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Abstract

Large scale real-world network data such as social and information networks are ubiquitous. The
study of such social and information networks seeks to find patterns and explain their emergence through
tractable models. In most networks, and especially in social networks, nodes have a rich set of attributes
(e.g., age, gender) associated with them.

Here we present a model that we refer to as the MultiplicativeAttribute Graphs (MAG), which
naturally captures the interactions between the network structure and the node attributes. We consider a
model where each node has a vector of categorical latent attributes associated with it. The probability of
an edge between a pair of nodes then depends on the product of individual attribute-attribute affinities.
The model yields itself to mathematical analysis and we derive thresholds for the connectivity and the
emergence of the giant connected component, and show that the model gives rise to networks with a
constant diameter. We analyze the degree distribution to show that MAG model can produce networks
with either log-normal or power-law degree distributions depending on certain conditions.

1 Introduction

With the emergence of the Web, large online social computingapplications have become ubiquitous, which
in turn gave rise to a wide range of massive real-world socialand information network data such as social
networks, computer networks, Internet networks, communication networks, e-mail interactions, Web graphs,
and so on. The unifying theme of studying real-world networks is to find patterns of connectivity and explain
them through models. The main objective is to answer questions such as “What do real graphs look like?”,
“How do they evolve over time? “How can we synthesize realistic looking graphs?”, “How can we find
models that explain the observed patterns?”, and “What are algorithmic consequences of the observations
and models?”.

Research on empirical observations about the structure of networks and the models giving rise to such
structures go hand in hand. The empirical analysis of large real-world networks aims to discover com-
mon structural properties or patterns, such as heavy-tailed degree distributions [15, 11], local clustering of
edges [43, 30], small diameter [3, 28], navigability [36, 22], emergence of community structure [29], and so
on.

In parallel, there have been efforts to develop the network formation mechanisms that naturally gen-
erate networks with the observed structural features. In these network formation mechanisms, there have
been two relatively dichotomous modeling approaches. Broadly speaking, the theoretical computer science
and physics community have mainly focused on relatively simple “mechanistic” but analytically tractable

∗A short version of this paper appeared inProceedings of the Seventh Workshop on Algorithms and Models for the Web Graph
(WAW’10)[19].
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network models where connectivity patterns observed in thereal-world naturally emerge from the model.
The prime example in this line of work is the Preferential Attachment model with its many variants [4, 1,
8, 10, 13], which specifies a simple but very natural edge creation mechanism that in the limit leads to net-
works with power-law degree distributions. Other models ofsimilar flavor include the Copying Model [23],
the Small-world model [43, 22], Geometric Random Graphs [17], the Forest Fire model [28], the Random
surfer model [5], and models of bipartite affiliation networks [24]. On the other hand, in statistics, ma-
chine learning and traditional social network analysis, a different approach to modeling network data has
emerged. There the effort is in the development of statistically sound models that consider the structure of
the network as well as the features (e.g., age, gender) of nodes and edges in the network. Examples of such
models include the Exponential Random Graphs [42], the Stochastic Block Model [2], and the Latent Space
Model [18].

“Mechanistic” and “Statistical” models. Generally, there has been some gap between the above two
lines of research. The “mechanistic” models are analytically tractable in a sense that one can mathemati-
cally analyze properties of the networks that arise from themodels. These models emphasize the natural
emergence of networks that have certain structural properties found in real-world networks. However, such
models are usually not statistically interesting in a sensethat they do not nicely lend themselves to model
parameter estimation and are generally too simplistic to model heterogeneities between individual nodes.

On the contrary, “statistical” models are generally analytically intractable and the network properties
do not naturally emerge from the model in general. However, these models are usually accompanied by
statistical procedures for model parameter estimation andvery useful for testing various hypotheses about
the interaction of connectivity patterns and the properties of nodes and edges.

Although models of network structure and formation are seldom bothanalytically tractable and statis-
tically interesting, an example of a model satisfying both features is the Kronecker graphs model [26, 44],
which is based on the recursive tensor product of small graphadjacency matrices. The Kronecker graphs
model is analytically tractable in a sense that one can analyze global structural properties of networks that
emerge from the model [32, 25, 6]. In addition, this model is statistically meaningful because there exists
an efficient parameter estimation technique based on maximum likelihood [27, 20]. It has been empirically
shown that with only four parameters Kronecker graphs quiteaccurately model the global structural proper-
ties of real-world networks such as degree distributions, edge clustering, diameter and spectral properties of
the graph adjacency matrices.

Modeling networks with rich node attribute information. Network models investigate edge creation
mechanisms, but generally a rich set of attributes is associated with each node. This is especially true in
social networks, where not only people’s connections but also their characteristics, like age, gender, work
place, habits, etc., have been collected. Similarly, various types of profile information is provided by users
in online social networks. In this sense, both node characteristics and the network structure need to be
considered simultaneously.

The attempt to model the interaction between the network structure and node attributes raises a wide
range of questions. For instance, how do we account for the heterogeneity in the population of the nodes or
how do we combine node features in an interesting way to obtain probabilities of individual links? While
the earlier work on a general class of latent space models formulated such questions, most resulting models
were either analytically tractable but statistically uninteresting or statistically very powerful but do not lend
themselves to mathematical analysis.

To bridge this gap, we propose a class of stochastic network models that we refer to as Multiplicative
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Attribute Graphs (MAG). The model naturally captures the interactions between the network structure and
the node attributes in a clean and tractable manner. We consider a model where each node has a vector
of categorical attributes associated with it. Individual attributes of nodes are then combined in order to
model the emergence of links. The model allows for rich interaction between node features in a sense that
one can simultaneously model features that reflect homophily (i.e., love of the same) as well as heterophily
(i.e., love of the different). For example, if people share certain features like hobby, they are more likely to be
friends. However, for some other features like gender, people may be more likely to form a relationship with
someone with the opposite characteristic. The proposed MAGmodel is designed to capture both homophily
and heterophily that naturally occur in social networks.

We proceed by formulating the model and show that it is both analytically tractable and statistically
interesting. In the following sections, we present our mathematical results. Section 3 examines the number
of edges and shows that our model naturally obeys the Densification Power Law [28]. Section 4 examines
the connectivity of MAG model, which includes the conditions not only when the network contains a giant
connected component but also when it becomes connected. Section 5 shows that the diameter of the MAG
model remains small even though the number of nodes is large.Section 6 shows that networks emerg-
ing from the MAG model have a log-normal degree distribution. Furthermore, Section 7 describes a more
general version of the model that can also capture the power-law degree distribution. We view this as partic-
ularly interesting in the light of a long-standing debate about how to distinguish the power-law distribution
from the log-normal distribution in empirical data [37, 38]and what implications this would make for real-
world networks. Also, our results imply that the MAG model model is flexible in a sense that networks with
very different properties emerge depending on the parameter configuration. Finally, Section 8 verifies the
properties of the MAG model by simulation experiments. The results of the simulations examine how the
synthetic network changes depending the parameters as wellas how similar the network looks to real-world
networks.

2 Formulating of the Multiplicative Attribute Graph (MAG) m odel

In this section, we begin with the introduction of the Multiplicative Attribute Graph (MAG) model. Then, we
formulate the general version of MAG model and present the simplified version that we analyze throughout
this paper. Finally, we investigate the connection to some related works.

2.1 General considerations

We consider a setting where each nodeu has a vectora(u) of l categorical (e.g., binary) attributes associated
with it. For simple examples, one can think of such attributevectors as a sequence of answers tol yes/no
questions such as “Are you female?”, “Do you like ice cream?”, and so on.

The other essential ingredient of our model is to specify a mechanism that generates the probability of
an edge between two nodes based on their attribute vectors. As mentioned before, we aim to be able to
account for the homophily of certain features as well as the heterophily of the others by our model. For this
mechanism, we associate each attributei (i.e., i-th question) with an attribute-attribute affinity matrixΘi.
Each entry of matrixΘi represents the affinity depending on the values of thei-th attribute between a pair of
nodes. More precisely,Θi[z1, z2] indicates the affinity between a pair of nodes, each of which respectively
takes valuez1 andz2 for its i-th attribute. For the binary attribute example in Figure 1,eachΘi is a2 × 2
matrix. To obtain the affinity corresponding to thei-th attribute between nodeu andv, the values ofi-th
attribute of both nodes select an appropriate cell ofΘi.
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Figure 1: Schematic representation of the Multiplicative Attribute Graphs (MAG) model. Given a pair
of nodesu andv with the corresponding binary attribute vectorsa(u) anda(v), the probability of edge
P [u, v] is the product over the entries of attribute-attribute affinity matricesΘi where values ofai(u) and
ai(v) “select” the appropriate entries (row/column) ofΘi. Note that this visualized model represents the
undirected graph by make eachΘi symmetric. However, the MAG model in general represents thedirected
graph.

(a) Homophily (b) Heterophily (c) Core-Periphery (d) Random

Figure 2: Structures in which a node attribute can affect link affinity. The widths of arrows correspond to
the affinities towards link formation.

