
R E V I EW

Different resuscitation strategies and novel
pharmacologic treatment with valproic acid in
traumatic brain injury

Simone E. Dekker, MD, PhD1,2,3 | Vahagn C. Nikolian, MD1 |

Martin Sillesen, MD, PhD4,5 | Ted Bambakidis, MSc1 | Patrick Schober, MD, PhD3 |

Hasan B. Alam, MD1

1Department of Surgery, University of

Michigan Hospital, Ann Arbor, Michigan

2Department of Neurological Surgery, Case

Western Reserve University, Cleveland, Ohio

3Department of Anesthesiology, Institute for

Cardiovascular Research, VUUniversity

Medical Center, Amsterdam, theNetherlands

4Department of Surgical Gastroenterology,

Copenhagen University Hospital,

Rigshospitalet, Copenhagen, Denmark

5Institute for Inflammation Research,

Copenhagen University Hospital,

Rigshospitalet, Copenhagen, Denmark

Correspondence

Hasan B. Alam, MD, Norman Thompson

Professor of Surgery, Head of General

Surgery, University of Michigan Hospital,

2920 Taubman Center, 1500 E. Medical

Center Dr., Ann Arbor, MI 48109.

Email: alamh@med.umich.edu

Funding information

Dr. Alam received numerous federal research

grants from the National Institutes of Health

(NIH), Office of Naval Research (ONR),

Defence Advanced Research Projects

Agency (DARPA), and the US ArmyMedical

Research andMateriel Command

(USAMRMC, which supported some of the

data included in this manuscript).

Abstract
Traumatic brain injury (TBI) is a leading cause of death in young adults, and effective treatment strat-

egies have the potential to save many lives. TBI results in coagulopathy, endothelial dysfunction,

inflammation, cell death, and impaired epigenetic homeostasis, ultimately leading to morbidity and/

or mortality. Commonly used resuscitation fluids such as crystalloids or colloids have several disad-

vantages and might even be harmful when administered in large quantities. There is a need for next-

generation treatment strategies (especially in the prehospital setting) that minimize cellular damage,

improve survival, and enhance neurological recovery. Pharmacologic treatment with histone deace-

tylase inhibitors, such as valproic acid, has shown promising results in animal studies of TBI and may

therefore be an excellent example of next-generation therapy. This review briefly describes tradi-

tional resuscitation strategies for TBI combined with hemorrhagic shock and describes preclinical

studies on valproic acid as a new pharmacologic agent in the treatment of TBI. It finally discusses limi-

tations and future directions on the use of histone deacetylase inhibitors for the treatment of TBI.
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1 | INTRODUCTION

Despite optimization of prehospital and intrahospital treatment strat-

egies, traumatic brain injury (TBI) remains a leading cause of morbidity

and mortality in young adults (Faul, Wald, & Coronado, 2010; Centers

for Disease Control and Prevention, 2011). TBI is often paralleled by

hemorrhagic shock (HS), and this combination is especially lethal, with

studies showing that HS can significantly worsen TBI-associated mor-

bidity and mortality (Wald, Shackford, & Fenwick, 1993; McMahon,
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Yates, Campbell, Hollis, Woodford, 1999). TBI and HS result in second-

ary conditions such as inflammation, endothelial dysfunction, coagulop-

athy, hypoxia, and cerebral edema. Such secondary insults are highly

linked, and include cross-talk between endothelial and coagulation

pathways as key mediators. The primary insult to the brain occurs in

the prehospital setting, involves irreversible destruction of neuronal tis-

sue and cannot be treated. Hence, treatment strategies necessarily

focus on prevention of secondary brain injury by maintaining adequate

cerebral oxygenation and perfusion (Badjatia 2008). Fluid resuscitation

has historically been the mainstay in treating traumatic injuries. It plays

a critical role in restoring and maintaining systemic and cerebral circula-

tion in TBI patients (Myburgh et al., 2007). An ideal resuscitation fluid

would therefore minimize cerebral edema, as well as attenuate neuro-

nal damage, inflammation, and coagulopathy. However, current resusci-

tation strategies have failed to prevent this secondary brain injury. For

this reason, recent advances in trauma research have focused on next-

generation fluids and pharmacologic agents that may attenuate sec-

ondary brain injury. The aim of this review is to describe traditional

resuscitation strategies for TBI combined with HS, and discuss the

novel use of valproic acid (VPA) as a new pharmacologic agent in the

treatment of TBI.

