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Abstract

Large scale real-world network data such as social andrimdton networks are ubiquitous. The
study of such social and information networks seeks to fitttpas and explain their emergence through
tractable models. In most networks, and especially in $aei@vorks, nodes have a rich set of attributes
(e.g, age, gender) associated with them.

Here we present a model that we refer to as the Multiplicafitteibute Graphs (MAG), which
naturally captures the interactions between the netwouktsire and the node attributes. We consider a
model where each node has a vector of categorical lateifiatis associated with it. The probability of
an edge between a pair of nodes then depends on the produadiatlual attribute-attribute affinities.
The model yields itself to mathematical analysis and wevedhresholds for the connectivity and the
emergence of the giant connected component, and show thatdkel gives rise to networks with a
constant diameter. We analyze the degree distributiondw shat MAG model can produce networks
with either log-normal or power-law degree distributiorpdnding on certain conditions.

1 Introduction

With the emergence of the Web, large online social compupygications have become ubiquitous, which
in turn gave rise to a wide range of massive real-world sauia information network data such as social
networks, computer networks, Internet networks, comnatitio networks, e-mail interactions, Web graphs,
and so on. The unifying theme of studying real-world netwaskto find patterns of connectivity and explain
them through models. The main objective is to answer quessach as “What do real graphs look like?”,
“How do they evolve over time? “How can we synthesize realilstoking graphs?”, “How can we find
models that explain the observed patterns?”, and “What Iggignmic consequences of the observations
and models?”.

Research on empirical observations about the structuretafanks and the models giving rise to such
structures go hand in hand. The empirical analysis of laegé-world networks aims to discover com-
mon structural properties or patterns, such as heavydtdigree distributions [15, 11], local clustering of
edges[[43, 30], small diametér [3,/28], navigability|[36],22nergence of community structufe [29], and so
on.

In parallel, there have been efforts to develop the networknation mechanisms that naturally gen-
erate networks with the observed structural features. dagmetwork formation mechanisms, there have
been two relatively dichotomous modeling approaches. dyospeaking, the theoretical computer science
and physics community have mainly focused on relativelypgnimechanistic” but analytically tractable

*A short version of this paper appearedAroceedings of the Seventh Workshop on Algorithms and M éalethe Web Graph
(WAW'10)[19].
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network models where connectivity patterns observed imreaéworld naturally emerge from the model.
The prime example in this line of work is the Preferentialatiment model with its many variants [4, 1,
[8,[10,13], which specifies a simple but very natural edgetioreanechanism that in the limit leads to net-
works with power-law degree distributions. Other modelsinfilar flavor include the Copying Model 23],
the Small-world model [43, 22], Geometric Random Graph$, [ttié Forest Fire model [28], the Random
surfer model[[5], and models of bipartite affiliation netk®{24]. On the other hand, in statistics, ma-
chine learning and traditional social network analysisjfiei@nt approach to modeling network data has
emerged. There the effort is in the development of statsilyficound models that consider the structure of
the network as well as the featuresd, age, gender) of nodes and edges in the network. Examplesiof s
models include the Exponential Random Graphs [42], thet@stc Block Modell[2], and the Latent Space
Model [18].

“Mechanistic” and “Statistical” models. Generally, there has been some gap between the above two
lines of research. The “mechanistic” models are analyyidahctable in a sense that one can mathemati-
cally analyze properties of the networks that arise frommiuelels. These models emphasize the natural
emergence of networks that have certain structural pregeidund in real-world networks. However, such
models are usually not statistically interesting in a sehaethey do not nicely lend themselves to model
parameter estimation and are generally too simplistic tdehbeterogeneities between individual nodes.

On the contrary, “statistical” models are generally anefjly intractable and the network properties
do not naturally emerge from the model in general. Howeverseé models are usually accompanied by
statistical procedures for model parameter estimationvangl useful for testing various hypotheses about
the interaction of connectivity patterns and the propsrienodes and edges.

Although models of network structure and formation are @@ldhoth analytically tractable and statis-
tically interesting, an example of a model satisfying bathtéires is the Kronecker graphs model [26, 44],
which is based on the recursive tensor product of small gealpicency matrices. The Kronecker graphs
model is analytically tractable in a sense that one can aaajlobal structural properties of networks that
emerge from the model [32, 25, 6]. In addition, this modeltadistically meaningful because there exists
an efficient parameter estimation technique based on mawilikelihood [2720]. It has been empirically
shown that with only four parameters Kronecker graphs qéteairately model the global structural proper-
ties of real-world networks such as degree distributiodgeeclustering, diameter and spectral properties of
the graph adjacency matrices.

Modeling networks with rich node attribute information.  Network models investigate edge creation
mechanisms, but generally a rich set of attributes is aagmtiwith each node. This is especially true in
social networks, where not only people’s connections kaa #ieir characteristics, like age, gender, work
place, habits, etc., have been collected. Similarly, veritypes of profile information is provided by users
in online social networks. In this sense, both node charatitess and the network structure need to be
considered simultaneously.

The attempt to model the interaction between the netwotcttre and node attributes raises a wide
range of questions. For instance, how do we account for ttezdgeneity in the population of the nodes or
how do we combine node features in an interesting way to mipaibabilities of individual links? While
the earlier work on a general class of latent space modetsulated such questions, most resulting models
were either analytically tractable but statistically ueiesting or statistically very powerful but do not lend
themselves to mathematical analysis.

To bridge this gap, we propose a class of stochastic netwaoudkera that we refer to as Multiplicative



Attribute Graphs (MAG). The model naturally captures theractions between the network structure and
the node attributes in a clean and tractable manner. Wed=smaimodel where each node has a vector
of categorical attributes associated with it. Individugttibutes of nodes are then combined in order to
model the emergence of links. The model allows for rich extdon between node features in a sense that
one can simultaneously model features that reflect homp(fitel, love of the same) as well as heterophily
(i.e. love of the different). For example, if people share carteatures like hobby, they are more likely to be
friends. However, for some other features like gender, lsamy be more likely to form a relationship with
someone with the opposite characteristic. The proposed MAaGel is designed to capture both homophily
and heterophily that naturally occur in social networks.

We proceed by formulating the model and show that it is bothyaically tractable and statistically
interesting. In the following sections, we present our raathtical results. Sectidh 3 examines the number
of edges and shows that our model naturally obeys the DemtsificPower Law([28]. Sectidd 4 examines
the connectivity of MAG model, which includes the conditsomot only when the network contains a giant
connected component but also when it becomes connectetiorf8shows that the diameter of the MAG
model remains small even though the number of nodes is laBgetion[6 shows that networks emerg-
ing from the MAG model have a log-normal degree distributi&uirthermore, Sectidd 7 describes a more
general version of the model that can also capture the plamedegree distribution. We view this as partic-
ularly interesting in the light of a long-standing debatewthow to distinguish the power-law distribution
from the log-normal distribution in empirical data [37 28]d what implications this would make for real-
world networks. Also, our results imply that the MAG modeldebis flexible in a sense that networks with
very different properties emerge depending on the pararsetdiguration. Finally, Sectionl 8 verifies the
properties of the MAG model by simulation experiments. Tégutts of the simulations examine how the
synthetic network changes depending the parameters aasMediw similar the network looks to real-world
networks.

2 Formulating of the Multiplicative Attribute Graph (MAG) m odel

In this section, we begin with the introduction of the Muliigative Attribute Graph (MAG) model. Then, we
formulate the general version of MAG model and present tmplsied version that we analyze throughout
this paper. Finally, we investigate the connection to sosheed works.

2.1 General considerations

We consider a setting where each nad®as a vectou(u) of [ categorical €.g, binary) attributes associated
with it. For simple examples, one can think of such attribtgetors as a sequence of answers yes/no
guestions such as “Are you female?”, “Do you like ice cregna®t so on.

The other essential ingredient of our model is to specify alrapism that generates the probability of
an edge between two nodes based on their attribute vect@snehtioned before, we aim to be able to
account for the homophily of certain features as well as #teraphily of the others by our model. For this
mechanism, we associate each attribufee., i-th question) with an attribute-attribute affinity matsx.
Each entry of matrid®; represents the affinity depending on the values oftheattribute between a pair of
nodes. More precisel¥;|[z1, zo| indicates the affinity between a pair of nodes, each of whespectively
takes valuez; and z; for its i-th attribute. For the binary attribute example in Figuredch®; is a2 x 2
matrix. To obtain the affinity corresponding to ti¢h attribute between node andv, the values of-th
attribute of both nodes select an appropriate cethpf
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Figure 1. Schematic representation of the MultiplicativiriBute Graphs (MAG) model. Given a pair
of nodesu andv with the corresponding binary attribute vectar:) anda(v), the probability of edge
Plu,v] is the product over the entries of attribute-attribute #@ffimatrices©; where values of;(v) and
a;(v) “select” the appropriate entries (row/column) ®f. Note that this visualized model represents the
undirected graph by make ea€h symmetric. However, the MAG model in general representslitexted
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Figure 2: Structures in which a node attribute can affedt &iffinity. The widths of arrows correspond to
the affinities towards link formation.

