JΣK such thatW < ϕ. Similarly, given a
hyperproperty ϕ and a system Σ, the veri�cation task is to show
that JΣK ∈ ϕ.

2Note the contrast with stochastic systems. In stochastic systems, one or more parts
of the system have randomness associated with them; for instance, the value of a
particular system parameter may be drawn from a probability distribution. �e key
di�erence is that the stochastic system may not produce the same output for a given
input. Unless otherwise speci�ed, all the systems that we consider in this paper are
deterministic.

In this section, we introduce hyperproperties for determinis-
tic systems to characterize properties such as security, safety, and
stability. We focus on a class of hyperproperties capturing relation-
ships (e.g., the input-output relationship) between multiple traces of
a system, and we show several examples of hyperproperties related
to stability and security for CPSs. In rest of this section, we use
dsup (w,w′) to denote the sup-norm distance between traces w and
w′, where dsup (w,w′) = supt ∈R≥0 | |w(t) −w

′(t)| |.
• Robust behavior is a requirement that guarantees that small dif-

ferences in system inputs result in small di�erences in system
outputs. Consider the following property: “For all pairs of traces
of a system with an input di�erence less than ϵ1, the output di�er-
ence should be bounded by ϵ2”. Such a property is a hyperproperty
as it requires at least two execution traces to check. �is hyper-
property can be formally wri�en as:

ϕ1
∆
= {W ∈ P | ∀w,w′ ∈W : dsup (win ,w′in ) ≤ ϵ1

=⇒ dsup (wout ,w′out ) ≤ ϵ2}. (1)
�is type of property is related to certain stability notions, such as
bounded input, bounded output (BIBO) stability and the L2 gain,
as these notions also bound the variation in the output, based
on bounded variation in the input. We note, however, that the
robust behavior hyperproperty di�ers from BIBO stability and
the L2 gain, as the robust behavior hyperproperty is speci�ed
over all pairs of execution traces while the BIBO and L2 proper-
ties are de�ned based on individual traces. �e robust behavior
hyperproperty is also related to bisimulation relations [18] and
conformance-closeness [2] for a dynamical system, as all three of
these properties are based on some constraints on the distances
between multiple traces. In fact, we may specify bisimulation
or conformance-closeness functions in terms of hyperproperties.
Lastly, we note that the robust behavior hyperproperty is per-
haps most closely related to Lipschitz Robustness of systems [23],
which bounds di�erences in output behaviors based on bounded
di�erences in input behaviors, though Lipschitz Robustness was
originally developed for timed input/output systems as opposed
to general CPS models.

• Side-channel a�acks are a�acks against cryptographic devices
based on studying leaking information about the operations
they process, such as power consumption, heat generation, and
execution time. �e side channel a�ack is an instance of an
inactive physical-based a�ack that can be used against a CPS in
which some physical behaviors are observable. A�ackers can
deduce the working principle of a system without either access
to the system itself or an understanding of the internal operation
of the system. For example, a�ackers can analyze an abnormal
change in the power consumption of an integrated circuit while
an encryption process is being executed and then reconstruct
the encryption key to access secret data [27, 28]. �e following
property permits side-channel a�acks:

ϕ2
∆
= {W ∈ P | ∃w ∈W : ∀w′ ∈W : (dsup (w,w′) > 0
∧ Power(w(t)) > c1) =⇒ Power(w′(t)) < c2}, (2)

where Power(w(t)) represents the power consumption corre-
sponding to w over time, and c1, c2 are arbitrary constants such
that c1 > c2. A system that satis�es this property allows an
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a�acker to detect that a particular behavior has occurred (w in
Formula 2) by monitoring the power associated with the behav-
ior. �e property is a hyperproperty as it is expressed in terms
of multiple traces. To ensure the safety of a system from the
power-monitoring a�ack, the system should satisfy ¬ϕ2. We
note that other classes of side-channel a�acks such as timing
a�acks, electromagnetic a�acks, and di�erential fault analysis
a�acks can be speci�ed using properties similar to Formula 2.

• Robust control invariance is a property that can be used to syn-
thesize safe controllers, or more to the point, can be utilized to
determine whether a safe controller exists for systems with dis-
turbances [11]. Informally, the property states that, for a given
set of behaviors that is deemed safe, a control action exists, such
that the system remains within the safe set for any allowable
disturbance input. �is can be stated formally as follows:

ϕ3
∆
= {W ∈ P | ∃w ∈W : ∀w′ ∈W : (w,w′) |= ϕ}, (3)

where (w,w′) |= ϕ means that the pair (w,w′) satis�es some
property ϕ. In this formulation, wu (t) is the component of w
that represents the controller action,wd (t) is a disturbance input,
wy (t) is a system output, and (w,w′) |= ϕ enforces both that
wu = w ′u and w ′y (t) ∈ Ω, where Ω is the set of safe behaviors.
�e robust control invariance property is related to fault data
injection (FDI) a�acks, which are active physical-based a�acks
where a�ackers try to input faulty data into a system to corrupt
the behavior of the controller. For example, a�ackers can spoof
the sensors of DC microgrids by injecting false data such as
the past outputs of the sensors at previous time instants. �is
instance of FDI a�ack is also well known as a replay a�ack [8,
31, 48]. FDI a�acks have been studied widely for CPS, and many
techniques have been proposed to e�ciently detect those a�acks
in the early stages [8, 32, 34]. However, the optimal solution is
to design a system that can defend itself against FDI a�acks [38].
To guarantee that a system can defend against a sensor a�ack,
given a speci�cation ϕ, it must be possible to choose a controller
that ensures that the output of the system always satis�es ϕ, i.e.
ϕ3 must hold.

3.1 Beyond Hyperproperties?
A hyperproperty is more expressive than a trace property as it is
de�ned over a set of sets of traces and requires multiple traces
to check. If a system is modeled as trace sets, one interesting
question to ask is whether there are system properties inexpressible
as hyperproperties. For security policies, all properties of trace
sets can be considered as hyperproperties, so the answer may be
negative [6, 15]. For CPSs, there may exist some properties that are
challenging to classify.

Consider the following property specifying the Lyapunov stabil-
ity of a dynamical control system:

ϕLy
∆
= {∀ϵ ∈ [0,∞),∃δ ∈ [0, ϵ),∀w ∈W :
| |w(0)| | < δ =⇒ (t > 0 ∧ ||w(t)| | < ϵ)}. (4)

Intuitively, this property indicates that a system is Lyapunov stable
if for any ϵ-ball around the origin, there exists a δ -ball around the
origin (δ < ϵ) such that if the system starts within the δ -ball, then

𝜖

𝛿

Figure 1: Illustration of a Lyapunov stable system.

it will never leave the ϵ-ball [9]. �e illustration of a Lyapunov
stable system is shown in Figure 1.

Lyapunov stability is speci�ed over the space of parameters and
execution traces, and involves two alternations between universal
and existential quanti�ers. As we cannot check the Lyapunov
stability with individual traces, it is not a trace property; so is it
a hyperproperty? Consider the parameters δ and ϵ as constant
signals, and then rewrite Lyapunov stability as follows:

ϕ ′Ly
∆
= {W ∈ P | ∀w ∈W : ∃w′ ∈W : ∀w′′ ∈W :

| |w ′′out (0)| | < w ′δ (0) =⇒ (t > 0 ∧ ||w ′′out (t)| | < wϵ (t))}, (5)

where a trace w is composed of two constant input signals wδ , wϵ
and an output signal wout . By mapping parameters into constant
signals, we can express interesting properties of the system as
hyperproperties. �en Lyapunov stability is a hyperproperty that
requires multiple traces to check; and it can be formally speci�ed
using the HyperSTL introduced in the next section. As to the
original question of whether all system properties of interest can
be speci�ed as hyperproperties, we leave this open.

Remark 3.2 Although we focus on describing hyperproperties
de�ned over real-valued signals, we note that there are other hyper-
properties that can be speci�ed in the context of CPSs as well. For
instance, the nondeducibility property is an important information-
�ow security policy that prevents a low-level observer with su�-
cient knowledge of a target CPS from deducing high-level (con�-
dential) information. �e nondeducibility property is de�ned such
that for each low-level input trace, there are more than one possible
high-level input traces that produce the same output. Intuitively,
an a�acker should not be able to distinguish between permissible
high-level behaviors based on low-level behaviors [20, 36]. On
the other hand, the noninterference property is another important
information-�ow security policy that requires that high-level secu-
rity users should not interfere with low-level security users. Intu-
itively, the outputs observed by the low-level security users remain
unchanged despite the actions of the high-level security users [22].
Other variants of the noninterference property such as noninfer-
ence [37], observational determinism [51], declassi�cation [44], and
quantitative nonterinference [47] are also hyperproperties that need
to be speci�ed over multiple traces. �ough the nondeducibility
and noninterference properties are relevant for CPS, in many cases
their impact on and from real-valued signals is tenuous, and so we
do not treat them further herein.
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4 HYPERSTL
In this section, we introduce HyperSTL, a temporal logic that can
be used to specify a class of hyperproperties of real-valued signals.
�e syntax and semantics of HyperSTL are naturally extended from
those of STL by adding existential and universal trace quanti�ers
into STL’s syntax to relate multiple execution traces [17].

Syntax. Let v be a trace variable from an in�nite set of trace
variablesV . �e syntax of HyperSTL is then de�ned as follows:

ϕ := ∃v.ϕ | ∀v.ϕ | φ
φ := true | µv | ¬φ | φ ∧ φ | φUIφ

Here, we add a universal quanti�er ∀ and an existential quanti�er
∃ to the syntax to indicate whether we want to specify that a
formula holds over all traces or over at least one trace, respectively.
For instance, ∀v.∃v′.ϕ means that for any trace w assigned to
trace variable v , there exists a trace w′ that can be assigned to
trace variable v′ such that ϕ holds on these two traces. We de�ne
Π : V → S as a trace assignment (i.e., a valuation), which is a
partial function mapping trace variables to traces, and S is a set of
all in�nite traces. Letvi be the projection of a trace variable v along
its ith component, the projection of a trace assignment Π(vi ) maps
vi to the ith component of a trace w (i.e., wi ). Also, we abuse the
subscript notation of a trace’s component to write its corresponding
trace variable’s component in a HyperSTL formula, e.g., wout is
represented by vout . A trace w can be Booleanized through atomic
predicates of the form µw

∆
= f (w1(t),w2(t), ...,wn (t)) > 0, where

f is a real-valued function. �en, µv = f (Π(v)(t)) > 0 represents
a Booleanized atomic predicate µw if v is instanced by w. Also, I
is an interval over R≥0 such as [a,b), (a,b), (a,b], [a,b], (a,+∞),
or [a,+∞), where a, b are real numbers and 0 ≤ a < b. If I is
not speci�ed, we assume that I = [0,∞). We also allow Boolean
operators ∨ and =⇒ with their standard meaning. Temporal
operators used in HyperSTL formulas include always (�), eventually
(^), and until (U), respectively, where ^Iφ = trueUIφ, and �Iφ =
¬^I¬φ. Note that we use trace variables such as v, v′ to express
HyperSTL formula and the corresponding traces represented by
these trace variables like w w′ to interpret the formula. Consider
the HyperSTL formula ϕ := ∃v.∀v′.�[0,1](| |v − v′ | | < 1). �is
property says that there is always a trace w, such that for all times
in the interval [0, 1], every other trace w′ is at a bounded distance
of 1 from w.

Boolean Semantics. A HyperSTL formula satis�ed by a set of
tracesW at a time t is wri�en as Π, t |=W ϕ, �e validity judgment
of a HyperSTL formula at a given time t is speci�ed according to
the following recursive semantics:

Π, t |=W ∃v.ϕ i� exists w ∈W : w |= ϕ and Π(v) = w

Π, t |=W ∀v.ϕ i� forall w ∈W : w |= ϕ and Π(v) = w

Π, t |=W µv i� f (Π(v)(t)) > 0
Π, t |=W ¬φ i� Π, t 6 |=W φ

Π, t |=W φ1 ∧ φ2 i� Π, t |=W φ1 and Π, t |=W φ2

Π, t |=W φ1UIφ2 i� ∃t1 ∈ t + I s.t Π, t1 |=W φ2

and ∀t2 ∈ [t , t1] s.t Π, t2 |=W φ1

Using HyperSTL, we can express the hyperproperties described
in Section 3 over some time interval [t1, t2] as follows3.
• �e robust behavior in Formula 1 can be speci�ed as:

ϕ ′1
∆
= ∀v.∀v′. �[t1,t2](dsup (vin , v

′
in ) ≤ ϵ1

=⇒ dsup (vout , v′out ) ≤ ϵ2). (6)

• �e power-monitoring a�ack in Formula 2 can be wri�en as:

ϕ ′2
∆
= ∃v.∀v′. �[t1,t2]((dsup (v, v

′) > 0
∧ Power (v) > c1) =⇒ Power (v′) < c2). (7)

Furthermore, we can rewrite the Lyapunov stability speci�ed in
Formula 5 as the following HyperSTL formula

ϕ ′′Ly
∆
= ∀v.∃v′.∀v′′. (v ′′out < v ′δ =⇒ �(0,∞)v

′′
out < vϵ ). (8)

According to the possible alternation of quanti�ers in a Hyper-
STL’s syntax, we classify the above HyperSTL formulae into two
fragments:

(a) alternation-free HyperSTL formulae including one type of
quanti�er, and

(b) k-alternation HyperSTL formulae that have k number of
alternations between existential and universal quanti�ers.

�us, the robust behavior property can be expressed using alternation-
free HyperSTL while the power-monitoring a�ack property can
be speci�ed using 1-alternation HyperSTL. �e Lyapunov stabil-
ity property is more complex as it must be expressed using 2-
alternation HyperSTL.
Falsi�cation or Veri�cation of Hyperproperties? We have in-
troduced several classes of hyperproperties for CPSs and a temporal
logic approach to express them. Next, we investigate whether we
can falsify or verify those hyperproperties using existing methods.
Hyperproperties are more complex and expressive than traditional
properties, and performing falsi�cation and veri�cation for hyper-
properties is harder, in many cases. Despite this, we observe that
certain classes of hyperproperties can be falsi�ed or veri�ed. For
instance, we can falsify an alternation-free HyperSTL formula that
contains a universal quanti�er (e.g., the robust behavior hyperprop-
erty), and we can verify an alternation-free HyperSTL formula that
contains an existential quanti�er. For the class of hyperproperties
that includes alternating quanti�ers, falsi�cation or veri�cation
are o�en undecidable unless we impose some assumption about
the sets of execution traces (e.g., quanti�ed over some �nite set of
traces with bounded time).

4.1 t-HyperSTL
We introduce t-HyperSTL as a fragment of HyperSTL in which a
nesting structure of temporal logic formulas involving di�erent
traces is not allowed. For example, a formula ∀v.∃v′.�[0,2]v >
1 =⇒ ^[1,2]v′ > 2 is allowed but a formula ∀v.∃v′.�[0,2](v >
1 =⇒ ^[1,2]v′ > 2) is not allowed. Also, t-HyperSTL restricts
the until operator to be speci�ed over an individual trace, e.g., t-
HyperSTL does not allow the formula ∀v.∃v′.(v > 1)U[0,1](v′ > 2).

Inherited from the syntax of HyperSTL, t-HyperSTL formulae
are also classi�ed into alternation-free and k-alternation types.
3 For a robust control invariance hyperproperty, an instance of the corresponding
HyperSTL formula will be shown in Section 7.2.
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t-HyperSTL su�ces to express the class of hyperproperties formu-
lated in Section 3, and its corresponding semantics, which is more
restrictive than that of HyperSTL, allow us to perform falsi�cation
for these hyperproperties.

�antitative Semantics. �e quantitative semantics of t-HyperSTL
re�ects the robustness satisfaction of a t-HyperSTL formula. It is a
natural extension of those for STL [17, 33]. Given χ is a real-valued
function of a formula φ, a trace assignment Π, a trace variable v,
and a time t , the quantitative semantics of t-HyperSTL is de�ned
inductively as follows:

χ (φ,Π,∃v, t) = max
w∈W

χ (φ,Π(v) = w, t)

χ (φ,Π,∀v, t) = min
w∈W

χ (φ,Π(v) = w, t)

χ (µv > 0,Π, v, t) = µv
χ (¬φ,Π, v, t) = −χ (φ,Π, v, t)

χ (φ1 ∧ φ2,Π, v, t) = min (χ (φ1,Π, v, t), χ (φ2,Π, v, t))
χ (φ1UIφ2,Π, v, t) = sup

t1∈t+I
min (χ (φ2,Π, v, t1),

inf
t2∈[t,t1]

χ (φ1,Π, v, t2))

5 FALSIFYING ALTERNATION-FREE
T-HYPERSTL

We �rst consider the falsi�cation of alternation-free t-HyperSTL
formulae. �is fragment of HyperSTL is expressive enough to
capture a broad range of hyperproperties specifying input-output
relationships over all pairs of execution traces. We use a translation
scheme called self-composition [7], which allows us to falsify an
alternation-free t-HyperSTL formula that includes only universal
quanti�ers using a robust testing method for a normal STL formula.
�en, given an alternation-free t-HyperSTL that includes universal
quanti�ers, we a�empt to �nd a set of falsifying traces for CPSs
corresponding to this formula.
Falsi�cation algorithm. �e procedure that addresses the falsi�-
cation problem of a system Σ with respect to a given hyperproperty
φh over a time duration T is shown in Algorithm 1, and further
interpreted as follows.
� We �rst transform the alternation-free t-HyperSTL formula φh

into the equivalent STL formula φST L .
� We then call a function NewSystemGen to generate a new

model that contains copies of the original system. �e number
of copies is equal to the number of quanti�ers of the formula
φh .

� �en, we apply existing falsi�cation mechanisms for an STL for-
mula such as Breach4 [16] to compute the minimum robustness
value χmin of the system Σ′ according to φST L . Breach allows
us to parametrically generate di�erent input signals over a pa-
rameter space. For example, parameters can represent control
points, and an input signal can be created using interpolation
between these points. If χmin is negative we return the optimal
set of parameters Θf ∈ Θ that produces a falsifying behavior.

4Breach [16] is a tool that applies a best-e�ort approach to automatically check whether
a system satis�es a given STL formula.

Algorithm 1 Falsi�cation of alternation-free t-HyperSTL

1 Require: a system Σ, a parameter space Θ,

a t-HyperSTL formula φh , a time duration T ,

3 a maximum number of simulations N

begin
5 φST L ← HyperSTL2STL(φh ) / / t r a n s f o rm s p e c i f i c a t i o n

Σ′ ← NewSystemGen(Σ, φh ) / / t r a n s f o rm model
7 χmin, Θf ← FalsifySTL(Σ′, φST L, Θ, T , N )

if χmin < 0 then
9 return Θf

end
11 end

We note that, unlike formal veri�cation, performing falsi�cation
cannot ensure a system is always safe; even if falsi�cation fails to
identify a falsifying behavior, a counter-example may still exist.

Example 5.1. Consider a mechanical mass-spring damper system
whose dynamics are de�ned by the second-order ordinary di�eren-
tial equation:

Üx(t) + 2 Ûx(t) + 5x(t) = 3F (t), (9)

where x is the vertical position of the mass, and F is the random
external force. �e robust behavior hyperproperty of the system
is speci�ed as follows: for all pairs of traces of the system with
the external force di�erence less than ϵ1 , the output di�erence
should be bounded by ϵ2; here ϵ1 = 0.2 and ϵ2 = 0.3. We apply the
Algorithm 1 to falsify the robust behavior hyperproperty for the
system with a duration T = 10 seconds. Formula 6 can be reduced
to the normal STL formula as follows:

ϕM
∆
= �[0,10](ρin ≤ ϵ1 =⇒ ρout ≤ ϵ2), (10)

where a trace p ∆
= (ρin , ρout ) of the system Σ′ captures the input-

output di�erence between two traces w,w′ of the original system
Σ′, e.g., ρin (t) = | |win (t) − w ′in (t)| |. Here, the system Σ′ con-
tains two copies of the mechanical mass-spring damper system Σ.
�e falsi�cation result shown in Figure 2 illustrates the inductive
checking procedure for the satisfaction of Formula 10 using Breach,
where alw[0,10] is equivalent to �[0,10], and the le� y-axis denotes
robustness degree. Here, we observe that the violation of the robust
behavior hyperproperty of the mechanical mass-spring damper
system occurs during the overshoot period of the outputs of the
system.

Remark 5.2 �ere is a duality between addressing the falsi�ca-
tion problem of an alternation-free t-HyperSTL that only contains
universal quanti�ers and solving the veri�cation problem of an
alternation-free t-HyperSTL that only contains existential quan-
ti�ers. Given an alternation-free t-HyperSTL such as ∃v.∃v′.ϕe ,
our purpose is to extensively simulate a system and �nd a single
pair of execution traces of the system that satis�es ϕe . Here, we
do not a�empt to falsify the system, but verify the system. �us,
this process is dual to �nding the falsifying traces of the system
corresponding to the formula ∀v.∀v′.¬ϕe .
Also, we note that we can leverage Algorithm 1 such that it includes
a parameter synthesis approach to mine hyperproperties for CPSs,
as in [24, 25]. For instance, we could use a requirement mining
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Figure 2: Falsi�cation result of the mass-spring damper sys-
tem. �e counterexample pair of traces found by Breach for
the robust behavior hyperproperty.

approach to automatically infer appropriate values for the ϵ1 and
ϵ2 variables in Formula 10.

6 FALSIFYING K-ALTERNATION T-HYPERSTL
Falsifying k-alternation t-HyperSTL formulas is a challenging task,
as it requires us to examine all execution traces of a system. Con-
sider a 1-alternation t-HyperSTL formula such as ∃v.∀v′.ϕ; falsify-
ing a system for this property is as hard as verifying the system,
since we need to show that for all traces w ∈ S , there exists a trace
w′ that the formula ϕ is violated, where S is an in�nite set of traces.
It is even more di�cult to perform falsi�cation for CPSs whose
dynamics evolve continuously over time. Furthermore, if a hyper-
property contains more than one alternation of quanti�ers (e.g. the
Lyapunov stability property), the falsifying algorithm may su�er
an exponential growth in complexity. Despite this, if we assume
a CPS can be modeled by a �nite set of traces, we can develop a
falsifying algorithm for the system that can prove or disprove ϕ.

In general, there may not exist a unique answer to the question
of whether we can verify or falsify a system with respect to the
formula ∃v.∀v′.ϕ using �nite simulations. We can consider several
possible answers for that question as follows.
� Case 1: if both w,w′ belong to some in�nite set of traces, then

we can neither verify nor falsify ϕ.
� Case 2: if w belongs to an in�nite set of traces and w′ belongs

to a �nite set of traces, then we cannot falsify but we can verify
ϕ.

� Case 3: if w belongs to a �nite set of traces and w′ belongs
to an in�nite set of traces, then we cannot verify but we can
falsify ϕ.

� Case 4: If both w and w′ belong to a �nite set of n traces, we
are able to verify the system with n simulations as well as falsify
the system with n(n−1)

2 simulations.
We note that in all of the cases that we are able to falsify the system
corresponding to the formula ∃v.∀v′.ϕ with �nite simulations, we
can apply Algorithm 1 to transform the falsi�cation problem to
another equivalent problem that uses a traditional STL speci�cation.

Table 1: Feasibility of solving the falsi�cation and veri�ca-
tion problems for properties and hyperproperties expressed
using STL and k-alternation t-HyperSTL under two assump-
tions: A1) using �nite simulation and A2) applying a veri�-
cation oracle that can do reachability analysis with respect
to the last quanti�er.

Type
A1: Finite Simulation A2 : Veri�cation Oracle

on the Last �anti�erFalsi�cation Veri�cation

∀ Yes No -

∃ No Yes -

∀∃ No No ∀
∃∀ No No ∃
∀∃∀ No No ∀∃
∃∀∃ No No ∃∀

�e falsi�cation procedure is similar to solving the falsi�cation
problem of alternation-free t-HyperSTL.

For the case that both execution traces of a system, w and w′,
belong to some in�nite sets, and if we have a veri�cation oracle to
address the last quanti�er (e.g., by conservatively estimating the
set of possible system behaviors, under certain conditions), we can
either falsify or verify the system. Given a set of initial states, a
veri�cation oracle can be a method that mathematically overap-
proximates the reachable set of the system or a simulation-based
technique [1, 21] that may verify the system with �nite simulations.

Alternatively, for a hyperproperty that requires two or more
alternations of quanti�ers to express, even if we have a veri�cation
oracle corresponding to the last quanti�er, we can neither falsify
nor verify a system. Using a veri�cation oracle, the feasibility of
addressing the falsi�cation and veri�cation problems associated
with a k-alternation t-HyperSTL formula is equivalent to that of a
(k − 1)-alternation t-HyperSTL formula; this is shown in Table 1.
We emphasize that any hyperproperties for general CPSs that are
as complex as, or more complicated than Lyapunov stability, are
not veri�able or falsi�able without reasonable restrictions on sets
of execution traces.

7 CASE STUDY
In this section, we introduce two proof-of-concept case studies in
the domain of automotive control systems: a) an industrial-scale
Simulink model of a closed-loop airpath control (APC) system and
b) a Simulink model of a fault-tolerant fuel (FTF) control system. We
will demonstrate how to apply the testing framework of HyperSTL
built on top of Breach to falsify the robust behavior hyperproperty
of the APC system, and the robust control invariance hyperproperty
of the FTF system under FDI a�acks.

7.1 Airpath Control Model
We use a prototype APC system to evaluate the capability of our
proposed method on an industrial control system. �e APC is a key
subsystem for a hydrogen Fuel-Cell (FC) vehicle powertrain. �e
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Figure 3: Falsi�cation result of the APC system. �e coun-
terexample pair of traces found by Breach for the robust be-
havior hyperpropperty.

purpose of the APC is to regulate the air �ow rate into the FC stack
using multiple actuators. �e FC stack generates electrical power
for the vehicle using a mixture of air and hydrogen. �e FC stack
only operates under restricted conditions, such as temperature,
pressure and moisture level within the stack. An excess of moisture
in the stack will impede the performance while moisture de�ciency
could permanently damage the FC stack. �us, to achieve high
performance while still operating the system in a safe regime, the
controller is required to accurately regulate the air �ow rate.

�e closed-loop Simulink model of the APC system is complex;
it contains more than 7,000 Simulink blocks such as integrators, sat-
urations, S-Function blocks, lookup tables, and data store memory
blocks. �e model has two input signals including i) the ambient
temperature and ii) the fuel cell current request (FCI). Details of the
system, such as units and expected signal ranges, are suppressed due
to proprietary concerns. Intuitively, an FCI value is proportional
to the desired torque requested by the driver, which is ultimately
based on the accelerator pedal angle. �e output of the APC system
is an air �ow rate (AFR). �e purpose of the controller model is to
regulate the AFR to some desirable reference value. To ensure the
APC system works properly, for some small perturbations of the
ambient temperature and FCI values, the di�erences in AFR values
should be bounded within a desirable range. In other words, to
avoid unexpected changes in the air �ow rate at the inlet of an FC
stack, which may cause undesirable behavior, the system should
satisfy the robust behavior hyperproperty. �e robust behavior
hyperproperty of the APC system can be formalized as follows,

ϕAPC
∆
= {W ∈ P | ∀w,w′ ∈W :
(dsup (wtemp ,w

′
temp ) ≤ ϵ1 ∧ dsup (wFCI ,w

′
FCI ) ≤ ϵ2)

=⇒ dsup (wAFR ,w
′
AFR ) ≤ ϵ3)}, (11)

which can be translated to the following STL formula using Algo-
rithm 1 to perform the falsi�cation task,

ϕ ′APC
∆
= �[0,T ]((ρtemp ≤ ϵ1 ∧ ρFCI ≤ ϵ2) =⇒ ρAFR ≤ ϵ3),

(12)

where a trace w is composed of the temperature and FCI input
signals wtemp and wFCI respectively, and the AFR output signal
wAFR . Here, we create a new model including two copies of the
original APC system; and a trace p ∆

= (ρtemp , ρFCI , ρAFR ) of the
new model captures the input-output di�erence between two traces
w,w′ of the original model, for instance, ρtemp (t) = | |wtemp (t) −
w ′temp (t)| |.

�e result of falsi�cation of the robust behavior hyperpropety of
the APC system is shown in Figure 3, where the blue lines present
the distance signals ρtemp , ρFCI , ρAFR respectively, and the red
lines demonstrate their corresponding bounds. Here, the parameter
values selected by a design engineer are normalized to 0.5. �at
is, ϵ1 = 0.5, ϵ2 = 0.5, and ϵ3 = 0.5. �e sampling time is 0.001024
seconds and the simulation time T is 10 seconds. For proprietary
reasons, we normalize the quantities and suppress the units for
the data shown in the �gure. �e counterexample pairs of traces
reported by Breach demonstrate a behavior where the output dif-
ference exceeds its allowed bounds when the input di�erences are
still less than their given thresholds, which is a violation of For-
mula 12. Finding this counter-example is signi�cant, as it can help
automotive control engineers to improve the controller design to
eliminate such an undesirable behavior of the APC system.

7.2 Fault-tolerant Fuel Model
We consider a fault-tolerant fuel (FTF) model that includes both
Simulink blocks and State�ow charts5. �e model has two external
input signals, engine speed and thro�le command, and one output
signal, which is the e�ective air-fuel ratio inside the combustion
chamber. �e model also contains four sensors measuring thro�le
angle, engine speed, the amount of residual oxygen in the exhaust
gas (EGO), and the manifold absolute pressure (MAP). �e controller
has three di�erent control strategies: a normal operation mode,
which is used when no sensor faults are present, a fault mitigation
mode, which is used when one sensor fault has occurred, and a
mode that disables fuel control, which is used when two or more
sensor faults are detected. We only consider the normal and fault
mitigation modes for this example. �e goal of the controller is to
regulate the air-fuel ratio output, denoted as λ, so that it remains
within a desirable range, despite a failure in at most one sensor.

In this case study, we evaluate the ability of the FTF controller
to tolerate an engine speed sensor fault. In the original version of
the model, a speed sensor fault consists of the speed sensor output
being set to 0.0 rad/sec; the controller detects the fault when the
sensor reading equals 0.0. In the modi�ed version that we use, we
do not �x the controller mode based on the sensor reading, but
instead we evaluate the controller performance when either the
normal or fault mitigation modes are selected. In the modi�ed
version of the model that we use, a speed sensor fault consists of a
sensor output producing a �xed but randomly selected value in the
sensor range [0, 620] rad/sec. �is kind of sensor fault could occur
when an a�acker uses a sensor spoo�ng approach to inject incorrect
measurements into the sensor readings or when a real fault occurs
in the speed sensor. We use the robust control invariance property
to specify desired controller performance in the presence of the

5We use a modi�ed version of the FTF model available at h�ps://www.mathworks.
com/help/simulink/examples/modeling-a-fault-tolerant-fuel-control-system.html
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indicated class of sensor faults:

ϕFT F
∆
= ∃v.∀v′.�[τ ,∞](dsup (vu ,v ′u ) = 0
=⇒ 0.8λr ef ≤ v ′λ ≤ 1.2λr ef ), (13)

where λr ef is the reference value of the air-fuel ratio λ, and τ is the
se�ling time. Here, a trace variable v can be mapped to a trace w
composed of the controller input wu corresponding to a controller
mode decision, a disturbance wd representing the �xed random
sensor input injected into the speed sensor, and an output wλ .In
general, we cannot falsify Formula 13 according to the discussion
shown in Table 1; however, for systems like the FTF model that
have a �nite set of control strategies, we can e�ectively perform
falsi�cation by creating a new model that contains copies of the
original system, one copy for each control mode (two copies, in this
case). �e external input (the speed sensor reading) is connected to
each of the copies of the model. �e speci�cation ϕFT F is converted
to the following equivalent formula in standard STL:

ϕ̂FT F
∆
= ∀wd .�[τ ,∞](0.8λr ef ≤ wλ1 ≤ 1.2λr ef
∨ 0.8λr ef ≤ wλ2 ≤ 1.2λr ef ), (14)

where wλ1 and wλ2 are the air-fuel ratios of the �rst and second
copies of the model. We note that Formula 14 is arrived at by apply-
ing the quantitative semantics provided in Sec. 4; the disjunction
in Formula 14 appears due to the ∃ quanti�er in Formula 13, which
e�ectively applies a max operator over the two available control
modes. �e formula ϕ̂FT F can be tested using the falsi�cation
methods for traditional STL available in Breach.

Figure 4 illustrates the falsi�cation result of the FTF model. �e
blue lines correspond to a simulation trace representing the falsi-
fying behavior, the green line illustrates an instance of the correct
speed, and the red lines represent the error bound of λ, where
τ = 10 seconds, T = 50 seconds, and λr ef = 14.6. Based on the
results, we can conclude that there exists a trace, which includes
outputs wλ1 and wλ2 that both evolve beyond the tolerance bound
regardless of whether the controller operates in the normal mode
or the fault mitigation mode (i.e., the performance requirement
is violated despite which control mode is used). �is experiment
demonstrates the capability of using a falsi�cation approach to
automatically test hyperproperties for CPSs.

8 CONCLUSION AND FUTUREWORK
In this paper, we represented the �rst study of the hyperproperties
of CPSs. We de�ned a new temporal logic, called HyperSTL, to
express several hyperproperties including stability, security, and
safety for CPSs. HyperSTL allows us to e�ectively specify more
general requirements of CPS rather than STL as it can express the
relationships between multiple execution traces. �e testing frame-
work of t-HyperSTL, a fragment of HyperSTL, was also given and
applied to falsify the robust behavior hyperproperty of a hydrogen
fuel-cell powertrain model, and the robust control invariance hy-
perproperty of the fuel control model under a fault data injection
a�ack. We also discuss the feasibility of performing the falsi�cation
and veri�cation for various classes of hyperproperties for CPSs.
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Figure 4: Apair of falsifying traces found byBreach illustrat-
ing the FTF model cannot tolerate the fault under a speed
sensor fault.

Future Work. We �rst plan to introduce a library of HyperSTL
fomulae that encapsulates di�erent general classes of hyperprop-
erties of CPS including those presented in this paper. Second, the
falsi�cation algorithm of HyperSTL proposed in the paper is in-
complete as it relies on self-composition (i.e. making copies of a
system) and only falsi�es a restricted class of hyperproperties. �us,
extending the falsi�cation algorithm to bypass self-composition
to falsify more interesting hyperproperties is planned. Also, the
monitoring algorithms of HyperLTL recently proposed in [4, 12]
could be applied to HyperSTL.
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Embedded systems use increasingly complex software and are evolving into cyber-physical systems (CPS)
with sophisticated interaction and coupling between physical and computational processes. Many CPS operate
in safety-critical environments and have stringent certi�cation, reliability, and correctness requirements.
These systems undergo changes throughout their lifetimes, where either the software or physical hardware is
updated in subsequent design iterations. One source of failure in safety-critical CPS is when there are unstated
assumptions in either the physical or cyber parts of the system, and new components do not match those
assumptions. In this work, we present an automated method towards identifying unstated assumptions in CPS.
Dynamic speci�cations in the form of candidate invariants of both the software and physical components
are identi�ed using dynamic analysis (executing and/or simulating the system implementation or model
thereof). A prototype tool called Hynger (for HYbrid iNvariant GEneratoR) was developed that instruments
Simulink/State�ow (SLSF) model diagrams to generate traces in the input format compatible with the Daikon
invariant inference tool, which has been extensively applied to software systems. Hynger, in conjunction
with Daikon, is able to detect candidate invariants of several CPS case studies. We use the running example
of a DC-to-DC power converter, and demonstrate that Hynger can detect a speci�cation mismatch where a
tolerance assumed by the software is violated due to a plant change. Another case study of an automotive
control system is also introduced to illustrate the power of Hynger and Daikon in automatically identifying
cyber-physical speci�cation mismatches.
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1 INTRODUCTION
Systems interacting with their physical environments are becoming increasingly dependent upon
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modern cars utilize hundreds of microprocessors, many communications buses, and a complex inter-
connection between sensors, actuators, and processors. In the design and development process for

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for pro�t or commercial advantage and that copies bear this notice and
the full citation on the �rst page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior speci�c permission and/or a fee. Request permissions from permissions@acm.org.
© 201X ACM. XXXX-XXXX/201X/1-ART1 $15.00
DOI: 0000001.0000001

, Vol. 1, No. 1, Article 1. Publication date: January 201X.
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 

193



1:2 L. V. Nguyen et al.

Plant

Ûx = f (x , ũ)

Controller

Ûu = д(x̃ ,u)

SensorActuator

x

x̃u

ũ

Fig. 1. High-level diagram of a closed-loop control system.

most engineered systems, the vast majority of resources are devoted to ensuring systems meet their
speci�cations [7]. However, in spite of signi�cant technical advances for designing veri�cation and
validation such as model checking, Software/Hardware-In-The-Loop (SIL/HIL) testing, automatic
test case generation for software, and sophisticated simulators, there still remain products recalled
across industries for safety concerns due to software problems and system integration between
the cyber and physical subcomponents. The veri�cation community typically focuses on the
developmental veri�cation, where a model of a system is developed and properties (speci�cations)
are (manually, semi-automatically, or automatically) checked for that system. However, many
product recalls and safety disasters induced by software bugs are not a result of design errors, but
are the result of either: (a) implementation errors, or (b) reuse, upgrade, and maintenance errors.
Initiatives like a priori Model-Based Design (MBD) are important research e�orts and may someday
lead to synthesizing provably correct implementations from speci�cations. However, most systems
being designed today still utilize a development process that has engineers writing the software,
and systems are integrated with numerous components in a potentially error-prone process. For
instance, a typical CPS that has been used widely in control systems is a closed-loop feedback
controller shown in Figure 1, where a plant describes physical changes of the environment and a
controller represents cyber/software computations corresponding to these changes. The physical
evolution of the plant can be sensed and sampled by a sensor, and then fed into the controller. Based
on the measurement of the plant provided by the sensor, the controller provides a corresponding
control signal to regulate the physical changes in the plant. This control signal is converted by an
actuator before sending it to the plant. Such a system may contain di�erent possibilities of failure
due to the following main reasons: (a) the controller may make wrong assumptions about the plant,
sensor or actuator. For example, changing parameters of the plant, sensor, or actuator without
updating the controller may produce potential speci�cation mismatches. This controller-reuse
issue can lead to safety failures such as the Honda vehicles recalls or the Ariane 5 �ight 501 disaster
described in Section 2. (b) The plant may be in�uenced by uncontrolled factors (disturbances)
from the environment, (c) the controller is initially encoded based on wrong information about the
physical plant, (d) the sensor and actuator may have conversion errors, and (e) the control con�icts
may arise when using a shared sensor and actuator network.

In this paper, we develop a method to address such challenges that arise in the product evolution
and upgrade process in CPS. Our proposed method enables dynamic analysis using well-established
software engineering tools for large classes of Simulink/State�ow (SLSF) models that are frequently
used in CPS engineering. In particular, the method infers candidate invariants of SLSF models.
Invariants are properties of a system that should always hold, while conditional invariants may
hold at certain program points, for example, at the beginning or end of a function call (pre/post
conditions). This is important because such models are amenable to formal veri�cation using
existing research tools and hybrid system model checkers. Finding invariants can aid this process
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Fig. 2. Preliminary overview of the proposed methodology using Hynger and Daikon to infer candidate
invariants and detect specification mismatches.

as they represent potential abstractions with a possibly less complex representation than the set of
reachable states. The SLSF block diagrams may be black box components, white box components,
or even system implementations (such as when SLSF is used in SIL/HIL simulation). In the case
when the underlying SLSF models are known, they may be formalized using hybrid automata [31].
Candidate invariants inferred with our Hynger (for HYbrid iNvariant GEneratoR) software tool
in conjunction with Daikon [17, 18] may be formally checked as actual invariants using a hybrid
system model checker [20]. Figure 2 shows a preliminary overview of our proposed methodology.
As a prelude, we just intuitively demonstrate how Hynger and Daikon can be used to detect
speci�cation mismatches. The proposed framework will be fully presented in Section 5.

Contributions. The primary contributions of this paper are: (a) the formalization of the cy-
ber-physical speci�cation mismatch problem, (b) a methodology for performing template-based
automated invariant inference of white box (known) and black box (unknown) CPS models using
dynamic analysis, (c) the Hynger software tool, which supports instrumenting large classes of
SLSF diagrams for dynamic analysis using tools like Daikon, (d) a methodology for checking if
the inferred invariants are actual invariants by using formal models of the underlying SLSF model
diagrams and hybrid systems model checkers such as SpaceEx [20], etc., (e) two proof-of-concept
CPS case studies using Hynger to automatically identify cyber-physical speci�cation mismatches.
These results can be used to help bridging the worlds of actual embedded systems software (e.g.,
detailed SLSF diagrams and generated C code) with hybrid system models.

Overall, this journal has been substantially extended from our previous work [25]. In fact, we
added the formal de�nitions of cyber-physical speci�cation mismatches, cyber-physical input-
output automata, and invariant checking problem to identify whether the inferred invariants are
actual invariants. Moreover, two proof-of-concept CPS case studies including a buck converter and
an abstract fuel control system are presented to show the capability of Hynger tool in automatically
identifying potential cyber-physical speci�cation mismatches of CPSs. The experimental results
illustrate the feasibility of using dynamic invariant inference for analysis of embedded and cyber-
physical systems. Before presenting the details of our approach, we �rst illustrate the pitfalls of
CPS design reuse by citing examples of critical mistakes in existing, certi�ed systems.

2 CYBER-PHYSICAL DESIGN REUSE AND UPGRADE
In this section, we review cases where CPS design reuse and upgrade have led to failures in existing
systems. This motivates the need for our proposed method and our Hynger tool, which can be used
to �nd and formalize unstated assumptions in CPS.

A recent example of a design-reuse problem is the National Highway Transportation and Safety
Administration (NHTSA) recall of 1.5 million Honda vehicles (including one of the author’s) due to
Electronic Control Module (ECM) software problems that could damage the car’s transmission,
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resulting in possible stalls. The root cause of the safety defect was the result of a physical component
(a bearing in the transmission) being upgraded to an improved design between di�erent model-
year vehicles without appropriate ECM software updates [38]. This problem was widespread
because there was a �ve year delay before the problem was identi�ed, and it was used across model
makes and years (e.g., from 2005 − 2010 model year Accords, 2007 − 2010 CR-Vs, and 2005 − 2008
Elements). This di�culty in root-cause analysis emphasizes the point that such problems are
probably underreported, and the reuse of components in CPS can lead to widespread serious
problems.

Similar design-reuse problems have famously occurred in aviation—the Ariane 5 �ight 501 dis-
aster was a result of reusing Ariane 4’s software without appropriate updates for the increased
thrust of the new rocket [1, 29]. Here, software developers made an assumption about the physical
dynamics of the rocket, but the software was reused from Ariane 4, while Ariane 5 had greater
thrust, so this assumption was invalid. Finally, when considering the future of CPS, the Defense
Advanced Research Projects Agency’s System of Systems Integration Technology and Experimen-
tation (DARPA SoSITE) program [32] describes modularized military aviation systems which are
capable of rapid component swapping and upgrade. Left unaddressed, issues related to unstated
assumptions in components are likely to get worse in future CPS, where changes can occur in the
software and hardware.

Besides design-reuse problems, software upgrades without being thoroughly tested and validated
may result in an epic system failure. One famous example of this type of problem is the disaster
of Mars Climate Orbiter (MCO), developed by NASA’s Jet Propulsion Laboratory (JPL). The root-
cause of this disaster was that di�erent parts of the software developer team were using di�erent
units of measurements. In fact, one part of the ground software upgraded by Lockheed Martin
Astronautics (LMA) measured the thrusters in English units of pounds (force)-seconds instead of
metric units of Newton-seconds as de�ned in its original Software Interface Speci�cation (SIS)
used by JPL [28, 51]. Therefore, the trajectory of the MCO was erroneously calculated by ground
support system computers using the incorrect thruster performance data. This type of software
failure occurred due to the lack of adequate communication between di�erent parts of the software
team and the uncovered issues of veri�cation and validation processes [51].

2.1 Related Work
The idea evaluated in this work, that of inferring physical system speci�cations from embed-
ded software in conjunction with physical system models and evaluating them for mismatches,
was inspired by previous work �nding program speci�cations for pure software systems [46].
Cyber-physical speci�cation mismatch is closely related to model inconsistency [48], architectural
mismatch [21], and requirements consistency [53]. There are many bene�ts of dynamic analysis
such as using implementations instead of models [17, 18, 46] to �nd dynamic program speci�ca-
tions [46], providing documentation over program evolution and checking if speci�cations change
drastically over program evolution, etc. For one, models are not actually required for analysis, and
implementations may be used [17, 18]. The bene�t of executing a system implementation is that
there are no mismatches between a model (potentially documentation-based) and implementation,
since it is not necessary to have a model at all. The candidate speci�cation generated may be
viewed as a form of input-output abstraction of the actual implementation. The limitation includes
results that are unsound without additional reasoning.

Recently, Medhat and his collaborators introduced a new framework for inferring hybrid au-
tomata from black-box implementations of embedded control systems by mining their input/output
traces [33]. In their work, the input/output training traces collected from executing a system are
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clustered and then translated to event sequences. Under several assumptions, hybrid automata
representing the behaviors of the system can be inferred using the input/output correlation. Al-
though the work su�ers some limitations, their proposed approach is a proof-of-concept of using
dynamic analysis to infer the speci�cations of black-box systems. This work is highly relevant
to our proposed method as there is an analogy between inferring hybrid automata and �nding
a candidate invariant for a black-box system. In fact, both of them can be considered as doing
speci�cation inference using dynamic analysis.

There are also several tools such as DepSys [37] and EyePhy [36] that used both static and
dynamic analysis to detect and address the control con�ict due to dependencies when using
multiple CPS applications. Particularly, DepSys is a utility sensing and actuation infrastructure
for a smart home that can simultaneously operate multiple CPS applications. The main novelty of
DepSys is that it provides a comprehensive strategy to specify, detect and automatically address
the control con�icts between sensors and actuators used in a home setting. Similarly, EyePhy is an
integrated system that can detect dependencies and then perform a dependency comprehensive
analysis across HIL CPS medical applications. A built-in simulator, HumMod, in EyePhy is able to
model the complex interactions of the human body using more than 7,800 physiological variables.
HumMod demonstrates the model parameters and the quantitative relationship among them in
XML �les that makes it easier to update the physiological models without the recompilation of the
whole system. EyePhy can be considered as the �rst tool that performs the dependency analysis
across applications’ control actions on the human body. Additionally, the sensor networks with
devices used in smart homes or medical devices can be built using the family of Smart Transducer
Interface Standards (IEEE 1451). IEEE 1451 has been developed in order to provide the common
communication interfaces for connecting transducers (sensors or actuators) to their instrumentation
systems or control networks [27]. The Transducer Electronic Data Sheets (TEDS) embedded in smart
transducers are memory devices, which store the manufacture-related information of the transducer
such as manufacture ID, measurement ranges, serial number, etc. Thus, TEDS allows transducers
to be self-identi�ed and self-descriptive to the device networks. It also provides a standardized
mechanism to facilitate the plug and play of transducers with di�erent control networks. Hence,
IEEE 1451 enables the access of transducer data through a common set of interfaces, allowing users
to select transducers and networks for their applications. This advantage is crucial in facilitating
the device and data interoperability, detecting and resolving con�icts due to dependencies when
concurrently using multiple transducers in the device networks.

Finding speci�cations is a maturing �eld within software engineering [10, 11, 17, 18, 46]. Daikon,
which is used by Hynger, processes program traces to generate invariants [17, 18]. For several
languages (C, C++, etc.), this process is performed without access to the source code by instrument-
ing the compiled program using Valgrind [39]. This makes it di�cult to use on non-x86/x86-64
platforms (although Valgrind is gaining access to other architectures), which is a serious limitation,
as most embedded platforms utilize other architectures (e.g., ARM, AVR, PIC, 8051, MSP430, etc.).
Due in part to these limitations, Hynger instruments architecture-independent SLSF diagrams
directly. In the long run, the Hynger tool is envisioned to take an arbitrary SLSF model, instrument
it, then analyze the resulting traces with dynamic analysis to identify broad classes of cyber-physical
speci�cation mismatches.

The most closely related work using Daikon is to �nd candidate invariants of hybrid models of
biological system [9], and this also illustrates a proof-of-concept of using Daikon as a trace analyzer
for non-purely software systems. Daikon can generate invariants of many forms for variables
and data structures, such as: ranges (a ≤ x ≤ b), linear (y = ax + b), variable ordering (x ≤ y),
sortedness of lists, etc. Daikon works by instrumenting source code and/or compiled binaries with

, Vol. 1, No. 1, Article 1. Publication date: January 201X.
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 

197



1:6 L. V. Nguyen et al.

changes that allow for looking at variable values, then Daikon essentially checks if variables satisfy
some template invariants. For instance, if an integer variable x is observed to always be smaller
than some number, say 50, Daikon may generate a candidate invariant of x ≤ 50. Based on many
advantages of using Daikon as a trace analyzer [17, 18], we prefer to use Hynger with Daikon to
infer candidate invariants in our proposed framework. However, we note that Hynger can generate
a trace �le in many input formats that are compatible with other invariant-inference tools using
dynamic analysis not just Daikon. Other research tools like DySy [11] and commercial tools like
Agitagor [10] can be used for generating candidate invariants for other languages.

3 CYBER-PHYSICAL SYSTEMMODELS
The approach presented in this paper applies to the systems with formal models, informal models,
and unknown models/implementations. The primary assumption is that interfaces to the models
or systems are available as SLSF blocks. There are two main categories of blocks appearing in an
SLSF diagram that are supported by our method, white box and black box systems. The white
box systems may contain: (a) known, informal models, (b) known, informal implementations, or
(c) known, formal models (e.g., hybrid automata, or more precisely, classes of SLSF diagrams that
may be converted to hybrid automata [31]). The black box systems may be completely unknown,
and may contain: (a) unknown implementations (e.g., compiled executable binaries with no source
available, such as commercial o�-the-shelf [COTS] components and other third-party systems),
(b) unknown models, and (c) actual cyber-physical systems (e.g., embedded controllers, networked
computers, and physical plants, all that may show up in HIL/SIL simulations interfaced with SLSF).

Next, we de�ne a structure of CPS models used in SLSF. We will not de�ne formal semantics
of this structure or SLSF diagrams in this paper. However, in the case where an SLSF diagram is
a white box and formal semantics may be de�ned, a formal framework like hybrid input/output
automata (HIOA) [30] may be used to specify the semantics, such as done in the HyLink tool [31].
Additionally, if an SLSF diagram is a white box and linear, we may also be able to use SL2SX
Translator for transforming it into a corresponding formal model [34]. Interested readers can �nd
some graphical examples of the translation in [31, 34]. Other formalisms like actors and hierarchical
state machines are commonly used for formal modeling of other diagrammatic frameworks similar
to SLSF [2, 8, 52, 54]. Given a formal model A and candidate speci�cation Σ (e.g., found using
Hynger), we can check if A meets the speci�cation, i.e., A |= Σ by using a hybrid system model
checker like SpaceEx [20]. In some instances, we know when an SLSF diagram corresponds precisely
to a hybrid automaton model [31], and in these cases, we can check if candidate invariants found
with Hynger are actual invariants.

First, we de�ne the hierarchy represented by SLSF diagrams.

De�nition 3.1 (SLSF diagram). An SLSF diagram is a tuple A ∆
= 〈M,E,V〉, where:

• M is a set of blocks (vertices) that represent block diagrams (and sub-blocks/models),
• E ⊆ M ×M is a set of edges between blocks representing a parent-child hierarchy, and
• V is a set of variables, written as V ∆

=
⋃
v ∈M V(v), where V(v) is a set of variables for each

block v ∈ M .

According to De�nition 3.1, the graphG ∆
= (M,E) de�ned by the vertices (blocks)M and edges E is

a rooted tree, where M are block diagrams and E represents a parent-child hierarchical relationship
(e.g., sub-modules and sub-blocks). Here, the root (i.e., top-level) block diagram of the model is
the unique root of the tree, which we denote as root(M). For a block v ∈ M , the children of v are
denoted as children(v) and de�ned as the set of blocks {w ∈ M | w ∈ E(v)}. For a block v ∈ M , the
parent of v is denoted as parent(v) and is de�ned as the singleton set {w ∈ M | v ∈ children(w)}.
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Clearly, parent(root(M)) = ∅. For a block v ∈ M , the ancestors of v are denoted as ancestors(v)
and de�ned inductively as the set of blocks {w ∈ M | v ∪ w ∈ children(v) ∪ children(w)} (or
equivalently, as the transitive closure of children(v)).

For a blockv ∈ M , the set of variables ofv is V(v) and is partitioned into sets of input and output
variables, written respectively as VI (v) and VO (v), and we have V(v) = VI (v) ∪ VO (v). A variable
x ∈ V(v) is a name for referring to some state of A, and is associated with a data type denoted
type(x). Typical data types are reals, �oating points, arrays, lists, etc. The valuation of a variable
x ∈ V(v) is the set of all values it may take and is denoted val(x). The state-space ofA is the set of
valuations of all the variables V. An element s of the state-space is called a state, and a trace is a
sequence of states. The SLSF diagram may also have internal (local) variables, although they are
not externally visible, so we do not include them, as only input/output interfaces are visible for
external observation and instrumentation.

Next, we de�ne CPS models that appear in SLSF diagrams.

De�nition 3.2 (CPS model). A CPS model is an SLSF diagram with a set of n typed variables,
V = {x1,x2, . . . ,xn}, which is classi�ed into two subsets as follows.

• VP = {α1,α2, . . . ,αnp } is a set of np ≤ n physical variables such that their values are
continuously updated, and
• VC = {β1, β2, . . . , βnc } is a set of nc cyber variables that are discretely updated, where
n = np + nc .

Here, the set of variables for each block of a CPS model is also partitioned into sets of physical and
cyber variables, V(v) = VP (v) ∪VC (v). In practice, this may be accomplished with subtyping using,
for example, an overloaded type for �oats or �xed points used for approximations of real variables
(e.g., in C, typedef double physical; typedef physical temperature;). The
dynamic changes of the variables of the CPS model may be described using di�erent SLSF blocks
such as S-Function block, look-up table, etc. In case the CPS model is a white-box and simple
enough, we may translate it to a formal framework like HIOA (e.g using Hylink). In fact, we
can specify a set of real-valued variables and their dynamic changes for the converted formal
model based on capturing the output variables from unit delay, integrator, state-space blocks in
the corresponding SLSF diagram [3]. Moreover, we note that the input and output variables are
disjoint, and the cyber and physical variables are disjoint, although these are not all mutually
disjoint. Hence, we further classify the set of variables V(v) into di�erent types as follows.

De�nition 3.3 (Variable Classi�cation). For a block v ∈ M , a variable x ∈ V(v) is considered as:
• an input cyber variable if x ∈ VC (v) and x ∈ VI (v),
• an output cyber variable if x ∈ VC (v) and x ∈ VO (v),
• an input physical variable if x ∈ VP (v) and x ∈ VI (v), or
• an output physical variable if x ∈ VP (v) and x ∈ VO (v).

We extend these notations in De�nition 3.3 naturally to sets of variables if all variables in a set
of variables fall into these classes, and will reference them as such. An arbitrary set of variables
may not be mutually disjoint from each of the input, output, cyber, and physical variables. Thus,
for a set of variables X ⊆ V, we say: (a) X is cyber-physical if there exist both cyber and physical
variables in X , (b) X is input-output if there exist both input and output variables in X , and (c) X
is cyber input-output, physical input-output, cyber-physical input, or cyber-physical output for the
other natural permutations.

Next, using these variable classes, we de�ne classes of SLSF blocks appearing in SLSF diagrams.
For a block v ∈ M , we say: (a) v is a cyber-physical block if there exist both cyber and physical

, Vol. 1, No. 1, Article 1. Publication date: January 201X.
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 

199
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variables in V(v), (b) v is a cyber block if there exist only cyber variables in V(v), and (c) v is a
physical block if there exist only physical variables in V(v).

Cyber-Physical Variable Interactions. Next, we will formalize a notion of in�uence between cyber
and physical models and their variables. For example, consider a typical closed-loop plant-controller
architecture, where outputs of a plant are sensed, used as inputs to a controller, and outputs of the
controller are converted by actuators as inputs to the plant (and potentially disturbances a�ect
everything). Generally, we would say the plant is a physical model, the controller is a cyber model,
and the sensors and actuators are cyber-physical models. However, it is clear that the physical
variables of the plant a�ect the cyber variables of the controller, and vice-versa, albeit not directly,
but through the transitive closure of input-output connections over all blocks in the SLSF diagram.
We note that this is related to the notion of tainted variables in program analysis that is popular
in security [49]. To formalize this notion, we specify interconnections between input and output
variables between blocks v ∈ M at the same hierarchical level in the diagram.

Input-output connections may only exist between models with the same parent (i.e., those in
the same hierarchical structure). For a block v ∈ M , we denote all blocks with the same parent
as siblings(v), which is de�ned as the set {w ∈ M | parent(w) = parent(v)}. Output variables
of a block v ∈ M may be connected to input variables of a block w ∈ M . Let GV

∆
= (VV,EV)

be a directed graph where the vertices VV are variables of blocks v ∈ M and the edges specify
the interconnection between output variables to input variables for some model w ∈ siblings(v),
and we have EV ⊆ V(v) × V(w). In general, for a �xed block v ∈ M and variable x ∈ V(v), this
interconnection relation is a tree, rooted at the output variable x and connected to possibly many
input variables of other blocksw ∈ M forw , v . For two blocks v,w ∈ M , we say v connects tow if
there exists an output variable y ∈ VO (v) and an input variable u ∈ VI (w) with EV(u) = y, denoted
v ↪→ w . For two blocks v,w ∈ M , we say v has a path tow ifw is in the transitive closure of blocks
that v connects to (i.e., v ↪→∗ w), denoted v { w . We note that the{ relation may have cycles,
and such cases arise in feedback control loops. For a block v ∈ M , for an input variable u ∈ VI (v)
and output variable y ∈ VO (v), we say u directly in�uences y if the value of y changes as a function
of u.1 Finally, for two blocks v,w ∈ M such that v { w , for an output variable y ∈ VO (v) and an
input variable u ∈ VI (w), we say y in�uences u if there exists a sequence of directly in�uenced
variables between y and u. Thus, we can see that a cyber variable in one model may in�uence a
physical variable in another model (or even its own model if there is a cycle), and vice-versa. The
software physical variables are all cyber variables that are in�uenced by physical variables, and are
denoted VSP . Typical examples of software physical variables include those used for sensed and
sampled measurements, variables used in feedback control calculations, etc.

Example 3.4. Here, we describe a CPS case study used throughout the remainder of the paper
for illustrating concepts. The case study is a DC-to-DC power converter (like buck, boost, and
buck-boost converters) [40], all of which have similar modeling, but we focus particularly on a buck
converter. The buck converter has two real-valued state variables modeling the inductor current iL
and the capacitor voltage VC . These state variables are written in vector form as: x = [iL ;VC ]. The
dynamics of the continuous variables in each modem ∈ {Open,Close,DCM} are speci�ed as linear
(a�ne) di�erential equations: Ûx = Amx + Bmu, where u = VS is a source voltage. The Am matrices
consist of L > 0, R > 0, C > 0 real-valued constants, respectively representing inductance (in
Henries), resistance (in Ohms), and capacitance (in Farads). A buck converter takes an input voltage
of say 5V and “bucks” or drops the voltage to some lower DC voltage, say 2.5V. These circuits

1Internally the blocks may be very sophisticated, could represent complex physical systems, could be Turing complete, etc.,
so we use this abstract notion.
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are used in many electronic devices (e.g., personal computers, cellphones, embedded systems,
aircraft, satellites, cars). These circuits are also used as modular components in a variety of novel
power electronics architectures, such as AC/DC microgrids and distributed DC-to-AC multilevel
inverters [42].

The general architecture of the buck converter that we focus on consists of a plant (physical
system) model and a controller (cyber model/software), along with models of actuators and sensors
interfacing the plant and controller. A controller for the buck converter may be constructed as a
hysteresis controller, which changes the mode of the buck converter plant based on the measured
output voltage [22]. In fact, the converter is meant to transform a given source voltage VS to
create an output voltage Vout approximately equal to a desired reference voltage (or set-point)
Vref . To accomplish this, the switch controlling whether VS is connected to the output or not is
toggled depending on whetherVout > Vref orVout < Vref . In practice, to avoid switching too often, a
hysteresis band is used and switches occur when Vout > Vref +Vtol or Vout < Vref −Vtol . The choice
of Vtol , along with the system dynamics, will determine the voltage ripple Vrip about the set-point
Vref . Typical speci�cations require the voltage ripple to be small, so that the output voltage Vout
is approximately Vref , that is, Vrip is chosen so that for Vout = Vref ±Vrip, we have Vout ≈ Vref . The
sensor model performs quantization and sampling, as would occur in typical analog to digital
conversion (ADC) used to digitize analog signal measurements. The actuator models likewise
perform the inverse process of digital to analog conversion (DAC) to convert the digital (cyber)
signals to analog signals.

Generally, we can model the plant as a physical block, the hysteresis controller as a cyber block,
and the sensors and actuators as cyber-physical blocks in SLSF. The plant voltage is an output
physical variable that a�ects the output cyber variable—a switching mode signal that enables the
transition between each mode in the plant—of the controller, and vice-versa. This interaction
between the plant and the controller is accomplished through the transitive closure of input-output
connections with the sensor and the actuator in the SLSF model. We will formalize speci�cations
and mismatches of the buck converter in Section 4. As a prelude, we highlight that Hynger �nds
its candidate invariant (that can be shown to be an actual invariant when modeled as a hybrid
automaton [22, 26, 40]).