2 | CONVENTIONAL RESUSCITATION
TREATMENTS

TBI is often associated with hypovolemia, HS, and coagulopathy. In

addition, microvascular injury may alter the permeability of the blood-

brain barrier (BBB), resulting in intravascular fluid leakage and cerebral

edema. The ideal resuscitation strategy should aim to not only replace

lost blood but also minimize secondary brain injury. Accordingly, current

strategies focus on hemodynamic stabilization, maintaining systemic cir-

culation, and optimizing cerebral perfusion (Hammell & Henning, 2009;

Myburgh et al., 2007). However, there is considerable debate about the

most effective methods for treating blood loss associated with TBI.

2.1 | Fluid resuscitation

Prompt fluid resuscitation is the first-line therapy to restore the lost intra-

vascular volume. As blood products are often unavailable at the scene of

the injury, prehospital management is usually limited to infusion using

crystalloids or colloids. Isotonic crystalloids are typically preferred over

colloids (Myburgh et al., 2007; Perel & Roberts, 2012) and have served

as the standard resuscitation fluid for some time. Yet, traditional resusci-

tation fluids such as crystalloids have no inherent prosurvival properties

(Santry & Alam, 2010), and in severely bleeding patients, aggressive crys-

talloid resuscitation does not result in any survival benefit (Bickell et al.,

1994; Kwan, Bunn, & Roberts, 2003). Moreover, several clinical studies

have identified shortcomings of fluid resuscitation, such as hemodilution,

hemostatic derangements, brain edema, and inflammation (Grande,

Asgeirsson, & Nordstrom, 1997; Peiniger et al., 2011). Such aggressive

administration may even worsen outcomes by further exaggerating the

cellular damage suffered during shock (Santry & Alam, 2010). Preclinical

studies showed that ongoing hemorrhage and coagulopathy are

frequently not corrected by current resuscitation protocols using crystal-

loids and packed red blood cells (PRBCs) (Selby et al., 1996). In addition,

massive fluid resuscitation itself may even result in coagulopathy and

hemodilution (Selby et al., 1996; Sondeen, Coppes, & Holcomb, 2013).

Compared with other resuscitation fluids such as fresh frozen plasma

(FFP) or colloids, normal saline resuscitation is furthermore associated

with increased brain swelling (Jin, DeMoya, et al. (2012; Imam et. al.

2015); metabolic derangements (Hwabejire, Imam, et al., 2013b); ele-

vated circulating markers of injury (Sillesen, Jin, et al., 2013); and

increased activation of the endothelial, coagulation, and anticoagulation

systems (Dekker, 2014c; Sillesen et al., 2014).

These findings suggest that traditional fluid resuscitation with crystal-

loids is mostly supportive, and does not address the specific cellular dys-

function caused by shock and injury. Because of the increased awareness

of the negative effects of massive transfusions, trauma care now favors

“damage control resuscitation” consisting of minimal use of crystalloids,

early hemorrhage control, and early administration of blood products

(PRBC, FFP, and platelets in an appropriate ratio) (Kwan et al., 2003).

2.2 | Blood product resuscitation

Commonly used blood products are PRBC, FFP, platelets, and fibrino-

gen. There is limited evidence concerning the use of PRBC in the set-

ting of isolated TBI. The combination of TBI and HS likely mandates

PRBC transfusion, with clinical data suggesting a survival benefit when

FFP:PRBC ratios are maintained above 1:2 (Peiniger et al., 2011). The

benefits of FFP on the control of acute traumatic bleeding and coa-

gulopathy are furthermore demonstrated in multiple clinical studies

(Borgman et al., 2007; Duchesne et al., 2008; Maegele et al., 2008; Sca-

lea et al., 2008; Wafaisade et al., 2010; Zehtabchi & Nishijima, 2009). In

the setting of TBI, however, clinical data are conflicting. Some studies

have indicated adverse outcomes associated with FFP administration

(Anglin et al., 2013; Etemadrezaie et al., 2007), while others have identi-

fied outcome benefits (Peiniger et al., 2011). Preclinical studies demon-

strated that early administration of FFP also appears to alter the clinical

course following TBI by attenuating the degree of neurologic impair-

ment, improving the rate of recovery, and preserving cognitive func-

tions (Halaweish, 2015a). These effects of blood products can even be

detected at the level of gene transcription (Sillesen, Bambakidis, Dek-

ker, Li, & Alam, 2017), affecting the expression of genes involved in

metabolism, platelet signaling, and inflammation. These data suggest

that the therapeutic benefits of plasma resuscitation might be more

extensive than solely through hemodynamic stabilization.