By these affinity matrices, we can capture the various types of structure in real-world social networks.
For example, Figure 2 shows four possible linking affinitiesof a binary attribute. Top figure of each case
visualizes the general structure of networks. Each circle represents the group which shares the attribute
value and the width of each arrow indicates the affinity of thelink formation in the given direction (e.g., the
arrow0 → 1 indicates the affinity of link formation between a node with ”0”-value of a given attribute and
a node with ”1”-value of that attribute.). Then, under each figure, we represent the structure in the form of
the affinity matrix.

To investigate one by one, Figure 2(a) shows the homophily (love of the same) attribute affinity and the
corresponding affinity matrixΘ. Notice large values on the diagonal entries ofΘ, which means that link
probability is high when nodes share the same attribute value. Top of the figure demonstrates that there
will be many links between nodes that have the value of the attribute set to “0” and many links between
nodes that have the value “1”, but there will be few links between nodes where one has value “0” and the
other “1”. Similarly, Figure 2(b) shows the heterophily (love of the different) affinity, where nodes that
do not share the value of the attribute are more likely to link, which gives rise to near-bipartite networks.
Also, Figure 2(c) shows the core-periphery affinity, where links are most likely to form between “0” nodes
(i.e., members of the core) and least likely to form between “1” nodes (i.e., members of the periphery).
Notice that links between the core and the periphery are morelikely than the links between the nodes of the
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periphery. Additionally, Figure 2(d) illustrates the uniformly random structure that the Erdös-Rényi random
graph model generates. By assiging the same value into everyentry in each affinity matrix, we can build the
MAG model equivalent to the Erdös-Rényi random graphmodel.

From these examples, we notice that the MAG model nicely provides the flexibility in the network
structure via the affinity matrices. Although we presented the binary and undirected examples, the MAG
model basically allows more complicated structure with larger cardinalities (e.g., 3× 3 or 4× 4) as well as
asymmetric structure through asymmetric affinity matrices.

2.2 The Multiplicative Attributes Graph (MAG) model

Now we formulate a general version of the MAG model. To start with, let each nodeu have a vector ofl
categorical attributes and let each attribute have cardinality di for i = 1, 2, · · · l. We also havel matrices,
Θi ∈ di × di for i = 1, 2, · · · l. Each entry ofΘi is the affinity of a real value between 0 and 11. Then, the
probability of an edge(u, v), P [u, v], is defined as the multiplication of affinities corresponding to individual
attributes,i.e.,

P [u, v] =

l
∏

i=1

Θi [ai(u), ai(v)] (1)

whereai(u) denotes the value ofi-th attribute of nodeu. Note that edges appear independently with proba-
bility determined by node attributes and matricesΘi. Figure 1 illustrates the model.

One can think of the MAG model in the following sense. In orderto construct a social network, we ask
each nodeu a series of multiple-choice questions and the attribute vector a(u) stores the answers fo these
questions. The answers of nodesu andv on a questioni select an entry of matrixΘi, i.e., u’s answer selects
a row andv’s answer selects a column. One can thus think of matricesΘi’s as the attribute-attribute affinity
matrices. Assuming that the questions are appropriately chosen so that answers are independent of each
other, the product over the entries of matricesΘi can be regarded as the probability of the edge betweenu
andv.

The choice of multiplicatively combining entries ofΘi is very natural. In particular, the social network
literature defines a concept of Blau-spaces [34, 35] where socio-demographic attributes act as dimensions.
Organizing force in Blau space is homophily as it has been argued that the flow of information between a
pair of nodes decreases with the “distance” in the corresponding Blau space. In this way, small pockets of
nodes appear and lead to the development of social niches forhuman activity and social organization. In
this respect, multiplication is a natural way to combine node attribute data (i.e., the dimensions of the Blau
space) so that even a single attribute can have profound impact on the linking structure (i.e., it creates a
narrow social niche community).

The proposed MAG model model is analytically tractable in a sense that we can formally analyze the
properties of the model. Moreover, the MAG model is also statistically interesting as it can account for the
heterogeneities in the node population and can be used to study the interaction between properties of nodes
and their linking behavior. Moreover, one can pose many interesting statistical inference questions: Given
attribute vectors of all nodes and the network structure, how can we estimate the values of matricesΘi?
How can we infer the attributes of unobserved nodes? Or, given a network, how can we estimate both the
node attributes and the matricesΘi? However, the focus of this paper is in mathematical analysis and we
leave the questions of MAG model parameter estimation for the future work.

1Note that there is no condition forΘi to be stochastic, we only require each entry ofΘi to be on interval(0, 1).
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2.3 Simplified version of the model

Next we delineate a simplified version of the model that we will mathematically analyze in the further
sections of the paper. First, while the general MAG model applies to directed networks, we consider the
undirected version of the model by requiring eachΘi to be symmetric. Second, we assume binary node
attributes and thus affinity matricesΘi have 2 rows and 2 columns. Third, to further reduce the number
of parameters, we also assume that the affinity matrices for all attributes are the same,i.e., Θi = Θ for

all i. These three conditions imply thatΘ =

[

α β
β γ

]

, i.e., Θ[0, 0] = α,Θ[0, 1] = Θ[1, 0] = β, and

Θ[1, 1] = γ for 0 < α, β, γ < 1. Furthermore, all our results will hold forα > β > γ. The assumption
α > β > γ is natural since most large real-world networks have a common onion-like “core-periphery”
structure [29, 30, 25]. Figure 2(c) exhibits this structure. More precisely, the network is composed from
denser and denser layers of edges as one moves towards the core of the network. Basically,α > β > γ
means that more edges are likely to appear between nodes which share value0 on more attributes and
these nodes form the core of the network. Since more edges appear between pairs of nodes with attribute
combination “0–1” than between those with “1–1”, there are more edges between the core and the periphery
nodes (edges “0–1”) than between the nodes of the periphery themselves (edges “1–1”).

Last, we also assume a simple generative model of node attributes where each binary attribute vector
is generated byl independently and identically distributed coin flips with biasµ. That is, we use ani.i.d.
Bernoulli distribution parameterized byµ to model attribute vectors where the probability that thei-th
attribute of a nodeu takes value 0 isP (ai(u) = 0) = µ for i = 1, · · · , l and0 < µ < 1.

Putting it all together, the MAG modelM(n, l, µ,Θ) is fully specified by six parameters:n is the number
of nodes,l is the number of attributes of each node,µ is the probability that an attribute takes a value of1,
andΘ = [α β;β γ] specifies the attribute-attribute affinity matrix.

We now study the properties of the random graphs that result from theM(n, l, µ,Θ) where every un-
ordered pair of nodes(u, v) is independently connected with probabilityP [u, v] defined in Equation (1).
Since the probability of an edge exponentially decreases inl, the most interesting case occurs whenl =
ρ log n for some constantρ.2 This result perfectly agrees that the effective number of dimensions which can
represent online social networks is the order oflog n [9].

2.4 Connections to other models

We note that our model belongs to a general class of latent space network models, where nodes have some
discrete or continuous valued attributes and the probability of linking depends on the values of attribute
of the two nodes. For example, the Latent Space Model [18] assumes that nodes reside ind-dimensional
Euclidean space and the probability of an edge depends on theEuclidean distance between the locations
of the nodes. Similarly, in Random Dot Product Graphs [45], the linking probability depends on the inner
product between the vectors associated with node positions. Furthermore, recently introduced Multifractal
Network Generator [39] can also be viewed as a special case ofMAG model where the node attribute
distribution and the affinity matrix are equal for every attribute.

The MAG model generalizes the Kronecker graphs model [25] ina subtle way. The Kronecker graphs
model takes a small (usually2 × 2) initiator matrixK and tensor-powers itl times to obtain a matrixG of
size2l×2l, interpreted as the stochastic graph adjacency matrix. Onecan think of a Kronecker graph model
as a special case of the MAG model.

2Throughout the paper,log(·) indicateslog2(·) unless explicitly specified asln(·).
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Proposition 2.1 A Kronecker graphG on 2l nodes with a2 × 2 initiator matrix K is equivalent to the
following MAG graphM : Let us number the nodes ofM as0, · · · , 2l − 1. Let the binary attribute vector of
a nodeu ofM be a binary representation of its node id, and letΘi = K. Then individual edge probabilities
(u, v) of nodes inG match those inM , i.e., PG[u, v] = PM [u, v].

The above observation is interesting for several reasons. First, all results obtained for Kronecker graphs
naturally apply to a subclass of MAG graphs where the node’s attribute values are the binary representation
of its id. This means that in a Kronecker graph version of the MAG model each node has a unique com-
bination of attribute values (i.e., each node has different node id) and all attribute value combinations are
occupied (i.e., node ids range0, . . . , 2l − 1).