3.1 Cyber-Physical Input-Output Automata
To further investigate cyber-physical speci�cation mismatches of CPS models, we consider ones
that may be formally represented as cyber-physical input-output automata.
De�nition 3.5. A cyber-physical input-output automaton (CPIOA) Ã is a tuple, Ã ∆

= 〈Loc, Var ,
Flow, Inv, Traj, Lab, Trans, Init〉, consisting of the following components:

• Loc: a �nite set of discrete locations.
• Var: a �nite set of n continuous, real-valued variables, where ∀x ∈ Var , val(x) ∈ R and
val(x) is a valuation—a function mapping x to a point in its type—here, R; and Q ∆

= Loc×Rn
is the state space. Var is the disjoint of a set of input variables I and a set of output variables
O. Furthermore, C and P classify Var into sets of cyber and physical variables, respectively.
• Inv: a �nite set of invariants for each discrete location, ∀` ∈ Loc, Inv(`) ⊆ Rn .
• Flow: a �nite set of derivatives for each continuous variable x ∈ Var , and Flow(`,x) ⊆ Rn

describes the continuous dynamics of each location ` ∈ Loc. if x is a physical variable,
Flow(`,x) is a non-zero Lipschitz continuous di�erential equation over time. Otherwise, if
x is a cyber variable, Flow(`,x) = 0.
• Traj: a �nite set of continuous trajectory models the valuations of variables over an interval

of real time [0,T ]. Let ∆0, ∆t and ∆T be the valuations of variable x at time points 0, t , and
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1:10 L. V. Nguyen et al.

T respectively, ∀t ∈ [0,T ], ∀x ∈ Var , ∃` ∈ Loc, a trajectory τ ∈ Traj is a mapping function
τ : [0,T ] → val(Var) such that:
� ∆t = ∆0 +

∫ t
δ=0 Flow(`,x)dδ , and

� ∆0 |= Inv(`), ∆t |= Inv(`), and ∆T |= Inv(`).
• Lab: a �nite set of synchronization labels.
• Trans: a �nite set of transitions between locations; each transition is a tuple γ ∆

= 〈`, `′,д,u〉,
which can be taken from source location ` to destination location `′ when a guard condition
д is satis�ed, and the post-state is updated by an update map u.
• Init is an initial condition, which consists of a set of locations in Loc and a formula over
Var , so that Init ⊆ Q.

Next, we de�ne the semantics of a CPIOA Ã in term of executions. An execution of Ã is a
sequence of states, written as ρ ∆

= s0 → s1 → s2 → . . ., where s0 ∈ Init, and si → si+1 is the update
from the current-state si to the post-state si+1, that is speci�ed by the transition relations of the
CPIOA Ã including: (a) a discrete transition that demonstrates the instantaneous state update, or
(b) a continuous trajectory that represents the state update over a real time interval. We say a state
sk is reachable from an initial state s0 if there exists an execution ρ

∆
= s0 → s1 → . . .→ sk .

Invariant Property. An invariant property φ of a CPIOA Ã is a formula over Var and Loc that
is always true for every reachable state of Ã. Formally, we say Ã |= φ i� ∀s ∈ Reach(Ã), s |= φ,
where Reach(Ã) denotes the set of reachable states of Ã.

Parallel Composition. Consider two CPIOAs Ã1
∆
= 〈Loc1, Var1, Inv1, Flow1, Traj1, Lab1, Trans1,

Init1〉, and Ã2
∆
= 〈Loc2, Var2, Inv2, Flow2, Traj2, Lab2, Trans2, Init2〉, we consider that Ã1 and Ã2

is compatible if (a) I1 ⊆ O2, (b) I2 ⊆ O1, and (c) O1 ∩ O2 = ∅. The parallel composition operation
combines two compatible CPIOAs into a single CPIOA that represents the synchronous interaction
between these two CPIOA when running simultaneously.

De�nition 3.6 (Parallel Composition). Given two compatible CPIOAs Ã1 and Ã2, the parallel
composition of Ã1 and Ã2 is a CPIOA Ã , written as Ã ∆

= Ã1‖Ã2, where:
• Loc = Loc1 × Loc2,
• Var = Var1 ∪ Var2,
• Q = Q1 × Q2,
• O = O1 ∪ O2,
• I = (I1 ∪ I2) \ O,
• ∀`1, `2 ∈ Loc, Inv(`1, `2) = Inv1(`1) ∧ Inv2(`2)
• ∀`1, `2 ∈ Loc, ∀x ∈ Var , ((`1, `2), val(x) ∈ Init) i� (`1, val(x)) ∈ Init1 ∧ (`2, val(x)) ∈ Init2,
• Lab = Lab1 ∪ Lab2,
• ∀i ∈ {1, 2}, there is a trajectory τ ∈ Traj i� τ ↓ (Loci ∪Vari ) ∈ Traji , where τ ↓ (Loci ∪Vari )

denotes the projection of τ onto the sets of variables and locations of component i .
• Given γ1 ∈ Trans1, γ1

∆
=

〈
`1, `

′
1,д1,u1

〉
and γ2 ∈ Trans2, γ2

∆
=

〈
`2, `

′
2,д2,u2

〉
, there exists a

transition γ ∈ Trans, γ ∆
= 〈`, `′,д,u〉 i�:

� ` = (`1, `2), `′ = (`′1, `2), д = д1, and u = u1, or
� ` = (`1, `2), `′ = (`1, `′2), д = д2, and u = u2, or
� ` = (`1, `2), `′ = (`′1, `′2), д = д1 ∧ д2, and u = u1 ∪ u2.

Closed-loop CPIOA. One type of CPS model that we focus on in this paper is a closed-loop model,
e.g., the closed-loop buck converter. Such a model can be formally represented as a closed-loop
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Open[ ÛiL
ÛVC

]
=

[
0 − 1
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C − 1
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] [
iL
VC

]
mode = 1 ∧ iL ≥ 0 ∧VC ≤ Vref +Vtol
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ÛVC

]
=

[
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RC

] [
iL
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]
+

[ 1
L
0

]
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mode = 2 ∧ iL ≥ 0 ∧VC ≥ Vref −Vtol

DCM[ ÛiL
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]
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] [
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]
mode = 1 ∧ iL ≤ 0
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θ θ
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Plant
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mode = 1 ∧VC ≥ Vref −Vtol

Close
mode = 2 ∧VC ≤ Vref +Vtol

θ
VC ≤ Vref −Vtol

mode := 2

θ
VC ≥ Vref +Vtol

mode := 1

θ
VC > Vref −Vtol

θ
VC < Vref +Vtol

start

Controller
VCmode

Fig. 3. A hybrid automaton models the buck converter plant with hysteresis controller.

CPIOA, which is a parallel composition of a plant and controller CPIOA. The plant CPIOA has
continuous dynamics modeled by ordinary di�erential equations, and the controller CPIOA can be
purely discrete. For instance, the hybrid automaton of the closed-loop buck converter (without
sensor and actuator) shown in Figure 3 can be considered as one closed-loop CPIOA, where θ is a
synchronization label and mode is a discrete control signal. The capacitor voltage variable VC is
not only an output physical variable for the plant CPIOA, but is also an input cyber variable of the
controller CPIOA. In this case, we can check whether the candidate invariants of the closed-loop
buck converter found with Hynger and Daikon are actual invariants by investigating its formal
model (e.g., a closed-loop CPIOA shown in Figure 3) using some hybrid systems model checkers
such as SpaceEx [20].

3.2 Candidate Invariant Checking Problem
The formal de�nition of the candidate invariant checking problem for CPS is described as follows.

De�nition 3.7 (Candidate Invariant Checking). Given a CPS model A with a set of candidate
invariants Φ̂, Ã is a formal model converted from A, a candidate invariant φ̂ ∈ Φ̂ is considered as
an actually invariant property of Ã i� Reach(Ã) |= φ̂.

According to De�nition 3.7, if a CPS model A is a white box system that can be represented in
terms of a formal model such as a CPIOA Ã, a hybrid system model checker may be used to check
whether φ̂ is an invariant property of Ã. If there exists any reachable state of Ã that does not
satisfy φ̂, we can conclude that φ̂ is not an actual invariant of the CPS model A.

4 CYBER-PHYSICAL SPECIFICATIONS AND MISMATCHES
In this section, we will formalize the concept of candidate cyber-physical speci�cation mismatches
of CPS, and introduce a potential method to detect such speci�cation mismatches.
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1:12 L. V. Nguyen et al.

4.1 Cyber-Physical Specifications
Our goal is to �nd speci�cations that are invariants or conditional invariants, so we do not consider
more general temporal logic formulas. Under this assumption, a speci�cation is equivalent to a
predicate over the state-space of the system. Equivalently, a speci�cation is a multi-sorted �rst-order
logic (FOL) sentence (of a restricted class), so we assume the speci�cation may be represented in the
Satis�ability Modulo Theories (SMT) library standard language [6, 35]. Under these assumptions,
candidate invariants may be speci�ed as quanti�er-free SMT formulas over the variables of the
SLSF model, where the type of a variable corresponds to the SMT sort. For a formula ϕ, let vars(ϕ)
be the set of variables appearing in ϕ. For a formula ϕ: (a) if vars(ϕ) are all physical, then ϕ is a
physical speci�cation, (b) if vars(ϕ) are all cyber, then ϕ is a cyber speci�cation, and (c) if vars(ϕ)
consists of both cyber and physical variables, then ϕ is a cyber-physical speci�cation.

Next, while we will try to infer interesting speci�cations ϕ using dynamic analysis later in the
paper, we �rst highlight examples of speci�cations made a priori in system design, as these are
necessary to de�ne speci�cation mismatches. Let Σ be a set of speci�cations for A, which is a set
of formulas over the variables of A. Referring to Figure 4, we separate the speci�cation Σ into
sets of cyber and physical speci�cations, written respectively as ΣC and ΣP . These speci�cations
include assumptions about the physical environment, such as the value of gravitational force,
temperature bounds, time constants, etc. The physical speci�cation also includes assumptions
about the physical system’s behavior and subcomponents, such as motor torque limits, temperature
bounds of components, sampling rates, velocity limits, etc. Here ΣC denotes the set of cyber
speci�cations. The cyber speci�cations include assumptions about software-physical interfaces,
such as ADC resolution, DAC resolution, sampling rates, etc. It also includes assumptions about the
software system, subcomponents, and software-software interfaces, such as data formats, control
�ow, event orderings, etc. For example, the buck converter has the following physical speci�cations:

σ 1
P

∆
= t ≥ ts ⇒ Vout(t) = Vref (t) ±Vrip,

σ 2
P

∆
= VS (t) = VS (0) ± δS ,

σ 3
P

∆
= Vref (t) = Vref (0) ± δr ef ,

and ΣP
∆
= {σ 1

P ,σ
2
P ,σ

3
P }. Here, σ 1

P states that after some amount of constant startup time ts , the
output of the buck converter Vout(t) remains near a reference (desired) output voltage Vref (t). Both
σ 2
P and σ 3

P specify assumptions about the buck converter’s environment, namely that its source
voltage VS and reference voltage Vref always remain near their initial values. We note that while
time may not typically be thought of as a state of the system, it can be encoded in this way easily,
for example, by including a state variable t with Ût = 1. To evaluate whether A has cyber-physical
speci�cation mismatches, we hypothesize that the cyber speci�cation contains (at least a subset) of
the physical speci�cation. This process is made more explicit in Figure 4 and described next.

4.2 Cyber-Physical Specification Mismatches
A CPS model or implementation will be provided as an SLSF diagram, denoted A as formalized
above. Next, A is instrumented using the Hynger yielding a modi�ed SLSF diagram Â. Now, Â
is executed to generate a set of sampled, �nite-precision traces T for each initial condition θ in a
set of initial conditions Θ, which e�ectively corresponds to a test suite. The traces T are analyzed
using dynamic analysis methods, such as Daikon, to generate a set of candidate invariants Φ̂, each
element φ̂ of which may be checked as actual invariants ifA corresponds to a formal model (e.g., a
CPIOA) or may be converted to one, Ã. If that is the case, then a hybrid system model checker
may be employed to see if φ̂ is an actual invariant φ, and the set of actual invariants Φ is collected.
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Fig. 4. Hynger overview, inference of physical specifications assumed by so�ware, and cyber-physical
specification mismatch identification.

De�nition 4.1 (Cyber-Physical Speci�cation Mismatch). Given an SLSF diagram A with a set of
actual physical speci�cations ΣP , let Φ̂P

∆
= Φ̂ ↓ VSP be a set of candidate physical invariant, A has

a cyber-physical speci�cation mismatch i�: ∃σP ∈ ΣP , ∀φ̂P ∈ Φ̂P , σP 6 |= φ̂P .

In De�nition 4.1, Φ̂ ↓ VSP denotes the projection or the restriction of Φ̂ to the set of software
physical variable VSP . In all cases, each candidate invariant φ̂ ∈ Φ̂ is projected (restricted) onto
the software physical variables VSP to yield a candidate physical invariant φ̂P and corresponding
set Φ̂P . Such a projection may be computed using quanti�er elimination methods available in
many modern SMT solvers, such as Z3 [13]2. Now, Φ̂P corresponds to the candidate, inferred
physical invariants from the perspective of the cyber-physical system, each element of which may
be compared to each element σP of a set of actual physical speci�cations ΣP . Since φ̂P and σP
are both formulas, we construct new formulas φ̂P ⇒ σP and σP ⇒ φ̂P , each of which may be
discharged with an SMT solver. If these checks are not valid, then these speci�cations are candidate
cyber-physical mismatches. These checks basically compare whether the inferred speci�cation
and actual speci�cation are more or less restrictive than one another, in terms of the sizes of
corresponding sets of states satisfying the predicates. We hypothesize that it is generally the
case that the inferred physical speci�cation should always be stronger than the actual physical
speci�cation, and only the check φ̂P ⇒ σP would be needed. This would correspond to the case
where the software’s assumptions about the physical world are at least as restrictive as those made
in the actual physical speci�cation. For instance, suppose that the physical speci�cation of the
output voltage of the buck converter is σP

∆
= t ≥ ts ⇒ 4.8V ≤ Vout(t) ≤ 5.2V , and the candidate

physical invariant is φ̂P
∆
= t ≥ ts ⇒ 4.9V ≤ Vout(t) ≤ 5.1V , then the check of the formula φ̂P ⇒ σP

using an SMT solver like Z3 will indicate that the system does not have a speci�cation mismatch.
Otherwise, if the candidate physical invariant is φ̂P

∆
= t ≥ ts ⇒ 4.7V ≤ Vout(t) ≤ 5.0V , then the

check of the formula φ̂P ⇒ σP will indicate that the system has a speci�cation mismatch. On
the other hand, it may also be useful to check φ̂P ⇐ σP , which would correspond to cases where
the inferred physical speci�cation is weaker than the actual physical speci�cation. In this case,
there may be a trace that violates the actual speci�cation, and this may be useful in analysis like
falsi�cation to drive simulations towards a violating behavior.

2Z3 may be downloaded: http://z3.codeplex.com/.
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5 HYNGER: GENERATING INVARIANTS FOR SLSF MODELS
Hynger—HYbrid iNvariant GEneratoR—is a software tool developed for invariant inference of CPS
models represented as SLSF block diagrams3. Hynger is written primarily in Matlab and uses the
Matlab APIs to interact with SLSF diagrams. Hynger also uses some Java code (natively inside
Matlab) to interface with Daikon, which is written in Java. Daikon versions 5.0.0 to 5.1.8 were
tested with Hynger4.

Given an SLSF model A, Hynger automatically inserts callback functions into the model to
print model variables at block inputs and outputs at certain events in the SLSF simulation loop.
Consequently, a trace �le generated by Hynger will then be formatted in the trace input format
required by Daikon. While con�gurable, the default behavior of Hynger is to add instrumentation
(observation) points for every input and output signal for every block (recursively) in the SLSF
diagram. That is, Hynger walks the tree of blocks starting from the root, and for each v ∈ M ,
adds instrumentation points for the input variables VI (v) and the output variables VO (v) of v . Of
course, this may incur a drastic performance overhead, so if this is not desired, the user may select
only a subset of the blocks to instrument and our performance results (see Section 6) illustrate
this distinction. When an SLSF model is simulated with these instrumentation callback functions
added by Hynger, it will generate a trace �le in the input trace format for Daikon. Hynger also
provides the capability to automatically call Daikon from Matlab (by using an appropriate Java call
to Daikon), which will then return the set of candidate invariants from each program point to the
user.

The Hynger �ow is summarized in Figure 4. The inputs are: (a) SLSF diagrams (containing
embedded software code and a set of physical variables along with their physical dynamics models
[e.g., ODEs]), and (b) a set of physical variables along with their dynamics models (speci�ed as
SLSF children diagrams), and (c) a test suite for the embedded software and initial conditions for
the physical simulation (such as noisy initial conditions, θ ∈ Θ). The output of the Hynger tool is a
set of candidate invariants, which, when projected onto all the software physical variables VSP ,
represent a candidate speci�cation the software assumes for the physical parts of the system. Finally,
candidate speci�cations can be checked for conformance with the actual physical requirements
by comparing the two speci�cations: the actual physical speci�cation and the candidate physical
speci�cation from the software perspective.
5.1 Dynamic Invariant Inference with Daikon
Next, we illustrate the dynamic invariant inference methodology used by Daikon on a pure software
example. However, this pure software example (a C function) is actually speci�ed for the controller
in the buck converter case study (shown in Figure 7) in a di�erent manner. The loop in the controller
SLSF model of Figure 9 also computes a sum of an array, and Daikon can �nd this speci�cation for
both the SLSF controller model using Hynger, and the C-frontend for the following example. Note
that, in Figure 9 the digitized output voltage from the buck-converter plant is used to determine
the mode of the switch. Here, Vtol is denoted by the variable Vtol, Vref is Vref. We highlight that
the controller computes a moving average by summing an array. With Hynger and Daikon, we
automatically infer that the result of this is the sum of the samples, similar to the sum return
speci�cation shown in Figure 6 found for the C function in Figure 5.
Example C Program, Formal Speci�cation, and Candidate Invariants Inferred. Figure 5 shows

an example C function to illustrate the use of dynamic analysis with Daikon to �nd candidate

3A preliminary prototype of Hynger with examples is available online: http://verivital.com/hynger/. The repository also
includes Daikon input (*.dtrace) trace �les generated from the examples, as well as the Daikon output candidate invariant
(*.inv) �les.
4Daikon may be downloaded: http://plse.cs.washington.edu/daikon/.

, Vol. 1, No. 1, Article 1. Publication date: January 201X.
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 

206

http://verivital.com/hynger/
http://plse.cs.washington.edu/daikon/


Cyber-Physical Specification Mismatches 1:15

1 / ∗@ r e q u i r e s n >= 0 ; / / a t l e a s t 0 e l em e n t s
@ r e q u i r e s \ v a l i d ( b+ ( 0 . . n − 1 ) ) ; / / a l l e l em e n t s e x i s t

3 @ a s s i g n s \ n o t h i n g ; / / no s i d e e f f e c t s
@ e n s u r e s \ r e s u l t == \ sum ( 0 , n−1 , \ lambda i n t e g e r j ; b [ j ] ) ;

5 @ en s u r e s \ r e s u l t >= 0 ; / / f a l s e , a r r ay may be n e g a t i v e
∗ /

7 int sum_array(int b[], unsigned int n) {
int i;

9 int s = 0;
/ ∗@ l o o p i n v a r i a n t

11 \ f o r a l l i n t e g e r j ; ( 0 <= i <= n ) ==> s == \ sum ( 0 , i −1 , \ lambda i n t e g e r j ; b [ j ] ) ; ∗ /
for (i = 0; i < n; i++) {

13 s += b[i];
}

15 return s;
}

Fig. 5. Example C function that sums an array b of n integers. Requirements on the function inputs (i.e.,
preconditions on b and n for the function to be called) are specified as requires assertions in the ACSL
language. Correctness specifications (i.e., postconditions following the function call) are specified as ensures
assertions in the ACSL language.

============== Precondition
2 ..sum_array():::ENTER

b has only one value / / i t ' s a p o i n t e r t o on l y one l o c a t i o n o f memory
4 b[] elements >= 0 / / a l l e l em e n t s were non−n e g a t i v e f o r t h i s s e t o f t r a c e s

n == 100 / / a l l t e s t s were 100 e l emen t a r r a y s f o r t h i s s e t o f t r a c e s
6 size(b[]) == 100 / / a l l t e s t s were 100 e l emen t a r r a y s

============== Postcondition
8 ..sum_array():::EXIT

b[] == orig(b[]) / / no s i d e e f f e c t s
10 return == sum(b[]) / / d o e s r e t u r n t h e sum

sum(b[]) == sum(orig(b[]))
12 b[] elements >= 0

Fig. 6. Daikon candidate invariant output (with some additional markup in C-style comments for readability)
for the sum_array example from Figure 5.
invariants. The function computes and returns the sum of an array of integers. This example was
recreated from an example in the original Daikon paper [17]. Additionally, a formalized correctness
speci�cation is given in the modern ANSI/ISO C Speci�cation Language (ACSL), used by tools
such as Frama-C [12]. Using Daikon and a small suite of unit tests, we were able to successfully
�nd the invariant that returns from the function sum_array, the returned value is the sum of the
elements in the array b. The suite of tests included arrays with: (a) all the same length and same
elements, (b) all the same length and uniformly randomly chosen elements, (c) di�erent lengths and
all the same elements, and (d) di�erent lengths and uniformly randomly chosen elements. Daikon
successfully found the sum postcondition in all these cases with only a few test conditions. The
candidate invariant outputs of Daikon appear in Figure 6, where we can see Daikon has inferred a
candidate invariant that the function returns the sum of an array. We highlight that we �nd the
sum return result of the moving average �lter from Figure 9 using Hynger and Daikon.

6 EXPERIMENTAL RESULTS
Hynger was tested on Windows 10 64-bit using Matlab 2016b, and 2017a, executed on a x86-64
laptop with a 2.3 GHz dual-core Intel i5-6200U processor and 12 GB RAM. All performance metrics
reported were recorded on this system using Matlab 2017a. We tested and evaluated Hynger using a
number of SLSF examples, including: (a) the closed-loop buck converter with sensor and hysteresis
controller described in Section 6.1 and detailed further in [40], (b) a solar array case study that uses a
buck-boost converter [42], (c) benchmarks from S-TaLiRo [4], (d) benchmarks from Breach [14, 24],
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Model Solver Tmax Sim SimInst Inv Overhead BDAll BDInst BDPct

buck (Section 6.1) ode45 0.0083 6.2985 38.4518 5.7335 7.0152 14 3 21.4286

buck (Section 6.1) ode45 0.0083 6.4567 44.698 7.0913 8.021 14 4 28.5714

buck (Section 6.1) ode45 0.0083 6.5301 78.3176 7.2224 13.0993 14 14 100

heat25830 [4] ode45 50 4.6913 254.5776 14.09 57.2692 28 1 3.5714

heat25830 [4] ode45 50 4.7328 2882.7808 15.6488 612.4233 28 10 35.7143

fuel1 [23] ode15s 15 5.3747 976.6274 7.923 183.182 208 17 8.1731

fuel1 [23] ode15s 15 4.2131 2824.2804 11.604 673.1137 208 63 30.2885

fuel2 [23] ode15s 20 3.3838 36.8312 2.9881 11.7674 25 6 24

fuel2 [23] ode15s 20 2.7353 42.4074 3.2771 16.7018 25 13 52

fuel3 [19] ode15s 20 3.7425 292.9976 4.1131 79.3892 90 11 12.2222

fuel3 [19] ode15s 20 3.6083 945.3992 4.3904 263.2236 90 46 51.1111
Table 1. Hynger performance results for several of the examples evaluated. Solver is the ODE solver used by
SLSF. Tmax is the virtual simulation time in seconds (i.e., time from the perspective of the model). All runtime
results are in seconds and are the mean of 20 runs. Sim is the simulation runtime (s). Inv is the invariant
generation runtime (Daikon) (s). Overhead is the overall relative performance overhead (extra runtime)
(×) using Hynger and Daikon versus only SLSF simulation (i.e., ((SimInst + Inv)/Sim)). BDInst and BDAll
are the numbers of block diagrams instrumented and the overall number of block diagrams, respectively.
BDPct is the percentage (%) of block diagrams instrumented using di�erent Hynger modes of operation (i.e.,
BDInst/BDAll ).
(e) benchmarks created as a part of the ARCH 2014 CPSWeek workshop (particularly [23, 40]) and
(f) example models provided by Mathworks. Overall, these examples vary from fairly simple with
tens of blocks (such as the buck converter case study we detail), to complex (with hundreds of
blocks).

Runtime Overhead from Instrumentation with Hynger and Invariant Inference with Daikon. First,
we present an aggregate performance evaluation for some of these examples in Table 1, with
column descriptions appearing in the caption. Overall, the performance overhead of instrumenting
diagrams and performing invariant inference is around an order of magnitude increase in the
best cases, and two-to-three orders of magnitude increase in the worst cases, which we note is
comparable with typical Daikon instrumentation frontends like Valgrind’s overhead [18, 39]. We
conducted performance pro�ling of Hynger and identi�ed the main source of overhead (about 75 to
90 percent) as �le I/O operations. Additionally, as Hynger has several di�erent usage scenarios and
operating modes (where it may be used to instrument few blocks [subsystem and function blocks
by default], many blocks [all blocks except ones such as constants, scopes, etc.], every single block,
or user-selected blocks), the table illustrates these di�erences to give some comparison of how the
methods scale on a given model. Next, we will describe two CPS case studies in details to evaluate
the capability of Hynger in detecting cyber-physical speci�cation mismatches. The �rst model
is the closed-loop buck converter that has been used to illustrate the concepts of this paper, and
the second model is derived from a collection of the automotive powertrain control benchmarks
proposed by Toyota [24].

6.1 Closed-Loop Buck Converter Cyber-Physical Specification Mismatch
A basic cyber-physical speci�cation mismatch is easy to encode in the buck converter, since the
software controller inherently uses a tolerance to encode the desired output voltage ripple. This
hysteresis tolerance band is typically chosen based on the system dynamics and desired output
voltage ripple to ensure the output voltage meets the ripple speci�cation. As a concrete example,
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Fig. 7. General CPS case study architecture overview of the buck converter in SLSF. The system is composed
of a plant (physical system) model, a controller (so�ware/cyber), and potentially sensor and actuator models.
The cyber model uses some of the physical model output states to determine a control action or input.
The controller in SLSF appears in Figure 9, and the sensor model appears in Figure 8. An example of this
closed-loop buck converter including only plant and controller can be formally represented as the hybrid
automaton in Figure 3.

the physical speci�cation may contain a �xed constraint that Vout = Vref ±Vrip, e.g., Vref = 5V and
Vrip = 0.1V . The hysteresis band Vtol is then selected based on the system dynamics to ensure
4.9V ≤ Vout ≤ 5.1V so that it meets the requirements of the physical speci�cations de�ned by ΣP
in Section 4.1.

Sources of Cyber-Physical Speci�cation Mismatches of the Closed-Loop Buck Converter. There are
di�erent possibilities of speci�cation mismatch that may occur to the closed-loop buck converter.
We present three scenarios that result in speci�cation mismatches. First, if the plant parameters
change (i.e., di�erent circuit elements are used), and the software is not updated with a new
hysteresis band Vtol to accommodate the changes in the plant dynamics, then a speci�cation
mismatch manifests. This mismatch can be detected using Hynger and the methodology described
in this paper. Of course, this is a somewhat obvious mismatch, as the controller relies on variables
computed as functions of the plant parameters (here, the R, L, and C values, as well as the source
and desired/reference output voltage values). So if these plant components are changed, clearly
the software must be updated. Second, the hysteresis controller is initially constructed using
wrong information about the physical evolution of the plant. In fact, the hysteresis band Vtol is far
di�erent from the actual output voltage ripplesVrip of the plant. Third, the analog sensor of the buck
converter may have ADC conversion errors that reduce the accuracy of the voltage measurement.
These errors can be an o�set error, a full-scale error, di�erential and integral non-linearity errors,
etc. Moreover, a typical error that cannot be avoided in ADC sensor is the quantization error [50].
Overall, these conversion errors may cause a signi�cant impact to result in system failures.

Experimental Results in Identifying Cyber-Physical Speci�cation Mismatches of the Closed-Loop
Buck Converter. We consider the closed-loop buck converter A shown in Figure 7 with VS = 100,
Vref = 48V , Vrip = 5%Vref = 2.4V , and assume that δS , δr ef are equal to zero. The physical
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Fig. 8. Stateflow model of sensor with a sample
and hold for the buck converter case study.
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Fig. 9. Stateflow model of the buck-converter
voltage hysteresis controller.

speci�cation of the output voltage is σP
∆
= t ≥ ts ⇒ 45.6V ≤ Vout(t) ≤ 50.4V . For the initial setup,

with R = 6Ω, L = 2.65mH ,C = 2.2mF , and a sampling frequency fs = 60kHz, the magnitude bound
of the output voltage inferred from Hynger and Daikon is φ̂P

∆
= t ≥ ts ⇒ 46.559V ≤ Vout(t) ≤

50.203V . Then, φ̂P is considered as the candidate invariant of the system since the formula φ̂P ⇒ σP
is true. Next, we investigate di�erent possibilities of cyber-physical speci�cation mismatches that
may occur when changing the source voltage, the desired/reference output voltage, the sampling
frequency, and the plant parameters of the buck converter.

First, we increase the source voltage VS from 100V to 120V , the new magnitude bound of
the output voltage inferred from Hynger and Daikon is φ̂P

∆
= t ≥ ts ⇒ 46.804V ≤ Vout(t) ≤

51.118V . Then, the formula φ̂P ⇒ σP is false, that indicates the system may have a cyber-physical
speci�cation mismatch.

Second, we drop the desired/reference output voltageVref to 36V . Thus, the physical speci�cation
of the output voltage becomes σ ′P

∆
= t ≥ ts ⇒ 34.2V ≤ Vout(t) ≤ 37.8V . In this case, the inferred

physical speci�cation of the output voltage from Hynger and Daikon becomes φ̂ ′P
∆
= t ≥ ts ⇒

35.068V ≤ Vout(t) ≤ 39.053V , so that the formula φ̂ ′P ⇒ σ ′P is false. Therefore, changing the
reference output voltage may also produce a cyber-physical speci�cation mismatch for the buck
converter.

Third, we decrease the sampling frequency fs from 60kHz to 30kHz. As a result, the new inferred
physical speci�cation of the output voltage from Hynger and Daikon is φ̂P

∆
= t ≥ ts ⇒ 45.853V ≤

Vout(t) ≤ 51.091V . The check of the formula φ̂P ⇒ σP will return false to indicate that the system
may contain a cyber-physical speci�cation mismatch.

Next, we keep the controller unchanged and vary the values of R, L, and C to change the plant
parameters. We then run the buck converter with Hynger in conjunction with Daikon, and collect
candidate physical speci�cations associated with the output voltage. The comparison between
the actual physical speci�cation σP and the physical speci�cation φ̂P inferred from Hynger and
Daikon is shown in Table 2, and also illustrated in Figure 10. Note that in Table 2, φ̂P describes
the magnitude bound of the output voltage when t ≥ ts . The checks of the formula φ̂P ⇒ σP
occasionally return False , that are depicted in Figure 10 when the bound of the inferred output
voltage overlaps its actual bound. This indicates that changing the plant parameters without
updating the controller may produce cyber-physical speci�cation mismatches. That also proves
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Parameter Values φ̂P φ̂P ⇒ σP σP ⇒ φ̂P

R = 4Ω, L = 2.65mH , C = 2.2mF 45.137V ≤ Vout (t) ≤ 49.723V False False

R = 8Ω, L = 2.65mH , C = 2.2mF 46.964V ≤ Vout (t) ≤ 50.405V False False

R = 6Ω, L = 0.65mH , C = 2.2mF 47.141V ≤ Vout (t) ≤ 50.074V True False

R = 6Ω, L = 6.65mH , C = 2.2mF 45.429V ≤ Vout (t) ≤ 50.439V False True

R = 6Ω, L = 2.65mH , C = 1.2mF 45.426V ≤ Vout (t) ≤ 51.109V False True

R = 6Ω, L = 2.65mH , C = 3.2mF 46.859V ≤ Vout (t) ≤ 49.774V True False

Table 2. Experimental data showing the comparison between actual physical specifications and inferred
physical invariants from Hynger and Daikon of the buck converter system. Here, the plant component is
changed due to the changes of R, L, and C values.

the capability of Hynger and our proposed methodology in automatically detecting a candidate
cyber-physical speci�cation mismatch of CPS.

Another possibility of the speci�cation mismatch may occur when the controller is encoded
based on wrong information about the plant. For the buck converter, the hysteresis controller is
built with an assumption that the output voltage ripple Vrip is equal to 5% of the reference voltage
Vref . However, the actual value of Vrip may be much smaller than this assumption percentage. The
percentage of the output voltage ripple of the buck converter is calculated as follows [16],

Vrip

Vref
=

1 − D
8LC f 2s

, (1)

where D =
Vref
ηVS is a duty cycle, and η is an e�ciency coe�cient of the converter. Here, with

L = 2.65mH , C = 2.2mF , fs = 60kHz, η = 0.79, Vref = 48V , andVS = 100V , the percentage of the
output voltage ripple is approximately equal to 0.0002%. Thus, the hypothesized output voltage
ripple used to build the controller is far larger than the actual output voltage ripple calculated
by Equation 1. It de�nitely shows that the system may have speci�cation mismatches since the
controller is encoded depending on wrong information about the physical plant.

Furthermore, changing the length of voltage measurement array (samples_length) in the sensor
of the buck converter (shown in Figure 8) may also cause a speci�cation mismatch. For example, if
we increase it from 16 to 32, the inferred physical speci�cation using Hynger and Daikon becomes
φ̂P

∆
= t ≥ ts ⇒ 46.095V ≤ Vout(t) ≤ 50.788V , which no longer implies the actual physical

speci�cation of the output voltage σP
∆
= t ≥ ts ⇒ 45.6V ≤ Vout(t) ≤ 50.4V .

6.2 Abstract Fuel Control System Benchmarks
In the second case study, we present the potential cyber-physical speci�cation mismatches of the
abstract fuel control (AFC) system benchmarks provided by Toyota [23, 24], and further studied
in [19]. The goal of these benchmarks is to determine the fuel rate that should be injected into
the manifold to maintain the air-fuel ratio within a desirable range using the feedforward and
Proportional-Integral (PI) controllers. Particularly, we focus on the third model of the benchmarks
including a sequence of Simulink blocks and State�ow chart that increase levels of sophistication
and �delity of the system [19]. The model consists of four operation modes and four continuous
variables. The modes include startup, normal, power, and failure; and the variables are (a) p: an
intake manifold pressure, (b) pe : an intake manifold pressure estimate, (c) λ: an air-fuel ratio, and
(d) i: an integrator state, PI control signal. The evolution of the continuous variables in each mode
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Fig. 10. A plot represents simulation traces and magnitude bounds ofVout of the buck converter with di�erent
values of R, L, andC . Here, σP denotes the actual bound ofVout , and φ̂kP , k ∈ [1, 6] denotes the inferred bound
of Vout listed orderly in Table 2.

is governed by nonlinear polynomial di�erential equations as follows,

Ûp = c1(2θ (c20p2 + c21p + c22) − Ûmc ) (2)
Ûpe = c1(2c23θ (c20p2 + c21p + c22) − (c2 + c3ωpe + c4ωp2e + c5ω2pe )) (3)
Ûλ = c26(c15 + (c16c25Fc + c17c225F 2c + c18 Ûmc + c19 Ûmcc25Fc − λ) (4)
Ûi = c14(c24λ − c11), (5)

where Fc = 1
c11
(1+ i +c13(c24λ−c11))(c2+c3ωpe +c4ωp2e +c5ω2pe ), and Ûmc = c12(c2+c3ωp+c4ωp2+

c5ω
2p). θ and ω are throttle angle (in degrees) and engine speed inputs (in rpm), respectively. The

values of all constant parameters c j , j ∈ [1, 25], θ and ω are speci�ed in [24]. We note that this
system can be formally represented as a closed-loop CPIOA, which is the parallel composition of
a plant and controller model, and both of them have three exogenous inputs including θ , ω, and
sensor failure event fail_event [19].

AFC Plant Model. The plant can be modeled as a CPIOA with a single mode and two output
physical variables p, λ whose continuous evolutions over time are described in Equation 2 and
Equation 4, respectively. This model has an input cyber variable Fc , that is a fuel command.

AFC Controller Model. The controller model is a CPIOA with four operation modes including
startup, normal, power, and failure. The controller has two output physical variables pe , and i whose
continuous evolutions over time are described in Equation 3 and Equation 5, respectively. Here, p
and λ are considered as two input cyber variables of the controller.

Reachability analysis of a sophisticated system like the AFC system is a major contribution to
both industrial and research community. However, it is a challenge to design and verify such a
system using existing hybrid system veri�cation tools. Instead, we can attempt to verify some
safety requirements of the system. The AFC system has several actual physical speci�cations that
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can be found in [15]. In this section, we select two main physical speci�cations to evaluate the
capability of Hynger and the proposed methodology. The �rst physical speci�cation requires the
undershoot and overshoot of the air-fuel ratio of the system should be in the settling region of ±2%
of its reference value λref . The second physical speci�cation requires the air-fuel ratio should be
maintained within ±2% of λref in the normal mode when t ≥ ts . These properties can be formally
expressed as:

σ 1
P

∆
= mode = startup ∧ t ≤ ts ⇒ 0.98λref ≤ λ(t) ≤ 1.02λref (6)

σ 2
P

∆
= mode = normal ∧ t ≥ ts ⇒ 0.98λref ≤ λ(t) ≤ 1.02λref . (7)

Initially, we set λref = 14.7, θ ∈ [8.8◦, 90◦], w = 1800rpm ts = 9.5s , and the maximum simulation
time Tmax = 20s , the proportional and integral gains of the PI controller are c13 = 0.04 and
c14 = 0.14, respectively. Next, we investigate di�erent possibilities of cyber-physical speci�cation
mismatches for each physical speci�cation. For the �rst physical speci�cation σ 1

P , the AFC system
may have speci�cation mismatches when changing the engine speed and throttle inputs. For the
second physical speci�cation σ 2

P , the system may contain speci�cation mismatches when changing
controller and plant parameters.

Cyber-physical speci�cation mismatches according to σ 1
P . With the initial setup mentioned earlier,

the physical speci�cation in Equation 6 becomes σP
∆
= mode = startup ∧ t ≤ 9.5 ⇒ 14.406 ≤

λ(t) ≤ 14.994. Here, the magnitude bound of the air-fuel ratio at the startup mode of the system
inferred from Hynger and Daikon is φ̂1P

∆
= mode = startup ∧ t ≤ 9.5 ⇒ 14.505 ≤ λ(t) ≤ 14.97.

Thus, the check of the formula φ̂1P ⇒ σ 1
P is valid, that indicates φ̂1P is a candidate invariant of the

AFC system. Next, we vary the input values and observe the consequent behaviors of the system.
First, we vary the value of the engine speed and keep other parameters unchanged. Assuming

w = 2200rpm, the inferred physical speci�cation of the air-fuel ratio from Hynger and Daikon
becomes φ̂1P

∆
= mode = startup ∧ t ≤ 9.5 ⇒ 14.129 ≤ Vout(t) ≤ 15.033. Hence, the formula

φ̂1P ⇒ σ 1
P is false indicating that the AFC system may contain a cyber-physical speci�cation

mismatch as we change the engine speed input.
Second, we change the range of the throttle input to [40◦, 70◦]. Then, the inferred physical

speci�cation of the air-fuel ratio from Hynger and Daikon becomes φ̂1P
∆
= mode = startup ∧ t ≤

9.5 ⇒ 14.396 ≤ Vout(t) ≤ 14.849. Hence, φ̂1P no longer implies σ 1
P . Therefore, there exists a

cyber-physical speci�cation mismatch when changing the throttle input as well.

Cyber-physical speci�cation mismatches according to σ 2
P . Initially, the physical speci�cation in

Equation 7 is σ 2
P

∆
= mode = normal ∧ t ≥ 9.5 ⇒ 14.406 ≤ λ(t) ≤ 14.994. Here, the magnitude

bound of the air-fuel ratio at the normal mode of the system inferred from Hynger and Daikon is
φ̂2P

∆
= mode = normal ∧ t ≥ 9.5⇒ 14.645 ≤ λ(t) ≤ 14.84. Then, we can consider φ̂2P as a candidate

invariant of the system because the formula φ̂P ⇒ σP is true.
Next, we investigate whether there is a speci�cation mismatch for the AFC system as we change

the proportional and integral gains of its PI controller. Table 3 describes the comparison between the
actual physical speci�cation σ 2

P and the physical speci�cation φ̂2P inferred from Hynger and Daikon,
where φ̂2P ↓ λ denotes the inferred bound for λ when t ≥ ts andmode = normal . In Table 3, the check
of the formula φ̂2P ⇒ σ 2

P returns false in some cases (e.g., when c13 = 0.04, c14 = 0.04) indicating
that the changes in the controller gains may produce cyber-physical speci�cation mismatches for
the AFC system.
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Controller Gain φ̂2P ↓ λ φ̂2P ⇒ σ 2P σ 2P ⇒ φ̂2P

c13 = 0.01, c14 = 0.14 14.567 ≤ λ(t) ≤ 15.058 False False

c13 = 0.02, c14 = 0.14 14.592 ≤ λ(t) ≤ 15.033 False False

c13 = 0.06, c14 = 0.14 14.634 ≤ λ(t) ≤ 14.955 True False

c13 = 0.8, c14 = 0.14 14.642 ≤ λ(t) ≤ 14.929 True False

c13 = 0.04, c14 = 0.04 14.649 ≤ λ(t) ≤ 15.007 False False

c13 = 0.04, c14 = 0.34 14.581 ≤ λ(t) ≤ 14.937 True False

c13 = 0.04, c14 = 0.64 14.577 ≤ λ(t) ≤ 14.888 True False

c13 = 0.04, c14 = 0.94 14.589 ≤ λ(t) ≤ 14.855 True False

Table 3. Experiment results illustrate the comparison between actual physical specifications and inferred
physical invariants from Hynger and Daikon of the AFC system when changing the proportional gain and
the integral gain of its PI controller.

7 DISCUSSION
Identifying a cyber-physical speci�cation mismatch of CPS with dynamic analysis is a challenging
problem. Although the Hynger prototype in conjunction with Daikon can detect potential cyber-
physical speci�cation mismatches of CPS, such as those in the case studies described in Section 6,
however, it has some limitations. First, the Daikon tool used by Hynger may only infer extremely
limited classes of nonlinear invariants by default (e.g., squares like x2), and not general polynomials
(e.g., x2+y2+z3). So we plan to extend the invariant templates to be able to capture more interesting
relations, particularly for physical variables. Second, although Daikon can infer candidate invariants
in terms of logical predicates over variables, it has limitation for checking complex speci�cations
related to real-time requirements such as STL, MTL and HyperSTL [41]. Industrial-scale CPS
usually have safety and liveness requirements depending on precise real-time relations of signals,
so strengthening the capability of checking temporal logic like STL, MTL and HyperSTL in Daikon
would leverage the methodology presented in this paper.

Additionally, while the Hynger tool is a prototype, it can be envisioned to take an arbitrary SLSF
model, instrument it, feed the resulting traces to Daikon to generate candidate invariants, then
check if these candidate invariants are actual invariants or not (using, e.g., SpaceEx [20] or other
hybrid system model checkers), as well as identify speci�cation mismatches. For example, the
candidate invariants inferred from Hynger and Daikon of the buck converter including only plant
and controller represented in term of hybrid automata in Figure 3 would easily be checked to see
whether they are actually invariants using SpaceEx. In long term, Hynger could be extended for
runtime assurance tasks like detecting and thwarting security violations and attacks, similar to the
ClearView tool that also uses Daikon [47]. ClearView’s success for software systems illustrates that
�nding sets of candidate invariants and monitoring their evolution over time may be useful for
runtime assurance and resiliency methods in CPS. If the candidate invariants are checked at runtime
using a real-time reachability method [5], a formal and dynamic runtime assurance environment
may be feasible.

8 CONCLUSION & FUTURE WORKS
The results illustrate the feasibility of using dynamic invariant inference for analysis of embedded
and cyber-physical systems. The Hynger prototype enables a powerful extension of dynamic
invariant inference to CPS for two main reasons. First, it enables potentially model-free and black
box invariant inference, since the internals of the SLSF blocks may remain unknown. If no model
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is available (in the black box case), the candidate invariants represent what may be the most formal
model available, otherwise (in the white box case), then candidate invariants represent a candidate
abstraction of that model. If the candidate invariants are actual invariants, this is powerful, as they
represent what is likely a less complex representation of the set of reachable states of the system.
Second, if we view the SLSF models as hybrid automata in a formal context, it represents the �rst
use of dynamic execution analysis for hybrid systems with sophisticated software state and discrete
complexity. Two proof-of-concept CPS case studies including the DC-to-DC power converter and
the powertrain fuel control system are presented to illustrate the capability of Hynger in detecting
potential cyber-physical speci�cation mismatches.

Overall, there are several directions for future research, including: (a) extending the classes of
invariants that may be inferred, particularly to nonlinear (polynomial) [43] and disjunctive/max-plus
forms [45], potentially by integrating Daikon with techniques from Dig [44], (b) runtime assurance
and veri�cation with real-time reachability of inferred invariants [5], (c) improving and re�ning
Hynger, particularly with regard to performance (such as using Daikon in the online mode with
direct pipes between Hynger and Daikon, so that �le I/O is minimized), and (d) analyzing more
industrial-scale CPS using Hynger.
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Abstract. The objective of NASA’s Small Aircraft Transportation Sys-
tem (SATS) Concept of Operations (ConOps) is to facilitate High Vol-
ume Operation (HVO) of advanced small aircraft operating in non-
towered non-radar airports. Given the safety-critical nature of SATS,
its analysis accuracy is extremely important. However, the commonly
used analysis techniques, like simulation and traditional model checking,
do not ascertain a complete verification of SATS due to the wide range
of possibilities involved in SATS or the inability to capture the ran-
domized and unpredictable aspects of the SATS ConOps environment
in their models. To overcome these limitations, we propose to formulate
the SATS ConOps as a fully synchronous and probabilistic model, i.e.,
SATS-SMA, that supports simultaneously moving aircraft. The distin-
guishing features of our work include the preservation of safety of aircraft
while improving throughput at the airport. Important insights related
to take-off and landing operations during the Instrument Meteorological
Conditions (IMC) are also presented.

Keywords: Formal Verification, Probabilistic Analysis, Model Check-
ing, SATS, SATS Concept of Operations, Aircraft Safety, Aircraft Sepa-
ration, Landing and Departure Operations.

1 Introduction

Small Aircraft Transportation System (SATS) [13], developed by NASA, pro-
vides access to more communities with less time delays by leveraging upon the
recent advances in navigation and communication technologies. When a number
of aircraft are in different parts of the airport, aircraft safety has to be ensured
through timely separation and sequencing. Traditionally, non-towered non-radar
airports rely on procedural separation during Instrument Meteorological Condi-
tions (IMC), i.e., allowing only one aircraft to get access to the airport airspace
at a given time, which significantly decreases the potential airport throughput
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[23]. The main objective of SATS is to facilitate high volume operations (HVO)
of advanced small aircraft at such airports with minimum infrastructure and low
cost. Some representative SATS aircraft are Very Light Jet (VLJ) aircraft, an ad-
vanced technology Single-Engine (SE), piston-powered aircraft and an advanced
technology Multi-Engine (ME), piston-powered aircraft [33].

Conventionally, SATS HVO simulations have been performed using computer
programs in which aircraft modules were operated manually by pilots. These
simulations develop the human-in-the-loop scenarios to check the effect of SATS
procedures in the operational environment, on the pilot’s responses in terms of
work load and situational awareness [31,12,16,32]. In [12], off-nominal situations
were also simulated, in addition to the nominal situations, to check the result-
ing effect on the pilot’s state of mind. Proof-of-concept simulation studies were
performed in the Air Traffic Control (ATC) simulation pilot lab at Federal Avi-
ation Administration William J. Hughes Technical Center (FAATC) [30]. These
simulations validated that the ATC can accept the SATS procedures, are able
to control SATS traffic into and out of the Self Controlled Area (SCA), and
support high volume operations. The simulations with pilots were used only for
validation purposes and confirmed that SATS procedures are manageable by the
airport management module (AMM). AMM’s performance during high arrival
rates of aircraft into the SCA has also been studied and found to have less delays
as compared to one-in-one-out method [27]. Recently, an algorithm has been de-
veloped to optimize SATS landing sequence for multiple aircraft in [4], to make
it conflict-free and with less delays, using Microsoft VC++ 6.0 simulation en-
vironment. However, these piloted simulation methods lack exhaustiveness [14]
in terms of coverage of all the possible states as a rigorous piloted simulation of
all possible scenarios requires a large number of tests, which in turn demands
a significant amount of computational power and time. This leads to another
major challenge of simulation-based verification of the SATS Concept of Opera-
tions (ConOps), i.e., selection of test vectors. A random selection of test vectors
cannot offer a guarantee of correctness of the SATS ConOps since it might miss
the meaningful portion of the design space. Moreover, it may not be possible to
consider or even foresee all corner cases. Consequently, simulation-based verifi-
cation of the SATS ConOps is incomplete with respect to error detection, i.e.,
all errors in a system cannot be guaranteed to be detected, which is a severe
limitation considering the safety-critical nature of passenger aircraft.

In order to have a complete analysis, automatic parameterized verification of
hybrid automata [20,19] was recently employed to verify properties of the SATS
ConOps using model checking principles, while considering position of the air-
craft as a continuous variable modeled either as a timer [19] or as a rectangular
differential inclusion [20]. While this methodology allows for verification regard-
less of the number of aircraft, a limitation of this work is that the methodology
requires the user to specify inductive invariants sufficient to establish safety.
While the process of finding inductive invariants sufficient to establish safety
of the SATS ConOps has been successfully automated through an extension of
invisible invariants [3], this is an incomplete (heuristic) method that, in general,
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may fail to find such inductive invariants [21]. The analysis and formal verifica-
tion of the timing constraints of SATS was done in [10] using Linear Real-Time
Logic (LRTL). The higher-order-logic theorem prover PVS [26] has also been
used for the safety verification of the SATS ConOps [13,9,23,29]. In particu-
lar, it has been formally verified that SATS rules and procedures can provide
minimum required spacing between two and more aircraft. A hybrid modeling
technique was also developed in PVS using the PVS tool Besc [25].

In the above-mentioned methods of validation and verification of SATS, only
the procedures and transition rules are considered. With these considerations,
any model with appropriate conditions can validate that the procedures are
enough for the assurance of safe separation between the aircraft. The missed
approach transition is dependent on many random factors, for instance, low vis-
ibility. In conventional airports, it is mainly caused by the bad weather, increased
air-borne traffic density, and ground traffic and its delays [15]. It is also required
upon the execution of a rejected landing because of objects, such as men, equip-
ment or animals, on the runway [1]. Due to such uncertainties involved, it is
necessary to incorporate the probabilistic considerations of the system into the
validation methods and safety verifications of SATS. Hence, we propose to use
probabilistic model checking [5,11] for the verification of the SATS ConOps. This
paper presents a fully synchronous Discrete-Time Markov Chain (DTMC) model
of the SATS ConOps and the verification of the safety properties of SATS, includ-
ing the landing and take-off procedures, using the probabilistic model checker
PRISM [22]. PRISM has been extensively used to formally model and analyze
a wide variety of systems, including communication and multimedia protocols,
randomised distributed algorithms, security protocols, biological systems and
many others, that exhibit random or probabilistic behaviour [2].

The rest of the paper is organized as follows: Section 2 describes the SATS
operational concept to facilitate the understanding of the rest of the paper. Sec-
tion 3 explains the main challenges that we faced in modeling the considered,
fully synchronous, system in PRISM and the assumptions used in our DTMC
model. In this section, our modeling methodology is also explained through dis-
cussion about each module, transition rules and procedures. Section 4 presents
the probabilistic verification results of the SATS ConOps and the novel observa-
tions made. Finally, Section 5 concludes this paper by drawing conclusions and
mentioning some directions of future work.

2 SATS ConOps

The ConOps for SATS is primarily a set of rules and procedures based on an
area surrounding the airport, called the SCA, a centralized automated system,
called the AMM, data communication between AMM and aircraft and state data
broadcast from the aircraft [8,7]. The SCA is typically taken as a region with 12-
15 nautical miles radius and 3000 feet above the ground [8,9]. It is arranged in a
T structure, consisting of base, intermediate and final zones. It is divided into a
number of segments and fixes which are the latitude/longitude points in space.
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Fig. 1: Top view of the SCA [13]

The fixes are initial arrival fixes (IAFs), intermediate fix (IF), final approach
fix (FAF) and departure fixes (DFs), as shown in Fig. 1. The IAFs serve two
purposes, i.e., holding fix, when an aircraft enters the SCA, and missed approach
holding fix (MAHF), which is required when an aircraft misses landing, and flies
back to the IAF via missed approach path.

There are two types of entries into the SCA: vertical entry and lateral entry
[9,25], as depicted in Fig. 2. Vertical entry is always made from the 3000 feet
holding fix at the left (above IAF-L) or right (above IAF-R). Thereafter, the air-
craft descends to the respective 2000 feet holding fix when it becomes available.
Next, under certain conditions, the aircraft moves to the base segment (IAF to
IF). On the other hand, in a lateral entry, the aircraft flies from the point of
entry to the base segment directly or through the 2000 feet holding fix. Once
the aircraft is in the base segment or 2000 feet holding fix, there is no depen-
dency on its type of entry. After base segment, the aircraft goes through the IF,
FAF, and finally reaches the runway. This procedure is primarily composed of a
series of transitions through different segments of the SCA that are conducted
by the aircraft if sufficient separation from the other aircraft is available and all
conditions for the given transitions hold. If an aircraft misses its landing, due
to any reason, it has to follow the missed approach path to move to the IAF
corresponding to its MAHF assignment, as shown in Fig. 1.

The AMM has the responsibility to grant permissions to the aircraft for
entering the SCA [7,31]. While granting the permission, the AMM assigns a
landing sequence and a MAHF to the aircraft. These landing sequence numbers
encode the leader information and also identify whether an aircraft is the first
aircraft in a specific zone of SCA. The aircraft entering later thus follows the
leader during the transitions. The MAHF assignment is in terms of ‘side’, which
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Fig. 2: Side view of the SCA [13]

Fig. 3: Zones of the SCA [13]

can assume values of right or left. If the entering aircraft is the first one in
sequence, then its MAHF will be in the same side from which it is entering.
Whereas, the next aircraft, with sequence other than 1, will have the MAHF
that is opposite to that of its leader.

Departure fixes are outside the SCA and under the ATC control. An air-
craft ready to depart requests ATC for clearance. After clearance, the departure
operation starts at the runway and it moves to the departure fix correspond-
ing to its MAHF assignment. A safe distance of 10 or 5 nautical miles has to
be maintained from the aircraft flying to the same or opposite departure fixes,
respectively [13].

The SCA can be divided into different zones, illustrated in Fig. 3 and pre-
sented in Table 1. These zones represent the state of the aircraft. The complete
information about the aircraft will thus include the sequence and MAHF as-
signed by AMM and the current location/zone of aircraft. The safety verifica-
tion is based on the number of aircraft in a zone and their separation from other
aircraft in other zones [23].
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Table 1: Zones of SCA [13]
Zone Symbol Description

1 h3-R Holding at 3000 feet at right side

2 h3-L Holding at 3000 feet at left side

3 h2-R Holding at 2000 feet at right side

4 h2-L Holding at 2000 feet at left side

5 lez-R Lateral entry zone at right side

6 lez-L Lateral entry zone at left side

7 base-R Right segment of base (IAF-R to IF)

8 base-L Left segment of base (IAF-L to IF)

9 int Intermediate segment (IF to FAF)

10 fin Final segment (FAF to runway)

11 run Runway

12 maz-R Missed approach zone at right of base

13 maz-L Missed approach zone at left of base

14 taxi Taxi

15 dep-R Right departure path towards right departure fix

16 dep-L Departure path towards left departure fix

3 Formal Modeling of SATS as a DTMC in PRISM

In this section, we first describe our refinements to the SATS ConOps. Then the
main challenges encountered in modeling the system in PRISM are presented.
This is followed by the description of how these challenges were tackled in our
model.

3.1 Refinements to original SATS

The proposed model of the SATS ConOps in the PRISM language overcomes
some of the limitations of the non-deterministic, asynchronous transition system
presented by Dowek et. al [13]. Before presenting the details of our model, we
find it appropriate to point out the discrepancies in the existing algorithm and
our proposed solution.

1. In a non-deterministic model, if two or more rules are enabled simultaneously,
any one of them is allowed to be executed. In other words, only one non-
deterministic action happens at a time. This means that in such a model,
at each time step, only one aircraft will move to the next zone while all
other aircraft hold in the same zone, even if the conditions are satisfied for
all aircraft to move to their respective next zones. Thus, one aircraft could
change zones several times while another remains idle [13]. Hence, such a
model is unrealistic [23], as it fails to depict the real scenario.

2. The lowest available altitude determination (Rule 12) [13] is a simultane-
ous transition, potentially involving 2 aircraft, when the holding pattern at
3000 feet is occupied but 2000 feet is available. In this case, the transition
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determines 3000 feet as the lowest available altitude and forces the aircraft
holding at 3000 feet to descend to the holding pattern at 2000 feet. This is
a weakness of the model because simultaneous transition is not possible in
a fully non-deterministic model.

Our proposed solution for both the above limitations is to build a fully syn-
chronous model that allows simultaneously moving aircraft. Hence, at each time
step, all aircraft satisfying conditions to move to their respective next zones
are allowed to proceed concurrently. Moreover, this model also facilitates the
simultaneous transition in the lowest available altitude determination.

3.2 Modelling Challenges of SATS in PRISM

Parallel Composition of Modules
Parallel composition of modules in PRISM may seem to be the best option for
developing the interleaved model of concurrency of aircraft in the SCA, where
each module represents an aircraft. However, there are critical limitations in
such a model, as discussed in Section 3.1. When multiple commands (belonging
to any of the modules) are enabled at the same time, the choice between which
command is executed by PRISM is non-deterministic in case of Markov decision
process (MDP) and probabilistic in case of DTMC [2]. Specifically in the case
of a DTMC, PRISM selects the command for execution uniformly at random.
For instance, if there are 4 aircraft in the SCA and guards are satisfied for one
command in each module, then there is a probability of 0.25 for each aircraft to
move forward to the next zone. But only one of them is selected to move at a
time.

Synchronization
PRISM supports synchronized transitions using synchronization labels. In this
case, commands can be labelled with actions, which can be used to force two
or more modules to make transitions simultaneously. By default, all modules
are combined using the standard CSP parallel composition, i.e., modules syn-
chronize over all their common actions [2]. However, in SATS application, the
aircraft can be in any of the 16 zones and thus only a specific scenario can be
modelled using synchronization labels. For instance, if there are two aircraft and
the command for the first aircraft to be in the third zone is synchronized with
the command for the second aircraft to be in the first zone, then they will make
the transition simultaneously, if available, but it models a special case out of
the many possibilities. They will no longer be synchronized in some future time
step when the first aircraft is, for instance, in the seventh zone while the second
aircraft is in the first zone.

Global variables with Synchronization
Global variables seem useful in modelling the state of the aircraft in the SCA
as, unlike local variables, they are modifiable from any module. However, an
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important restriction on the use of global variables in PRISM is the fact that
global variables cannot be updated on a synchronized command [2]. PRISM
detects this and reports an error if an attempt is made to do so.

Probabilistic Updates
In order to correctly model the semantics of the communication between aircraft
and AMM, both aircraft and AMM should have separate modules in PRISM.
Unfortunately, there is no direct way of changing a variable in a different module
for only one probabilistic update of a command in the same time step. However,
such probabilistic updates are frequently required. For instance, when an aircraft
is in the final zone and it can move to the runway or missed approach path with
certain probabilities. In case a pilot chooses the missed approach path, a new
sequence number is to be assigned to the aircraft by the AMM while in case
of transition to runway, there is no change in the sequence number. A possible
solution could be to change the model such that the relevant variable is part of
the same module as the probabilistic update but it will not represent the actual
scenario of the communication between aircraft and the AMM.

Therefore, the challenge is to achieve a synchronization such that all aircraft
move together whenever the guard conditions are satisfied, while incorporating
probabilistic updates from the AMM in the model.

3.3 Modeling SATS in PRISM

In our formal model [28], we formulate the SATS ConOps as a DTMC in the
PRISM model checker using an abstract timing model. Both sides of the ap-
proach are symmetric [13,29] and there can be at most two aircraft on each side
of the SCA [13,23]. Therefore, we have assumed two aircraft in the right side of
the SCA in this work for the purpose of simplicity. Our model ensures that after
a landing aircraft has landed safely, it unloads passengers of the current flight
in the taxi state. Then, it loads passengers of the next flight and is ready for de-
parture. After departure, it reaches its destination and the next time it becomes
a landing aircraft for the SCA. Hence, the process of landing and departure
continues.