By these affinity matrices, we can capture the various typetrocture in real-world social networks.
For example, Figurkl2 shows four possible linking affinitds binary attribute. Top figure of each case
visualizes the general structure of networks. Each cirefgasents the group which shares the attribute
value and the width of each arrow indicates the affinity oflihle formation in the given directione(g, the
arrow0 — 1 indicates the affinity of link formation between a node willi-value of a given attribute and
a node with "1"-value of that attribute.). Then, under eadguife, we represent the structure in the form of
the affinity matrix.

To investigate one by one, Figurk 2(a) shows the homophilye(bf the same) attribute affinity and the
corresponding affinity matri¥®. Notice large values on the diagonal entriesapfwhich means that link
probability is high when nodes share the same attributeevaliop of the figure demonstrates that there
will be many links between nodes that have the value of théate set to “0” and many links between
nodes that have the value “1”, but there will be few links betw nodes where one has value “0” and the
other “1”. Similarly, Figured 2(b) shows the heterophily \#oof the different) affinity, where nodes that
do not share the value of the attribute are more likely to, limkich gives rise to near-bipartite networks.
Also, Figurd 2(c) shows the core-periphery affinity, wheéni&d are most likely to form between “0” nodes
(i.e, members of the core) and least likely to form between “1"awfle., members of the periphery).
Notice that links between the core and the periphery are fil@lg than the links between the nodes of the



periphery. Additionally, FigurEl2(d) illustrates the wmifnly random structure that the Erdds-Rényi random
graph model generates. By assiging the same value into eaémyin each affinity matrix, we can build the
MAG model equivalent to the Erdds-Rényi random graphrhode

From these examples, we notice that the MAG model nicely idesvthe flexibility in the network
structure via the affinity matrices. Although we presenteel hinary and undirected examples, the MAG
model basically allows more complicated structure witlgéarcardinalities€.g, 3 x 3 or4 x 4) as well as
asymmetric structure through asymmetric affinity matrices

2.2 The Multiplicative Attributes Graph (MAG) model

Now we formulate a general version of the MAG model. To stdathwet each node, have a vector of
categorical attributes and let each attribute have cditying for i = 1,2,---[. We also have matrices,
0; € d; x d; fori =1,2,---1. Each entry 0B, is the affinity of a real value between 0 an@.lThen, the
probability of an edgéu, v), P[u, v], is defined as the multiplication of affinities correspomyia individual
attributes,.e.,

l
Plu,v] = [T ©ifai(u), ai(v)) @
i=1

wherea;(u) denotes the value afth attribute of node:. Note that edges appear independently with proba-
bility determined by node attributes and matriées Figure[l illustrates the model.

One can think of the MAG model in the following sense. In ortteconstruct a social network, we ask
each node: a series of multiple-choice questions and the attributéovegw) stores the answers fo these
guestions. The answers of hodeandv on a questiori select an entry of matri®;, i.e., u's answer selects
a row andv’s answer selects a column. One can thus think of matf;é&sas the attribute-attribute affinity
matrices. Assuming that the questions are appropriatabgarh so that answers are independent of each
other, the product over the entries of matriégscan be regarded as the probability of the edge between
andv.

The choice of multiplicatively combining entries 6, is very natural. In particular, the social network
literature defines a concept of Blau-spades [34, 35] wher®-stemographic attributes act as dimensions.
Organizing force in Blau space is homophily as it has beeneatdhat the flow of information between a
pair of nodes decreases with the “distance” in the corredipgnBlau space. In this way, small pockets of
nodes appear and lead to the development of social nichdsifoan activity and social organization. In
this respect, multiplication is a natural way to combineattribute dataie., the dimensions of the Blau
space) so that even a single attribute can have profoundcingpathe linking structurei.g., it creates a
narrow social niche community).

The proposed MAG model model is analytically tractable irease that we can formally analyze the
properties of the model. Moreover, the MAG model is alsastiaglly interesting as it can account for the
heterogeneities in the node population and can be useddy #te interaction between properties of nodes
and their linking behavior. Moreover, one can pose manyaésteng statistical inference questions: Given
attribute vectors of all nodes and the network structurey ban we estimate the values of matriges?
How can we infer the attributes of unobserved nodes? Orngaveetwork, how can we estimate both the
node attributes and the matric®@s? However, the focus of this paper is in mathematical analysd we
leave the questions of MAG model parameter estimation ®fukure work.

'Note that there is no condition f@; to be stochastic, we only require each entryofto be on interval0, 1).



2.3 Simplified version of the model

Next we delineate a simplified version of the model that wd mihthematically analyze in the further
sections of the paper. First, while the general MAG modeliappo directed networks, we consider the
undirected version of the model by requiring ed&hto be symmetric. Second, we assume binary node
attributes and thus affinity matric€3; have 2 rows and 2 columns. Third, to further reduce the number
of parameters, we also assume that the affinity matriceslifattebutes are the sameg., ©; = © for

all 7. These three conditions imply thét = [ g f } i.e, ©[0,0] = «,0[0,1] = ©[1,0] = 3, and

O[1,1] = yfor0 < a, B,y < 1. Furthermore, all our results will hold fer > g > ~. The assumption
a > [ > -~ is natural since most large real-world networks have a comoron-like “core-periphery”
structure [[29[-30, 25]. Figuid 2(c) exhibits this structuhdore precisely, the network is composed from
denser and denser layers of edges as one moves towards ¢hef ¢tbe network. Basicallyy > 8 > ~
means that more edges are likely to appear between nodeb waigce valué) on more attributes and
these nodes form the core of the network. Since more edgesmapptween pairs of nodes with attribute
combination “0-1" than between those with “1-1", there a@eredges between the core and the periphery
nodes (edges “0-1") than between the nodes of the periphemggelves (edges “1-1").

Last, we also assume a simple generative model of nodewadisibvhere each binary attribute vector
is generated by independently and identically distributed coin flips witlad.:.. That is, we use ani.d.
Bernoulli distribution parameterized hy to model attribute vectors where the probability that iké
attribute of a node: takes value 0 i (a;(u) =0) = pfori=1,--- ,land0 < p < 1.

Putting it all together, the MAG modéll (n, [, i, ©) is fully specified by six parameters:is the number
of nodes| is the number of attributes of each noges the probability that an attribute takes a value pf
and® = [a 3; B 7] specifies the attribute-attribute affinity matrix.

We now study the properties of the random graphs that resutt the M (n, [, 1, ©) where every un-
ordered pair of nodegu, v) is independently connected with probabiliB8{u, v] defined in Equation{1).
Since the probability of an edge exponentially decreasdstime most interesting case occurs wliea
plogn for some constarﬁ@ This result perfectly agrees that the effective number wiatfisions which can
represent online social networks is the ordelogfn [9].

2.4 Connections to other models

We note that our model belongs to a general class of latenespetwork models, where nodes have some
discrete or continuous valued attributes and the prolvalofi linking depends on the values of attribute
of the two nodes. For example, the Latent Space Madel [1&]nass that nodes reside ddimensional
Euclidean space and the probability of an edge depends oButielean distance between the locations
of the nodes. Similarly, in Random Dot Product Graphs [448, linking probability depends on the inner
product between the vectors associated with node positlemghermore, recently introduced Multifractal
Network Generator [39] can also be viewed as a special caséA®& model where the node attribute
distribution and the affinity matrix are equal for every iatite.

The MAG model generalizes the Kronecker graphs madel [25] sabtle way. The Kronecker graphs
model takes a small (usual®y/x 2) initiator matrix K and tensor-powers ittimes to obtain a matrixs of
size2! x 2!, interpreted as the stochastic graph adjacency matrix.c@m¢hink of a Kronecker graph model
as a special case of the MAG model.

2Throughout the papelpg(-) indicateslog, (-) unless explicitly specified ds(-).



Proposition 2.1 A Kronecker graphG' on 2! nodes with & x 2 initiator matrix K is equivalent to the
following MAG graph)/: Let us number the nodes &f aso, - - - , 2! — 1. Let the binary attribute vector of
a nodeu of M be a binary representation of its node id, anddgt= K. Then individual edge probabilities
(u,v) of nodes inGG match those inV, i.e., Pglu,v] = Py[u,v].

The above observation is interesting for several reasdrs, &ll results obtained for Kronecker graphs
naturally apply to a subclass of MAG graphs where the nodt&ibate values are the binary representation
of its id. This means that in a Kronecker graph version of thtGvmodel each node has a unique com-
bination of attribute valued.€., each node has different node id) and all attribute valuebtoations are
occupied (e, node ids range, ..., 2! — 1).

Second, building on this correspondence between Kronenk@mMAG graphs, we also note that the
estimates of the Kronecker initiator matrix nicely transfer to matrix© of MAG model. For example,
Kronecker initiator matrixK = [« = 0.98,5 = 0.58,v = 0.05] accurately models the graph of the
internet connectivity, while the global network structuwfethe Epinions online social network is captured
by K = [a = 0.99, 5 = 0.53,y = 0.13] [27]. Thus, in the rest of the paper, we will consider the @&bov
values of K as the typical values that the matfixwould normally take. In this respect, the assumption of
«a > B > ~ naturally appears.

