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ABSTRACT 

In this thesis, we cluster stop points into stop-point regions using one month’s 

Automatic Identification System (AIS) data from the Gulf of Mexico and Caribbean Sea 

to characterize vessel behavior in an area with diverse traffic patterns. Initial cleaning of 

the dataset is necessary to address multiple issues common to AIS transponders. We 

consider methods for computing inter-point distances. In particular, we study a promising 

method for combining geospatial coordinates with other vessel attributes. We use the 

Ordering Points to Identify the Cluster Structure (OPTICS) clustering algorithm because 

it can identify outliers, and it constructs clusters of varying shapes and densities. Our best 

results come from dividing the area of interest into seven zones of equal size, and 

analyzing the results over each zone. Using classification trees to develop a classification 

tool, we illustrate an approach for predicting the cluster membership of a new 

observation. Due to the reduction in computation time and accuracy of results, we 

recommend that further research utilize the methods from this study as the foundation for 

an automated threat detection system.  
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EXECUTIVE SUMMARY 

Although originally conceived as a collision avoidance system, Automatic 

Identification Systems (AIS) have completely altered the way analysts look at maritime 

vessel data. Since the mandate in 2000 by the International Maritime Organization (IMO) 

for vessels meeting certain size and passenger requirements to be outfitted with AIS, 

organizations have been established to collect and maintain databases of raw AIS data 

(IMO 2017). Most topics studied in this field involve anomaly detection or path 

prediction using “ship tracks.” Furthermore, such studies are generally performed on 

areas that constrain ship routes to very few ship lanes travelling to limited locations. We 

choose our area of responsibility as the Gulf of Mexico and Caribbean Sea, an area with 

high traffic density and populous ports located throughout the area. Analyzing the stop 

points over an area with difficult-to-classify vessel routes is a new approach to anomaly 

detection that could provide the foundation for an automated threat detection system that 

can be adapted for worldwide use. 

We convert the dataset used in this study from its raw format into multiple comma 

separated value files. These files contain worldwide static and dynamic data from 

January 1   31, 2014. We define static data as the generally unchanging data such as ship 

name, ship type, and destination, while dynamic data is locational and time-specific data. 

We filter these files to ensure that they lie with the specified time and latitude-longitude 

bounds for the AOR. This limits the overall dataset to just over 17 million observations of 

dynamic data. 

Due to the massive size of the full dataset, we perform the initial data cleaning on 

a set of 26 tankers. We select them under the condition that they had traveled to the AOR 

at some point during January 2014. The purpose of cleaning the data is to remove 

common AIS transponder issues that occur in the data. Another possible problem with the 

data, which occurs within both the small dataset and full dataset, is two ships having the 

same Maritime Mobile Service Identity (MMSI) number. Due to the difficulty this 

causes, we set aside the observations for vessels with the same MMSI number from the 

dataset along with any points identified as a transponder error. Once we confirm that the 
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dataset is clean, we show how to construct a dataset of stop points for all vessels. The 

results of this operation yield a dataset of a more workable size.  

After determining the stop points, the next step is to construct an inter-point 

distance matrix for the clustering algorithm to use. The Vincenty formula, which 

calculates the distance between two points on a spheroid, is accurate for computing 

distances with spatial data. To reduce computation time, we use the treeClust function to 

produce our distance matrix. Because the matrix returned by treeClust does not include 

actual distances as values, we must compare the post-clustering results from the small 

dataset using the treeClust method to those using the Vincenty method (Buttrey and 

Whitaker 2016). We do this by using Cramér’s V (Crewson 2012) test to measure 

agreement between the two results. This test measures agreement by comparing which 

cluster group every observation falls under using the Vincenty method against which 

group it falls into using the treeClust method. If the Cramér’s V value is considered high 

enough, then the treeClust clustering results can be considered to have a similar degree of 

accuracy as the Vincenty clustering results.  

We choose the Ordering Points to Identify the Cluster Structure (OPTICS) 

clustering algorithm over multiple available clustering algorithms because it is able to 

cluster spatial data with shapes and densities, and because it can identify outliers, or 

points that do not belong in a cluster. The initial attempt to cluster over the entire AOR 

returned a low Cramér’s V value, signifying a low level of agreement. To remedy this, 

we split the AOR into seven Universal Transverse Mercator (UTM) zones. Because only 

607 stop points are in the small sample dataset, two of the zones did not have enough 

observations to form a tree, but all of the values returned for the rest of the zones 

suggested strong agreement between the two methods. The assumption moving forward 

is that the same agreement will hold when scaling up to the full size dataset.  

When moving to the full dataset, data storage and computation time become a 

major issue. The dynamic data for the full month of January 2014 is over 17 million 

observations, so to clean the dataset we partition the data and then reassemble it upon 

completion. Once we determine the stop points for the full dataset, we are able to reduce 

the dataset size to 179,060 stop points.  



 xvii 

The treeClust method did not cluster as well as expected upon visual inspection of 

the clustering results. While plotting the cluster centers over their respective stop points, 

it becomes clear that some clusters spanned four or five times the distance of others in 

order to include enough points to make up a cluster group. For this reason, we then 

cluster by zone, using UTM northing and easting coordinates. The visual inspection of 

these clustering results demonstrate that clustering with OPTICS based on UTM 

coordinates by zone yield reduced computational time while producing reasonable 

clusters.  

Finally, we illustrate how one might train a simple tree model from the clustering 

results to classify a new observation into the appropriate cluster. We begin this step by 

partitioning the data using an 80% to 20% split on the training and test set, respectively. 

Using a classification tree, and pruning it to increase accuracy while simultaneously 

reducing complexity, we predict the values for our test set. In this case, we use the cluster 

group found in the previous step as the response variable. The objective for this is to 

calculate the misclassification rate for each zone as a performance metric. The 

classification tool could serve as the framework for a threat detection system by 

comparing the clustering results to the predicted results.  

 

References 

 

Buttrey S, Whitaker L (2016) treeClust: An R package for tree-based clustering 

dissimilarities. The R Journal. 7(2):227-236. 