Model of Concurrency
In order to cope with the challenges, described in Section 3.2, we modeled the
SATS ConOps as fully synchronously parallel automata, as in [17], where each
transition is labeled with the same synchronization label, and therefore at each
time step, at least one transition of each module is active. Hence, in such a fully
synchronous model, both aircraft move concurrently to the next respective zones
whenever the conditions are satisfied. In order to use the same synchronization
label t with all commands in all modules, we ensure that at least one condition
is true for each module for each reachable state in our model.
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Model of SATS Transition Rules and Procedures
The modules aircraft1 and aircraft2 in our formal model [28], corresponding
to each aircraft, implement the rules of ConOps, i.e., under what conditions the
aircraft moves from one zone to the next. The modules are symmetric except
that priority is assigned to aircraft1 in case of simultaneous entry. Due to our
proposed fully synchronous model, aircraft can enter inside the SCA individually
or simultaneously with another aircraft. The state variables zone1 and zone2

represent the current zone of aircraft1 and aircraft2, respectively. They are
modelled as integer variables with values in the range 0 - 16, and the encoding is
listed in Table 1. One additional zone is to be included into the model, which is
the ‘fly zone’, for an aircraft outside the SCA. We encode it with a value of zero.
In our model, we used formulas for compact representation of the conditions
and to avoid repetition. For instance, z1 total represents the total number of
aircraft in zone 1 and z7 total R represents number of aircraft in zone 7 with
an MAHF assignment of right, as shown in the following lines of the code in
PRISM language:

formula z1 total = (zone1 = 1?1 : 0) + (zone2 = 1?1 : 0);

formula z7 total R = (zone1 = 7 & mahf1 = true?1 : 0)

+ (zone2 = 7 & mahf2 = true?1 : 0);

Model of the AMM
The AMM is the sequencer of the SCA. It typically resides at airport ground and
communicates with the aircraft via a data link [8]. We model AMM as a separate
module AMM in PRISM to represent this communication with the aircraft. It has
two state variables, i.e., seq and mahf for each aircraft. For a landing aircraft,
seq represents the relative landing sequence number, such that the aircraft with
landing sequence n is the leader of the aircraft with landing sequence n+1, i.e.,
an aircraft with sequence number 1 is leader of the aircraft with sequence number
2. It is modelled as an integer variable with values in the range 0 - 10. When an
aircraft enters the SCA, seq is assigned a new value calculated by the formula
nextseq. This value is calculated based on the number of the aircraft already
in the landing zones of the SCA. In case of simultaneous entry by both aircraft,
different sequence numbers are assigned to both the aircraft, with priority to
aircraft1. A new sequence number is also assigned when an aircraft initiates
a missed approach path and the sequence numbers of all other aircraft in the
landing zones of the SCA are decremented by one. Moreover, when an aircraft
enters runway, the sequence numbers of all other aircraft in the SCA are again
decremented by one. When an aircraft moves to the taxi state, its sequence
number becomes 0. For a departing aircraft, seq represents the distance of the
aircraft from runway in nautical miles. It is incremented by one in each time
step when it is in one of the departure zones, until it becomes 10, where it is
assumed to have left the SCA. The MAHF of an aircraft, represented by mahf, is
a boolean variable with true representing right MAHF, and false representing
left MAHF. It is assigned whenever an aircraft enters the SCA. Moreover, it
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is re-assigned when an aircraft executes a missed path approach. We consider
MAHF of only right side for simplicity of the model in this paper.

Timing Model
We use an abstract timing model in our formalization of the SATS ConOps.
We assume that each aircraft stays in a zone for at least one time step. So, an
aircraft must transition to the next zone after one time unit if the conditions for
transition are satisfied. When the guard conditions are not fulfilled, it stays in
the zone until the conditions become true.

Randomness in Model
Since there is no direct way of changing a variable in a different module for only
one probabilistic update of a command in the same time step, we introduce an
additional chooser module for each probabilistic decision. For instance, consider
an aircraft in the final zone. Now it can either choose the missed approach path
with a probability p map or it can continue landing and transit to the runway
with probability 1-p map. In case of the missed approach path, a new sequence
number and MAHF is to be assigned to the aircraft. However, there is no change
in its sequence number and MAHF if it proceeds to runway. We propose to
use the chooser module, choose p map which contains a single state variable
p map state of type integer and with two possible values: 0 and 1. When the
probability p map is selected, p map state is set to 1, otherwise it is 0. This is
achieved by using the following command in PRISM:

[t] Guard→ p map : (p map state′ = 1) + (1− p map) : (p map state′ = 0);

It is important to note that instead of setting true as a guard, we use the
conditions of transition to final zone, i.e., one step back condition as the guard
[28]. This way, the command does not execute on each time step. p map state

is updated when the aircraft enters the final zone and is ready to be used when
checking conditions for the next transition to runway or missed approach zone
in the next time step.

The value of p map state is now used in such a way that the guard condition
of p map state=1 checks whether p map is selected. For instance, in the AMM

module, the following command ensures that seq1 and mahf1 are updated as
soon as it makes the transition to zone 12:

[t] Guard & p map state = 1→ (seq1′ = nextseq) & (mahf1′ = nextmahf1);

4 Verification Results

4.1 Safety Properties

Based on our model, explained in Section 3, safe separation is not maintained
when two aircraft reside simultaneously in the specific zones. These zones include
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the approach, final approach, missed approach, runway and departure zones.
Hence, we label this state danger as follows:

label “danger” = ((zone1 = 7&zone2 = 7) | (zone1 = 9&zone2 = 9)

| (zone1 = 10&zone2 = 10) | (zone1 = 11&zone2 = 11)

| (zone1 = 12&zone2 = 12) | (zone1 = 15&zone2 = 15));

Safety in all Paths: P =? [F “danger”];

We analyze safety in our model using the above property, which computes
the value of the probability that danger is satisfied in the future by the
paths from the initial state. PRISM shows a result of 0, which confirms that
no path leads to a collision from the initial state.

Safety in all Reachable States: filter (forall, P <= 0 [F “danger”]);

In order to confirm that the probability of occurrence of danger remains
0 for all reachable states, we formalize the property using filters as above.
The property verifies to be true in PRISM and thus guarantees the safety in
our model.

4.2 Analysis of Landing and Departure Operations

Expected Time for Landing: R =? [F “landings1”];

We utilize the reachability reward [2] in PRISM to find the expected time taken
for the landing of an aircraft in our model. In this case, a reward of unity is
awarded to each state of the model and the rewards are accumulated along a
path until a certain point is reached. We define this point as the state in which
the aircraft is in the taxi state, for instance, for aircraft1:

label “landings1” = (zone1 = 14);

Since very limited information is available on the probability of executing a
missed approach path p map for SATS, we leverage upon the PRISM’s parametric
model checking functionality to perform the sensitivity analysis on the values
of p map from 0.001 to 0.9. The results are shown in Fig. 4, which depict the
exponential increase in the expected time taken for landing with p map. Since
aircraft1 is assigned priority in case of simultaneous entry, the values for this
aircraft are slightly smaller as compared to those of aircraft2. The overall
expected time for any aircraft to land is also shown.

Expected Number of Departures in a Fixed Time: R =? [C <= T ];

We leverage upon the cumulative reward properties [2] to find the expected
number of departures of the aircraft in a fixed time in our model. In this case,
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Fig. 4: Expected time for landing vs. Probability of the Missed Approach Zone

a reward of unity is awarded to each transition of departure and the rewards
are accumulated until T time steps have elapsed. Fig. 5 shows the results of an
experiment with T set to 10,00,000 which is large enough for the purpose of com-
parative analysis. Since aircraft1 is assigned priority in case of simultaneous
departure, the expected number of departures for this aircraft are slightly larger
as compared to those of aircraft2.

Comparison of SATS and SATS-SMA: Reproduction of the correspond-
ing non-deterministic model [13] in PRISM shows that the expected number of
landing or departure operations are much greater in our proposed SATS-SMA
than the corresponding non-deterministic model. For instance, with no aircraft
executing a missed approach path, i.e., p map of 0, the expected operations in
the original non-deterministic asynchronous model and our refined SATS-SMA
are 51280 and 81081, respectively, i.e., around 1.6 times greater throughput.
The reason is that original SATS allows only one aircraft to move at a time
while we allow all aircraft satisfying the conditions to move simultaneously to
the respective next zones.

The key advantages of this work include the increase in the throughput,
while maintaining aircraft safety, through simultaneous operations. The work
also provides important quantitative landing and departure insights of the SATS
ConOps. Our PRISM code and properties file is available for download [28],
and thus can be benefited by researchers and verification engineers for further
developments and analysis of the SATS ConOps.

5 Conclusion

Given the random and unpredictable nature of entry of aircraft into the SCA and
transitions between the zones, we propose to use a probabilistic model checker,
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Fig. 5: Expected departures vs. Probability of the Missed Approach Transition

PRISM, to analyze the SATS ConOps in this paper. A fully synchronous DTMC
model of SATS is proposed and is verified to increase the expected throughput
of the airport as compared to the traditional non-deterministic, asynchronous
model. Moreover, the successful modeling and verification of the transition pro-
cedures for two aircraft moving concurrently, has verified the safety of aircraft in
terms of safe separation in all zones including take-off and landing. The landing
and departure operations of SATS are analyzed with respect to the probability
associated with the missed approach transition.

An important direction of future work is to improve the timing model by
incorporating zone distances and abstract aircraft kinematics [25]. A more de-
tailed analysis can be carried out by removing the simplifying assumptions of
2 aircraft and right side MAHF. Similarly, detailed comparison of non-SATS
(one-in/one-out), SATS and SATS-SMA is an interesting direction for future
research. Furthermore, we also plan to conduct the probabilistic analysis of the
SATS ConOps under off-nominal conditions [24,6,12], such as equipment mal-
function and emergency situations, using the parametric model checking func-
tionality of PRISM, like it was utilized for the analysis of probability of missed
approach in this paper. Moreover, Continuous-Time Markov Chains (CTMCs) of
the SATS ConOps can also be developed to verify some time-related properties,
where Erlang distribution can be used to model discrete time delays [18].
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Abstract

Safety verification of hybrid dynamical systems relies crucially on the ability to reason about reach-

able sets of continuous systems whose evolution is governed by a system of ordinary differential equa-

tions (ODEs). Verification tools are often restricted to handling a particular class of continuous systems,

such as e.g. differential equations with constant right-hand sides, or systems of affine ODEs. More re-

cently, verification tools capable of working with non-linear differential equations have been developed.

The behavior of non-linear systems is known to be in general extremely difficult to analyze because

solutions are rarely available in closed-form. In order to assess the practical utility of the various veri-

fication tools working with non-linear ODEs it is very useful to maintain a set of verification problems.

Similar efforts have been successful in other communities, such as automated theorem proving, SAT

solving and numerical analysis, and have accelerated improvements in the tools and their underlying

algorithms. We present a set of 65 safety verification problems featuring non-linear polynomial ODEs

and for which we have proofs of safety. We discuss the various issues associated with benchmarking

the currently available verification tools using these problems.

1 Introduction

For verifying safety properties of hybrid systems, it is crucial to have the means of reasoning
about safety properties of purely continuous systems that determine state evolution inside the
operating modes.

In computer science, emphasis has traditionally been placed on working with hybrid systems
in which the continuous modes are governed by relatively simple ODEs. For instance, safety
verification of systems with ODEs possessing constant right-hand sides and right-hand sides
bounded within real intervals is aided by the fact that reachable sets of such continuous systems
can be computed exactly. Progress has been made on verifying safety in systems with linear
and affine continuous dynamics (with tools such as PHAVer [13] and SpaceEx [14]). This
is a much more difficult problem, since reachable sets of linear ODEs cannot in general be
phrased in a decidable theory, which is only known to be possible for some special classes of
systems [22, 16, 18].

It is a well-known fact that non-linear ODEs can exhibit behaviour that is impossible under
affine or linear dynamics [19]. Their expressive power allows for modelling very rich dynamic
phenomena, but comes at the price of making the reachability analysis much more difficult. A
major obstacle is the fact that solutions to non-linear ODEs cannot in general be obtained as
closed-form expressions, i.e. finite expressions in terms of polynomials and elementary functions
such as exp, sin, cos, ln, etc. Hybrid systems with non-linear ODEs are not at all uncommon in
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control theory; this is especially true of the class of piecewise-smooth systems (sometimes called
variable structure systems), which are used in the design of sliding mode controllers [10].

A number of tools and approaches have been developed that enable safety verification of
non-linear systems (e.g. [7, 21, 36, 31, 30, 29, 24, 17, 15, 37]). The methods currently in existence
differ in a number of aspects; for instance, the level of automation they provide, the generality
of system and inputs specifications, etc. These important (and at times subtle) differences make
the tools difficult to compare objectively. One approach to address the issue could be to push for
a consensus in the community about a useful and fairly general class of systems of interest that
we should all work on. However, any such enterprise would be necessarily artificial for the time
being as there is no generally agreed-upon classification of differential equations. In this work,
we rather advocate a pragmatic approach: that of creating a database of benchmarks that can
be used for a comprehensive assessment of the existing and future verification tools. The hope
would be to steer the research towards working with a growing set of examples that a variety of
related communities care about. If such a set were available, a tool (or an approach) could easily
be seen to be more powerful if it is able to handle (parse, verify, solve, etc.) a larger proportion
of those examples. Determining which verification tool is “better” cannot be entirely objective
as it would further need to take into account the tool’s running time performance, memory
requirements, level of automation, etc. However, we believe that the problem of comparing
verification tools can, at least in part, be addressed by collecting verification benchmarks and
converting them to a single standardized input format. While this effort is only a first step
towards a more ambitious goal, we feel it is important to initiate the process of gathering
interesting verification problems and making them available to the community.

Similar efforts have been successfully undertaken in fields such as automated theorem prov-
ing (e.g. the TPTP problem library [3]), SAT solving (where competitions, e.g. [1], have led to
drastic improvements in the performance of SAT solvers in the last two decades) and numerical
analysis [39], resulting in improved quality of the tools and their underlying algorithms.

Contributions

We (I) provide a set of 65 safety verification problems featuring non-linear systems, for all of
which the safety property is known to hold. Further, we (II) discuss the current challenges
in comparing verification tools working with non-linear continuous dynamics and (III) outline
ideas for addressing some of these difficulties.

2 Benchmarks

We have collected a set of 65 safety verification problems featuring non-linear ODEs, which
we have gathered from existing papers treating the problem of unbounded time safety verifi-
cation [24, 9, 11, 37] and invariant generation for non-linear systems (e.g. [6]). The problems
we have collected all share the property of having proofs of safety that were obtained using
the methods presented in the pertinent papers (or having proofs that are immediate from the
results described therein).

In general, in order to fully state a safety verification problem, one requires four pieces of
information:

1. The system of ODEs, written using vector notation as ẋ = f(x), where f : Rn → Rn.

2. The mode invariant, denoted H ⊆ Rn, which defines the region where the system may
evolve along the solution to the system of ODEs.

2
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3. The set of initial states X0 ⊆ Rn.

4. The set of unsafe (or forbidden) states Xu ⊆ Rn.

Remark Note that it is sufficient to consider autonomous ODEs, i.e. those in which the
right-hand side does not depend explicitly on the independent time variable t, because one
may always augment the system with ṫ = 1 and treat t as a state variable. Furthermore, in
many cases it is also sufficient to only consider polynomial problems because it is often possible
to re-cast safety verification problems with non-polynomial terms to problems only featuring
polynomial functions (see e.g. [25, 28]).

The problem is to show that it is impossible for the system to evolve into a forbidden state
xu ∈ Xu from any initial state x0 ∈ X0 by following the solution ϕt(x0) to the system of ODEs
ẋ = f(x) for any time while it remains within the evolution constraint H. Formally, this may
be written down as

∀t ≥ 0. ∀x0 ∈ X0. (∀τ ∈ [0, t]. ϕτ (x0) ∈ H)→ ϕt(x0) 6∈ Xu.

In bounded-time safety verification one is only interested in showing safety up to some finite
time bound T ≥ 0, i.e.

∀t ∈ [0, T ]. ∀x0 ∈ X0. (∀τ ∈ [0, t]. ϕτ (x0) ∈ H)→ ϕt(x0) 6∈ Xu.

Clearly, if the safety property holds for unbounded time, it is guaranteed for any fi-
nite time bound, but not conversely. Since all the problems we have gathered are non-
linear and have proofs of unbounded-time safety, we may designate this class of problems
NONLIN-UNBOUND-TIME-SAFE in order to distinguish it from other classes of problems that
we may wish to add later on, such as e.g. provably safe linear systems, or provably un-
safe systems, etc. In this section we will illustrate some of the safety verification prob-
lems featuring 2-dimensional ODEs. The full set of the 65 problems is available from
http://verivital.com/hyst/benchmark-nonlinear/

Example 2.1 (Non-linear example [9]). Dai et al. in [9] studied safety verification using barrier
certificates, illustrating their approach using the following system:

ẋ = 2x− xy,
ẏ = 2x2 − y.

x

y

Figure 1: Non-linear system in the safety verification problem from [9].
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The set of initial states is given by x2 + (y + 2) 2 ≤ 1 and the set of unsafe states is
x2 + (y − 1) 2 ≤ 9

100 (shown in green and red respectively in Fig. 1). The evolution constraint
is taken to be the real plane R2.

Example 2.2 (FitzHugh-Nagumo system example [6]). Ben Sassi et al. [6] reported a method
for generating polyhedral invariants for polynomial ODEs and applied it to the FitzHugh-
Nagumo system:

ẋ = −x
3

3
+ x− y +

7

8
,

ẏ =
2

25

(
x− 4y

5
+

7

10

)
.

With the knowledge of the invariant, by considering initial states that lie inside the invariant,

x

y

Figure 2: Safety verification in the FitzHugh-Nagumo system.

e.g. −1 ≤ x ≤ −0.5 ∧ 1 ≤ y ≤ 1.5 and letting −2.5 ≤ x ≤ −2 ∧ − 2 ≤ y ≤ −1.5 represent
the forbidden states, all of which lie entirely outside the invariant, one may conclude the safety
property. Fig 2 shows the phase portrait along with the initial and the unsafe states (in green
and red, respectively).

Example 2.3 ([37], ODE from [12], Ex. 10.15 (i)). In previous work [37], a non-linear ODE
from a textbook on the qualitative theory of planar ODEs [12]

x

y

Figure 3: Safety verification problem from [37].
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ẋ = −42x7 + 68x6y − 46x5y + 258x4y + 156x3y + 50x2y + 20xy6 − 8y7,

ẏ = y
(
1110x6 − 220x5y − 3182x4y + 478x3y3 + 487x2y4 − 102xy5 − 12y6

)
,

was used to create a safety verification problem where the initial states are given by
x > −1 ∧ x < − 3

4 ∧ y ≤
3
2 ∧ y ≥ 1 and the forbidden states satisfy the inequality x > y + 1

(shown respectively in green and red in Fig. 3).

2.1 Problem format

We have chosen to store our verification problems in a format used by the SpaceEx verification
tool for hybrid systems [14]. While SpaceEx currently cannot work with non-linear differential
equations, its input format is sufficiently simple and convenient. A given problem in this format
is stored in two separate files

1. An .xml file storing the ODE ẋ = f(x) and the mode invariant H of the system.

2. A .cfg file detailing the initial set X0 and the set of forbidden states Xu.

For example, the verification problem described in Example 2.2, may be stored in the two files
shown in Fig. 4 and Fig. 5.

1 <?xml version ="1.0" encoding ="iso -8859 -1"? >
2 <sspaceex xmlns ="http ://www -verimag.imag.fr/xml -namespaces/sspaceex" version ="0.2" math="

SpaceEx">
3 <component id=" fitzhugh_nagumo_ben_sassi_girard_2">
4 <param name="x" type="real" local="false" d1="1" d2="1" dynamics ="any"/>
5 <param name="y" type="real" local="false" d1="1" d2="1" dynamics ="any"/>
6 <location id="1" name="p">
7 <invariant >true </invariant >
8 <flow >x ’==7/8+x-x^3/3-y &amp; y ’==(2*(7/10+x-(4*y)/5))/25</flow >
9 </location >

10 </component >
11 </sspaceex >

Figure 4: FitzHugh-Nagumo system dynamics, illustrated in Fig. 2.

1 system = fitzhugh_nagumo_ben_sassi_girard_2
2 initially = "-1<=x & x<=-0.5 & 1<=y & y <=1.5"
3 forbidden = "-2.5<=x & x<=-2 & -2<=y & y<= -1.5"
4 output -variables = x,y
5 scenario = stc
6 directions = box
7 set -aggregation = "none"
8 sampling -time = 0.5
9 flowpipe -tolerance = 0.25

10 time -horizon = 9
11 iter -max = 4
12 output -format = GEN
13 verbosity = m
14 output -error = 0.001
15 rel -err = 1.0e-12
16 abs -err = 1.0e-15

Figure 5: SpaceEx configuration file specifying the initial and forbidden states.
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3 Challenges

In using any significantly broad set of verification benchmarks, one faces a number of challenges
if one wishes to use them to compare safety verification methods and tools. Firstly, in contrast
to the world of SAT/SMT solving or automated theorem proving, verification of continuous
systems has not matured to the point where the community has agreed upon an input standard
that can be used to exchange problems (such as SMT-LIB [2] or TPTP [3]). Also, unlike
with numerical analysis or simulation, general safety verification problems need not have point
initial conditions, but rather a set of initial states that may be uncountably infinite, and not
necessarily “nice” (e.g. may be disconnected, non-convex, unbounded, etc.). Below we outline
some important challenges that stand in the way of benchmarking existing verification tools.

• Tools for bounded-time safety verification based on computing flowpipes enclosing reach-
able sets of non-linear ODEs, such as e.g. Flow∗, are often limited in the nature of the
initial and the forbidden sets of states. In particular, the underlying algorithms used in
these tools require the set of initial states to be bounded (unlike in Example 2.3); ideally
given by a hyper-rectangle (unlike Example 2.1). On the other hand, methods for auto-
matic unbounded-time safety verification based on searching for appropriate continuous
invariants (e.g. [29, 37]) are capable of working with much broader classes of initial and
forbidden regions. For instance, semi-algebraic initial regions that are unbounded, non-
convex, or whose description features a combination of conjunctions and disjunctions do
not present a problem.

Remark At the same time, tools based on flowpipe construction can sometimes give a
sense of the “hardness” of the verification problem when they fail to prove safety up to
some given time bound, whereas invariant-based verification tools typically do not provide
useful insights into the nature or the difficulty of the problem when they fail.

• Tools that employ interval arithmetic often require bounds on the state variables of the
system (e.g. HSolver [33, 34], dReach [21]), which technically renders them inapplicable
to safety verification problems where the evolution constraint H is unbounded, e.g. given
by Rn.

• Certain tools (e.g. Flow∗) cannot work with sets described by strict inequalities (such as
the forbidden states in Example 2.3). While it would be sound to simply over-approximate
the closure of such sets by relaxing the inequalities to be non-strict, this step currently
needs to be performed manually by the user and (inevitably) affects the reachability anal-
ysis.

• The performance of tools often depends heavily on the user-specified options, such as e.g.
the fixed/adaptive time steps used for the verified integration, error tolerances, etc. It is
presently not apparent how one might automatically translate “good” settings from one
verification tool to another, or indeed automatically arrive at good settings for a particular
tool in the first place. Thus, some verification tools that are designed to be fully automatic
rely crucially on the user choosing the right settings, which is typically difficult for a non-
expert.

• Some unbounded-time verification methods (e.g. [31]) likewise require significant manual
input from the user, such as e.g. selecting templates for polynomial functions. It is yet
unclear how these methods can be meaningfully compared to methods that provide a
greater level of automation.

• Uncertainty in the continuous dynamics is permitted by some verification tools (e.g. Flow∗),
but not others.

6
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4 Outlook

Safety verification problems for non-linear systems are very useful for assessing the utility and
efficiency of invariant generation methods (e.g. [35, 38, 6, 29, 26, 40, 17, 37]), as well as tools
based on verified integration of ODEs (e.g [7, 27, 20, 21]). We are hopeful that maintaining and
further populating the set of verification benchmarks will result in improvements to the exist-
ing capabilities offered by the tools for both bounded and unbounded-time safety verification.
Improvements in invariant generation would also greatly benefit deductive verification tools for
hybrid systems, such as theorem provers (e.g. [30, 15, 23]).

At least some of the challenges outlined in the previous section can potentially be addressed
using HyST [5], a source transformation tool for hybrid systems that takes as input a hybrid
system verification problem in the SpaceEx format and translates it into formats accepted by
other verification tools. In addition to translating between the various problem formats, HyST
is able to work with its internal representation of the verification problem through so-called
model transformation passes, which can address issues that affect particular verification tools.
For instance, currently HyST can add identity reset maps to transitions in hybrid automata,
split transition guards with disjunctions, etc. A potentially interesting future transformation
pass could be implemented in HyST to convert continuous systems with uncertainty into hybrid
systems in which there is no uncertainty in the continuous dynamics, e.g. following the work
of Ramdani et al. [32].

At present, HyST can translate problems into formats accepted by Flow∗, dReach, HyCre-
ate [4], HyComp [8] and SpaceEx. An interesting future direction would be to extend it to also
work with invariant generation tools and add model transformation passes to soundly convert
safety verification problems that currently cannot be processed by some of the verification tools
into a form that is amenable to analysis.

In collecting safety verification benchmarks it is profitable to find a useful classification. One
could separate verification problems for continuous systems into classes depending on certain
features, such as:

• the type of continuous dynamics, e.g. constant/linear/non-linear,

• the dimensionality of the system (i.e. the number of state variables, |x|),
• the type of safety verification (i.e. bounded versus unbounded time),

• the nature of the evolution constraint (e.g. bounded versus unbounded state space),

• the nature of the initial and forbidden set (bounded versus unbounded; if bounded, hyper-
rectangles versus more general sets), and

• the nature of the verification problem itself (i.e. is the system safe or unsafe?).

Such a classification will certainly become important in the future as more verification problems
are gathered and added to our collection. Our initial set of 65 problems (which we tentatively
labelled NONLIN-UNBOUND-TIME-SAFE) belongs to one of the most general classes under this
scheme, since it makes few assumptions about the nature of the verification problem. This
generality makes it difficult to use the problems for benchmarking existing tools, but at the
same time serves to bring out their current limitations.
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[7] Xin Chen, Erika Ábrahám, and Sriram Sankaranarayanan. Flow*: An analyzer for non-linear
hybrid systems. In CAV, pages 258–263, 2013.

[8] Alessandro Cimatti, Alberto Griggio, Sergio Mover, and Stefano Tonetta. HyComp: An SMT-
based model checker for hybrid systems. In TACAS, pages 52–67, 2015.

[9] Liyun Dai, Ting Gan, Bican Xia, and Naijun Zhan. Barrier certificates revisited. CoRR,
abs/1310.6481, 2013.
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Abstract. We investigate decoupling abstractions, by which we seek to
simulate (i.e. abstract) a given system of ordinary differential equations
(ODEs) by another system that features completely independent (i.e.
uncoupled) sub-systems, which can be considered as separate systems in
their own right. Beyond a purely mathematical interest as a tool for the
qualitative analysis of ODEs, decoupling can be applied to verification
problems arising in the fields of control and hybrid systems. Existing ver-
ification technology often scales poorly with dimension. Thus, reducing a
verification problem to a number of independent verification problems for
systems of smaller dimension may enable one to prove properties that are
otherwise seen as too difficult. We show an interesting correspondence
between Darboux polynomials and decoupling simulating abstractions
of systems of polynomial ODEs and give a constructive procedure for
automatically computing the latter.

Keywords: ordinary differential equations, Darboux polynomials, sim-
ulation, abstraction, decoupling

1 Introduction

Simulation relations are an important concept in the study of both discrete and
continuous dynamical systems. Informally speaking, a system simulates another
system if it over-approximates its set of possible behaviours. In practice, when
analyzing systems, one often wants to construct simulations of the original sys-
tem that are in some sense “simpler” to analyze. Then, by demonstrating some
property of interest in the simulation one may infer the property in the original
system.

In [22] Sankaranarayanan investigated an interesting technique for construct-
ing simulations of continuous systems by employing change of basis transforma-
tions. It was shown how linearizing change of basis transformations of non-linear
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systems of ODEs can yield simulations in which the dynamics is given by a sys-
tem of linear ODEs. The motivation for considering such transformations is clear,
since linear systems cannot exhibit some of the rich dynamic phenomena found
in their non-linear counterparts and are more amenable to analysis [11]. In this
paper we consider simulations of non-linear ODEs of a different kind: instead of
linear dynamics, we seek to construct simulations that are potentially non-linear,
but whose analysis can be performed in a lower-dimensional space than that of
the original system.

Although our focus in this paper is on analyzing purely continuous systems,
the methods we present are motivated by the broader goal of aiding the task
of automatic verification of hybrid dynamical systems whose continuous modes
are governed by non-linear ODEs. Hybrid systems combine discrete and contin-
uous behaviour; their formal modelling and verification is of increasing interest
and importance to modern engineering, where discrete digital controllers are
used to control continuously evolving physical plants. In recent years, verifica-
tion technology for hybrid systems has seen significant advances and a number
of interesting case studies have been reported, e.g. verification of train control
systems [20,29], aircraft collision avoidance protocols [13,1], descent guidance
control software in a lunar lander [28] and satellite rendezvous manoeuvres [14],
to give a few examples. However, non-linear ODEs appearing in hybrid system
models often present a serious challenge to verification due to their inherent
complexity. In this paper we seek to overcome some aspects of this hurdle by
constructing simulations of non-linear ODEs with structure that more readily
lends itself to analysis.

1.1 Contributions

In this paper we (I) define decoupled simulating abstractions of non-linear ODEs,
discuss their utility and relationship to first integrals [10] and constant-scale
continuous consecutions [23]. (II) We give an algorithm for checking whether a
given set of polynomial abstract basis functions can be used to create a decou-
pled abstraction of a system of polynomial ODEs and then (III) employ the
theory of Darboux polynomials [10] to give sufficient criteria for non-existence of
polynomial abstract basis functions suitable for constructing decoupled polyno-
mial abstractions. Lastly, (IV) we show how Darboux polynomials can be used
to construct the abstract basis functions for decoupled abstractions whenever
they exist. We conclude with a summary of our findings, an overview of related
work and directions for future research.

1.2 Preliminaries

An autonomous n-dimensional system of ODEs has the following form:

ẋ1 = f1(x1, x2, . . . , xn),

...

ẋn = fn(x1, x2, . . . , xn),

2
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where for i ∈ {1, . . . , n} each fi : Rn → R is a real-valued function (typically C1),
and ẋi denotes the time derivative of xi, i.e. d

dtxi(t). In applications, constraints
are often imposed on the states where the system is allowed to evolve, i.e. the
system may only evolve inside some given set H ⊆ Rn, which is known as the
evolution constraint. We may write this more concisely using vector notation
as ẋ = f(x), x ∈ H. Here ẋ = (ẋ1, . . . , ẋn) and f : Rn → Rn is a vector field
generated by the system, i.e. f(x) = (f1(x), . . . , fn(x)) for all x ∈ Rn. When no
evolution constraint is specified, H is assumed to be Rn.

A solution to the initial value problem for the system of ODEs ẋ = f(x)
with initial value x0 ∈ Rn is a differentiable function ϕt(x0) : (a, b) → Rn
defined for all t within some non-empty extended real interval including zero, i.e.
t ∈ (a, b) ⊆ R∪{∞,−∞}, where a < 0 < b, and such that d

dtϕt(x0) = f(ϕt(x0))
for all t ∈ (a, b). If the solution ϕt(x0) is available in closed-form,3 then one can
answer questions about the temporal behaviour of the system (such as e.g. safety
and liveness) by analyzing the closed-form expression. In practice, however, it
has long been established that explicit closed-form solutions to non-linear ODEs
are highly uncommon [11].

In this paper we will work with systems of ODEs whose right-hand sides
are given by polynomials in the state variables x1, . . . , xn. Formally, we say that
fi ∈ R[X1, . . . , Xn] for all i ∈ {1, . . . , n}, where R[X1, . . . , Xn] denotes the ring of
multivariate polynomials with real coefficients and indeterminates X1, . . . , Xn.
We write fi(x1, . . . , xn) when we wish to make it clear that the polynomial is
treated as a function, with indeterminates replaced by the appropriate variables.
Polynomial systems of ODEs are necessarily locally Lipschitz continuous, which
guarantees existence of unique solutions on some non-trivial time interval for
any initial value x0 ∈ Rn (by the Picard-Lindelöf theorem; see e.g. [27]).

1.3 Coupling

Given a system of ODEs ẋ = f(x), the maximum coupling coefficient (henceforth
mcc) is the size of the largest sub-system with no independent sub-systems. To
define rigorously, we construct a finite coupling graph CG = (V,E), where the
set of vertices is precisely the set of state variables, i.e. V = {x1, . . . , xn}, and
there is an edge from xi to some other vertex xj , i.e. (xi, xj) ∈ E with i 6= j, if

and only if ∂fi
∂xj
6= 0. The coupling coefficients cc are a finite multiset of natural

numbers corresponding to the orders (i.e. the numbers of vertices) of all the
weakly connected components in CG. The coefficient mcc is defined to be the
maximum order of the weakly connected components in CG, i.e. mcc ≡ max cc.

Definition 1 (Uncoupled system). A system of ODEs ẋ = f(x) is uncou-
pled if and only if its mcc = 1, i.e. if the rate of change of each state variable is
completely independent of the other variables.4

3 By this we understand a finite expression in terms of polynomials and elementary
functions such as sin, cos, exp, ln, etc.

4 An equivalent (but less flexible) definition would state that a system ẋ = f(x) is
uncoupled if and only if the Jacobian matrix Jf is diagonal.

3
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Example 1. Consider the following two planar polynomial systems:

ẋ1 = x21x2 + 5x1 − 1, ẋ1 = x31 + 5x1 − 10,

ẋ2 = 3x32 + 2x1x2 − x1. ẋ2 = 2x22 + 3x2 + 1.

The system on the left has mcc = 2 because the vertices {x1, x2} in the coupling
graph have edges connecting them in both directions, since ∂

∂x2
(x21x2+5x1−1) =

x21 6= 0 and ∂
∂x1

(3x32 + 2x1x2−x1) = 2x2−1 6= 0. On the other hand, the system

on the right has mcc = 1 (i.e. is uncoupled) because ∂
∂x2

(x31 + 5x1 − 10) = 0

and ∂
∂x1

(2x22 + 3x2 + 1) = 0 and therefore the vertices {x1, x2} in the graph are
disconnected.

Uncoupled systems are appealing first and foremost because their 1-
dimensional sub-systems can be analyzed independently, following a standard
technique for 1-dimensional flows (see e.g. [25, Chapter 2]). For instance, con-
sider the 1-dimensional system ẋ = x3 + 5x2 + x − 10. This system evolves on
the real line and has fixed points at the real roots of x3 + 5x2 + x− 10, of which
there are three: {−2, 12

(
−3−

√
29
)
, 12
(
−3 +

√
29
)
}. The direction of the flow is

to the right whenever the graph of ẋ is above zero (i.e. the rate of change of x
is positive) and to the left when it is below (the rate of change is negative), as
shown in Figure 1.3.

Fig. 1. Analysis of the 1-dimensional system ẋ = x3 + 5x2 + x− 10.

From inspecting the figure, one can readily see how one can construct the set
of reachable states of any given initial point x0 in a 1-dimensional polynomial
system ẋ = f(x): either the point is a root of the right-hand side, i.e. f(x0) = 0,
in which case x0 remains invariant and the reachable set is simply {x0}, or x0
is not a root, i.e. f(x) 6= 0, in which case the reachable set is an interval of the
form [x0, r) or (r, x0], where r ∈ R∪{∞,−∞} is either a real root of f or it is∞
or −∞, respectively (if there are no real roots in the direction of motion). The
reachable set from any initial point x0 ∈ Rn in a uncoupled system can thus also
be bounded by combining the independent reachable sets in the 1-dimensional
sub-systems.

4
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Bounded-time reachable set computation using verified integration methods
is also made easier because large systems of non-linear ODEs are typically ex-
pensive to integrate using methods that yield tight enclosures [16] (such as Tay-
lor models [3,17]), whereas in an uncoupled system, no matter how large, each
1-dimensional sub-system can be integrated separately. An enclosure of the so-
lution to the whole system at some time t can then be constructed directly from
the enclosures of the solutions to the sub-systems at that time.

2 Decoupled Simulating Abstractions

In what follows, we will adopt the approach described by Sankaranarayanan
in [22] to define simulating abstractions of non-linear ODEs using appropriate
change of basis transformations.

Definition 2 (Simulating abstraction). For a system ẋ = f(x), x ∈ H,
where f : Rn → Rn is locally Lipschitz continuous, equipped with an initial set
of states X0 ⊆ Rn, a system α̇ = G(α), α ∈ Ĥ, where G : Rm → Rm is locally

Lipschitz continuous and equipped with an initial set of states X̂0 ⊆ Rm is a
simulating abstraction if there exists a smooth (i.e. C∞) mapping α : Rn → Rm

such that: (i) α(X0) ⊆ X̂0, (ii) α(H) ⊆ Ĥ, and (iii) for any trajectory (i.e.
solution in non-negative time) ϕτ (x0) : [0, T )→ H of the system ẋ = f(x), x ∈
H, the trajectory α ◦ ϕτ (x0) : [0, T )→ Ĥ is a trajectory of α̇ = G(α), α ∈ Ĥ.

To ensure that the last condition in the above definition holds, it is sufficient to
show that G(α(x)) = Jα ·f(x), where Jα is the Jacobian of the smooth mapping
α w.r.t. the state variables x1, . . . , xn (see [22, Theorem 2.1]), i.e.

G(α) =


∂α1

∂x1
. . . ∂α1

∂xn

...
. . .

...
∂αm

∂x1
. . . ∂αm

∂xn

 ·
 f1

...
fn

 .

Definition 3 (Lie derivative). For a given system of ODEs ẋ = f(x), the
Lie derivative of a smooth function p : Rn → R is given by

Lf (p) = ∇p · f =
n∑
i=1

∂p

∂xi
· fi.

Note that since fi(x) = dxi

dt , Lf (p) =
(∑n

i=1
∂p
∂xi
· dxi

dt

)
= dp

dt i.e. the total deriva-

tive of the function p with respect to time, which we denote by ṗ.

Let us recall that the gradient ∇p gives the vector of all the partial derivatives

of p, i.e. ∇p ≡
(
∂p
∂x1

, ∂p∂x2
, . . . , ∂p

∂xn

)
, and thus the necessary condition for (iii) in

Definition 2 to be satisfied may be equivalently stated as:

G(α) =

 ∇α1

...
∇αm

 · f =

 Lf (α1)
...

Lf (αm)

 .

5
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Remark 1. It is important to note that, following Def. 2, solutions to simulating
abstractions are guaranteed to exist for at least as long as they do in the concrete
system. This property is crucial to soundness of the abstraction. A rather differ-
ent, but in a certain sense more general, concept was explored by Platzer, who
introduced differential ghosts [19], where the original dynamics is augmented by
introducing some fresh variables whose rate of change may feature the newly in-
troduced variables themselves, but is not restricted in the same way as in Def. 2.
However, extra care needs to be taken to ensure that the solutions of the newly
defined dynamics exist for at least as long as the solutions to the original system
(e.g. see [19, Proof of Theorem 38]).

Definition 4 (Decoupling simulating abstraction). Given a system of
ODEs ẋ = f(x), a simulating abstraction α̇ = G(α) is decoupling if and
only if the equalities Lf (α1) = G1(α1), . . . ,Lf (αm) = Gm(αm) hold, where
(G1, . . . , Gm) = G. Such an abstraction is thus uncoupled:

α̇1 = G1(α1),

...

α̇m = Gm(αm).

In what follows, we will give some examples of how first integrals (see e.g. [10])
and constant-scale continuous consecutions [23] provide the abstract basis func-
tions α which lead to decoupling simulating abstractions.

Example 2 (Algebraically integrable system). The 3-dimensional system

ẋ1 = x1(x3 − x2),

ẋ2 = x2(x1 − x3),

ẋ3 = x3(x2 − x1),

has two independent polynomial conserved quantities, i.e. first integrals, given
by α1 = x1x2x3 and α2 = x1 + x2 + x3 (see [8, Ex. 75]). If we let α = (α1, α2),
we obtain the decoupling simulating abstraction α̇ = 0, i.e. α̇1 = 0, α̇2 = 0.

Remark 2. A polynomial system ẋ = f(x) of size n is algebraically integrable if it
possesses n−1 independent polynomial conserved quantities (also known as first
integrals; see [10,8]), i.e. polynomials {α1, . . . , αn−1}, where for all i = 1, . . . , n−1
one has Lf (αi) ≡ α̇i = 0. Algebraic integrability is a very powerful property,
since it allows one to construct tight approximations of the orbit γ(x0), i.e. the
reachable set from x0 ∈ Rn in positive as well as negative time. That is, for
any given point x0 ∈ Rn, if one evaluates each first integral α1, . . . , αn−1 at
x0, one obtains real constants c1, . . . , cn−1. The orbit through x0 is guaranteed
to satisfy the formula α1 = c1 ∧ · · · ∧ αn−1 = cn−1, which corresponds to a
(real) algebraic subset of Rn given by the common real roots of the polynomials
αi − ci. Every point α0 ∈ Rn−1 in such an abstract system α̇ = 0 is invariant
and corresponds to a real (and invariant) algebraic set containing the orbit of
the system ẋ = f(x).

6
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Polynomials p such that Lf (p) = λp for some λ ∈ R generalize polynomial
first integrals5 and were investigated by Sankaranarayanan et al. in [23], where
they were used in constant-scale continuous consecution conditions. In general,
if one can find polynomials α1, . . . , αm that satisfy Lf (αi) = λiαi , λi ∈ R for
all i ∈ {1, . . . ,m}, then one obtains a decoupling abstraction of the form

α̇1 = λ1α1,

...

α̇m = λmαm.

We generalize this idea to decoupling polynomial abstractions by considering
polynomial functions αi ∈ R[X1, . . . , Xn] such that Lf (αi) = Gi(α), where Gi ∈
R[X], i.e. the derivative of αi may be expressed as a polynomial in αi with real
coefficients.

Example 3 (Decoupling simulating abstraction). Consider the coupled system:

ẋ1 =
1

3
(1− 3x1 + 2x21 − 6x2 + 4x1x2 + 2x22),

ẋ2 =
1

3
(−1− 3x1 + x21 + 2x1x2 + x22) .

Let α1 = x1 + x2 − 1, α2 = x1 − 2x2. If we consider α = (α1, α2), we arrive at
the following system (left), which can be expressed as an uncoupled system in
the new basis (right):

α̇1 = −2x1 + x21 − 2x2 + 2x1x2 + x22, α̇1 = α2
1 − 1,

α̇2 = 1 + x1 − 2x2, α̇2 = α2 + 1 .

3 Existence and Generation of Abstraction Polynomials

In what follows, we investigate the existence of polynomials that can be used
to construct decoupling simulating abstractions of a given system. We show in
Section 3.1 that their existence (to a given polynomial degree) is decidable and
give a sufficient criterion for their non-existence (to a given degree) based on the
existence of so-called Darboux polynomials (e.g. see [10]). We then explore the
problems of checking and generation. The checking problem is concerned with
determining whether a given candidate polynomial is suitable for constructing
a decoupling simulating abstraction. In Section 3.2 we describe a procedure for
solving the checking problem. In Section 3.3 we present a technique for gener-
ating all suitable polynomials for the decoupling abstract basis (up to a given
polynomial degree).

5 i.e. p is a first integral if Lf (p) = λp where λ = 0.
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3.1 Decidability and Darboux Existence Criterion

For polynomial systems of ODEs ẋ = f(x), the problem of finding a non-
constant polynomial in the state variables, p ∈ R[X1, . . . , Xn], for the decou-
pling abstract basis reduces to searching for those p such that Lf (p) = G(p),
where G ∈ R[X], i.e. G is a univariate polynomial with real coefficients. There
may, however, be no such polynomial. Fortunately, it is decidable to check for
existence of such a p.

Proposition 1 (Existence of decoupling abstract basis polynomials).
Given a positive integer d and a polynomial system ẋ = f(x), it is decidable
to check whether there exists a polynomial p ∈ R[X1, . . . , Xn] of total degree d
such that Lf (p) = G(p), where G ∈ R[X] is a univariate polynomial with real
coefficients.

Proof. The problem can be stated as a sentence in the theory of real arithmetic
which is decidable [26]. Let λ0, . . . , λk denote the unknown coefficients of the
generic polynomial template p of degree d, where k :=

(
n+d
d

)
− 1 is the number

of non-constant monomials of degree at most d in n variables. The Lie derivative
Lf (p) can therefore be symbolically computed (Def. 3). Let κ0, . . . , κm denote the
unknown coefficients of the polynomial G ∈ R[X] where m := ddeg(Lf (p))/de.
The decision problem stated in the proposition is therefore equivalent to deciding
the truth of the following sentence:

∃ (λ0, . . . , λk) ∈ Rk+1. ∃ (κ0, . . . , κm) ∈ Rm+1.

∀(X1, . . . , Xn) ∈ Rn. d > 0 ∧ Lf (p)− (κ0 + κ1p+ · · ·+ κmp
m) = 0 .

If λ0 denotes the constant term of the generic polynomial template p, then the
condition d > 0 is equivalent (over the reals) to the inequality

∑
0<i≤k λ

2
i > 0,

ensuring that p is non-constant. ut

In practice, there is currently no question of applying existing decision pro-
cedures to formulas constructed in the proof or Prop. 1. The complexity of the
most popular procedure for real quantifier elimination (CAD, due to Collins [4])
is doubly exponential in the number of variables. In Section 3.3 we will pursue a
more promising method of searching for decoupling abstract basis polynomials.
First, we shall recall so-called Darboux polynomials, a well-known tool in the
study integrability of dynamical systems (e.g. see [10]), and use them to give
a non-existence criterion for decoupling abstract basis polynomials. We then
explore an interesting relationship between the two concepts.

Definition 5 (Darboux polynomial). A polynomial q ∈ K[X1, . . . , Xn],
where K is a field of characteristic zero (e.g. C,R,Q), is a Darboux polyno-
mial6 for ẋ = f(x) iff Lf (q) = λq, for some λ ∈ K[X1, . . . , Xn].

6 When q is a constant, the Darboux polynomial is trivial [10, Definition 2.14]. In this
paper we will generally be interested in the non-trivial case.

8
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Proposition 2 (Criterion for non-existence of decoupled abstractions).
If a given system ẋ = f(x) does not admit any Darboux polynomials over C of
degree d, then there is no polynomial p ∈ R[X1, . . . , Xn] of degree d such that
Lf (p) = G(p) for some non-constant G ∈ R[X].

Proof. We prove the contrapositive. Suppose there exists a polynomial p ∈
R[X1, . . . , Xn] such that Lf (p) = G(p), where G ∈ R[X] is non-constant. By
the fundamental theorem of algebra, G must have at least one complex root
c ∈ C. Therefore G = (X − c)H, where H ∈ C[X]. We see that (p − c) is a
Darboux polynomial for the system because

Lf (p− c) = Lf (p)− Lf (c) = Lf (p) = G(p) = (p− c)H(p).

The degree of the Darboux polynomial p− c is equal to the degree of p. ut

3.2 Checking Abstraction Polynomial Candidates

Before proceeding to methods for generating decoupling abstract basis polynomi-
als for polynomial systems ẋ = f(x), we discuss the (easier) problem of checking
if for a given p ∈ R[X1, . . . , Xn] one can write Lf (p) = G(p), where G ∈ R[X].

In general, given any two polynomials P, p ∈ R[X1, . . . , Xn], if deg(P ) ≥
deg(p), one may obtain a rewriting P = G(p) by solving a system of lin-
ear equations. One proceeds by first defining the maximum degree of a pos-
sible G to be d = ddeg(P )/deg(p)e. If an appropriate rewriting exists, then
there is guaranteed to be a solution (λ0, . . . , λd) ∈ Rd+1 to the equation
P = λ0 + λ1p+ λ2p

2 + · · ·+ λdp
d. By expanding and equating the monomial

coefficients on both sides one arrives at a system of linear equations (of size
no larger than the number of monomials of P ) in the real variables λ0, . . . , λd.
Thus, in the worst case, one has to solve a linear system with d+1 variables and(
n+deg(P )
deg(P )

)
equational constraints. A solution may be computed using a linear

solver and the rewriting polynomial constructed as G = λ0 +λ1X + · · ·+λdX
d.

In what follows, we will refer to the procedure for obtaining the rewriting as
Rewrite, that is Rewrite(P, p) gives G whenever P = G(p).

Remark 3. It is worth remarking that the procedure Rewrite can be imple-
mented by performing successive polynomial reductions, rather than by solving
a linear program. Polynomial reduction extends polynomial division for univari-
ate polynomials to the multivariate case and in general requires the computation
of Gröbner bases. This functionality is available in most modern computer alge-
bra systems.

3.3 Automated Generation of Decoupling Abstractions

A highly efficient method for synthesizing polynomial first integrals for polyno-
mial ODEs was reported by Matringe et al. in [15], where the synthesis problem
is reduced to computing the null space of a matrix with real entries. In [7], the

9
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authors extended the work of Matringe et al. to generate real algebraic invari-
ants of polynomial ODEs, giving a search procedure for the most general class
of invariant sets that can be expressed using polynomial equations. The same
procedure can be used to generate Darboux polynomials over the reals or over
the complexes only by changing the underlying computational field. In general,
there is no known bound for the degree of Darboux polynomials in a given sys-
tem. However, the automatic generation procedure is guaranteed to find all the
independent Darboux polynomials for the system up to a given degree.

In this section, we explore the relationship between polynomials in a decou-
pling abstract basis and Darboux polynomials. This relationship will enable us
to exploit the efficient symbolic generation methods reported in [15,7]. We out-
line a procedure for constructing polynomials p such that Lf (p) = G(p), where
G ∈ R[X], from a list of automatically generated Darboux polynomials (up to
some given degree). The procedure will require two lemmas given below.

We note first that whenever q is a Darboux polynomial, any constant multiple
of q, i.e. aq for some a ∈ R or C, is also Darboux. A similar property holds for
the decoupling abstract basis functions in simulating abstractions.

Lemma 1. If p ∈ R[X1, . . . , Xn] is such that Lf (p) = G(p) where G ∈ R[X],
then s = ap + b for any real numbers a, b, is such that Lf (s) = F (s), where
F ∈ R[X].

Proof. If a = 0 then Lf (s) = Lf (b) = 0 and F is simply the zero polynomial in
R[X]. If a 6= 0, by our hypothesis we have Lf (p) = G(p). Let us write p = s−b

a
and note that

Lf (s) = Lf (ap+ b) = aLf (p) + Lf (b) = aLf (p) = aG(p) = aG

(
s− b
a

)
.

We see that Lf (s) = aG
(
s−b
a

)
is a polynomial in s with real coefficients. ut

One consequence of Lem. 1 is that whenever we assume the existence of a
polynomial p such that Lf (p) = G(p) for some G ∈ R[X], it always suffices to
assume the existence of a decoupling abstract basis polynomial p−r for any real
number r.

In Prop. 2 we established that the existence of decoupling abstract basis poly-
nomials p is related to the existence of a special Darboux polynomial p − c for
some complex number c. For any polynomial s, we denote by s∗ the polynomial
obtained by setting the constant term of s to zero. For instance, if s = x + 1
then, s∗ = x. Thus, for the (Darboux) polynomial p − c, one has (p − c)∗ = p∗

(by definition of the ∗ operator) and therefore p∗ is a decoupling abstract basis
polynomial by Lem. 1, since it is an offset of the polynomial p by a real num-
ber (the constant term of p). Therefore, if one generates Darboux polynomials
over the complex numbers and finds a Darboux polynomial q such that q∗ is a
polynomial over the reals (i.e. all the coefficients of q∗ are real numbers), then
q∗ is potentially a decoupling abstract basis polynomial, which can be checked
by solving a linear program, i.e. by running Rewrite(Lf (q∗), q∗), as outlined
in Section 3.2.

10
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Nevertheless, generating Darboux polynomials over the complex numbers will
not necessarily return Darboux polynomials q such that q∗ is a polynomial over
the reals even if the latter exist. For instance, if q = x2 + xy + c is a Darboux
polynomial with some complex constant term c, then the procedure may return
ıq instead of q (ı being the imaginary number satisfying ı2 = −1), although
we are rather interested in looking for q. Enforcing such a constraint in the
procedure for generating Darboux polynomials will require solving mixed non-
linear equations where some variables are real and some are complex numbers. To
avoid solving mixed problems, we can easily adapt the generation procedure to
produce monic Darboux polynomials for any variable ordering, for instance the
lexicographic order X1 > · · · > Xn. Recall that monic univariate polynomials are
those polynomials where the leading coefficient (i.e. the coefficient of the leading
monomial) is equal to 1. In the multivariate case, the notion of leading coefficient
additionally requires a monomial ordering. For instance, for the order X1 > X2,
the leading monomial of the polynomial 2X1X2 + X2

1 is X2
1 and therefore the

leading coefficient is 1, whereas the leading monomial in the reverse lexicographic
ordering X2 > X1 is X1X2 and the leading coefficient is 2.

Lemma 2. Given a polynomial q ∈ C[X1, . . . , Xn], let p ∈ C[X1, . . . , Xn] be the
monic polynomial q

LC(q) , where LC(q) is the leading coefficient of q with respect to

some fixed monomial ordering. There exists a non-zero complex number z such
that (zq)∗ ∈ R[X1, . . . , Xn] if and only if p∗ ∈ R[X1, . . . , Xn].

Proof. Suppose there exists such a non-zero complex number z such that (zq)∗ ∈
R[X1, . . . , Xn]. Since zLC(q) = LC(zq) we have that zq

LC(zq) = zq
zLC(q) = q

LC(q) = p,

therefore 1
LC(zq) (zq) = p and 1

LC(zq) (zq)
∗ = p∗. Since LC(zq) ∈ R, we have

p∗ ∈ R[X1, . . . , Xn]. Conversely, if p∗ ∈ R[X1, . . . , Xn], take z = 1
LC(q) so that

(zq)∗ = p∗. ut

We now describe a procedure for generating decoupling abstract basis poly-
nomials. Suppose we are given all the independent Darboux polynomials in
C[X1, . . . , Xn] for the system ẋ = f(x) up to some degree d > 0. By Prop. 2,
if there exists a polynomial p ∈ R[X1, . . . , Xn] of degree d′ ≤ d such that
Lf (p) = G(p), where G ∈ R[X] is non-constant, then there necessarily exists
a Darboux polynomial q of degree d′ such that q∗ is a polynomial over the reals,
i.e. q∗ ∈ R[X1, . . . , Xn]. This fact suggests a simple search method. Below we
describe the three main steps in the procedure.

1. For a fixed positive integer d, automatically generate all monic Darboux
polynomials for the system up to degree d with coefficients in C.

2. For each generated Darboux polynomial q check if q∗ ∈ R[X1, . . . , Xn] and
if so, store q∗ as a candidate in a list L.

3. For all polynomials q∗ in L, run Rewrite(Lf (q∗), q∗). If q∗ is a decoupling
abstract basis polynomial, the rewriting procedure will return G ∈ R[X] s.t.
Lf (q∗) = G(q∗).
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Example 4. Consider the following system

ẋ1 =
1

3
(1 + x1 − 2x2 + 2(1 + (−1 + x1 + x2)2))

ẋ2 =
1

3
(−x1 + 2x2 + (−1 + x1 + x2)2)

The automatic generation procedure for Darboux polynomials over C up to
degree 1 gives us (q1, q2, q3) = (1+x1−2x2, (−1+ı)+x1+x2, (−1−ı)+x1+x2). In
this case, q∗1 ,q∗2 and q∗3 are all candidates for the short list L. Since q∗2 = q∗3 , L =
{x1 − 2x2, x1 + x2}. Running Rewrite(Lf (q∗1), q∗1) and Rewrite(Lf (q∗2), q∗2)
returns 2 − 2X + X2 and 1 + X, respectively. Thus, letting (α1, α2) = (q∗1 , q

∗
2),

we obtain the decoupled abstraction:

α̇1 = 2− 2α1 + α2
1,

α̇2 = 1 + α2.

In general, a Darboux polynomial q, with q∗ ∈ R[X1, . . . , Xn], is not nec-
essarily a decoupling abstract basis polynomial. For instance, in the system
ẋ1 = x1x2, ẋ2 = x2, one has x1 as a Darboux polynomial; however x1 is not a
decoupling abstract basis polynomial because Lf (x1) = x1x2 cannot be rewrit-
ten as polynomial in x1 only. The checking procedure Rewrite(Lf (x1), x1) will
thus fail to produce a solution.

It is natural to ask under what extra conditions is a Darboux polynomial q
satisfying q∗ ∈ R[X1, . . . , Xn] also a decoupling abstract basis polynomial. The
following theorem explores this connection.

Theorem 1. Given a system of polynomial ODEs ẋ = f(x), there exists a
polynomial p ∈ R[X1, . . . , Xn] such that Lf (p) = G(p), where G ∈ R[X]
is of degree d > 0, if and only if the system has d Darboux polynomials
q1, . . . , qd ∈ C[X1, . . . , Xn] satisfying:

(i) q∗1 = q∗2 = · · · = q∗d ∈ R[X1, . . . , Xn],
(ii) Lf (q1) = Lf (q2) = · · · = Lf (qd) = rq1q2 · · · qd, r ∈ R,

(iii) for all i = 1, . . . , d, either q∗i − qi ∈ R or there exists j 6= i, j = 1, . . . , d,
such that qi = q̄j.

Proof. Suppose there exists a p ∈ R[X1, . . . , Xn] such that Lf (p) = G(p). When
G ∈ R[X] is a non-constant polynomial of degree d, it can be factorized as
r(X − c1) · · · (X − cd), where r ∈ R and the roots ci are either real numbers, or
complex numbers that come in conjugate pairs, i.e. if ci ∈ C is a root of G, then
its complex conjugate c̄i is also a root. In the proof of Prop. 2 we have seen that
for any such factor (X − ci) the polynomial qi = p− ci is a Darboux polynomial
for the system such that Lf (qi) = G(p). The properties (i), (ii) and (iii) follow
immediately.

Conversely, let us assume that there are d Darboux polynomials q1, q2, . . . , qd
satisfying properties (i), (ii) and (iii). Then for any r ∈ R we have

rq1q2 · · · qd = r(q∗1 − c1)(q∗2 − c2) · · · (q∗d − cd),

12
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where each ci = q∗i − qi is, by definition, a constant. By property (i) we have
q∗1 = q∗2 = · · · = q∗d ∈ R[X1, . . . , Xn], so let us take p = q∗1 = q∗2 = · · · = q∗d to
obtain r(q∗1−c1)(q∗2−c2) · · · (q∗d−cd) = r(p−c1)(p−c2) · · · (p−cd). One can now
write this as r(p − c1)(p − c2) · · · (p − cd) = G(p), where G ∈ R[X] has degree
d. The coefficients of G are real because by (iii) the roots ci come in complex
conjugate pairs. Since qi = q∗i − (q∗i − qi) = p− ci, we have Lf (qi) = Lf (p− ci) =
Lf (p)−Lf (ci) = Lf (p) and by (ii) Lf (p) = r(p− c1)(p− c2) · · · (p− cd) = G(p).

ut

Notice that Rewrite does not require all of the d Darboux polynomials
in order to construct G. If a family of Darboux polynomials {q1, . . . , qd} as
stated in Theorem 1 exists, it suffices to supply only one element, say q∗1 , to
Rewrite, which will then find a rewriting of Lf (q∗1) as G(q∗1), with G ∈ R[X].
If however, the algorithm fails, then the polynomial supplied was not obtained
from such a family of Darboux polynomials and therefore cannot be used to
obtain a rewriting of its derivative in terms of itself.

Theorem 1 exposes the structure inherent in systems for which one can find
decoupled simulating abstractions. The requirements (i)–(iii) are indeed quite
strong. Observe that when G is a linear polynomial with a real coefficient λ, i.e.
is of the form G(X) = λX and therefore necessarily has one real root, Theorem 1
reduces to the conditions for constant-scale consecution [23].

Remark 4. Theorem 1 relies on generating Darboux polynomials in order to com-
pute a decoupling abstraction of a given system of polynomial ODEs. Nev-
ertheless, polynomials having constant Lie derivatives (that is, those p s.t.
Lf (p) = G(p) where G has degree zero) can also be used for decoupling abstrac-
tions, but are not covered by Theorem 1, which requires the degree ofG to be pos-
itive. The special case when G has degree zero is also related to Darboux polyno-
mials as follows: (i) when G is the zero polynomial, then the system has a first in-
tegral which is a special Darboux polynomial as discussed in Section 2, (ii) when
G is a non-zero constant, then the augmented system (ẋ, ṫ) = (f(x), 1) obtained
by appending the time derivative to the original system has a polynomial first in-
tegral. More precisely, when p ∈ R[X1, . . . , Xn] and the Lf (p) is a real constant,
say r, then in the augmented system L(f,1)(p−rt) = L(f,1)(p)−r = Lf (p)−r = 0
and p− rt is thus a polynomial first integral of the augmented system. One may
thus handle this case by computing first integrals (e.g. using the approach de-
scribed in [15]) before searching for more sophisticated decoupling polynomials
where G has a positive degree.

4 Outlook

Verification problems for systems of ODEs can be soundly translated to verifi-
cation problems for their simulating abstractions. Below we sketch the case of a
standard safety verification problem (Sx, f, Fx), where one wishes to prove that
a given property, encoded as the region Fx ⊂ Rn, is always satisfied if the system
ẋ = f(x) is initialised in x0 ∈ Sx ⊂ Rn. If a decoupling abstraction α̇ = G(α)

13
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exists, one can attempt to solve the simpler abstract safety verification prob-
lem (Sy, G, Fy) where (y1, . . . , ym) = (α1(x), . . . , αm(x)), denoted henceforth by
y = α(x), i.e. ẏ = G(y) is a decoupled simulating abstraction. The initial set
in the new abstract coordinates, Sy ⊂ Rm (resp. Fy), is computed as a projec-
tion of the semialgebraic set Sx ∧ y = α(x), which is a subset of Rn+m (resp.
Fx ∧ y = α(x)), onto Rm. Such a projection can in principle be obtained by
eliminating the existential quantifiers in the following sentence

∃ (x1, . . . , xn) ∈ Rn. Sx ∧ y1 = α1(x1, . . . , xn) ∧ · · · ∧ ym = αm(x1, . . . , xn) .