Second, building on this correspondence between Kroneckerand MAG graphs, we also note that the
estimates of the Kronecker initiator matrixK nicely transfer to matrixΘ of MAG model. For example,
Kronecker initiator matrixK = [α = 0.98, β = 0.58, γ = 0.05] accurately models the graph of the
internet connectivity, while the global network structureof the Epinions online social network is captured
by K = [α = 0.99, β = 0.53, γ = 0.13] [27]. Thus, in the rest of the paper, we will consider the above
values ofK as the typical values that the matrixΘ would normally take. In this respect, the assumption of
α > β > γ naturally appears.

In following sections, we analyze the properties of the MAG model. We focus mostly on the simplified
version. Each section states the main theorem and gives the overview of the proof. We omit the full proofs
in the main body of the paper and describe them in the Appendix.

3 The Number of Edges

In this section, we derive the expression for the expected number of edges in MAG model. Moreover, this
formula can valdiate not only the assumption,l = ρ log n, but also a substantial social network property,
namely the Densification Power Law.

Theorem 3.1 For a MAG graphM(n, l, µ,Θ), the number of edges,m, satisfies

E [m] =
n(n− 1)

2

(

µ2α+ 2µ(1− µ)β + (1− µ)2γ
)l
+ n (µα+ (1− µ)γ)l .

The expression is divided into two diffrent terms. The first term indicates the number of edges between
distinct nodes, whereas the second term means the number of self-edges. If we exclude self-edges, the
number of edges would be therefore reduced to the first term.

Before the actual analysis, we define some useful notations that will be used throughout this paper.
First, letV be the set of nodes in the MAG graphM(n, l, µ,Θ). We refer to theweightof a nodeu as the
number of0’s in its attribute vectors, and denote it as|u| , i.e.,|u| = ∑l

i=1 1 {ai(u) = 0} where1 {·} is an
indicator function. We additionally defineWj as a set which consists of all nodes with the same weightj,
i.e., Wj = {u ∈ V : |u| = j} for j = 0, 1, · · · , l. Similarly,Sj denotes the set of nodes with weight which
is greater than or equal toj, i.e., Sj = {u ∈ V : |u| ≥ j}. By definition,Sj = ∪l

i=jWi.
To complete the proof of Theorem 3.1, using the definition of the simplified MAG model, we can derive

the main lemmas as follows:

Lemma 3.2 For distinct u, v ∈ V , E [P [u, v] |u ∈ Wi] = (µα+ (1− µ)β)i (µβ + (1− µ)γ)l−i .

Lemma 3.3 For u ∈ V , E [deg(u)|u ∈ Wi] = (n− 1) (µα+ (1− µ)β)i (µβ + (1− µ)γ)l−i + 2αiγl−i .
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By using these lemmas, the outline of the proof for Theorem 3.1 is as follows. Since the number of
edges is half of the degree sum, all we need to do is to sumE [deg(u)] over the degree distribution. However,
becauseE [deg(u)] = E [deg(v)] if the weights ofu andv are the same, we can add upE [deg(u)|u ∈ Wi]
over theweightdistribution,i.e., binomial distributionBin(l, µ).

On the other hand, more significantly, Theorem 3.1 can resultin two substantial features of MAG model.
First, the assumption thatl = ρ log n for a constantρ can be validated by the next two corollaries.

Corollary 3.3.1 m ∈ o(n) with high probability3 asn → ∞, if l
logn > − 1

log(µ2α+2µ(1−µ)β+(1−µ)2γ)
.

Corollary 3.3.2 m ∈ Θ(n2−o(1)) with high probability asn → ∞, if l ∈ o(log n).

Note thatlog
(

µ2α+ 2µ(1− µ)β + (1− µ)2γ
)

< 0 because bothµ andγ are less than1. Thus, in
order forM(n, l, µ,Θ) to have a proper number of edges (e.g., more thann), l should be bounded by
the order oflog n. On the contrary, since most social networks are sparse,l ∈ o(log n) case can be also
reasonably excluded. In consequence, both Corollary 3.3.1and Corollary 3.3.2 provide the upper and lower
bounds ofl for social networks. These bounds eventually support the assumption ofl = ρ log n.

Although we do not technically define any process of MAG graphevolution, we can interpret it in
the folllowing way. When a new node joins the network, its behavior is governed by the node attribute
distribution which is seemingly independent of the networkstructure. However, in a long term, since the
number of attributes grows slowly as the number of nodes increases, the node attributes and the network
structure are not independent. This phenomenon is somewhataligned with the real world. When a new
person enters the network, he or she seems to act independently of other people, but people eventually
constitue a structured network in the large scale and their behaviors can be categorized into more classes as
the network evolves.

Second, under this assumption, the expected number of edgescan be approximately restated as

1

2
n2+ρ log(µ2α+2µ(1−µ)β+(1−µ)2γ) .

We find that this fact agrees with the Densification Power Law [28], one of the properties of social networks,
which indicatesm(t) ∝ n(t)a for a > 1. For example, an instance of MAG model withρ = 1, µ = 0.5
(Proposition 2.1), would have the densification exponenta = log(|Θ|) where|Θ| denotes the sum of all
entries inΘ.

The proofs are fully described in Appendix.

4 Connectivity

In the previous section, we observed that MAG model obeys theDensification Power Law. In this section,
we mathematically investigate MAG model for another general property of social networks, the existence
of a giant connected component. Furthermore, we also examine the situation where this giant component
covers the entire network,i.e., the network is connected.

We begin with the theorems that MAG graph has a giant component and further becomes connected.

Theorem 4.1 (Giant Component)Only one connected component of sizeΘ(n) exists inM(n, l, µ,Θ) with
high probability asn → ∞ , if and only if

[

(µα+ (1− µ)β)µ (µβ + (1 − µ)γ)1−µ
]ρ

≥ 1

2
.

3It indicates the probability1− o(1).
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Theorem 4.2 (Connectedness)Let the connectedness criterion function ofM(n, l, µ,Θ) be

Fc(M) =

{

(µβ + (1− µ)γ)ρ when(1− µ)ρ ≥ 1
2

[

(µα+ (1− µ)β)ν (µβ + (1− µ)γ)1−ν
]ρ

otherwise

whereν is a solution of

[

(µ
ν

)ν
(

1−µ
1−ν

)1−ν
]ρ

= 1
2 in (0, µ).

Then,M(n, l, µ,Θ) is connected with high probability asn → ∞, if Fc(M) > 1
2 . In contrast,M(n, l, µ,Θ) is

disconnected with high probability asn → ∞, if Fc(M) < 1
2 .

To show the above theorems, we first define the monotonicity property of MAG model.

Theorem 4.3 (Monotonicity)For u, v ∈ V , P [u, v||u| = i] ≤ P [u, v||u| = j] if i ≤ j.

Theorem 4.3 ultimately demonstrates that a node of larger weight is more likely to be connected with
other nodes. In other words, a node of large weight plays a ”core” role in the network, whereas the node of
small weight is regarded as ”periphery”. This feature of theMAG model has direct effects on the connect-
edness as well as on the existence of a giant component.

By the monotonicty property, the minimum degree is likely tobe the degree of the minimum weight
node. Therefore, the disconnectedness could be proved by showing that the expected degree of the minimum
weight node is too small to be connected with any other node. Conversely, if this lowest degree is large
enough, sayΩ(log n), then any subset of nodes would be connected with the other part of the graph. Thus,
to show the connectedness, the degree of the minimum weight node should be necessarily inspected, using
Lemma 3.3.

Note that the criterion in Theorem 4.2 is separated into two cases depending onµ, which tells whether or
not the expected number of weight0 nodes,E [|W0|], is greater than1, because|Wj| is a binomial random
variable. If this expectation is larger than1, then the minimum weight is likely to be close to0, i.e., O(1).
Otherwise, ifE [|W0|] < 1, the equation ofν describes the ratio of the minimum weight tol asn → ∞.
Therefore, the condition for connectedness actually depends on the minimum weight node. In fact, the proof
of Theorem 4.2 is accomplished by computing the expected degree of this minimum weight node and using
some techniques introduced in [32].

Similar explanation works for the existence of a giant component. Instead of the minimum weight node,
Theorem 4.1 shows that the existence ofΘ(n) component relies on the degree of themedianweight node.
We intuitively understand this in the following way. We might throw away the lower half of nodes by
degree. If the degree of the median weight node is large enough, then the half of the network is likely to
be connected. The connectedness of this half network implies the existence ofΘ(n) component, the size of
which is at leastn2 . In the proof, we actually examine the degrees of nodes of three different weights:µl,
µl + l1/6, andµl + l2/3. The existence ofΘ(n) component is determined by the degrees of these nodes.

However, the existence ofΘ(n) component does not necessarily indicate that it is a unique giant com-
ponent, since there might be anotherΘ(n) component. Therefore, to prove Theorem 4.1 more strictly, the
uniqueness ofΘ(n) component has to follow the existence of it. We can prove the uniqueness by show-
ing that if there are two connected subgraphs of sizeΘ(n) then they are connected each other with high
probability.