Crewson P (2012) Applied statistics handbook (AcaStat Software, Winter Garden, FL). 

International Maritime Organization (2017) AIS transponders. Retrieved 19 July, 

http://www.imo.org/en/OurWork/safety/navigation/pages/ais.aspx.   



 xviii 

THIS PAGE INTENTIONALLY LEFT BLANK 

  



 xix 

ACKNOWLEDGMENTS 

I would like to thank Dr. Whitaker for the guidance she provided during the 

entirety of the thesis process. Without her help, I know that I would have been lost along 

the way. Also, I offer my gratitude to Dr. Koyak, who agreed to come onboard very late 

in the process, for his work as my second reader. 

I also would like to acknowledge Ms. Megan Guidi for her emotional support and 

consistent reminders of project deadlines.  

Finally, I would like to thank all of the friends and family members who have 

supported me throughout my time at the Naval Postgraduate School, especially the boys 

at 11 Portola. 

 



 xx 

THIS PAGE INTENTIONALLY LEFT BLANK 

 



 1 

I. INTRODUCTION 

Safe navigation of the world’s waterways is an objective that humans have 

attempted to achieve since the beginning of time. Given the current state of satellite 

technology and dedicated maritime support services within various maritime 

organizations, this goal has largely been achieved in modern times. The Automatic 

Identification System (AIS) is a systematic approach to monitoring vessels. In 2000, the 

International Maritime Organization (IMO) mandated the use of AIS as a collision-

avoidance system (IMO 2017). Each ship with AIS transmits frequent messages, some 

giving “dynamic” information such as location, heading, and speed, while others give 

“static” information such as call sign and vessel type. Because raw AIS messages are 

now collected and stored in large databases, they can also be used for purposes other than 

collision avoidance. In particular, they are used for anomaly detection and projecting ship 

trajectories (Pallotta et al. 2013). A computational task that is often a prerequisite for this 

type of work is to identify clusters of common stop points. Our focus is to identify 

clusters of stop points in a way that can be easily scaled to very large datasets of AIS, and 

be used in regions that have complex shipping behaviors.  

A. AUTOMATIC IDENTIFICATION SYSTEM OVERVIEW 

Ships are distinguished as Class A regulated vessels and Class B non-regulated 

vessels. The requirements for a vessel to be outfitted with a Class A AIS device are set by 

the United States Coast Guard within United States waters, and are as follows: 

1. Any self-propelled vessel exceeding 1600 gross tons; 

2. A self-propelled vessel of 65 feet or more in length, engaged in 

commercial service; 

3. A towing vessel of 26 feet or more in length and more than 600 

horsepower, engaged in commercial service; 

4. A self-propelled vessel that is certificated to carry more than 150 

passengers; 
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5. A self-propelled vessel engaged in dredging operations in or near a 

commercial channel or shipping fairway in a manner likely to restrict or 

affect navigation of other vessels; 

6. A self-propelled vessel that is engaged in the movement of certain 

dangerous cargo, including flammable or combustible liquids (Department 

of Homeland Security [DHS] 2017a). 

The requirement for vessels that do not meet the conditions for use of a Class A 

device to operate using an AIS Class B device applies to many fewer vessels, the main 

condition being that they are not subject to pilotage by other than the vessel master or 

crew. This applies to fishing industry vessels, vessels carrying less than 150 passengers, 

and vessels engaged in dredging operations (DHS 2017a). Due to the fact that Class B 

vessels are engaged in lighter commercial or leisure activities, their devices transmit 

information at less frequent intervals than their Class A counterparts (DHS 2017b). 

Although it is important to understand the differences between the two device classes, the 

focus of this thesis will be to analyze those vessels with Class A devices.  

In order for AIS to perform its function successfully, an intricate system of 

satellites, vessel-based transmitters, and ground operators work together in unison. Each 

vessel is outfitted with one Very High Frequency (VHF) transmitter and multiple VHF 

receivers. The system transmits various factors about the vessel autonomously and 

continuously, while simultaneously checking its transmission schedule to avoid 

interference from other vessels. In addition, it schedules future transmission slots (DHS 

2017c). This process, called Self-Organized Time Division Multiple Access (SOTDMA), 

allows for a practically unlimited system capacity. 



 3 

 

Figure 1.  SOTDMA Use by AIS. Source: DHS (2017c). 

A vessel’s AIS transmissions are received in two ways, as ship-to-ship 

communications and as repeater transmissions. If a vessel is within 10 nautical miles 

(NM) of a vessel transmitting AIS, the AIS transmission is sent directly to the nearby 

vessel using VHF (DHS 2017c). The main limitation to VHF transmissions is that their 

propagation is limited by the height of the antennae. In order to remedy this issue, certain 

“repeater stations,” such as buoys, have been set up to allow Vessel Traffic Services 

(VTS) to extend their range in order to access information on vessels entering port areas 

(DHS 2017c). AIS capabilities have been installed on satellites beginning in 2008, but 

only recently has usage of this capability become substantial (Strauch 2009). Initially, 

these satellite-based AIS (S-AIS) systems were useful only in open-ocean regions to 

provide vessels with an extended range, as VHF signals can propagate vertically much 

farther than they can horizontally (Ginesi 2009). Recently, certain companies have been 

launching special satellites into orbit with the intention to create a worldwide S-AIS 

system (de Selding 2015). 

B. AREA OF RESPONSIBILITY 

Although AIS is used by vessel and VTS centers across the world, the focus of 

our study, like the recent work of Bay (2017) who focuses on ship traffic in the Port 
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Fourchon, Louisiana region, is on ship traffic in the Gulf of Mexico and Caribbean Sea 

during the month of January 2014. Figure 2 shows a map of the AOR of our study. 

 

Figure 2.  Geographic Representation of the AOR. Source: Google Earth (2015). 