The soundness of such an abstraction relies essentially on two facts: (i) the sets
Sy and Fy are the exact images through α of the sets Sx and Fx respectively
(although using over-approximations of these sets is also sound) and (ii) the
invariant regions of the decoupled abstract system, when expressed in terms
of the old coordinates, define invariant regions of the original system (i.e. the
abstraction is indeed sound [22, Theorem 2.2]). This means that if the safety
problem holds true in the decoupled abstraction it also holds true in the original
concrete system. If not, however, the abstraction may be too coarse.

Interesting directions for refining the abstraction include searching for more
general simulating abstractions that are not necessarily completely decoupling.
For instance, it is conceivable that a simulating abstraction may possess inde-
pendent sub-systems that are of the form

α̇i = Gi(αi, αj),

α̇j = Gj(αi, αj),

whereGi, Gj ∈ R[X1, X2] and αi, αj ∈ R[X1, . . . , Xn] are the abstract basis func-
tions. This idea is similar to the so-called algebraizing transformations, briefly
discussed in [22, Definition 2.4]. The analysis of 2-dimensional (i.e. planar) poly-
nomial ODEs is however vastly more difficult than the 1-dimensional case. In-
deed, qualitative analysis of planar polynomial flows is an active area of math-
ematical research (e.g. see [6,5]). However, one hope is this greater generality
would make simulating abstractions of this form more “common” in systems
that one might encounter in applications.

Decoupling can help overcome some of the scalability issues in existing ver-
ification methodologies. For instance, in reachability analysis, relational ab-
straction [24] seeks to abstract the flow of a differential equation by an over-
approximation of the reachability relation on the states of the system. Mathemat-
ically, a (timeless) relational abstraction of an autonomous system ẋ = f(x) is a
relation R ⊆ Rn×Rn such that (x,y) ∈ R if y is reachable from x in finite time
by following the flow of the system [24, Definition 4], i.e. if ∃ t ≥ 0. ϕt(x) = y.
Computing timeless relational abstractions for non-linear systems is difficult be-
cause it reduces to searching for positive invariants in the extended system of
ODEs ẏ = f(y), ẋ = 0 with dimension 2n, i.e. with twice the number of state
variables [24, Definition 5, Lemma 1]. When the system is uncoupled, one can
instead work with n extended systems ẏi = fi(yi), ẋi = 0, i = 1, . . . , n, each of
dimension 2.

14
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5 Related Work

Our work is closest in spirit to that of Sankaranarayanan [22], which studied
simulating abstractions resulting from linearizing change of basis transforma-
tions. Our approach instead focused on simulating abstractions obtained via
decoupling change of basis transformations.

Change of basis transformations are a standard technique for decoupling lin-
ear homogeneous systems of ODEs with constant coefficients, i.e. systems of the
form ẋ = Ax, where A is an n×n real matrix. A common technique applies when
the matrix A has n real distinct eigenvalues and produces a decoupled linear ho-
mogeneous system α̇ = Bα of the same dimension, where α = (α1, . . . , αn) is
made up of linear functions αi : Rn → R in the state variables x1, . . . , xn (see
e.g. [21, §28.2, §28.3]); in particular, such a decoupling is always possible when
A is a real symmetric matrix. In our work, we consider more general polynomial
systems of ODEs and a more general class of polynomials to act as the new basis;
additionally, we do not require the dimension of the resulting decoupled system
to match that of the original system of coupled ODEs. In short, our focus is not
placed on solving the system, but rather on automatically discovering simulating
abstractions that are more amenable to analysis.

Girard and Pappas explored approximate bisimulation of continuous systems
in [9], and Pappas earlier developed (exact) bisimulations between continuous
linear systems [18]. However, these works employ a different notion of simulation
and do not seek to make the structure of the simulation easier to analyze in the
way that we do with decoupling, and are in practice limited to linear ODEs due
to reliance on solving linear matrix inequalities (LMIs). Han and Krogh have
also explored sound order reduction techniques for verification with reachability
analysis, but their approach is also limited to linear ODEs [12]. In contrast to all
these existing works that employ different techniques as well as different formal
development, our decoupled simulating abstractions are applicable to non-linear
polynomial ODEs, and as such, are developed using significantly different meth-
ods.

6 Conclusion

In this paper we explored a technique for constructing decoupling simulating
abstractions of non-linear polynomial ODEs, which can be more easily analyzed
because their 1-dimensional sub-systems may be treated independently. We em-
ployed the theory of Darboux polynomials to give a sufficient criterion for non-
existence of decoupled simulating abstractions (up to a some maximum degree of
the abstract basis polynomials; see Prop. 2). Lastly, we described how automati-
cally generated Darboux polynomials (up to some given polynomial degree) can
be used to construct abstract basis polynomials that can yield decoupling sim-
ulating abstractions. The abstractions developed in this paper are in essence a
form of model transformation, which can be integrated in source transformation
and translation tools such as HyST [2]; we leave this for future work.

15

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 
256



Acknowledgements The authors would like to thank the anonymous reviewers
for their careful reading and judicious critique and extend their thanks to Dr.
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ABSTRACT
This paper studies ways of constructing meaningful opera-
tional models of piecewise-smooth systems (PWS). The sys-
tems we consider are described by polynomial vector fields
defined on non-overlapping semi-algebraic sets, which form a
partition of the state space. Our approach is to give meaning
to motion in systems of this type by automatically synthe-
sizing operational models in the form of hybrid automata
(HA). Despite appearances, it is in practice often difficult
to arrive at satisfactory HA models of PWS. The different
ways of building operational models that we explore in our
approach can be thought of as defining different semantics
for the underlying PWS. These differences have a number of
interesting nuances related to phenomena such as chatter-
ing, non-determinism, so-called mythical modes and sliding
behaviour.

Keywords
piecewise-smooth systems, hybrid automata, operational
models, discontinuous differential equations.

1. INTRODUCTION
Many processes in which smooth continuous motion can

be interrupted by discrete events can be represented by or-
dinary differential equations (ODEs) with discontinuities.
As such, they are part of a broader class of dynamical sys-
tems, known as hybrid (also cyber-physical) systems, which
combine discrete and continuous behaviour under a unified
framework1. Hybrid systems are increasingly used in mod-
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1Indeed, some of the earliest research in hybrid systems, e.g.
in the work of Witsenhausen [44], began by considering pre-
cisely the systems where there are no “jumps” in the contin-
uous state, but abrupt changes in the dynamics are possible.
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elling and analyzing the behaviour of modern control sys-
tems employing embedded devices.

Systems described by discontinuous ODEs are sometimes
referred to as piecewise-smooth systems (PWS). Their repre-
sentation has proved popular in the control systems commu-
nity because it provides a concise and convenient notation.
However, a discontinuous system of ODEs explicitly only
conveys information about the continuous dynamics of the
system, along with a set of regions where state evolution
is smooth; the discrete transition behaviour of the system
between these regions is not explicitly elaborated.

There exist a number of specification formalisms, such as
hybrid automata [1] and hybrid programs [34], whose seman-
tics is clearly defined and which can serve as operational
models for hybrid systems. Hybrid automata in particular
have become very popular in the verification community. In
a hybrid automaton, the discrete transition behaviour of the
hybrid system is specified explicitly, which can often make
these automata large and unwieldy even when specifying hy-
brid systems of relatively modest size. As a specification for-
malism, discontinuous ODEs provide a much more concise
and manageable description of piecewise-smooth systems, al-
beit leaving many important details about their behaviour
implicit.

Researchers working in computer science and control sys-
tems tend to put different emphasis on the importance of for-
mal modelling and tend to use significantly different meth-
ods to model and reason about systems. One particular
aspect of these differences is manifest in the temptation
to treat hybrid automata näıvely as being merely syntactic
variants of discontinuous ODEs when modelling piecewise-
smooth systems. Subscribing to this view is, however, rather
dangerous and can lead to unintended behaviour in the re-
sulting models.

In this paper we study the challenges presented by the
problem of transforming concise descriptions of piecewise-
smooth systems in the form of discontinuous ODEs into
formal operational models in the form of hybrid automata.
Transformations that result in satisfactory models are, as
we shall see, far from trivial to both formulate and ef-
fect. We develop automatic procedures for transforming
piecewise-smooth systems with polynomial dynamics and
semi-algebraic constraints into hybrid automata.

A number of different interpretations of the operational
meaning of piecewise-smooth systems are possible, creating
a degree of ambiguity about their intended behaviour (i.e.
their semantics); this gives rise to significant differences in
the form and the behaviour of the hybrid automata that one
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can construct. A number of important choices can be exer-
cised in transforming PWS to HA in order to ensure that
the resulting operational models reflect the desired interpre-
tation.

1.1 Contributions
In this paper we describe a method for automatically con-

structing hybrid automata from descriptions of piecewise-
smooth polynomial systems and thus build their operational
models. We discuss aspects of the semantics of transi-
tions directly related to phenomena such as chattering, non-
determinism and the presence of so-called mythical modes in
the underlying systems. We illustrate how our technique can
be applied to model systems with so-called sliding modes.
We conclude with a discussion of related work and an out-
look for future research.

2. MATHEMATICAL PRELIMINARIES

2.1 Continuous systems and vector fields
A general n-dimensional autonomous system of first-order

ODEs has the form:

ẋ1 = f1(x1, x2, . . . , xn),

...

ẋn = fn(x1, x2, . . . , xn),

where fi : Rn → R are real-valued functions (typically C1)
for each i = 1, . . . , n and ẋi denotes the derivative of xi
with respect to time, i.e. dxi

dt
. Such a system defines a

vector field f : Rn → Rn, where f(x) = (f1(x), . . . , fn(x))
for any x ∈ Rn. We will denote autonomous systems of
ODEs using the more concise vector field notation, i.e. by
writing ẋ = f(x).

In applications, it is often the case that the state of the
system is required to only evolve within some prescribed
set of “legal” states M ⊆ Rn, which is known as the mode
invariant, or evolution constraint. We will express this re-
quirement concisely by writing ẋ = f(x), x ∈M . When no
evolution constraint is specified, M is assumed to be Rn.

A solution to the initial value problem for the system of
ODEs ẋ = f(x) with initial value x0 ∈ Rn is a differen-
tiable function x : (a, b)→ Rn, where x(t) is defined for all
t within some non-empty extended real interval including
zero, i.e. t ∈ (a, b) ⊆ R ∪ {∞,−∞} where a < 0 < b, and
such that x(0) = x0 and d

dt
x(t) = f(x(t)) for all t ∈ (a, b).

In what follows, we will denote the solution x(t) by writ-
ing ϕt(x0), to emphasize the initial value. If the function
ϕt(x0) is available in closed-form2, one can analyze the tem-
poral behaviour of the system initialized in the state x0 by
analyzing the closed-form expression. In practice, however,
it has long been established that explicit closed-form solu-
tions to non-linear ODEs are highly uncommon [20].

Systems of ODEs whose right-hand sides are locally
Lipschitz continuous (e.g. polynomial functions fall un-
der this class) guarantee existence of unique solutions on
some non-trivial time interval (a, b) for any initial value
x0 ∈ Rn (by the Cauchy-Lipschitz/Picard-Lindelöf theorem;
see e.g. [39]).

2By this we understand a finite expression in terms
of polynomials and elementary special functions such as
sin, cos, exp, ln, etc.

2.2 Piecewise-smooth vector fields
Given a partition of some set M ⊆ Rn into finitely many

non-overlapping subsets M1, . . . ,Mm, we consider a finite
family of vector fields fi : Rn → Rn, where i ∈ {1, . . . ,m}.
By assigning the vector field fi from this family to the set Mi

for each i = 1, . . . ,m, we arrive at a vector field F : M → Rn
which is defined piecewise on M , i.e.

F(x) =


f1(x) x ∈M1 ,

...

fm(x) x ∈Mm .

(1)

At this point, let us remark that while the sets M1, . . . ,Mm

need not be differentiable manifolds, the corresponding vec-
tor fields f1, . . . , fm are defined on Rn. It is therefore mean-
ingful to speak about motion occurring within the manifold
Rn according to the systems of ODEs ẋ = fi(x), but con-
fined to the states within Mi. With this intuition, the vector
field F can be interpreted as describing a system of ODEs
ẋ = F(x) with a piecewise-defined (and potentially discon-
tinuous) right-hand side, i.e. explicitly given by

ẋ = F(x) (2)

To precisely describe the motion taking place (within the
set M) in such a system, in general one may no longer call
upon the classical notion of solution developed for contin-
uous ODEs.3 Indeed, there is no single universally agreed-
upon definition of solution for systems of ODEs with dis-
continuities. Extensions of the classical notion, such as
Carathéodory solutions, among others [19], have been sug-
gested, but these differ in the way they model certain dy-
namic behaviours and therefore give different meaning (i.e.
semantics) to systems. An excellent accessible survey of
discontinuous ODEs and the various generalized solution
concepts developed for them was given by Cortés in [8].
Intuitively, one expects generalized solutions to piecewise-
smooth systems to be continuous functions of time, because
these systems do not allow for discontinuous jumps in their
(continuous) state, but with the differentiability requirement
for the solution (in some way) appropriately relaxed. Solu-
tions for more general classes of hybrid systems (which may
allow discontinuous jumps in the state) are trickier, and re-
quire generalized time domains, such as hybrid time domains
explored in the work of Sanfelice, Goebel and Teel [36, 18].
In our approach, we will not directly make use of these no-
tions, relying instead on the semantics of hybrid automata
(after Lygeros et al. [27]), which we shall describe presently.

2.3 Hybrid automata as operational models
Hybrid automata were first introduced by Alur et al. [1]

as a formal specification language for hybrid systems. They
provide operational models for hybrid systems in the same
way that transition systems provide models for discrete com-
puter programs, making it possible to give a precise math-
ematical description of their execution. We will employ the
term evolution when speaking about hybrid systems (just as
with continuous systems) and use the term execution only in
the context of operational models, such as hybrid automata.

As formal models, hybrid automata have been used exten-
sively in both modelling [12] and verification of properties

3E.g. it is continuity of the right-hand side that guarantees
the existence of solutions (by Peano’s theorem).
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in hybrid systems [14, 40]. Below we reproduce a very con-
venient definition of hybrid automata and their execution,
due to Lygeros et al. [27]; for alternative definitions the in-
terested reader is invited to consult [1, 22, 42].

Definition 1. Formally, a hybrid automaton HA is
given by an 8-tuple

HA = (Q,X,F, Init,Dom, E,G,R),

where the elements are as follows:

• Q = {q1, q2, . . . , qm} is a finite set of discrete states,

• X = Rn is a set of continuous states,

• F : Q×X → Rn is a vector field,

• Init ⊆ Q×X is a set of initial states,

• Dom : Q→ 2X is a mode domain (also invariant),

• E ⊆ Q×Q is a set of edges (also discrete transitions),

• G : E → 2X is a guard condition,

• R : E ×X → 2X is a reset map.

Standard assumptions with this definition are that guard
conditions are non-empty whenever they are specified, i.e.
for all e ∈ E it is the case that G(e) 6= ∅ and also that reset
maps can only take the system to a genuine continuous state,
i.e. for all x ∈ G(e), R(e, x) 6= ∅.

2.3.1 Semantics of hybrid automata
A hybrid time trajectory is a finite or infinite sequence of

contiguous time intervals starting at 0, where the end points
are interpreted as times at which a discrete event, such as
a transition, occurs. More formally, following [27], a hybrid
time trajectory is a sequence of intervals τ = {Ii}Ni=0, for
which Ii = [τi, τ

′
i ] for all i < N , where N ∈ N ∪ {∞},

and τi ≤ τ ′i = τi+1 for all i. If the sequence is finite, i.e.
if N < ∞, then either IN = [τN , τ

′
N ] or IN = [τN , τ

′
N ).

Intuitively, one may think of τi as the times at which discrete
transitions occur.

An execution (or a run) of a hybrid automaton is defined
to be the triple (τ, q, ϕit(x)), where τ is a hybrid time tra-
jectory, q : 〈τ〉 → Q, where 〈τ〉 is defined to be the set
{0, 1, . . . , N} if τ is finite and {0, 1, . . . } otherwise [27], is
a map and ϕit(x) is a collection of differentiable functions
ϕit(x) : Ii → Rn such that (q(0), ϕ0

0(x)) ∈ Init and for all
t ∈ [τi, τ

′
i) it is the case that ẋ = F (q(i), ϕit(x)) and ϕit(x) ∈

Dom(q(i)). It is also required that transitions respect the
guards and the reset maps, i.e. e = (q(i), q(i + 1)) ∈ E,
ϕiτ ′i

(x) ∈ G(e) and (ϕiτ ′i
(x), ϕi+1

τi+1
(x)) ∈ R(e).

3. PROBLEM OVERVIEW
This section gives an overview of the challenges associated

with modelling piecewise-smooth systems using the hybrid
automaton formalism.

If one were to näıvely translate a system of the form shown
in (2) into a hybrid automaton, as a first step one could
simply take the sets M1, . . . ,Mm to be the mode invari-
ants of the discrete states in the automaton (i.e. by letting
Dom in Definition 1 be qi 7→ Mi for each i = 1, . . . ,m)
and set the continuous dynamics within these modes to be
governed by the differential equation ẋ = fi(x), i.e. let-
ting the vector field F (qi,x) = fi(x) for each i = 1, . . . ,m,
respectively. The resulting hybrid automaton would have

|Q| = m discrete states and no discrete transitions between
them. Clearly, this would not be an adequate model, since
the original system will most likely evolve into and out of the
sets M1, . . . ,Mm. This fact raises an immediate problem: in
order to have discrete transitions in the hybrid automaton
one is required to specify their enabling guards, i.e. sets
of states within the mode invariant of the outgoing discrete
state in which a discrete transition is possible.

q1

ẋ = 1
x < 0

q2

ẋ = 2
x = 0

q3

ẋ = 3
x > 0

x = 0 x = 0

Figure 1: Näıve construction (mode transitions impossible).

To appreciate the problem more fully, let us consider a
simple 1-dimensional system defined on the partition of the
real line R into three regions: x < 0, x = 0 and x > 0, and
where the vector fields are respectively given by f1(x) = 1,
f2(x) = 2 and f3(x) = 3 (i.e. ẋ = 1, ẋ = 2, and ẋ = 3)
inside each region. Clearly, one expects this system, when
started inside x < 0, to transition into x = 0 and then
to x > 0. In order for a hybrid automaton to faithfully
model the behaviour of this system, we require two discrete
transitions that take the state from x < 0 to x = 0 and
from x = 0 to x > 0; however, in the former transition it is
not possible to specify x = 0 to be the guard (as shown in
Fig. 1), since this set lies outside of the mode invariant x < 0
of the outgoing discrete state. It is possible to declare the
transition guard to be in some thin layer near the boundary,
e.g. δ < x < 0, where − 1

δ
is large, but any such choice of δ

would be rather arbitrary in the general case. Furthermore,
there would remain another important problem, this time
with the latter transition from x = 0 to x > 0: in order to
make such a transition without creating discontinuities (in
this case “gaps”) in the trajectory through reset maps, the
state of the system needs to lie within the mode invariant
of the destination discrete state when the transition guard
is enabled. The guard x = 0 is thus also unsuitable in this
case and there is no easy fix to this problem.

Instead of using M1, . . . ,Mm as mode invariants in the
automaton, one may instead opt to use their closures
M1, . . . ,Mm with a view to enabling the transition guards
on appropriate subsets of the boundaries ∂M1, . . . , ∂Mm,
which would now lie inside the corresponding mode invari-
ants. This approach, while conceptually simple, has a num-
ber of serious deficiencies and results in hybrid automata
that exhibit chattering runs, i.e. can perform an arbitrary
number of discrete transitions without advancing the con-
tinuous state or time.

The use of set closures additionally overlooks an impor-
tant computational drawback, which is that closures are typ-
ically very difficult to compute exactly for important classes
for sets, such as e.g. semi-algebraic sets (i.e. sets described
by a finite Boolean combination of polynomial equalities and
inequalities; see e.g. [28, Definition 8.6.1]).

Remark 1. In general for semi-algebraic sets, S cannot
be obtained from S by syntactically replacing every instance
of strict inequalities in its description by non-strict inequal-
ities (e.g. x3 − x2 ≥ 0 is not the closure of x3 − x2 > 0) [3,
Remark 3.2]. The closure of a semi-algebraic set S is given
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by the set

S = {x ∈ Rn | ∀ r > 0. ∃y ∈ S. ‖y − x‖2 < r2},

where the norm ‖‖ is the standard Euclidean distance (see
e.g. [3, Chapter 3]). Let the set S be described by a
quantifier-free formula in the theory of real arithmetic with
free variables x1, . . . , xn. By performing a syntactic substi-
tution of the free variables xi by yi (i = 1, . . . , n) everywhere
in the formula, one obtains a quantifier-free formula in the
variables y1, . . . , yn. The closure S can then be characterized
by the formula

∀ r > 0. ∃ y1, . . . , yn. S ∧ (y1 − x1)2 + · · ·+ (yn − xn)2 < r2,

where x1, . . . , xn are treated as fresh free variables and r is
a fresh bound variable. It is therefore possible to apply real
quantifier elimination to reduce this formula to an equivalent
one that is quantifier-free and features only the free variables
x1, . . . , xn.

Real quantifier elimination (QE) is computationally ex-
pensive, having complexity doubly-exponential in the num-
ber of quantifier alternations [10]. The popular CAD algo-
rithm for real QE, is doubly-exponential in the number of
variables [4], which makes it impractical for problems with
a large number of variables (using currently existing imple-
mentations).

In this paper we pursue a very different approach to con-
structing HA operational models of PWS, which does not
require computing set closures , but instead requires only
the “relevant” subsets on their boundaries and relies funda-
mentally on the notion of “entry” and “exit” sets that will be
the subject of the following section.

4. OPERATIONAL MODELS
This section will review some important definitions before

presenting an algorithm for automatically generating HA
operational models of PWS.

4.1 Fundamental Definitions
We start by defining an important set that will shortly

become of interest:

Definition 2 (Inward Crossing Set).

Enterf(S) ≡ {x ∈ Rn | ∃ ε > 0.

∀ t ∈ (0, ε). ϕt(x) ∈ S ∧ ∀ t ∈ (−ε, 0). ϕt(x) 6∈ S}

where ϕt(x) denotes the (unique) solution to the locally
Lipschitz-continuous system of ODEs ẋ = f(x).

The intuition, as suggested by the name, is that Enterf(S)
describes the states at which the system is about to evolve
inside S, after having only just evolved outside of S. Like-
wise, we define Exitf(S) to be the set of states at which
the system is about to evolve outside of S, after having
only just evolved inside, i.e. Exitf(S) ≡ Enterf(¬S), where
¬S := Rn \S. Note that such states need not necessarily lie
within S itself and may lie outside; however, they necessar-
ily lie on the boundary of S. We observe that the crossing
set, by its very definition, can be expressed by means of one
fundamental building block.

Lemma 1 (Crossing Set Deconstruction).
Enterf(S) ≡ Inf(S) ∩ In−f(¬S) , where

Inf(S) ≡ {x ∈ Rn | ∃ ε > 0. ∀ t ∈ (0, ε). ϕt(x) ∈ S}.

Intuitively, Inf(S) denotes the states in Rn from which the
motion of the system takes place within the set S for some
time segment immediately following 0 (i.e. in the immediate
future). By analogy, when considering −f, the reverse of the
vector field f, In−f(S) denotes the states in Rn from which
the motion of the system took place within the set S for
some time segment immediately preceding 0 (i.e. in the
immediate past).

In the special case when the system ẋ = f(x) has poly-
nomial right-hand sides and S is a semi-algebraic set, the
sets Inf(S), and hence In−f(S), are also semi-algebraic and
can be computed exactly (a result due to Liu et al. [25]).
As a consequence, the sets Enterf(S) and Exitf(S) are also
computable and semi-algebraic under these assumptions.

We stress the fact that the boundary of S need not be
included in Enterf(S) ∪ Exitf(S). In particular, the set

Bouncef(S) ≡ Inf(S) ∩ In−f(S)

describes those states that may leave S momentarily at a
point while evolving within S before and after the “bounce”
and can therefore lie outside of Enterf(S) ∪ Exitf(S). Ap-
pendix B provides an illustration to help develop some in-
tuition about the meaning of these sets.

4.2 Generating Hybrid Automata
We now have at our disposal the machinery necessary

for building operational models of piecewise-smooth systems
ẋ = F(x), i.e. systems of the form:

ẋ =


f1(x) x ∈M1 ,

...

fm(x) x ∈Mm .

Given such a system, our aim is to synthesize a hybrid au-
tomaton that provides an adequate model of the behaviour
of the system. To do this, our approach we will be to first
augment the original invariant modes of the system Mi with
additional states, before they can become mode invariants
of a hybrid automaton. This step requires a definition.

Definition 3. Given a semi-algebraic set S ⊆ Rn and a
system of polynomial ODEs ẋ = f(x), the augmented set of
S with respect to this system, Aug(S, f), is defined by

Aug(S, f) ≡ S ∪ Enterf(S) ∪ Exitf(S) ∪ Bouncef(S) .

In the context of piecewise-smooth systems of the form
ẋ = F(x), whenever we wish to augment the set Mi with re-
spect to the system ẋ = fi(x), we shall adopt a more concise
notation and simply write Mi, i.e. Mi ≡ Aug(Mi, fi).

The definition extends each invariant mode S with its “en-
try”, “exit”and“bounce”sets. The main intuition being that
if the system was to enter or exit the mode invariant S with
respect to the dynamics f then it will do so by necessarily
crossing those sets. The set Bouncef(S) allows the evolution
to continue within S after “momentarily exiting” S. If in
addition the mode invariants have to satisfy a global con-
straint M , then it should be accounted for by intersecting it
with Aug(Mi, fi).

Algorithm 1 gives a pseudocode procedure for generating
a hybrid automaton HAF. The procedure begins construct-
ing the automaton by first creating m distinct discrete states
Q = {q1, . . . , qm} (line 1), defining X to be Rn (line 2) and
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creating a set of edges (i.e. transitions) E by computing the
Cartesian product Q×Q and removing all edges of the form
(qi, qi), i.e. removing all stuttering/self-looping transitions
(line 3). It then proceeds to initially assign the empty set
to all the remaining variables on line 4. The algorithm then
proceeds to create the modes of the hybrid automaton HAF

in its first loop (lines 5–12), where it builds the extensional
definition of F by assigning the vector field fi to the discrete
state qi (line 6), augmenting each set Mi with its “entry”,
“exit” and “bounce” sets (line 7) and using this to build an
extensional definition of the Dom mapping (line 8) which
provides the mode invariant Mi for each state qi of the hy-
brid automaton. Lines 9–11 are responsible for converting
the initial set of states for the PWS into one for the hy-
brid automaton (this step can in fact be factored out of the
algorithm and performed separately).

The second loop of the algorithm (lines 13–16) constructs
the discrete transitions and is responsible for defining the
discrete transition behaviour of the resulting automaton.
The loop iterates through all the transitions constructed on
line 3 and defines the guards (line 14) and reset maps (line
15) associated with each transition. The reset map is cho-
sen to be the identity and therefore does not affect the state
of the system upon taking any transition. Different pos-
sible choices for the guard condition GC(i, j) (line 14) are
discussed in the next section.

Data: M ⊆ Rn,M1, . . . ,Mm ⊆M, f1, . . . , fm : Rn →
Rn, X0 ⊆M

Result: Hybrid automaton HAF

1 Q← {q1, . . . , qm};
2 X ← Rn;
3 E ← Q×Q \ {(q1, q1), (q2, q2), . . . (qm, qm)};
4 Init,Dom, F,G,R← ∅;
5 foreach i ∈ {1, . . . ,m} do
6 F ← F ∪ {((qi,x), fi(x))};
7 Mi ← Aug(Mi, fi) ∩M ;
8 Dom← Dom ∪ {qi 7→Mi};
9 if X0 ∩Mi 6= ∅ then

10 Init← Init ∪ {(qi,x) | x ∈Mi ∩X0}
11 end

12 end
13 foreach e = (qi, qj) ∈ E do
14 G← G ∪ {(e,GC(i, j))};
15 R← R ∪ {((qi, qj),x 7→ {x})}
16 end
17 return (Q,X,F, Init,Dom, E,G,R)

Algorithm 1: Procedure for synthesizing a HA from
PWS.

4.3 Discrete Transition Behaviour
The transition guard G(e) = GC(i, j), i 6= j, for the tran-

sition qi → qj entirely determines the discrete transition be-
haviour of the automaton. In what follows, we will consider
three choices for this formula.

Remark 2. We stress the fact that these are by no means
the only possible semantics; they are primarily meant to ex-
emplify how the method works and how one can adapt Al-
gorithm 1 to generate operational models exhibiting qualita-
tively different behaviours.

Recall that mode qi (resp. qj) has mode invariant Mi (resp.
Mj).

I ≡ Mi ∧Mj ∧ Infj (Mj)

II ≡ I ∧ ¬Enterfi(Mi) ∧ ¬Bouncefj (Mj)

III ≡ I ∧ ¬Infi(Mi)

Informally, these formulas are characterizing the sets of
states where (1) the augmented mode invariants Mi and
Mj intersect to allow for continuous transitions and (2)
where the trajectory of the system in mode qj can evolve
within that mode for some time, hence the intersection with
Infj (Mj). Formulas II and III impose additional constraints
on the guard. Namely, formula II additionally requires that
the guard does not feature states in the intersection of the
“entering” set of the outgoing state and the “bounce” set of
the incoming state. As will be seen in later sections, this
is primarily done to eliminate so-called chattering in the
model. Formula III is different in that it only enables a
transition guard if no further continuous motion is possible
within the mode. This has the effect that transitions must
be taken precisely when they are enabled.

Replacing GC(i, j) in line 14 of Algorithm 1 by formula I,
II or III will generally result in a different operational model
which can exhibit very different behaviour. In what follows,
we will refer to these formulas as respectively defining guard
conditions of type I, II and III.

4.4 Computability
An operational model of a PWS in the form of a hy-

brid automaton is computable using Algorithm 1 when-
ever the vector fields f1, . . . , fm are polynomial and the sets
M1, . . . ,Mm,M and X0 are semi-algebraic.

We recall that a set is semi-algebraic if it is char-
acterized by a finite Boolean combination of polyno-
mial equations and inequalities. Thus, the formula
x1 > 0 ∧ x2 = 0 ∨ x32 − x1 ≤ 0, where the symbols x1, x2 are
interpreted over the real numbers, characterizes the semi-
algebraic set {(x1, x2) ∈ R2 | x1 > 0∧x2 = 0∨x32−x1 ≤ 0}.
It suffices to consider formulas without quantifiers, e.g. ∀
and ∃, since the theory of real arithmetic admits quantifier
elimination [38] and therefore any formula featuring quanti-
fiers may be reduced to an equivalent quantifier-free formula
using a terminating procedure.4

It was shown in [25] that the set Inf(S) can be computed
exactly by employing higher-order Lie derivatives and the
ascending chain property of Noetherian rings. A Lie deriva-
tive of a polynomial p : Rn → R with respect to the polyno-
mial vector field f : Rn → Rn is also a polynomial denoted
Lf(p) and defined as Lf(p) ≡ ∇p · f =

∑n
i=1

∂p
∂xi

fi. It gives

the total derivative of the p with respect to time, i.e. the
rate of change of p along the solutions to the corresponding
system of ODEs. Higher-order Lie derivatives are defined
inductively as Lkf (p) = Lf(L

k−1
f (p)), with L0

f (p) = p.
In addition to [25], a description of the main idea behind

the procedure for constructing Inf(S) may be found in [17,
Section 5.4]; a brief sketch of this construction is also given in
Appendix A of this article. Similar ideas employing higher-
order Lie derivatives and ascending chains of ideals have
also appeared elsewhere, e.g. [33, 16]. As a consequence,

4A number of algorithms have been developed since
Tarski’s [38] and Seidenberg’s [37] seminal papers, e.g. the
CAD algorithm due to Collins [6].
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the sets Enterf(S), Exitf(S) and Bouncef(S) are also semi-
algebraic and may be computed exactly using a terminating
algorithm.

5. DYNAMIC PROPERTIES OF OPERA-
TIONAL MODELS

This section will illustrate some of the dynamic phenom-
ena observed in the operational models that we can compute
using Algorithm 1 and will discuss some of the differences
in their behaviour when different types of guard conditions
are employed.

5.1 Non-determinism
Non-determinism occurs when the piecewise-smooth sys-

tem may evolve inside more than one of its modes. At first
sight, this may look surprising because in a PWS any state
x ∈ M belongs to exactly one region Mi, i ∈ {1, . . . ,m},
if one indeed has a mathematical partition of M into these
regions, and therefore there cannot be any ambiguity in the
choice of the ODEs that should govern the continuous state
evolution at x. However, generalized solutions to the system
at x may not be unique even when the ODEs inside each
mode all have unique solutions when considered separately.
This is mirrored in our operational models, where we aug-
ment the regions Mi with their respective “entry” and “exit”
sets to obtain the augmented mode invariants Mi in the hy-
brid automaton. One may face a scenario where x ∈ Mi

and x ∈ Mj , with i 6= j, and both transition guards be-
tween the two states qi and qj are enabled. For instance,
x may lie in a region where both Mi ∧Mj ∧ Infi(Mi) and
Mi ∧Mj ∧ Infj (Mj) hold true.

The standard semantics of transition guards of hybrid au-
tomata is that they enable transitions, but do not force them
(this is known as non-urgent, or may semantics [13]). Thus,
while there is no ambiguity about the initial discrete state
of the hybrid automaton for any given x ∈M , the system is
free to take an enabled transition immediately after it starts
evolving. This non-determinism can be informally under-
stood as capturing the “instability” that arbitrarily small
perturbations in the initial state can cause in the mode
switching behaviour of the piecewise-smooth system.

5.2 Chattering Runs
A phenomenon known as chatter is traditionally associ-

ated with so-called Zeno behaviour that can occur in mathe-
matical models of hybrid systems and can present a problem
for their simulation and verification. This behaviour is non-
physical and manifests itself in the possibility of performing
an infinite number of transition in a finite amount of time.

For example, a hybrid automaton will admit chattering
runs whenever for two distinct states qi and qj there are
transitions in both directions such that their respective tran-
sition guards have non-empty intersection. Any state x
within this intersection can shuttle back and forth between
the states qi and qj an arbitrary (though perhaps not infi-
nite) number of times.

As an example, let us consider a PWS with two modes:

ẋ = f1(x) ≡

{
ẋ1 = 0 ,

ẋ2 = x22 + 2 ,
x1 ≤ 0 ,

ẋ = f2(x) ≡

{
ẋ1 = x1 + 4x2 − x1x2 ,
ẋ2 = x22 − x1 + 2 ,

x1 > 0.

By running Algorithm 1 with guard conditions of type I,
one obtains a hybrid automaton shown in Fig. 2b. This au-
tomaton admits chattering runs because on the set charac-
terized by x1 = 0∧x2 ≥ 0 the guards for transitions between
both modes are enabled simultaneously and the system may
thus shuttle back and forth arbitrarily may times without
advancing in (continuous) time. However, if one were to
employ guard conditions of type II, the resulting automaton
(Fig. 3) would be chatter-free.
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(a) Phase portrait.

q1

ẋ = f1(x)
x1 ≤ 0

q2

ẋ = f2(x)
x1 ≥ 0

x1 = 0 ∧ x2 ≥ 0x1 = 0

(b) Chattering automaton.

Figure 2: Chattering in the presence of non-determinism.

q1

ẋ = f1(x)
x1 ≤ 0

q2

ẋ = f2(x)
x1 ≥ 0

x1 = 0 ∧ x2 > 0

x1 = 0 ∧ x2 ≤ 0

Figure 3: Chatter-free automaton.

Since infinite Zeno executions cannot in practice be real-
ized, it is common to consider only the non-Zeno executions
when modelling systems using hybrid automata [22, 11] (this
is also the case with hybrid programs [35]).

We should note that infinite chattering runs are a spe-
cial kind of Zeno behaviour, which some authors distinguish
from the more involved genuine Zeno behaviour (see e.g. [2]).
Chatter-free automata may still suffer from this latter type
of Zeno behaviour. Detecting and eliminating genuine Zeno
behaviour in hybrid automata is highly non-trivial and is
the focus of ongoing research.

5.3 Mythical Modes
A piecewise-smooth system may feature a mode Mi inside

which it is altogether impossible to evolve continuously ac-
cording to its respective system of ODEs ẋ = fi(x). More
precisely, it is possible that Mi ∩ Infi(Mi) = ∅. Inside such
a mode, the (continuous) state of the system remains invari-
ant and may only change by switching into a different mode;
such a mode is sometimes called mythical [30, 31]. For ex-
ample, in a system where the state space is the real line R
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that is partitioned into 3 modes x < 0, x = 0 and x > 0
where the dynamics is respectively ẋ = 1, ẋ = 2 and ẋ = 3,
the mode x = 0 is mythical.

q1

ẋ = 1
x ≤ 0

q2

ẋ = 2
x = 0

q3

ẋ = 3
x ≥ 0

x = 0

x = 0

Figure 4: Mythical mode q2.

Following our approach, the mode invariants for the hy-
brid automaton are augmented to be x ≤ 0, x = 0 and
x ≥ 0 respectively, and a transition from x ≤ 0 into x ≥ 0
is possible without ever visiting the mythical mode. In gen-
eral, in hybrid automata constructed using our method (e.g.
Fig. 4 where only possible transitions are depicted with their
guards) it is impossible to transition into mythical modes
with any of the three types of guard conditions.

5.4 Sliding Modes
In control systems literature, it is not uncommon to en-

counter systems of the form

ẋ =

{
f1(x) s(x) > 0 ,
f2(x) s(x) < 0 ,

where s : Rn → R is some differentiable (often polyno-
mial) function. These and similar systems are sometimes
termed variable structure systems (VSS) and have been ap-
plied in discontinuous non-linear control strategies, known
as variable structure control (VSC). A phenomenon known
as sliding motion lies at the heart of an important class
of variable structure control, known as sliding mode con-
trol (SMC), which, broadly speaking, achieves system order
reduction by steering the trajectories of an n-dimensional
system onto an n − 1 dimensional switching hyper-surface
in the system’s state space, defined by s = 0. The so-called
sliding motion taking place on the hyper-surface corresponds
to the infinitely-fast switching between the modes governing
the evolution on either side of the surface [45], i.e. inside
regions where s > 0 and s < 0.

Remark 3. Note however, that the description of the sys-
tem may not explicitly prescribe any dynamics on the switch-
ing surface s = 0 itself.

In practice, sliding motions are often modelled by introduc-
ing a so-called equivalent control [41] on the switching sur-
face; this is achieved by letting

ẋ = fs(x) =
f1(x) + f2(x)

2
+ ueq

f1(x)− f2(x)

2
,

where ueq =
Lf1(s) + Lf2(s)

Lf2(s) − Lf1(s)
, be the sliding dynamics on

the surface s = 0 (e.g. see [32]).
Let us consider a 2-dimensional non-linear system with a

1-dimensional sliding mode that was obtained by applying

an equivalent control. The system is given by:

ẋ = f1(x) ≡

{
ẋ1 = x32 +

3x22
8

+ 3x2
64
− 255

512
,

ẋ2 = −x1
8
− x1x2 ,

x2 > 0 ,

ẋ = f2(x) ≡

{
ẋ1 = −2x32 +

9x22
8

+ 123x2
320
− 303

640
,

ẋ2 = 0 ,
x2 = 0 ,

ẋ = f3(x) ≡

{
ẋ1 = x32 −

3x22
2

+ 3x2
4
− 3

8
,

ẋ2 = x1
2
− x1x2 ,

x2 < 0 .
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(a) Phase portrait.
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(b) Stable and unstable sliding.

Figure 5: Piecewise-smooth system ẋ = F(x) with a sliding
mode at x2 = 0 that is unstable when x1 > 0 (shown in red)
and a stable when x1 < 0 (in green).

Sliding occurs on the set characterized by x2 = 0 and
ẋ = f2(x) is the equivalent control dynamics which steers
the system along the surface x2 = 0 (Fig. 5a). The system
exhibits both stable and unstable sliding behaviour, which
can be observed in the phase portrait, as shown in Fig. 5b.
Roughly speaking, in the neighbourhoods of states where the
sliding mode is stable the vector fields are“pointing towards”
the sliding set, whereas in the neighbourhood of states where
it is unstable the vector fields are “pointing outwards” away
from the set.

For this system, different types of guard conditions lead to
radically different operational models. The resulting hybrid
automata employing guard conditions of type I, II and III
are respectively shown in Fig. 6, Fig. 7 and Fig. 8.

q2

ẋ = f2(x)
x2 = 0

q3

ẋ = f3(x)
x2 ≤ 0

q1

ẋ = f1(x)
x2 ≥ 0

x2
=

0x2
=

0
∧ x

1
≤

0

x
2 =

0

x
2 =

0 ∧
x
1 ≤

0

x2 = 0 ∧ x1 ≤ 0

x2 = 0 ∧ x1 ≤ 0

Figure 6: Hybrid automaton model with guard conditions
of type I.
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q2

ẋ = f2(x)
x2 = 0

q3

ẋ = f3(x)
x2 ≤ 0

q1

ẋ = f1(x)
x2 ≥ 0

x2
=

0
∧ x

1
≥

0
x2

=
0
∧ x

1
<

0

x
2 =

0 ∧
x1 ≥

0

x
2 =

0 ∧
x
1 <

0

Figure 7: Hybrid automaton model with guard conditions
of type II.

q2

ẋ = f2(x)
x2 = 0

q3

ẋ = f3(x)
x2 ≤ 0

q1

ẋ = f1(x)
x2 ≥ 0

x2 = 0 ∧ x1 > 0 x2 = 0 ∧ x1 > 0

Figure 8: Hybrid automaton model with guard conditions
of type III.

The three automata differ in the way they model non-
determinism in the system. In particular guard conditions
of type III result in the automaton in Fig. 8, which is com-
pletely deterministic and only models the stable sliding tak-
ing place in the system; there is no non-determinism corre-
sponding to unstable sliding in this operational model. In
practice, this behaviour is un-physical because unstable mo-
tions can leave the unstable sliding mode under arbitrarily
small perturbations in the state or the vector field. As such,
this operational model represents a mathematical idealiza-
tion which is of little use when modelling physical systems.
However, if physical considerations are unimportant, the
model is interesting because it has the property that discrete
transitions are taken precisely when they are enabled, in a
way that is analogous to some non-standard urgent/must
semantics for transition guards of hybrid automata.

The hybrid automaton in Fig. 7 models both stable and
unstable sliding and is additionally chatter-free, whereas the
automaton in Fig. 6 admits chattering runs when the contin-
uous state is at the origin. Of all these operational models,
the one employing guard conditions of type II (in Fig. 7) is
perhaps the most physically meaningful and faithful to the
intended behaviour of the system.

6. OUTLOOK AND RELATED WORK
Having automatic means of computing operational mod-

els of systems which can be concisely specified (but whose
operational models require an unreasonable amount of effort
and care to explicitly write down manually) is a significant
enabling factor. In general, computing adequate hybrid au-
tomaton models of systems is highly non-trivial [29]. The
examples used in this paper are very simple and are intended
to highlight differences between the different models; more
interesting examples of PWS lead to automata that are in-
deed quite formidable. We have implemented our HA syn-
thesis algorithm in Mathematica and are able to generate au-

tomata in the format of the verification tool SpaceEx [14].5

The hybrid automata we are able to generate can provide
suitable models for addressing the problem of verification
(e.g. of safety and liveness properties) and benefit from a
large and growing number of software tools developed to
verify or simulate hybrid systems [14, 24, 5, 15, 43]. Verifi-
cation technology for hybrid systems has improved tremen-
dously in the last two decades; however, in much of existing
work there are significant restrictions on the form of hybrid
automata, such as e.g. only allowing linear ODEs to govern
continuous evolution, or only allowing a specific class of sets
(e.g. polytopes) to act as mode invariants for the states of
the automaton. We should note that in this sense the class
of systems considered in this paper is very broad because it
allows for non-linear continuous dynamics and for arbitrary
semi-algebraic sets to act as mode invariants and transition
guards.

It is our hope our techniques will in future be applied to
modelling and verification of properties in systems with engi-
neering applications that employ variable structure control.
We stress, however, that many important questions remain
unresolved. For instance, the difficult task of categorizing
and classifying the possible kinds of operational models (be-
yond the three presented) remains to be addressed. Interest-
ing questions as to which of the many possible types of oper-
ational semantics for PWS that can be obtained through us-
ing techniques described in this paper are “physically mean-
ingful” (and for what phenomena) present many intriguing
avenues for future research.

6.1 Related Work
Lygeros et al. studied existence and uniqueness of exe-

cutions of hybrid automata in [26], giving conditions under
which hybrid automata are deterministic and non-blocking.
We note that there are important differences in definitions,
e.g. the use of semi-open time intervals in [26], such as in

Out(qi) ≡ {x ∈ Rn | ∀ ε. ∃ t ∈ [0, ε). ϕt(x) 6∈Mi},

where Mi = Dom(qi). This differs from definitions used in
this paper, e.g.

¬Infi(Mi) ≡ {x ∈ Rn | ∀ ε. ∃ t ∈ (0, ε). ϕt(x) 6∈Mi}.

Remark 4. Similar notions also exist in the ODE litera-
ture, e.g. “ingress” and “egress” sets used to state and prove
the Ważewski principle ([21, p. 282],[7]).

The work in [26] is also similar in using Lie derivatives of
functions to reason about the transition behaviour; however,
the authors consider a special class of hybrid automata in
which mode invariants can be characterized by sub-level sets
of analytic functions, i.e. σ(x) ≥ 0. The same restriction
was used in the work of Johansson et al. [23] and already
rules out systems in which mode invariants are given by
polytopes. We work under much more general assumptions
where the mode invariants are semi-algebraic sets and work
with their representations directly. Further investigations of
existence and uniqueness of executions of hybrid automata
were reported in [27].

5An implementation is available from http://www.lix.
polytechnique.fr/˜ghorbal/EMSOFT17.
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7. CONCLUSION
In this paper we presented a methodology for automat-

ically synthesizing hybrid automata from descriptions of
piecewise-smooth polynomial systems, i.e. systems of dis-
continuous ODEs that are polynomial on disjoint semi-
algebraic sets forming a partition of the state space. The
hybrid automata thus obtained provide operational models
of piecewise-smooth systems, which can behave in different
ways, depending on certain choices in formulating the con-
ditions on the transition guards. We have described in Sec-
tions 4.2, 4.3 three alternative choices that can be exercised
in this regard, and which can be thought of as giving differ-
ent operational meaning (i.e. semantics) to the piecewise-
smooth systems. Many more choices are possible and the
task of studying and classifying these possibilities presents
a very interesting direction for further research.

One of our main aims in this paper was to present a case as
to why it is not meaningful to speak of “the hybrid automa-
ton model” of a given piecewise-smooth system without a
precise description of how the said hybrid automaton model
was created. We argue that a synthesis algorithm, such as
that presented in Section 4.2, is needed in order to provide
this description.

We believe that correct modelling of piecewise-smooth sys-
tems is a problem that is of more than just theoretical in-
terest, since systems of this type occur frequently in control
engineering (often in the context of autonomous switching
or sliding mode controllers). Their representation as differ-
ential equations active inside certain designated regions is
deceptively simple and great care needs to be taken when
extracting operational models from these simple representa-
tions. Our work addressed some of the fundamental difficul-
ties inherent in this task.
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R. Ray, O. Lebeltel, R. Ripado, A. Girard, T. Dang,
and O. Maler. Spaceex: Scalable verification of hybrid
systems. In Proceedings of the 23rd International
Conference on Computer Aided Verification, CAV’11,
pages 379–395. Springer, 2011.

[15] N. Fulton, S. Mitsch, J.-D. Quesel, M. Völp, and
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APPENDIX
A. COMPUTING “IN SETS” EXACTLY

To give an idea of how Inf(S) is computed exactly, con-
sider a set S which is given by p ≤ 0, where p is some poly-
nomial function in the state variables x1, . . . , xn with real
coefficients. Firstly, note that each point x in the interior
of S, i.e. satisfying p < 0 necessarily lies inside Inf(p ≤ 0)
because motion within the interior is always possible within
some open neighbourhood. The set p < 0 thus provides the
first under-approximation of the set Inf(p ≤ 0). We now re-
fine this under-approximation by adding some of the states
satisfying p = 0, for which a sufficient (but not necessary)
condition for membership in Inf(p ≤ 0) is that of satisfy-
ing the inequality Lf(p) < 0. This is intuitive because the
rate of change of p at such a state is negative and therefore
the system will immediately evolve into the set satisfying
p < 0. However, for states satisfying p = 0 and Lf(p) = 0,
one needs to check that the second-order Lie derivative is
negative (i.e. L2

f (p) < 0) in order to conclude their member-
ship in Inf(p ≤ 0), and so on for higher-order Lie derivatives.
Intuitively, these cases correspond to situations where “the
velocity is zero, but the acceleration is negative”, etc., which
likewise ensures that the system cannot evolve into a state
satisfying p > 0 (i.e. the complement of p ≤ 0) immedi-
ately afterwards. The set Inf(p ≤ 0) is then constructed as
follows:

Inf(p ≤ 0) ≡ p < 0

∨ (p = 0 ∧ Lf(p) < 0)

∨ (p = 0 ∧ Lf(p) = 0 ∧ L2
f (p) < 0)

...

∨ (p = 0 ∧ Lf(p) = 0 ∧ · · · ∧ Lkf (p) ≤ 0)

The fact that the number k is finite and can be computed
is a consequence of Hilbert’s basis theorem and the ascend-
ing chain property of Noetherian rings (see e.g. [28, Sec.
2.3.2]). These fundamental results guarantee that one is

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 
268



always able to find a k ∈ N such that the ideal member-
ship LKf (p) ∈ 〈p,Lf(p), . . . ,L

k
f (p)〉 6 holds for all K ≥ k.

This property is equivalent to the statement that for each
K ≥ k the following equality holds: LKf (p) = α0p +

α1Lf(p)+· · ·+αkLkf (p), where the coefficients α0, α1, . . . , αk
are some polynomials in the ring R[x1, . . . , xn]. Thus, when-
ever p = Lf(p) = · · · = Lkf (p) = 0 holds, one necessarily has

LKf (p) = 0 for all K ≥ 0, and thus it is impossible to grow
the under-approximation of Inf(p ≤ 0) by adding any more
disjuncts of the form p = 0 ∧ Lf(p) = 0 ∧ · · · ∧ Lkf (p) =

0 ∧ · · · ∧ LKf (p) < 0 for any K > k and the construction is
therefore complete. In practice, the number k is computed
using Gröbner bases (e.g. see [9, Chap. 2]).

B. ENTER, EXIT AND BOUNCE SETS
Consider a semi-algebraic set described by the formula

S ≡ x21 + (x2 + 3)2 < 6 ∧ −3 ≤ x2 and let the dynamics of
the system, ẋ = f(x), be given by the system of polynomial
ODEs: ẋ1 = x1x

2
2 − 1, ẋ2 = −x1. Fig. 9a shows the set S
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(a) Semi-algebraic set S ⊂ R2
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(b) Enterf(S) and Exitf(S)

Figure 9: Semi-algebraic set, along with its “entry” states
(in green) and “exit” states (in red).

along with some of the trajectories of the system. The set
of “entering states”, given by

Enterf(S) =
(
x2 + 3 = 0 ∧ x1 < 0 ∧ x21 + x22 + 6x2 + 3 < 0

)
∨ (x2 + 3 > 0 ∧ x21 + x22 + 6x2 + 3 = 0 ∧ x21x22 < x1 (x2 + 4)),

is shown in green in Fig. 9b, and

Exitf(S) =
(

0 < x1 ≤
√

6 ∧ x2 + 3 = 0
)
∨
(
x2 + 3 > 0

∧ x21 + x2 (x2 + 6) + 3 = 0 ∧ x21x22 > x1 (x2 + 4)
)

is shown in red. Note that these two sets need not necessarily
include all the points on the boundary of S. The black
points in Fig. 9b represent states on the boundary which are
neither in Enterf(S) nor Exitf(S). In particular, Bouncef(S)
includes the point at the centre of the semi-circle, i.e. x1 =
0∧x2 = −3, whereas the remaining three points in the figure
belong to Bouncef(¬S).

6i.e. LKf (p) is in the ideal generated by the finite set of

polynomials {p,Lf(p), . . . ,L
k
f (p)}
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Abstract We propose a method for verifying persistence of nonlinear hybrid sys-
tems. Given some system and an initial set of states, the method can guarantee
that system trajectories always eventually evolve into some specified target sub-
set of the states of one of the discrete modes of the system, and always remain
within this target region. The method also computes a time-bound within which
the target region is always reached. The approach combines flow-pipe compu-
tation with deductive reasoning about invariants and is more general than each
technique alone. We illustrate the method with a case study concerning showing
that potentially destructive stick-slip oscillations of an oil-well drill eventually
die away for a certain choice of drill control parameters. The case study demon-
strates how just using flow-pipes or just reasoning about invariants alone can be
insufficient. The case study also nicely shows the richness of systems that the
method can handle: the case study features a mode with non-polynomial (nonlin-
ear) ODEs and we manage to prove the persistence property with the aid of an
automatic prover specifically designed for handling transcendental functions.

1 Introduction
Hybrid systems combine discrete and continuous behaviour and provide a very gen-
eral framework for modelling and analyzing the behaviour of systems such as those
implemented in modern embedded control software. Although a number of tools and
methods have been developed for verifying properties of hybrid systems, most are
geared towards proving bounded-time safety properties, often employing set reachabil-
ity computations based on constructing over-approximating enclosures of the reachable
states of ordinary differential equations (e.g. [7,14,13,21]). Methods capable of proving
unbounded-time safety properties often rely (explicitly or otherwise) on constructing
continuous invariants (e.g. [42,25], and referred to in short as invariants). Such invari-
ants may be thought of as a generalization of positively invariant sets (see e.g. [5]) and
which are analogous to inductive invariants used in computer science to reason about
the correctness of discrete programs using Hoare logic.
? This material is based upon work supported by the UK Engineering and Physical Sciences

Research Council under grants EPSRC EP/I010335/1 and EP/J001058/1, the National Science
Foundation (NSF) under grant numbers CNS 1464311 and CCF 1527398, the Air Force Re-
search Laboratory (AFRL) through contract number FA8750-15-1-0105, and the Air Force
Office of Scientific Research (AFOSR) under contract number FA9550-15-1-0258.
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We argue in this paper that a combined approach employing bounded time reach-
ability analysis and reasoning about invariants can be effective in proving persistence
and safety properties in non-polynomial (nonlinear) hybrid systems. We illustrate the
combined approach using a detailed case study with non-polynomial ODEs for which
neither approach individually was sufficient to establish the desired safety and persis-
tence properties.

Methods for bounded time safety verification cannot in general be applied to prove
safety for all time and their accuracy tends to degrade for large time bounds, especially
for nonlinear systems. Verification using invariants, while a powerful technique that can
prove strong properties about nonlinear systems, relies on the ability to find invariants
that are sufficient for proving the unbounded time safety property. In practice, many
invariants for the system can be found which fall short of this requirement, often for the
simple reason that they do not include all the initial states of the system. We show how
a combined approach employing both verification methods can, in some cases, address
these limitations.

Contributions.

In this paper we (I) show that bounded time safety verification based on flowpipe con-
struction can be naturally combined with invariants to verify persistence and unbounded
time safety properties, addressing some of the limitations of each verification method
when considered in isolation. (II) To illustrate the approach, we consider a simplified
torsional model of a conventional oil well drill string that has been the subject of nu-
merous studies by Navarro-López et al. [34]. (III) We discuss some of the challenges
that currently stand in the way of fully automatic verification using this approach. Ad-
ditionally, we provide a readable overview of the methods employed in the verification
process and the obstacles that present themselves when these methods are applied in
practice.

2 Safety and Persistence for Hybrid Automata
2.1 Preliminaries

A number of formalisms exist for specifying hybrid systems. The most popular frame-
work at present is that of hybrid automata [3,19], which are essentially discrete tran-
sition systems in which each discrete state represents an operating mode inside which
the system evolves continuously according to an ODE under some evolution constraint.
Additionally, transition guards and reset maps are used to specify the discrete transition
behaviour (i.e. switching) between the operating modes. A sketch of the syntax and
semantics of hybrid automata is as follows.

Definition 1 (Hybrid automaton [26]). Formally, a hybrid automaton is given by
(Q,V ar,f , Init, Inv, T,G,R), where

• Q = {q0, q1, . . . , qk} is a finite set of discrete states (modes),
• V ar = {x1, x2, . . . , xn} is a finite set of continuous variables,
• f : Q × Rn → Rn gives the vector field defining continuous evolution inside each

mode,
• Init ⊂ Q× Rn is the set of initial states,
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• Inv : Q → 2R
n

gives the mode invariants constraining evolution for every discrete
state,

• T ⊆ Q×Q is the transition relation,
• G : T → 2R

n

gives the guard conditions for enabling transitions,
• R : T → 2R

n×Rn gives the reset map.

A hybrid state of the automaton is of the form (q,x) ∈ Q×Rn. A hybrid time trajectory
is a sequence (which may be finite or infinite) of intervals τ = {Ii}Ni=0, for which
Ii = [τi, τ

′
i ] for all i < N and τi ≤ τ ′i = τi+1 for all i. If the sequence is finite, then either

IN = [τN , τ
′
N ] or IN = [τN , τ

′
N ). Intuitively, one may think of τi as the times at which

discrete transitions occur. An execution (or a run or trajectory) of a hybrid automaton
defined to be (τ, q, ϕit(x)), where τ is a hybrid time trajectory, q : 〈τ〉 → Q (where 〈τ〉
is defined to be the set {0, 1, . . . , N} if τ is finite and {0, 1, . . . } otherwise) and ϕit(x)

is a collection of diffeomorphisms ϕit(x) : Ii → Rn such that (q(0), ϕ0
0(x)) ∈ Init , for

all t ∈ [τi, τ
′
i) ẋ = f(q(i), ϕit(x)) and ϕit(x) ∈ Inv(i). For all i ∈ 〈τ〉 \ {N} it is also

required that transitions respect the guards and reset maps, i.e. e = (q(i), q(i+ 1)) ∈ T ,
ϕiτ ′i

(x) ∈ G(e) and (ϕiτ ′i
(x), ϕi+1

τi+1
(x)) ∈ R(e).

We consider MTL3 formulas satisfied by trajectories. The satisfaction relation is of
form ρ |=p φ, read as “trajectory ρ at position p satisfies temporal logic formula φ”,
where positions on a trajectory are identified by pairs of form (i, t) where i ≤ N and
time t ∈ It. We use the MTL modality 2Iφ which states that formula φ always holds
in time interval I in the future. Formally, this can be defined as ρ |=p 2Iφ ≡ ∀p′ ≥
p s.t. (p′.2− p.2) ∈ I. ρ |=p

′
φ, where (i′, t′) ≥ (i, t) ≡ i′ > i∨ (i′ = i∧ t′ ≥ t). Similarly

we can define the modality 3Iφ which states that formula φ eventually holds at some
time in the time interval I in the future. An MTL formula is valid for a given hybrid
automaton if it is satisfied by all trajectories of that automaton starting at position (0, 0).
For clarity when writing MTL formulas, we assume trajectories are not restricted to
start in Init states and instead introduce Init predicates into the formulas when we want
restrictions.

Alternative formalisms for hybrid systems, such as hybrid programs [41], enjoy the
property of having a compositional semantics and can be used to verify properties of
systems by verifying properties of their parts in a theorem prover [44,15]. Other formal
modelling frameworks for hybrid systems, such as Hybrid CSP [24], have also found
application in theorem provers [60,62].

2.2 Bounded Time Safety and Eventuality

The bounded-time safety verification problem (with some finite time bound t > 0) is
concerned with establishing that given an initial set of states Init ⊆ Q × Rn and a set
of safe states Safe ⊆ Q × Rn, the state of the system may not leave Safe within time t
along any valid trajectory τ of the system. In the absence of closed-form solutions to
the ODEs, this property may be established by verified integration, i.e. by computing
successive over-approximating enclosures (known as flowpipes) of the reachable states
in discrete time steps. Bounded-time reachability analysis can be extended to full hy-
brid systems by also computing/over-approximating the discrete reachable states (up to
some finite bound on the number of discrete transitions).

3 Metric Temporal Logic; see e.g. [22].
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4 A. Sogokon, P. B. Jackson, T. T. Johnson

A number of bounded-time verification tools for hybrid systems have been devel-
oped based on verified integration using interval enclosures. For instance, iSAT-ODE, a
verification tool for hybrid systems developed by Eggers et al. [13] relies on the verified
integration tool VNODE-LP by Nedialkov [37] for computing the enclosures. Other ex-
amples include dReach, a reachability analysis tool for hybrid systems developed by
Kong et al. [21], which uses the CAPD library [1]. Over-approximating enclosures can
in practice be very precise for small time horizons, but tend to become conservative
when the time bound is large (due to the so-called wrapping effect, which is a problem
caused by the successive build-up of over-approximation errors that arises in interval-
based methods; see e.g. [38].) An alternative verified integration method using Taylor
models was introduced by Makino and Berz (see [4,38]) and can address some of these
drawbacks, often providing tighter enclosures of the reachable set. Implementations
of the method have been reported in COSY INFINITY, a scientific computing tool by
Makino and Berz [29]; VSPODE, a tool for computing validated solutions to parametric
ODEs by Lin and Stadtherr [23]; and in Flow∗, a bounded-time verification for hybrid
systems developed by Chen et al. [7].

Because flowpipes provide an over-approximation of the reachable states at a given
time, verified integration using flowpipes can also be used to reason about liveness
properties such as eventuality, i.e. when a system is guaranteed to eventually enter some
target set having started off at some point in an initial set. The bounded-time safety and
eventuality properties may be more concisely expressed by using MTL notation, i.e. by
writing Init→ 2[0,t] Safe, and Init→ 3[0,t] Target, where Init describes the initial set of
states, Safe ⊆ Q × Rn is the set of safe states and Target ⊆ Q × Rn is the target region
which is to be eventually attained.