In following sections, we analyze the properties of the MAGdal. We focus mostly on the simplified
version. Each section states the main theorem and givevénei@wv of the proof. We omit the full proofs
in the main body of the paper and describe them in the Appendix

3 The Number of Edges

In this section, we derive the expression for the expectadau of edges in MAG model. Moreover, this
formula can valdiate not only the assumptiéns= plogn, but also a substantial social network property,
namely the Densification Power Law.

Theorem 3.1 For a MAG graphM (n, 1, u, ©), the number of edges;, satisfies

n(n—1)
2

(20 +2u(1 — @B + (1= )" + 1 (pa+ (1= p)y)

E[m] =

The expression is divided into two diffrent terms. The fiestt indicates the number of edges between
distinct nodes, whereas the second term means the numbelf-efdges. If we exclude self-edges, the
number of edges would be therefore reduced to the first term.

Before the actual analysis, we define some useful notatioaiswill be used throughout this paper.
First, letV be the set of nodes in the MAG gragli(n, [, 1, ©). We refer to theveightof a nodeu as the
number of0’s in its attribute vectors, and denote itjas, i.e.|u| = Zﬁzl 1{a;(u) =0} wherel{-}isan
indicator function. We additionally defirid’; as a set which consists of all nodes with the same wgight
e, W ={ueV:|ul=j}forj=0,1,--- 1. Similarly, S; denotes the set of nodes with weight which
is greater than or equal pi.e, S; = {u € V : |u| > j}. By definition,S; = Uﬁszi.

To complete the proof of Theordm B.1, using the definitiorhefsimplified MAG model, we can derive
the main lemmas as follows:

Lemma 3.2 For distinct u,v € V, E [P [u,v] |u € W;] = (e + (1 — p)B) (uB + (1 — p)y)' =" .

Lemma 3.3 Foru € V, E [deg(u)ju € Wi] = (n— 1) (ua+ (1 — p)B)" (1B + (1 — p)7)" =" 4 20— .
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By using these lemmas, the outline of the proof for ThedretiSas follows. Since the number of
edges is half of the degree sum, all we need to do is tolS{iag ()] over the degree distribution. However,
becausé [deg(u)] = E [deg(v)] if the weights ofu andv are the same, we can add Bijdeg(u)|u € W;]
over theweightdistribution,i.e., binomial distributionBin (I, u).

On the other hand, more significantly, Theofeni 3.1 can rastito substantial features of MAG model.
First, the assumption that= plogn for a constanp can be validated by the next two corollaries.

Corollary 3.3.1 m € o(n) with high probabilit asn — oo, if @ > _1og(u2a+2u(1—lu)ﬁ+(1—u)2v) :

Corollary 3.3.2 m € ©(n>~°(1)) with high probability as» — oo, if I € o(logn).

Note thatlog (p%a + 2u(1 — )8 + (1 — p)*y) < 0 because bothy and~ are less tharl. Thus, in
order for M (n,l, u,®) to have a proper number of edgesg, more thann), [ should be bounded by
the order oflogn. On the contrary, since most social networks are sparsep(logn) case can be also
reasonably excluded. In consequence, both CordllarylargiXCorollary 3.3]2 provide the upper and lower
bounds ofl for social networks. These bounds eventually support teeraption ofl = plog n.

Although we do not technically define any process of MAG grapblution, we can interpret it in
the folllowing way. When a new node joins the network, its degbr is governed by the node attribute
distribution which is seemingly independent of the netwsirkicture. However, in a long term, since the
number of attributes grows slowly as the number of nodesasgs, the node attributes and the network
structure are not independent. This phenomenon is someligaed with the real world. When a new
person enters the network, he or she seems to act indepndémther people, but people eventually
constitue a structured network in the large scale and tlediaiors can be categorized into more classes as
the network evolves.

Second, under this assumption, the expected number of edgdse approximately restated as

%n2+plog(u2a+2u(1—u)ﬁ+(1—u)2'y) _

We find that this fact agrees with the Densification Power L28{,[one of the properties of social networks,
which indicatesmn(t) o n(t)* for a > 1. For example, an instance of MAG model wjgh= 1, = 0.5
(Propositio_2.11), would have the densification exponenrt log(|0|) where|O| denotes the sum of all
entries in®.

The proofs are fully described in Appendix.

4 Connectivity

In the previous section, we observed that MAG model obeyPhesification Power Law. In this section,
we mathematically investigate MAG model for another genpraperty of social networks, the existence
of a giant connected component. Furthermore, we also exathasituation where this giant component
covers the entire networkg., the network is connected.

We begin with the theorems that MAG graph has a giant compgarenfurther becomes connected.

Theorem 4.1 (Giant ComponentDnly one connected component of i¥e:) exists inM (n, [, i, ©) with
high probability asn — oo, if and only if

(e + (1= )Y (w8 + (1= ) ™]" >

®Itindicates the probability — o(1).

N |




Theorem 4.2 (Connectedness)et the connectedness criterion function\d{n, [, u, ©) be

(uB+ (1 —p)y)” when(1 — p)? > 1
Fo(M) = { [(Moz Y (=B B+ (1 — ) ]" otherwise

1—v

1-v]P
wherev is a solution of[(%)” (1‘—“) ] = 1in (0, p).

Then,M (n, 1, u, ©) is connected with high probability as— oo, if F.(M) > % In contrast,M (n, L, i, ©) is
disconnected with high probability as— oo, if F.(M) < %

To show the above theorems, we first define the monotonictgerty of MAG model.
Theorem 4.3 (Monotonicity) For u,v € V', P [u,v||u| = i] < P [u,v||u| = j]ifi < j.

Theoren 4.8 ultimately demonstrates that a node of largaghtvés more likely to be connected with
other nodes. In other words, a node of large weight plays ee"aole in the network, whereas the node of
small weight is regarded as "periphery”. This feature of &G model has direct effects on the connect-
edness as well as on the existence of a giant component.

By the monotonicty property, the minimum degree is likelyb®the degree of the minimum weight
node. Therefore, the disconnectedness could be provedlyrainthat the expected degree of the minimum
weight node is too small to be connected with any other nodavé&rsely, if this lowest degree is large
enough, say2(logn), then any subset of nodes would be connected with the otieofee graph. Thus,
to show the connectedness, the degree of the minimum weiglet should be necessarily inspected, using
Lemmd3.3.

Note that the criterion in Theoredm 4.2 is separated into @s®s depending gn which tells whether or
not the expected number of weightodes]E [|IV|], is greater thar, becausélV;| is a binomial random
variable. If this expectation is larger thanthen the minimum weight is likely to be close@pi.e.,, O(1).
Otherwise, ifE [|[WWy|] < 1, the equation ofr describes the ratio of the minimum weightitasn — oo.
Therefore, the condition for connectedness actually d#pen the minimum weight node. In fact, the proof
of Theorem 4.R is accomplished by computing the expecterkdatf this minimum weight node and using
some techniques introduced in [32].

Similar explanation works for the existence of a giant congrd. Instead of the minimum weight node,
Theoren 41l shows that the existenceSgf,) component relies on the degree of thedianweight node.
We intuitively understand this in the following way. We mtgihrow away the lower half of nodes by
degree. If the degree of the median weight node is large déndbgn the half of the network is likely to
be connected. The connectedness of this half network imfilie existence ab(n) component, the size of
which is at least;. In the proof, we actually examine the degrees of nodes ettbifferent weightsyl,
ul + 116, andul 4 12/3. The existence ob(n) component is determined by the degrees of these nodes.

However, the existence & (n) component does not necessarily indicate that it is a unicpe gom-
ponent, since there might be anotléfn) component. Therefore, to prove Theorem 4.1 more stridtly, t
unigueness 06 (n) component has to follow the existence of it. We can prove tiigueness by show-
ing that if there are two connected subgraphs of §iZe) then they are connected each other with high
probability.

The proofs of those three theorems are in Appendix.



5 Diameter

Another property of social networks is that the diametehefetwork remains small although the number
of nodes grows large. We can show this property in MAG modedjiplying the similar idea as ih [32].

Theorem 5.1 If (uB + (1 — p)y)” > 3, thenM (n,l, u,©) has a constant diameter with high probabil-
ity asn — oo.

This theorem does not specify the exact diameter, but, uthdegiven condition, it guarantees the
bounded diameter even though— oo by using the following lemmas:

Lemma 5.2 If (uf + (1 — p)y)” > 3, for A = m, Sy has a constant diameter with high proba-
bility asn — oo.
Lemma 5.3 If (18 + (1 — p)y)” > 1, for A = m, all nodes inV\ Sy are directly connected to

S with high probability asn — oco.