This region, consisting of 1.6 million square miles, includes many tropical islands 

and is an area of substantial maritime economic activity. Tourism, fishing, oil production, 

and shipping constitute the main forms of economic activities that take place in these 

waters, making up a total of $234 billion dollars per year (Hargreaves 2010). Ships that 

operate in this area exhibit navigation patterns that are categorized by their economic 

activity. Figures 3 through 6, which are screenshots of a “live” map from the website 

marinetraffic.com, illustrate the behavioral patterns exhibited by vessels of different 

vessel types (MarineTraffic 2017). 

Figure 3 shows that cruise ships and vessels that rely on tourism as their source of 

income tend to travel along routes that stay close to the shoreline. For  igures      , a 

circle represents a stopped vessel, while an arrow represents a vessel underway. 

 



 5 

 

Figure 3.  Passenger and Pleasure Craft Behavior. Source: MarineTraffic (2017). 

In contrast, Figure 4 shows that fishing vessels generally display one of two 

behaviors, which are largely dependent on vessel size. Larger vessels tend to journey out 

and spend multiple days farther from shore as they make their catch. Smaller craft tend to 

travel less and make their catch, then return to their homeport in the same day. These 

small “onshore” boats numerically dominate their larger offshore counterparts (NRC 

1991). A shortcoming of Figure 4 is that it only accounts for vessels tracked using AIS, 

and a majority of fishing vessels do not use AIS. A fishing vessel that does not meet the 

previously described requirements would not appear on the tracker, which mostly 

includes the small, single-day trip vessels. 
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Figure 4.  Fishing Vessel Behavior. Source: MarineTraffic (2017). 

Figure 5 shows how cargo vessels move in the AOR, exhibiting a high traffic 

density. It also shows somewhat defined lanes or routes used by these large cargo vessels. 

Although there is a constant, substantial flow of shipping through the AOR, commercial 

shipping and fishing combined constitute only about one percent of its total economic 

activity (Hargreaves 2010). 
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Figure 5.  Cargo Vessel Behavior. Source: MarineTraffic (2017). 

The behavior displayed by oil tankers is very similar to that of cargo vessels, but with a 

significantly higher concentration of vessels off the coast of Texas and Louisiana. This 

may be due to the 6,364 offshore platforms located within the AOR (Bay 2017). The oil 

and gas industry makes up 53% of the economy for the AOR, and will continue to 

increase its role as North America pushes toward its independence from foreign oil 

(Hargreaves, 2010). These behaviors are important to consider throughout the analysis, as 

they are somewhat specific to the AOR.  
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Figure 6.  Oil and Gas Tanker Behavior. Source: MarineTraffic (2017). 

C. RESEARCH OBJECTIVES 

We focus on stop points rather than on moving ships or ship tracks. While most 

work with AIS data focuses on detecting anomalous behavior of moving ships (e.g., Mao 

et al. 2016), the behavior of stopped ships is important. Activities such as staying 

overlong at a particular stopping region such as a fishing area or port might indicate 

suspicious behavior. Another indication of suspicious behavior might be a sequence of 

stopping regions that is unusual for that vessel or for vessels of the same type. Our work 

sets the stage for investigating and identifying these types of anomalous behaviors.  

Our study has two main objectives. First, we aim to find an efficient method to 

transform the month-long collection of AIS data with over 17 million observations into a 

usable, well-organized data set that might be used for identifying stop points or for other 

AIS related work. This is important, as the Center for Maritime Research and 

Experimentation (CMRE) received 600 million AIS messages per month from various 

sources as of the year 2013 (Pallotta et al. 2013) and the rate has continued to increase as 

more vessels use AIS. We note that Pallotta et al. (2013) proposes a scheme to convert 

AIS data from a completely raw format into a maritime movement database. The authors 
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develop an automated method to detect behavioral anomalies, and to predict the motion 

of vessels. Their algorithm, called Traffic Route Extraction and Anomaly Detection 

(TREAD), analyzes vessels as a collective entity, and uses their behavior as a standard 

for its low-likelihood behavior detection algorithm. Our study differs from that of 

Pallotta, et. al (2013) in that our data cleaning efforts, while designed to study stop 

points, are steps that also need to be taken when using AIS data to study moving ships. 

Our second objective is to use this investigation as a starting point for clustering 

vessels into stopping regions using geospatial AIS stop-point coordinates along with 

additional ship information such as vessel type and size, its voyage and stopping history, 

and any other available information. There are several issues with clustering AIS stop 

points.  The first issue has to do with choice of clustering algorithm. Stopping regions 

have different shapes and different densities of AIS messages. Some are long and narrow 

while others are diffuse and cover large areas. The second issue has to do with measuring 

inter-point distances between observations that contain both geospatial coordinates and 

other possibly mixed-type categorical and numeric variables. We study the feasibility of 

using the treeClust algorithm of Buttrey and Whitaker (2016) to compute inter-point 

distances between stop points combined with the density based clustering algorithm 

Ordering Points to Identify the Clustering Structure (OPTICS) of Ankerst et al. (1999). 

The OPTICS algorithm will identify clusters of different shapes and densities and can 

identify outliers. 

Finally, because the inter-point distances of Buttrey and Whitaker (2016) are 

learned for a particular dataset, and because computation of inter-point distances and 

clustering is computationally intensive, we show how the results of clustering AIS might 

be used to train a classification algorithm that can be used quickly in real-time to identify 

cluster identities of new AIS stop points as they arise.  

D. THESIS ORGANIZATION 

The remainder of our thesis is organized in the following way. In Chapter 2, we 

describe the data contained in AIS messages. In Chapter 3, we explain the methodology 

that we use to clean the data, convert the dynamic data into stop points, cluster the stop 
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points, and create our classification tool. In Chapter 4, we present the results from our 

analysis, and Chapter 5 contains the conclusion and recommended topics for future 

research. 
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II. BACKGROUND 

The CMRE is receiving AIS data at an ever-increasing rate (Pallotta et al. 2013). 

The raw messages that are both sent and received follow specific guidelines established 

by the National Maritime Electronics Association (NMEA), and are in a format that must 

be decoded in order to be usable. We use software from the open source library “libais,” 

written in C++, to improve the speed of decoding the raw AIS messages (Schwehr 2017). 