Remark 2. The bounded time eventuality properties we consider in this paper are more
restrictive than the general (unbounded time) case. For instance, consider a continuous
2-dimensional system governed by ẋ1 = x2, ẋ2 = 0 and confined to evolve in the region
where x2 > 0. If one starts this system inside a state where x1 = 0, it will eventually
evolve into a state where x1 = 1 by following the solution, however one may not put a
finite bound on the time for this to happen. Thus, while x1 = 0→ 3[0,∞) x1 = 1 is true
for this system the bounded time eventuality property x1 = 0 → 3[0,t] x1 = 1, will not
hold for any finite t > 0.

2.3 Unbounded Time Safety

A safety property for unbounded time may be more concisely expressed using an MTL
formula:

Init→ 2[0,∞) Safe.

A proof of such a safety assertion is most commonly achieved by finding an appropri-
ate invariant, I ⊆ Q × Rn, which contains no unsafe states (i.e. I ⊆ Safe) and such
that the state of the system may not escape from I into an unsafe state along any valid
trajectory of the system. Invariance is a special kind of safety assertion and may be
written as I → 2[0,∞) I. A number of techniques have been developed for proving in-
variance properties for continuous systems without the need to compute solutions to the
ODEs [49,41,58,25,17,53].
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2.4 Combining Unbounded Time Safety with Eventuality to Prove Persistence

In linear temporal logic, a persistence property states that a formula is ‘eventually al-
ways’ true. For instance, using persistence one may express the property that a system
starting in any initial state always eventually reaches some target set and then always
stays within this set. Using MTL notation, we can write this as:

Init→ 3[0,∞) 2[0,∞) Target.

Persistence properties generalize the concept of stability. With stability one is concerned
with showing that the state of a system always converges to some particular equilibrium
point. With persistence, one only requires that the system state eventually becomes
always trapped within some set of states.

In this paper we are concerned with a slightly stronger form of persistence, where
one ensures that the target set is always reached within some specified time t:

Init→ 3[0,t] 2[0,∞) Target.

We observe that a way of proving this is to find a set I ⊆ Target such that:

1. Init→ 3[0,t] I holds, and
2. I is an invariant for the system.

This fact can be stated more formally as a rule of inference:

(Persistence)
Init→ 3[0,t] I I → 2[0,∞) I I → Target

Init→ 3[0,t] 2[0,∞) Target
.

Previous Sections 2.2 and 2.3 respectively surveyed how the eventuality premise Init→
3[0,t] I and invariant premise I → 2[0,∞) I can be established by a variety of automated
techniques. In Section 5 we explore automation challenges further and remark on on-
going work addressing how to automatically generate suitable invariants I.

2.5 Using Persistence to Prove Safety

Finding appropriate invariants to prove unbounded time safety as explained above in
Section 2.3 can in practice be very difficult. It might be the case that invariants I ⊆ Safe

for the system can be found, but also ensuring that Init ⊆ I is infeasible. Nevertheless it
might be the case that one of these invariants I is always eventually reached by trajec-
tories starting in Init and all those trajectories are contained within Safe. In such cases,
Safe is indeed a safety property of the system when starting from any point in Init. More
precisely, if one can find an invariant I as explained above in Section 2.4 to show the
persistence property: Init → 3[0,t] 2[0,∞) Safe, and further one can show for the same
time bound t that: Init → 2[0,t] Safe, then one has: Init → 2[0,∞) Safe. As a result, one
may potentially utilize invariants that were by themselves insufficient for proving the
safety property.

Remark 3. The problem of showing that a state satisfying 2[0,∞) Safe is reached in finite
time t, while ensuring that the formula 2[0,t] Safe also holds (i.e. states satisfying ¬Safe
are avoided up to time t) is sometimes called a reach-avoid problem [61].
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Even if one’s goal is to establish bounded-time rather than unbounded-time safety
properties, this inference scheme could still be of use, as it could significantly reduce
the time bound t needed for bounded time reachability analysis. In practice, successive
over-approximation of the reachable states using flowpipes tends to become conserva-
tive for large values of t. In highly non-linear systems one can realistically expect to
compute flowpipes only for very modest time bounds (e.g. in chaotic systems flowpipes
are guaranteed to ‘blow up’, but invariants may still sometimes be found). Instead, it
may in some cases be possible to prove the safety property by computing flowpipes up
to some small time bound, after which the system can be shown to be inside an invariant
that implies the safety property for all times thereafter.

3 An example persistence verification problem

Stick-slip oscillations are commonly encountered in mechanical engineering in the con-
text of modelling the effects of dynamic friction. Informally, the phenomenon manifests
itself in the system becoming “stuck” and “unstuck” repeatedly, which results in un-
steady “jerky” motions. In engineering practice, stick-slip oscillations can often degrade
performance and cause failures when operating expensive machinery [36]. Although the
problem of demonstrating absence of stick-slip oscillations in a system is primarily mo-
tivated by safety considerations, it would be misleading to call this a safety verification
problem. Instead, the problem may broadly be described as that of demonstrating that
the system (in finite time) enters a state in which no stick-slip motion is possible and
remains there indefinitely. Using MTL one may write:

Init→ 3[0,t] 2[0,∞) Steady,

where Steady describes the states in which harmful oscillations cannot occur. The for-
mula may informally be read as saying that “from any initial configuration, the system
will eventually evolve within time t into a state region where it is always steady”.

As an example of a system in which eventual absence of stick-slip oscillations is
important, we consider a well-studied [34] model of a simplified conventional oil well
drill string. The system can be characterized in terms of the following variables: ϕr,
the angular displacement of the top rotary system; ϕb, the angular displacement of the
drilling bit; ϕ̇r, the angular velocity of the top rotary system; and ϕ̇b, the angular velocity
of the drilling bit. The continuous state of the system x(t) ∈ R3 can be described in
terms of these variables, i.e. x(t) = (ϕ̇r, ϕr − ϕb, ϕ̇b)T . The system has two control
parameters: Wob giving the weight applied on the drilling bit, and u = Tm giving the
surface motor torque. The dynamics is governed a non-linear system of ODEs ẋ = f(x),
given by:

ẋ1 =
1

Jr

(
− (ct + cr)x1 − ktx2 + ctx3 + u

)
, (1)

ẋ2 = x1 − x3, (2)

ẋ3 =
1

Jb

(
ctx1 + ktx2 − (ct + cb)x3 − Tfb(x3)

)
. (3)
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Verifying safety and persistence properties of hybrid systems 7

The term Tfb(x3) denotes the friction modelling the bit-rock contact and is responsible
for the non-polynomial non-linearity. It is given by

WobRb
(
µcb + (µsb − µcb)e

− γb
νf
|x3|

)
sgn(x3),

where sgn(x3) =
x3
|x3|

if x3 6= 0 and sgn(x3) ∈ [−1, 1] if x3 = 0. Constants used in the
model [34] are as follows: cb = 50Nms/rad, kt = 861.5336 Nm/rad, Jr = 2212 kgm2,
Jb = 471.9698 kgm2, Rb = 0.155575m, ct = 172.3067 Nms/rad, cr = 425Nms/rad,
µcb = 0.5, µsb = 0.8, γb = 0.9, νf = 1 rad/s. Even though at first glance the system
looks like a plain continuous system with a single set of differential equations, it is
effectively a hybrid system with at least 3 modes, where the drilling bit is: “rotating
forward” (x3 > 0), “stopped” (x3 = 0), and “rotating backward” (x3 < 0). A sub-mode
of the stopped mode models when the drill bit is stuck. In this sub-mode, the torque
components on the drill bit due to ct, cb and kt are insufficient to overcome the static
friction WobRbµcb , and sgn(x3) is further constrained so as to ensure ẋ3 = 0.

Once the drill is in operation, so-called stick-slip oscillations can cause damage
when the bit repeatedly becomes stuck and unstuck due to friction in the bottom hole
assembly. In the model this behaviour would correspond to the system entering a state
where x3 = 0 repeatedly. The objective is to verify the eventual absence of stick-slip
oscillations in the system initialised at the origin (i.e. at rest) for some given choice of
the control parameters Wob and u. Previous work by Navarro-López and Carter [34] ex-
plored modelling the simplified model of the drill as a hybrid automaton and simulated
the resulting models in Stateflow and Modelica.

0
Time (s)

0

Bit angular velocity (rad/s)

(a) Stick-slip motion (undesirable)

0
Time (s)

0

Bit angular velocity (rad/s)

(b) Stabilization (desired behaviour)

Figure 1: Simulations can exhibit stabilization with positive bit angular velocity and
stick-slip bit motion.

Simulations, such as those obtained in [34], using different models and control pa-
rameters for the drill can suggest stick-slip oscillations or their absence (illustrated in
Fig. 1) in a particular model, however the task of verifying their eventual absence can-
not be adequately addressed with simulation alone. In practice however, simulation is
incredibly useful in providing some degree of confidence in the overall result, which is
very important to know before attempting verification.

A simulation of the system with a concrete choice for the control parameters Wob =

50, 000 N and u = 6, 000 Nm, shown as a trajectory in the 3-dimensional state space
in Fig 3a, suggests that the system does not exhibit stick-slip oscillations, because the
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trajectory is observed to start at the origin, escape the surface (x3 = 0)4 and stabilize
around a point where the angular velocity of the drilling bit is positive (x3 > 0).

4 Verifying Persistence
The property of interest, i.e. the eventual absence of stick-slip oscillation that we ob-
serve in the simulation, may be phrased as the following formula in metric temporal
logic: x1 = 0∧x2 = 0∧x3 = 0→ 3[0,t] 2[0,∞) x3 > 0, which informally asserts that the
system initialised at the origin will eventually (diamond modality) enter a state where it
is always (box modality) the case that x3 > 0. In the following sections we describe a
method for proving this assertion. Following our approach, we break the problem down
into the following two sub-problems:

1. Finding an appropriate invariant I in which the property 2[0,t] x3 > 0 holds. For
this we employ continuous/positive invariants, discussed in the next section.

2. Proving that the system reaches a state in the set I in finite time when initialised at
the origin, i.e. x1 = 0 ∧ x2 = 0 ∧ x3 = 0→ 3[0,t] I. 5

4.1 Continuous Invariant

Finding continuous invariants that are sufficient to guarantee a given property is in prac-
tice remarkably difficult. Methods for automatic continuous invariant generation have
been reported by numerous authors [49,59,18,53,52,25,63,16,30,54], but in practice of-
ten result in “coarse” invariants that cannot be used to prove the property of interest, or
require an unreasonable amount of time due to their reliance on expensive real quantifier
elimination algorithms.

Stability analysis (involving a linearisation; see [56] for details) can be used to sug-
gest a polynomial function V : Rn → R, given by

V (x) = 50599.6− 14235.7x1 + 1234.22x21 − 4351.43x2 + 342.329x1x2

+ 288.032x22 − 3865.81x3 + 367.657x1x3 + 18.2594x2x3 + 241.37x23,

for which we can reasonably conjecture that V (x) ≤ 1400 defines a positively invariant
set under the flow of our non-linear system. Geometrically, this represents an ellipsoid
that lies above the surface defined by x3 = 0 in the state space (see Fig. 3b). In order to
prove the invariance property, it is sufficient to show that the following holds:6

∀ x ∈ R3. V (x) = 1400→ ∇V · f(x) < 0. (4)

Unfortunately, in the presence of non-polynomial terms 7 a first order sentence will in
general not belong to a decidable theory [51], although there has recently been progress
in broadening the scope of the popular CAD algorithm [9] for real quantifier elimination
to work with restricted classes of non-polynomial problems [57].

4 The system exhibits sliding behaviour on a portion of this surface known as the sliding set.
See [34].

5 Files for the case study are available online. http://www.verivital.com/nfm2017
6 Here∇ denotes the gradient of V , i.e. the vector of partial derivatives ( ∂V

∂x1
, . . . , ∂V

∂xn
).

7 E.g. those featured in the right-hand side of the ODE, i.e. f(x).
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Verifying safety and persistence properties of hybrid systems 9

In practice, this conjecture is easily proved in under 5 seconds using MetiTarski, an
automatic theorem prover, developed by L.C. Paulson and co-workers at the University
of Cambridge, designed specifically for proving universally quantified first order con-
jectures featuring transcendental functions (such as sin,cos, ln, exp, etc.) The interested
reader may find more details about the MetiTarski system in [2,40].

Remark 4. Although Wolfram’s Mathematica 10 computer algebra system also pro-
vides some functionality for proving first-order conjectures featuring non-polynomial
expressions using its Reduce[] function, we were unable (on our system8) to prove
conjecture (4) this way after over an hour of computation, after which the Mathematica
kernel crashed.

The automatic proof of conjecture (4) obtained using MetiTarski (provided we trust
the system) establishes that V (x) ≤ 1400 defines a positively invariant set, and thus we
are guaranteed that solutions initialised inside this set remain there at all future times.
In order to be certain that no outgoing discrete transitions of the hybrid system are
possible when the system is evolving inside V (x) ≤ 1400, we further require a proof of
the following conjecture featuring only polynomial terms:

∀ x ∈ R3. V (x) ≤ 1400→ x3 > 0. (5)

An automatic proof of this conjecture may be obtained using an implementation of a
decision procedure for first-order real arithmetic.

4.2 Verified Integration

In order to show that the system does indeed enter the positively invariant ellipsoid
V (x) ≤ 1400 in finite time, it is not sufficient to observe this in a simulation (as in
Fig. 3b), which is why we use a tool employing verified integration based on Taylor
models. Flow∗ (implemented by Chen et al. [7]) is a bounded-time safety verification
tool for hybrid systems that computes Taylor models to analyze continuous reachability.
The tool works by computing successive over-approximations (flowpipes) of the reach-
able set of the system, which are internally represented using Taylor models (but which
may in turn be over-approximated by a bounding hyper-box and easily rendered).

Fig. 2a shows the bounding boxes of solution enclosures computed from the point
initial condition at the origin using Flow∗ with adaptive time steps and Taylor models of
order 13, a time bound of 12.7 and the same control parameters used in the simulation
(i.e. u = 6, 000 Nm, Wob = 50, 000 N). We observe that once solutions escape to the
region where x3 > 0, they maintain a positive x3 component for the duration of the time
bound.

The last flowpipe computed by Flow∗ for this problem can be bounded inside the
hyper-rectangle BoundBox characterized by the formula

BoundBox ≡ 39

10
≤ x1 ≤ 4 ∧ 51

10
≤ x2 ≤

26

5
∧ 7

2
≤ x3 ≤

37

10
.

Once more, using a decision procedure for real arithmetic, we can check that the fol-
lowing sentence is true:

∀ x ∈ R3. BoundBox→ V (x) ≤ 1400.

8 Intel i5-2520M CPU @ 2.50GHz, 4GB RAM, running Arch Linux kernel 4.2.5-1.
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(a) Verified integration up to time t = 12.7
from a point initial condition at the origin.
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Figure 2: Verified integration using Flow∗.

If we are able to establish the following facts:

1. I → 2[0,∞) I (I is a continuous invariant),
2. I → Steady (inside I, there are no harmful oscillations), and
3. Init→ 3[0,t] I (the system enters the region I in finite time),

then we can conclude that Init → 3[0,t] 2[0,∞) Steady is also true and the system does
not exhibit harmful stick-slip oscillations when started inside Init. By taking Init to
be the origin x1 = 0 ∧ x2 = 0 ∧ x3 = 0, I to be the positively invariant sub-level set
V (x) ≤ 1400 and Steady to be x3 > 0, we are able to conclude the temporal property:

x1 = 0 ∧ x2 = 0 ∧ x3 = 0→ 3[0,t] 2[t,∞) x3 > 0.
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Verifying safety and persistence properties of hybrid systems 11

Verified integration using Taylor models also allows us to consider sets of possible
initial conditions, rather than initial points (illustrated in Fig. 2b). This is useful when
there is uncertainty about the system’s initial configuration; however, in practice this
comes with a significant performance overhead for verified integration.

(a) Simulation showing stabilization with posi-
tive bit angular velocity.

(b) Simulation showing eventual entry into an
ellipsoidal invariant.

Figure 3: Simulation of the hybrid system initialised at the origin with Wob = 50, 000 N
and u = 6000 Nm. The trajectory is contained by the flowpipes shown in Fig. 2a and is
observed to enter the positively invariant ellipsoid V (x) ≤ 1400, illustrating the persis-
tence property of eventual absence of stick-slip oscillations.

5 Outlook and Challenges to Automation
Correctness of reachability analysis tools based on verified integration is a soundness
critical to the overall verification approach, which makes for a strong case in favour of
using formally verified implementations. At present few are available, e.g. see recent
work by Immler [20] which presented a formally verified continuous reachability al-
gorithm based on adaptive Runge-Kutta methods. Verified implementations of Taylor
model-based reachability analysis algorithms for continuous and hybrid systems would
clearly be very valuable. One alternative to over-approximating reachable sets of con-
tinuous systems using flowpipes is based on simulating the system using a finite set of
sampling trajectories and employs sensitivity analysis to address the coverage problem.
This technique was explored by Donzé and Maler in [10]. A similar approach employ-
ing matrix measures has more recently been studied by Maidens and Arcak [28,27].

As an alternative to using verified integration, a number of deductive methods
are available for proving eventuality properties in continuous and hybrid systems
(e.g. [42,55]). These approaches can be much more powerful since they allow one to
work with more general classes of initial and target regions that are necessarily out of
scope for methods based on verified integration (e.g. they can work with initial sets that
are unbounded, disconnected, etc.) Making effective use of the deductive verification
tools currently in existence typically requires significant input and expertise on part of
the user (finding the right invariants being one of the major stumbling blocks in prac-
tice), in stark contrast to the near-complete level of automation offered by tools based
on verified integration. Methods for automatic continuous invariant generation are cru-
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cial to the mechanization of the overall verification approach. Progress on this problem
would be hugely enabling for non-experts and specialists alike, as it would relieve them
from the task of manually constructing appropriate invariants, which often requires in-
tuition and expertise. Work in this area is ongoing (see e.g. [43,25,54]). Indeed, progress
on this problem is also crucial to providing a greater level of automation in deductive
verification tools.

6 Related Work
Combining elements of qualitative and quantitative reasoning9 to study the behaviour
of dynamical systems has previously been explored in the case of planar systems by
Nishida et al. [39]. The idea of combining bounded-time reachability analysis with
qualitative analysis in the form of discrete abstraction was investigated by Clarke et al.
in [8]. Similar ideas are employed by Carter [6] and Navarro-López in [35], where the
concept of deadness is introduced and used as a way of disproving liveness properties.
Intuitively, deadness is a formalization of an idea that inside certain regions the system
cannot be live, i.e. some desired property may never become true as the system evolves
inside a “deadness region”. These ideas were used in a case study [6, Chapter 5] also
featuring the drill system studied in [34], but with a different set of control parameters
and in which the verification objective was to prove the existence of a single trajectory
for which the drill eventually gets “stuck”, which is sufficient to disprove the liveness
(oscillation) property.

Region stability is similar to our notion of persistence [45], which requires all tra-
jectories to eventually reach some region of the state space. Sound and complete proof
rules for establishing region stability have been explored and automated [47], as have
more efficient encodings of the proof rule that scale better in dimensionality [31]. How-
ever, all algorithms we are aware of for checking region stability require linear or sim-
pler (timed or rectangular) ODEs [45,47,46,31,11,48]. Strong attractors are basins of
attraction where every state in the state space eventually reaches a region of the state
space [45]. Some algorithms do not check region stability, but actually check stronger
properties such as strong attraction, that imply region stability [45]. In contrast to these
works, our method checks the weaker notion of persistence for nonlinear ODEs.

She and Ratschan studied methods of proving set eventuality in continuous sys-
tems under constraints using Lyapunov-like functions [50]. Duggirala and Mitra also
employed Lyapunov-like function concepts to prove inevitability properties in hybrid
systems [12]. Möhlmann et al. developed Stabhyil [33], which can be applied to non-
linear hybrid systems and checks classical notions of Lyapunov stability, which is a
strictly stronger property than persistence. In [32] Möhlmann et al. extended their work
and applied similar ideas, using information about (necessarily invariant) sub-level sets
of Lyapunov functions to terminate reachability analysis used for safety verification.
Prabhakar and Soto have explored abstractions that enable proving stability properties
without having to search for Lyapunov functions, albeit these are not currently applica-
ble to nonlinear systems [48]. In summary, in contrast to other works listed above, our
approach enables proving persistence properties in conjunction with safety properties

9 e.g numerical solution computation with “qualitative” features, such as invariance of certain
regions.
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for nonlinear, non-polynomial hybrid systems and does not put restrictions on the form
or the type of the invariant used in conjunction with bounded time reachability analysis.

7 Conclusion
This paper explored a combined technique for safety and persistence verification em-
ploying continuous invariants and reachable set computation based on constructing
flowpipes. The approach was illustrated on a model of a simplified oil well drill string
system studied by Navarro-López et al., where the verification objective is to prove ab-
sence of damaging stick-slip oscillations. The system was useful in highlighting many
of the existing practical challenges to applying and automating the proposed verifica-
tion method. Many competing approaches already exist for verifying safety in hybrid
systems, but these rarely combine different methods for reachability analysis and de-
ductive verification, which our approach combines. We demonstrate that a combination
of different approaches can be more practically useful than each constituent approach
taken in isolation.

Acknowledgements The authors wish to thank the anonymous reviewers for their care-
ful reading and valuable suggestions for improving this paper.
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Abstract
This benchmark suite is composed of nine examples of large-scale lin-

ear systems, ranging in dimensionality in the tens to the low thousands.
The benchmarks are derived from diverse fields such as civil engineering
and robotics, and are based on similar existing test sets for model-order
reduction algorithms in control and numerical analysis. Each example is
provided in the SpaceEx XML model format as single-mode hybrid au-
tomaton and are compatible with the HyST model transformation tool to
support analysis in other verification tools. Some preliminary reachability
analysis results for some of the smaller examples (on the order of tens of
dimensions) are presented using SpaceEx.
Category: academic Difficulty: low through challenge

1 Context and Origins

Symbolic state-space analysis has shown advantages in safety verification of con-
tinuous and hybrid systems in which the essential task is computing the set of
reachable states symbolically with an iterative algorithm [1]. The main challenge
of this approach is state-space explosion, which roughly is that the complexity
of computation grows exponentially with the system dimensionality [2]. To im-
plement efficiently symbolic reachability algorithms, significant effort has been
invested in finding appropriate representations for the set of states that supports
efficient operations used in the iterative computation. From classical polyhe-
dral representations which are used in hybrid systems model checkers such as
HyTech [3,4] and d/dt [5], more efficient representations such as zonotopes [6–8]
and support functions [9,10] have been proposed and integrated in tools such as
CORA and SpaceEx that use these state-of-the-art representations for analysis
of hybrid systems with linear dynamics.
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No. Benchmark Type n m p
1 Motor control system (MCS) LTI 8 2 2
2 Building model (BM) [12] LTI 48 1 1
3 International space station (ISS) [12] LTI 270 3 3
4 Partial differential equation (Pde) [12] LTI 84 1 1
5 FOM [12] LTI 1006 1 1
6 Modified nodal analysis model 1 [12](MNA-1) LTI 578 9 9
7 Modified nodal analysis model 5 [12](MNA-5) LTI 10913 9 9
8 Heat equation [12] LTI 200 1 1
9 Clamped beam model [12] LTI 348 1 1

Table 2.1: Benchmarks for the order-reduction abstraction method in which
n is dimension of the system; m and p are the number of inputs and outputs
respectively.

In spite of these advances, reachability analysis of large-scale systems with
hundreds to thousands of dimensions is still infeasible even for linear time invari-
ant (LTI) systems, i.e., without any discrete switching behavior. It is important
to develop new techniques and tools that can be used to verify the safety of
such high-dimensional systems, which usually exist in a broad range of fields
and applications such as control systems, biological systems, analog circuits,
and multi-agent systems.

To help test and evaluate reachability analysis methods and tools to en-
able verification of high-dimensional systems, we construct a set of benchmarks
that are essentially LTI systems arising from model order reduction [11, 12].
These benchmarks, which are models of practical systems in different fields,
have dimensions varying from ten to thousands. Each benchmark is given in
the SpaceEx format as a single-mode hybrid automaton and can be easily trans-
formed to other formats such as dReach [13] or Flow* [14] using the HyST model
transformation tool [15]. Reachability analysis of some of the small and medium-
size benchmarks (i.e., < 50 dimensions ) are presented. These benchmarks may
be effective to test and evaluate the scalability of verification approaches when
dealing with large-size benchmarks (i.e. > 50 dimensions).

2 Brief descriptions

Since most of benchmarks are high-dimensional, their dynamic equations cannot
be presented in detail in this paper. We refer readers to [11, 12] for for further
details and derivations, as well as our provided supplementary material.1 The

1The benchmarks are available online, http://verivital.com/hyst/benchmark-large-
scale/
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Benchmark
Initial set of states Input constraint Safety specification
X0 = {x0 ∈ Rn| lb(i) ≤ x0(i) ≤ ub(i), 1 ≤ i ≤ n} u = [u1, · · · , um]T y = [y1, · · · , yp]T

Motor con-
trol system

lb(i) = ub(i) = 0, i = 2, 3, 4, 6, 7, 8, u1 ∈ [0.16, 0.3], unsafe region:
lb(2) = 0.002, ub(2) = 0.0025, u2 ∈ [0.2, 0.4]. 0.35 ≤ y1 ≤ 0.4,
lb(3) = 0.001, ub(3) = 0.0015. 0.45 ≤ y2 ≤ 0.6.

Building
model

lb(i) = 0.0002, ub(i) = 0.00025, 1 ≤ i ≤ 10,
u1 ∈ [0.8, 1].

unsafe region:
lb(25) = −0.0001, ub(25) = 0.0001, 0.006 < y1

lb(i) = ub(i) = 0, 11 ≤ i ≤ 48, i 6= 25.

Partial dif-
ferential
equation

lb(i) = 0, ub(i) = 0, 1 ≤ i ≤ 64
u1 ∈ [0.5, 1].

safe region:
lb(i) = 0.001, ub(i) = 0.0015, 64 ≤ i ≤ 80, y1 ≤ 12
lb(i) = −0.002, ub(i) = −0.0015, 81 ≤ i ≤ 84.

International
space station lb(i) = −0.0001, ub(i) = 0.0001, 1 ≤ i ≤ 270.

u1 ∈ [0, 0.1], Safe region:
u2 ∈ [0.8, 1], −0.0005 ≤ y3 ≤ 0.0005
u3 ∈ [0.9, 1].

FOM
lb(i) = −0.0001, ub(i) = 0.0001, 1 ≤ i ≤ 400

u1 ∈ [−1, 1].
safe region:

lb(i) = 0.0002, ub(i) = 0.00025, 401 ≤ i ≤ 800, y1 ≤ 45
lb(i) = 0, ub(i) = 0, 801 ≤ i ≤ 1006.

MNA-1
lb(i) = 0.001, ub(i) = 0.0015, 1 ≤ i ≤ 2 ui = 0.1, 1 ≤ i ≤ 5, unsafe region:
lb(i) = 0, ub(i) = 0, 3 ≤ i ≤ 578, ui = 0.2, 6 ≤ i ≤ 9. y1 > 0.5

MNA-5
lb(i) = 0.0002, ub(i) = 0.00025, 1 ≤ i ≤ 10 ui = 0.1, 1 ≤ i ≤ 5, safe region:
lb(i) = 0, ub(i) = 0, 11 ≤ i ≤ 10913, ui = 0.2, 6 ≤ i ≤ 9. y1 ≤ 0.2, y1 ≤ 0.15

Heat equa-
tion

lb(i) = 0.6, ub(i) = 0.625, 1 ≤ i ≤ 2
u1 ∈ [−0.5, 0.5].

safe region:
lb(i) = 0, ub(i) = 0, 3 ≤ i ≤ 200, y1 ≤ 0.1

Clamped
beam model

lb(i) = 0, ub(i) = 0, 1 ≤ i ≤ 300
u1 ∈ [0.2, 0.8].

unsafe region:
lb(i) = 0.0015, ub(i) = 0.002, 301 ≤ i ≤ 348, y1 > 1000

Table 2.2: Initial states, input constraints and safety specification for the out-
puts of the benchmarks.

general form of the dynamics is:
ẋ(t) = Ax(t) +Bu(t)
y(t) = Cx(t),

where x(t) ∈ Rn is the system state, y(t) ∈ Rp is the system output, u(t) is the
control input, A ∈ Rn×n, B ∈ Rn×m, and C ∈ Rp×n.

In this section, we introduce briefly these benchmarks. Table 2.1 summarizes
names, number of dimensions, and numbers of inputs and outputs of the bench-
marks. The initial set of states, input constraints, and safety specifications of
the benchmarks are given in Table 2.2.

Motor control system. The motor control system benchmark includes two
motors that are controlled synchronously. Each motor has a local controller that
is designed using pole placement method [16] to control the motor to satisfy: 1)
the overshoot of the motor position is less than 16%; 2) setting time is less than
0.04 seconds; 3) No steady-state error, even in the presence of a step disturbance
input.
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Building model. The building model is a model of the Los Angeles University
Hospital with 8 floors, each of which has 3 degrees of freedom [11]. This system
has 48 state variables in which we are mostly interested in the twenty-fifth state
x25(t), which is the motion of the first coordinate. The twenty-fifth state is
the interested output of the building model and should not reach to the unsafe
region given in Table 2.2.

Partial differential equation. The partial differential equation (PDE) is
given by

∂x

∂t
= ∂2x

∂z2 + ∂2x

∂v2 + 20∂x
∂v
− 180x+ f(v, z)u(t),

where x is a function of time t, vertical position v and horizontal position z.
This problem lies on a square domain defined by two opposite points (0, 0)
and (1, 1). The function x(t, v, z) is zero on the boundaries of the square. A
state-space equation of dimension of N = nvnz of this PDE can be given by
discretizing with centered difference approximation on a grid of nv × nz points.
The input vector corresponding to f(v, z) is composed of random elements while
the output vector of the system is equated to the input vector for simplicity.
The state-space model of PDE covered in this paper corresponds to the case of
nv = 7 and nz = 12.

International Space Station (ISS). The ISS state-space model presented
in this paper is a structural model of component 1R (Russian service module)
of the International Space Station. It has 270 state variables with three inputs
and three outputs.

FOM. This is state-space model of a dynamical system with following matri-
ces:

A =


A1

A2

A3

A4

 , A1 =

 −1 100
−100 −1

 , A2 =

 −1 200
−200 −1

 ,

A3 =

 −1 400
−400 −1

 , A4 =


−1

−2
. . .

−1000

 ,
BT = C = [10 · · · 10︸ ︷︷ ︸

6

1 · · · 1︸ ︷︷ ︸
1000

].
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Modified nodal analysis model. The following Modified Nodal Analysis
(MNA) equation is constituted from connecting voltage sources to the ports of
a multiport:

EẋnA = Axn +Bup,

ip = Cxn,

in which ip and up are the port currents and voltages vectors respectively and

A =

−N −G
GT 0

 , E =

L 0
0 H

 , xn =

v
i

 ,
where v and i are variables of the MNA including node votages, inductor and
voltage source currents, respectively. The matrices −A and E represent the
conductance and susceptance matrices. The matrices −N , L andH contains the
stamps for resistors, capacitors and inductors, respectively. Matrix G consists
of 1, −1 and 0, which describe the current variables in Kirchhoff’s Current Law
(KCL) equation. The input matrix B and output matrix C satisfy B = CT .
We give two MNA models with different number of state variables in the paper.

Heat equation. The state-space model of Heat equation is giving by dis-
cretizing the following equation:

PDE
∂

∂t
T (x, t) = α

∂2

∂x2T (x, t) + u(x, t), x ∈ (0, 1); t > 0,

BCs T (0, t) = 0 = T (1, t), t > 0,
IC T (x, 0) = 0, x ∈ (0, 1).


where T (x, t) represents the temperature field on a thin rod and u(x, t) is the
heat source.

Clamped beam model. The state-space clamped beam model, which is ob-
tained by spatial discretization of an appropriate partial different equation, has
348 states, one input and one output in which the input represents the force
applied to the structure and the output is the displacement.

3 Reachability analysis

Since all benchmarks are LTI systems, there are different tools that can be used
to analyze the safety of these benchmarks such as SpaceEx [10], CORA [17],
CheckMake [18], DReach [13], and Flow* [14]. We specify each benchmark in
the SpaceEx format as a single-mode hybrid automaton, which can be easily
transformed to other formats using HyST [15].

Table 3.1 presents a preliminary overview of the computation cost of time-
bounded reachability analysis for the benchmarks using SpaceEx. These exper-
iments are conducted on a personal computer with the following configurations:
Intel (R) Core(TM) i7-2677M CPU at 1.80GHz, 4GB RAM, and 64-bit Win-
dow 7. The reachability analysis is conducted in a bounded time range [0, 20s].

5

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 
289



Benchmark
LGG STC

Time(s) Time(s)
Motor control system 27 N/A
Building model 893 N/A
Partial differential equation OOT N/A
International space station OOT N/A
FOM OOT N/A
MNA-1 OOT N/A
MNA-5 OOT N/A
Heat equation OOT N/A
Clamped beam model OOT N/A

Table 3.1: Computation cost for verification of the benchmarks using
SpaceEx [10] with two scenarios LGG [19] and STC [20]. The terms of “N/A”
and “OOT” mean “not applicable” and “out of time”.

The SpaceEx scenarios tested are LGG [19] and STC [20]. The sampling time
is selected as 0.001 for all benchmarks. We note that the sampling time and
time horizon should be selected appropriately based on the dynamics of spe-
cific system, for example, using the rule of thumb to pick the sampling time
based on the inverse of the maximum eigenvalue. Intuitively, this would mean
to pick large sampling times for slow dynamics and small sampling times for
fast dynamics. Thus, while our preliminary results as shown in Table 3.1 indi-
cate some examples are infeasible for analysis with SpaceEx, it is possible that
a more careful selection of parameters would enable analysis of these systems,
and we hope other researchers will be interested to try these examples. We set
the upper limit for SpaceEx running time as two hours, and an experiment is
said to be out of time (OOT) if we can not get the result after two hours. The
reason the STC scenario did not produce results is due to the use of outputs as
invariant conditions (i.e., y = Cx) with nondeterministic dynamics, which does
not seem to be supported when using STC.

Next, we present briefly the reachability analysis of some small and medium-
size benchmarks (i.e., less than 50 dimensions).

Motor control system. Figure 3.1 depicts the reachable set of the interested
states of the motor control system. As shown in the figure, the reachable set
does not reach to the unsafe region. Thus, we can conclude that the system
is safe in the bounded time [0, 20s]. A stronger conclusion about the safety of
the motor control system may be given by considering unbounded time safety
verification.

Building model. Figure 3.2 depicts the reachable set of the this state of
the building model. As can be seen from the figure, the reachable states of
the output do not intersect the unsafe region. Thus, we can conclude that the
system is safe in the bounded time [0, 20s]. Similar to the above motor control
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Figure 3.1: Reachable set of inter-
ested outputs of the motor control
system (in [0, 20s]) and its corre-
sponding unsafe region (the red re-
gion). The reachable set of inter-
ested outputs do not reach the un-
safe region, thus the system is safe
(in a bounded time interval [0, 20s]).
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Figure 3.2: Reachable set of inter-
ested output of the building model
system (in [0, 20s]) and its corre-
sponding unsafe region (the region
above the red line). The reachable
set of interested output do not reach
the unsafe region, thus the system
is safe (in a bounded time interval
[0, 20s]).

system, a stronger conclusion about the safety of the building model may be
given by considering unbounded time safety verification.

4 Outlook

Overall, we present in this paper a set benchmarks for purely continuous linear
systems (i.e., LTI systems), modeled as single-mode hybrid automata in the
SpaceEx model format. The benchmarks range in dimensionality from tens to
thousands of dimensions, and come from many different domains. The continu-
ous and hybrid verification community may use these benchmarks for comparing
methods and tools, especially with respect to continuous post operator bench-
marking for systems with a high number of dimensions. In ongoing and future
work, we intend to introduce additional high-dimensional benchmarks with both
piecewise affine dynamics and continuous dynamics including ones originally en-
coded as differential algebraic equations (DAEs), and are also investigating for-
malization of order-reduction methods as sound abstractions using approximate
bisimulation relations [21].
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Abstract
This benchmark suite consists of a number of examples of autonomous multi-agent sys-

tems where the agent number ranges from two to ten. The benchmarks are derived from
the field of position-based formation control in autonomous robotics and vehicles. Their
models are given as network of hybrid automata in the SpaceEx XML model format and
can be transformed to other verification tools model formats using HyST, a model trans-
formation tool. Safety of a small benchmark with two agents is analyzed using SpaceEx.
Category: academic Difficulty: low through challenge

1 Context and Origins

Intelligent autonomous systems have been a “hot” research topic for many years because of its
rigorous application domains such as robotics, unmanned aerial vehicles (UAV), autonomous
cars and sensors networks. The challenges in modeling, analysis, design and testing a such
intelligent system have attracted researchers from different disciplines such as biology, computer,
communication and control. In an early step, the intelligent behavior called “flocking behavior”
of a group of animals such as bird, insect and fish has been investigated deeply over decades
in the field of biology [1]. The behavior has been first modeled and simulated using computer
in [2]. This work has inspired a new field of modeling, control and design for autonomous systems
which is now considerably an important topic for the next generation of modern technology.

Consensus and formation controls are two fundamental problems in designing an autonomous
system that perform an intelligent behavior. Control scientists have proposed numerous proto-
cols over last decades to drive the system to achieve some control objectives [3–9]. Generally,
to perform a specific task, the agents need to exchange their information and cooperate with
each other over communication channel. The communication topology of an autonomous sys-
tem describes in detail how the information flow in the system. The communication topology
can be static, i.e. does not change over times, or dynamics, i.e. may change over times. It
can also be directed, i.e. information flows in one direction over a connection between two
agents, or undirected, i.e. the information flows in both directions over a connection between
two agents. The communication topology expresses the sensing and communicating capaci-
ties of the agents which affect significantly to the stability, controllability and the convergence
of an autonomous system. Graph theory has been proved as an powerful tool to model the
communication topology and analyze the controllability of autonomous systems [10].
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Formation control for autonomous systems [7–9] is seeking control laws to guarantee that the
agents move to pre-determined positions while keeping the system formation in some specific
shapes when moving. Depending on the sensing and communicating capacities of the agents, i.e.
the communication topology, the formation control strategies can be categorized into position-
based, displacement-based and distance-based approaches [11]. One essential safety requirement
for the system is that there is no collision when the agents are moving. These formation control
strategies have shown informally the ability of the agents avoiding collision via simulation-based
testing. To guarantee the safety of the system, its formal model need to be given and verified
using formal verification techniques.

Toward safety and liveness requirements of autonomous systems, some control algorithms
have been proposed and verified using formal verification techniques recently [12, 13]. In this
context, the formal model of an autonomous system is given based on discrete time intervals and
to guarantee the safety of the system, the controller usually can perform some particular actions
to resolve the potential risks coming. The whole system is modeled as a labeled transition system
and the safety and liveness requirements are written in form of linear temporal logic (LTL).

Inspired by above interesting works, in this paper, we obtain a set of autonomous systems
benchmarks written in SpaceEx XML format. Each agent is modeled separately as a single
hybrid automaton and the whole system is a network of hybrid automata which is basically a
composition of all agents. Different from [12,13], these benchmarks have continuous dynamics.
Therefore, their safety requirements can be verified using existing verification tools that support
verifying continuous dynamics [14–17]. In addition, when the number of agents increases, the
benchmark models become larger that makes them harder to be verified. Thus, our benchmark
suite is also useful for testing the scalability of verification tools.

The rest of the paper is organized as follows: Section 2 presents the description of an
autonomous system including the communication topology, the motion dynamics of the agents
and the position-based formation control strategies. Section 3 gives the safety analysis of some
small autonomous systems using SpaceEx. Section 4 discusses some interesting issues for the
future work and concludes the paper.

2 System descriptions

2.1 Communication topology

Directed/undirected graphs are powerful tool for modeling the interaction between agents in an
autonomous system. In this benchmark suite, the communication topologies of all autonomous
systems are modeled using directed graphs. A digraph (directed graph) defined by a tuple
(V, E), where V is a finite non-empty set of vertices and E ∈ V2 is a set of ordered pairs of
vertices, called edges. It can be understood that vertice vi ∈ V represents for the ith agent an
autonomous system and ordered edge (i, j) represents for the interaction between the agent i
and the agent j where the information flows from i to j, i.e. agent j receives the information
from agent i. To model how much information flows in communication, we use a weighted
digraph which can be defined by an adjacency matrix A = [aij ]n×n, where aii = 0, aij > 0
if (j, i) ∈ E and n = |V| is the number of agents in the system. Figure 2.1 illustrates an
example of communication topology of an autonomous system with six agents [18]. From the
communication topology, it can be seen that one agent only can collect some information from
its neighbors, not from all other agents.

2
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Figure 2.1: An example of communication topology using a weighted digraph.

Figure 2.2: Non-holonomic differential driven mobile robot.

A communication topology can be static, as in the case of the example, or dynamic, i.e. the
connections between agents can be varied over times. A dynamic communication topology may
be convenient to characterize naturally the interaction behaviors of agents in practice where the
sensing capacity of agents is limited in some ranges and hence, it can not recognize the other
agents outside of its sensing range. However, the dynamic communication topology increases
the difficulty in designing the control law to guarantee autonomous systems to perform the
intelligent flocking behavior. In this paper, the benchmarks can be categorized into static or
dynamic communication topology.

We have briefly introduced modeling interaction between agents in an autonomous system
using directed graph. Next, we give the dynamics of the agents and the formation control rules
of the autonomous system.

3
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2.2 Motion dynamic and formation control

In this paper, we consider the formation control for multiple mobile robots in a 2-dimensional
plan in which the equations of motion of a non-holonomic mobile robot depicted in Figure 2.2
are given by

ẋi = vi cos(θi),
ẏi = vi sin(θi),
θ̇i = ωi,

miv̇i = fi,

Jiω̇i = τi,

(2.1)

where (xi, yi) is the Cartesian position of the robot centre, θi is the orientation, vi is the linear
velocity, ωi is the angular velocity, mi is the mass, Ji is the mass moment of inertia, fi is the
force, and τi is the torque applied to the robot.

Since Equation 2.1 contains the nonlinear functions cos(θi) and sin(θi), the robot dynamic
is nonlinear and thus, we cannot model and analyze the system using SpaceEx. Fortunately, we
can avoid the non-holonomic constraint and obtain a linear model for the system by introducing
intermediate position variables (xhi, yhi) as follows [18].

xhi

yhi

 =

xi

yi

 + di

cos(θi)
sin(θi)

 (2.2)

We can see that (xhi, yhi) is a position off the wheel axis of the ith robot by a distance di.
Now, if we let

fi

τi

 =

 1
mi

cos(θi) − di

Ji
sin(θi)

1
mi

sin(θi) − di

Ji
cos(θi)

−1 vxi + viωi sin(θi) + diω
2
i cos(θi)

vyi − viωi cos(θi) + diω
2
i sin(θi)



Then we can obtain the new linear equations of motion for each robot as a double-integrator
system:

ẋhi = vxi,

v̇xi = bxi,

ẏhi = vyi,

v̇yi = byi.

(2.3)
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The control objective is to drive the mobile robots from their initial location (x0
hi, y

0
hi) to pre-

defined destinations (xd
hi, y

d
hi) while preserving the formation of the system during the transition,

e.g., a square formation for 4-robots team, a triangle formation for 3-robots team. Assume we
have the communication topology of the system defined by adjacent matrix A = [aij ]n×n, where
n is the number of agents in the system, the position-based formation control law for the system
is designed as follows [18].

bxi = −αx(xhi − xd
hi)− γxαxẋhi −

n∑
j=1

aij [(xhi − xd
hi)− (xhj − xd

hj)]−
n∑

j=1
γxaij(ẋhi − ẋhj)

byi = −αy(yhi − yd
hi)− γyαy ẏhi −

n∑
j=1

aij [(yhi − yd
hi)− (yhj − yd

hj)]−
n∑

j=1
γyaij(ẏhi − ẏhj)

(2.4)
where α∗ > 0 and γ∗ > 0.

The first two terms of the control law are responsible for driving each robot to its destina-
tion (goal seeking) while the last two terms of the control law are to preserve the formation
between robots (formation keeping). In term of verification, there are both liveness and safety
properties need to be verified. The liveness property relates to goal seeking objective as we
need to guarantee that each robot finally reach its destination. The safety property concerns
the formation keeping problem as it is required there is no collision when robots are moving.

With above formation control law, we can derive the closed-loop dynamic equation for the
system. Let xei = xhi − xd

hi, yei = yhi − yd
hi, xe = [xe1, ..., xen]T and ye = [ye1, ..., yen]T , the

closed-loop dynamic of the system can be written byẋe

ẍe

 =

 0n×n In

−(L+ αxIn) −γx(L+ αxIn)

 xe

ẋe


ẏe

ÿe

 =

 0n×n In

−(L+ αyIn) −γy(L+ αyIn)

 ye

ẏe

 (2.5)

where 0n×n is n-dimensional square zero matrix, In is n-dimensional identity matrix and L =
[lij ]n×n in which lii =

∑
j 6=i aij and lij = −aij , where i 6= j.

We have already described the communication topology, the system dynamics and formation
control law. Next, we formally define the safety property for the system.

3 Safety property

Informally, the system is safe if there is no collision when the robots move to their destination. In
other word, the distance between two arbitrary robots (i.e., the distance between their centers)
need to be larger than the diameter of the robots. Recall that the robots shapes are circles and
their sizes are identical. The distance between the ith and jth robots is

dij =
√

(xi − xj)2 + (yi − yj)2.

Let D be the diameter of the robot. The safety property S of the system can be defined
formally as follows

S : ∀i, j, i 6= j, t ≥ 0, dij > D. (3.1)
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The dual unsafe specification U for two arbitrary robots can be defined by the following
circle.

U : (xi − xj)2 + (yi − yj)2 ≤ D2. (3.2)

From Equation 2.2, we have:
(xhi − xhj)− (di + dj) ≤ (xi − xj) ≤ (xhi − xhj) + (di + dj)
(yhi − yhj)− (di + dj) ≤ (yi − yj) ≤ (yhi − yhj) + (di + dj)

(3.3)

The above inequality shows that we can compute the reachable sets of (xi−xj) and (yi−yj)
by bloating the reachable sets of (xhi−xhj) and (yhi−yhj) by (di +dj). Then, using the bloated
reachable sets, we can check whether they violate the safety property (i.e., whether the reachable
sets reach the corresponding unsafe region defined in Equation 3.2).

We have formally defined the safety property of the system and described briefly how to
check the safety of the system. Next, we discuss how to model the distributed autonomous
system using hybrid automata.

4 System modeling

There are three approaches for modeling an autonomous system using hybrid automata frame-
work. The first approach is that we can model the system using decentralized style in which each
agent as a hybrid automata network composed by dynamic component describing the dynamic of
the agent as defined in Equation 2.3 and controller component describing the distributed forma-
tion control law in Equation 2.4. Since the communication topology of the autonomous system
may change, the controller component may switch its operation between different modes. The
whole system will be a network of hybrid automata composing n agent’s models. In the second
approach, we can model the system using centralized style in which each agent is a single-mode
hybrid automaton describing the dynamic of the agent, the control law given in Equation 2.4
is modeled as a centralized coordinator which is a hybrid automata containing one or multiple
modes. Last but not least, we can also model the system as one single automaton describing
the closed-loop dynamic defined by Equation 2.5.

The first two modeling approaches have two advantages. First, they describe intuitively the
hierarchical architecture of the system in which each agent is a separate entity. The obtained
model in the first modeling approach illustrates the decentralized control strategy in autonomous
systems where the control signal is computed at agent side. In contrast to decentralized control
strategy, the second approach describes the centralized control strategy where the coordinator
collects the information of all agents and computes the control signals before sending them to
the agents. Second, since the first two modeling approaches separate the agent’s dynamic and
the control law, they are convenient for changing the dynamics of the agents and they also
allow modeling the switching happen between different dynamics of one agent. In addition, it
is easy to model and verify the system under a complex hybrid control law when the controller
switches between different modes along with communication topology changes. While the first
two modeling approaches are convenient for modeling complex autonomous systems, the third
approach is useful for finding an abstraction for the whole system that allows us to verify a very
large autonomous system using order-reduction abstraction method [19]. In this benchmark
suite, we use the first and the second approaches to model distributed autonomous systems.
Examples of these modeling approaches are depicted in Figure 4.1 and Figure 4.2.
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Figure 4.1: Decentralized-style approach for modeling autonomous systems using hybrid au-
tomata network.

5 Reachability analysis

The benchmark suite including 12 benchmarks (MAS2 −MAS103) is presented in Table 5.1.
In this paper, we present briefly the safety analysis of the benchmark MAS2 with two agents.
The communication topology of MAS2 shows that the robot 2 receive the information from
the robot 1. The initial intermediate positions of two robots are (x0

h1, y
0
h1) and (x0

h2, y
0
h2) where

(0 ≤ x0
h1 ≤ 0.2, 0 ≤ y0

h1 ≤ 0.1) and (0 ≤ x0
h2 ≤ 0.2, 0.9 ≤ y0

h2 = 1). Assume that the distances
between the intermediate positions and their corresponding robot centers are d1 = d2 = l = 0.1.
The robots are controlled to go to their intermediate destinations (xd

h1 = 3, yd
h1 = 3) and

(xd
h2 = 4, yd

h2 = 4) while keeping their intermediate distance dh ≥ 1 as moving. The system is
safe if the distance between two robots, i.e., between the centers of two robots, is always larger
than a threshold dmin = 0.5. We need to ensure that this threshold is larger than the size of
the robots (i.e., the diameter of the robots). The parameters for the distributed control law in
Equation 2.4 are chosen as follows: αx = 2αy = 2, γx = 2γy = 1.

Figure 5.1 describes the trajectories of the two robots. The figure shows that two robots
finally reach their destinations.

Recall that (xh1, yh1) and (xh2, yh2) are not the centers of the robots as given in Equation 2.2.
To verify the system safety, let disx = x2 − x1, disy = y2 − y1, disxh = xh2 − xh1, disyh =
yh2 − yh1, the unsafe region of the system can be defined by the following circle.

|disx|2 + |disy|2 ≤ d2
min

If the unsafe region can not be reached, then two robots are always far away from each other
at a distance d > dmin and then, we can conclude that the system is safe. From Equation 3.3,
the reachable sets of disx and disy can be derived by bloating the reachable sets of disxh and
disyh using the following constraints.

xh2 − xh1 − 2l ≤ x2 − x1 ≤ xh2 − xh1 + 2l
yh2 − yh1 − 2l ≤ y2 − y1 ≤ yh2 − yh1 + 2l

7
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Figure 4.2: Centralized-style approach for modeling autonomous systems using hybrid automata
network.

Figure 5.2 and Figure 5.3 illustrate the reachable set of disxh and disyh over times and Fig-
ure 5.4 describes the reachable set of (disx, disy) (the green polygon) which is bloated from the
reachable set of (disxh, disyh) (the green polygon). The later figure shows that (disx, disy) does
not reach the unsafe region for all times when the robots move to their destinations. Thus,
we can conclude that the system is safe. In addition, we can see that the formation control
law actually works since it drives the robots to their destinations and preserve the formation
of the robots when they are moving (i.e., the intermediate distance between the robots finally
converge to dh =

√
2.

It is worth noticing that the control parameters {αx, αy, γx, γy} assigned in Equation 2.4
affects significantly the performance of the system. As analyzed in [18], there exists conditions
for the control parameters and the communication topology to guarantee that the robots can
finally reach their destination while preserving their formation. An appropriate choices of the
control parameters can be given from these conditions. In addition, the initial condition and
the destination requirements (i.e., the destination positions of the robots) also affects the safety
property of the system. For example, if the destination requirements conflict with the formation,
the collision may occur.

8
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Figure 5.1: Trajectories of the two robots.
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Figure 5.2: Reachable set of disxh = xh2−
xh1 over times
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Figure 5.3: Reachable set of disyh = yh2 −
yh1 over times

6 Outlook

Overall, we present in this paper a set benchmarks for distributed autonomous systems, modeled
as network of hybrid automata in the SpaceEx model format. The number of the agents range
from two to ten. The position-based formation control has been successfully verified in a
benchmark with two agents. There are two important issues should be considered in future

9
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Figure 5.4: Reachable set of (disx, disy) (the green polygon), (disxh, disyh) (the blue polygon)
and the unsafe region (inside the red circle).

work. First, it is challenging to model and verify the safety and livenesss properties of the
distributed autonomous systems controlled by complex nonlinear formation control laws to
avoid collision and obstacles. We can take advantages of verification tools supporting nonlinear
hybrid systems such as Flow* [17] and C2E2 [20] in this case. Second, it would be useful for
testing verification tools if we can generate automatically distributed autonomous systems with
arbitrary large number of agents. We are going to implement this feature as an automatic
generator in Hyst [21].
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Table 5.1: Benchmark collection

No. Benchmarks n Formation Communication Topology

1 MAS2 2

2 MAS31 3

3 MAS32 3

4 MAS33 3

5 MAS41 4

6 MAS42 4

7 MAS43 4

8 MAS5 5

9 MAS7 7

10 MAS101 10

11 MAS102 10

12 MAS103 10
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Abstract Order-reduction is a standard automated approximation technique for
computer-aided design, analysis, and simulation of many classes of systems, from
circuits to buildings. To be used as a sound abstraction for formal verification, a
measure of the similarity of behavior must be formalized and computed, which we
develop in a computational way for a class of asymptotic stable linear systems as
the main contributions of this paper. We have implemented the order-reduction as
a sound abstraction process through a source-to-source model transformation in the
HyST tool and use SpaceEx to compute sets of reachable states to verify properties
of the full-order system through analysis of the reduced-order system. Our experi-
mental results suggest systems with thousand of state variables can be reduced to
systems with tens of state variables such that the order-reduction overapproximation
error is small enough to prove or disprove safety properties of interest using current
reachability analysis tools. Our results illustrate this approach is effective in tackling
the state-space explosion problem for verification of high-dimensional linear systems.

Keywords Abstraction; model reduction; order reduction; verification; reachability
analysis

1 Introduction

The state-space explosion problem is a fundamental challenge in model checking and
automated formal verification that has received significant attention from the veri-
fication community. Among many solutions, abstractions based on the concepts of
exact and approximate simulation and bisimulation relations have proved to be effec-
tive approaches for obtaining smaller state spaces by abstracting away information
that is not needed in the verification process. Such abstractions have been applied
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broadly to simplify the controller synthesis and safety verification process for com-
plex systems. Exact bisimulation relation-based abstractions for safety verification
and controller synthesis have been investigated widely in the last decade [Pappas
(2003); van der Schaft (2004); Tanner and Pappas (2003); Tabuada and Pappas
(2004)]. In this context, the outputs of the abstract system capture exactly the out-
puts of the original system. As pointed out in [Girard et al. (2008); Girard and
Pappas (2007)], the term “exact” is not adequate when dealing with continuous and
hybrid systems observed over real numbers since there may be numerical errors in
observation, noise, and other imperfections. To obtain an abstraction that guaran-
tees more robust relationship between systems, approximate bisimulation has been
proposed and studied extensively in recent years [Girard et al. (2008); Girard and
Pappas (2007); Julius (2006); Girard et al. (2006); Islam et al. (2015)]. The main ad-
vantage of this approach is that they allow a bounded precision δ which describes how
“far off” the executions of the abstraction may be from those of the original system.
Then, verifying whether the executions of the original system reach an unsafe region
U can be reduced to verify whether the executions of the abstraction (with much
lower dimension) reach the δ-neighborhood of the unsafe region U . Thus, finding an
efficient way of computing a tight bound on the precision becomes an essential task
for this approach. The proposed method shows a great benefit when it can deal both
stable and unstable systems. Balanced truncation model reduction, a well-known
technique in control [Antoulas et al. (2001)], has recently been applied to obtain ab-
stractions for formal verification of continuous and hybrid systems [Han and Krogh
(2004); Han (2005)]. The bounded precision between a system and its abstraction,
which is also essential in this framework, is determined using simulation.

Inspired by the results reported in [Girard and Pappas (2007); Han and Krogh
(2004)], in this paper, we discuss and improve the computation frameworks in existing
techniques to make them more applicable to practical high-dimensional systems.
The main contribution of our work is improving the way of computing and using
the precision δ. Our method is shown to be efficient, robust and scalable compared
with existing approaches over a set of practical benchmarks (several to a thousand
dimensions). We implement the method as a model transformation pass within the
HyST model transformation tool [Bak et al. (2015)] which enables us to easily apply
the techniques and compare results.

The remainder of the paper is organized as follows. Section 2 gives essential
definitions used throughout the paper. Section 3 presents methods to find output
abstractions of the linear time invariant (LTI) systems using the balanced trunca-
tion model reduction method. Section 4 discusses how to verify safety properties for
a full-order LTI system using its output abstraction. Section 5 describes our imple-
mentation of the method in a prototype tool, and presents a number of examples to
illustrate and evaluate the benefits of our method.

2 Preliminaries

Consider two asymptotically stable LTI systems:

Mn :

{
ẋ(t) = Ax(t) +Bu(t)
y(t) = Cx(t).

Mk :

{
ẋr(t) = Arxr(t) +Bru(t),
yr(t) = Crxr(t).
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where x(t) ∈ Rn, xr(t) ∈ Rk are the system states; y(t) ∈ Rp, yr(t) ∈ Rp are
the system outputs; u(t) is the control input; A ∈ Rn×n, Ar ∈ Rk×k, B ∈ Rn×m,
Br ∈ Rk×m and C ∈ Rp×n, Cr ∈ Rp×k are system matrices. The initial set of states
of Mn and Mk are respectively denoted by X0(Mn) ⊆ Rn, X0(Mk) ⊆ Rk and the
set of control inputs is denoted by U . We write initial conditions as x(0) ∈ X0(Mn),
xr(0) ∈ X0(Mk) and the control input as u(s) ∈ U,∀s ∈ [0, t]. In this paper, we
assume that Mn is observable and controllable.
Definition 1 Output Abstraction. Mk is called a k-dimensional output abstraction
of Mn with precision δ = [δ1, δ2, . . . , δp]T , denoted as M δ

k , where each δi is a finite
positive real if, for ∀x(0) ∈ X0(Mn) and u ∈ U, ∃xr(0) ∈ X0(Mk) such that, ∀t ≥ 0,∥∥yi(t)− yir(t)∥∥ ≤ δi, 1 ≤ i ≤ p where yi(t) is the ith component of the output y at
time t, and ‖·‖ denotes the Euclidean norm.
Informally, the output abstraction behaviors, which are defined as the trajectories of
the output over real time intervals, will approximate within δ the behaviors of the
full-order system Mn for all time.
Definition 2 Output Reach Set [Han and Krogh (2004)]. The output reach sets at
a time instant t and over a time interval [0, tf ], tf ≥ 0 of Mn respectively are:

Rt(Mn) ∆= {y(t, u, x(0))|y(t, u, x(0)) = CeAtx(0) +
∫ t

0
CeA(t−τ)Bu(τ)dτ},

R[0,tf ](Mn) ∆=
⋃

t∈[0,tf ]
Rt(Mn), where x(0) ∈ X0(Mn), u(τ) ∈ U, ∀τ ∈ [0, t].

Definition 3 Safety Specification. A safety specification S(Mn) of an LTI system
Mn formalizes the safety requirements for the output y ofMn, and is a predicate over
the output y of Mn. Formally, S(Mn) ⊆ Rp. The dual unsafe specification U(Mn) of
the system is also a predicate over the system output, i.e. U(Mn) ⊆ Rp.
Definition 4 Safety Verification. The time-bounded safety verification problem is to
verify whether the system Mn satisfies a safety specification S(Mn) over an interval
of time [0, tf ] (tf is finite and positive), which is described formally in terms of the
output reach set as:

R[0,tf ](Mn) ∩ ¬S(Mn) = ∅ ⇔Mn � S(Mn),
R[0,tf ](Mn) ∩ ¬S(Mn) 6= ∅ ⇔Mn 2 S(Mn).

If Mn satisfies S(Mn), then it is safe and we write Mn � S(Mn). If Mn does not
satisfy S(Mn), then it is unsafe and we writeMn 2 S(Mn). The notation “¬” denotes
the logical negation which corresponds to set complement in the formulas above.
Definition 5 Safety Specification Transformation. The safety specification trans-
formation is the process of finding the corresponding safety (or dually, unsafe)
specification for the output abstraction M δ

k denoted by S(M δ
k ) ∈ Rp (and dually

U(M δ
k ) ∈ Rp) from the safety specification S(Mn) of the full-order system Mn to

guarantee the safety relation defined by:
R[0,tf ](M δ

k ) ∩ ¬S(M δ
k ) = ∅ ⇒Mn � S(Mn),

R[0,tf ](M δ
k ) ∩ U(M δ

k ) 6= ∅ ⇒Mn 2 S(Mn).
(1)

The main objective of this paper is to perform the safety verification for high-
dimensional LTI systems using output abstraction and its transformed safety speci-
fication to reduce the computational complexity.
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3 Output Abstractions from Balanced Truncation Reduction

The balanced truncation model reduction (BTMR) [Moore (1981)] is a well-known
method in control which is used to find a reduced model Mk for an asymptotically
stable large scale linear system Mn so that its output trajectory captures the output
trajectory of the original system within a estimated bounded error under an identity
control input. The first step in BTMR is to implement a balanced transformation
x̃(t) = Hx(t), H ∈ Rn×n to transform Mn to an equivalent balanced system M̃n.
The k-order reduced model Mk which is also asymptotically stable is then obtained
by selecting the first k states in the state vector of M̃n and truncating the other n−k
states (i.e. xr = Sx̃(t) = SHx(t), S =

(
Ik×k 0k×(n−k)

)
). The (n + k)-dimensional

(asymptotically stable) augmented system M̄n+k is defined by:

˙̄x = Āx̄+ B̄u =
(
Ã 0
0 Ar

)
x̄+

(
B̃
Br

)
u,

ȳ = C̄x̄ =
(
C̃ −Cr

)
x̄,

where x̄ =
(
x̃
xr

)
; Ã, B̃ and C̃ are the matrices of balanced system M̃n.