The proofs of those three theorems are in Appendix.
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5 Diameter

Another property of social networks is that the diameter of the network remains small although the number
of nodes grows large. We can show this property in MAG model byapplying the similar idea as in [32].

Theorem 5.1 If (µβ + (1− µ)γ)ρ > 1
2 , thenM(n, l, µ,Θ) has a constant diameter with high probabil-

ity asn → ∞.

This theorem does not specify the exact diameter, but, underthe given condition, it guarantees the
bounded diameter even thoughn → ∞ by using the following lemmas:

Lemma 5.2 If (µβ + (1− µ)γ)ρ > 1
2 , for λ = µβ

µβ+(1−µ)γ , Sλl has a constant diameter with high proba-
bility asn → ∞.

Lemma 5.3 If (µβ + (1− µ)γ)ρ > 1
2 , for λ = µβ

µβ+(1−µ)γ , all nodes inV \Sλl are directly connected to
Sλl with high probability asn → ∞.

By Lemma 5.3, we can conclude that the diameter of the entire graph is limited to(2+ diameter ofSλl).
Since by Lemma 5.2 the diameter ofSλl is constant with high probability under the given condition, the
actual diameter is also constant.

The proofs are represented in Appendix.

6 Degree Distribution

In this section, we analyze the degree distribution of the simplified MAG model under some reasonable
assumptions.4 Depending onΘ, MAG model produces graphs of various degree distributions. For instance,
since the network becomes a sparse Erdös-Rényi random graph if α ≈ β ≈ γ < 1, the degree distribution
will approximately follow the binomial distribution. For another extreme example, in case ofα ≈ 1 and
µ ≈ 1, the network will be close to a complete graph, which represents a degree distribution different from
a sparse Erdös-Rényi random graph. For this reason, we need to narrow down the conditions onµ andΘ as
follows. If µ is close to0 or 1, then the graph becomes an Erdös-Rényi random graph with edge probability
p = α (whenµ ≈ 1) or γ (whenµ ≈ 0). Since the degree distribution of the Erdös-Rényi random graph is
binomial, we will exclude these extreme cases ofµ. On the other hand, with regard toΘ, we assume that
a reasonable configuration space forΘ would be whereµα+(1−µ)β

µβ+(1−µ)γ is between1.6 and3. For the previous
Kronecker graph example, this ratio is actually about2.44. Our approach for the condition onΘ can be
also supported by real examples in [27]. This condition is crucial for us, since in the analysis we use that
(

µα+(1−µ)β
µβ+(1−µ)γ

)x
grows faster than the polynomial function ofx. If µα+(1−µ)β

µβ+(1−µ)γ is close to 1, we cannot make

use of this fact. Assuming all these conditions onµ andΘ, we result in the following theorem about the
degree distribution.

Theorem 6.1 In M(n, l, µ,Θ)that follows above assumptions, if

[

(µα+ (1− µ)β)µ (µβ + (1 − µ)γ)1−µ
]ρ

>
1

2
,

4We trivially exclude self-edges not only because computations become simple but also because other models usually do not
include them.
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then the tail of degree distribution,pk, follows a log-normal, specifically,

N
(

ln
(

n(µβ + (1− µ)γ)l
)

+ lµ lnR+
lµ(1− µ)(lnR)2

2
, lµ(1− µ)(lnR)2

)

,

for R = µα+(1−µ)β
µβ+(1−µ)γ asn → ∞.

In other words, the degree distribution of MAG model approximately follows a quadratic relationship on
log-log scale. This result is nice since some social networks follow the log-normal distribution. For instance,
the degree distribution ofLiveJournalnetwork looks more parabolic than linear on log-log scale [31].

In brief, as the expected degree is an exponential function of the node weight by Lemma 3.3, the degree
distribution is mainly affected by the distribution of nodeweights. Since the node weight follows a binomial
distribution, it can be approximated to a normal distribution for sufficiently largel. Because the logarithmic
value of the expected degree is linear in the node weight and this weight follows a binomial distribution, the
log value of degree approximately follows a normal distribution for largel. This eventually indicates that
the degree distribution roughly follows a log-normal.

Note that there exists a condition,
[

(µα+ (1− µ)β)µ (µβ + (1− µ)γ)1−µ
]ρ

> 1
2 , which is related to

the existence of a giant component. First, this condition isperfectly acceptable because real-world networks
have a giant component. Second, as we described in Section 4,this condition ensures that the median degree
is large enough. Equivalently, it also indicates that the degrees of a half of the nodes are large enough. If we
refer to the tail of degree distribution as the degrees of nodes with degrees above the median degree, then
we can show Theorem 6.1.

The full proofs for this analysis are described in Appendix.

7 Extensions: Power-Law Degree Distribution

So far we have handled the simplified version of MAG model parameterized by only few variables. Even
with these few parameters, many well-known properties of social networks can be reproduced. However, re-
garding to the degree distribution, even though the log-normal is one of the distributions that social networks
commonly follow, a lot of social networks also follow the power-law degree distribution [15].

In this section, we show that the MAG model produces networkswith the power-law degree distribution
by releasing some constraints. We do not attempt to analyze it in a rigorous manner, but give the intuition
by suggesting an example of configuration. We still hold the condition that every attribute is binary and
independently sampled from Bernoulli distribution. However, in contrast to the simplified version, we allow
each attribute to have a different Bernoulli parameter as well as a different attribute-attribute affinity matrix
associated wit it. The formal definition of this model is as follows:

P (aj(u) = 0) = µj , P [u, v] =
l

∏

j=1

Θj [aj(u), aj(v)] .

The number of parameters here is4l, which consist ofµj ’s andΘj ’s for j = 1, 2, · · · , l. For convenience,
we denote this power-law version of MAG model asM(n, l, ~µ, ~Θ) where~µ = {µ1, · · · , µl} and ~Θ =
{Θ1, · · · ,Θl}. With these additional parameters, we are able to obtain thepower law degree distribution as
the following theorem describes.

Theorem 7.1 For M(n, l, ~µ, ~Θ), if µj

1−µj
=

(

µjαj+(1−µj )βj

µjβj+(1−µj )γj

)−δ
for δ > 0, then the degree distribution

satisfiespk ∝ k−δ− 1
2 asn → ∞.

11



In order to investigate the degree distribution of this model, the following two lemmas are essential.

Lemma 7.2 The probability that a nodeu in M(n, l, ~µ, ~Θ) has an attribute vectora(u) is

l
∏

i=1

(µi)
1{ai(u)=0}(1− µi)

1{ai(u)=1} .

Lemma 7.3 The expected degree of nodeu in M(n, l, ~µ, ~Θ) is

(n− 1)
l

∏

i=1

(µiαi + (1− µi)βi)
1{ai(u)=0} (µiβi + (1− µi) γi)

1{ai(u)=1} .

By Lemmas 7.2 and 7.3, if the condition in Theorem 7.1 holds, the probability that a node has the same
attribute vector as nodeu is proportional to(−δ)-th power of the expected degree ofu. In addition,(−1

2 )-th
power comes from the Stirling approximation for largek. This roughly explains Theorem 7.1.

The proof is given in Appendix and the result is also verified by simulation in Figure 5.

8 Simulation

In the previous sections, we performed theoretical analysis of the MAG model. In this section, we use simu-
lation experiments to further demonstrate the properties of networks that arise from the MAG model. First,
we generated synthetic MAG graphs with varying parameter values to explore how the network properties
change as a function of those parameters. We focus on the change of scalar network properties, like diameter
and the fraction of nodes in the largest connected componentof the graph, as a function of the model param-
eter values. Second, we also ran simulations with fixed parameter configurations to check other properties
of MAG model that we did not theoretically analyze. In this way, we are able to qualitatively compare our
model to a real-world network.

8.1 MAG model parameter space

Here we focus on the simplified version of the MAG model and examine how various network properties
vary as a function of parameter settings. We fix all but one parameter and vary the remaining parameter. We
varyµ, α, f , andn in M(n, l, µ,Θ), whereα is the first entry of the affinity matrixΘ = [α β;β γ] andf
indicates a scalar factor ofΘ, i.e., Θ = f ·Θ0 for a constantΘ0 = [α0 β0;β0 γ0].

Figure 3 depicts the number of edges, the fraction of nodes inthe largest connected component, and the
effective diameter (the 90th-percentile distance [28]) ofthe network as a functionµ, α, f , andn for fixed
l = 8. First, we notice that the growth of network in the number of edges is slower than exponential since
the curves on the plot grow sub-linearly in Figure 3(a) with log scaledy-axis. Note that the network size
is roughly proportional ton2

(

µ2α+ 2µ(1− µ)β + (1− µ)2γ
)l

from Theorem 3.1. For example, by this
formula, the network size is proportional to thel-th power off , i.e., the eighth power off in this case. As the
expected number of edges is a polynomial function of each variable (µ, α, f andn), this sublinear growth
on the log scale agrees with our analysis. Furthermore, the larger the degree of the polynomial function for
each variable is, the closer to the straight line the networksize curve becomes. For instance, the network size
grows by the polynomial function of degree 16 overµ, whereas it grows by degree 2 overn. In Figure 3(a),
we thus observe that the network size growth overµ is even closer to the exponential curve than that overn.
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Second, in Figure 3(b), the size of the largest component shows a sharp thresholding behavior, which
indicates a rapid emergence of the giant component. This is very similar to thresholding behaviors observed
in other network models such as the Erdös-Rényi random graphs model [14]. The vertical line in the middle
of each figure represents the theoretical theshold for the unique giant connected component. As we analyzed,
each network contains at least half size of giant connected component at its threshold.