The result is a database that includes worldwide AIS data in a readable JavaScript Object 

Notation (JSON) format. The decoded records are then converted to a Comma Separated 

Value (CSV) file that contains approximately 12 million messages a day, covering the 

four-month period of January through April of 2014. Limiting the decoding to include 

only Class A vessels, and removing observations that cannot be properly decoded drops 

the total file size to about 8 million messages a day. Most of these observations come in 

the form of two distinct formats known as “static” and “dynamic” messages. We describe 

each of these formats below. 

A. STATIC MESSAGES 

Class A static “category 5” messages contain information that describe a single 

ship on a single voyage. A non-automated static report must be broadcasted every 6 

minutes by the vessel (DHS 2017d). The information included in a static message is 

described in Table 1.  
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Table 1.   Information Fields for Static Data 

Field Name Type Description 

Maritime Mobile Service 

Identity (MMSI) 

9-digit Integer  Valid MMSI have first three 

digits between 201 and 775, 

although there are a few 

exceptions. 

International Maritime 

Organization (IMO) number 

 7-digit Integer Unique hull number. 0 not 

available; 0001000000 – 

0009999999 valid IMO 

Radio Call Sign  Character Free form text. 

Ship Name  Character Free form text, maximum 20 

characters.  

Reference Point or Ship 

Dimension 

 Numeric (m) Four fields giving the 

distance to the reference 

point from port (C), 

starboard (D), bow (A) and 

stern (B).  If C = D = 0, the 

A and B give length and 

width.  Maximum value for 

A, B is 511m. Maximum 

value for C and D is 63m .  

Destination Character Free form text, maximum 20 

characters. 

Estimated Time of Arrival  

(ETA) 

Character UTM in YYDDHHMM 

format. 

 

The first three digits of a ship’s Maritime Mobile Service Identity (MMSI) 

number are known as the Maritime Identification Digits (MID). This three-digit code is 

used to determine the ship’s nation of origin. MMSI, IMO number, radio call sign, and 

ship’s name all serve to identify which ship is transmitting the AIS message. The IMO 

number is the most reliable identifier of a vessel, as it is unlikely to have two vessels with 

identical IMO numbers, which may not be the case with the other ship identification 

fields. A shortcoming is that not all vessels are required to have an IMO number (IMO 

2017). Another important aspect to mention is that both the destination and Estimated 

Time of Arrival (ETA) fields are entered by the ship’s crew, which raises the possibility 

of errors.  
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B. DYNAMIC MESSAGES 

Class A dynamic messages are message types 1, 2, and 3, and are transmitted 

much more frequently than are their static counterparts. They must be transmitted every 

2-10 seconds while underway, and every 3 minutes while at anchor (DHS 2017d). 

Consecutive messages may be plotted in order to track ship movement over time. Table 2 

shows the different data fields that are included with these types of messages. 

Table 2.   Information Fields for Dynamic Data 

Field Name Type Description 

MMSI 9-digit Integer  The key used to pair 

dynamic and static records, 

see Table 1. 

Navigational Status  Integer Valid codes are between 0 

and 15.   

Rate of Turn  Integer (degrees per min) Valid values are between 

-127 and 127 with 0, 

negative, and positive 

values indicating no, left 

and right turns respectively; 

and +127, -127 being the 

maximum reported turn 

rate; -128 indicates no turn 

information. But other 

values are observed. 

Speed Over Ground (SOG)  Numeric (0.1 knots) 1022 is 102.2 knots or 

higher, 1023 is a missing 

value  

Course Over Ground (COG)  Integer ( 0.1 degrees from 

North) 

Valid values should be 

between 0 and 35999. 3600 

indicates missing value. 

(larger values are observed). 

Latitude and Longitude  Numeric (degrees) Position. Latitude of 181 

and Longitude of 91 

indicate missing values. 

True Heading  Integer (degrees from 

North) 

Valid values should be 

between 0 and 359, but 

larger values are observed, 

and 511 indicates a missing 

value. 
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Field Name Type Description 

Time Stamp 2-Digit Integer (seconds) The time in seconds 0 – 59 

with missing values 

indicated by 61, 62, 63. 

Time Integer (seconds, UTM) Time since some reference 

point. This is an additional 

field, not part of the 

message payload. 

 

Although it is somewhat unintuitive, the time field is not used to show the time of 

transmission, but rather to determine the possibility of radio interference. A field for time 

of transmission, the time stamp field, is available but must be included as an addition to 

the message. The time stamp is reported in universal transverse Mercator (UTM) units, 

which must be converted for use in analyses that require local time. The dynamic data are 

also subject to various errors. The first two fields, MMSI and navigational status, may be 

entered incorrectly by the ship’s crew.  or example, in our data we see MMSI 12 45 789 

assigned to what appear to be several different vessels. Errors are due to instrumentation 

and transmission. There are cases where ships exhibit high speeds that are physically 

impossible for maritime vessels, which may be due to errors in location (GPS) or in the 

time stamps. These cases must be identified and removed from the dataset before any 

analysis is attempted.  
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III. METHODOLOGY 

A. DATA CLEANING 

In our research, we consider AIS data collected for the period of 1   31 January 

2014. This dataset has over 17 million observations when limiting the AOR by a latitude 

band from 8° to 31° and a longitude band from -98° to -58°. We illustrate our data 

cleaning steps, and how we identify stop points on a much smaller subset of the data. We 

use a selection of 26 tankers that traveled into the AOR during January 2014. This helps 

to save computation time, and does not affect our function’s efficiency when scaling up 

to the full dataset 

1. Transponder Issues 

One of the major issues with AIS messages is that there is seldom a case where no 

errors occur during a trip. The three most common instances of errors are duplicates, 

teleportation, and infeasible speeds. Duplicates are by far the most common, in that 

different messages contain identical values in all fields. Teleportation occurs when a 

vessel appears at a latitude and longitude completely off course for a single message, and 

then regains its track. We determine if a point has teleported by comparing the latitude 

and longitude to the time. If two points with the same MMSI during the same time have a 

differing latitude and longitude pairing, then the point off of the vessel’s track is marked. 