To derive an output abstraction M δ
k from the system Mn, we first use BTMR

to obtain the reduced model Mk, and then determine the precision δ which relates
not only to the control input u(t) but also to the initial condition x(0). Determining
the precision δ is equivalent to determining the bounds of the augmented system’s
individual outputs. Let e1(t) = C̄eĀtx̄(0) be the zero input response and e2(t) =∫ t

0 C̄e
Ā(t−τ)B̄u(τ)dτ be the zero state response. It is easy to see that

∥∥yi(t)− yir(t)∥∥ =∥∥ȳi(t)∥∥ ≤ ∥∥ei1(t)
∥∥+

∥∥ei2(t)
∥∥ = δi, where hi(t) denotes the ith element of vector h(t).

The following theorems obtain the theoretical bounds for e1(t) and e2(t). The
sum of these two bounds gives us the precision δ.

Theorem 1 Let x̄(0) =
(
Hx(0) SHx(0)

)T , then the zero input response e1(t) of
the asymptotically stable augmented system M̄n+k satisfies the following inequality
for all t ∈ R≥0: ∥∥ei1(t)

∥∥ ≤ ∥∥C̄i∥∥ · supx(0)∈X0 ‖x̄(0)‖ , 1 ≤ i ≤ p,

where R≥0 is the set of non-negative real numbers, C̄i is the row i of the matrix C̄.

The proof of Theorem 1 is given in Appendix 7.1.

Theorem 2 Let x̄(0) =
(
Hx(0) SHx(0)

)T and P0 > 0 is the solution of the follow-
ing optimization problem:

P0 = min(trace(P )) subject to
P > 0, ĀTP + PĀ < 0, C̄Ti C̄i ≤ P

where C̄i is the row i of the matrix C̄. Then, the zero input response e1(t) of the
asymptotically stable augmented system M̄n+k satisfies the following inequality for
all t ∈ R≥0: ∥∥ei1(t)

∥∥ ≤ supx(0)∈X0

√
x̄(0)TP0x̄(0), 1 ≤ i ≤ p,
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The proof of Theorem 2 is given in Appendix 7.2.

Theorem 3 [Han and Krogh (2004); Obinata and Anderson (2012)]. The error e2
between the full-order asymptotically stable systemMn and its k-dimensional reduced
system Mk satisfies the following inequality for all t ∈ R≥0:∥∥ei2(t)

∥∥ ≤ (4
∑n

j=k+1
(2j − 1)σj) · ‖u(t)‖∞ , 1 ≤ i ≤ p,

where σj is the jth Hankel singular value of the systemMn and ‖u(t)‖∞ = supt∈R≥0
‖u(t)‖

We note that the precision δ can be obtained using different methods all of which
have their advantages and drawbacks. In [Han and Krogh (2004)], the authors pro-
pose a simulation-based approach to determine δ. To determine the bound of e1,
the authors simulate the full-order system and the reduced system from each vertex
in a polyhedral representation of the initial set of states. The advantage in using
this method is that it gives a very tight bound of e1 while the drawback is that the
number of simulations required can grow exponentially. For example, if the initial
set is a hypercube in 100-dimensions, we have to simulate the full-order system and
its reduced system with 2n = 2100 vertices, which is infeasible even if each simula-
tion takes little time. The bound of e2 is determined by integrating the norm of the
impulse response of the augmented system via simulation. This method is especially
useful in practice since it gives a tight bound for e2 with only m simulations, where
m is the number of inputs. Alternatively, without separately computing the bounds
of e1 and e2, the precision δ can be calculated by solving a set of LMI optimization
problems on sets of initial states and inputs [Girard and Pappas (2007)]. This ap-
proach has advantages when dealing with small and medium-dimensional systems
(less than 50 dimensions) and works for both stable and unstable systems. When the
system dimension is large, the error bound obtained is overly conservative and may
not be useful.

Exploiting the advantages and overcoming the drawbacks of existing approaches
when dealing with practical systems are the main contributions of our approach.
First, we compute the bounds for e1 and e2 separately, making the computation
process more robust and thus produce less conservative results in comparison with
[Girard and Pappas (2007)]. Second, Theorem 1 and Theorem 2 are proposed to
overcome the drawback of simulation-based method [Han and Krogh (2004)] as de-
scribed above. It should be emphasized that in most circumstances, our approach can
be used to compute the bound of e1 and the simulation-based approach can be used
to determine the bound of e2. This combination is scalable for high-dimensional sys-
tems while still obtaining a good precision δ. Finally, the output abstraction defined
based on individual outputs (yi(t), yir(t)) and precisions δi allows us to easily verify
the safety of multi-output systems. Next, we briefly analyze the time complexity in
computing the precision δ to show theoretically the scalability of different methods.

We analyze the complexity of the simulation-based approach [Han and Krogh
(2004)] in terms of number of simulations. For an n-dimension system with m inputs
and p outputs, the number of vertices in a polyhedral initial set (in the worst case) is
2n. Therefore, the number of simulations needed to determine the bound of e1 is 2n.
For e2, the number of simulations needed is m. Consequently, the number of simula-
tions needed isO((2n+m)). In [Girard and Pappas (2007)], to determine the precision
δ, this method solves two LMIs and quadratic optimization problems on the sets of
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[Girard and Pappas (2007)] O(n6)
[Han and Krogh (2004)] O(2n + m)

Theorem 1 O(n3.5)
Theorem 2 O((n + k)5.5)

Table 1: Time complexity of different methods to compute the precision δ.

initial state and inputs in which the time complexity for solving two LMI constraints
using interior point algorithms can be estimated by O([(n2 + n)/2]2.75 × 21.5) [Van-
denberghe and Boyd (1994); Nesterov et al. (1994)] and the time complexity for
solving the optimization problem in [Girard and Pappas (2007)] using interior point
algorithms is O([(n2 +n)/2]3). Overall, the time complexity of computing the preci-
sion is O([(n2 +n)/2]3)+O([(n2 +n)/2]2.75×21.5), which can be bounded by O(n6).
In our approach, it is easy to see that Theorem 1 computation mainly relates to
solving the optimization problem to find supx(0)∈X0 ‖x̄(0)‖. The time complexity for
solving this problem using interior point algorithms is O((n+ 1)3.5). For Theorem 2,
we first need to solve the eigenvalue problem (EVP) subject to two matrix inequal-
ities that has time complexity O([((n + k)2 + n + k)/2]2.75 × 21.5) if using interior
point algorithms. Then, we need to solve the quadratic optimization problem that
has time complexity O((n + k)3) (using the interior point algorithm). Overall, the
time complexity of Theorem 2 can be bounded by O((n+ k)5.5). The computational
cost of Theorem 3 in our approach is smaller compared to Theorem 1 and Theo-
rem 2. Table 1 shows the simplified time complexity analysis of different approaches.
The computation time of these approaches will be measured and discussed in detail
in Section 5.

4 Safety Verification with Output Abstractions

It should be emphasized that first, our approach is different from [Han and Krogh
(2004)] in the way of using the precision δ where the precision is used to compute the
reach set of the full-order system before using this reach set to verify the safety of the
system. In our approach, the precision is used to obtain the safety specification of the
output abstraction that satisfies the safety relation (1). Then, we verify the safety
of the output abstraction to conclude safety of the original system. It is important
to notice from (1) that it may be the case that we cannot conclude anything about
the safety of the original system using the output abstraction. Second, the output
abstraction is different from the approximate abstraction [Girard and Pappas (2007)]
which depends on a single precision δ because it is defined based on individual
outputs (yi(t), yir(t)) and individual precisions δi. As a result, we can get a more
accurate safety specification transformation based on the individual precisions. This
transformation is convenient for verifying safety in practical multi-output systems
where the magnitudes of element outputs are usually significantly different from each
other. Our safety transformation rules are addressed in the following.

S(Mn) as Convex Polytopes. Assume that the safety specification of the full-order
system is in the following form:

S(Mn) = {y ∈ Rp| Γy + Ψ ≤ 0, Γ = [αij ] ∈ Rq×p, Ψ = [βi] ∈ Rq}, (2)
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Lemma 1 Given S(Mn) described by (2), then S(M δ
k ) and U(M δ

k ) defined as follows
guarantee the safety relation (1).

S(M δ
k ) = {yr ∈ Rp| Γyr + Ψ ≤ 0, Ψ = Ψ +∆},

U(M δ
k ) = {yr ∈ Rp| Γyr + Ψ > 0, Ψ = Ψ −∆}.

(3)

where ∆ = [∆i] ∈ Rq, ∆i =
∑p

j=1 |αij |δj .

The proof is given in Appendix 7.1.

S(Mn) as Ellipsoids. Assume that the safety specification of the full-order system is
described by an ellipsoid with radius R and centered at a ∈ Rp as:

S(Mn) = {y ∈ Rp| (y − a)TQ(y − a) ≤ R2, a ∈ Rp, R > 0, 0 < Q ∈ Rp×p}, (4)

Since Q is a symmetric matrix, there exists an orthogonal matrix E = [l1, l2, .., lp]
= [γij ] ∈ Rp×p such that ETQE = Λ = diag(λ1, λ2, ..., λp), where λi (> 0) is
eigenvalue of Q and li is the eigenvector of Q corresponding to λi. The transformed
safety and unsafe specifications of the output abstraction can be obtained using the
following lemma.

Lemma 2 Given S(Mn) described by (4), then S(M δ
k ) and U(M δ

k ) defined as follows
guarantee the safety relation (1):

S(M δ
k ) = {yr ∈ Rp| (yr − a)TQ(yr − a) ≤ (R−∆R)2},

U(M δ
k ) = {yr ∈ Rp| (yr − a)TQ(yr − a) > (R+∆R)2},

∆R =
√∑p

i=1
[λi(
∑p

j=1
|γij |δj)2].

The proof of this result is given in Appendix 7.2.
We can see that the transformed safety specification of the output abstraction

is also an ellipsoid (with smaller radius R − ∆R) located inside the original ellipse
defining the safety specification of the full-order system. Meanwhile the correspond-
ing transformed unsafe specification is defined by the region outside the larger ellipse
with the radius R+∆R.

Lemma 3 Given an asymptotically stable LTI system Mn, whenever its output ab-
straction M δ

k is safe or unsafe, it is sound to claim that the system Mn is safe or
unsafe respectively.

Proof According to Section 3, for a stable LTI system Mn, there exists an output
abstraction M δ

k . We can see that, for any control input u ∈ U and initial state
x(0) ∈ X0(Mn), there is a set of p output trajectories yi, 1 ≤ i ≤ p of Mn. From
the definition of the output abstraction, there exists a corresponding initial state
xr(0) ∈ X0(Mk) such that the abstraction produces a set of p output trajectories
yir, 1 ≤ i ≤ p in which the distance between two pair trajectories

∥∥yi − yir∥∥ is always
bounded by a sound δi all the time. Moreover from Lemmas 1 and 2, because the
transformed specifications (S(M δ

k ) and U(M δ
k )) satisfy the safety relation (1), thus

when the set of p output trajectories yir, 1 ≤ i ≤ p of M δ
k satisfies the transformed
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8 Hoang-Dung Tran, Luan Viet Nguyen, Weiming Xiang, Taylor T. Johnson

safety specification S(M δ
k ), its corresponding set of p output trajectories yi, 1 ≤ i ≤ p

ofMn also satisfies the original safety specification S(Mn) all the time. Consequently,
when the output abstraction is safe, it is sound to claim that the full-order system
is safe. A similar proof can be given for the unsafe case. This completes the proof.

Remark 1 It is useful to mention that the procedure of safety verification for high-
dimensional linear systems using order-reduction abstraction can be done automat-
ically. The core issue is checking whether the reach set of the abstraction returned
by verification tools such as SpaceEx is contained inside the transformed safe set.
This can be done in two steps by taking advantages of the existing powerful SMT
solvers such as Z3 [De Moura and Bjørner (2008)]. First, the transformed safe set
can be described by a predicate over the output variables. Then, we check whether
the predicate is satisfied by all vertices of the returned reach set from SpaceEx using
a SMT solver.

We have studied using output abstraction for safety verification. Next, we eval-
uate and compare our approach with others via a set of benchmarks.

5 Case Studies and Evaluation

To evaluate the order-reduction abstraction method presented in this paper, we
have implemented a software prototype that automatically creates output abstrac-
tions from full-order systems and applied it to a set of benchmarks [Chahlaoui and

Benchmark Property Initial set of states Input constraint Safety specification
X0 = {x0 ∈ Rn| lb(i) ≤ x0(i) ≤ ub(i), 1 ≤ i ≤ n} u = [u1, · · · , um]T y = [y1, · · · , yp]T

Motor control
system (MCS)

n = 8 lb(i) = ub(i) = 0, i = 2, 3, 4, 6, 7, 8, u1 ∈ [0.16, 0.3], unsafe region:
m = 2 lb(2) = 0.002, ub(2) = 0.0025, u2 ∈ [0.2, 0.4]. 0.35 ≤ y1 ≤ 0.4,
p = 2 lb(3) = 0.001, ub(3) = 0.0015. 0.45 ≤ y2 ≤ 0.6.

Helicopter
(HELI) [7]

n = 28 lb(i) = ub(i) = 0.1, i = 1, 4, 5, 6, 7, ui ∈ [−1, 1], unsafe region:
m = 6 lb(2) = lb(3) = 0.098, ub(2) = 0.11, ub(3) = 0.102, 1 ≤ i ≤ 6. −1 ≤ y1 ≤ 1,
p = 2 lb(i) = ub(i) = 0, 8 ≤ i ≤ 28. 10 ≤ y2

Building model
(BM) [4]

n = 48 lb(i) = 0.0002, ub(i) = 0.00025, 1 ≤ i ≤ 10,
u1 ∈ [0.8, 1].

unsafe region:
m = 1 lb(25) = −0.0001, ub(25) = 0.0001, 0.008 ≤ y1
p = 1 lb(i) = ub(i) = 0, 11 ≤ i ≤ 48, i 6= 25.

Partial differ-
ential equation
(PDE) [4]

n = 84 lb(i) = 0, ub(i) = 0, 1 ≤ i ≤ 64
u1 ∈ [0.5, 1].

safe region:
m = 1 lb(i) = 0.001, ub(i) = 0.0015, 64 ≤ i ≤ 80, y1 ≤ 12
p = 1 lb(i) = −0.002, ub(i) = −0.0015, 81 ≤ i ≤ 84.

International
space station
(ISS) [4]

lb(i) = −0.0001, ub(i) = 0.0001, 1 ≤ i ≤ 270.

Safe region:
−461y1 +887y2 +0.67 ≤ 0,

n = 270 u1 ∈ [0, 0.1], −440y1−898y2−0.68 ≤ 0,
m = 3 u2 ∈ [0.8, 1], −76.7y1 +997y2−0.54 ≤ 0,
p = 3 u3 ∈ [0.9, 1]. 898y1 − 440y2 − 0.89 ≤ 0,

945y1 + 326y2 − 0.95 ≤ 0,
−0.0005 ≤ y3 ≤ 0.0005.

FOM [4]
n = 1006 lb(i) = −0.0001, ub(i) = 0.0001, 1 ≤ i ≤ 400

u1 ∈ [−1, 1].
safe region:

m = 1 lb(i) = 0.0002, ub(i) = 0.00025, 401 ≤ i ≤ 800, y1 ≤ 45
p = 1 lb(i) = 0, ub(i) = 0, 801 ≤ i ≤ 1006.

Table 2: Benchmarks for the order-reduction abstraction method in which n is di-
mension of the system; m and p are the number of inputs and outputs respectively.
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k Bisim Sim Mixed bound Theoretical bound
δ t(s) δ t(s) N e1 e2 δ t(s) e1 e2 δ t(s)

MCS 5 2.1 0.93
(

0.0021
0.047

)
0.17 22 + 2

(
0.00049
0.00062

) (
0.002
0.047

) (
0.0025
0.047

)
0.92

(
0.0098
0.0093

) (
0.53
0.53

) (
0.54
0.54

)
0.15

4 1.5 0.64
(

0.036
0.047

)
0.19 22 + 2

(
0.00086
0.00062

) (
0.035
0.047

) (
0.036
0.047

)
0.9

(
0.009
0.009

) (
0.91
0.91

) (
0.92
0.92

)
0.15

HELI
20 0.84 17

(
7.1e− 05
4.3e− 05

)
0.6 24 + 6

(
0.0072
0.018

) (
5.7e− 05
3.2e− 05

) (
0.0073
0.018

)
35

(
0.28
0.95

) (
0.0017
0.0017

) (
0.28
0.95

)
0.49

16 28 12
(

0.00075
0.0013

)
0.56 24 + 6

(
0.0072
0.018

) (
0.0007
0.00087

) (
0.0079
0.019

)
23

(
0.28
0.95

) (
0.029
0.029

) (
0.3
0.97

)
0.45

10 160 8.1
(

0.024
0.038

)
0.55 24 + 6

(
0.0085
0.021

) (
0.021
0.031

) (
0.03
0.053

)
13

(
0.27
0.93

) (
1
1

) (
1.3
1.9

)
0.45

BM
25 0.0096 180 0.0051 22 211 + 1 0.013 6.2e− 05 0.013 130 0.083 0.0072 0.09 1
15 0.069 120 0.005 18 211 + 1 0.012 0.00044 0.013 58 0.078 0.084 0.16 0.97
6 0.1 44 0.0058 14 211 + 1 0.011 0.00025 0.012 24 0.073 0.21 0.28 0.98

PDE
30 0.75 230 N/A OOT 220 + 1 0.033 5.6e− 14 0.033 1500 1 5e− 12 1 1.7
20 0.038 160 N/A OOT 220 + 1 0.033 3.5e− 14 0.033 890 1 5.4e− 12 1 1.7
10 0.086 55 N/A OOT 220 + 1 0.033 9.8e− 13 0.033 520 0.92 2.7e− 11 0.92 1.7
6 0.1 42 N/A OOT 220 + 1 0.033 3.5e− 07 0.033 370 0.89 5.5e− 06 0.89 1.7

ISS 25 N/A OOT N/A OOT 2270 + 3 N/A
2.1e− 05

0.001
4.6e− 05

 N/A OOT
0.00043

0.00026
0.00026


0.47

0.47
0.47


0.47

0.47
0.47

 11

10 N/A OOT N/A OOT 2270 + 3 N/A
2.4e− 05

5.6e− 05
9e− 05

 N/A OOT
0.00042

0.00022
0.00021


1.7

1.7
1.7


1.7

1.7
1.7

 12

FOM
20 N/A OOT N/A OOT 2800 + 1 N/A 2.7e− 07 N/A OOT 1.3 1.1e− 05 1.3 48
15 N/A OOT N/A OOT 2800 + 1 N/A 0.00021 N/A OOT 1.3 0.0065 1.3 48
10 N/A OOT N/A OOT 2800 + 1 N/A 0.1 N/A OOT 1.3 2.2 3.5 48

Table 3: Experimental results obtained from different methods in which: k is the
dimension of the output abstraction, δ is the precision, e1 is the zero input response
error, e2 is the zero state response error, t is the error computing time (in second) and
N is the number of simulations. Bisim column contains the results of approximate
bisimulation approach proposed by [Girard and Pappas (2007)]. Sim column are the
results of the simulation-based approach proposed by [Han and Krogh (2004)].

Van Dooren (2005); Frehse et al. (2011)] presented Table 2. The method is integrated
in HyST by calling Matlab related functions.1

Precision and computation time evaluation. The experiments were performed using
Matlab 2014a and SpaceEx [Frehse et al. (2011)] on a personal computer with the
following configuration: Intel (R) Core(TM) i7-2677M CPU at 1.80GHz, 4GB RAM,
and 64-bit Window 7. We set the upper limit for Matlab simulation and SpaceEx
running time at two hours. In all experimental result tables, the term of “N/A”
stands for not applicable and “OOT” stands for timeout when the result could not
be computed within two hours.

Table 3 presents the precision δ and computation times of the different meth-
ods. In the table, the “mixed bound” column contains the bound of e1 computed
by Theorem 2 and the bound of e2 determined by simulation and the correspond-
ing precision δ. The “theoretical bound” column contains the bounds of e1 and e2
which are computed using Theorem 1 and Theorem 3 respectively. The table shows

1 The prototype implementation and SpaceEx model files for the examples evaluated, both
before and after order reduction, are available at: http://verivital.com/hyst/pass-order-
reduction/.
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Benchmark Full Order System Output Abstraction
Time(s) Memory(Kb) k T1(s) T2(s) Total time(s) Memory(Kb)

Motor control
system 27 3048 5 26 0.92 26.9 3044

4 16.7 0.9 17.6 3044

Helicopter 287 3052
20 206 35 241 3052
16 128 23 151 3048
10 68 13 81 3048

Building model 893 3056
25 237.2 130 367.2 3048
15 82.3 58 140.3 3044
6 19.5 24 43.5 3040

Partial differ-
ential equation OOT N/A

30 725.6 1500 2225.6 3048
20 310 890 1200 3048
10 75.2 520 595.2 3040
6 31.9 370 401.9 3040

International
space station OOT N/A 25 254.3 11 265.3 3064

10 72.8 12 84.8 3052

FOM model OOT N/A
20 95.4 48 143.4 3048
15 56.2 48 104.2 3044
10 34.8 48 82.8 3040

Table 4: Computation cost for verification process of the full order original LTI
system and its output abstractions using SpaceEx in which T1 is the time for SpaceEx
to compute the reach set of the output abstraction; T2 is the time for obtaining the
output abstraction; “Total Time” column states for the total time of verification
process for the output abstraction, “Memory” column presents the memory used for
computing reach set which is measure in kilobyte; time is measured in second.

that, when the initial set of states X0 is close to the origin, e.g. BM benchmark,
the bounds of e1 computed by Theorem 1 are fairly good and acceptable. However,
conservative results are derived when the initial set of states X0 is far from the ori-
gin, e.g. helicopter benchmark. Theorem 3 indicates that the theoretical bound of
e2 depends on Hankel singular values. This can be seen from the PDE benchmark
where the theoretical bounds of e2 for all cases of the output abstraction’s dimension
k are very small due to the fact that the Hankel singular values σk (which are not
presented here) of the corresponding balanced system are very small (almost equal
to zero) as k ≥ 5. In contrast, in the helicopter benchmark, the theoretical bound
of e2 becomes larger when the lower dimension output abstraction is obtained. It is
small when k = 20 because

∑28
21 σj is small. The theoretical bound of e2 becomes

conservative as k = 10 since
∑28

11 σj is large. From the results in the table, we see
that for low and medium-dimensional systems (n < 100), the simulation-based ap-
proach [Han and Krogh (2004)] gives very tight bounds for the errors, e.g, the motor
control system and helicopter benchmarks. This approach is powerful when dealing
with systems having a small number of vertices in the initial set. When the number of
vertices increases (e.g, PDE benchmark), it is unable to apply the simulation-based
approach due to the number of simulations growing exponentially. The approximate
bisimulation approach [Girard and Pappas (2007)] integrated in the Matisse toolbox
gives a good precision for the PDE benchmark but very conservative results for the
MCS and Helicopter benchmarks due to the appearance of ill-conditioned matrices
in solving LMI and optimization problems. Combining Theorem 2 and simulation
bound of e2 (i.e. mixed bound) is more efficient as it produces very tight precisions
for all benchmarks. In the case of high-dimensional systems (n > 100) , the approx-
imate bisimulation and simulation-based approaches give no result due to running
out of time while our method can still be applied. We can see that Theorem 1 and
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(a) Safety specification S270 of the full or-
der ISS system which is the region inside the
middle green polytopes and the transformed
safety specifications of its 10-order output ab-
straction in which the safe region Sδ10 is inside
the smallest blue polytopes and the unsafe re-
gion Uδ10 is outside the largest red polytope.
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(b) Reachable set of (yr1 , yr2 ) of the
ISS’s 10-order abstraction Mδ

10 in the
period of time [0, 20s] and its safe
region Sδ12 (inside the smallest blue
polygon) and unsafe region Uδ12 (out-
side the red polygon).

Fig. 1: The transformed safety specifications of the 10-order output abstraction of
ISS system and the its projected reachable set on the (yr1 , yr2 ) plane.

Theorem 3 have small computation times while Theorem 2 and the approximate
bisimulation approach require much more time to compute the precision.

Table 4 shows the computation cost of the verification process for the full-order
benchmarks and their different output abstractions. The bounded times for running
all SpaceEx models are set at tf = 20s. As shown in the table, although using output
abstraction does not help much to reduce the memory used in verification, it can
help to reduce significantly the computation time. Moreover, output abstraction can
be applied to check the safety of high-dimensional systems (e.g. PDE, ISS and FOM)
that cannot be verified directly using existing verification tools. Next, we consider
the whole process of using output abstraction to verify the safety of the international
space station system.

International Space Station (ISS). Verification for the full-order system with 270
state variables (denoted byM270) may be difficult for existing verification tools. Our
approach can help to verify safety of such high-dimensional system with a small
computation cost. There are different output abstractions that can be used to verify
whether the full-order system satisfies its safety requirements. In this paper, a 10-
order output abstraction is chosen to check the safety of the full-order system. The
precision δ = 10−3× [0.44, 0.28, 0.3]T between the full-order system and its 10-order
output abstraction (denoted by M δ

10) is obtained from the theoretical bound of e1
and the simulation bound of e2. The safety specification of the full-order ISS system
S270 is visualized by the region inside the middle blue polytope in Figure 1a. The
transformed safety specifications (safe and unsafe specifications) of the correspond-
ing 10-order output abstraction respectively are the region inside the smallest blue
polytope and the region outside the red polytope. Figures 1b, 2a and 2b present the
safety specification transformation and output reach set in the period of time [0, 20s]
computed by SpaceEx for the 10-order output abstraction on 2-dimension axes. In
the figures, the regions inside the middle blue polygons are the 2-dimensional pro-
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(a) Reachable set of (yr2 , yr3 ) of the
ISS’s 10-order abstraction Mδ

10 in the
period of time [0, 20s] and its safe
region Sδ23 (inside the smallest blue
polygon) and unsafe region Uδ23 (out-
side the red polygon).

-3 -2 -1 0 1 2

x 10
-3

-1

-0.5

0

0.5

1
x 10

-3

y
r
1

y r 3

(b) Reachable set of (yr1 , yr3 ) of the
ISS’s 10-order abstraction Mδ

10 in the
period of time [0, 20s] and its safe
region Sδ13 (inside the smallest blue
polygon) and unsafe region Uδ13 (out-
side the red polygon).

Fig. 2: The projected transformed safety specifications and reachable set of the 10-
order output abstraction of ISS system on the (yr2 , yr3 ) and (yr1 , yr3 ) planes.

jections of the safety regions of the full-order system. The corresponding projected
transformed safety and unsafe specifications Sδ10, U δ10 of the output abstraction are
described by the regions inside the smallest blue polygons and the regions outside
the red polygons respectively. The reach sets Rδij , i 6= j, 1 ≤ i, j ≤ 3 for each pair
output (yri , yrj ) of the abstraction M δ

10 are depicted by the solid blue regions. As
shown in Figure 1a, the reach set of the abstraction is completely inside its trans-
formed safe set. Thus, it can be concluded that the full-order system M270 satisfies
the safety requirement S270. Therefore, the full-order system is safe. The conclusion
about the safety of the full-order system can also be given using projection as fol-
lows. Due to the fact that one face of the polytopes defining the transformed safe
set is aligned with one sub-coordinate axes (i.e. yr1Oyr2), so for all (i, j), we have
Rδij ∩ ¬Sδ10 = ∅ ⇒ M δ

10 � Sδ10. Consequently, the full-order system is safe. It should
be noted that the above relation is not true in general because we cannot conclude
a set is a subset of another set by considering the relations of their projections on
all sub-coordinate axes. The conclusion about safety of the ISS system is a special
case as one face of the safe set is aligned with one sub-coordinate axes.

6 Conclusion and Future Work

We have proposed an approach to verify safety specifications for high-dimensional
linear systems by verifying transformed safety specifications of a lower-dimensional
output abstraction using existing hybrid system verification tools. By reducing the
dimensionality, our method significantly reduces the time of reachability computa-
tions in the verification process.

There are two interesting directions for future work. First, the proposed method
which only deals with stable linear systems can be extended for unstable linear
systems. Second, our approach can also be extended to more general hybrid systems.
The main idea is that the states in each location that are related to guards/invariants
need to be declared as the outputs of that location. Then, the output abstraction
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for each location can be obtained. A new hybrid system is then constructed based
on these output abstractions. The guards/invariants of the new hybrid system are
obtained by transforming the former guards/invariants of the original hybrid system
in the same manner of safety specifications transformation proposed in this paper.
This approach may benefit from other notions of “similarity” between behaviors
(executions) of systems such as discrepancy functions [Duggirala et al. (2013)], or
conformance degree [Abbas et al. (2014)].
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7 Appendix

7.1 Proof of Theorem 1

Consider the uncontrolled augmented system ˙̄x = Āx̄, we have, d(x̄T x̄)/dt = x̄T (Ā+
ĀT )x̄. It is easy to see that the controllability grammian and the observability gram-
mian of the augmented system are the same (denoted as Σ̄): ĀΣ̄+ Σ̄ĀT + B̄B̄T = 0
and ĀT Σ̄ + Σ̄Ā+ C̄T C̄ = 0. Combining two equations yields: (Ā+ ĀT )Σ̄ + Σ̄(Ā+
ĀT ) = −B̄B̄T − C̄T C̄. This Lyapunov equation implies that the real parts of all
eigenvalues of Ā + ĀT are necessarily non-positive. Because Ā + ĀT is symmetric,
its eigenvalues are real. Thus, these eigenvalues are either negative or zero. Note
that Ā is asymptotically stable, hence x̄T (t)x̄(t) → 0 when t → ∞ with all the
initial state x̄(0). Combine all, we can conclude that x̄T (t)x̄(t) is monotonically con-
verge to zero for any initial state x̄(0). Using the monotonic convergent property,
the bound of the error e1 satisfies:

∥∥ei1(t)
∥∥ =

∥∥C̄ix̄∥∥ ≤ ∥∥C̄i∥∥ ‖x̄‖ ≤ ∥∥C̄i∥∥ ‖x̄(0)‖ ≤∥∥C̄i∥∥ · supx(0)∈X0 ‖x̄(0)‖ .

7.2 Proof of Theorem 2

Consider the uncontrolled augmented system (i.e. u = 0), let V (x̄(t)) = x̄(t)TPx̄(t),
we have V̇ (x̄(t)) = x̄(t)T (ĀTP + PĀ)x̄(t). Assume P0 is the solution of the opti-
mization problem in Theorem 2. Because of (ĀTP0 + P0Ā) < 0, then V (x̄(t)) <
V (x̄(0) = x̄(0)TP0x̄(0). Note that

∥∥ei1(t)
∥∥2 = x̄T C̄Ti C̄ix̄, 1 ≤ i ≤ p. Since we also

have C̄Ti C̄i ≤ P0, the bound of the error satisfies
∥∥ei1(t)

∥∥ ≤√x̄(0)TP0x̄(0).

7.3 Proof of Lemma 1

From the definition of output abstraction, we have:

αijyrj − |αij |δj ≤ αijyj ≤ αijyrj + |αij |δj ⇒ Γyr + Ψ2 ≤ Γy + Ψ ≤ Γyr + Ψ1.

Thus, S(M δ
k ) and U(M δ

k ) defined by (3) satisfy the safety relation (1), which
completes the proof.

7.3.1 Proof of Lemma 2

Let ȳ = E(y − a), ȳr = E(yr − a). We have:

(y − a)TQ(y − a) = ȳTΛȳ =
∑p

i=1
λiȳ

2
i ,

(yr − a)TQ(yr − a) = ȳTr Λȳr =
∑p

i=1
λiȳ

2
ri .

(5)

From the definition of output abstraction (Definition 1), it is easy to see that:

− δ̄i ≤ ȳi − ȳri = E(i, :)(y − yr) ≤ δ̄i, δ̄i =
∑p

j=1
|γij |δj . (6)
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Using (6) and the Cauchy-Schwarz inequality yields:∑p

i=1
λi(ȳi − ȳri)2 ≤ ∆2

R =
∑p

i=1
λiδ̄

2
i ,∑p

i=1
2λiȳri(ȳi − ȳri) ≤ 2∆R

√∑p

i=1
λiȳ2

ri ,∑p

i=1
2λiȳi(ȳri − ȳi) ≤ 2∆R

√∑p

i=1
λiȳ2

i .

(7)

From (7), the following inequalities are true:∑p

i=1
λiȳ

2
i ≤ (

√∑p

i=1
λiȳ2

ri +∆R)2,
∑p

i=1
λiȳ

2
ri ≤ (

√∑p

i=1
λiȳ2

i +∆R)2. (8)

From (5) and (8), we have:√
(y − a)TQ(y − a) ≤

√
(yr − a)TQ(yr − a) +∆R,√

(y − a)TQ(y − a) ≥
√

(yr − a)TQ(yr − a)−∆R.
(9)

Using (9), we can conclude that S(M δ
k ) and S(M δ

k ) defined in Lemma 2 satisfy
the safety relation (1), which completes the proof.
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Reachable Set Estimation and Control for Switched Linear Systems
with Dwell-Time Restriction

Weiming Xiang, Hoang-Dung Tran and Taylor T. Johnson

Abstract— The reachable set estimation and control problems
for continuous-time switched linear systems are addressed in
this paper. First, a general result on reachable set estimation
for switched system is proposed based on a Lyapunov function
approach. Then, with the help of a class of time-scheduled
Lyapunov functions, a numerically tractable sufficient condition
ensuring the system state bounded in a prescribed set is derived
for switched systems under dwell time constraint. Moreover, a
time-scheduled state feedback controller is designed to ensure
the state trajectories of the closed-loop system are confined in
a prescribed set. Finally, a networked control system subject
to packet dropouts is modeled as a switched system with dwell
time constraints, and the controller design problem is studied
as an application of our results.

I. INTRODUCTION

Switched systems have emerged as an important class
of hybrid systems and represent an active area of current
research in the field of control systems [1]–[3]. A switched
system is composed of a family of continuous or discrete-
time subsystems along with a switching rule governing the
switching between the subsystems. Generally, the stability
and stabilization problems are the main concerns in the field
of switched systems. It has been established that Lyapunov
function techniques are effective to deal with stability and
stabilization problems for switched systems, e.g. see [4]–[8].
Combining multiple Lyapunov function (MLF), the dwell
time and average dwell time properties of relatively slowly
switched systems have been investigated [9]–[15].

Reachable set estimation aims to derive a closed bounded
set that constrains all the state trajectories generated by a
dynamic system with a prescribed class of initial state set
and inputs. Reachable set estimation is not only of theoret-
ical interest in robust control theory [16], but also closely
related to practical engineering for the safety verification
problems [17]. In some early work, reachable set bounding
was considered in the context of state estimation and it has
later received a lot of attention in parameter estimation, see
[18] and references therein. Recently, employing ellipsoidal
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by the Air Force Research Laboratory (AFRL) through contract number
FA8750-15-1-0105 and the National Science Foundation (NSF) under grant
number CNS-1464311. The U.S. Government is authorized to reproduce
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ton, Texas 76019 USA. weiming.xiang@uta.edu;
hoang-dung.tran@mavs.uta.edu;
taylor.johnson@uta.edu

techniques based on Lyapunov function approaches to esti-
mate the reachable sets for different class of systems attracts
many researchers’ attention. In the framework of bounding
ellipsoid, the quadratic Lyapunov function has played a
fundamental role in the reachable set estimation problem,
and it has been developed to time-delay systems [19]–[21],
singular systems [22], discrete-time switched systems [23].
However, according to the best of the authors’ knowledge,
the reachable set estimation for continuous-time switched
systems with constrained switching law, has not been fully
investigated, and it motivates our study in this paper.

In this paper, the problems of reachable set estimation and
control synthesis for continuous-time switched linear systems
will be investigated. First, a general result based on Lyapunov
function approach is presented. Then, under the framework
of dwell time and with the help of a class of time-scheduled
quadratic Lyapunov functions, a linear matrix inequality
(LMI) based sufficient condition is proposed to estimate the
reachable set. For the control synthesis, a time-scheduled
feedback controller is designed to ensure the state trajec-
tories being contained in a prescribed set and, moreover,
an optimization problem is formulated to obtain an optimal
controller gain to make the reachable set of closed-loop
system as small as possible. As an application of our result,
the control problem for a networked control system with
package dropouts is studied. Based on our derived approach,
the controller can be designed with an attempt to constrain
state trajectories in a prescribed bounding ellipsoidal region.

Notation: The notations in this paper are fairly standard.
Sn×n
+ is the set of real symmetric positive definite n × n

matrices. In symmetric block matrices, we use * as an ellipsis
for the terms that are introduced by symmetry. diag{· · · }
denotes a block-diagonal matrix and int[·] rounds the element
to the nearest integer towards zero.

II. PRELIMINARIES AND PROBLEM FORMULATION

Let us consider a continuous-time switched linear system
in the form of

ẋ(t) = Aσ(t)x(t) +Bω,σ(t)ω(t) +Bu,σ(t)u(t) (1)

where x(t) ∈ Rnx are the state of the system, and the initial
state x0 is assumed to be settled in a bounded ellipsoid as

x0 ∈ X0 , {x0 ∈ Rnx | x⊤0 R0x0 ≤ 1, R0 ∈ Snx×nx
+ } (2)

and ω(t) ∈ Rnω is the disturbance input vector which is
assumed to satisfy the following ellipsoidal constraint

ω(t) ∈ W , {ω ∈ Rnω | ω⊤Rωω ≤ 1, Rω ∈ Snω×nω
+ } (3)
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and u(t) ∈ Rnu is the control input to be designed.
Define an index set M , {1, 2, . . . , N}, where N is the

number of modes and, σ : R≥0 → M denotes the switching
function, which is assumed to be a piecewise constant
function continuous from right. The switching instants are
expressed by a sequence S , {tk}k∈N, where t0 denotes the
initial time and tk denotes the kth switching instant. Then,
we define Ii , {t ∈ R≥0 | σ(t) = i, i ∈ M} to denote the
activation time interval for ith mode.

The first problem considered in this paper is the reachable
set estimation problem for switched system (1) with control
input u(t) = 0, and the initial state satisfying (2), disturbance
input satisfying (3). The reachable set is defined as

Rx , {x ∈ Rnx | x(t), x0, ω(t) satisfy (1), (2), (3)} (4)

Then, the mode-dependent state feedback controller is
considered, which has a time-scheduled structure as

u(t) = Kσ(t)(t)x(t) (5)

Substituting above controller (5) into system (1), the
closed-loop system becomes

ẋ(t) = Āσ(t)(t)x(t) +Bω,σ(t)ω(t) (6)

where Āσ(t)(t) = Aσ(t) +Bu,σ(t)Kσ(t)(t).
The control objective is to ensure the state trajectory x(t)

contained in a given set

R̃x , {x ∈ Rnx | x⊤Rxx ≤ 1, Rx ∈ Snx×nx
+ } (7)

The above two problems are the main concerns in this
paper. In the rest of this paper, the reachable set estimation
problem will be studied at first, then based on the reachable
set estimation results, the state feedback controller design
problem will be addressed.

III. REACHABLE SET ESTIMATION

A. General Lemma

First, a general lemma is presented to introduce the main
idea to determine the over approximate set R̃x for switched
system (6), note that switched system (1) with u(t) = 0 is a
particular case of Āi(t) being time-invariant.

Lemma 1: Consider switched system (6) under initial state
condition (2) and disturbance input condition (3). If there
exist a family of Lyapunov functions Vi : Rnx → R≥0,
i ∈ M, satisfying Vi(0) = 0 and Vi(x) > 0, ∀x ̸= 0,
∀i ∈ M, and scalars α > 0, 0 < β ≤ 1 such that

Fi(t) ≤ 0, ∀t ∈ Ii, ∀i ∈ M (8)
Gi,j(tk) ≤ 0, ∀tk ∈ S, i ̸= j,∀i, j ∈ M (9)

Vi(x0) ≤ x⊤0 R0x0, ∀i ∈ M (10)

where Fi(t) = V̇i(x(t)) + αVi(x(t)) − αω⊤(t)Rωω(t) and
Gi,j(tk) = Vi(x(t

+
k )) − βVj(x(t

−
k )) + β − 1. Then, the

reachable set Rx satisfies Rx ⊆ R̃x , {x ∈ Rnx | Vi(x) ≤
1, i ∈ M}.

Proof: Define the following Lyapunov function as

V (t) =
∑

i∈M
ξi(t)Vi(x(t)) (11)

where ξi : R≥0 → {0, 1} and
∑

i∈M ξi(t) = 1 is the
indicator function indicating the active modes at t.

First we consider any t ∈ [tk, tk+1) ⊂ Ii, ∀i ∈ M. (8)
implies V̇ (t) ≤ −αV (t) + αω⊤(t)Rωω(t), t ∈ [tk, tk+1).
Multiply both sides of this inequality with eα(t−tk) and then
integrating it over [tk, t), we have V (t) ≤ e−α(t−tk)V (t+k )+∫ t

tk
e−α(t−s)ω⊤(s)Rωω(s)ds. Due to ω⊤(t)Rωω(t) ≤ 1,

∀t ∈ R≥0, we have the following result

V (t) ≤ e−α(t−tk)V (t+k ) +

∫ t

tk

e−α(t−s)ds

= e−α(t−tk)V (t+k ) + 1− e−α(t−tk)

(12)

and it can be rewritten to

V (t)− 1 ≤ e−α(t−tk)(V (t+k )− 1), t ∈ [tk, tk+1) (13)

Next, we consider tk ∈ S . From (9), we can obtain
V (t+k ) ≤ βV (t−k ) + 1− β, tk ∈ S, which equals to

V (t+k )− 1 ≤ β(V (t−k )− 1), tk ∈ S (14)

Combining (13) and (14), for ∀t ∈ R≥0, it can be obtained
V (t) − 1 ≤ · · · ≤ βNum(t−t0)e−α(t−t0)(V (t0) − 1), where
Num(t − t0) is the number of switchings in [t0, t). Due to
α > 0 and 0 < β ≤ 1, it means that V (t) − 1 ≤ V (t0) −
1, ∀t ∈ R≥0. Moreover, (10) implies V (t0) ≤ x⊤0 R0x0 ≤ 1,
and it yields V (t) ≤ 1, ∀t ∈ R≥0 holds, so x(t) ∈ R̃x, ∀t ∈
R≥0, where R̃x , {x ∈ Rnx | Vi(x) ≤ 1, i ∈ M}.

Although Lemma 1 provides a general framework to deal
with the reachable set estimation problem, it is trivial in
actual use, since it does not provide any available computa-
tional techniques for the construction of Lyapunov functions
Vi(x(t)), i ∈ M and moreover, the proposed condition (9)
requires us to check the values of Lyapunov functions at
every the switching instant tk ∈ S. However, the switching
instant sequence S usually cannot be specified in advance,
and it is impossible to check Lemma 1 for all switching
instants tk in the case of k → ∞.

B. Time-Scheduled Multiple Lyapunov Functions

Based on Lemma 1, we particularly consider a class of
switched system with dwell-time constraint.

Definition 1: Given a switching signal function σ(t) with
a generated switching sequence S, τmin = infk∈N{tk+1−tk}
is called the minimum dwell time of σ(t). Dτmin , {σ | σ :
R≥0 → M, tk+1 − tk ≥ τmin, ∀k ∈ N} denotes the set of
all switching policies with dwell time greater than τmin.

Then, inspired by [11], [12], [15], we consider a class of
time-scheduled multiple Lyapunov functions as follow

Vi(x(t)) = x⊤(t)Pi(t)x(t), t ∈ R≥0, i ∈ M (15)

where Pi(t) ∈ Snx×nx
+ , i ∈ M have the following structure:

Consider the interval [tk, tk + τmin), we divide it into L
segments described as Lk,q , [tk + θq, tk + θq+1), q =
0, 1, . . . , L−1 of equal lengths h = τmin/L, and then θ0 = 0
and θq = qh = qτmin/L. We consider a class of continuous
matrix function Pi(t), t ∈ [tk, tk + τmin) chosen to be linear
within each segments Lk,q , q = 0, 1, . . . , L − 1. Explicitly,
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we can see that
∪L−1

n=0 Lk,n = [tk, tk + τmin) and Lk,n ∩
Lk,m = ∅, n ̸= m. Letting Pi,q = Pi(tk + θq), then since
the matrix function Pi(t) is piecewise linear in [tk, tk+τmin),
it can be expressed in terms of the values at dividing points
using a linear interpolation formula, that is, for 0 ≤ µ ≤ 1,
q = 0, 1, . . . , L− 1,

Pi(t) = Pi(µ) = (1− µ)Pi,q + µPi,q+1, t ∈ Lk,q, i ∈ M
(16)

where µ = L(t− tk − θq)/τmin.
As a result, the continuous matrix function Pi(t) ∈

Snx×nx
+ , i ∈ M can be completely determined by Pi,q ∈

Snx×nx
+ , q = 0, 1, . . . , L, i ∈ M, in interval [tk, tk + τmin).
Then, due to [tk, tk+τmin) ⊆ [tk, tk+1), for the remaining

time in [tk, tk+1) denoted by Lk,L , [tk,min, tk+1), Pi(t),
i ∈ M is set to be

Pi(t) = Pi,L, t ∈ Lk,L, i ∈ M (17)

In summary, the Pi(t), i ∈ M in Lyapunov function in
(15) is defined as

Pi(t) =

{
Pi(µ), t ∈ Lk,q, q = 0, 1, . . . , L− 1
Pi,L, t ∈ Lk,L

(18)

where µ is defined in (16).

C. Reachable Set Estimation under Dwell Time Constraint

Now, we are ready to propose out main result as follows.
Theorem 1: Given dwell time τmin > 0 and consider

switched system (1) with σ(t) ∈ Dτmin under initial state
condition (2), disturbance input condition (3) and u(t) = 0. If
there exist a set of matrices Pi,q ∈ Snx×nx

+ , q = 0, 1, . . . , L,
i ∈ M and a scalar α > 0 such that for ∀i, j ∈ M[

Ξi,q +Ψi,q ∗
B⊤

ω,iPi,q −αRω

]
≺ 0, q = 0, . . . , L− 1 (19)[

Ξi,q+1 +Ψi,q ∗
B⊤

ω,iPi,q −αRω

]
≺ 0, q = 0, . . . , L− 1 (20)[

Ξi,L ∗
B⊤

ω,iPi,L −αRω

]
≺ 0 (21)

Pi,0 − Pj,L ≺ 0, i ̸= j (22)
Pi,0 −R0 ≺ 0 (23)

where Ξi,q = A⊤
i Pi,q + Pi,qAi + αPi,q and Ψi,q =

L(Pi,q+1 −Pi,q)/τmin. Then, the reachable set Rx ⊆ R̃x ,
{x ∈ Rnx | x⊤Pi,qx ≤ 1, q = 0, 1, . . . , L, i ∈ M}.

Proof: Construct Lyapunov function as

V (t) =
∑

i∈M
ξi(t)x

⊤(t)Pi(t)x(t) (24)

where Pi(t), i ∈ M, is defined by (18) and ξi(·) is defined
same as (11).

First, let us consider Fi(t) = V̇ (t) + αV (t) −
αω⊤(t)Rωω(t), which can be rewritten to

Fi(t) = χ⊤(t)

[
Ξi(t) + Ṗi(t) ∗
B⊤

ω,iPi(t) −αRω

]
χ(t) (25)

where χ⊤(t) = [x⊤(t) ω⊤(t)] and Ξi(t) = A⊤
i Pi(t) +

Pi(t)Ai + αPi(t).

TABLE I
COMPUTATIONAL COMPLEXITIES OF THEOREM 1 WITH A FIXED α

Number of Decision Variables LMI Constraints Size
nN(L+ 1)(n+ 1)/2 2nN(N + 2L+ 1)

Suppose σ(t) = i, t ∈ Lk,q , q = 0, . . . , L− 1, one has[
Ξi(t) + Ṗi(t) ∗
B⊤

ω,iPi(t) −αRω

]
= (1− µ)Πi,1 + µΠi,2 (26)

where Πi,1 =

[
Ξi,q +Ψi,q ∗
B⊤

ω,iPi,q −αRω

]
and Πi,2 =[

Ξi,q+1 +Ψi,q+1 ∗
B⊤

ω,iPi,q+1 −αRω

]
.

Furthermore, we can see Ṗi(t) = (Pi,q+1 − Pi,q)µ̇,
t ∈ Lk,q , q = 0, . . . , L − 1, and because of µ = L(t −
tk − θq)/τmin, it implies µ̇ = L/τmin, leading to Ṗi(t) =
Ψi,q, t ∈ Lk,q, q = 0, . . . , L− 1,. By (19), (20), it leads to

Fi(t) < 0, ∀t ∈
∪L−1

n=0
Lk,n = [tk, tk + τmin) (27)

Then, we consider t ∈ Lk,L. Since Pi(t) = Pi,L, t ∈ Lk,L,
we have Ṗi(t) = 0, ∀t ∈ Lk,L, thus (21) guarantees that
Fi(t) < 0, ∀t ∈ Lk,L. Together with (27), we can conclude
that Fi(t) < 0, ∀t ∈ Ii, ∀i ∈ M, which means (8) in
Lemma 1 holds.

Next, (22) ensures (9) holds with β = 1 and (23)
guarantees (10) holds. Therefore, we have the reachable set
Rx ⊆ R̃x , {x ∈ Rnx | x⊤Pi,qx ≤ 1, q = 0, 1, . . . , L, i ∈
M} by Lemma 1.

Remark 1: Parameter L implies the number of segments
consisting of the dwell time interval [tk, tk+ τmin). A larger
L yields a finer division of [tk, tk + τmin), and a less
conservative result can be consequently obtained, which will
be demonstrated by a numerical example later. However,
the computational cost increases as L grows, since a larger
L inevitably introduces more decision variables and LMI
constraints, see TABLE I for the computational complexity
analysis for Theorem 1.

The set R̃x is usually expected to be as small as possible
to achieve a precise estimation of reachable set Rx. Based
on Theorem 2, one may add an additional constraint that

Pi,q ≽ ϵI, ϵ > 0, ∀q = 0, 1, . . . , L, ∀i ∈ M (28)

which implies that ϵx⊤(t)x(t) ≤ x⊤(t)Pi,qx(t) ≤ 1, namely
x(t) ∈ B(0, 1/

√
ϵ) , {x ∈ Rn | ∥x∥ ≤ 1/

√
ϵ}, ∀t ∈ R≥0,

so we have to maximize ϵ to obtain a smallest reachable set
with respect to ϵ. Given an L, the smallest ball B(0, 1/

√
ϵ) ,

{x ∈ Rn | ∥x∥ < 1/
√
ϵ} containing the trajectories

of state x(t) in the framework of our approach can be
obtained. Based on Theorem 1, an optimization problem can
be formulated by adding (28) with (19)–(23) as follows

max ϵ s.t. (28) and (19)− (23) (29)

In the extreme case with L = 0, Pi,q , shrinks to Pi,
moreover, due to (35), we have to choose Pi = Pj , i ̸= j.
Thus, Theorem 2 is reduced to the following corollary.
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Corollary 1: Consider switched system (1) under initial
state condition (2), disturbance input condition (3) and
u(t) = 0. If there exist a matrix P ∈ Snx×nx

+ and a scalar
α > 0 such that[

A⊤
i P + PAi + αP ∗

B⊤
ω,iP −αRω

]
≺ 0, ∀i ∈ M (30)

P −R0 ≺ 0 (31)

Then, the reachable set Rx ⊆ R̃x , {x ∈ Rnx | x⊤Px ≤
1}.

Remark 2: Corollary 1 is actually the straightforward re-
sult derived based on the well-known common Lyapunov
function approach. It can be observed that there is no
restriction for the dwell time, this means that it can be used
for arbitrary switching case which includes broader classes
of switching signals, however, the cost is the increase of
conservativeness of the estimation results.

IV. TIME-SCHEDULED FEEDBACK CONTROLLER DESIGN

In this section, the controller design problem will be con-
sidered in the framework of dwell time. Based on Theorem
1, the following result can be derived for controller design.

Theorem 2: Given dwell time τmin > 0 and consider
switched system (1) with σ(t) ∈ Dτmin under initial state
condition (2) and disturbance ω(t) satisfying (3). If there
exist a set of matrices Si,q ∈ Snx×nx

+ , Xi,q ∈ Rnu×nx ,
q = 0, 1, . . . , L, i ∈ M and a scalar α > 0 such that for
∀i, j ∈ M[

Ξi,q −Ψi,q ∗
B⊤

ω,i −αRω

]
≺ 0, q = 0, . . . , L− 1 (32)[

Ξi,q+1 −Ψi,q ∗
B⊤

ω,i −αRω

]
≺ 0, q = 0, . . . , L− 1 (33)[

Ξi,L ∗
B⊤

ω,i −αRω

]
≺ 0 (34)

Sj,L − Si,0 ≺ 0, i ̸= j (35)

R−1
0 − Si,0 ≺ 0 (36)

Si,q −R−1
x ≺ 0, q = 0, . . . , L− 1 (37)

where Ξi,q = AiSi,q+Si,qA
⊤
i +Bi,uXi,q+X

⊤
i,qB

⊤
i,u+αSi,q

and Ψi,q = L(Si,q+1 − Si,q)/τmin. Then, the closed-loop
system (6) with controller gain Ki(t) = Xi(t)S

−1
i (t) has a

reachable set Rx ⊆ R̃x , {x ∈ Rnx | x⊤Rxx ≤ 1}, where
Si(t) and Xi(t) are given by

Si(t) =

{
(1− µ)Si,q + µSi,q+1 t ∈ Lk,q

Si,L t ∈ Lk,L
(38)

Xi(t) =

{
(1− µ)Xi,q + µXi,q t ∈ Lk,q

Xi,L t ∈ Lk,L
(39)

where µ = L(t− tk)/τmin − q and q is determined by

q =

{
int[L(t− tk)/τmin] 0 ≤ m < L

L q ≥ L
(40)

Proof: Since Si,q ≻ 0, it implies Si(t) defined by
(60) is positive definite, and thus we have S−1

i (t) ≻ 0.

Then, a Lyapunov function for closed-loop system (6) can
be constructed as follows:

V (t) =
∑

i∈M
ξi(t)x

⊤(t)S−1
i (t)x(t) (41)

where ξi(·) is defined same as (11).
Substituting Xi(t) = Ki(t)Si(t), (32)–(34) ensure the

following inequality holds[
Āi(t)Si(t) + Si(t)Ā

⊤
i (t) + αSi(t)− Ṡi(t) ∗
B⊤

ω,i −αRω

]
≺ 0

(42)
Multiplying both side of (42) by diag{S−1

i (t), I} and
using Ṡ−1

i (t) = −S−1
i (t)Ṡi(t)S

−1
i (t), we have[

Ξi(t) ∗
B⊤

ω,iS
−1
i (t) −αRω

]
≺ 0 (43)

where Ξi(t) = Ā⊤
i (t)S

−1
i (t) + S−1

i (t)Āi(t) + Ṡ−1
i (t) +

αS−1
i (t). It implies (8) in Lemma 1 holds.

Then, we consider (35) and (36). If (35) holds, it equals

to Φ =

[
−S−1

j,L I

I −Si,0

]
≺ 0 by Schur complement. Then,

further considering the Schur complement of Φ, we obtain
S−1
i,0 −S−1

j,L ≺ 0 implying (9) in Lemma 1 holds with β = 1.
Similarly, (10) can be guaranteed by (36). Thus, we have
the reachable set Rx ⊆ R̃x , {x ∈ Rnx | x⊤S−1

i,q x ≤
1, q = 0, 1, . . . , L, i ∈ M} by Lemma 1. Finally, from (37),
we have x⊤Rxx < x⊤S−1

i,q x ≤ 1, q = 0, 1, . . . , L, i ∈ M,
which implies Rx ⊆ R̃x , {x ∈ Rnx | x⊤Rxx ≤ 1}.

Remark 3: In order to obtain a optimized controller for
the smallest reachable set estimation for closed loop system,
we can add the following constraint

Si,q − δI ≺ 0, δ > 0, q = 0, . . . , L, i ∈ M (44)

The above inequality ensures the x(t) ∈ B(0,
√
δ) , {x ∈

Rn | ∥x∥ ≤
√
δ}. Given an L, the smallest ball B(0,

√
δ)

containing the reachable set R̃x can be obtained by the
following optimization problem

min δ s.t. (44) and (32)− (36) (45)
Corollary 2: Consider switched system (1) under initial

state condition (2) and disturbance ω(t) satisfying (3). If
there exist matrices S ∈ Snx×nx

+ , Xi ∈ Rnω×nx
+ , i ∈ M and

a scalar α > 0 such that[
Ξi ∗
B⊤

ω,i −αRω

]
≺ 0, ∀i ∈ M (46)

R−1
0 ≺ S ≺ R−1

x (47)

where Ξi,q = AiS+SA⊤
i +Bu,iXi +X⊤

i B
⊤
u,i +αS. Then,

the closed-loop system (6) with controller gain Ki = XiS
has a reachable set Rx ⊆ R̃x , {x ∈ Rnx | x⊤Rxx ≤ 1}.

Proof: It can be easily proved by letting L = 0 in
Theorem 2, so the proof is omitted here.

Though Corollary 2 provides constant feedback gains Ki,
i ∈ M which does not require online computation as
Ki(t), i ∈ M do. This feature is more convenient for
controller realization in practice, but the conservatism grows
in comparison with the case of L > 0.
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Fig. 1. Packet dropouts in networked control system

V. APPLICATION IN NETWORKED CONTROL SYSTEMS

Consider a networked control system with packet dropouts
in both forward and backward channels, where the packet
dropouts can be modeled as switches open behavior, which is
illustrated in Fig. 1. When T1 is closed, the controller output
is successfully transmitted to the actuator; whereas when it
is open, the output of the switch becomes zero and a packet
is lost, and we have in this case u(t) = 0. The situation is
the same for the backward channel. In absence of packet
dropouts, the state feedback controller works well during
interval Γ1,k , [t2k, t2k+1), k ∈ N. However, due to the
occurrence of packet dropouts, the controller is considered
to be not available, namely u(t) = 0, in the time interval
Γ2,k , [t2k+1, t2k+2), k ∈ N.

Assumption 1: The following assumptions are made:
1) There exists a uniform lower-bound τmin on the lengths

of Γ1,k, k ∈ N, that is t2k+1 − t2k ≥ τmin, ∀k ∈ N.
2) There exist a uniform upper-bound ψmax on the lengths

of Γ2,k, k ∈ N, that is t2k+2− t2k+1 ≤ ψmax, ∀k ∈ N.
The plant we consider is a linear system

ẋ(t) = Ax(t) +Bωω(t) +Buu(t) (48)

and the controller is considered to be u(t) = K(t)x(t), t ∈
Γ1,k. In summary, the networked control system with packet
dropouts can be described as follows

ẋ(t) = Aσ(t)(t)x(t) +Bωω(t) (49)

where A1(t) = A + BuK(t) and A2(t) = A, and the
switching function σ(t) is

σ(t) =

{
1 t ∈ Γ1,k

2 t ∈ Γ2,k
(50)

Theorem 3: Under Assumption 1 and consider networked
control system (48) under initial state condition (2) and
disturbance ω(t) satisfying (3). If there exist a set of matrices
Si,q ∈ Snx×nx

+ , Xi,q ∈ Rnu×nx
+ , q = 0, 1, . . . , L, i = 1, 2

and a scalar α > 0 such that[
Ξ1,q −Ψ1,q ∗

B⊤
ω −αRω

]
≺ 0, q = 0, . . . , L− 1 (51)[

Ξ1,q+1 −Ψ1,q ∗
B⊤

ω −αRω

]
≺ 0, q = 0, . . . , L− 1 (52)[

Ξ1,L ∗
B⊤

ω −αRω

]
≺ 0 (53)[

Ξ2,q −Ψ2,q ∗
B⊤

ω −αRω

]
≺ 0, q = 0, . . . , L− 1 (54)

[
Ξ2,q+1 −Ψ2,q ∗

B⊤
ω −αRω

]
≺ 0, q = 0, . . . , L− 1 (55)

S1,L − S2,0 ≺ 0 (56)
S2,q − S1,0 ≺ 0, q = 0, . . . , L (57)

R−1
0 − Si,0 ≺ 0, i = 1, 2 (58)

Si,q −R−1
x ≺ 0, i = 1, 2, q = 0, . . . , L (59)

where Ξ1,q = AS1,q + S1,qA
⊤ + BuX1,q + X⊤

1,qB
⊤
u +

αS1,q , Ξ2,q = ASi,q + S2,qA
⊤ + αS2,q and Ψ1,q =

L(S1,q+1 − S1,q)/τmin, Ψ2,q = L(S2,q+1 − S2,q)/ψmax.
Then, the closed-loop system (49) with controller gain
K(t) = X1(t)S

−1
1 (t), t ∈ Γ1,k has a reachable set Rx ⊆

R̃x , {x ∈ Rnx | x⊤Rxx ≤ 1}, where S1(t) and X1(t) are

S1(t) =

{
(1− µ)S1,q + µS1,q+1 t ∈ Lk,q

S1,L t ∈ Lk,L
(60)

X1(t) =

{
(1− µ)X1,q + µX1,q t ∈ Lk,q

X1,L t ∈ Lk,L
(61)

where µ = L(t− t2k)/τmin − q and q is determined by

q =

{
int[L(t− t2k)/τmin] 0 ≤ m < L

L q ≥ L
(62)

Proof: By the similar guidelines in Theorem 2, condi-
tions (51), (52) and (53) ensures that (8) in Lemma 1 holds
for interval Γ1,k, and (54), (55) guarantee (8) in Lemma
1 holds for Γ2,k. Then, (56) and (57) implies (9) holds
for switching instants t2k+1, t2k, respectively. Finally, (10)
can be guaranteed by (58). Thus, according Lemma 1, the
reachable set is obtained as Rx ⊆ R̃x , {x ∈ Rnx |
x⊤S−1

i,q x ≤ 1, q = 0, 1, . . . , L, i = 1, 2}. Using (59), we
have Rx ⊆ R̃x , {x ∈ Rnx | x⊤Rxx ≤ 1}.