By Lemmd35.B, we can conclude that the diameter of the entinehgis limited to(2+ diameter ofSy;).
Since by Lemma5]2 the diameter §f; is constant with high probability under the given conditidime
actual diameter is also constant.

The proofs are represented in Appendix.

6 Degree Distribution

In this section, we analyze the degree distribution of tinepfied MAG model under some reasonable
assumption@. Depending or®, MAG model produces graphs of various degree distributiios instance,
since the network becomes a sparse Erdds-Rényi randgeh gra ~ § ~ v < 1, the degree distribution
will approximately follow the binomial distribution. Fomather extreme example, in casewf~ 1 and

u =~ 1, the network will be close to a complete graph, which represa degree distribution different from
a sparse Erdds-Rényi random graph. For this reason, wektaemrrow down the conditions gnand®© as
follows. If  is close ta0 or 1, then the graph becomes an Erdds-Rényi random graph dggh grobability

p = « (Whenp =~ 1) or v (whenyu ~ 0). Since the degree distribution of the Erdds-Rényi randpaph is
binomial, we will exclude these extreme caseg:0fOn the other hand, with regard &, we assume that
a reasonable configuration space @&would be Where“gi(}—:“)ﬁ is betweenl.6 and3. For the previous
Kronecker graph example, this ratio is actually ab®dtt. Our approach for the condition ab can be
also supported by real examples|inl[27]. This condition iial for us, since in the analysis we use that

pot(1—p)B\* - - pa+(1—p)B
<uﬁ+(1—u)w) grows faster than the polynomial function of If W=, 1S close to 1, we cannot make

use of this fact. Assuming all these conditionsoand©, we result in the following theorem about the
degree distribution.

Theorem 6.1 In M (n, , 1, ©)that follows above assumptions, if

p 1

[(no (1= 3" (uB + (1= ) ™| > 2.

“We trivially exclude self-edges not only because compomatibecome simple but also because other models usuallytdo no
include them.
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then the tail of degree distributiompy, follows a log-normal, specifically,

lu(1 = p)(In R)?
2

N <1H (n(uﬁ +(1- u)v)l) +ipln R+ , lu(l— ,u)(lnR)2> :

_ pot(1—p)B
for R = BT (=), @Sn — 00

In other words, the degree distribution of MAG model appmaiely follows a quadratic relationship on
log-log scale. This result is nice since some social neta/tokow the log-normal distribution. For instance,
the degree distribution dfiveJournalnetwork looks more parabolic than linear on log-log sdalé.[3

In brief, as the expected degree is an exponential funcfitimeanode weight by Lemnia 3.3, the degree
distribution is mainly affected by the distribution of nodeights. Since the node weight follows a binomial
distribution, it can be approximated to a normal distribatfor sufficiently largd. Because the logarithmic
value of the expected degree is linear in the node weighttaaaveight follows a binomial distribution, the
log value of degree approximately follows a normal distiito for largel. This eventually indicates that
the degree distribution roughly follows a log-normal.

Note that there exists a conditioE(,ua + (L= p)B)" (uB+ (1 — u)fy)l‘“} s L, which is related to
the existence of a giant component. First, this conditigrei$ectly acceptable because real-world networks
have a giant component. Second, as we described in Settinis dondition ensures that the median degree
is large enough. Equivalently, it also indicates that thgreles of a half of the nodes are large enough. If we
refer to the tail of degree distribution as the degrees oerawlith degrees above the median degree, then
we can show Theorem 6.1.

The full proofs for this analysis are described in Appendix.

7 Extensions: Power-Law Degree Distribution

So far we have handled the simplified version of MAG model paaterized by only few variables. Even
with these few parameters, many well-known properties ofsd@etworks can be reproduced. However, re-
garding to the degree distribution, even though the lograbis one of the distributions that social networks
commonly follow, a lot of social networks also follow the pemlaw degree distribution [15].

In this section, we show that the MAG model produces netweiikis the power-law degree distribution
by releasing some constraints. We do not attempt to analymeirigorous manner, but give the intuition
by suggesting an example of configuration. We still hold thedition that every attribute is binary and
independently sampled from Bernoulli distribution. Howevn contrast to the simplified version, we allow
each attribute to have a different Bernoulli parameter dbagea different attribute-attribute affinity matrix
associated wit it. The formal definition of this model is abdie's:

l
P (aj(u) = 0) = pj, Plu,v] =[] ©;la;(u), a;(v)] .
j=1

The number of parameters herelis which consist ofx;'s and©,’s for j = 1,2,--- ,1. For convenience,
we denote this power-law version of MAG model &5(n, [, i, ©) where i = {u1,--- ,u} and® =
{©1,---,0;}. With these additional parameters, we are able to obtaipdher law degree distribution as
the following theorem describes.

—

) i (1— )8\ — O L
Theorem 7.1 For M (n, 1, ji,0), if 1‘_”% = (Zi%jiﬁ_ﬁjgfj) for § > 0, then the degree distribution

. . 1
satisfiesp, < k=072 asn — oo.
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In order to investigate the degree distribution of this mptie following two lemmas are essential.

—

Lemma 7.2 The probability that a node in M (n,, i, ©) has an attribute vectod(u) is

l

H(M)l{ai(u)ﬂ}(l — p)Hasw=1}
i=1

Lemma 7.3 The expected degree of nodén M (n, 1, ji,0) is

l
(n =) I (s + (1 = )8 7 (i + (1 = pg) o) O
i=1

By Lemmad 7. and 7.3, if the condition in Theoreml 7.1 holls, grobability that a node has the same
attribute vector as nodeis proportional tad —4)-th power of the expected degreewfin addition,(—%)-th
power comes from the Stirling approximation for lafgeThis roughly explains Theorem 7.1.

The proof is given in Appendix and the result is also verifigdsimulation in Figuréh.

8 Simulation

In the previous sections, we performed theoretical amalyisihe MAG model. In this section, we use simu-
lation experiments to further demonstrate the propertiestworks that arise from the MAG model. First,

we generated synthetic MAG graphs with varying parametkregato explore how the network properties
change as a function of those parameters. We focus on thgelodscalar network properties, like diameter
and the fraction of nodes in the largest connected compaieiné graph, as a function of the model param-
eter values. Second, we also ran simulations with fixed petemconfigurations to check other properties
of MAG model that we did not theoretically analyze. In thisywae are able to qualitatively compare our
model to a real-world network.

8.1 MAG model parameter space

Here we focus on the simplified version of the MAG model andheira how various network properties
vary as a function of parameter settings. We fix all but onam&ter and vary the remaining parameter. We
vary i, o, f, andn in M(n,l, u, ©), wherea is the first entry of the affinity matri®© = [« 5; 5 7] and f
indicates a scalar factor 6, i.e., © = f - O for a constan®y = [ag 5o; 5o Yo)-

Figure[3 depicts the number of edges, the fraction of nodéeifargest connected component, and the
effective diameter (the 90th-percentile distarice [28])haf network as a functiop, «, f, andn for fixed
I = 8. First, we notice that the growth of network in the numberages is slower than exponential since
the curves on the plot grow sub-linearly in Figlie 3(a) wih bcaledy-axis. Note that the network size
is roughly proportional ta? (p?a + 2u(1 — p)B + (1 — M)z,y)l from Theoreni3]1. For example, by this
formula, the network size is proportional to théh power off, i.e., the eighth power of in this case. As the
expected number of edges is a polynomial function of eaclabar (1, ., f andn), this sublinear growth
on the log scale agrees with our analysis. Furthermoreatiged the degree of the polynomial function for
each variable is, the closer to the straight line the netwa curve becomes. For instance, the network size
grows by the polynomial function of degree 16 oyemwhereas it grows by degree 2 overln Figure[3(a),
we thus observe that the network size growth qQuves even closer to the exponential curve than that aver

12



Second, in Figurgl3(b), the size of the largest componenwslaosharp thresholding behavior, which
indicates a rapid emergence of the giant component. Thirissimilar to thresholding behaviors observed
in other network models such as the Erdos-Rényi randophgrenodel[14]. The vertical line in the middle
of each figure represents the theoretical theshold for tlipiargiant connected component. As we analyzed,
each network contains at least half size of giant conneaatponent at its threshold.

Last, while the previous two network properties monotadiycahange, in FiguréI3(c) the effective
diameter of the network increases quickly up to about thetpehere the giant connected component forms
and then drops rapidly after that and approaches a consadund.v This behavior is in accordance with
empirical observations of the “gelling” point where thergi@omponent forms and the diameter starts to
decrease in the evolution of real-world networks| [28, 33].

Furthermore, we also performed simulations where wéfixnd ;. but simultaneously increase bath
and/ by maintaining their ratio constant. Figurk 4 plots the gfeaim each network metric (network size,
fraction of the largest connected component, and effediamneter) as a function of the number of nodes
for different values ofu. Each plot effectively represents the evolution of the MA&Gwork as the number
of nodes grows over time. From the plots, we see that MAG mimdlelvs densification power law (DPL)
and the shrinking diameter properties of real-world neksdP&]. Depending on the choice pf one can
control the rate of densification and the diameter.