As shown in Figure 7, where different ship tracks are indicated by different colors, there 

are single teleported points that appear with no “connecting” points in sight. These 

anomalous points are circled within Figure 7. Finally, we identify infeasible speeds after 

calculating the latitude and longitude change compared to the change in time. This 

calculation flags vessels travelling faster than 60 knots. 

All computation, including these data cleaning steps, are performed using the 

statistical computing software R (R Core Team 2017) as implemented in RStudio 

(RStudio Team 2016). Our R data cleaning function serves two distinct purposes, the first 

of which is to create a vector that marks whether or not an observation has one of the 

three common error types. Once it identifies which observations are errors, it calculates 
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the distance in nautical miles, speed in knots, and time change in seconds between 

consecutive error-free messages. By identifying messages containing errors, we are able 

to remove them from the dataset. However, we postpone this step due to another less 

common, but significant issue within the data.  

 

Figure 7.  Plot of Uncleaned Message Points by MMSI Number Showing 

Teleportation 

2. Ships with the Same MMSI Number 

The issue of two ships containing the same MMSI number is not very prevalent, 

but can occur from time to time, and indeed one of the MMSI numbers among the 26 in 

the small subset of tankers belongs to two ships. We know this by inspecting both static 

and dynamic records, which reveal two IMO numbers and ship names. MMSI numbers 

are granted by local authorities, and an accidental duplication is possible. In order to 

remedy this issue, we develop an algorithm that identifies if it is likely that two vessels 

have the same MMSI number based only on dynamic records. We determine whether two 

vessels have the same MMSI number based on their “Overall Error Level” (OEL). We 

calculate OEL by dividing the number of messages, including any of the three error 

types, by the total number of messages transmitted with a given MMSI number. This 

returns a value of about 5% for 24 vessels in the small subset of tankers, but for the two 

vessels with the same MMSI number, the OEL is close to 60%. Using an OEL threshold 

of 30%, our function returns a list of MMSI numbers that most likely belong to more than 

one vessel when given a dataset.  
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While in some cases it may be possible to resolve this issue by creating vessel 

identifiers from a combination of IMO numbers and MMSI numbers, the simplest 

solution is to remove these vessels from the dataset. After completing this step, it is now 

possible to set aside all of the messages containing errors. Figure 8 shows a map of the 

points with only 25 MMSI numbers and no messages containing errors. Notice there are 

no longer single, stray message points, as compared to Figure 7. 

 

Figure 8.  Plot of Cleaned Message Points by MMSI Number 

While an OEL threshold of 30% may not be the best choice globally for both 

identifying ships with the same MMSI number and for reducing the false positive rate for 

those that do not, it is unlikely that ships travelling in similar patterns during the same 

time period have been appointed the same MMSI number. 

3. Determination of Stopping Points 

The next step in handling the data is to determine which of the messages were 

sent at times when the ship was stopped. This is a difficult task for many reasons. First, 

while a vessel is anchored it is possible for it to move around with the wind and current 

for it to register a change in its coordinates. Second, vessels will often slow or stop in 

high traffic areas in order to maintain safe practices in collision avoidance. Finally, a 

vessel, such as a trawler, may travel in a pattern that causes it to transmit its position at 

the same time in its motion path, causing it to appear as if it had stopped. Due to the 
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many examples where an error in detecting or misclassifying a stop point can occur, we 

make the following assumptions: 

1. Any vessel travelling at a speed less than 0.3 knots should be considered 

stopped, as no vessel would be travelling at this speed to perform a 

maritime activity. 

2. If a ship moves for less than 30 seconds between points that have been 

determined as stop points, then the travel messages will be disregarded. 

3. Any stops that are less than 5 minutes in length are not long enough to 

perform an operation, such as refueling, fishing, etc., and should not be 

included in the final stop point dataset.  

4. It is understood that constant wind and water movement will cause a slight 

changes in a ship’s positioning, so we represent the stop point by the 

average latitude and longitude of the points at a single stop. 

Using these assumptions, we develop an algorithm that requires the MMSI, time 

stamp, and location of a cleaned dataset; and returns a dataset consisting of the MMSI 

number, average latitude/longitude, and total time stopped for each step. For the tanker 

subset, we identify 607 stop points from the original 101,000 records. Figure 9 shows the 

location of these stop points, colored by their vessel’s MMSI number.  

 

Figure 9.  Plot of Stop Points by MMSI Number 
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As seen in Figure 9, there is a very high concentration of vessels stopping in what 

seems to be Port Canaveral, FL, as well as Port Fourchon, LA. It is also clear that further 

clustering of these stop points is required to identify regions where vessels tend to stop, 

such as ports, fishing areas, or offshore oil platforms.  

B. CLUSTERING METHODS 

The clustering algorithm we use on the dataset of stop points is OPTICS (Ankerst 

et al. 1999), as it is implemented by the function optics from the R package dbscan 

(Hahsler and Piekenbrock 2017). This algorithm is an extension of the Density-Based 

Spatial Clustering of Applications with Noise (DBSCAN) algorithm (Ester et al. 1996). 

The DBSCAN algorithm uses a set radius and a set minimum number of points to 

identify core points, or points that fall in a cluster. A point is a core point so long as it 

meets the threshold for the minimum number of points within the set radius. All points 

that are not core points are classified as outliers, and placed into a cluster group 0. 

DBSCAN is a density-based algorithm. Using a density-based algorithm for identifying 

stop-point clusters has two advantages over using other more well-known partitioning 

algorithms such as K-Means (see MacQueen [1967]). The first is that density-based 

algorithms identify high-density regions of any shape, such as long narrow stop-point 

regions along a river bank, or small circular stop-point regions around an oil platform. 

Secondly, density-based algorithms do not force cluster membership on every point in the 

dataset. Observations that do not have the required minimum number of points within the 

specified radius are allowed to be outliers or noise. This facilitates identifying potential 

anomalies and makes the method more robust to transmission errors not accounted for in 

the cleaning steps. Finally, the DBSCAN algorithm can be scaled to cluster very large 

datasets because it is fast, parallelizable, and amenable to distributed type computation 

(Ester et al. 1996). 