However, FFP transfusion is not without risk (Nascimento et al.,

2010; Rossaint et al., 2016). Such risks include transfusion-associated

acute lung injury and circulatory overload, allergic reactions, and trans-

mission of infectious diseases (Nascimento et al., 2010). Moreover, the

use of FFP and other blood products is challenging in prehospital settings

or in underdeveloped areas because of logistical issues such as limited

availability, requirement for refrigeration, short life after thawing, and the

need for immediately available universal donor plasma. These challenges

of FFP resuscitation have fueled the initiative to develop next-generation

blood products that are low volume and shelf stable.
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2.3 | Future directions of blood products

and antifibrinolytics in traumatic bleeding

Lyophilized plasma, a freeze-dried plasma product developed in the

1930s, may solve the shortcomings of FFP resuscitation. It is logistically

superior to FFP, as it can be stored as a powder for as long as 30 years,

and subsequently reconstituted and administered within minutes fol-

lowing rehydration with water (Fu & Myhre, 1977). Additionally, lyoph-

ilized plasma retains its factor function much better than FFP, and can

be stored in ambient temperatures for extended periods of time.

Freeze-dried plasma has been shown to be as effective as FFP in large

animal models of TBI and hemorrhage (Imam et al., 2013a; Halaweish

et al., 2016). Freeze-dried plasma is approved for clinical use in Europe

and has been used by NATO forces for many years with good results

(Alam & Velmahos, 2011; Pusateri et al., 2016). However, it is currently

not approved by the Food and Drug Administration (FDA) for use in

the United States. In the coming years, there is an urgent need for pro-

spective investigations of blood products such as lyophilized plasma

and fibrinogen, and antifibrinolytic drugs such as tranexamic acid (TXA).

There is currently a paucity of data concerning the use of TXA in TBI.

A recent Cochrane review concluded that TXA may reduce mortality,

although the quality of the evidence is low and uncertainties remain

(Ker, Roberts, Shakur, & Coats, 2015). Furthermore, studies have sug-

gested a reduction in the incidence of intracranial hemorrhage follow-

ing TBI associated with administration of TXA (Zehtabchi, Abdel Baki,

Falzon, & Nishijima, 2014). Future randomized controlled trials should

report on the clinical outcomes of treatment with TXA and fibrinogen

to address some of the key unanswered questions in trauma-induced

coagulopathy (Wong, Curry, & Stanworth, 2016).

3 | NOVEL RESUSCITATION
TECHNIQUES—EPIGENETIC
MODULATION USING VPA

At present, there are no proven pharmacologic treatment options for

TBI. However, the search for such therapeutic treatment of TBI has

received considerable attention in recent years (Fukudome et al., 2012;

Ichiyama et al., 2000). A therapeutic strategy for modulating the cellular

response to injury may be at the level of the epigenome. One class of

promising drugs that affect the epigenome is histone deacetylase inhib-

itors (HDACIs). In pathologic conditions, such as TBI and HS, there is a

decrease in histone acetylation, which limits gene transcription and

impairs cellular homeostasis. However, agents such as VPA have been

shown to act as HDACIs, thus altering gene transcription and thereby

inducing a “prosurvival phenotype.” The precise mechanisms underlying

these protective effects are an active area of current research.

3.1 | TBI creates a genomic storm

The genomic response to injury is an important area of current

research. Recent studies have revealed that traumatic injuries result in

epigenetic changes via DNA methylation, phosphorylation, and acetyla-

tion (Wong & Langley, 2016). The so-called “genomic storm” following

injury occurs on an epigenetic level and modulates numerous cellular

functions, protein expression, and pathways. These processes are con-

sidered “epigenetics,” meaning that they affect the gene expression

and resultant phenotype of the cell but do not alter the genome itself

(Bernstein, Meissner, & Lander, 2007; Goldberg, Allis, & Bernstein,

2007). Alam et al. showed that during hemorrhage and resuscitation, at

least 7% of the genes and downstream pathways are differentially

expressed (Alam, Stegalkina, Rhee, & Koustova, 2002). Xiao et al.