8.2 Degree Distributions

In addition to the network size, connectivity, and diametes also examined the degree distributions of
MAG graphs empricially. We already proved that the MAG moaahet give rise to networks that have either
a log-normal or a power-law degree distribution dependimghe model parameters. Here we generate the
two versions of networks and compare their degree distabst

Figure[® exhibits the degree distributions of the two type®AG model. While Figurd b(a) plots the
degree distributions of the simplified MAG mod&I (n, [, 1, ©), Figure[3(b) shows those of the power-
law MAG model M (n,, i, é). For each case, the left plot represents the raw form of @egistogram,
whereas the right curve plots tllemplementary cumulative distributig@CDF), which nicely removes
the noisy factor. In FigurE]5(a), both raw and CCDF versiohdistribution look parabolic on the log-
log scale, which verifies that/(n, [, 1, ©) has a log-normal degree distribution. On the other hand, in
Figure[5(b), both plots exhibit the straight line on the sacae, which indicates that the degree distribution
of M(n,l, i, é) follows a power-law. All these experimental results agreéh wur analyses in Sectidd 6
and Sectiofl7.

8.3 Comparison to Real-world Networks

Also, we qualitatively compare the structural propertiésaspecific real-world network and the corre-
sponding MAG model. This leads to interesting questionsaw¥ ko find optimal MAG model parameters
so that synthetic network resembles the given real-wortdvovk. The full resolution of these questions
lies beyond the scope of the present paper; currently, welseé by brute force over (the relatively small
number of) possible MAG parameter settings. We manuallcsetl some parameter settings (#ot, 1, ©)

to synthesize the simplified MAG model and obtained the ptagseof M (n, [, i, ©) to compare the MAG
model with a real-world network. Our goal is not to claim thiadse particular parameter values are in any
way “optimal” for the given real-world network but rathergbow that many properties of the MAG model
exhibit qualitatively similar behavior as real-world neiks.

13



Number of edges
BB R R e
o (=} o o o
2w D U

Varying

0.

Il Il Il Il Il Il
.1 02 03 04 05 0.6 0.7 O.
N

8 0.9

Number of edges
=
o

Varying o

I T I
.1 0.2 0.3 04 05 0.6 0.7 0.8 0.
a

9 1

Varying f

I
0.4 0.6 0.8 1
Factor (f)

gn
Number of edges

=

o

Varyin

5K 10K 15K
Number of nodes (n)

(a) Network size

20K

0.8

0.6

0.4

0.2

Largest Connected Component

0.8

0.6

0.4

0.2

Largest Connected Component

0.6

0.4

0.2

Largest Connected Component

0.8

Largest Connected Component

-

Simulation ~ |
N i Theqrem 4.1 ;

0.

.1 0.2 0.3 04 05 0.6 0.7 0.8 0.9

-

| Simulation ~ |
., Theorem 4.1

0.

0.8 -

.10203040506070809 1
a

" Simulation + l,,r""' !
Theorem 4.1

0.20.30405060.70.809 1 1112

Factor (f)

Simulation -
Theorem 4.1

5K 10K 15K
Number of nodes (n)

20K

Effective diameter Effective diameter Effective diameter

Effective diameter

(b) Largest connected component

14 ﬂ B
12 ‘ 1
10 B 1
/ \
8 | 1
6 | ]
il ]
2 / 1
0 L L L L L L L
01 02 0.3 0.4 05 06 07 08 0.9
u
14 T ]
12 ! \ 1
10 r‘ B
8 | 1
|
6 ]
4 |
e————
2} . 1
ot
010203 0.4 0506070809 1
[0}
14
12
10
8
6
4
2
0 T
02030.40506070809 1 1112
Factor (f)
9
st | 1
74 / 1
6 1
5] ]
4 ]L —
3 ‘ ‘ ‘
5K 10K 15K 20K

Number of nodes (n)

(c) Bffediameter

Figure 3: Structural properties of a simplified MAG modeél(n, [, 11, ®) when we fix] and vary a single
parameter one by ong: o, f, orn. As each parameter increases, in general, the synthetiorkebecomes
denser so that a giant connected component emerges anciheteli decreases to approach a constant.

14



10 E 1 20
g0’ ¢ E s 18 1
Q. | - f
108k 1 £ 0.8 g 16 + B
S10° 3 o £ ol i
oy 3.4 1.20 g 06r 1 £ 12p ]
N 5 10 mOn™ E g o 10 B
[} 5108 E E S 04r 4 2 gl i
€.02L E 8 2 gl B
€ 10 =
E} 7 02 7 Wb ]
3 “10tF : )
10° . . . . L o B . . . 2 . . | L]
10t 102 100 10*  10° 10t 102 10° 10" 10° 10t 102 100 10*  10°
Number of nodes (n) Number of nodes Number of nodes
10° E 1 10
g0’ ¢ E 5 9t ,
Q. | - f
Z10° F 1 e 08 g 8r ]
(] 7+ -
o §105 F mOn*% 3 = 06 1 g ol ,
40 1 2 5
el 5 10 8 e 5| i
= 5 10° F E £ 04F - b g
2492 S 8 a4t B
Il E10% b 3 S a2l i & 3l ,
3 Z10t kb 1 ) - 2k 1
10° . . . . s 0 ! . . . 1 . . . .
10t 102 100 10*  10° 10t 102 10°  10*  10° 10t 102 100 10*  10°
Number of nodes (n) Number of nodes Number of nodes
108 £ 1 10
7L 1 c 9| 4
=10 S
%106 [ 1] g os8f E g s8f i
o Q
4 g 7L |
. 210° F mont4 E 5 06| 1 & 6l 1
o S0tk b & 5
o [0 o 5k 4
o = .3 [ 1 c 04 B =
g 102 § 8 4L 4
l ' r 3 7 02 g & 3 1
S8 Z10' F 3 S — 2+ 1
100 L L L L E 0 L L L L 1 | | | |
10t 102 10° 10"  10° 10t 102 10° 10"  10° 100 102 10° 10 10°
Number of nodes (n) Number of nodes Number of nodes
108 E 1 —— 10
=107 b E 5 9t B
%106 [ 1] g 08 E % 8 i
5105 F mgnt4 1 5 E 7T 1
o ° ° 06 N 8 6 L i
<t S0tk b & 5
[ | -
o M R 2 o4l i 2 5
@ 10 c 5] 4L B
Qo 5 8 Q
l 1w r 3 7 02 g & 3 1
3 Z 10 F E 5 2+ g
100 1 ‘2 ‘3 ‘4 ‘5 S 0 1 ‘2 ‘3 ‘4 ‘5 1 1 ‘2 ‘3 ‘4 ‘5
10 10 10 10 10 10 10 10 10 10 10 10 10 10 10
Number of nodes (n) Number of nodes Number of nodes
(a) Network size (b) Largest connected component (c) B¥fectiameter
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For the real-world network, we use the Yahoo!-Flickr onlgaeial network on 10,240 nodes and 44,800
edges. For the simplified MAG modél (n,l, 1, ©), we used = 8, = 0.45,0 = [0.85 0.30;0.30 0.25]
with the same number of nodes= 10, 240. Figure[6(a) and (b) illustrate the following propertiestioé
real-world and the corresponding synthetic network of tingpified MAG model (in the same order of
figures).

e Degree distributioris a histogram of the number of edges of a nadé [15].
e Singular valuesndicate the singular values of the adjacency matrix vetiseis rank [16].

e Singular vectorrepresents the distribution of components in the left darguector associated with
the largest singular valug [12].

e Clustering coefficientepresents the degree versus the average (local) clgstmeificient of nodes
of a given degree [43].

e Triad participationindicates the number of triangles that a node is adjacetit teeasures the transi-
tivity in networks [41].

e Hop plotshows the number of reachable pairs of nodes as the numbepsf i sketches how quickly
the network expands [40, 27].

Figure[6 reveals that the plots of properities of MAG modskrable those of Yahoo!-Flickr network.
Notice qualitatively similar behavior of nearly all proties between Figuig 6(a) and (b). The only property
where the simplified MAG model does not match the Yahoo!Kflicetwork seems to be the clustering
coefficient. As in real-world networks high degree nodesl tenhave lower clustering, in the simplified
MAG model the situation is reverse — higher degree nodestalst to have higher clustering. This is
due to the fact that for all attributes we use the same affimiirix © which represents only the core-
perphery structurea( > 5 > «). Thus, the simpified MAG model can only resemble the overaik-
periphery shape of real-world networks. However, in theod@H-lickr network, we can also discover the
local clustering effect of homophily and network commurfidymation, which views the network in the
opposite way compared to the global core-periphery stractu

Hence, our hypothesis is that the local clustering of nodesladvnaturally emerge by mixing core-
periphery affinity matriceso{ > 8 > +) and homophily affinity matricesy, v > /). To investigate this, we
also generated the synthetic network with more generalorecs MAG model, M (n, [, ii, é). Figure[®(c)
illustrates the network properties of this general versidate that this general version of the model nicely
captures the heavy-tailed cluestering coefficient digtidim that the real-world network shows while the
simplified version cannot. For the other properties, theeganversion still exhibits distributions which
gualatatively seem similar to those of the real-world nekvo

By this experiment, we can find that MAG model is capable ofeepnting real-world networks. Fur-
thermore, we verify the flexibility of MAG model in a sense tiitacan give rise to networks with different
network properties depending on the MAG model parametefigumation.