While DBSCAN is a robust tool for clustering, a major weakness is that it 

struggles to identify clusters of varying density (Ankerst et al. 1999). This is particularly 

important because the AOR contains both low-density stopping regions, such as fishing 

areas, and high-density stopping regions, such as the Port of Miami. The OPTICS 
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algorithm is able to compensate for this by first ordering points individually so that points 

near each other in this ordering are in the same cluster. The ordering can be viewed in a 

special type of dendrogram known as a “reachability plot.” For a more thorough 

definition of reachability, see Ankerst et al. (1999). As an example, Figure 10 displays 

the reachability plot where distances between points are computed using the Vincenty 

method (Karney 2013), as discussed in the next section. 

  

Figure 10.  An OPTICS Reachability Plot Example 

The valleys in between spikes in the reachability plot are points that belong to the 

same cluster group. For example, we see a cluster of points at about point 350 on the 

horizontal axis of Figure 10. Furthermore, by looking for valleys between lower spikes, 

one can identify a hierarchy of clusters. In Figure 10, there appears to be a large cluster of 

points 25 through 275 that contain subclusters of points 25   8 , 1    15 , and 15    275. 

The main benefit of using this type of plot is that one can visually determine how the 

clusters are to be grouped, based on setting a threshold reachability distance. Once we 

make this determination, it is possible to extract the cluster groups and identify outlier 

points that do not belong to any cluster. 
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1. Vincenty Inter-point Distance Method

We cannot utilize the full stop-point dataset directly as input for optics because 

when given a dataset optics computes inter-point distances as Euclidean distances. 

This technique does not accurately compute distances for geospatial data with latitude 

and longitude coordinates. The optics function can use other distances, but the user 

must compute those distances and provide optics with an inter-point distance matrix as 

input in place of the dataset. For small datasets, such as the dataset with 607 stop points, 

we construct an inter-point object of class “dist” using Vincenty distances. While using 

this approach provides a simple technique for using the optics function, the issue 

comes when scaling up the size of the data. For a dataset of size n, the calculation of the 

inter-point distance matrix is on the order of O(n
2
), which for large n requires a large

amount of computational time and memory. For this reason, and to have a method that 

includes other clustering variables, we compare clustering results found using the 

treeClust distance method, discussed in the next section, to the clustering results found 

using the Vincenty method. The metric of performance used to compare the two methods 

is the value for Cramér’s V (Crewson 2012), which measures agreement between two 

clusterings. Because we already know that the Vincenty method results are accurate, then 

the Cramér’s V value will tell us if the comparative method is also providing accurate 

results.  

2. treeClust Method

The treeClust method of Buttrey and Whitaker (2016) implemented in the R 

package treeClust (Buttrey 2016) uses classification and regression trees to “learn” 

inter-point distances. We use d3, the third of four options for computing treeClust 

distances. Rather than use the inter-point distance matrix, which for large datasets would 

overwhelm R’s memory, we map the data to Euclidean space in a way that tries to 

preserve the treeClust inter-point distances. See Buttrey and Whitaker (2016) for details. 

Inter-point distances between observations in the resulting “newdata” dataset can then be 

computed as Euclidean distances. Thus the “newdata” dataset can be used as the input to 

the optics function. 
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The advantages for using this method go much farther than reduced computation 

time. It also allows for the inclusion of additional explanatory variables, including non-

numeric variables, into the inter-point distance matrix. This could potentially provide 

additional insight and improve the accuracy of clustering results. 

3. Clustering by UTM Zone 

To improve the accuracy of clustering results further, we partition the stop points by 

UTM zone, and then cluster points in each zone separately. By dividing the dataset into 

seven 6° longitude bands corresponding to the seven UTM zones that cover the AOR, 

clustering with the previously described treeClust method, and combining the results; we 

are able to have a smaller margin of error due to the smaller area for each zone. Figure 11 

shows how we divide the AOR into seven zones, UTM zones 14 through 20.  

 

Figure 11.  UTM Zones in the AOR 

Figure 11 shows that while the zones are evenly divided among longitude bands, 

the area where a vessel could potentially stop is very different for each zone. In this case, 

we compare the results of Cramér’s V test from the Vincenty and treeClust methods for 

each zone. 

It is possible to project the geospatial coordinates of points in a UTM zone into 

UTM northing and easting coordinates. With UTM projections, the Euclidean distance 
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between points in the same zone is approximately equal to the actual distance between 

the points. Karney (2011) discusses the accuracy of UTM projections, noting that they 

are most accurate near the equator and meridian of the zones. For our purposes, if we 

wish to use the optics function to cluster a large number of stop-points based only on 

location, we would first transform the geospatial coordinates to UTM northings and 

eastings for each zone. We would then use each zone’s dataset as input for the optics 

function. 

C. SCALING UP THE DATASET 

As discussed in the Background section of this paper, the full dataset contains one 

month’s worth of worldwide AIS messages. We note that importing all January 2014 AIS 

points in the AOR in a single step exceeds default RStudio memory limits. Thus, we 

clean and identify stop points for the dataset a piece at a time. Although, in this instance, 

we do computation on each piece in sequence, it would be a simple matter to distribute 

computations over multiple cores. Once we determine the stop points for the full dataset, 

memory limits are no longer an issue, as we are able to reduce the total dataset size to 

279,860 stop points. As a final test for clustering results, we visually inspect clusters 

within each zone to ensure that there are no blatant errors.  