(2011) previously showed that after traumatic injury, expression of

over 80% of the leukocyte transcriptome is altered. These changes

occur rapidly after trauma and exhibit a long-lasting effect for months

after the injury (Lipponen, Paananen, Puhakka, & Pitkänen, 2016; Xiao,

2011). Modulating these epigenetic changes may thus be an important

goal of therapy in patients with TBI.

3.2 | Acetylation status regulates gene expression

and protein functions

Briefly, the human genome is organized into chromatin, a highly con-

served complex of DNA and histone proteins. DNA transcription, and

hence gene expression, is regulated by the acetylation and deacetyla-

tion of these histones. Histone deacetylases are enzymes that remove

the acetyl group from the histone, making the DNA-histone structure

more compact and therefore limiting transcription. In contrast, histone

acetyltransferases weaken DNA-histone attraction, thereby unfolding

the complex and making DNA more available for transcription (Del-

cuve, Khan, & Davie, 2012). A homeostatic balance between histone

deacetylases and histone acetyltransferases typically exists in cells.

However, dysregulation of acetylation homeostasis has been suggested

to play a key role in the pathogenesis of cancers and neurodegenera-

tive diseases. Moreover, as noted above, dysregulation of acetylation

homeostasis has also been implicated as an important pathologic mech-

anism in the body’s response to traumatic injuries. Thus, pharmacologic

agents that can alter histone acetylation may be promising new thera-

peutic strategies for trauma, as they can rapidly and reversely modify

the transcription of desirable genes.

Although histones were considered the main target of HDACIs,

we now know that nonhistone proteins involved in key cellular func-

tions such as the cell cycle, stress response, cytoskeleton dynamics, sig-

naling, repair/healing/remodeling, communication, and proliferation are

equally involved (Glozak, Sengupta, Zhang, & Seto, 2005). At least 50

such nonhistone proteins have been well characterized (Kim & Bae,

2011), but this list is rapidly growing. In one study, 3,600 acetylation

sites (in 1,750 human proteins) were identified, which regulated nearly

all nuclear and many key cytoplasmic processes (Choudhary, 2009).

This makes acetylation a regulatory mechanism that is as prevalent and

important as phosphorylation (Kouzarides, 2000; Norris, Lee, & Yao,

2009). Acetylation of nonhistone proteins is actually even more impor-

tant than histones in the setting of severe shock and/or TBI. While it

takes some time to produce phenotype changes through modulation of

gene transcription, direct (nontranscriptional) acetylation of regulatory

proteins is extremely fast and thus more relevant for rapidly lethal con-

ditions such as shock or TBI. In short, there are many features that
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make acetylation an attractive therapeutic target: It is rapid, completely

reversible, and can be altered by drugs that are already in clinical use.

3.3 | VPA restores normal cellular acetylation

A growing body of literature suggests that VPA may alter gene expres-

sion and protein functions following TBI (Bambakidis et al., 2016; Dek-

ker, 2014b; Halaweish et al., 2015b). VPA has been in clinical use as a

mood-stabilizing and antiepileptic drug since the 1970s. In high doses,

however, VPA acts as a HDACI. High-dose VPA has been shown to

improve survival in otherwise lethal models of HS, polytrauma (Alam

et al., 2009, 2011), sepsis, and combined TBI with HS (Halaweish et al.,

2015b,c; Jepsen et al., 2014; Jin, Duggan, et al., 2012a). Yet, the pre-

cise protective mechanisms of VPA have not been well defined. A con-

ceptual model for the main protective effects of VPA is as follows: TBI

and HS result in decreased acetylation of histones and nonhistone pro-

teins, which impairs normal gene expression and alters many homeo-

static pathways, leading to cell death. In contrast, VPA acts as an

HDACI, which restores normal acetylation homeostasis and restores

normal cellular functions, ultimately leading to a prosurvival phenotype.

HDACIs, such as VPA, are a promising therapeutic approach as they

are already FDA approved for clinical use for a variety of other ill-

nesses. Importantly, VPA is effective as treatment for HS even when

administered in a single bolus in the absence of fluid resuscitation or

blood transfusion (Alam et al., 2009). Thus, VPA treatment is very

appealing as it can be rapidly administered in the prehospital setting or

battlefield environment. Table 1 summarizes the key benefits of phar-

macologic treatment with VPA in the setting of central nervous system

injury.