9 Conclusion

We presented the Multiplicative Attribute Graph model fealrworld networks which considers the cate-
gorical node attributes as well as the affinity of link forinatdepending on the values of node attributes.
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Figure 6: The comparison of network properties betweenweald Yahoo!-Flickr online social network,
a simplified MAG model network, and a general version of MAGd®lo Except for clustering coefficient,
the properties of MAG model qualitatively resemble thoseahef Yahoo!-Flickr network even when it is
the simplified version in Figure (b). Moreover, the generatsion of the MAG model can represent all six
network properties of similar shape to real-world netwarkgigure (c).



We introduced the attribute-attribute affinity matrix tgresent the affinity of link formation and provide
the flexibility in the network structure.

On the other hand, the MAG model is both analytically traldadnd statistically interesting. In this
paper, we analytically showed several network propertiseo/ed in real-world networks. We proved that
the MAG model obeys the Densification Power Law. We also skloath the existence of unique giant
connected component and a small diameter in the MAG modethéunore, we mathematically analyzed
that the MAG model give rise to networks with either a logmal or a power-law degree distribution.
Finally, we emprically verified our analytical results.

The MAG model is statistically interesting in a sense thataih represent various types of network
structure as well as lead a problem that aims to find suchtates of the given real-world networks in
terms of the MAG model parameters. However, we leave thenpetex fitting problem as a venue of the
future work. Furthermore, future work includes other kiredgporoblems such as how to find underlying
network structures and missing node attributes where nibdleudes are partially observed.
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A Appendix: The Number of Edges

Proof of Lemmal[3.2: Let N2, be the number of attributes that take valli@ bothu andv. For instance, if
a(u) = [0010] anda(v) = [0 1 1 0], thenN?, = 2. We similarly definelV}, as the number of attributes
that take valud in bothw andv. Then,N°, N! > 0andN?, + N}, < I asi indicates the number of
attributes in each node.

By definition of MAG model, the edge probability betweemndv is

P[u’ U] — aNSU/Bl_Ng”U_NI]I:U/yNI]I:U 3

Since bothN?, and N, are random variables, we need their conditional joint iistion to compute
the expectation of the edge probabiliBfu, v] given the weight of node.. Note thatN? and N}, are
independent of each other if the weight:ofs given. Let the weight ofi bei, i.e, v € W;. Sinceu and
v can share valué only for the attributes where already takes value, N2, equivalently represents the
number of heads incoin flips with probabiltiy... Therefore N°, follows Bin(i, 11). Similarly, N}, follows
Bin(l —i,1 — p). Hence, their conditional joint probability is

7 0 .o [l —1 VRS 1
P(NC N} |uecW;) = (NO )MNM(l )N (Nl >ul i=Nuw (1 — pg)Naw
uv uv

Using this conditional probability, we can compute the etaton of P[u, v] given the weight ofu:

E[Pu,v]|lue W] =E [aNSvBi_Ngvﬁl_i_Niv’yNiv\u € WZ}

= 3 3 (o V(e @ - sy 1 ey

NO,=0Nl,=0 >

uv uv

=13 (o Yo @y | | S (e -

NSU:O uv Nl =0 uv

uv T

= (pa+ (1= ) B) (B + (1 — p)y) =" .
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Proof of Lemmal[3.3: By Lemma 3.2 and the linearity of expectation, we sum thisda@nal probability
over all nodes and result in the expectation of the degreangive weight of node. [

Proof of Theorem[3.1: We compute the number of edgés|m], by adding up the degrees of all nodes
described in Lemmia3.3,

E[m]|=E [% Z deg(u)]

ueV
l
1
- §n§P<wj>E [deg(u) u € W)

l
~ <;,>/ﬂ(1 — 1) IE [deg(u)|u € W]

= %n Z <l> ((n —1) (pa+ (1= p)BY (uB + (1 — p)y)' ™ + 207 47 (1 — u)l‘j)

= B0 (ot 21— W)+ (1 — w)>y) +n(pa+ (1w .

Proof of Corollary B.3.1: Suppose that= (e - @) logn for ¢ = p?a +2u(1 — pu)B + (1 — p)?y and

e > 0. By Theoren{ 311, the expected number of edge® {®2¢'). Note thatlog( < 0 since¢ < 1.
Therefore, the expected number of edges is

2logn

@(n2<l) -0 <<l+ Tog ¢ ) _ @(nl-i-slogC) =o(n).

Proof of Corollary B.3.2: Under the situation thdte o(log n), the expected number of edges is

®(n2<l) — @(n2+($)logC) — @(n2+o(1)logC) _ @(n2_0(1)) '

B Appendix: Connectivity

Since Theorer 413 is used to prove other theorems, we betirtiva proof of it.
Proof of Theorem[43: If j > 4, for anyv € W;, we can generate a noa€’) e W; from v by flipping

(j — i) attribute values that originally takein v. For example, iti(v) = [0 11 0], thena(v®) = [00 1 0]
or [0 10 0]. Hence,P[u,vY)] > Plu,v] forv € W;.

23



Here we note thak [P [u,v)] [v € W;] = E [P [u,vD] [v) € W;], because each’) can be gen-
erated by(?) differenta(v) sets with the same probability. Therefore,

E[P[u,v]|v e Wj] =E [E [[ (j)]]veWiHEE[E[P[u,v]]veWi]]:E[P[u,v]]veWi].

Next theorem plays a key role in proving Theorlem 4.1 as wellleoreni 4.P.

Theorem B.1 Let|S;| € ©(n) andE [P [u, V\u] |u € W;] > clogn asn — oo for somej and sufficiently
large c. Then,S; is connected with high probability as— oo.

Proof: Let S’ be a subset of; such thatS” is neither an empty set néf; itself. Then, the expected number
of edges betweef’ andS;\S" is

E[P[S,S)\8] 15| =K = k- (IS)| — k) -E[P [u,] ju,v € 5]
for distinctu andv. By Theorem 4.3,
E [P [u,v] |u,v € Sj] > E[P [u,v]|u € Sj,v € V]
>E[P[u,v]|ue Wj,veV\uy
clogn

>
n

Given the size ofS’ as k, the probability that there exists no edge betweé#rand S;\S’ is at most
exp (—3E [P [9,5;\5'] ||| = k]) by Chernoff bound. Therefore, the probability ti#tis disconnected
is bounded as follows:

P(S; is disconnected) < Z P(no edge between S, S;\S")

S/CSJ‘7S’;£@,SJ‘
< Y ew(gEPs\]IS1)
S'CS,S'#0.S;
1
< X e (-s10s-18) 52
S'C8,5'£0,8;

1551 c|S;|log n
<2 E A = R
= <z P m "
1<k<|S;|/2
<2 YIS Fex _clSjllogn
- J 4n

1<k<]S;51/2

<2 Z exp <<log|5j| — W) k‘>
1<k<|S;|/2 "

—2 S exp(-kO(ogn) (18] € Om))

1<k<|S;l/2

= % (m)

1<k<|S;|/2



asn — oo. Therefore,S; is connected with high probability. [

Now we turn our attention to the giant connected componentshbw its existence, we investigatg;,

Sir/s, ands /s depending on the situation. The following lemmas tell ussize of each subgraph.

LemmaB.2 |S,| > § — o(n) with high probability as» — co.

. [ lul—pl | . .
Proof: By Central Limit Theoremi,\/m N(0,1) asn — oo, i.e., I — oo. Therefore,P(Ju| > pl) is
atleast} — o(1) so|S,;| > % — o(n) with high probability as: — oc. u

Lemma B.3 [S,; ;16| € ©(n) with high probability as» — oc.
Proof: By Central Limit Theorem mentioned in LemimaB.2,
11/6
P(pl < [u] < pl + 1Y) ~ &(———) — ©(0) € o(1)
(1 — p)

asl — oo where®(z) represents the cdf of the standard normal distribution.
Since P(|u| > pul + /%) is still at least} — o(1), the size ofS,,;, ;16 is ©(n) with high probability as
[ — 00, l.e,n — oo. ]

Lemma B.4 [S,; ;2/3| € o(n) with high probability as» — oc.

Proof: By Chernoff boundP(Ju| > pul+1%/?)iso(1) asl — oo, thus|S,,;, 2/s| is o(n) with high probability
asn — oo. u

Using the above lemmas, we show the existence and the umissiefithe giant connected component under
the given condition.