By adding the following constraint

Si,q − δI ≺ 0, δ > 0, q = 0, . . . , L, i = 1, 2 (63)

The smallest ball B(0,
√
δ) containing the reachable set R̃x

can be obtained by the following optimization problem

min δ s.t. (63) and (51)− (58) (64)

Example 1: Consider the plant described by

A =

[
1.5 2.5
1.5 1.2

]
, Bu =

[
0.2
0.5

]
, Bω =

[
0
0

]
The initial state is assumed to satisfy x0 ∈ {x0 ∈ Rn |

∥x0∥ ≤ 1}, and the control objective is to ensure the state
trajectories satisfies x(t) ∈ {x ∈ Rn | ∥x∥ ≤ 2}. Assume
that the minimal reliable time for a group of successfully
transmitted information is τmin = 0.5 second, and the
maximal time for a group of successive packet dropouts is
ψmax = 0.1 second. Let α = 0 due to Bω = [0 0]⊤, and
we can find feasible solution to LMIs (51)–(59) with L = 1.

Given an initial state x0 = [0.6 0.8]⊤, the state response is
illustrated in Fig. 2, it can be observed that the state trajectory
satisfies x(t) ∈ {x ∈ Rn | ∥x∥ ≤ 2}. Moreover, we generate
500 random state trajectories with random packet dropouts
whose lengths are less than 0.1 second, it can be seen that
all the trajectories are in the prescribed ball B(0, 2), which
are shown in Fig. 3.
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Fig. 3. 500 random state trajectories with random packet dropouts. All the
trajectories x(t) generated from the ∥x0∥ ≤ 1 are bounded by ∥x(t)∥ ≤ 2.

Finally, in order the show how parameter L works for the
controller design, different L are selected for optimization
problem (64). From L = 1 to L = 5, the smallest δ are
computed, which are shown in Table II. In Table II, we can
see that δ monotonically decreases as L increases, this is
consistent with Remark 1. However, a selection of larger L
has to afford more computational cost, the computation time
grows as L increases in Table II.

TABLE II
δ AND COMPUTATION TIME (C.T.) WITH L = 1, 2, 3, 4, 5

L = 1 L = 2 L = 3 L = 4 L = 5
δ 1.8795 1.5075 1.4615 1.4434 1.4334

C.T. 0.296 s 0.433 s 0.561 s 0.734 s 0.905 s

VI. CONCLUSIONS

By employing a class of time-scheduled Lyapunov func-
tions, the reachable estimation and control problems for
switched linear systems under dwell time constraint are
investigated in this paper. A sufficient condition has been
proposed to estimate the reachable set of switched system
by bounding ellipsoids, then based on the estimation result,
a time-scheduled state feedback controller gains are obtained,
which can ensure the state trajectories of closed-loop system
in a prescribed set. Finally, the controller design result

is applied into the networked control system with packet
dropouts.
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On Reachable Set Estimation for Discrete-Time Switched Linear
Systems under Arbitrary Switching

Weiming Xiang, Hoang-Dung Tran and Taylor T. Johnson

Abstract— This paper addresses the problem of reachable
set estimation for discrete-time switched systems under arbi-
trary switching. By introducing a novel conception called M -
step sequence which is capable of characterizing all possible
subsystem activation orders during M discrete-time steps, a
Lyapunov function based approach is proposed to derive a set of
bounding ellipsoids to estimate the reachable set. The proposed
approach can cover the previous switched Lyapunov function
approach and yields less conservativeness. Moreover, it can be
shown that the M -step sequence method can also reduce the
conservativeness in stability analysis for discrete-time switched
systems under arbitrary switching in contrast to switched
Lyapunov function method. Several numerical examples are
provided to illustrate our approach.

I. INTRODUCTION

A switched system is composed of a family of continuous
or discrete-time subsystems, described by differential or
difference equations, respectively, along with a switching
rule governing the switching between the subsystems. The
motivation for studying such switched systems comes from
the fact that switched system can be efficiently used to model
many practical systems that are inherently multi-model, thus
several dynamical subsystem models are required to de-
scribe their behavior. For example, several real-world cyber-
physical systems and industrial processes exhibit switching
and hybrid nature intrinsically. Generally, the stability and
stabilization problems are the main concerns in the field of
switched systems, e.g., see [1]–[4] and the references cited
therein. One can study the stability and other properties
of switched systems with a given the switching rule as
a prescribed state space partitioning [5]–[7] or with some
known constraints on switching sequence such as dwell
time [8] or average dwell time [9] restrictions. For instance,
combining multiple Lyapunov function (MLF), the dwell
time and average dwell time properties of relatively slowly
switched systems have been investigated in the correspond-
ing switched systems [10]–[16]. However, in a number of
practical switched systems, the switching sequence is not
known a prior and these properties have to be examined
under arbitrary switching.

The material presented in this paper is based upon work supported by
the National Science Foundation (NSF) under grant numbers CNS 1464311,
EPCN 1509804, and SHF 1527398, the Air Force Research Laboratory
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Reachable set estimation aims to derive a closed bounded
set that contains all the state trajectories generated by a
dynamic system with a prescribed class of initial state set
and inputs. Reachable set estimation is not only of theoretical
interest in robust control theory [17], but also closely related
to practical engineering for the safety verification problems
[18]. For example, a dynamic system is regarded to be safe
if its reachable set does not intersect with the unsafe or
undesirable sets of states. In some early work, reachable set
bounding was considered in the context of state estimation
and it has later received a lot of attention in parameter
estimation, see [19] and references therein. Recently, em-
ploying ellipsoidal techniques based on Lyapunov function
approaches to estimate the reachable sets for different class
of systems attracts many researchers’ attention. In the frame-
work of bounding ellipsoid, the quadratic Lyapunov function
has played a fundamental role in the reachable set estimation
problem, and it has been further extended and developed to
time-delay systems [20]–[22], singular systems [23].

For the reachable set estimation problem for discrete-time
switched system under arbitrary switching, [24] proposes a
method based on switched Lyapunov function approach, and
the trajectories are estimated by a set of bounding ellipsoids.
The main aim in this paper is to further develop the Lyapunov
function approach and reduce its conservativeness in reach-
able set estimation for discrete-time switched system under
arbitrary switching. By introducing the conception of M -step
sequence which is able to characterize all possible subsystem
activation orders during M steps, an improved method will
be proposed in this paper. It should be stressed that the
approach in [24] can be recovered by particularly letting
M = 1 and thus has less conservativeness. Additionally,
also in virtue of the advantages of M -step sequence, the less
conservativeness emerges in stability analysis for discrete-
time switched system in comparison with the well-known
switched Lyapuonv function. Finally, several numerical ex-
amples are given in order to emphasize the less conserva-
tiveness and effectiveness of the approach.

The remainder of this paper is organized as follows:
Preliminaries and problem formulation are given in Section
II. The main results including the M -step sequence, reach-
able set estimation and discussion on stability are given in
Section III. Numerical examples are provided in Section IV.
Conclusions are given in Section V.

Notation: N represents the set of natural numbers. R and
R≥0 denote the fields of real numbers and nonnegative real
numbers, respectively. Rn is the vector space of all n-tuples
of real numbers, Rn×n is the space of n× n matrices with
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real entries. The notation P ≻ 0 (P ≺ 0) means P is
real symmetric and positive definite (negative definite). A⊤

denotes the transpose of A. In symmetric block matrices,
we use * as an ellipsis for the terms that are introduced
by symmetry. diag{· · · } denotes a block-diagonal matrix.
|·| stands for the Euclidean norm. The bounding ellipsoid
is expressed by E(R) , {x ∈ Rn | x⊤Rx ≤ 1, 0 ≺ R ∈
Rn×n}, and ball B(x0, δ) , {x ∈ Rn | |x− x0| ≤ δ, x0 ∈
Rn, δ > 0}.

II. PRELIMINARIES AND PROBLEM FORMULATION

In this paper, we consider a class of discrete-time switched
linear system in the following form

x(k + 1) = Aσ(k)x(k) +Bσ(k)ω(k) (1)

where x(k), x0 ∈ Rnx are the state of the system and
initial state, respectively. The switching signal σ is defined
as σ : N → I[1, N ], where N is the number of subsystems
involved in the switched system. In this paper, no specific
restriction is imposed on switching signal σ, namely the
arbitrary switching law is considered in the rest of paper.
Ai, and Bi, i ∈ I[1, N ] are constant system matrices
with appropriate dimensions. ω(k) ∈ Rnω is the bounded
peak input vector which is assumed to satisfy the following
constraint

ω(k) ∈ W , {ω ∈ Rnω | ω⊤ω ≤ d2, d > 0} (2)

The main problem considered in this paper is the reachable
set estimation problem for switched system (1) with input
ω(k) satisfying (2). The reachable set is defined as

Rx , {x ∈ Rnx | x0 = 0, x(k), ω(k) satisfy (1), (2)} (3)

Due to the complex characteristic of switched systems,
the accurate reachable set for switched system (1) is hard to
compute. The reachable set estimation problem is formulated
as follows.

Problem 1: For switched system (1), determine an over
approximate set R̃x such that Rx ⊆ R̃x, and the set R̃x

should be optimized as small as possible.
The recent solution to compute an over approximate

set R̃x is proposed in [24], which is based on switched
Lyapunov function approach [25].

Lemma 1: [24] Consider system (1) with input (2). If
there exist a set of a family of functions Vi : Rn → R+

satisfying Vi(0) = 0 and Vi(x) > 0, ∀x = 0, i ∈ I[1, N ],
and exist scalars 0 < αi,j < 1 such that ∀(i, j) ∈ I[1, N ]×
I[1, N ],

Vj(x(k + 1))− αi,jVi(x(k))−
1− αi,j

d2
ω⊤(k)ω(k) ≤ 0

(4)

then system (1) is globally uniformly asymptotically stable
and we have ∃i ∈ I[1, N ] such that Vi(x(k)) ≤ 1 for all
x(0) satisfying Vi(x(0)) ≤ 1, ∀i ∈ I[1, N ].

In the framework of quadratic switched Lyapunov func-
tion, the following result for reachable set estimation stems
from above Lemma.

Lemma 2: [24] Consider system (1) with input (2). If
there exist matrices Pi ≻ 0, i ∈ I[1, N ] and scalars 0 <
αi,j < 1 such that ∀(i, j) ∈ I[1, N ]× I[1, N ],[

A⊤
i PjAi − αi,jPi A⊤

i PjBi

∗ B⊤
i PjBi − 1−αi,j

d2 I

]
≼ 0 (5)

then system (1) is GUAS and the reachable set Rx can be
over approximated by R̃x ,

∪
i∈I[1,N ] E(Pi).

Remark 1: In [24], Lemma 1 has Vi(x(k)) ≤ 1, ∀i ∈
I[1, N ], and the reachable set Rx in Lemma 2 is bounded
by the intersection of a set of ellipsoids

∩
i∈I[1,N ] E(Pi).

We correct this slight error as that ∃i ∈ I[1, N ] such that
Vi(x(k)) ≤ 1 and the over approximate set R̃x should be
the union of a set of ellipsoids

∪
i∈I[1,N ] E(Pi), since σ(k)

is an arbitrary switching means σ(k) could be any possible
i ∈ I[1, N ] and R̃x needs to include all possible trajectories
for any i ∈ I[1, N ].

On the basis of above lemma, the over approximate
reachable set R̃x can be characterized by a set of ellipsoids,
and optimization problems can be formulated to obtain R̃x

as small as possible in [24]. In this paper, our main aim is
to further improve this Lyapunov function based approach to
develop less conservative result for reachable set estimation
of switched system (1), namely to develop an approach to
better over approximate the reachable set Rx.

III. MAIN RESULTS

In this section, the reachable set estimation problem will
be studied based on a novel conception named M -step se-
quence, an LMI based approach will be proposed to obtain a
set of bounding ellipsoids. Moreover, the globally uniformly
asymptotical stability of discrete-time switched linear system
is discussed in the framework of M -step sequence.

A. M-Step Sequence

In this paper, the main aim is to further reduce the
conservatism in Lyapunov function based approach for reach-
able set estimation of discrete-time switched system over
switched Lyapunov function methods. First, we introduce
the conception of the M -step sequence, which plays a
fundamental role in this paper. The M -step sequence is
defined as follows.

Definition 1: For a switched system consisting N subsys-
tem, and given a time window with M -step length, an M -
step sequence is a combination of subsystems in M steps.
There are NM combinations of subsystems in M steps, and
these NM combinations are indexed by I[1, NM ]. For the
ith sequence of combination in I[1, NM ], it is expressed by

SM
i , {i1, i2, . . . , iM}, i1, . . . , iM ∈ I[1, N ], i ∈ I[1, NM ]
The M -step sequence is able to characterize all possible

activation orders for switched system during the M steps.
Given a switching signal σ(k) in [0,∞), we denote the nth
M -step activation sequence is

Σn , {σ(nM), σ(nM + 1), . . . , σ((n+ 1)M − 1)} (6)

where n = 0, 1, . . ..
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The following properties can be easily observed.
Proposition 1: Given any switching signal σ(k) defined

over interval [0,∞), we have
1)

∪∞
n=0 Σn = {σ(0), σ(1), σ(2), . . .}.

2) For any n = 0, 1, . . ., there exists an i ∈ I[1, NM ]
such that Σn = SM

i .
Remark 2: The first property implies the activation order

of any switching signal σ(k) can be expressed by M -step
activation sequence Σn as n → ∞. The second property
means any M -step activation sequence Σn can be found in
SM
i , i ∈ I[1, NM ]. These two properties suffice to show

that the M -step sequence SM
i , i ∈ I[1, NM ], is capable to

describe the behaviors of switching signal σ(k) in [0,∞).
Based on the introduced notion of M -step sequence,

we introduce a class of M -step clock-dependent switched
Lyapunov functions Vi : [nM + 1, (n+ 1)M ]× Rn → R+,
n = 0, 1, . . ., i ∈ I[1, NM ], associated to M -step sequence,
which are a family of non-negative functions satisfying

β1(|x|) < Vi(k, x) < β2(|x|) (7)

where β1, β2 ∈ K∞.
In the framework of the M -step clock-dependent switched

Lyapunov function, the following result can be obtained as
an improvement of Lemma 1.

Theorem 1: Consider system (1) with input (2). If there
exist a set of a family of non-negative functions Vi : [nM +
1, (n + 1)M ] × Rn → R+, n = 0, 1, . . ., i ∈ I[1, NM ]
satisfying (7), and exist scalars 0 < αi, αi,j < 1 such that
∀(i, j) ∈ I[1, NM ]× I[1, NM ],

Ωi(k) ≤ 0, ∀k = nM + 1, . . . , (n+ 1)M (8)
Θi,j ≤ 0 (9)

where Ωi(k) = Vi(k + 1, x(k + 1)) − αiVi(k, x(k)) −
1−αi

d2 ω⊤(k)ω(k), Θi,j = Vj(nM + 1, x(nM + 1)) −
αi,jVi(nM, x(nM))− 1−αi,j

d2 ω⊤(nM)ω(nM), n = 1, 2, . . ..
Then system (1) is uniformly stable and we have ∃i ∈
I[1, NM ] such that Vi(x(k)) ≤ 1 for all x0 satisfying
Vi(0, x0) ≤ 1, ∀i ∈ I[1, NM ].

Proof: First, we consider ω(k) = 0 for stability. By (8),
it ensures that

Vi(k + 1, x(k + 1))− αiVi(k, x(k)) ≤ 0 (10)

holds for k = nM + 1, nM + 1, . . . , (n+ 1)M .
Then, by (9), one has

Vj(nM + 1, x(nM + 1))− αi,jVi(nM, x(nM)) ≤ 0 (11)

Define a new function σ̃ : N → I[1, NM ] indicating the
active M -step sequence, and choose a Lyapunov function
candidate as Vσ̃(k)(k, x(k)). According to Proposition 1, and
together with (10) and (11) with the fact 0 < αi, αi,j < 1,
it leads to

Vσ̃(k+1)(k + 1, x(k + 1))− Vσ̃(k)(k, x(k)) < 0 (12)

Combined with (7), the stability can be established by
standard Lyapunov theorem.

Furthermore, in presence of input ω(k), (8) yields that

Vi(k + 1, x(k + 1))− αiVi(k, x(k)) ≤
1− αi

d2
ω⊤(k)ω(k)

≤ 1− αi

(13)
which implies Vi(k+1, x(k+1))−1 ≤ αi(Vi(k, x(k))−1).

Similarly, (9) can lead to

Vj(nM + 1, x(nM + 1))− αi,jVi(nM, x(nM)) ≤ 1− αi

(14)
holds for n = 1, 2, . . ., which implies

Vj(nM + 1, x(nM + 1))− 1 ≤ αi,j(Vi(nM, x(nM))− 1)
(15)

For any k ∈ N, we have

Vσ̃(k)(k)− 1

≤ασ̃(k−1)(Vσ̃(k−1)(k − 1)− 1)

≤ασ̃(k−1) · · ·ασ̃(nM+1)(Vσ̃(nM)(nM + 1)− 1)

≤ασ̃(k−1) · · ·ασ̃(nM+1)ασ̃(nM+1),σ̃(nM)(Vσ̃(nM)(nM)− 1)

≤ασ̃(k−1) · · ·ασ̃(nM)ασ̃(nM),σ̃(nM−1) · · ·ασ̃(0)(Vσ̃(0)(0)− 1)

Due to 0 < αi, αi,j < 1 and Vi(0, x0) ≤ 1, ∀i ∈
I[1, NM ], it ensures Vσ̃(k)(k) − 1 ≤ 0, ∀k ∈ N. Because
σ̃(k) is an arbitrary signal selecting value in I[1, NM ], it
implies ∃i ∈ I[1, NM ] ⇒ Vi(k, x) ≤ 1.

Remark 3: If we particularly let M = 1, Condition (8) is
reduced to

Vi(n+1, x(n+1))−αiVi(n, x(n))−
1− αi

d2
ω⊤(n)ω(n) ≤ 0

(16)
and (9) can be rewritten to

Vj(n+1, x(n+1))−αi,jVi(n, x(n))−
1− αi,j

d2
ω⊤(n)ω(n) ≤ 0

(17)
It is noted that (16) can be absorbed in (17) by just letting
αi,i = αi. It can be seen that (17) is exactly the condition (4)
in Lemma 1. Therefore, Theorem 1 covers previous result
stated by Lemma 1, namely Lemma 1 is a particular case
which can be recovered by Theorem 1 with M = 1.

B. Reachable Set Estimation

In this subsection, the reachable set estimation for discrete-
time switched linear system will be investigated. Based on
Theorem 1, the following result can be obtained.

Theorem 2: Consider system (1) with input (2). If there
exist matrices Pi,m ≻ 0, m ∈ I[1,M ], i ∈ I[1, NM ] and
scalars 0 < αi < 1, 0 < αi,j < 1 such that ∀(i, j) ∈
I[1, NM ]× I[1, NM ],[
A⊤

im
Pi,m+1Aim − αiPi,m A⊤

im
Pi,mBim

∗ B⊤
im
Pi,mBim − 1−αi

d2 I

]
≼ 0

m = 1, 2, . . . ,M − 1
(18)[

A⊤
iM
Pj,1AiM − αi,jPi,M A⊤

iM
Pj,1BiM

∗ B⊤
iM
Pj,1BiM − 1−αi,j

d2 I

]
≼ 0

(19)
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then system (1) is uniformly stable and the reachable set Rx

can be over approximated by

R̃x ,
∪

m∈I[1,M ],i∈I[1,NM ]

E(Pi,m) (20)

Proof: Choosing an M -step clock-dependent switched
Lyapunov function in the following quadratic form

Vσ̃(k)(k, x(k)) = x⊤(k)Pσ̃(k),k−nM+1x(k), n = 0, 1, . . .
(21)

where σ̃(k) indicating the active M -step sequence defined
same as in (12).

Suppose σ̃(k) = i, k ∈ [nM + 1, (n + 1)M ] and
denote Ωi(k) = Vi(k + 1, x(k + 1)) − αiVi(k, x(k)) −
1−αi

d2 ω⊤(k)ω(k), and thus the M -step sequence SM
i =

{i1, i2, . . . , iM}. Along the system evolution, we can obtain

Ωi(k) = ξ⊤(k)Ξi,mξ(k)

where m ∈ I[1,M ], ξ(k) = [x⊤(k), ω⊤(k)]⊤ and Ξi,m =[
A⊤

im
Pi,m+1Aim − αiPi,m A⊤

im
PimBim

∗ B⊤
im
Pi,mBim − 1−αi

d2 I

]
.

Moreover, assume σ̃(nM) = i and σ̃(nM + 1) = j, and
let Θi,j = Vj(nM+1, x(nM+1))−αi,jVi(nM, x(nM))−
1−αi,j

d2 ω⊤(nM)ω(nM), the following derivation can be ob-
tained for the transition from instant nM to nM + 1.

Θi,j = ξ⊤(nM)Πi,jξ(nM)

where

Πi,j =

[
A⊤

iM
Pj,1AiM − αi,jPiM A⊤

iM
Pj,1BiM

∗ B⊤
iM

Pj,1BiM − 1−αi,j

d2
I

]
By (18) and (19), it can be ensured that Ωi(k) ≤ 0, ∀k =

nM + 1, . . . , (n+ 1)M , ∀n = 1, 2, . . . and Θi,j ≤ 0.
According to Theorem 1, for the case of x0 = 0, we

have ∃i ∈ I[1, NM ] such that Vi(x(k)) ≤ 1. Therefore,
the state x(k) satisfies x ∈ {x | x⊤Pi,mx ≤ 1,m ∈
I[1,M ], i ∈ I[1, NM ]} =

∪
m∈I[1,M ],i∈I[1,NM ] E(Pi,m),

which is exactly the set (20). The proof is complete.
Remark 4: Theorem 2 can be viewed as an improved

version for Lemma 2, if we enforce M = 1 in Theorem 2,
Pi,m, m ∈ I[1,M ], i ∈ I[1, NM ], becomes Pi, i ∈ I[1, N ].
Inequalities (18) and (19) can be rewritten to[

A⊤
i PjAi − αi,jPi A⊤

i PjBi

∗ B⊤
i PjBi − 1−αi,j

d2 I

]
≼ 0

which is (5) in Lemma 2.
Remark 5: The set R̃x is usually expected to be as small

as possible to achieve a precise estimate of reachable set Ry .
In [24], several methods have been proposed to minimize
the bounding ellipsoids, which can be also employed in our
paper. In order to make a clear comparison with [24], we
consider the method associated to the following constraint

Pi,m ≽ ϵI, ϵ > 0, ∀m ∈ I[1,M ], ∀i ∈ I[1, NM ] (22)

which implies that ϵx⊤(k)x(k) ≤ x⊤(t)Pi,mx(k) ≤ 1,
namely x(t) ∈ R̃x ,

∪
m∈I[1,M ],i∈I[1,NM ] E(Pi,m) ⊆

TABLE I
COMPUTATIONAL COMPLEXITY OF THEOREM 2

Number of variables Size of LMIs

Theorem 2 n(n+1)MNM

2
n(N2M +MNM )

B(0, 1/
√
ϵ), ∀k ∈ R≥0, so we have to maximize ϵ to obtain

a smallest ball B(0, 1/
√
ϵ) as

max ϵ

s.t. (18), (19) and (22)
(23)

Moreover, due to the existence of tuning parameters αi and
αi,j , the result in Theorem 2 and corresponding optimization
problem (23) are not standard LMI problems, they are
bilinear matrix inequality (BMI) problems and known to
be NP-hard. Fortunately, several algorithms are available
to solve BMI problems such as the iterative linear matrix
inequality (ILMI) approach in [26], [27], or using numerical
optimization algorithms, such as program fminsearch
[20] or genetic algorithm (GA) [24] in the optimization
toolbox of Matlab.

Remark 6: Although M > 1 will reduce the conservative-
ness, the price to pay is the increase of computational com-
plexity. The number of LMIs and involved decision variables
grows as M is increased. The computation complexities are
listed in Table I.

C. Some Discussions for Stability Analysis

It should be noted that the stability analysis result of
switched system (1) with input ω(k) = 0 is actually
included in the previous reachable set estimation solution.
As what has been shown in previous section, our reachable
set estimation yields less conservativeness than that in [24]
which is essentially based on switched Lyapunov function
approach in [25] . In fact, by introducing the concept of M -
step sequence, a less conservative stability analysis result can
be obtained as well in contrast to the well known stability
criterion proposed in [25] on basis of switched Lyapunov
function approach.

The following corollary can be viewed as an improvement
for the classical switched Lyapunov function approach in
stability analysis.

Corollary 1: Consider switched system (1) with ω(k) =
0, if there exist MNM symmetric matrices Pi,m ≻ 0, m ∈
I[0,M ], i ∈ I[1, NM ] such that the following inequalities
hold for ∀i, j ∈ I[1, NM ], ∀m ∈ I[1,M ],

A⊤
im+1

Pi,m+1Aim − Pi,m ≺ 0, m = 1, 2, . . . ,M − 1 (24)

A⊤
iMPj,1AiM − Pi,M ≺ 0 (25)

then switched system (1) is globally uniformly asymptotical-
ly stable.

Proof: The proof can be obtained by the guidelines in
Theorems 1 and 2, which is omitted here.

Remark 7: Corollary 1 can be viewed as an improved re-
sult over switched Lyapunov function approach for switched
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system (1). By letting M = 1, conditions (24) and (25) can
be rewritten to

A⊤
i PjAi − Pi ≺ 0, i, j ∈ I[1, N ] (26)

where Pi ≻ 0, i ∈ I[1, N ]. This result is exactly the
Theorem 2 in [25], which means that the switched Lyapunov
function approach is a special case of Corollary 1 as M = 1.
Corollary 1 with M ≥ 2 is able to yield less conservativeness
in stability analysis, which can be shown by a numerical
example later.

IV. EXAMPLE

Example 1: Consider a switched system with two modes
with the following system matrices

A1 =

[
0 0.7

−0.2 −0.6

]
, B1 =

[
0.2
−0.4

]
A2 =

[
−0.6 0.4
−0.7 0.2

]
, B2 =

[
−0.6
0.4

]
The disturbance ω(k) satisfies ω(k) ∈ W , {ω ∈ Rnω |

ω⊤ω ≤ 1}. In order to compare our approach with that
in [24], we first use Lemma 2 to obtain the reachable set
estimation by maximizing ϵ in optimization (23). The GA is
used to search for optimized αi, i ∈ I[1, 2]. The population is
set to be 50. After 100 generations, the optimal ϵ = 0.04057,
which is shown in Fig. 1.

On the other hand, with same population and generation,
Theorem 2 with M = 2 reaches a larger ϵ as ϵ = 0.05618,
which obviously is a less conservative result. The update of ϵ
at each generation is illustrated in Fig. 1, which has a slower
convergent rate but a better optimized result. The slower
convergent rate is basically because more variables αi,j ,
i, j ∈ I[1, 4], are introduced in the optimization problem.
The union of bounding ellipsoids are depicted in Fig. 2 by
solid blue lines. For the purpose of showing the advantage of
our approach, we present Fig. 3 to clearly compare Theorem
2 and Lemma 2, in which the estimation by Theorem 2 is
more precise than by Lemma 2. In Figs. 2 and 3, the state
trajectories are generated with arbitrary switching signal and
disturbance ω(k) uniformly distributed over [−1, 1].

Example 2: In this example, we will show the less conser-
vativeness of M -step method in the stability point of view.
Let us consider the system (1) with matrices Ai = eBiT ,
where

B1 =

[
0 1

−10 −1

]
, B2 =

[
0 1

−0.1 −4

]
(27)

Letting T = 0.1, and using switched Lyapunov function
approach in [25] (also viewed as M = 1 in our M -step
sequence approach), it can be found that the LMI problem
is not feasible, so that the globally uniformly asymptotically
stability cannot be determined by the approach in [25].
Moreover, by applying the method in [28], the minimum
admissible dwell time is computed as 2, which also in-
dicates that the globally uniformly asymptotically stability
of switched system (1) cannot be ascertained for the case
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Fig. 1. Fitness function value along with generations.
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Fig. 4. State response under switching occurring at each time instant.

of arbitrary switching, for which the minimum dwell time
should be 1.

However, if we increase M by just letting M = 2
in the M -step sequence method proposed in this paper,
the feasibility of the corresponding LMI problems can be
established, which is sufficient to guarantee that the system
is globally uniformly asymptotically stable under arbitrary
switching. The convergent state evolution is shown by the
following simulation result in Fig. 4, where the extreme
switching behavior, i.e., the switching occurs at each time
instant, is adopted, and the initial state is assumed to be
x0 = [3 5]⊤.

V. CONCLUSIONS

The reachable set estimation problem for discrete-time
switched system has been investigated in this paper. A
novel conception called M -step sequence is introduced to
solve the reachable set estimation problem, it is shown that
the proposed approach covers the previous result which is
based on switched Lyapunov function, and thus has less
conservativeness. In addition, some discussions are given for
stability analysis for discrete-time switched system in the
framework of M -step sequence. Finally, numerical examples
are given to show the theoretical findings in this paper.
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Abstract

The event-triggered control problem for switched linear system is addressed in this paper. The

periodical sampling scheme and event-triggering condition are incorporated in the closed-loop. The

feedback control updates its value only at sampling instants as long as event-triggering condition

is satisfied as well. In addition, the switchings are only allowed to occur at sampling instants and

meanwhile the switching condition is satisfied. Three equivalent sufficient conditions are proposed

to ensure the asymptotic stability of switched systems. In particular, one condition has a promising

feature of affineness in system matrices, and as a consequence, it is extended to robust sampling

case and L2-gain analysis. Several examples are provided to illustrate our results.

Keywords: Asymptotic stability, event-triggered control, L2 gain, switched systems

1 Introduction

Switched systems have emerged as an important subclass of hybrid systems and represent a very active

area of current research in the field of control systems [1–3]. A switched system is composed of a family

of continuous or discrete-time subsystems, described by differential or difference equations, respectively,

along with a switching rule governing the switching amongst the subsystems. The motivation for

studying switched systems comes from the fact that switched system can be effectively used to model

many practical systems that are inherently multi-model in the sense that several dynamic subsystem

models are required to describe their behavior. For instance, the sampled data systems [4], networked

control systems [5] and event-triggered systems [6] can be modeled as switched systems. Generally, the

stability and stabilization problems are the main concerns in the field of switched systems. It has been

proved that Lyapunov function techniques are effective to deal with stability and stabilization problems

for switched systems, for example [7–9]. Combining multiple Lyapunov function (MLF), the dwell time

and average dwell time properties of relatively slowly switched systems have been investigated in the

corresponding switched systems [10–12]. For more details on the recent advances in the area, the

readers are referred to the surveys [2], and the references cited therein.

On the other hand, the periodic and aperiodic control strategies are presented as the most prevailing

control approaches on digital platforms. Typically, the control executes periodically in the closed-loop

and the system can be analyzed by the well-developed sampled-data system theory. As a further

†Authors are with the Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville,

TN 37212 USA. Email: Weiming Xiang (xiangwming@gmail.com), Taylor T. Johnson (taylor.johnson@gmail.com).
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improvement of traditional sampled-data system, the event-triggered control system is introduced, see

for example the theory work [13–16], and numerous applications [17–20]. In the framework of event-

triggered control, the control executions are generated by well-designed event-triggering condition. In

comparison with sampled-data scheme, the event-triggered control which is a typical aperiodic one is

capable of significantly reducing the number of control task executions, while retaining a satisfactory

closed-loop performance. Though the event-triggered control can offers some clear advantages with

respect to periodic control such as in handling energy, computation, and communication constraints

but it also introduces some new theoretical and practical problems. The detailed advantages and

challenges introduced by the event-triggered control can be found in the survey paper [21].

In this paper, we consider a class of periodic event-triggered control for switched linear systems.

The periodic event-triggering condition allows the coexistence of periodic sampling scheme and event-

triggering condition for the control executions. Moreover, this blending strategy also determines the

occurrence of switching behaviors, in other words, the switching only occurs at sampling instants as

long as the switching condition is satisfied. Three stability criteria are proposed for event-triggered

switched system in this paper, and they are proved to be basically equivalent. The first one is derived

by analyzing the evolution of state at sampling instant, however, it is not convenient to extend to

further problems such as robust sampling and L2-gain analysis. Then, a sampling-dependent approach

is proposed, which actually is not numerically tractable since it has infinitely many values to check.

Thus, a discretized method to equivalently convert the sampling-dependent condition into a numerically

tractable condition. Based on this numerically tractable condition, the extensions to robust sampling

case and L2-gain analysis are made.

The remainder of this paper is organized as follows: The event-triggered switched system model

is given in Section 2. The main result, three equivalent stability criteria are presented in Section

3. Extensions to robust sampling case and L2-gain analysis are studied in Section 4 and Section 5,

respectively. Conclusions are given Section 6.

Notations: N represents the set of natural numbers, R denotes the field of real numbers, R+ is the

set of nonnegative real numbers, and Rn stands for the vector space of all n-tuples of real numbers,

Rn×n is the space of n × n matrices with real entries. The set Mn
c consists of all matrices Φ ∈ Rn×n

with nonnegative off diagonal elements ϕji ≥ 0, i ̸= j, satisfying
∑N

j=1 ϕji = 0, which implies that

ϕii ≤ 0. The set Mn
d consists of all matrices Π ∈ Rn×n with nonnegative elements πji ≥ 0 satisfying

the normalization constraints
∑N

j=1 πji = 1. ∥·∥ stands for Euclidean norm. The notation A ≻ 0

means A is real symmetric and positive definite. A ≻ B means that A − B ≻ 0. A⊤ denotes the

transpose of A. In addition, in symmetric block matrices, we use * as an ellipsis for the terms that are

induced by symmetry and diag{· · · } stands for a block-diagonal matrix. I denotes the unit matrix and

0 stands for the zero elements in matrix with appropriate dimensions. We define x(t+k ) = limt→t+k
x(t)

and x(t−k ) = limt→t−k
x(t). For a matrix function F : [a, b] → Rn×n, its upper right Dini derivative is

defined by D+F (x) , limh→0+ sup F (x+h)−F (x)
h . In the rest of this work, we will make extensive uses

of the following matrix expressions:

C (A,P ) = A⊤P⊤ + PA

D(A,P (t)) = C (A,P (t)) +D+P (t)

D1(A,P,Q, δ) = C (A,P ) + (P −Q)/δ

D2(A,P,Q, δ) = C (A,Q) + (P −Q)/δ

E (A, J, P,Q, t) = eA
⊤tJ⊤PJeAt −Q

2
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2 Event-Triggered Switched Control System

Consider the continuous-time switched linear system in the following form:

ẋ(t) = Aσ(t)x(t) +Bσ(t)u(t) + Eσ(t)ω(t) (1)

y(t) = Cσ(t)x(t) +Dσ(t)ω(t) (2)

where x(t), x0 ∈ Rn are the state of the system and the initial condition, respectively. u(t) ∈ Rnu is

the input and ω(t) ∈ Rnω is the exogenous disturbance. y(t) ∈ Rny is the controlled output. The

switching function σ : R+ → N , {1, 2, . . . , N} defines the switching actions, where N is the number

of subsystems.

In this paper, we consider a periodic event-triggered control strategy for switched system (1)–(2) for

the sake of taking advantages of both periodic sampled-data and event-triggered control, which means

the system state x(t) is only measured at the periodic sampling times for generating the control input,

computing the switching function output and verifying the event-triggering condition. In a periodic

sampling implementation, the values of the system state are available for a time sequence S , {tk}k∈N,

where t0 is the initial time and tk, k ∈ N \ {0}, are the sampling times, which are periodic in the sense

that tk = kTs, k ∈ N, for some properly chosen sampling interval Ts > 0. With this sampling setting,

the sampled switching signal is

σ(t) = σ̂(t), t ∈ (tk, tk+1] (3)

where σ̂(t), t ∈ (tk, tk+1], is determined by

σ̂(t) =

{
σ(tk) σ(tk) ̸= σ̂(tk)

σ̂(tk) σ(tk) = σ̂(tk)
(4)

The sampled switching signal (3)–(4) implies the switching decisions are only made at sampling

instant tk. The value of σ(t) only changes at sampling instant tk if σ(tk) ̸= σ̂(tk), otherwise it holds

its most recent value. It worth mentioning that since the switching function (3) only activates at each

sampling time tk, k ∈ N, it can be interpreted that a dwell time constraint tk+1 − tk ≥ Ts, ∀k ∈ N is

imposed on the switching signal. This dwell time constraint obviously prevents the switching actions

from chattering phenomenon or Zeno phenomenon, since the switching frequency is restricted to have

an upper bound equals to 1/Ts. In [22], a modified min-switching law with dwell time constraint

is proposed to avoid the chattering behavior owe to the dwell time constraint. However, it requires

accessing the system state and monitoring the state-dependent switching rule continuously, which is

not allowed in the sampled-data setting proposed in this paper, since the system state x(t) is obtained

only at sampling instants.

In addition, we also take the sampled-data feedback controller into account. In a conventional

periodic sampled-data control scheme, the following mode-dependent state feedback controller is often

considered

u(t) = Kσ(t)x̂(t), t ∈ R+ (5)

where Ki, i ∈ N are the already designed feedback gains for subsystems, and x̂(t), t ∈ (tk, tk+1], is

defined by

x̂(t) = x(tk), t ∈ (tk, tk+1] (6)

3
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Figure 1: General scheme of periodic event-triggered switched control system

In order to obtain a complete model of system (1)–(2) with the periodic sampling setting (3) and

(5), we let x̃(t) = [x(t) x̂(t)]⊤ and obtain the following system

˙̃x(t) = Ãσ(t)x̃(t) + Eσ(t)ω(t), t ∈ R+ \ S (7)

x̃(t+k ) = Jx̃(t−k ), tk ∈ S (8)

y(t) = C̃σ(t)x̃(t) + D̃σ(t)ω(t) (9)

where σ(t) evolves according to (3) and

Ãi =

[
Ai BiKi

0 0

]
, Ẽi =

[
Ei

0

]
, J =

[
I 0

I 0

]
, C̃i =

[
Ci 0

]
, D̃i = Di

Further considering the event-triggered controller, the state measurements are transmitted over a

communication network and the control values are updated only when certain event-triggering condi-

tions are satisfied, the controller is given in the following form

u(t) = Kσ(t)x̂(t), t ∈ R+ (10)

where x̂(t) is a left-continuous signal, given for t ∈ (tk, tk+1], k ∈ N, and modifies the (6) as

x̂(t) =

{
x(tk), Γ(x(tk), x̂(tk)) > 0

x̂(tk), Γ(x(tk), x̂(tk)) ≤ 0
(11)

with an event-triggering function Γ : R2n → R. The value x̂(tk) stands for the valid value for the

controller at sampling time tk and through the successive interval [tk, tk+1), which is determined by

the event-triggering function Γ. If Γ(x(tk), x̂(tk)) ≤ 0, the state x̂(tk) holds as its most recent value,

and in the case of Γ(x(tk), x̂(tk)) > 0, the state x(tk) is transmitted over the network to the controller

and x̂(tk) is updated accordingly. The general scheme of event-triggered switched control system with

periodic sampling setting is illustrated in Figure 1.

In this paper, we focus on a class of quadratic event-triggering condition, that is, Γ(x(tk), x̂(tk)) is

in the following quadratic form

Γ(x̃(tk)) = x̃⊤(tk)Qx̃(tk) (12)

4
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where x̃(tk) = [x⊤(tk) x̂
⊤(tk)]

⊤ and Q ∈ R2n×2n is a symmetric matrix. Several event-triggering

conditions can be written into the quadratic structure (12), for example the state-error based triggering

condition Γ(x(tk), x̂(tk)) = ∥x̂(tk)− x(tk)∥ −∆ ∥x(tk)∥, where ∆ > 0, can be expressed by (12) with

Q =

[
(1−∆2)I −I

−I I

]
Other well-known event triggering conditions such as input-error based, Lyapunov function based

conditions can be formalized by (12) as well, readers can refer to [6].

In summary, by modifying the periodic sampled-data system model (7)–(9), the event-triggered

system model arrives at

˙̃x(t) = Ãσ(t)x̃(t) + Ẽσ(t)ω(t), t ∈ R+ \ S (13)

x̃(t+k ) =

{
J1x̃(t

−
k ), x̃⊤(t−k )Qx̃(t

−
k ) > 0

J2x̃(t
−
k ), x̃⊤(t−k )Qx̃(t

−
k ) ≤ 0

, tk ∈ S (14)

y(t) = C̃σ(t)x̃(t) + D̃σ(t)ω(t) (15)

where J1 is same as J in (8) and J2 = diag{I, I}.
By (13)–(15), one can see that the event-triggered switched control system can be expressed as

a switched system with impulsive behaviors at switching instants. For the passive switching, that is

the switching information is not available and the switching is supposed to possibly occur at every

switching sampling instant, system (13)–(15) can be viewed to be under switching with a dwell time

Ts. The results in [11, 23–25] for switched system with dwell time can be employed. However, if some

active switching is considered, which means the switching rule is explicitly available to designed, the

passive switching result could yields conservativeness, thus we should improve these results with the

aid of the information of switching law. For the active switching considered in the remainder of paper,

we adopt the well-known min-switching rule, which is described as below:

σ(t) = argmin
i∈N

x̃⊤(t)Pix̃(t) (16)

where Pi ≻ 0, i ∈ N , are matrices to be determined, see the results in [26, 27]. The corresponding

sampled min-switching rule (16) is described as

σ(t) =

{
argmini∈N x̃⊤(t+k )Pix̃(t

+
k ), tk ∈ S

σ(tk), t ∈ (tk, tk+1)
(17)

The main aim of this paper is to provide analysis and design techniques for controller, sampling

scheme, and event-triggering condition such that the system is stable with switching rule (17). In the

following, the definition of globally asymptotic stability is presented.

Definition 1 A function γ : R+ → R+ is a K function if it is strictly increasing and γ(0) = 0, and

also a function β : R+ × R+ → R+ is a KL function if for each fixed s the function β(r, s) is a K
function with respect to r, and for each fixed r the function β(r, s) is decreasing with respect to s and

β(r, s) → 0 as s→ 0.

The definition of globally uniformly asymptotic stability (GUAS) for system (13)–(15) is given

below.

5
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Definition 2 The equilibrium x = 0 of system (13)–(15) with ω(t) = 0 is GUAS under the switching

signal σ(t) if, for initial condition x̃(t0), there exists a class KL function β such that the solution of

the system satisfies ∥x̃(t)∥ ≤ β(∥x̃(t0)∥ , t), ∀t ∈ R+.

In the presence of input ω(t), the L2-gain performance of system (13)–(15) is formulated in the

following.

Definition 3 For γ > 0, system (13)–(15) is said to be GUAS with an L2-gain performance, if the

following is satisfied:

(1) System (13)–(15) is GUAS when ω(t) = 0;

(2) Under zero initial conditions, the following inequality holds for all nonzero ω ∈ L2[0,∞),∫ ∞

t0

∥y(t)∥2 dt ≤ γ2
∫ ∞

t0

∥ω(t)∥2 dt (18)

where γ is called the L2-gain.

Before ending this section, a useful lemma is introduced.

Lemma 1 For a matrix A ∈ Rn×n and a scalar Ts > 0, there always exist a sufficiently large M∗ ∈
N \ {0}, a sufficiently small ϵ ∈ R+ and matrices Pm ∈ Rn×n, m = {0, . . . ,M}, such that

Pm ≻ 0, m ∈ {0, . . . ,M} (19)

D1(A,Pm+1, Pm, δ) ≺ 0, m ∈ {0, . . . ,M − 1} (20)

D2(A,Pm+1, Pm, δ) ≺ 0, m ∈ {0, . . . ,M − 1} (21)

where δ = Ts/M , hold for any M > M∗, and Pm, m = {0, . . . ,M}, have the following form:

Pm = e−A⊤δmP0e
−Aδm −

∫ δm

0

e−A⊤(δm−t)Y (t)e−A(δm−t)(t)dt, m ∈ {0, . . . ,M} (22)

where δm = mTs/M , m = {0, . . . ,M}, and 0 ≺ Y (t) ≺ ϵI, t ∈ [0, Ts].

Proof . See Appendix. �

In this section, the closed-loop of event-triggered switched linear system is modeled as a switched

system with state update at switching instant, along with mixed time-dependent and state-dependent

switching rules. In the next section, the stability analysis will be studied as the main result in this

paper.

3 Stability Analysis for Event-Triggered Switched System

Motivated by the techniques used in [23, 24, 28–30] for switched systems, and [31] for time-delayed sys-

tems, the main result for the stability of event-triggered switched control system (13)–(15) is presented

by the following theorem.

Theorem 1 Consider event-triggered switched control system (13)–(15) with ω(t) = 0, the following

three statements are equivalent:

6
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(a) There exist scalars µh > 0, h ∈ {1, 2}, a matrix Π ∈ MN
d and symmetric matrices Pi ≻ 0, i ∈ N ,

such that

Ξi,h ≺ 0, i ∈ N , h ∈ {1, 2} (23)

where Ξi,h = E (Ãi, Jh,
∑N

j=1 πjiPj , Pi + (−1)hµhQ̃i, Ts), Q̃i = eÃ
⊤
i TsQeÃiTs .

(b) There exist scalars µh > 0, h ∈ {1, 2}, a matrix Π ∈ MN
d and a continuous symmetric matrix

function Pi(t) : [0, Ts] → R2n×2n, i ∈ N , such that

Pi(t) ≻ 0, t ∈ [0, Ts], i ∈ N (24)

D(Ãi, Pi(t)) ≺ 0, i ∈ N (25)

Ωi,h ≺ 0, i ∈ N , h ∈ {1, 2} (26)

where Ωi,h = J⊤
h

∑N
j=1 πjiPj(0)Jh − Pi(Ts)− (−1)hµhQ.

(c) There exist scalars M ∈ N \ {0}, µh > 0, h ∈ {1, 2}, a matrix Π ∈ MN
d and symmetric matrices

Pi,m ∈ R2n×2n, m ∈ {0, . . . ,M}, i ∈ N , such that, for i ∈ N ,

Pi,m ≻ 0, m ∈ {0, . . . ,M} (27)

D1(Ãi, Pi,m+1, Pi,m, δ) ≺ 0, m ∈ {0, . . . ,M − 1} (28)

D2(Ãi, Pi,m+1, Pi,m, δ) ≺ 0, m ∈ {0, . . . ,M − 1} (29)

Ωi,h ≺ 0, h ∈ {1, 2} (30)

where δ = Ts/M and Ωi,h = J⊤
h

∑N
j=1 πjiPj,0Jh − Pi,M − (−1)hµhQ.

when one of the above equivalent statements holds, then system (13)–(15) with ω(t) = 0 is GUAS with

switching signal (17) with Pi by statement (a), Pi = Pi(0) by statement (b) and Pi = Pi,0 by statement

(c), respectively.

Proof . The structure of the proof is as follows: First, we prove the equivalence by deriving (c) ⇒
(b) ⇒ (a) ⇒ (c), then establish GUAS by (a) ⇒ GUAS.

(c) ⇒ (b): Dividing interval I , [0, Ts] can into M ∈ N \ {0} segments described as Im ,
[δm, δm+1), m = 0, 1, . . . ,M − 1, which are of equal length δ = Ts/M , and then δ0 = 0 and δm =

mδ = mTs

M . Based on the discretization of I, the following time-scheduled matrices Pi(t), i ∈ N , are

introduced {
Pi(t) = (1− θ(t))Pi,m + θ(t)Pi,m+1

θ(t) =Mt/Ts −m
, t ∈ Im (31)

by which it can be seen that 0 ≤ θ(t) ≤ 1 and Pi(t) defines a piecewise linear matrix function over I.
By the definition of Pi(t), i ∈ N , as (31), we have Pi(0) = Pi,0 and Pi(Ts) = Pi,M , so (27) and (30)

can make sure that (24) and (26) hold.

Then, one has

D+Pi(t) = (Pi,m+1 − Pi,m)D+θ(t), t ∈ Im (32)

Due to θ(t) =M(t− δm)/Ts, we have D+θ(t) =M/Ts. Hence D+Pi(t) becomes

D+Pi(t) =M(Pi,m+1 − Pi,m)/Ts, t ∈ Im (33)

Thus, (28) and (29) imply (25) holds.
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(b) ⇒ (a): Pre- and post-multiplying (25) with eÃ
⊤
i t and its transpose, and integrate it over

[0, Ts], it arrives

eÃ
⊤
i TsPi(Ts)e

ÃiTs − Pi(0) ≺ 0, i ∈ N (34)

which implies Pi(0) ≻ eÃ
⊤
i TsPi(Ts)e

ÃiTs , i ∈ N . Furthermore, it equals to

Pi(Ts) ≺ e−Ã⊤
i TsPi(0)e

−ÃiTs , i ∈ N (35)

Using (35) into (26), the following inequality holds for i ∈ N and h ∈ {1, 2},

J⊤
h

∑N

j=1
πjiPj(0)Jh − e−Ã⊤

i TsPi(0)e
−ÃiTs − (−1)hµhQ ≺ 0 (36)

Letting Pi = Pi(0) ≻ 0, i ∈ N , (36) equals to

eÃ
⊤
i TsJ⊤

h

∑N

j=1
πjiPjJhe

ÃiTs − Pi − (−1)hµhQ̃i ≺ 0 (37)

where Q̃i = eÃ
⊤
i TsQeÃiTs . Thus, (23) can be established by letting Pi = Pi(0) ≻ 0, i ∈ N .

(a) ⇒ (c): Since (23) holds, it implies that the following inequality holds

J⊤
h

∑N

j=1
πjiPjJh − e−Ã⊤

i TsPie
−ÃiTs − (−1)hµhQ ≺ 0 (38)

which implies that there exists an ϵ∗ > 0 such that

J⊤
h

∑N

j=1
πjiPjJh − e−Ã⊤

i TsPie
−ÃiTs − (−1)hµhQ ≺ −ϵ∗I (39)

Then, for any ϵ > 0, we can let Pi,0 = ϵPi/ϵ
∗ ≻ 0, i ∈ N (This choice of Pi,0, i ∈ N , maintains the

same switching law generated by Pi, i ∈ N .), and µ̂h = ϵµh/ϵ
∗ > 0, h ∈ {1, 2}, such that

J⊤
h

∑N

j=1
πjiPj,0Jh − e−Ã⊤

i TsPi,0e
−ÃiTs − (−1)hµ̂hQ ≺ −ϵI (40)

Using Lemma 1, there always exists a sufficiently large M∗ such that (27), (28), (29) always hold with

Pi,m, m ∈ {0, . . . ,M}, M > M∗, i ∈ N , in the form of

Pi,m = e−Ã⊤
i δmPi,0e

−Ãiδm − Zi,m, m ∈ {0, . . . ,M} (41)

where

Zi,m =

∫ δm

0

e−Ã⊤
i (δm−t)Yi(t)e

−Ãi(δm−t)(t)dt

with δm = mTs/M , m = {0, . . . ,M}, and continuous matrix functions Yi(t) ≻ 0, i ∈ N .

Thus, it yields

Pi,M = e−Ã⊤
i TsPi,0e

−ÃiTs − Zi,M (42)

Substituting e−Ã⊤
i TsPi,0e

−ÃiTs = Pi,M + Zi,M into (40), we have

J⊤
h

∑N

j=1
πjiPj,0Jh − Pi,M − (−1)hµ̂hQ ≺ −ϵI + Zi,M (43)

Since ϵ > 0 can be arbitrarily chosen, we can choose a sufficiently large ϵ > 0 such that

J⊤
h

∑N

j=1
πjiPj,0Jh − Pi,M − (−1)hµ̂hQ ≺ 0 (44)
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which implies that (30) holds.

(a) ⇒ GUAS: First, we consider the system state x̃(t+k ) at sampling instants, we have

x̃(t+k+1) =

 J1e
Ã

σ(t
+
k

)
Ts

x̃(t+k ), x̃⊤(t−k+1)Qx̃(t
−
k+1) > 0

J2e
Ã

σ(t
+
k

)
Ts

x̃(t+k ), x̃⊤(t−k+1)Qx̃(t
−
k+1) ≤ 0

(45)

Due to x̃(t−k+1) = e
Ã

σ(t
+
k

)
Ts

x̃(t+k ), and letting Q̃i = eÃ
⊤
i TsQeÃiTs , k = t+k , x̃(k) evolves according to the

following dynamics

x̃(k + 1) =

{
J1e

Ãσ(k)Ts x̃(k), x̃⊤(k)Q̃ix̃(k) > 0

J2e
Ãσ(k)Ts x̃(k), x̃⊤(k)Q̃ix̃(k) ≤ 0

(46)

where σ(k) = argmini∈N x̃⊤(k)Pix̃(k) and Pi, i ∈ N , is same as in switching signal (17).

Construct Lyapunov function candidate as V (x̃(k)) = x̃⊤(k)Pσ(k)x̃(k) and define ∆V (x̃(k)) =

V (x̃(k + 1))− V (x̃(k)), under the min-switching law (17), we have

∆V (x̃(k)) = min
j∈N

x̃⊤(k + 1)Pj x̃(k + 1)− x̃⊤(k)Pix̃(k)

≤ x̃⊤(k + 1)

(∑N

j=1
πjiPj

)
x̃(k + 1)− x̃⊤(k)Pix̃(k)

By (46), ∆V (x̃(k)) arrives

∆V (x̃(k)) =

{
x̃⊤(k)Γi,1x̃(k), x̃⊤(k)Q̃ix̃(k) > 0

x̃⊤(k)Γi,2x̃(k), x̃⊤(k)Q̃ix̃(k) ≤ 0
(47)

where Γi,1 = E (Ãi, J1,
∑N

j=1 πjiPj,0, Pi, Ts), Γi,2 = E (Ãi, J2,
∑N

j=1 πjiPj,0, Pi, Ts). Since (23) holds, it

implies there exists a sufficiently small ϵ > 0 such that Ξi,h < −ϵI, ∀i ∈ N , h ∈ {1, 2} then using

S-Procedure, it ensures that

∆V (x̃(k)) < −ϵ ∥x̃(k)∥2 , k ∈ N (48)

Letting λmin, λmax be the minimal and maximal eigenvalues of Pi, i ∈ N , respectively, it implies that

λmin ∥x̃(k)∥2 ≤ V (x̃(k)) ≤ λmax ∥x̃(k)∥2. Thus, (48) implies that V (x̃(k)) < (1 − ϵ/λmax)
kV (x̃(t0)),

where 0 < 1− ϵ/λmax < 1. Due to k = tk/Ts, one has

V (x̃(t+k )) < e(tk−t0) ln
1−ϵ/λmax

Ts V (x̃(t0)), tk ∈ S (49)

Furthermore, it arrives ∥∥x̃(t+k )∥∥ <√
λmax

λmin
e−ρ(tk−t0) ∥x̃(t0)∥ , tk ∈ S (50)

where ρ = − ln(1− ϵ/λmax)/2Ts > 0.

Then, let us consider any t ∈ (tk, tk+1), the dynamics of mode i yields x̃(t) = eÃi(t−tk)x̃(t+k ),

t ∈ (tk, tk+1). Using the following derivation∥∥∥eÃi(t−tk)
∥∥∥ ≤ e∥Ãi(t−tk)∥ ≤ e∥Ãi∥Ts , t ∈ (tk, tk+1) (51)

we have ∥x̃(t)∥ ≤ c ∥x̃(tk)∥, t ∈ (tk, tk+1), where c = maxi∈N e∥Ãi∥Ts . Thus, by (50), it can be ob-

tained that ∥x̃(t)∥ < Ce−ρ(t−t0) ∥x̃(t0)∥, where C = ceρTs
√
λmax/λmin > 0, and the GUAS can be

established by the existence of KL function β(∥x̃(t0)∥ , t) = Ce−ρ(t−t0) ∥x̃(t0)∥. �

Some observations are obtained for three conditions in Theorem 1:
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1. If no event-triggering condition is considered and the state x(t) updates at each sampling instant,

event-triggered system (13)–(15) is reduced to (7)–(9), and as a result, (23) can be rewritten to

E (Ãi, J,
∑N

j=1
πjiPj , Pi, Ts) ≺ 0, i ∈ N (52)

It can be found that (52) recovers the result in [32], which deals with the switched system with

min-switching law (16) only acts at sampling instant tk. Theorem 1 generalizes the sampled

switching case to event-triggered switching case. Furthermore, if we consider the passive switch-

ing, which means switched system could switch to any subsystems at every switching instant tk.

That means, for any j ̸= i, i, j ∈ N , we have to let πji = 1 and πpi = 0, p ̸= j, so

E (Ãi, J, Pj , Pi, Ts) ≺ 0, i, j ∈ N (53)

which exactly recovers the result in [23].

The basic idea of Condition (a) is to consider the evolution of system state at sampling instant

tk, and the asymptotic convergence of x̃(tk) guarantees the asymptotic stability of system (13)–

(15). However, if one attempts to make some further extensions of Condition (a) such as robust

sampling case and L2-gain performance analysis, the presence of exponential term eÃiTs makes

such extensions difficult.

2. Condition (b) basically is an extension of the result in [28], from dwell time switching to peri-

odically event-triggered switching. Regardless of event-triggering condition, system (7)–(9) is a

switched system with a periodic dwell time Ts, and if we deactivate the switching rule (17) to

consider passive switching, it leads to πji = 1 and πpi = 0, p ̸= j, thus (26) is rewritten to

Pj(0)− Pi(Ts) ≺ 0, j ̸= i, i, j ∈ N (54)

Together with (24), (25), the result in [28] is recovered.

Still consider system (7)–(9) regardless of event-triggering condition, (26) becomes∑N

j=1
πjiPj(0)− Pi(Ts) ≺ 0 (55)

Then, let us consider the special case with sampling interval Ts → 0. In this case, we have to let

the continuous matrix function Pi(t) = Pi, i ∈ N , then (25) implies D(Ãi, Pi) = C (Ãi, Pi), and

(26) arrives at ∑N

j=1
πjiPj − Pi ≺ 0 (56)

From the fact of
∑N

j=1 πjiPj − Pi =
∑N

j=1 ϕjiPj , Φ ∈ MN
c , i, j ∈ N , (56) leads to∑N

j=1
ϕjiPj ≺ 0 (57)

Combining (25), (57), the following result can be established

C (Ãi, Pi) +
∑N

j=1
ϕjiPj ≺ 0, Φ ∈ MN

c , i, j ∈ N (58)

which exactly recovers result in [23] for min-switching rule. Therefore, Condition (b) is an

extension to sampling case and further to event-triggered case. One point need to be noted this

10
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Table 1: Computational complexities of Conditions (a), (b) and (c) with fixed Π ∈ MN
d

Number of Variables LMI Constraints

Condition (a) (4n2N + 2nN)/2 + 2 6nN + 2

Condition (b) ∞ ∞
Condition (c) (4n2 + 2n)(M + 1)/2 + 2 6nN(M + 1) + 2

min-switching law may introduce Zeno behaviors, but if we let Ts be a positive constant in our

periodic event-triggered rule, one advantage is the elimination of Zeno behavior in switching.

In comparison with Condition (a), Condition (b) does not have any exponential terms which

facilitates its further extensions to solve other problems. However, it is not numerically testable

to check the existence of such time-varying matrix functions Pi(t), i ∈ N .

3. Condition (c) is a discretized version Condition (b), and similar as what has been discuss for

Condition (b), if we discard the event-triggering condition and (30) becomes∑N

j=1
πjiPj,0 − Pi,M ≺ 0 (59)

which recovers the result in [22]. Moreover, if we further deactivate the min-switching strategy,

(30) can be reduced to

Pj,0 − Pi,M ≺ 0 (60)

to recover the result in [24] for switched system under dwell time constraint.

With a particularly constructed Pi(t), i ∈ N , Condition (c) recasts the search for a continuous

matrix function Pi(t) as a finite number of matrices Pi,m, m ∈ {0, . . . ,M}, i ∈ N , which is

solvable for many current tools.

4. Though the three conditions are equivalent, the computation complexities are different. Condi-

tion (a) looks simpler and computationally much more efficient, see Table 1 for the comparison of

computational complexities with a prescribed Π ∈ MN
d . Condition (b) is actually not numerically

tractable by the present tools, so a special structure of Pi(t), i ∈ N , is employed in Condition

(c), it turns the infinite number of decision variables in time-varying Pi(t), i ∈ N into a finite

number of matrices Pi,m, m ∈ {0, . . . ,M}, i ∈ N . However, the equivalency of Condition (c) to

Conditions (a) and (b) has to be established based on a sufficient large M , and the computation

cost increases as M grows, see Table 1. Though more computation cost has to pay in Condition

(c), the further extensions beyond stability become possible.