3.4 | VPA alters cell survival and cell death pathways

One of the first studies that investigated the effects of hemorrhage

and resuscitation on histone acetylation demonstrated that crystalloid

resuscitation results in a predominantly deacetylation profile in animal

models, and that treatment with HDACIs was able to reverse it (Lin

et al., 2006). Our research group sought to better understand this

effect of HDACI treatment at the level of gene expression. Using a por-

cine model of TBI1HS, we performed a high-throughput analysis of

cerebral gene profiling following resuscitation with either hextend or

hextend1VPA. We hypothesized that treatment with VPA would sig-

nificantly alter the early transcription of genes in pathways related to

cell survival, which may explain its previously observed neuroprotective

effects such as reduced brain lesion size and swelling. We found that

1,668 probe sets mapping to 370 known genes were differentially

expressed between hextend versus hextend1VPA groups. These genes

TABLE 1 Key effects of valproic acid treatment following central nervous system injury, with selected studies

Effect Model Reference

Increased cell survival, and decreased
apoptosis and necrosis

TBI animal model Dekker et al., 2014b

Spinal cord injury animal model Abdanipour et al., 2012

Hypoxia-induced neuronal apoptosis
in vitro model

Jin et al., 2014; Li et al., 2008

Decreased brain lesion size TBI animal model Halaweish et al., 2015b; Imam et al., 2013b; Jepsen
et al., 2014; Jin et al., 2012a; Tai et al., 2014; Yu
et al., 2013

Improved survival, faster recovery,
improved cognitive function

TBI animal model Dash et al., 2010; Halaweish et al., 2015b; Tai et al.,
2014; Yu et al., 2013

Spinal cord injury animal model Abdanipour et al., 2012; Darvishi et al., 2014

Reduced inflammation TBI animal model Bambakidis et al., 2016; Jin et al., 2012a; Nikolian
et al., 2016b; Tai et al., 2014

Glioma cell in vitro model Ichiyama et al., 2000

Spinal cord injury animal model Abdanipour et al., 2012; Darvishi et al., 2014

Restoration of BBB function TBI animal model Nikolian et al., 2016; Yu et al., 2013

Focal cerebral ischemia animal model Wang et al., 2011

Spinal cord injury animal model Lee et al., 2012

Attenuated platelet dysfunction TBI animal model Bambakidis et al., 2016; Dekker et al., 2014a;
Sillesen, Johansson, et al., 2013

Decreased metabolism and attenuated
mitochondrial dysfunction

TBI animal model Dekker et al., 2014b; Hwabejire, Jin, et al., 2013b

Modulation of cell signaling TBI animal model Dekker et al., 2014b; Nikolian et al., 2016b

BBB5blood-brain barrier; TBI5 traumatic brain injury.
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were mapped to, among others, pathways related to cell death, apopto-

sis, and necrosis (Dekker, 2014b). These findings support our hypothe-

sis that VPA alters important genes and pathways that could improve

survival.

3.5 | VPA reduces inflammation and BBB dysfunction

As described previously, secondary brain injury includes an acute

inflammatory response with BBB disruption, activation of immune cells,

and cerebral edema. The anti-inflammatory properties of VPA treat-

ment have been described previously in models of sepsis, hemorrhage,

and TBI (Jin, Duggan, et al., 2012; Liu et al., 2014; Shang et al., 2010).

In addition, Bambakidis et al. (2016) showed that VPA modulates genes

related to inflammation, cell signaling, cell adhesion, and endothelial

growth. Dash et al. (2010) furthermore showed that VPA treatment

significantly decreased Evans Blue dye extravasation in a TBI rat model,

indicating that VPA might restore BBB function following trauma. Pro-

tective effects of VPA on BBB function were also demonstrated by

Wang Leng, Tsai, Leeds, & Chuang, 2011 and Lee et al., who found a

VPA-induced reduction of matrix metalloproteinase-9, a protease that

disrupts BBB function (Lee et al., 2012; Wang, et al., 2011). This was

furthermore associated with decreased degradation of tight junction

and basement membrane–associated proteins, such as zona occludin-1

(ZO-1), and claudin-5 (Lee et al., 2012). This is in line with data from

Nikolian and Dekker et al, 2016., who found that VPA significantly

increases expression of ZO-1, laminin, and claudin-5. Expression of glu-

cose transporter 1, a marker of barrier-type endothelial cells, was also

increased in the VPA treatment group. Moreover, in vitro monolayers

treated with VPA significantly decreased permeability relative to anoxic

controls (Nikolian and Bruhn et al, 2016). Taken together, these results

suggest that protective mechanisms of VPA may involve decreasing

inflammation and correcting BBB dysfunction.