Proof of Theorem[4.1:

(Existence). First, if [(w + (1= wB)" (uB + (1 — ,u)y)l_“]p > L, then by Lemma3]3,

logn

B[P [u, V) Ju € Wl » [2 [(ua+ (1= )" (48 + (1= ) ] ] = (1+ )" > clogn

for some constané > 0 andc > 0. Since|S,| € ©(n) by LemmaB.2,S,,; is connected with high
probability asn — oo by Theoreni B.lL. In other words, we are able to extract out a@cted component
of size at least; — o(n).

Second, Wher{(ua + (1= w)B) (uB+ (1 — M)fy)l‘“]p = % we can apply the same argument for
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S,i411/6- BecausesS ;6| € ©(n) by LemmdB.3B,

E [P [u, V\u] |u € Wul+l1/6]

1/6

Ma+(r—M5>@b@”

~ [2[ar @ = (p + 1 -] - (uﬁ +(1—p)y
= <M>(’”0gn>l/6
wB+ (1 — )y

= (14 &)plosn!”?

which is also greater thamlogn asn — oo for some constart’ > 0. Thus,SMHll/ﬁ is connected with
high probability by Theoreri Bl 1.

Last, on the contrary, WheE(ua + (1= pw)B)" (uB+ (1 — u)fy)l_“} 7 < s forue W, o,

E [P [u, V\u] |u € Wul+12/3]

ua+(«—MB>@b@”“

~ [2 [(ua + 1 =B (ub+ (1 - u)v)l_“]p} o (uﬁ T (1= p)

ogn 2/3
- [(1 _ ey g (ua + (1 - u)ﬁ)} (rloer)
pB+ (1= p)y
iso(1) asn — oo for some constart’ > 0. Therefore, by Theorem 4.3, the expected degree of a notde wit
weight less thaml + %% is o(1). However, Sinces ,; , 2/s is o(n) by Lemm&B.4y — o(n) nodes have less

thanpl + 12/3 weights. Hence, most of — o(n) nodes are isolated so that the size of the largest component
cannot bed(n).

(Uniqueness). We already pointed out that eithéy, or S, 1/s is the subset 0B (n) component when
the giant connected component exists. Let this componeiit.b@/ithout loss of generality, suppose that
S, C H. Then, for any fixed node,

P[’LL, H] > P[’LL, Sul] ( Sul C H)
= |Sul - E[P[u,v] v € Sl
1Su] - E [P [u,v]|v e V\S,] (By Theorenid

’Sul‘
n— |Sul|

\%

Plu, V\Su|

SinceV\H C V\S,,

n— |Sul|

E[P [u,V\H]] <E|[P [u, V\Sﬂl]] < < ’S,ul‘

)ELP . A

holds for everyu € V.
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Suppose that another connected compori£rdlso contain® (n) nodes. We will show the condtradic-
tion if H andH' are not connected with high probability as— oc. To se€E [P [H, H']],

E[P[H H'|| =|H'| -E[Pu,H]|uc H

[H'[ - Sl /
> E [P H
T on-— |Sul| [ [% V\Sul] ‘u © ]
’H/"’Sul‘ / / 2 ¢
ZWE[P[U,H]WGH] (-H CcV\HCV\Su).
~ 1S

However,E [P [u, H'| lu € H'] € Q(1). Otherwise, since the probability that € H’ is connected to
H' is not greater thatk [P [u, H'] |u € H'] by Markov Inequality,u is disconnected fronf/’ with high
probability asn — oo. H' thus includes at least one isolated node with high proligl@in — oo. This is
contradiction to the connectednessrof.

On the other hand, it [P [u, H'| |u € H'] € Q(1), thenE [P [H, H']] € (n). In this case, by Chernoff
bound, H and H’ are connected with high probability as— oo. This is also contradiction. Therefore,
there is na®(n) connected component other thAnwith high probability as: — oo. [

Next, the proofs for the connectedness follow. Before thenrpeoof, we present some necessary lemmas
and prove them.

xT

1—
LemmaB.5 (£)” (}:—“) “isa monotonically increasing function ofover (0, ).
Proof: Let f(x) be the log-value of the given functione.,

f(z) =z (log p —logx) + (1 —x) (log (1 — ) —log (1 — x)) .

To take the derivative of (x),

7'(x) = (log j1 — log ) + (log (1 — ) — log (1 — ) -

Sincex < pandl — pu <1—2z, f'(z) > 0where0 < z < p. This implies thatf(x) is strictly increasing,
so the given function is also strictly increasing oy@r). [

LemmaB.6 If (1 — p)” > % then@ — 0 with high probability as:» — co. Otherwise, if(1 — u)? < %

1-v
@ — v with high probability as:» — oo wherev is a solution of the equatiorﬁ(%)” (}:—5) } =
in (0, ).

Proof: First, we assume thét — 1)? > % which indicates:(1 — 1)? > 1 by defition. Then, the probability
that|W;| = 0 is at mostexp(—1E [[W;|]) by Chernoff bound. However, for fixed,

D=

Bl = n(

19 A\l-1 I
1>u(1 W'tz e o0,

Therefore, by Chernoff bound?(|IW;| = 0) — 0 asl — oo. This implies thatV,,;, is o(l) with high
probability asn — oo.
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Second, we look at the case that— u)” < % For anye € (0, u — v), to use Stirling’s approximation,

l
E W o v+l (1= w+o)
[| (I/+E)l|] TL<(V 6)l>’u ( )

~
~

1—(v+e
(v + Ol L)+l S2n(T — (v + €)) (_<1—<ue+s>> >< (et
x nur Ol — )=o)
n

) ()

11—z
Smce(ﬁ) (}:—5) is a increasing function of over (0, 1) by LemmdB.5,

v+te 1—(v+e) 1/p
1 l—n _ n(L) Ny, =1/l
() (2ee) ™ wol) e

for some constard’ > 0. Therefore,

T 2t (v te)

(1+¢€)
V2rl(v+e€) (1— (v +e))

“W(l/—i-e l”

exponentially increases @sncreases. By Chernoff boun@l},.,.y| is not zero with high probability as
[ — 00, l.e,n — oo.

In a similar way,E [[W,_|] = N V(lega) =5 exponentially decreases asncreases. Since

E[|W;|] > E[|W;]]if ul > i > j, the expected number of nodes with at most weight- €)! is less than
(v —€)lE [|[W(,_¢|] and its value goes to zero &s+ co. Hence, by Chernoff bound, there exists no node
of the weight less thafv — ¢)! with high probability as: — oo.

To sum up,@ goes tov with high probability ag — oo, i.e, n — oco. [

Using the above lemmas, we show the condition that the n&tismonnected.

Proof of Theorem[4.2: Let mm — t for a constant € [0, ) asn — oo.
I [+ (1= 1)8)" (B + (1 = 1) ~*]" > 4, by Lemma 3B,

E [P [u, V\u] [u € Wy,.]  E[P [u, V\u] |u € Wy]
[ |: poc+ (1 - )ﬁ)t (uB+ (1 — #)7)1_13] P:| logn
(1 + e)losn
> clogn

for somee > 0 and sufficiently large.. Note thatSy; , indicates the entire network by definition &f,;,..
Since|Sy... | is©(n), Sy... is connected with high probability as— oo by Theoreni BIl. Equivalently,

min min

the entire network is also connected with high probability> oc.
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Vinin !—Vimin

On the other hand, whefua + (1 — p)B)®en (ufB + (1 — p)y) *en < 1, the expected degree of a
node with |Vi,in| weight iso(1) because from the above relationsfiigP [u, V\u| |ju € Wy, | = (1 —
¢)leen for somee’ > 0. Thus, in this case, some nodeliri,, . is isolated with high probability so the

network is disconnected. ]

C Appendix: Diameter

Theorem C.1 [7] [21] For an Erdos-Renyi random graplG(n, p), if (pn)=!/n — 0 and (pn)?/n — oo
for a fixed integer, thenG(n, p) has diameter with probability approaching 1 as — cc.

Proof of Lemmal[5.3: Let A® and A" be the probabilistic adjacency matrix of random graghand H,
respectively. IfAiGj > Ag for everyi, j and H has a constant diameter with high probability, then so does
G. It can be understood in the following way. To generate a agtwith A“, we first generate edges with
AH and further create edges with® — A). However, as the edges created in the first step already resul
in the constant diameter with high probability,has a constant diameter.