Last, while the previous two network properties monotonically change, in Figure 3(c) the effective
diameter of the network increases quickly up to about the point where the giant connected component forms
and then drops rapidly after that and approaches a constant value. This behavior is in accordance with
empirical observations of the “gelling” point where the giant component forms and the diameter starts to
decrease in the evolution of real-world networks [28, 33].

Furthermore, we also performed simulations where we fixΘ andµ but simultaneously increase bothn
andl by maintaining their ratio constant. Figure 4 plots the change in each network metric (network size,
fraction of the largest connected component, and effectivediameter) as a function of the number of nodesn
for different values ofµ. Each plot effectively represents the evolution of the MAG network as the number
of nodes grows over time. From the plots, we see that MAG modelfollows densification power law (DPL)
and the shrinking diameter properties of real-world networks [28]. Depending on the choice ofµ, one can
control the rate of densification and the diameter.

8.2 Degree Distributions

In addition to the network size, connectivity, and diameter, we also examined the degree distributions of
MAG graphs empricially. We already proved that the MAG modelcan give rise to networks that have either
a log-normal or a power-law degree distribution depending on the model parameters. Here we generate the
two versions of networks and compare their degree distributions.

Figure 5 exhibits the degree distributions of the two types of MAG model. While Figure 5(a) plots the
degree distributions of the simplified MAG modelM(n, l, µ,Θ), Figure 5(b) shows those of the power-
law MAG modelM(n, l, ~µ, ~Θ). For each case, the left plot represents the raw form of degree histogram,
whereas the right curve plots thecomplementary cumulative distribution(CCDF), which nicely removes
the noisy factor. In Figure 5(a), both raw and CCDF versions of distribution look parabolic on the log-
log scale, which verifies thatM(n, l, µ,Θ) has a log-normal degree distribution. On the other hand, in
Figure 5(b), both plots exhibit the straight line on the samescale, which indicates that the degree distribution
of M(n, l, ~µ, ~Θ) follows a power-law. All these experimental results agree with our analyses in Section 6
and Section 7.

8.3 Comparison to Real-world Networks

Also, we qualitatively compare the structural properties of a specific real-world network and the corre-
sponding MAG model. This leads to interesting questions of how to find optimal MAG model parameters
so that synthetic network resembles the given real-world network. The full resolution of these questions
lies beyond the scope of the present paper; currently, we searched by brute force over (the relatively small
number of) possible MAG parameter settings. We manually selected some parameter settings (forn, l, µ,Θ)
to synthesize the simplified MAG model and obtained the properties ofM(n, l, µ,Θ) to compare the MAG
model with a real-world network. Our goal is not to claim thatthese particular parameter values are in any
way “optimal” for the given real-world network but rather toshow that many properties of the MAG model
exhibit qualitatively similar behavior as real-world networks.
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Figure 3: Structural properties of a simplified MAG modelM(n, l, µ,Θ) when we fixl and vary a single
parameter one by one:µ, α, f , orn. As each parameter increases, in general, the synthetic network becomes
denser so that a giant connected component emerges and the diameter decreases to approach a constant.
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Figure 4: Structural properties of a simplified MAG graph as afunction of the number of nodesn for
different values ofµ (we fix the affinity matrixΘ = [0.85 0.7; 0.7 0.15] and the ratioρ = l/ log n = 0.596).
Observe not only that the relationship between the number ofedges and nodes obeys Densification Power
Law but also that the diameter begins shrinking after the giant component is formed [33].
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Figure 5: Degree distributions of simplified and power-law version of MAG graphs (see Section 7). We plot
both PDF and CCDF of the degree distribution. The simplified version in Figure (a) has parabolic shape on
log-log scale, which is an indication of a log-normal degreedistribution. In contrast, the power-law version
in Figure (b) shows a straight line on the same scale, which demonstrates a power-law degree distribution.
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For the real-world network, we use the Yahoo!-Flickr onlinesocial network on 10,240 nodes and 44,800
edges. For the simplified MAG modelM(n, l, µ,Θ), we usedl = 8, µ = 0.45,Θ = [0.85 0.30; 0.30 0.25]
with the same number of nodesn = 10, 240. Figure 6(a) and (b) illustrate the following properties ofthe
real-world and the corresponding synthetic network of the simplified MAG model (in the same order of
figures).

• Degree distributionis a histogram of the number of edges of a node [15].

• Singular valuesindicate the singular values of the adjacency matrix versustheir rank [16].

• Singular vectorrepresents the distribution of components in the left singular vector associated with
the largest singular value [12].

• Clustering coefficientrepresents the degree versus the average (local) clustering coefficient of nodes
of a given degree [43].

• Triad participationindicates the number of triangles that a node is adjacent to.It measures the transi-
tivity in networks [41].

• Hop plotshows the number of reachable pairs of nodes as the number of hops. It sketches how quickly
the network expands [40, 27].

Figure 6 reveals that the plots of properities of MAG model resemble those of Yahoo!-Flickr network.
Notice qualitatively similar behavior of nearly all properties between Figure 6(a) and (b). The only property
where the simplified MAG model does not match the Yahoo!-Flickr network seems to be the clustering
coefficient. As in real-world networks high degree nodes tend to have lower clustering, in the simplified
MAG model the situation is reverse – higher degree nodes alsotend to have higher clustering. This is
due to the fact that for all attributes we use the same affinitymatrix Θ which represents only the core-
perphery structure (α > β > γ). Thus, the simpified MAG model can only resemble the overallcore-
periphery shape of real-world networks. However, in the Yahoo!-Flickr network, we can also discover the
local clustering effect of homophily and network communityformation, which views the network in the
opposite way compared to the global core-periphery structure.

Hence, our hypothesis is that the local clustering of nodes would naturally emerge by mixing core-
periphery affinity matrices (α > β > γ) and homophily affinity matrices (α, γ > β). To investigate this, we
also generated the synthetic network with more general version of MAG model,M(n, l, ~µ, ~Θ). Figure 6(c)
illustrates the network properties of this general version. Note that this general version of the model nicely
captures the heavy-tailed cluestering coefficient distribution that the real-world network shows while the
simplified version cannot. For the other properties, the general version still exhibits distributions which
qualatatively seem similar to those of the real-world network.

By this experiment, we can find that MAG model is capable of representing real-world networks. Fur-
thermore, we verify the flexibility of MAG model in a sense that it can give rise to networks with different
network properties depending on the MAG model parameter configuration.

9 Conclusion

We presented the Multiplicative Attribute Graph model for real-world networks which considers the cate-
gorical node attributes as well as the affinity of link formation depending on the values of node attributes.
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(a) Yahoo!-Flickr network (b) Simplified MAG model (c) General MAG model

Figure 6: The comparison of network properties between real-world Yahoo!-Flickr online social network,
a simplified MAG model network, and a general version of MAG model. Except for clustering coefficient,
the properties of MAG model qualitatively resemble those ofthe Yahoo!-Flickr network even when it is
the simplified version in Figure (b). Moreover, the general version of the MAG model can represent all six
network properties of similar shape to real-world networksin Figure (c).
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We introduced the attribute-attribute affinity matrix to represent the affinity of link formation and provide
the flexibility in the network structure.

On the other hand, the MAG model is both analytically tractable and statistically interesting. In this
paper, we analytically showed several network properties observed in real-world networks. We proved that
the MAG model obeys the Densification Power Law. We also showed both the existence of unique giant
connected component and a small diameter in the MAG model. Furthermore, we mathematically analyzed
that the MAG model give rise to networks with either a log-normal or a power-law degree distribution.
Finally, we emprically verified our analytical results.

The MAG model is statistically interesting in a sense that itcan represent various types of network
structure as well as lead a problem that aims to find such structures of the given real-world networks in
terms of the MAG model parameters. However, we leave the parameter fitting problem as a venue of the
future work. Furthermore, future work includes other kindsof problems such as how to find underlying
network structures and missing node attributes where node attributes are partially observed.
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A Appendix: The Number of Edges

Proof of Lemma 3.2: LetN0
uv be the number of attributes that take value0 in bothu andv. For instance, if

a(u) = [0 0 1 0] anda(v) = [0 1 1 0], thenN0
uv = 2. We similarly defineN1

uv as the number of attributes
that take value1 in bothu andv. Then,N0

uv, N
1
uv ≥ 0 andN0

uv + N1
uv ≤ l as l indicates the number of

attributes in each node.
By definition of MAG model, the edge probability betweenu andv is

P [u, v] = αN0
uvβl−N0

uv−N1
uvγN

1
uv .