3.6 | VPA attenuates platelet dysfunction

Coagulopathy plays a major role in the mortality of patients with TBI

and HS. A particularly important mechanism of TBI-related coagulop-

athy is platelet dysfunction. For example, TBI and HS induce a combi-

nation of platelet activation but decreased function compared with

general trauma patients (no TBI) (Kutcher et al., 2012). The precise

mechanisms of this platelet dysfunction remain unclear, but it may be

mediated by the so-called “exhausted platelet syndrome.” This syn-

drome involves initial platelet hyperactivation with subsequent deple-

tion of intracellular mediators, ultimately resulting in platelet

hypofunction (Pareti, Capitanio, Mannucci, Ponticelli, & Mannucci,

1980). Sillesen et al. showed that VPA may improve platelet function

after TBI and HS, but the precise mechanisms remain unknown (Sille-

sen, Johansson, et al., 2013). One of VPA’s protective mechanisms

might be its effect on coagulopathy by preventing platelet hyperactiva-

tion, which would thereby preserve long-term platelet function. Dekker

et al. (2014a) demonstrated that the addition of VPA to FFP resuscita-

tion results in preservation of platelet activation 8hr after the TBI,

compared with FFP alone. This was reflected in both circulatory as well

as cerebral-level platelet activation. However, it remains unclear

whether this was a direct effect of VPA on platelets, or the establish-

ment of an overall prosurvival phenotype in animals treated with VPA.

Bambakidis et al. (2017) recently conducted ex vivo experiments to

test the direct effect of VPA on platelet function and coagulation.

Results showed that VPA attenuates platelet activation and improves

clot dynamics (strength and rate of formation) in blood from animals

with TBI and HS. Importantly, VPA did not appear to alter platelet or

coagulation function in blood from healthy controls.

3.7 | VPA improves neurological recovery

While recent studies demonstrated that VPA treatment reduces brain

lesion size and attenuates damage to tissues, cells, and proteins, under-

standing longer-term functional outcomes remains an important hurdle

to clinical translatability. Halaweish et al. (2015b) recently conducted a

30-day survival model of TBI1HS. Compared with normal saline resus-

citation, VPA resuscitation (150mg/kg) resulted in significantly

decreased neurological impairment, significantly faster rate of neuro-

logic recovery, and smaller brain lesion size. Moreover, although NS-

and VPA-treated animals reached similar final cognitive function scores,

the VPA group reached cognitive normalization significantly faster than

the NS controls. In addition, small animal studies showed improved

spatial memory (Dash et al., 2010) and functional recovery (Dash et al.,

2010; Tai et al., 2014; Yu et al., 2013) when VPA was added to the

treatment protocol. In animal models of spinal cord trauma, VPA treat-

ment was associated with reduced secondary damage, improved loco-

motor scores (Abdanipour, Schluesener, & Tiraihi, 2012; Darvishi,

Tiraihi, Mesbah-Namin, Delshad, & Taheri, 2014), and more rapid

recovery (Abdanipour et al., 2012) (Table 1).

4 | FUTURE DIRECTIONS

4.1 | VPA treatment shows a promising translation

to human patients

One of the challenges with new treatment strategies is the translation

of outcomes from animal models to patients in the clinical setting. Ani-

mal models are imperfect, and there are several differences between

porcine and human species in both physiology and genome. For exam-

ple, the porcine physiology is hypercoagulable relative to the human

coagulation system. One of the main limitations of research in tradi-

tional and pharmacological resuscitation is the lack of human studies.

Importantly, Sillesen et al. (2016) demonstrated that histone deacety-

lase gene expression patterns are also associated with outcomes in

actual trauma patients. Furthermore, our laboratory is currently con-

ducting a U.S. FDA-approved phase 1, double-blind, placebo-controlled

trial to evaluate the safety and tolerability of VPA in healthy volunteers

and trauma patients. The first results of this study showed that VPA

caused differential expression of a total of 173 proteins. Gene enrich-

ment analysis from these human subjects at 4 hr post infusion showed

an upregulation of pathways related to cell death, apoptosis, necrosis,

and abnormal morphology of cells and neurons. Eight hours post
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infusion, steroid metabolism, lipid synthesis, and vitamin metabolism

were also upregulated (Georgoff et al., 2016). In part 2 of the ongoing

phase 1 trial, the effects of VPA in trauma patients with HS will be

studied (ClinicalTrials.gov identifier NCT01951560). Phase 2 and 3 tri-

als have already been approved for funding and will commence in the

next few years.