Note thatmin, ,es,, Plu,v] > Ny YE Thus, it is sufficient to prove that the Erdds-Rényi ramdo
graphG(|Sy|, BN+~ M!) has a constant diameter with high probabilityrass co. However,

_ I ) )
Bl ¥ = )1 = g 0

Al
n Al _ (1=M1
= V2rIN (1= ) (%) <%> (By Stirling approximation
- " _ l N
_\/m(uﬁﬂl 14)7) ('A_Mﬁ*-(l—ﬂﬁ)
1

- (1 + 6)logn

V21N (1 — N

for somee > 0.
Since this value goes to infinity as— oo, so doesE [WWy;]. Therefore, by Chernoff boundiVy;| >
cE [Wy;] with high probability as: — oo for some constant. Then,

|S)\1|5)\l’7(1_>\)l > |W)\I|B>\l’7(l_>\)l
2 cE HW)\lH B)\l,y(l—)\)l

Nt (14 e)8

T /2= N

By Theoren{ClL, an Erdds-Rényi random grapfSy|, —<r9*" ) has a diameter of at most

[SxzlA/2mIN(1—N)
(1 + 22) with high probability as: — occ. Thus, the diamters af(|Sy,|, 8~ ~Y) as well asSy; are
also bounded by a constant with high probabilitynas> oo. [
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Proof of Lemmal5.3: For anyu € V,

l
P[u, S)\l] 2 Z n(l

)
- )\ln<§> N1 =N (%)J <(11—_u)3fy>l—ﬁ'
)

(1= )=

M@ =N (B + (1 - p)y)

l

_ B log n P\ i1 — wyi—i
=2+ 1 —pv)) (;;l<].>A(1 \) )

By Centeral Limit Theoremy~’_,, () (1 — A)'~7 converges ta} asl — oco. Therefore,Pu, Sy] is
greater tharmlog n for a constant, and then, by Chernoff bound,is directly connected t&'y; with high
probability asn — oo. [

D Appendix: Degree Distribution

Theorem D.1 [45] P (deg(u) = k) = [, (") (E[P [, o) (1= E[P [u,o])"* du .

Corollary D.1.1 For E; = (ua + (1 — p)B) (uf + (1 — pu))" 7,
the probability of degreé in M (n, 1, 11,©) is pr = > ()u/ (1 — w)! =7 (") EF (1 — Ey)" 175

Proof: To reformulate Theorein D.1,

l
Pldeglu) = 1) = Y- Plu e W) (" 1) EIP ol e W (1= BIP usolfu e W)

=0 K
Therefore, by applying Lemnia 3.2, we obtain the desired fibam [

Proof of Theorem[6.1: To reduce the space, we begin by defining some notationslas/fol

By Corollary[D.1.1, we can restate asy_’_ g; (k).
If most of those terms turn out to be insignificant under owuasptions, the probability, can be
approximately proportional to one or few dominant termsthis case, what we need to do is thus to seek

for j that maximizegy; (k) = (;.);H'(l — w)!=7f;(k) and find its approximate formula.
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We start with the approximation gf; (k). For largen andk, by Stirling approximation,

\/%(n/e)" (xjyl—j)k (1 wjyl y)n k
V2rk(k/e)o\/2m(n — k) ((n — k) /e)"

1 <n3:3 yl=J < — xlyl J) —k
However, the expected degree of maximum weight nod2(is (ua + (1 — u)3)!), so is the expected
maximum degreek is thuso(n) with high probability as: — oo, i.e,, | — co.

fi(k) =

<%> ~ exp <—(TL - k)xjyl—ﬁ + (n — k)k/n) ~ eXp(—mcjyl_J + k) '

For sufficiently large, we can further simplify; (k) by normal approximation of the binomial distribu-
tion:

In g, (k) = In (j.)/ﬂ(l ) 4 I £ (k)

~ _% In (2nlpu(1 — 1)) — (7 — pl)? + In f; (k)

20pu(1 — p)
1 . 1 k nadyl=7
~C——(j—pl)?—=Ink—kln —— 1-—
¢ 2lu(1—u)(‘7 H” =g knnwﬂyl‘ﬁk( k >
for some constant’. Whenk = nz"y!~7 for 7 > ul andR = £
Ing;(k) = C — ;(j — ul)? — llnk‘ +k(j—T)mR+k(1- Rj_T)
’ 20p(1 — p) 2 '

Using (j — pl)* = (j — 7)? + (7 — pud)* +2(j — 7)(7 — pl),

(j—7)? , < T—pl > - 1
Ing;(k)~Cyr— =" 4 (j—7)(klhR— —" )+ k(1-R™) - —Ink
i(F) 20u(1 — p) G=m (1 — p) ( )75

T—nul)?
for € = € — yr 0.

Consideringy; (k) as a function ofj, notk, now we findj that maximizegy; (k) for k = nzTy' =", How-
ever, the median weight is approximately equaliidoy Central Limit Theorem. If we focus on the higher

half degrees. we can thus let> ul. In this case, sinc%(ua + (1= wB)H (uB+ (1 —p)y)* 7S Z,

b= [(pa (1= @B (uB+ (1 — )] € Q).
If we differentiateln g; (k) overj,

. /N_ ]_T . T_/’[/l . j—’r o
(Ingj(k)) ~ 7lﬂ(1—u)+<klnR 71#(1—/0) kRITTInR=0.

Because: € Q(I) andj, 7 € O(l), we can conclude that’~™ ~ 1 asn — oo; otherwise| (In g;(k))’ |
grows as large a(k). Therefore, when ~ 7, g;(k) is maximized.
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Furthermore, smc¢T| < kInR asn — oo, the first quadratic temW in Ing;(k) is

negligible. As aresult, wheR is practical (close td.6 ~ 3), In g, A would be at mos([@( kE|A]) —Ing,)
for A > 1. After all, g, effectively dominates the probabiliy;, i.e., In p, is roughly proportional tdn g..

. . _ l .
By assigningr = 210 we obtain

1 Ink — Inny! S
1 ~C — —ul) —=1
npp & C 2l,u(1—,u)< InR ,u> 2111{7
1 1 2
=C' - Ink—Inny' —lpln R — ~lp(l — p)(InR)* ) —Ink.
C 2l,u(1—,u)(lnR)2<nk nny —IlplnR 2l,u( w)(In R) n

for some constan€”’. Therefore, the degree distributipn approximately follows the log-normal as de-
scribed in Theorern @.1. [ |

E Appendix: Power-law Distribution

Proof of Lemmal[Z.2: Sincea;’s are independently distributed Bernoulli random vaiablLemma 712
holds. [

Proof of LemmalZ7.3: Let’s defineP; (u, v) as the edge probability betweerandv when considering only
up to thej-th attribute,i.e.,

Thus, what we aim to show is that for a nogde

l
E[P(u,0)] = [ ] (maoi + (1 = ) B:) =% (i + (1 — pg)ya) =1
=1
When! = 1, it is trivially true by Lemmd3R. Wheh > 1, suppose that the above formula holds for
l=1,2,--- k. SincePyi1(u,v) = Pr(u,v)Okt1 [agt1(u), agr1(v)],
E [Pt (u,v)]

= E [Py (u,v)] E [Opy1[ars1(u), apy1(v)]]

= E [Py (u, v)] (trg10hg1 + (1= sy 1) Broy ) 1 O (g1 By + (1= g i) Hown (90=1
k1
= H (mici + (1 — 113) Be) =0 (B + (1 — pug)y) e 0=1

Therefore, the expected degree formula described in Ledm8hlaolds for every > 1. ]

Proof of Theorem[Z.1: Before the main argument, we need to define the ordered plibpabass of
attribute vectors ag(;) for j = 1,2,--- ,2!. For example, if the probability of each attribute vector
(00,01, 10, 11) is respectively.2, 0.3,0.4, and0.1 whenl = 2, the ordered probability mass;ig;) = 0.1,
D) = 0.2, Py = 0.3, andp(4) =04.
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Then, by Theoref Dl1, we can express the probability of @ggre;., as follows:

2l
e <n ; 1) Zp(j)(Ej)k(l — Ej)”—l—k o
j=1

whereE); denotes the average edge probability of the node which leaatthbute vector corresponding to
p)- If p¢j)’s and Ej’s are configured so that few terms dominate the probabiliymay approximatey,
as (", o) (B-)F (1 — B,)"~'=F for 1 = arg max; pj) (E;)* (1 — E;)"~'~*. Assuming that this approx-
imation holds, we will propose a sufficient condition for fhewer-law degree distribution and suggest an
example for this condition.

To simplify computations, we propose a condtion thaf o Ej‘5 for a constant. Then, thej-th term
is

("3 oo (B = By o ()0 = 1)

which is maximized whei; ~ —£3%-. Moreover, under this condition, #;/E; is at least1 + z) for
aconstant > 0, then

Perta) (Bria)® (1= Erpn)" 7"
P (ET)k (1- ET)n_l_k

iso(1) for A > 1 asn — oo. Therefore, the-th term dominates the Equatidd (2).
Next, by the Stirling approximation with above conditions,

(OGS EEE T
gt () (55)

< k72 (k—6§)7° <1 — §>k

k
~ k70712 exp(—0)

for sufficiently largek andn. Thus,p; is approximately proportional to2 9 for largek asn — oo.

Last, we prove that the two conditions for the power-law degtistribution are simultaneously feasible
by providing an example configuration.

If everyp,, is distinct andi - = (iggg:ig@) ’then we satisfy the condition tha) o (E;)~°
by Lemm&Z.P and LemniaT.3. On the other hand, if we8et = (1 + 2)~2"° then the other condition,
E;1/E; > (142) is also satisfied. Since we are free to configurs and®©;’s independently, the sufficient
condition for the power law degree distribution is feasible [
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