D. CLASSIFICATION TOOL 

After clustering the full dataset, we divide it into training and test sets with an 

80/20 split among the total number of observations. We choose this ratio from the Pareto 

principle, which states that many natural phenomena exhibit a relationship where 80% of 

the output is a direct result of 20% of the input (Kiremire 2011). In following with 

splitting and analyzing our cluster results by zone, we construct a classification tool by 

zone. We train a classification tree on the training set using the rpart R package 

(Therneau et al. 2015), and prune it to reduce complexity. The final metric of 

performance for the study is the misclassification rate for the cluster group of the test set.  
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IV. ANALYSIS 

A. SMALL SUBSET CLUSTERING RESULTS 

The initial step towards choosing the proper methodology is to determine the 

Cramér’s V value when clustering stop points over the entire AOR. We compare the two 

values with the OPTICS parameter’s minimum points set to five and the maximum 

reachability distance of 10,000 meters for both methodologies. Since the methods return 

their reachability plots in different units, we extract the cluster group using the mean 

reachability value as the threshold for each. Table   shows the “rule of thumb” for 

interpreting the values from a Cramér’s V test. 

Table 3.   Interpretation of Cramér’s V Values 

Value Range Agreement 

0.00 – 0.10
a 

Weak  

0.10 – 0.30 Moderate 

0.30 – 0.50 Strong 

0.50 – 1.00
b 

Practically the same 

Adapted from Crewson (2012). 

a
A value of 0 denotes statistical independence

 

b
A value of 1 denotes a perfect relationship 

 

After testing the two methodologies, the cramer function from the treeClust 

package (Buttrey 2016) returns a value of 0.269, which is not quite strong enough to have 

faith that the assumption will hold when scaling up to the full dataset. The next step is to 

separate the dataset into UTM zones and perform the same analysis in order to determine 

if it is more successful. It is possible that by setting the zones as strict boundary lines we 

are producing more outliers. This occurs when a cluster center for a small group falls on 

the edge of a UTM zone, and the separation causes the number of points in the cluster 

group to drop below five. Because it is very unlikely that an event such as this would 

occur, we do not take any preventative action during sorting. The results of clustering 

within each of the seven UTM zones are shown in Table 4.  
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Table 4.   Clustering Results by UTM Zone 

UTM Zone Cramér’s V Value 

14 Too few observations (14) 

15 Too few observations (19) 

16 0.6211 

17 0.6989 

18 0.4781 

19 0.7260 

20 0.5516 

 

From Table 4, when clustering by zone most values meet the threshold of 

agreement where they are practically measuring the same grouping. For the one zone that 

does not meet this threshold, Cramér’s V still falls under the strong agreement category. 

In zones 14 and 15 there are too few observations to use the treeClust method, so no 

value for Cramér’s V can be generated. These results indicate that we prefer to separate 

the data by zone when moving forward to the full dataset.  

B. FULL DATASET CLUSTERING RESULTS 

During the initial data cleaning steps for the full dataset, we find that 11 ships 

breach the OEL threshold of 30%, so all of their observations were set aside. Figure 12 

shows the OEL distribution for the dataset without the 11 vessels that breach the OEL 

threshold.  
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Figure 12.  OEL Distribution for Full Dataset 

The mean OEL for the full dataset is approximately 0.0016 with a standard 

deviation of 0.0183. These values show that the 30% threshold can identify two vessels 

using the same MMSI number. The 11 MMSI numbers that we remove from the dataset 

have an average OEL of 0.4795, well above the OEL threshold. The next step is to 

remove the remaining error points. This step removes 24,301 error points constituting 

0.142% of the full data set. Figure 13 shows the location of these points within the AOR.  

 

Figure 13.  Location of Error Points in the AOR 
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As shown in Figure 13, these error points are distributed across the AOR, but 

seem to have higher concentrations in areas that would be ship routes. Having performed 

the initial data cleaning steps, we generate the stop points. Because the full dataset 

contains over 17 million observations, we generate the stop points in sections. We take 

the precaution of splitting the dataset by MMSI number in order to ensure that we do not 

unintentionally identify unnecessary stops or duplicate stops. This step yields 279,860 

stop points over the seven UTM zones. Figure 14 shows the distribution of stop points 

over the AOR. 

 

Figure 14.  Stop Points in the AOR 

As seen in Figure 14, the highest concentration of stop points lie in the area off 

the coast of Texas and Louisiana. This is most likely due to the fact that 14.0% of all 

ships in this dataset are tankers. See Bay (2017) for a discussion of shipping and AIS 

traffic in this area. To extract the number of cluster groups using OPTICS, we start with 

0.25 as the reachability threshold. After visually inspecting how the cluster centers 

compare to the stop points within the zone, we change this value as necessary. Our goal 

while clustering is to stay consistent, while also forming a reasonable number of cluster 

groups for each zone. Ultimately, visual inspection shows cluster groups formed based on 

treeClust inter-point distances using geospatial coordinates by zone, while promising, is 
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not as accurate as we would like. Figures 15–17 show the location of the cluster centers 

in relation to their cluster groups using the treeClust method. 

 

Figure 15.  Location of Cluster Centers for Zone 16 Using treeClust Method 

 

Figure 16.  Location of Cluster Centers for Zone 18 Using treeClust Method 
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Figure 17.  Location of Cluster Centers for Zone 19 Using treeClust Method 

Because the treeClust method is scale invariant and robust to monotonic 

transformations, we are able to use it with the original geospatial latitude and longitude 

coordinates within each zone. However, because treeClust is designed to take advantage 

of dependence among variables, it does not perform as well when there are only a few 

variables (Shaham 2015). The within-zone treeClust clusterings do seem to agree with 

the Vincenty clusterings, suggesting that this approach might be promising when there is 

more information available for each of the stop points. The inclusion of additional static 

data variables, such as those describing ship type, cargo and size, as well as variables 

capturing voyage and stopping history for each MMSI could improve the accuracy of the 

clustering results when using treeClust by UTM zone. 

The next method we analyze is simplistic compared to the others, but contains 

some obvious limitations. We cluster by zone again, but this time using only northings 

and eastings that we convert from their original latitude/longitude pairs. Since optics 

computes its own Euclidean inter-point distance matrix from the data, we input the data 

directly after conversion. We perform this step under another considerable underlying 

assumption, that Euclidean distance will be sufficiently accurate over a full UTM zone. 