4.2 | VPA dosing needs further refinement

Most experiments described in this review used a dose of 300mg/kg,

which is 6 times higher than the dose used in humans for the treatment

of seizures. While these high doses improve outcomes in animal mod-

els, they may be associated with side effects in human patients. For

example, several investigators have shown that 300-mg/kg and 400-

mg/kg doses of VPA may be toxic, with respiratory and cardiac arrest

occurring shortly after infusion (Burns, Baer, Darlington, Dubick, &

Wade, 2012). Acute VPA overdose results in hypotension, respiratory

depression, thrombocytopenia, and metabolic disorders (Manoguerra

et al., 2008). In addition, chronic VPA use (>4 weeks) has been associ-

ated with thrombocytopenia, platelet dysfunction (Davidson et al.,

2011; Gesundheit, Kirby, Lau, Koren, & Abdelhaleem, 2002; Gidal

et al., 1994; Kis et al., 1999; Manoguerra et al., 2008), and acquired

von Willebrand disease (Serdaroglu, Tutuncuoglu, Kavakli, & Tekgul,

2002; Verrotti et al., 1999). A dose as low as 60mg/kg a day has been

found to be biologically active in cancer studies, which led to our

hypothesis that lower doses might also be beneficial for trauma patients.

As detailed above, our recent test of lower-dose VPA (150mg/kg) in a

TBI1HS survival model showed promising results in terms of neurologic

recovery, cognitive outcomes, and lesion size (Halaweish et al., 2015b).

A low-dose VPA strategy was further supported by the first results of

our phase 1 trial demonstrating that VPA is biologically effective in

healthy humans when given at a dose of 120mg/kg.

4.3 | There are potential problems

with pan-HDACI treatment

VPA is cheap, well tested in multiple animal models, and approved

worldwide by regulatory agencies. However, it has been shown to

affect several different types of histones. Briefly, there are five differ-

ent histone deacetylase classes: Class I, IIa, IIb, III, and IV. Within these

classes, there are 18 different histone deacetylase isoforms (HDAC 1–

11 and SIRT 1–7). All isoforms have very different physiological func-

tions, cellular locations, and organ distributions (Halaweish et al.,

2015c). As VPA is a nonspecific pan-inhibitor, it may create significant

potential for toxicity and side effects. An important area of current

research is the development of isoform-specific HDACIs that are both

more potent and also target specific organs. Our research group is cur-

rently comparing isoform-specific HDACIs and pan-HDACIs, and inves-

tigating the synergistic effects between various HDACIs and other

cytoprotective strategies.

In particular, the use of HDAC6 inhibition has been shown to be

effective in models of sepsis (Li et al., 2015). Previous agents used in

such studies have demonstrated poor brain bioavailability and, as such,

have had limited application in the setting of TBI. Recent studies evalu-

ating the use of agents that may provide a higher brain bioavailability

(ACY-183, Acetylon Pharmaceuticals) have shown promise, with pre-

clinical and in vitro data demonstrating neuroprotective properties that

are superior to nonselective inhibitors such as VPA (Nikolian and Bruhn

et al, 2016).

5 | CONCLUSION

TBI results in coagulopathy, endothelial dysfunction, inflammation, cell

death, and impaired epigenetic homeostasis, ultimately leading to

severe injury or death. Traditional resuscitation fluids such as crystal-

loids and colloids are unable to reverse these imbalances, and might

even be harmful when administered in large quantities. There is a need

to develop next-generation resuscitation strategies that can minimize

cellular damage, improve survival, and be administered in the prehospi-

tal setting. A next-generation resuscitation protocol should involve a

combination of fluid resuscitation, blood products, and powerful phar-

macologic agents. HDACIs, such as VPA, have shown promising results

after injury and are therefore excellent examples of these next-

generation therapies. However, there is need for further refinement,

such as isoform-specific treatment, and further safety and efficacy test-

ing in human patients.
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