Since bothN0
uv andN1

uv are random variables, we need their conditional joint distribution to compute
the expectation of the edge probabilityP [u, v] given the weight of nodeu. Note thatN0

uv andN1
uv are

independent of each other if the weight ofu is given. Let the weight ofu be i, i.e., u ∈ Wi. Sinceu and
v can share value0 only for the attributes whereu already takes value0, N0

uv equivalently represents the
number of heads ini coin flips with probabiltiyµ. Therefore,N0

uv followsBin(i, µ). Similarly,N1
uv follows

Bin(l − i, 1− µ). Hence, their conditional joint probability is

P (N0
uv, N

1
uv |u ∈ Wi) =

(

i

N0
uv

)

µN0
uv(1− µ)i−N0

uv

(

l − i

N1
uv

)

µl−i−N1
uv(1− µ)N

1
uv .

Using this conditional probability, we can compute the expectation ofP [u, v] given the weight ofu:

E [P [u, v] |u ∈ Wi] = E

[

αN0
uvβi−N0

uvβl−i−N1
uvγN

1
uv |u ∈ Wi

]

=
i

∑

N0
uv=0

l−i
∑

N1
uv=0

(

i

N0
uv

)(

l − i

N1
uv

)

(αµ)N
0
uv ((1− µ)β)i−N0

uv (µβ)l−i−N1
uv ((1− µ)γ)N

1
uv

=





i
∑

N0
uv=0

(

i

N0
uv

)

(αµ)N
0
uv ((1− µ)β)i−N0

uv









l−i
∑

N1
uv=0

(

l − i

N1
uv

)

(µβ)l−i−N1
uv ((1− µ)γ)N

1
uv





= (µα+ (1− µ)β)i (µβ + (1− µ)γ)l−i .
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Proof of Lemma 3.3: By Lemma 3.2 and the linearity of expectation, we sum this conditional probability
over all nodes and result in the expectation of the degree given the weight of nodeu.

Proof of Theorem 3.1: We compute the number of edges,E [m], by adding up the degrees of all nodes
described in Lemma 3.3,

E [m] = E

[

1

2

∑

u∈V

deg(u)

]

=
1

2
n

l
∑

j=0

P (Wj)E [deg(u)|u ∈ Wj]

=
1

2
n

l
∑

j=0

(

l

j

)

µj(1− µ)l−j
E [deg(u)|u ∈ Wj]

=
1

2
n

l
∑

j=0

(

l

j

)

(

(n− 1) (µα+ (1− µ)β)j (µβ + (1− µ)γ)l−j + 2αjµjγl−j(1− µ)l−j
)

=
n(n− 1)

2

(

µ2α+ 2µ(1− µ)β + (1− µ)2γ
)l
+ n (µα+ (1− µ)γ)l .

Proof of Corollary 3.3.1: Suppose thatl =
(

ǫ− 1
log ζ

)

log n for ζ = µ2α+ 2µ(1 − µ)β + (1− µ)2γ and

ǫ > 0. By Theorem 3.1, the expected number of edges isΘ
(

n2ζ l
)

. Note thatlog ζ < 0 sinceζ < 1.
Therefore, the expected number of edges is

Θ(n2ζ l) = Θ
(

ζ l+
2 log n
log ζ

)

= Θ(n1+ǫ log ζ) = o(n) .

Proof of Corollary 3.3.2: Under the situation thatl ∈ o(log n), the expected number of edges is

Θ(n2ζ l) = Θ(n
2+( l

log n
) log ζ

) = Θ(n2+o(1) log ζ) = Θ(n2−o(1)) .

B Appendix: Connectivity

Since Theorem 4.3 is used to prove other theorems, we begin with the proof of it.

Proof of Theorem 4.3: If j ≥ i, for anyv ∈ Wi, we can generate a nodev(j) ∈ Wj from v by flipping
(j − i) attribute values that originally take1 in v. For example, ifa(v) = [0 1 1 0], thena(v(3)) = [0 0 1 0]
or [0 1 0 0]. Hence,P [u, v(j)] ≥ P [u, v] for v ∈ Wi.
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Here we note thatE
[

P
[

u, v(j)
]

|v ∈ Wi

]

= E
[

P
[

u, v(j)
]

|v(j) ∈ Wj

]

, because eachv(j) can be gen-
erated by

(j
i

)

differenta(v) sets with the same probability. Therefore,

E [P [u, v] |v ∈ Wj ] = E

[

E

[

P
[

u, v(j)
]

|v ∈ Wi

]]

≥ E [E [P [u, v] |v ∈ Wi]] = E [P [u, v] |v ∈ Wi] .

Next theorem plays a key role in proving Theorem 4.1 as well asTheorem 4.2.

Theorem B.1 Let|Sj | ∈ Θ(n) andE [P [u, V \u] |u ∈ Wj] ≥ c log n asn → ∞ for somej and sufficiently
large c. Then,Sj is connected with high probability asn → ∞.

Proof: LetS′ be a subset ofSj such thatS′ is neither an empty set norSj itself. Then, the expected number
of edges betweenS′ andSj\S′ is

E
[

P
[

S′, Sj\S′
]

| |S′| = k
]

= k · (|Sj | − k) · E [P [u, v] |u, v ∈ Sj]

for distinctu andv. By Theorem 4.3,

E [P [u, v] |u, v ∈ Sj] ≥ E [P [u, v] |u ∈ Sj, v ∈ V ]

≥ E [P [u, v] |u ∈ Wj, v ∈ V \u]

≥ c log n

n
.

Given the size ofS′ as k, the probability that there exists no edge betweenS′ and Sj\S′ is at most
exp

(

−1
2E [P [S′, Sj\S′] ||S′| = k]

)

by Chernoff bound. Therefore, the probability thatSj is disconnected
is bounded as follows:

P (Sj is disconnected) ≤
∑

S′⊂Sj ,S′ 6=∅,Sj

P (no edge between S′, Sj\S′)

≤
∑

S′⊂S,S′ 6=∅,Sj

exp

(

−1

2
E
[

P
[

S′, Sj\S′
]

||S′|
]

)

≤
∑

S′⊂S,S′ 6=∅,Sj

exp

(

−|S′|
(

|Sj | − |S′|
) c log n

2n

)

≤ 2
∑

1≤k≤|Sj |/2

(|Sj |
i

)

exp

(

−c|Sj| log n
4n

k

)

≤ 2
∑

1≤k≤|Sj |/2

|Sj |k exp
(

−c|Sj| log n
4n

k

)

≤ 2
∑

1≤k≤|Sj |/2

exp

((

log |Sj| −
c|Sj | log n

4n

)

k

)

= 2
∑

1≤k≤|Sj |/2

exp (−kΘ(log n)) (∵ |Sj| ∈ Θ(n))

= 2
∑

1≤k≤|Sj |/2

(

1

nΘ(1)

)k

≈ 1

nΘ(1)
∈ o(1)
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asn → ∞. Therefore,Sj is connected with high probability.

Now we turn our attention to the giant connected component. To show its existence, we investigateSµl,
Sµl+l1/6 , andSµl+l2/3 depending on the situation. The following lemmas tell us thesize of each subgraph.

Lemma B.2 |Sµl| ≥ n
2 − o(n) with high probability asn → ∞.

Proof: By Central Limit Theorem, |u|−µl√
lµ(1−µ)

∼ N(0, 1) asn → ∞, i.e., l → ∞. Therefore,P (|u| ≥ µl) is

at least12 − o(1) so |Sµl| ≥ n
2 − o(n) with high probability asn → ∞.

Lemma B.3 |Sµl+l1/6 | ∈ Θ(n) with high probability asn → ∞.

Proof: By Central Limit Theorem mentioned in Lemma B.2,

P (µl ≤ |u| < µl + l1/6) ≈ Φ(
l1/6

√

lµ(1− µ)
)− Φ(0) ∈ o(1)

asl → ∞ whereΦ(z) represents the cdf of the standard normal distribution.
SinceP (|u| ≥ µl + l1/6) is still at least12 − o(1), the size ofSµl+l1/6 is Θ(n) with high probability as
l → ∞, i.e., n → ∞.

Lemma B.4 |Sµl+l2/3 | ∈ o(n) with high probability asn → ∞.

Proof: By Chernoff bound,P (|u| ≥ µl+l2/3) is o(1) asl → ∞, thus|Sµl+l2/3 | iso(n) with high probability
asn → ∞.

Using the above lemmas, we show the existence and the uniqueness of the giant connected component under
the given condition.