Example 1 Consider a switched system with two modes

[
A1

B⊤
1

]
=

 1 3

6 −2

1 0.5

 , [
A2

B⊤
2

]
=

 −1.3 −1.6

−3.3 0.3

0.2 0.3


The feedback gains are K1 = [−5.1744 − 5.1904] and K2 = [18.7593 16.3442], which ensure

the Ai + BiKi, i ∈ {1, 2}, are Hurwitz stable. The event triggering condition is Γ(x(tk), x̂(tk)) =

∥x̂(tk)− x(tk)∥ − ∆ ∥x(tk)∥, where ∆ > 0. To search for Π ∈ MN
d , we define π11 ∈ [0, 1] and

π12 ∈ [0, 1], then π21 = 1 − π11 and π22 = 1 − π12, respectively. The increments dπ11 = 0.1 and

11
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Figure 2: The least values of sufficiently large parameter M for Condition (c) to verify GUAS

Table 2: Computational time (second) of Condition (c) with a fixed Π ∈ MN
d

Ts = 0.1 Ts = 0.2 Ts = 0.3 Ts = 0.4 Ts = 0.5

∆ = 0.1 3.045 4.842 6.235 7.682 12.372

∆ = 0.2 3.767 4.881 6.349 8.628 13.680

∆ = 0.3 3.624 6.349 8.932 9.158 14.046

∆ = 0.4 3.814 5.817 9.434 16.745 16.750

∆ = 0.5 3.983 9.738 12.186 20.909 29.081

dπ12 = 0.1 are taken to divide [0, 1], and use the discretized points to turn the conditions in Conditions

(a) and (c) into LMI feasibility problems.

First, we use Condition (a) to verify that the GUAS can be established with sampling times Ts =

{0.1, 0.2, 0.3, 0.4, 0.5} and state error ∆ = {0.1, 0.2, 0.3, 0.4, 0.5}. Then, to show the equivalence,

we use Condition (c) to obtain same GUAS results, provided with sufficiently large parameters M . The

results are shown in Figure 2.

Figure 2 shows the existence of sufficiently large M ensuring the equivalence of Conditions (a)

and (c). However, the computational complexities of two theorems are different. The computational

complexity of Condition (a) is fixed if the number of subsystems and system order are fixed, as Table

1 shows, but the computational complexity of Condition (c) increases as M grows. The computational

time is given in Table 2. Larger ∆ or Ts will lead to more computational time which is listed in Table 2

is because larger ∆ or Ts needs larger M to establish the stability, as what Figure 1 shows. Taking the

Ts = 0.2 for example, ∆ = 0.2 needs M = 2 and, on the other hand, ∆ = 0.3 needs M = 4. Larger M

has more computational complexities as shown in Table 1. If the M are same, e.g. the case Ts = 0.1,

∆ = 0.2 and ∆ = 0.3 both need M = 2, so the computational times are similar.

12
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Despite the equivalence of Conditions (a), (b) and (c), the main advantage of Condition (c) lies

in its convenience of extending to solve further problems. In next sections, extensions will be made

to robust sampling case and L2-gain performance analysis for event-triggered switched control system

based on Condition (c).

4 Robust Sampling Scheme

In this section, the uncertainties in sampling interval will be considered. To further develop a robust

switching rule (17), the sampling interval is generalized to Ts ∈ [Tmin, Tmax]. Similar as the general-

ization from periodic switching to aperiodic switching in [30], the generalization of Conditions (a) and

(b) in Theorem 1 can be made simply by replace a fixed Ts by a variable τ ∈ [Tmin, Tmax] in these

conditions. For instance, Condition (a) can be directly generalized as

E (Ãi, Jh,
∑N

j=1
πjiPj , Pi + (−1)hµhe

Ã⊤
i τQeÃiτ , τ) ≺ 0, i ∈ N , h ∈ {1, 2} (61)

holds for all τ ∈ [Tmin, Tmax]. However, it is difficult to check (61) for all τ ∈ [Tmin, Tmax] which

has infinitely many number for checking in an interval [Tmin, Tmax], due to the continuity argument

and intricate dependence of (61) with τ ∈ [Tmin, Tmax]. Thus, it is difficult to numerically verify the

stability by (61) which actually requires infinite values for checking.

In order to establish a numerically tractable method for robust sampling interval Ts ∈ [Tmin, Tmax],

we resort to generalize Condition (c). Like the extension from dwell time to ranged dwell time in [30]

for sampled-data systems, the following theorem can be developed for robust sampling interval in the

framework of event-triggered control scheme.

Theorem 2 Consider event-triggered switched control system (13)–(15) with ω(t) = 0, if there exist

scalars M ∈ N \ {0}, µh > 0, h ∈ {1, 2}, a matrix Π ∈ MN
d and symmetric matrices Pi,m ∈ R2n×2n,

m ∈ {0, . . . ,M}, i ∈ N , such that, for i ∈ N ,

Pi,m ≻ 0, m ∈ {0, . . . ,M} (62)

D1(Ãi, Pi,m+1, Pi,m, δ) ≺ 0, m ∈ {0, . . . ,M − 1} (63)

D2(Ãi, Pi,m+1, Pi,m, δ) ≺ 0, m ∈ {0, . . . ,M − 1} (64)

Ωi,h,m̂ ≺ 0, m̂ ∈ {M, . . . ,M}, h ∈ {1, 2} (65)

where δ = Tmax/M , M = int{MTmin

Tmax
} and Ωi,h,m̂ = J⊤

h

∑N
j=1 πjiPj,0Jh−Pi,m̂−(−1)hµhQ, then system

(13)–(15) with ω(t) = 0 is GUAS under sampled switching rule (17) with Pi = Pi,0, i ∈ N .

Proof . SinceM = int{MTmin

Tmax
}, we have MTmax

M ≤ Tmin which implies that the interval [Tmin, Tmax] ⊆∪
m̂=M,...,M−1 Im̂.

Considering Pi(t), t ∈ [0, Tmax] defined by{
Pi(t) = (1− θ(t))Pi,m + θ(t)Pi,m+1

θ(t) =Mt/Tmax −m
, t ∈ Im (66)

where 0 ≤ θ(t) ≤ 1. First by (62), we can obtain Pi(t) ≻ 0, t ∈ [Tmin, Tmax]. Then, (63) and (64) have

D(Ãi, Pi(t)) ≺ 0, and for any τ ∈ [Tmin, Tmax], it is obtained

Pi,0 = Pi(0) ≻ eÃ
⊤
i τPi(τ)e

Ãiτ , τ ∈ [Tmin, Tmax] (67)
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by integrating D(Ãi, Pi(t)) ≺ 0 over [0, τ ]. Then, (65) implies that

eÃ
⊤
i τJ⊤

h

∑N

j=1
πjiPj,0Jhe

Ã⊤
i τ − eÃ

⊤
i τPi(τ)e

Ã⊤
i τ − (−1)hµhQ̃(τ) ≺ 0 (68)

holds for τ ∈ [Tmin, Tmax], where Q̃i(τ) = eÃ
⊤
i τQeÃiτ . Using (67) into (68) and letting Pi = Pi,0,

i ∈ N , it reaches that

E (Ãi, Jh,
∑N

j=1
πjiPj , Pi + (−1)hµhQ̃(τ), τ) ≺ 0, τ ∈ [Tmin, Tmax] (69)

which is exactly (61), thus the robust GUAS can be established. �

In comparison with (61), the extension of Condition (a), which has an infinite many decision

variables to search, Theorem 2 only has a finite number of decision variable to check the GUAS for

event-triggered switched system with ranged sampling intervals. The numerically tractable feature

is an obvious advantage over (61) which is a straightforward extension from Condition (a), and this

promising feature of Theorem 2 which is actually a generalization of Condition (c) basically benefits

from the fact that the system matrices Ãi are affine in the corresponding conditions.

5 L2-Gain Performance Analysis

In the presence of disturbance ω(t), L2-gain performance is a disturbance attenuation performance

for event-triggered switched system (13)–(15). The basic idea of Condition (a) in Theorem 1, that is

abstracting continuous-time system (13)–(15) into a discrete-time version, is difficult to be extended

from stability analysis to L2-gain performance analysis, since the discrete-time abstraction only de-

fines the input-output relation at sampling instants tk, losing the information over interval (tk, tk+1).

Moreover, the technical difficulties for extension mainly lies in the exponential term eÃiTs . On the

other hand, Condition (c) in Theorem 1 can be extended owing to the affineness in system matrix Ãi.

In the following, a numerically tractable result is proposed for L2-gain performance analysis.

Theorem 3 Consider event-triggered switched control system (13)–(15), if there exist scalars M ∈
N\{0}, µh > 0, h ∈ {1, 2}, a matrix Π ∈ MN

d and symmetric matrices Pi,m ∈ R2n×2n, m ∈ {0, . . . ,M},
i ∈ N , such that, for i ∈ N ,

Pi,m ≻ 0, m ∈ {0, . . . ,M} (70)

Ξi,m,1 ≺ 0, m ∈ {0, . . . ,M − 1} (71)

Ξi,m,2 ≺ 0, m ∈ {0, . . . ,M − 1} (72)

Ωi,h ≺ 0, h ∈ {1, 2} (73)

where Ωi,h = J⊤
h

∑N
j=1 πjiPj,0Jh − Pi,M − (−1)hµhQ, and

Ξi,m,1 =

 D1(Ãi, Pi,m+1, Pi,m, Ts/M) ∗ ∗
Ẽ⊤

i Pi,m+1 −γ2I ∗
C̃i D̃i −I


Ξi,m,2 =

 D2(Ãi, Pi,m+1, Pi,m, Ts/M) ∗ ∗
Ẽ⊤

i Pi,m −γ2I ∗
C̃i D̃i −I


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then switched system (13)–(15) is GUAS and has an L2-gain γ under sampled switching rule (17) with

Pi = Pi,0, i ∈ N .

Proof . The GUAS can be easily obtained by Condition (c) in Theorem 1, thus we focus on the

L2-gain performance in the following. First, we let

Ω(t) = ∥y(t)∥2 − γ2 ∥ω(t)∥2 (74)

and

Jk(t) =

∫ t

t+k

Ω(s)ds, t ∈ [t+k , t
−
k+1] (75)

which can imply that

Jk(t
−) =

∫ t−

t+k

(
Ω(s) +D+Vi(x̃(s))

)
ds−Vi(x̃(t−)) + Vi(x̃(t

+
k )) (76)

where Vi(x̃(t)) is defined as Vi(x̃(t)) = x̃⊤(t)Pi(t)x̃(t), i ∈ N , with Pi(t), i ∈ N , defined by (31).

Then, by (75), it can be deduced that
∫∞
t0

Ω(s)ds =
∑∞

k=0 Jk(t
−
k+1), which can be rewritten as

∫ ∞

t0

Ω(s)ds =
∑∞

k=0

∫ t−k+1

t+k

(
Ω(s) +D+Vi(x̃(s))

)
ds+

∑∞

k=1

(
Vj(x̃(t

+
k ))− Vi(x̃(t

−
k ))

)
+ Vi(x̃(t0))

(77)

From (73), one has

Vj(x̃(t
+
k ))− Vi(x̃(t

−
k )) ≤ 0, ∀tk ∈ S (78)

is satisfied with min-switching rule (17). Moreover, it is obtained that

Ω(t) +D+Vi(x̃(t)) = ζ⊤(t)

[
Λi Pi(t)Ẽi + C̃⊤

i Di

∗ D̃⊤
i D̃i − γ2I

]
ζ(t) (79)

where ζ⊤ = [x̃⊤(t) ω⊤(t)], Λi = D(Ãi, Pi(t)) + C̃⊤
i C̃i.

Thus, from (71), (72), it gives Ω(t)+D+Vi(x̃(t)) < 0. Together with (78) and x̃(t0) = 0, we obtain∫ ∞

t0

Ω(s)ds < 0 (80)

which leads to
∫∞
t0

∥y(t)∥2 dt ≤ γ2
∫∞
t0

∥ω(t)∥2 dt when ω(t) ̸= 0. Therefore, the L2-gain performance

is guaranteed. The proof is complete. �

From Theorem 3, it should be stressed that although the min-switching rule (17) only acts at

sampling instants tk ∈ S, the L2-gain level which is defined over [t0,∞) can be estimated. This

is because (71) and (72) fully characterize the input-output property in the sense of L2-gain during

[tk, tk+1). Moreover, if the robust sampling scheme is considered, the similar extension can be easily

made as Theorem 2.

Under the framework of Theorem 3, an estimate of the L2-gain can be obtained by

min γ2

s.t. (70), (71), (72), (73)
(81)
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Figure 3: Suboptimal L2-gain γ with respect to different M

Same as the stability analysis result, the computational results obtained by solving the linear-matrix-

inequality-based optimization problems (81) also depend on the choice of M . Less conservative results

will be obtained with larger M , at the expense of higher computational cost, which will be shown by

the following example.

Example 2 Consider a switched system with two modes same as in Example 1, and Ci, Di, Ei,

i ∈ {1, 2} are chosen as below:

C1 = C2 = [1 1], E1 = E2 =

[
0.2

0.5

]
, D1 = D2 = 0.5 (82)

We still consider π11 ∈ [0, 1] and π12 ∈ [0, 1] with π21 = 1 − π11 and π22 = 1 − π12, respectively,

the increments ∆π11 = 0.1 and ∆π12 = 0.1 are taken to divide [0, 1], and search the optimal γ for

these discretized points by Theorem 3. The suboptimal L2-gain is obtained as the minimal value of

the optimal γ of all discretized points. Furthermore, given a constant sampling time Ts = 100 ms and

∆ = {0.1, 0.2, 0.3, 0.4, 0.5}, the suboptimal L2-gain γ with respect to different M are shown in Figure

3. From Figure 3, it can be observed that the estimated L2-gain γ decreases as M increases, this is

because that a larger M implies a finer division of the sampling interval, and thus a less conservative

result can be obtained. Moreover, it can be also found that the control performance becomes worse

with a larger state error ∆ in event trigger condition, this is consistent with the actual situation. The

increasing computational complexities along with M is same as in Table 2, which is not presented here.

6 Conclusions

In this paper, the event-triggered control for switched linear systems has been studied. Three stability

criteria are proposed to ensure asymptotic stability of switched system subject to min-switching rule
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which is only allowed to activate at sampling instants. It has been proved that the three stability

criteria are equivalent. Then, taking advantages of one stability criterion with affineness in system

matrices, extensions to robust sampling scheme and L2-gain analysis. In the future work, the controller

design, switching rule design and event-triggering condition design should be taken into account based

on the stability analysis results proposed in this paper.
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A Proof of Lemma 1

First, given (22) and 0 ≺ Y (t) ≺ ϵI, t ∈ [0, Ts], with a sufficiently small ϵ > 0, obviously we can obtain

Pm ≻ e−A⊤δmP0e
−Aδm − ϵ

∫ δm

0

e−A⊤(δm−t)e−A(δm−t)(t)dt ≻ 0, m ∈ {0, . . . ,M}

holds for any initial P0 ≻ 0.

Letting Zm =
∫ δm
0

e−A⊤(δm−t)Y (t)e−A(δm−t)(t)dt and substituting (22) into D1(A,Pm+1, Pm, δ) to

get

D1(A,Pm+1, Pm, δ) = ϑm,1(δ) + ϑm,2(δ) + ϑm,3(δ) (83)

where δ = Ts/M and

ϑm,1(δ) = e−A⊤δmΩ(h)e−Aδm

Ω(δ) = C (A,P0) + E (A, I, P0/δ, P0/δ, δ)

ϑm,2(δ) = −C (A,Zm)

ϑm,3(δ) = (Zm − Zm+1)/δ

Due to limδ→0+ supE (A, I, P0/δ, P0/δ, δ) = −C (A,P0), therefore it yields that limδ→0+ supΩ(δ) = 0,

which implies

lim
δ→0+

supϑm,1(δ) = 0 (84)

Moreover, due to 0 ≤ δm ≤ Ts, it implies that e−Aδm is bounded, ϑm,1(δ) uniformly converges to zero.

In addition, it can be seen that

lim
δ→0+

supϑm,3(δ) = −Y (δm) + C (A,Zm) (85)

which results in
lim

δ→0+
sup(ϑm,2(δ) + ϑm,3(δ)) = −Y (δm) (86)

which implies that limδ→0+ sup(ϑi,m,2(δ) + ϑm,3(δ)) ≺ 0 due to Y (t) ≻ 0, t ∈ [0, Ts].

17
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In conclusion, with the aid of (84) and (86), we have

lim
δ→0+

supD1(A,Pm+1, Pm, δ) ≺ 0 (87)

so there exists a sufficiently small δ∗1 such that

D1(A,Pm+1, Pm, δ) ≺ 0 (88)

holds for all δ < δ∗1 .

By a similar procedure as above, we can consider D2(A,Pm+1, Pm, δ) to obtain

lim
δ→0+

supD2(A,Pm+1, Pm, δ) ≺ 0 (89)

and we can find a sufficiently small δ∗2 such that

D2(A,Pm+1, Pm, δ) ≺ 0 (90)

holds for all δ < δ∗2 .

By setting δ∗ = min{δ∗1 , δ∗2}, we can conclude that there exists a sufficiently small δ∗ such that (20)

and (21) hold for any δ < δ∗. Due to δ = Ts/M , it is equivalent to the existence of a sufficiently large

M∗ such that (20) and (21) hold for any M > M∗.
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Output Reachable Set Estimation for Switched
Linear Systems and Its Application in Safety

Verification
Weiming Xiang, Hoang-Dung Tran, and Taylor T. Johnson

Abstract—This paper addresses the output reachable set es-
timation problem for continuous-time switched linear systems
consisting of Hurwtiz stable subsystems. Based on a common
Lyapunov function approach, the output reachable set is estimat-
ed by a union of bounding ellipsoids. Then, multiple Lyapunov
functions with time-scheduled structure are employed to estimate
the output reachable set for switched systems under dwell time
constraint. Furthermore, the safety verification problem of uncer-
tain switched systems is investigated based on the result of output
reachable set estimation. First, a sufficient condition ensuring the
existence of an approximate bisimulation relation between two
switched linear systems with a prescribed precision is proposed.
Then, the safety verification for an uncertain switched system
can be performed through an alternative safety verification for a
switched system with exact parameters. Numerical examples are
provided to illustrate our results.

Index Terms—Reachable set estimation, safety verification,
switched system, uncertain system.

I. INTRODUCTION

Switched systems are a typical class of hybrid system-
s, which consist of a family of subsystems described by
continuous or discrete-time dynamics, and a switching law
that specifies the active subsystem at each time instant. Due
to the multi-modal feature, switched systems can efficiently
model practical systems that are inherently multi-modal, i.e.,
several dynamical subsystem models are required to describe
their behaviors. So far, the research on switched systems has
attracted significant attention and an extensive literature is by
now available, for example in stability and stabilization [1]–
[5], controllability and reachability analysis [6], H∞ control
and filtering [7]–[9].

Reachable set estimation aims to derive a closed bounded
set that constrains all the state trajectories generated by a
dynamic system with a prescribed initial state set and an
input set. As its further extension, the output reachable set
estimation is to derive a closed bounded set containing the set
of all outputs of a system. Reachable set estimation problem
is not only of theoretical interest in robust control theory

The material presented in this paper is based upon work supported by
the National Science Foundation (NSF) under grant numbers CNS 1464311,
EPCN 1509804, and SHF 1527398, the Air Force Research Laboratory
(AFRL) through contract number FA8750-15-1-0105, and the Air Force Office
of Scientific Research (AFOSR) under contract numbers FA9550-15-1-0258
and FA9550-16-1-0246.

Authors are with the Department of Electrical Engineering and Computer
Science, Vanderbilt University, Nashville, Tennessee 37212, USA. Emails:
xiangwming@gmail.com; trhoangdung@gmail.com;
taylor.johnson@gmail.com

[10], but also closely related to practical engineering for the
safety verification problems [11]. In some early work, the
reachable set bounding was considered in the context of state
estimation and it has later received a lot of attention in pa-
rameter estimation, see [12] and references therein. Recently,
many researchers have been interested in employing ellipsoidal
techniques based on Lyapunov function approaches to estimate
the reachable sets for different classes of systems. In the
framework of bounding ellipsoid, the quadratic Lyapunov
function has played a fundamental role in the reachable set
estimation problem, and it has been further developed to time-
delay systems [13]–[16], singular systems [17], discrete-time
switched systems under arbitrary switching [18] and periodic
switching [19]. However, according to the best of the authors’
knowledge, the reachable set estimation for continuous-time
switched systems with dwell-time restriction has not been fully
investigated, and it therefore motivates our study.

In this paper, the contributions are two folds. First, we study
the output reachable set estimation problem for continuous-
time switched linear systems consisting of Hurwitz stable sub-
systems. In the arbitrary switching case, an over approximation
of output reachable set is obtained as a union of a collection
of bounding ellipsoids centered around origin and moreover,
a linear matrix inequality (LMI) based optimization problem
is formulated to obtain the smallest estimated reachable set.
These results are all derived in the framework of a common
Lyapunov function shared across modes, however, it may yield
overly conservative results, especially when some information
of switching laws is available. Thus, with regard to a class of
time-dependent switching signal under dwell time constraint, a
time-scheduled multiple Lyapunov function approach is further
employed and preciser estimation results can be achieved.
In particular, it is worth mentioning that this time-scheduled
multiple Lyapunov function approach covers the common Lya-
punov function approach. In some papers, e.g., [20], [21], the
finite-time boundedness is used for bounding state trajectories
of a system, but it focuses on a finite-time interval other
than all time along the system operation. Furthermore, the
estimation from initial time to infinity is necessary for some
problems such as the bisimulation and safety verification in
the second contribution in this paper.

Based on the results for output reachable set estimation
and inspired by approximate bisimulation relations in [22]–
[24], a sufficient condition is derived to establish the existence
of approximate bisimulation of two switched linear systems.
Then, since the safety verification for uncertain systems is
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difficult due to the uncertain time-varying coefficients in the
system matrices, one would ask: Can we find a bisimilar
system with exact parameters for an uncertain system and
perform a safety verification for the bisimilar system to ensure
the safety of the uncertain system? In this paper, an LMI-based
method is proposed to convert the uncertain switched system
into a switched system with exact parameters along with a
precision between two systems, so that the safety verification
for uncertain systems can be performed by verifying the
safety of the transformed systems, avoiding the difficulties in
handling the uncertainties.

The rest of this paper is organized as follows. Some prelim-
inaries and problem formulation are given in Section II. The
main results on output reachable set estimation is proposed in
Section III. In Section IV, the application to safety verification
for uncertain switched systems is presented. Conclusions are
given in Section V.

Notation: N represents the set of natural numbers. R and
R≥0 denote the fields of real numbers and nonnegative re-
al numbers, respectively. Rn is the vector space of all n-
tuples of real numbers, Rn×n is the space of n × n ma-
trices with real entries. Sn×n

+ is the set of real symmet-
ric positive definite n × n matrices. The notation P ≻ 0
(P ≺ 0) means P is real symmetric and positive definite
(negative definite). A⊤ denotes the transpose of A, and we
let Sym(A) = A⊤ +A. In symmetric block matrices, we use
* as an ellipsis for the terms that are introduced by symmetry.
diag{· · · } denotes a block-diagonal matrix. ∥·∥ stands for
the Euclidean norm. The bounding ellipsoid is expressed by
E(R) , {x ∈ Rn | x⊤Rx ≤ 1, R ∈ Sn×n

+ }, and ball
B(x0, δ) , {x ∈ Rn | ∥x− x0∥ ≤ δ, x0 ∈ Rn, δ > 0}.
The right derivative of a matrix function F (x) is defined by
Ḟ (x) , limh→0+

F (x+h)−F (x)
h . For the sake of simplicity, we

denote L (A,B, P,R, α) ,
[
A⊤P + PA+ αP ∗

B⊤P −αR

]
.

II. SWITCHED SYSTEMS AND OUTPUT REACHABLE SET

In this paper, we consider a continuous-time switched linear
system in the form of

Σ : ẋ(t) = Aσ(t)x(t) +Bσ(t)u(t) (1)
y(t) = Cσ(t)x(t) (2)

where x(t) ∈ Rnx are the state of the system, and the initial
condition x0 belongs to a bounded ellipsoid:

x0 ∈ X0 , E(R0) (3)

and u(t) ∈ Rnu is the input vector which is assumed to satisfy
the following ellipsoidal constraint:

u(t) ∈ U , E(Ru), ∀t ∈ R≥0 (4)

and y(t) ∈ Rny is the output. Define index set M ,
{1, 2, . . . , N}, where N is the number of modes and, σ :
R≥0 → M denotes the switching function, which is assumed
to be a piecewise constant function continuous from right and
only non-Zeno swtichings (i.e., the switch at most a finite
number of times in any finite time interval) are considered in
this paper. The switching instants are expressed by a sequence

S , {tk}k∈N, where t0 is the initial time and tk is the kth
switching instant. Then, we define Ii , {t ∈ R≥0 | σ(t) =
i, i ∈ M} to denote the activation time interval for ith mode.
Obviously, we can see that

∪
i∈M Ii = R≥0 and Ii ∩ Ij = ∅,

for i ̸= j, ∀i, j ∈ M.
The output reachable set of system (1)–(2) is defined as

Ry , {y(t) ∈ Rny | x(t),y(t), x0, u(t) satisfy
(1), (2), (3), (4), t ∈ R≥0} (5)

The following lemma introduces the main idea to determine
the over-approximate set R̃y for switched system (1)–(2).

Lemma 1: Consider system (1)–(2) under initial state con-
dition (3) and input condition (4). If there exist a family of
Lyapunov functions Vi : Rnx → R≥0, i ∈ M, satisfying
Vi(0) = 0 and Vi(x) > 0, ∀x ̸= 0, ∀i ∈ M, matrices
Ri,y ∈ Sn×n

+ , i ∈ M, and scalars α > 0, 0 < β ≤ 1 such that

Fi(t) ≤ 0, ∀t ∈ Ii, ∀i ∈ M (6)
Gi,j(tk) ≤ 0, ∀tk ∈ S, i ̸= j, ∀i, j ∈ M (7)

Vi(x0) ≤ x⊤0 R0x0, ∀i ∈ M (8)

x⊤(t)C⊤
i Ri,yCix(t) ≤ Vi(x(t)), ∀t ∈ Ii, ∀i ∈ M (9)

where Fi(t) = V̇i(x(t)) + αVi(x(t)) − αu⊤(t)Ruu(t) and
Gi,j(tk) = Vi(x(t

+
k ))−βVj(x(t

−
k ))+β− 1. Then, the output

reachable set Ry satisfies Ry ⊆ R̃y ,
∪

i∈M E(Ri,y).
Proof: See the Appendix.

Remark 1: Conditions (6) and (7) actually characterize an
invariant set Ω =

∪
i∈M Ωi, where Ωi = {x(t) ∈ Rnx |

Vi(x(t)) ≤ 1}, i ∈ M. By (6), it leads to V̇i(x(t)) < 0,
∀x(t) ∈ Ω̄i , {x(t) ∈ Rnx | Vi(x(t)) > 1}, this guarantees
that once the state x(t) enters Ωi, it remains in it during
the activation time of the ith subsystem. However, (6) is not
enough to ensure x(t) staying in Ω forever, in presence of
abrupt changes from Vi(x(t

+
k )) to Vj(x(t

−
k )), where i ̸= j

at switching instant tk ∈ S. Thus, (7) is necessary to
define the invariant Ω. It ensures that Vi(x(t+k )) ≤ 1 when
Vi(x(t

−
k )) ≤ 1, that means the switching actions will not

cause x(t) escaping from Ω. In addition, (8) implies that the
initial state x0 ∈ X0 ⊆

∩
i∈M Ωi, and (9) estimates the output

reachable set based on the invariant set Ω.

III. OUTPUT REACHABLE SET ESTIMATION

Although Lemma 1 provides a general framework to handle
the output reachable set estimation problem, it is impracti-
cal for actual use, since it does not provide any available
computational techniques for the construction of Lyapunov
functions Vi(x(t)), i ∈ M. Moreover, the proposed condition
(7) requires us to check the values of Lyapunov functions
at all the switching instant tk ∈ S . However, the switching
instant sequence S usually cannot be specified in advance,
and it is impossible to check Lemma 1 for all the switching
instants tk in the case of k → ∞. In the following, numerically
tractable methods are presented to solve the output reachable
set estimation problem in the framework of Lemma 1.
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A. Common Lyapunov Function

One natural idea to analyze switched system (1)–(2) is to use
common quadratic Lyapunov function Vi(x(t)) = V (x(t)) =
x⊤(t)Px(t), i ∈ M, to avoid checking (7) for every tk ∈ S .

Theorem 1: Consider system (1)–(2) under initial state con-
dition (3) and input condition (4). If there exist matrices
P ∈ Snx×nx

+ , Ri,y ∈ Sn×n
+ , i ∈ M, and a scalar α > 0

such that

L (Ai, Bi, P,Ru, α) ≺ 0, ∀i ∈ M (10)

C⊤
i Ri,yCi ≺ P ≺ R0, ∀i ∈ M (11)

then, the output reachable set Ry ⊆ R̃y ,
∪

i∈M E(Ri,y).
Proof: Construct a Lyapunov function in the form

of V (x(t)) = x⊤(t)Px(t), P ∈ Sn×n
+ . Let us con-

sider F (t) = V̇ (x(t)) + αV (x(t)) − αu⊤(t)Ruu(t), and
along with the trajectory of system (1)–(2), we have
F (t) = χ⊤(t)L (Ai, Bi, P,Ru, α)χ(t), where χ⊤(t) =
[x⊤(t) u⊤(t)], and from (10), it yields F (t) < 0, ∀t ∈ R≥0,
so that (6) holds.

Then, since the common Lyapunov function is chosen, (7)
automatically holds with β = 1. By (11), P ≺ R0 ensures
V (x0) < x⊤0 R0x0, and C⊤

i Ri,yCi ≺ P , i ∈ M, guarantees
x⊤(t)C⊤

i Ri,yCix(t) < V (x(t)), ∀t ∈ R≥0, ∀i ∈ M, that
is (8) and (9) hold. Thus, by Lemma 1, we have the output
reachable set Ry ⊆ R̃y ,

∪
i∈M E(Ri,y).

Remark 2: The set R̃y is usually expected to be as small
as possible to achieve a precise estimate of reachable set Ry .
Based on Theorem 1, one may add an additional constraint
that

Ri,y ≽ ϵI, ϵ > 0, ∀i ∈ M (12)

which implies that ϵy⊤(t)y(t) ≤ y⊤(t)Ri,yy(t) ≤ 1, namely
y(t) ∈

∪
i∈M E(Ri,y) ⊆ B(0, 1/

√
ϵ), ∀t ∈ R≥0, so we have

to maximize ϵ to obtain the smallest ball B(0, 1/
√
ϵ) by

max ϵ s.t. (10), (11) and (12) (13)

Moreover, due to the existence of the tuning parameter
α, the result in Theorem 1 and corresponding optimization
problem (13) are not standard LMI problems, they are bilinear
matrix inequality (BMI) problems and known to be NP-
hard. Fortunately, several algorithms are available to solve
BMI problems such as the iterative linear matrix inequality
(ILMI) approach in [25], [26], or using numerical optimization
algorithms, such as fminsearch [13] or genetic algorithm
(GA) [18] in the optimization toolbox of Matlab.

B. Multiple Lyapunov Functions

Switching actions are able to significantly affect the evolu-
tion of switched systems, for example the instability arises as
a result of a rapid switching between stable subsystems. Simi-
larly, the switching rate has a great impact on the reachable set
as well. Thus, given a switching rate, how to estimate the set
Ry is one of the basic problems for reachable set estimation.
In this work, the concept of minimum dwell time is given to
constrain the switching rate.

Definition 1: [27] Given a switching signal function σ(t)
with a generated switching sequence S, τmin = infk∈N{tk+1−

tk} is called the dwell time of σ(t), and Dτmin , {σ(t) | σ :
R≥0 → M, tk+1 − tk ≥ τmin,∀k ∈ N} denotes the set of all
switching policies with dwell time greater than τmin.

We consider a class of time-scheduled multiple Lyapunov
functions inspired by [28]–[31] as follows:

Vi(x(t)) = x⊤(t)Pi(t)x(t), t ∈ R≥0, i ∈ M (14)

where Pi(t) ∈ Sn×n
+ , i ∈ M have the following structure:

Consider the interval [tk, tk + τmin), we partition it into
L segments described as Lk,q , [tk + θq, tk + θq+1), q =
0, 1, . . . , L− 1 of equal lengths h = τmin/L, and then θ0 = 0
and θq = qh = qτmin/L. We consider a class of continuous
matrix function Pi(t), t ∈ [tk, tk + τmin) chosen to be linear
within each segment Lk,q , q = 0, 1, . . . , L− 1. Explicitly, we
can see that

∪L−1
n=0 Lk,n = [tk, tk+τmin) and Lk,n∩Lk,m = ∅,

n ̸= m. Letting Pi,q = Pi(tk + θq), then since the matrix
function Pi(t) is piecewise linear in [tk, tk + τmin), it can
be expressed in terms of the values at dividing points using
a linear interpolation formula, that is, for 0 ≤ µ ≤ 1, q =
0, 1, . . . , L− 1,

Pi(t) = Pi(µ) = (1− µ)Pi,q + µPi,q+1, t ∈ Lk,q, i ∈ M
(15)

where µ = L(t− tk − θq)/τmin.
As a result, the continuous matrix function Pi(t) ∈ Sn×n

+ ,
i ∈ M can be completely determined by Pi,q ∈ Sn×n

+ , q =
0, 1, . . . , L, i ∈ M, in interval [tk, tk + τmin). Then, due to
[tk, tk+τmin) ⊆ [tk, tk+1), for the remaining time in [tk, tk+1)
denoted by Lk,L , [tk,min, tk+1), Pi(t), i ∈ M is set to be

Pi(t) = Pi,L, t ∈ Lk,L, i ∈ M (16)

In summary, Pi(t), i ∈ M is defined as

Pi(t) =

{
Pi(µ), t ∈ Lk,q, q = 0, 1, . . . , L− 1
Pi,L, t ∈ Lk,L

(17)

where µ is defined in (15).
Theorem 2: Given a dwell time τmin > 0 and consider

switched system (1)–(2) with σ(t) ∈ Dτmin under initial state
condition (3) and input condition (4). If there exist matrices
Pi,q ∈ Snx×nx

+ , q = 0, 1, . . . , L, i ∈ M, Ri,y ∈ Sn×n
+ , i ∈ M,

and a scalar α > 0 such that for ∀i, j ∈ M

L (Ai, Bi, Pi,q, Ru, α) + Ψi,q ≺ 0, q = 0, . . . , L− 1 (18)
L (Ai, Bi, Pi,q+1, Ru, α) + Ψi,q ≺ 0, q = 0, . . . , L− 1

(19)
L (Ai, Bi, Pi,L, Ru, α) ≺ 0 (20)
Pi,0 − Pj,L ≺ 0, i ̸= j (21)
Pi,0 −R0 ≺ 0 (22)

C⊤
i Ri,yCi − Pi,q ≺ 0, q = 0, . . . , L (23)

where Ψi,q = diag{L(Pi,q+1 − Pi,q)/τmin, 0}. Then, the
output reachable set Ry ⊆ R̃y ,

∪
i∈M E(Ri,y).

Proof: Construct a Lyapunov function as V (t) =∑
i∈M ξi(t)x

⊤(t)Pi(t)x(t), where Pi(t), i ∈ M, is defined
by (17) and ξi : R≥0 → {0, 1} and

∑
i∈M ξi(t) = 1 is the

indicator function representing the active modes at time t.
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TABLE I
COMPUTATIONAL COMPLEXITIES OF THEOREM 2 WITH A FIXED α

Number of Decision Variables LMI Constraints Size
nN(L+ 1)(n+ 1)/2 n(N2 + 2N + 3L)

First, let us consider Fi(t) = V̇ (t)+αV (t)−αu⊤(t)Ruu(t),
which can be rewritten to

Fi(t) = χ⊤(t)(L (Ai, Bi, Pi(t), Ru, α) + Ψi(t))χ(t) (24)

where χ⊤(t) = [x⊤(t) u⊤(t)] and Ψi(t) = diag{Ṗi(t), 0}.
Suppose σ(t) = i, t ∈ Lk,q , q = 0, . . . , L− 1, one has

L (Ai, Bi, Pi(t), Ru, α) = (1− µ)Ξi,1 + µΞi,2 (25)

where Ξi,1 = L (Ai, Bi, Pi,q, Ru, α) and Ξi,2 =
L (Ai, Bi, Pi,q+1, Ru, α). Furthermore, we can see that
Ṗi(t) = (Pi,q+1 − Pi,q)µ̇, t ∈ Lk,q , q = 0, . . . , L − 1, and
because of µ = L(t−tk−θq)/τmin, it implies that µ̇ = L/τmin,
leading to Ṗi(t) = Ψi,q, t ∈ Lk,q, q = 0, . . . , L − 1. Thus,
by (18), (19), it leads to

Fi(t) < 0, ∀t ∈
∪L−1

n=0
Lk,n = [tk, tk + τmin) (26)

Then, we consider t ∈ Lk,L. Since Pi(t) = Pi,L, t ∈ Lk,L,
we have Pi(t) = 0, ∀t ∈ Lk,L, thus (20) guarantees that

Fi(t) < 0, ∀t ∈ Lk,L (27)

Thus, from (26) and (27), we can conclude that Fi(t) <
0, ∀t ∈ Ii, ∀i ∈ M, which means (6) in Lemma 1 holds.
Next, (21) ensures (7) holds with β = 1 and (22) guarantees
(8) holds Finally, we consider

C⊤
i Ri,yCi − Pi(t)

=(1− µ)(C⊤
i Ri,yCi − Pi,q) + µ(C⊤

i Ri,yCi − Pi,q+1)

and (23) ensures that C⊤
i Ri,yCi−Pi(t) < 0, ∀t ∈ R≥0, ∀i ∈

M, which implies (9) holds. Therefore, we have the output
reachable set Ry ⊆ R̃y ,

∪
i∈M E(Ri,y) by Lemma 1.

Remark 3: Some remarks on parameter L are given.

(1) Parameter L implies the number of segments consisting
of the dwell time interval [tk, tk + τmin). A larger L
yields a finer division of [tk, tk + τmin), and a less
conservative result can be consequently obtained, which
will be demonstrated by a numerical example later.
However, the computational cost increases as L grows,
since a larger L inevitably introduces more decision
variables and LMI constraints, see TABLE I for the
computational complexity analysis for Theorem 2 for an
n-dimensional switched system consisting of N modes.

(2) Similar as the methods adopted in [20], a piecewise ma-
trix function Pi(µ) in (15) with a sufficiently large L is
able to approximate a generic continuously differentiable
Pi(t) with adequate accuracy over the finite-time interval
[tk, tk + τmin). In other words, if L → ∞, conditions
(18)–(23) in Theorem 2 can be expressed as follows with

i, j ∈ M and t ∈ [0, τmin)

Pi(t) ≻ 0 (28)
L (Ai, Bi, Pi(t), Ru, α) + Ψi(t) ≺ 0 (29)
L (Ai, Bi, Pi(τmin), Ru, α) ≺ 0 (30)
Pi(0)− Pj(τmin) ≺ 0, i ̸= j (31)
Pi(0)−R0 ≺ 0 (32)

C⊤
i Ri,yCi − Pi(t) ≺ 0 (33)

where Ψi(t) = diag{Ṗi(t), 0}. It should be noted that
the above differential linear matrix inequality (DLMI)
(28)–(33) can achieve the result with least conservative-
ness in our framework, but it is not numerically tractable
due to the presence of continuous matrix functions Pi(t).

(3) In another extreme case with L = 0, Pi,q, shrinks to
Pi, moreover, due to (21), we have to choose Pi = Pj ,
i ̸= j. Thus, Theorem 2 is reduced to Theorem 1, namely
the common Lyapunov function result.

Given an L, the smallest ball B(0, 1/
√
ϵ) containing the tra-

jectories of output y(t) in the framework of our approach can
be obtained. Based on Theorem 2, an optimization problem
can be formulated by adding (12) with (18)–(23) as follows:

max ϵ s.t. (12) and (18)− (23) (34)

C. Example

Consider a switched system with two subsystems as

 A1

B⊤
1

C1

 =


−2 1
0 −0.9
3 1
1 0
0 1

 ,
 A2

B⊤
2

C2

 =


−1 0
−1 −1
2 3
1 0
0 1


The initial state is assumed to satisfy x0 ∈ {x0 ∈ R2 |

∥x0∥ ≤ 1} and the input is assumed to satisfy u(t) ∈ {u(t) ∈
R | −1 ≤ u(t) ≤ 1, ∀t ∈ R≥0}, which implies that R0 =
diag{1, 1} and Ru = 1.

First, we use Theorem 1 to estimate the reachable set
R̃y contained in the ball B(0, δ) with the minimal δ, where
δ = 1/

√
ϵ. The minimal δ is 2.9033 obtained by solving

optimization (13) with the aid of fminsearch. It should be
noted that this result is applicable for the arbitrary switching,
since the common Lyapunov function approach is employed.

Next, if the dwell-time constraint is further considered in
the switching signal, we can apply Theorem 2. Suppose dwell
time τmin = 1, we solve optimization problem (34) to obtain
the minimal δ with L = 1, 2, . . . , 10, which are depicted in
Fig. 1. The following two points can be observed in Fig. 1,
which are consistent with Remark 3.

1) The value of δ monotonically decreases as L increases.
This means that a less conservative result, namely a
smaller δ, can be obtained, if a greater L is chosen.

2) The L = 0 is equivalent to the result of common Lya-
punov function approach, but it is more restrictive than
the result obtained by the multiple Lyapunov function
approach with L ≥ 1.
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Fig. 1. Minimized δ = 1/
√
ϵ by the common Lyapunov function approach

(Theorem 1) and the multiple Lyapunov function approach (Theorem 2) with
respect to L = 0, 1, 2, . . . , 10.
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Fig. 2. 1000 randomly generated state trajectories are bounded in the
estimated output reachable set R̃y = R1,y ∪R2,y .

Finally, the bounding ellipsoids R1,y and R2,y obtained
with L = 10 are shown in Fig. 2. The switching signal has
tk+1−tk = 1+rand, k ∈ N, where rand is a random number
within [0, 1], thus the switching signal σ(t) ∈ Dτmin with
τmin = 1. With an input u(t) = sin(t), 1000 state trajectories
generated from 1000 random initial states from a unit circle are
illustrated in Fig. 2. As Fig. 2 shows, all the state trajectories
are bounded in the estimated reachable set R̃y = R1,y∪R2,y ,
showing the effectiveness of our approach.

IV. SAFETY VERIFICATION FOR UNCERTAIN SWITCHED
SYSTEM

For the sake of being concise, we focus on the application
of Theorem 2 in the rest of this paper, since Theorem 1 is just
a special case of Theorem 2 with parameter L = 0, see point
(3) in Remark 3.

A. Approximate Bisimulation
For a continuous-time switched linear system Σ de-

scribed by (1)–(2), an approximately bisimilar continuous-time
switched linear system Σ̃ is considered in the following form

Σ̃ : ˙̃x(t) = Ãσ(t)x̃(t) + B̃σ(t)u(t) (35)

ỹ(t) = C̃σ(t)x̃(t) (36)

where x̃(t) ∈ Rñx is the state of the bisimilar system, the
initial state x̃0 is assumed to be in

x̃0 ∈ X̃0 , E(R̃0) (37)

and ỹ(t) ∈ Rny is the output of the bisimilar system. In the
rest of the work, the input u(t) and switching signal σ(t) of
Σ̃ is considered to be same as those for system Σ.

Definition 2: [22] A relation Rδ ⊆ Rnx × Rñx is called
a δ-approximate bisimulation relation between systems Σ and
Σ̃, of precision δ, if for all (x(t), x̃(t)) ∈ Rδ

1) ∥y(t)− ỹ(t)∥ ≤ δ, ∀t ∈ R≥0,
2) ∀u(t) ∈ U , ∀x(t) satisfies Σ, ∃x̃(t) satisfies Σ̃ such that

(x(t), x̃(t)) ∈ Rδ , ∀t ∈ R≥0,
3) ∀u(t) ∈ U , ∀x̃(t) satisfies Σ̃, ∃x(t) satisfies Σ such that

(x(t), x̃(t)) ∈ Rδ , ∀t ∈ R≥0.
and we say systems Σ and Σ̃ are approximately bisimilar with
precision δ, denoted by Σ ∼δ Σ̃.

Define the following notations x̂(t) = [x⊤(t) x̃⊤(t)]⊤,
ŷ(t) = y(t)− ỹ(t) and[

Âi B̂i Ĉ⊤
i

]
=

[
Ai 0 Bi C⊤

i

0 Ãi B̃i −C̃⊤
i

]
and let 0 ≤ γ ≤ 1, we define R̂0(γ) = diag{γR0, (1−γ)R̃0}.

Since Σ and Σ̃ share same switching signal σ(t) and input
u(t), an augmented system Σ̂ can be derived from Σ and Σ̃
as below

Σ̂ : ˙̂x(t) = Âσ(t)x̂(t) + B̂σ(t)u(t) (38)

ŷ(t) = Ĉσ(t)x̂(t) (39)

with initial state x̂0 ∈ X̂0 , E(R̂0(γ)) and input u(t) ∈ U ,
E(Ru).

Because ∥y(t)− ỹ(t)∥ ≤ δ, ∀t ∈ R≥0 holds if and only
if ŷ(t) ∈ B(0, δ), ∀t ∈ R≥0, the problem of computing the
distance δ between Σ and Σ̃ can be converted to the problem
of output reachable set estimation for augmented system Σ̂.

Theorem 3: Given a dwell time τmin > 0 and consider
switched systems Σ by (1)–(2) and Σ̃ by (35)–(36) with σ(t) ∈
Dτmin under initial state condition (3), (37) and input condition
(4). If there exist a set of matrices Pi,q ∈ S(nx+ñx)×(nx+ñx)

+ ,
q = 0, 1, . . . , L, i ∈ M and scalars α > 0, 0 ≤ γ ≤ 1, ϵ ≥ 0
such that for ∀i, j ∈ M

L (Âi, B̂i, Pi,q, Ru, α) + Ψi,q ≺ 0, q = 0, . . . , L− 1 (40)

L (Âi, B̂i, Pi,q+1, Ru, α) + Ψi,q ≺ 0, q = 0, . . . , L− 1
(41)

L (Âi, B̂i, Pi,L, Ru, α) ≺ 0 (42)
Pi,0 − Pj,L ≺ 0, i ̸= j (43)

Pi,0 − R̂0(γ) ≺ 0 (44)

ϵĈ⊤
i Ĉi − Pi,q ≺ 0, q = 0, . . . , L (45)

where Ψi,q = diag{L(Pi,q+1−Pi,q)/τmin, 0}. Then, we have
an approximation bisimulation relation Rδ , δ = 1/

√
ϵ such

that Σ ∼δ Σ̃.
Proof: Since the initial states x0 ∈ E(R0) and x̃0 ∈

E(R̃0), the initial state x̂0 satisfies

x̂⊤0 R̂0(γ)x̂0 = γx⊤0 R0x0 + (1− γ)x̃⊤0 R̃0x̃0 ≤ 1, 0 ≤ γ ≤ 1
(46)
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Thus, it means that x̂0 ∈ E(R̂0(γ)), 0 ≤ γ ≤ 1.
From Theorem 2, it implies that the output reachable set

of Σ̂ can be estimated by
∪

i∈M E(ϵI) = B(0, δ), where δ =
1/
√
ϵ, so the output ŷ(t) ∈ B(0, δ), ∀t ∈ R≥0. Furthermore,

due to ŷ(t) = y(t) − ỹ(t), we have ∥y(t)− ỹ(t)∥ ≤ δ, ∀t ∈
R≥0, along with the trajectories x(t), x̃(t) generated by Σ
and Σ̃. The approximation bisimulation relation Rδ such that
Σ ∼δ Σ̃ can be established.

The choice of a larger L in Theorem 3 will lead to a
less conservative analysis result, the result with the least
conservativeness can be deduced by letting L → ∞, which
is however numerically intractable. For the particular case
with L = 0, Theorem 3 is reduced to a result by the
common Lyapunov function approach, but it can be used for
the arbitrary switching case.

B. Safety Verification

We consider the system matrices of switched system Σ are
uncertain and satisfy that [Ai Bi C⊤

i ] ∈ Ri, where

Ri , co
{
[A

(1)
i B

(1)
i (C

(1)
i )⊤], . . . , [A

(S)
i B

(S)
i (C

(S)
i )⊤]

}
(47)

where co{·} is the convex-hull operator.
Definition 3: Consider system Σ described by (1)–(2) and

(47) with C(s)
i = I , ∀s = 1, . . . , S,∀i ∈ M. System Σ is said

to be safe with respect to the unsafe region Ωu, if Ry∩Ωu = ∅.
Let Σ̃ be an approximately bisimilar system such that

Σ ∼δ Σ̃. Denote Ry , Rỹ the output reachable sets of Σ
and Σ̃ respectively, then it can be seen that Ry ⊆ N (Rỹ, δ),
where N (·, δ) denotes the δ-neighborhood of a set. Conse-
quently, to prove that Σ is safe, it is sufficient to verify that
Rỹ ∩N (Ωu, δ) = ∅.

Proposition 1: If Σ ∼δ Σ̃, then Rỹ ∩ N (Ωu, δ) = ∅ ⇒
Ry ∩Ωu = ∅. Namely, Σ̃ is safe with respect to N (Ωu, δ) ⇒
Σ is safe with respect to Ωu.

In the following, a theorem is presented to compute the
system matrices for a bisimilar system for uncertain switched
system Σ.

Theorem 4: Given a dwell time τmin > 0 and consider
uncertain switched systems Σ by (1)–(2), (47) and Σ̃ by
(35)–(36) with σ(t) ∈ Dτmin under initial state condition
(3), (37) and input condition (4). If there exist a set of
matrices Mi ∈ Rnx×nx , Ni ∈ Rnx×nu , Xi ∈ Rnx×nx ,
Yi ∈ Rnx×nx , Zi ∈ Rnx×nx , Si ∈ Rny×nx , Pi,q ∈ S2nx×2nx

+ ,
q = 0, 1, . . . , L, i ∈ M and scalars α > 0, 0 ≤ γ ≤ 1, δ ≥ 0
such that for ∀i, j ∈ M and ∀s = 1, 2, . . . , S,

Ξ
(s)
i,q,1 ≺ 0, q = 0, . . . , L− 1 (48)

Ξ
(s)
i,q,2 ≺ 0, q = 0, . . . , L− 1 (49)

Ξ
(s)
i,L ≺ 0 (50)

Pi,0 − Pj,L ≺ 0, i ̸= j (51)

Pi,0 − R̂0(γ) ≺ 0 (52)[
−Pi,q ∗
W

(s)
i −δ2I

]
≺ 0, q = 0, . . . , L (53)

where R̂0(γ) = diag{γR0, (1− γ)R0}, and

Ξ
(s)
i,q,1 =

 −Sym(U
(s)
i ) + αPi,q +Ψi,q ∗ ∗
−(V

(s)
i )⊤ −αRu ∗

Pi,q +Qi − (U
(s)
i )⊤ −V

(s)
i Sym(Qi)


Ξ

(s)
i,q,2 =

 −Sym(U
(s)
i ) + αPi,q+1 +Ψi,q ∗ ∗
−(V

(s)
i )⊤ −αRu ∗

Pi,q+1 +Qi − (U
(s)
i )⊤ −V

(s)
i Sym(Qi)


Ψi,q = L(Pi,q+1 − Pi,q)/τmin

Ξ
(s)
i,L =

 −Sym(U
(s)
i ) + αPi,L ∗ ∗

−(V
(s)
i )⊤ −αRu ∗

Pi,L +Qi − (U
(s)
i )⊤ −V

(s)
i Sym(Qi)


U

(s)
i =

[
XiA

(s)
i Mi

ZiA
(s)
i Mi

]
, V

(s)
i =

[
XiB

(s)
i +Ni

ZiB
(s)
i +Ni

]

W
(s)
i =

[
C

(s)
i −S⊤

i

]
, Qi =

[
Xi Yi

Zi Yi

]
Then, we can obtain an approximately bisimilar system Σ̃

in the form of (35)–(36) and an approximation bisimulation
relation Rδ such that Σ ∼δ Σ̃, where the corresponding system
matrices are[

Ãi B̃i C̃⊤
i

]
=

[
Y −1
i Mi Y −1

i Ni S⊤
i

]
(54)

Proof: First, Qi + Q⊤
i ≺ 0 implies Yi + Y ⊤

i ≺ 0, thus
Yi is nonsingular. Then, substituting Mi = ÃiYi, Ni = B̃iYi
and Si = C̃i into (48), it becomes −Sym(QiÂ

(s)
i ) + αPi,q +Ψi,q ∗ ∗

−(B̂
(s)
i )⊤Q⊤

i −αRu ∗
Pi,q +Qi − (Â

(s)
i )⊤Q⊤

i −QiB̂
(s)
i Qi +Q⊤

i

 ≺ 0

By left-multiplying the third row of above inequality by
(Â

(s)
i )⊤ or (B̂

(s)
i )⊤ and adding it to the first or second row,

and right-multiplying the third column by Â
(s)
i or B̂(s)

i and
adding it to the first or second column, it yields Sym(Pi,qÂ

(s)
i ) + αPi,q +Ψi,q ∗ ∗

(B̂
(s)
i )⊤Pi,q −αRu ∗

Pi,q +Q⊤
i −QiÂ

(s)
i −QiB̂

(s)
i Qi +Q⊤

i

 ≺ 0

Due to (47) and simple convexity arguments, the above
inequality ensures (40) holds. Through a similar proof, it can
be found that (49) ⇒ (41) and (50) ⇒ (42). Moreover, (51)
and (52) are equivalent to (43) and (44).

Finally, letting ϵ = 1/δ2 and by Schur complement, (53)
ensures that (45) holds. Therefore, the approximation bisimu-
lation Σ ∼δ Σ̃ can be established by Theorem 3.

Given an L, the optimized approximately bisimilar system
Σ̃opt can be obtained by minimizing the precision δ by

min δ2 s.t. (48)− (53) (55)

So far, according to Proposition 1, we can perform the safety
verification for uncertain system Σ with respect to Ωu via
verifying the safety specification of the bisimilar system Σ̃
with respect to the set N (Ωu, δ), the δ-neighborhood of Ωu.
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TABLE II
PRECISION δ WITH L = 1, 2, 3, 4, 5 AND COMPUTATION TIME (C.T.)

WITH A FIXED α

L = 1 L = 2 L = 3 L = 4 L = 5
δ 0.459 0.434 0.425 0.414 0.409

C. T. 0.573 s 0.862 s 1.221 s 4.762 s 15.263 s

C. Example

In this subsection, the safety verification for an uncertain
switched affine system ẋ(t) = Ai(t)x + bi, i ∈ {1, 2}, is
considered. The system matrices are given as blow:[

A1

b⊤1

]
=

 −2 1
γ(t) −0.9
3 1

 , [
A2

b⊤2

]
=

 −1 γ(t)
−1 −1
2 3


where γ(t) ∈ [0, 0.1] is an uncertain time-varying parameter.
The initial state is assumed to be x0 ∈ {x0 ∈ R2 | ∥x0∥ ≤
0.1}, which implies that R0 = diag{100, 100}. The switching
signal is a periodic switching law as tk+1 − tk = 1, ∀k ∈ N.

Using Theorem 4, a switched system with exact parameters
can be obtained, with a corresponding precision δ. One point
needs to be clarified here is that (50) can be removed for
this particular periodic switching case, since (50) exactly
corresponds to the interval [tk + τmin,∞) which does not
appear at all. Similar to the experimental results for reachable
set estimation (Section III, C), the precision δ tends to a
smaller value as a larger L is chosen to apply Theorem 4,
see TABLE II for L = 1, 2, 3, 4, 5.

Then, in order to validate our approach, we first let L = 1
and obtain the corresponding system matrices as follows: A1

b⊤1
C1

 =

[ −1.520 0.383
0.152 −1.115

−2.895 −1.087

−0.969 −0.036
−0.0355 −0.9413

]
,

 A2

b⊤2
C2

 =

[ −0.858 −0.091
−0.508 −1.560

−2.043 −3.112

−0.969 −0.036
−0.036 −0.941

]
With the above switched system with exact parameters,

we can conduct the verification for the uncertain switched
system. Given three unsafe regions Ωu,1 , B([0.7 1.7], 0.6),
Ωu,2 , B([2 − 0.2], 0.5) and Ωu,3 , B([3.5 1.5], 0.9),
the new unsafe regions are described by their neighborhoods
Ω̃u,1 , N (Ωu,1, 0.459), Ω̃u,2 , N (Ωu,2, 0.459) and Ω̃u,3 ,
N (Ωu,3, 0.459). Thus, the verification for uncertain switched
system can be done via verifying if the new system is safe
with respect to the new unsafe regions. We can use SpaceEx
[32] to perform the verification for the certain system.

The verification result is illustrated in Fig. 3. However, the
safety of the original system cannot be guaranteed since the
computed reach set intersects with Ω̃u,3. Then, we let L = 5
which produces a smaller precision δ, and the system matrices
are A1

b⊤1
C1

 =

[ −1.611 0.427
0.170 −1.106

−2.981 −1.030

−0.970 −0.032
−0.032 −0.948

]
,

 A2

b⊤2
C2

 =

[ −0.909 −0.023
−0.359 −1.685

−1.980 −3.139

−0.970 −0.032
−0.032 −0.949

]

In comparison with Fig. 3, this smaller δ yields small-
er unsafe regions as Ω̃u,1 , N (Ωu,1, 0.409), Ω̃u,2 ,
N (Ωu,2, 0.409) and Ω̃u,3 , N (Ωu,3, 0.409). By the results in
Fig. 4, we can conclude the safety of the uncertain switched
system.
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Unsafe region with L=1

Fig. 3. The safety verification via SpaceEX for the certain system derived
with (L = 1). The blue area is the reach set computed by SpaceEX, and the
yellow lines are the random state trajectories. The safe or unsafe property of
the original uncertain system cannot be concluded since the reach set of the
certain system intersects with the new unsafe region.
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Fig. 4. The safety verification via SpaceEX for the certain system derived
with (L = 5). The safety of the original uncertain system can be concluded
since the reach set of certain system has no intersection with the new unsafe
regions.

V. CONCLUSIONS

In this paper, the output reachable set estimation problem
for switched linear systems has been investigated. With the
aid of the common Lyapunov function and multiple Lyapunov
function approaches, the output reachable set can be over-
approximated by a set of bounding ellipsoids. Moreover, a
sufficient condition for the existence of an approximate bisim-
ulation of two switched linear systems is proposed, which can
be viewed as an output reachable set estimation for the system
combining the two bisimilar systems. Finally, by the result of
approximate bisimulation, the safety verification problem for
uncertain switched systems can be dealt with by verifying the
safety of its bisimilar system with exact parameters. In this
paper, Ai are required to be Hurwitz stable. By the techniques
used in [33], the result in this paper can be readily extended
to the case with some Ai are unstable. In addition, according
to Table I, the computational cost significantly increases as
the system order and number of modes grows, how to reduce
the computational complexity and make it applicable for high
dimensional systems with large amounts of subsystems will
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be our future study.
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APPENDIX

Proof of Lemma 1: Define the following Lyapunov function
as V (t) =

∑
i∈M ξi(t)Vi(x(t)), where ξi(t), i ∈ M, is same

as in Theorem 2. First, we consider any t ∈ [tk, tk+1) ⊂ Ii,
∀i ∈ M. (6) implies

V̇ (t) ≤ −αV (t) + αu⊤(t)Ruu(t), t ∈ [tk, tk+1) (56)

Then, multiplying both sides of (56) with eα(t−tk) and then
integrating it over [tk, t), we have V (t) ≤ e−α(t−tk)V (t+k ) +∫ t

tk
e−α(t−s)u⊤(s)Ruu(s)ds. Due to u(t) ∈ E(Ru), ∀t ∈

R≥0, that is u⊤(t)Ruu(t) ≤ 1, ∀t ∈ R≥0, we have the
following result

V (t) ≤ e−α(t−tk)V (t+k ) +

∫ t

tk

e−α(t−s)ds

= e−α(t−tk)V (t+k ) + 1− e−α(t−tk)

(57)

and it can be rewritten to

V (t)− 1 ≤ e−α(t−tk)(V (t+k )− 1), t ∈ [tk, tk+1) (58)

Next, we consider tk ∈ S . From (7), we can obtain that
V (t+k ) ≤ βV (t−k )+1−β, tk ∈ S , which can be equivalently
rewritten to

V (t+k )− 1 ≤ β(V (t−k )− 1), tk ∈ S (59)

Combining (58) and (59), the following derivation can be
obtained for ∀t ∈ R≥0

V (t)− 1 ≤ e−α(t−tk)(V (t+k )− 1) ≤ βe−α(t−tk)(V (t−k )− 1)

≤ · · · ≤ βNum(t−t0)e−α(t−t0)(V (t0)− 1)

where Num(t− t0) denotes the number of switchings during
[t0, t). Due to α > 0 and 0 < β ≤ 1, it means that

V (t)− 1 ≤ V (t0)− 1, ∀t ∈ R≥0 (60)

Furthermore, (8) implies that V (t0) ≤ x⊤0 R0x0 ≤ 1, and (9)
together with (60) yield that y⊤(t)Ri,yy(t) ≤ V (t) ≤ 1 holds
when σ(t) = i ∈ M, t ∈ R≥0. For all possible i ∈ M, y(t)
thus satisfies y(t) ∈

∪
i∈M E(Ri,y), ∀t ∈ R≥0 and therefore,

Ry ⊆ R̃y by the definition of R̃y given in (1).
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8. List of Symbols, Abbreviations, and Acronyms
• CPS: cyber-physical system(s)
• DCPS: distributed cyber-physical system(s)
• Hynger: hybrid invariant generator
• HyperSTL: hyperproperties for signal temporal logic
• HyST: hybrid source transformation and translation software tool
• SLSF: Simulink/Stateflow
• StarL: stabilizing distributed robotics language
• STL: signal temporal logic
• RTA: runtime assurance
• UAS: unmanned autonomous system
• UAV: unmanned aerial vehicle
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