Table 5 shows the performance metrics we find after clustering over each zone.   
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Table 5.   Clustering by Zone Performance Metrics 

Zone Reachability 

Distance 

Number of Stop 

Points in Zone 

Number of Cluster 

Groups 

Number of Outliers 

14 20,000 12,123 9 20 

15 30,000 189,615 24 19 

16 25,000 36,378 26 38 

17 35,000 20,845 26 27 

18 20,000 2,527 33 77 

19 20,000 7,624 26 33 

20 25,000 10,748 35 16 

 

It is clear that the majority of observations lie within zone 15, but there does not 

seem to be any correlation between the number of observation in each zone and number 

of clusters. For the majority of the zones, there are multiple small cluster groups. While 

having many small clusters increases the complexity of the grouping in each zone, it also 

greatly improves accuracy by ensuring those points are not absorbed by a larger nearby 

cluster.  igures 18   31 show a plot of cluster centers overtop of stop points, along with a 

distribution of number of observations by cluster group for each zone, respectively. 

 

Figure 18.  Distribution of Points by Cluster Group in Zone 14 
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Figure 19.  Location of Cluster Centers in Zone 14 

 

Figure 20.  Distribution of Points by Cluster Group in Zone 15 

 

Figure 21.  Location of Cluster Centers in Zone 15 
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Figure 22.  Distribution of Points by Cluster Group in Zone 16 

 

Figure 23.  Location of Cluster Centers in Zone 16 

 

Figure 24.  Distribution of Points by Cluster Group in Zone 17 
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Figure 25.  Location of Cluster Centers in Zone 17 

 

Figure 26.  Distribution of Points by Cluster Group in Zone 18 

 

Figure 27.  Location of Cluster Centers in Zone 18 
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Figure 28.  Distribution of Points by Cluster Group in Zone 19 

 

Figure 29.  Location of Cluster Centers in Zone 19 

 

Figure 30.  Distribution of Points by Cluster Group in Zone 20 



 36 

 

Figure 31.  Location of Cluster Centers in Zone 20 

In the set of  igures 18   31, there are cases where cluster centers are located over 

land. This is not an issue, as the cause of this occurrence stems from stop points 

surrounding a land mass. In  igures 18    1, it is possible to identify stop-points that are 

far from the cluster centers. These are the outlier, or cluster group 0, points that might 

warrant further investigation. For example the area near the border of Texas and Mexico 

in Figure 18 clearly shows a group of these outlier points. We also note zone 15, in 

Figure 21, has one very large cluster with the cluster center close to Port Fourchon, as 

does zone 16 in Figure 23. High traffic volume regions such as this can be extracted and 

further clustered. The main takeaway from these clustering results is that we are able to 

efficiently produce results that appear to be sound after visual inspection. We perform the 

clustering in a manner intended to save a great deal of computational time, and be easily 

replicated.  

C. CLASSIFICATION TOOL RESULTS 

We begin this process by splitting the dataset for each zone into a training and test 

set using an 80% and 20% split with random sampling, respectively. We then create a 

classification tree for each zone using the R package rpart (Therneau et al. 2015). The 

cluster group membership serves as the response variable for fitting each classification 

tree, and northing and easting serve as the explanatory variables. We prune the trees 

using cross-validation and the one standard error rule of Breiman et al. (1984). Once 
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pruned, the tree is used to predict the cluster group membership for the test sets. These 

values are then compared to the actual cluster group membership in order to find the 

overall misclassification rate for each UTM zone. A list of the complexity parameters we 

use to prune the final classification tree, as well as the final misclassification rate for each 

zone are shown in Table 6. 

Table 6.   Classification Tool Results 

Zone Complexity Parameter  Misclassification Rate  

14 0.04000 0.01814 

15 0.00771 0.00448 

16 0.05730 0.01814 

17 0.03800 0.08155 

18 1e-5 0.04941 

19 0.01620 0.03869 

20 0.00620 0.03116 

 

Table 6 shows that in all zones the misclassification rate is less than 9%. The very 

small misclassification rate in zone 15 can be attributed to a single, large cluster 

containing more than 90% of the stop-points in that zone. These results suggest that the 

classification tree, while having varying accuracy among zones, does demonstrate its 

usefulness. As we increase the number of observations for training the classification tree, 

the accuracy, as measured by the misclassification rate for each of the zones, should also 

increase.  
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V. CONCLUSION 

Due to the ever-increasing flow of AIS data into globally accessible databases, the 

amount of research being conducted in this field will continue to grow at a steady rate. 

While most anomaly detection and path prediction algorithms have had success in the 

past with dynamic data, there has not been much interest in analyzing the stop points for 

multiple vessels. We provide guidance on how to clean AIS data and define stop-points. 

Clustering stop points allows for a sizeable reduction in any dataset. By converting the 

stop points to northing and easting pairs and clustering by zone with OPTICS, this 

approach proves to be an efficient, timely technique to categorize a massive amount of 

dynamic data. The advantages of using OPTICS for clustering stop-points are its ability 

to identify clusters of different shapes and densities, and its ability to identify outliers that 

do not belong to any cluster. Furthermore, it is possible to construct a classification tool 

using the full dataset’s clustering results and classification trees to identify stopping 

regions for new stop-points.  

There are many concepts related to this topic that could be considered areas for 

future research. Although the treeClust method was unsuccessful in providing accurate 

clustering results, the treeClust method does show promise. Because treeClust inter-point 

distances are “learned” for a particular dataset, increasing the number of observations by 

using more than a month’s worth of AIS data may give treeClust inter-point distances 

that yield better stop-point clusters. In addition, treeClust provides the means for 

combining other variables, including categorical ones such as information from the static 

AIS data, with geospatial locations. Another area of future research could be the 

construction of a fully automated system utilizing the techniques developed through this 

study. The automated system would use AIS data collected daily and compare predicted 

results from the classification tool compared to actual clustering results. In this case if 

there ever were to be a discrepancy between the two results, the vessel could be sorted for 

future investigation. This would provide a real-time solution to any vessels attempting to 

act in a nefarious manner.   
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