Proof of Theorem 4.1:

(Existence). First, if
[

(µα+ (1− µ)β)µ (µβ + (1− µ)γ)1−µ
]ρ

> 1
2 , then by Lemma 3.3,

E [P [u, V \u] |u ∈ Wµl] ≈
[

2
[

(µα+ (1− µ)β)µ (µβ + (1− µ)γ)1−µ
]ρ]logn

= (1 + ǫ)log n > c log n

for some constantǫ > 0 and c > 0. Since|Sµl| ∈ Θ(n) by Lemma B.2,Sµl is connected with high
probability asn → ∞ by Theorem B.1. In other words, we are able to extract out a connected component
of size at leastn2 − o(n).

Second, when
[

(µα+ (1− µ)β)µ (µβ + (1− µ)γ)1−µ
]ρ

= 1
2 , we can apply the same argument for
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Sµl+l1/6 . Because|Sµl+l1/6 | ∈ Θ(n) by Lemma B.3,

E

[

P [u, V \u] |u ∈ Wµl+l1/6

]

≈
[

2
[

(µα+ (1− µ)β)µ (µβ + (1− µ)γ)1−µ
]ρ]logn

(

µα+ (1− µ)β

µβ + (1− µ)γ

)(ρ logn)1/6

=

(

µα+ (1− µ)β

µβ + (1− µ)γ

)(ρ logn)1/6

= (1 + ǫ′)ρ logn
1/6

which is also greater thanc log n asn → ∞ for some constantǫ′ > 0. Thus,Sµl+l1/6 is connected with
high probability by Theorem B.1.

Last, on the contrary, when
[

(µα+ (1− µ)β)µ (µβ + (1− µ)γ)1−µ
]ρ

< 1
2 , for u ∈ Wµl+l2/3 ,

E

[

P [u, V \u] |u ∈ Wµl+l2/3

]

≈
[

2
[

(µα+ (1− µ)β)µ (µβ + (1− µ)γ)1−µ
]ρ]logn

(

µα+ (1− µ)β

µβ + (1− µ)γ

)(ρ logn)2/3

=

[

(

1− ǫ′′
)ρ−2/3(logn)1/3

(

µα+ (1− µ)β

µβ + (1− µ)γ

)](ρ logn)2/3

is o(1) asn → ∞ for some constantǫ′′ > 0. Therefore, by Theorem 4.3, the expected degree of a node with
weight less thanµl+ l2/3 is o(1). However, sinceSµl+l2/3 is o(n) by Lemma B.4,n− o(n) nodes have less

thanµl+ l2/3 weights. Hence, most ofn− o(n) nodes are isolated so that the size of the largest component
cannot beΘ(n).

(Uniqueness). We already pointed out that eitherSµl or Sµl+l1/6 is the subset ofΘ(n) component when
the giant connected component exists. Let this component beH. Without loss of generality, suppose that
Sµl ⊂ H. Then, for any fixed nodeu,

P [u,H] ≥ P [u, Sµl] (∵ Sµl ⊂ H)

= |Sµl| · E [P [u, v] |v ∈ Sµl]

≥ |Sµl| · E [P [u, v] |v ∈ V \Sµl] (By Theorem 4.3)

=
|Sµl|

n− |Sµl|
P [u, V \Sµl]

SinceV \H ⊂ V \Sµl,

E [P [u, V \H ]] ≤ E [P [u, V \Sµl]] ≤
(

n− |Sµl|
|Sµl|

)

E [P [u,H]]

holds for everyu ∈ V .
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Suppose that another connected componentH ′ also containsΘ(n) nodes. We will show the condtradic-
tion if H andH ′ are not connected with high probability asn → ∞. To seeE [P [H,H ′]],

E
[

P
[

H,H ′
]]

= |H ′| · E
[

P [u,H] |u ∈ H ′
]

≥ |H ′| · |Sµl|
n− |Sµl|

E
[

P [u, V \Sµl] |u ∈ H ′
]

≥ |H ′| · |Sµl|
n− |Sµl|

E
[

P
[

u,H ′
]

|u ∈ H ′
]

(∵ H ′ ⊂ V \H ⊂ V \Sµl) .

However,E [P [u,H ′] |u ∈ H ′] ∈ Ω(1). Otherwise, since the probability thatu ∈ H ′ is connected to
H ′ is not greater thanE [P [u,H ′] |u ∈ H ′] by Markov Inequality,u is disconnected fromH ′ with high
probability asn → ∞. H ′ thus includes at least one isolated node with high probability asn → ∞. This is
contradiction to the connectedness ofH ′.

On the other hand, ifE [P [u,H ′] |u ∈ H ′] ∈ Ω(1), thenE [P [H,H ′]] ∈ Ω(n). In this case, by Chernoff
bound,H andH ′ are connected with high probability asn → ∞. This is also contradiction. Therefore,
there is noΘ(n) connected component other thanH with high probability asn → ∞.

Next, the proofs for the connectedness follow. Before the main proof, we present some necessary lemmas
and prove them.

Lemma B.5
(µ
x

)x
(

1−µ
1−x

)1−x
is a monotonically increasing function ofx over(0, µ).

Proof: Let f(x) be the log-value of the given function,i.e.,

f(x) = x (log µ− log x) + (1− x) (log (1− µ)− log (1− x)) .

To take the derivative off(x),

f ′(x) = (log µ− log x) + (log (1− x)− log (1− µ)) .

Sincex < µ and1− µ < 1− x, f ′(x) > 0 where0 < x < µ. This implies thatf(x) is strictly increasing,
so the given function is also strictly increasing over(0, µ).

Lemma B.6 If (1− µ)ρ ≥ 1
2 , thenVmin

l → 0 with high probability asn → ∞. Otherwise, if(1− µ)ρ < 1
2 ,

Vmin

l → ν with high probability asn → ∞ whereν is a solution of the equation

[

(µ
ν

)ν
(

1−µ
1−ν

)1−ν
]ρ

= 1
2

in (0, µ).

Proof: First, we assume that(1−µ)ρ ≥ 1
2 , which indicatesn(1−µ)ρ ≥ 1 by defition. Then, the probability

that |Wi| = 0 is at mostexp(−1
2E [|Wi|]) by Chernoff bound. However, for fixedµ,

E [|W1|] = n

(

l

1

)

µ1(1− µ)l−1 ≥ µ

1− µ
l ∈ O(l) .

Therefore, by Chernoff bound,P (|W1| = 0) → 0 as l → ∞. This implies thatVmin is o(l) with high
probability asn → ∞.
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Second, we look at the case that(1− µ)ρ < 1
2 . For anyǫ ∈ (0, µ − ν), to use Stirling’s approximation,

E
[

|W(ν+ǫ)l|
]

≈ n

(

l

(ν + ǫ)l

)

µ(ν+ǫ)l(1− µ)(1−(ν+ǫ))l

≈
√
2πl( le)

l

√

2π(ν + ǫ)l( (ν+ǫ)l
e )(ν+ǫ)l

√

2π(1 − (ν + ǫ))
(

(1−(ν+ǫ))l
e

)(1−(ν+ǫ))l

× nµ(ν+ǫ)l(1− µ)(1−(ν+ǫ))l

=
n

√

2πl(ν + ǫ) (1− (ν + ǫ))

[

(

µ

ν + ǫ

)ν+ǫ( 1− µ

1− (ν + ǫ)

)1−(ν+ǫ)
]l

.

Since
(µ
x

)x
(

1−µ
1−x

)1−x
is a increasing function ofx over(0, µ) by Lemma B.5,

(

µ

ν + ǫ

)ν+ǫ( 1− µ

1− (ν + ǫ)

)1−(ν+ǫ)

= (1 + ǫ′)

(

1

2

)1/ρ

= (1 + ǫ′)n−1/l

for some constantǫ′ > 0. Therefore,

E
[

|W(ν+ǫ)l|
]

=
(1 + ǫ′)l

√

2πl(ν + ǫ) (1− (ν + ǫ))

exponentially increases asl increases. By Chernoff bound,|W(ν+ǫ)l| is not zero with high probability as
l → ∞, i.e., n → ∞.

In a similar way,E
[

|W(ν−ǫ)l|
]

= (1−ǫ′)l√
2πl(ν−ǫ)(1−(ν−ǫ))

exponentially decreases asl increases. Since

E [|Wi|] ≥ E [|Wj |] if µl ≥ i ≥ j, the expected number of nodes with at most weight(ν − ǫ)l is less than
(ν − ǫ)l E

[

|W(ν−ǫ)l|
]

and its value goes to zero asl → ∞. Hence, by Chernoff bound, there exists no node
of the weight less than(ν − ǫ)l with high probability asn → ∞.

To sum up,Vmin

l goes toν with high probability asl → ∞, i.e., n → ∞.

Using the above lemmas, we show the condition that the network is connected.

Proof of Theorem 4.2: Let Vmin

l → t for a constantt ∈ [0, µ) asn → ∞.

If
[

(µα+ (1− µ)β)t (µβ + (1− µ)γ)1−t
]ρ

> 1
2 , by Lemma 3.3,

E [P [u, V \u] |u ∈ WVmin
] ≈ E [P [u, V \u] |u ∈ Wtl]

≈
[

2
[

(µα+ (1− µ)β)t (µβ + (1− µ)γ)1−t
]ρ]logn

= (1 + ǫ)logn

≥ c log n

for someǫ > 0 and sufficiently largec. Note thatSVmin
indicates the entire network by definition ofVmin.

Since|SVmin
| is Θ(n), SVmin

is connected with high probability asn → ∞ by Theorem B.1. Equivalently,
the entire network is also connected with high probabilityn → ∞.
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On the other hand, when(µα+ (1− µ)β)
Vmin
logn (µβ + (1− µ)γ)

l−Vmin
log n < 1

2 , the expected degree of a
node with|Vmin| weight iso(1) because from the above relationshipE [P [u, V \u] |u ∈ WVmin

] ≈ (1 −
ǫ′)logn for someǫ′ > 0. Thus, in this case, some node inWVmin

is isolated with high probability so the
network is disconnected.

C Appendix: Diameter

Theorem C.1 [7, 21] For an Erdös-Ŕenyi random graphG(n, p), if (pn)d−1/n → 0 and (pn)d/n → ∞
for a fixed integerd, thenG(n, p) has diameterd with probability approaching 1 asn → ∞.

Proof of Lemma 5.3: Let AG andAH be the probabilistic adjacency matrix of random graphsG andH,
respectively. IfAG

ij ≥ AH
ij for everyi, j andH has a constant diameter with high probability, then so does

G. It can be understood in the following way. To generate a network with AG, we first generate edges with
AH and further create edges with(AG −AH). However, as the edges created in the first step already result
in the constant diameter with high probability,G has a constant diameter.

Note thatminu,v∈Sλl
P [u, v] ≥ βλlγ(1−λ)l. Thus, it is sufficient to prove that the Erdös-Rényi random

graphG(|Sλl|, βλlγ(1−λ)l) has a constant diameter with high probability asn → ∞. However,

E [|Wλl|]βλlγ(1−λ)l = n

(

l

λl

)

µλl(1− µ)(1−λ)lβλlγ(1−λ)l

≈ n
√

2πlλ (1− λ)

(

µβ

λ

)λl ((1− µ)γ

1− λ

)(1−λ)l

(By Stirling approximation)

=
n

√

2πlλ (1− λ)
(µβ + (1− µ)γ)l (∵ λ =

µβ

µβ + (1− µ)γ
)

=
1

√

2πlλ (1− λ)
(2 (µβ + (1− µ)γ)ρ)logn

=
1

√

2πlλ (1− λ)
(1 + ǫ)logn

for someǫ > 0.
Since this value goes to infinity asn → ∞, so doesE [Wλl]. Therefore, by Chernoff bound,|Wλl| ≥

cE [Wλl] with high probability asn → ∞ for some constantc. Then,

|Sλl|βλlγ(1−λ)l ≥ |Wλl|βλlγ(1−λ)l

≥ cE [|Wλl|] βλlγ(1−λ)l

≈ c
√

2πlλ (1− λ)
(1 + ǫ)logn .

By Theorem C.1, an Erdös-Rényi random graphG(|Sλl|, c(1+ǫ)log n

|Sλl|
√

2πlλ(1−λ)
) has a diameter of at most

(

1 + ln 2
ǫ

)

with high probability asn → ∞. Thus, the diamters ofG(|Sλl|, βλlγ(1−λ)l) as well asSλl are
also bounded by a constant with high probability asn → ∞.
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Proof of Lemma 5.3: For anyu ∈ V ,

P [u, Sλl] ≥
l

∑

j=λl

n

(

l

j

)

µj(1− µ)l−jβjγl−j

=
l

∑

j=λl

n

(

l

j

)

λj(1− λ)l−j

(

µβ

λ

)j ((1− µ)γ

1− λ

)l−j

=

l
∑

j=λl

n

(

l

j

)

λj(1− λ)l−j (µβ + (1− µ)γ)l

= (2 (µβ + (1− µ)γ)ρ)logn





l
∑

j=λl

(

l

j

)

λj(1− λ)l−j



 .

By Centeral Limit Theorem,
∑l

j=λl

(l
j

)

λj(1 − λ)l−j converges to12 as l → ∞. Therefore,P [u, Sλl] is
greater thanc log n for a constantc, and then, by Chernoff bound,u is directly connected toSλl with high
probability asn → ∞.

D Appendix: Degree Distribution

Theorem D.1 [45] P (deg(u) = k) =
∫

u∈V

(n−1
k

)

(E [P [u, v]])k (1− E [P [u, v]])n−1−k du .

Corollary D.1.1 For Ej = (µα+ (1− µ)β)j (µβ + (1− µ)γ)l−j,
the probability of degreek in M(n, l, µ,Θ) is pk =

∑l
j=0

(l
j

)

µj(1− µ)l−j
(n−1

k

)

Ek
j (1− Ej)

n−1−k .

Proof: To reformulate Theorem D.1,

P (deg(u) = k) =

l
∑

j=0

P (u ∈ Wj)

(

n− 1

k

)

(E [P [u, v] |u ∈ Wj])
k (1− E [P [u, v] |u ∈ Wj])

n−1−k .

Therefore, by applying Lemma 3.2, we obtain the desired formula.

Proof of Theorem 6.1:To reduce the space, we begin by defining some notations as follow:

x = µα+ (1− µ)β

y = µβ + (1− µ)γ

fj(k) =

(

n− 1

k

)

(

xjyl−j
)k (

1− xjyl−j
)n−1−k

gj(k) =

(

l

j

)

µj(1− µ)l−jfj(k) .

By Corollary D.1.1, we can restatepk as
∑l

j=0 gj(k).
If most of those terms turn out to be insignificant under our assumptions, the probabilitypk can be

approximately proportional to one or few dominant terms. Inthis case, what we need to do is thus to seek
for j that maximizesgj(k) =

(

l
j

)

µj(1− µ)l−jfj(k) and find its approximate formula.
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We start with the approximation offj(k). For largen andk, by Stirling approximation,

fj(k) ≈
√
2πn(n/e)n

(

xjyl−j
)k (

1− xjyl−j
)n−k

√
2πk(k/e)k

√

2π(n − k) ((n− k)/e)n−k

=
1

√

2πk
(

1− k
n

)

(

nxjyl−j

k

)k (
1− xjyl−j

1− k/n

)n−k

.

However, the expected degree of maximum weight node isO(n (µα+ (1− µ)β)l), so is the expected
maximum degree.k is thuso(n) with high probability asn → ∞, i.e., l → ∞.

∴

(

1− xjyl−j

1− k/n

)n−k

≈ exp
(

−(n− k)xjyl−j + (n− k)k/n
)

≈ exp(−nxjyl−j + k) .

For sufficiently largel, we can further simplifygj(k) by normal approximation of the binomial distribu-
tion:

ln gj(k) = ln

(

l

j

)

µj(1− µ)l−j + ln fj(k)

≈ −1

2
ln (2πlµ(1− µ))− 1

2lµ(1 − µ)
(j − µl)2 + ln fj(k)

≈ C − 1

2lµ(1− µ)
(j − µl)2 − 1

2
ln k − k ln

k

nxjyl−j
+ k

(

1− nxjyl−j

k

)

for some constantC. Whenk = nxτyl−τ for τ ≥ µl andR = x
y ,

ln gj(k) ≈ C − 1

2lµ(1− µ)
(j − µl)2 − 1

2
ln k + k(j − τ) lnR+ k

(

1−Rj−τ
)

.

Using(j − µl)2 = (j − τ)2 + (τ − µl)2 + 2(j − τ)(τ − µl),

ln gj(k) ≈ Cτ −
(j − τ)2

2lµ(1− µ)
+ (j − τ)

(

k lnR− τ − µl

lµ(1− µ)

)

+ k
(

1−Rj−τ
)

− 1

2
ln k

for Cτ = C − (τ−µl)2

2lµ(1−µ) .

Consideringgj(k) as a function ofj, notk, now we findj that maximizesgj(k) for k = nxτyl−τ . How-
ever, the median weight is approximately equal toµl by Central Limit Theorem. If we focus on the higher

half degrees. we can thus letτ ≥ µl. In this case, since
[

(µα+ (1− µ)β)µ (µβ + (1− µ)γ)1−µ
]ρ

> 1
2 ,

∴ k ≥
[

(µα+ (1− µ)β)µ (µβ + (1− µ)γ)1−µ
]ρ

∈ Ω(l) .

If we differentiateln gj(k) overj,

(ln gj(k))
′ ≈ − j − τ

lµ(1− µ)
+

(

k lnR− τ − µl

lµ(1− µ)

)

− kRj−τ lnR = 0 .

Becausek ∈ Ω(l) andj, τ ∈ O(l), we can conclude thatRj−τ ≈ 1 asn → ∞; otherwise,| (ln gj(k))′ |
grows as large asΩ(k). Therefore, whenj ≈ τ , gj(k) is maximized.
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Furthermore, since| j−τ
2lµ(1−µ) | ≪ k lnR asn → ∞, the first quadratic term(j−τ)2

2lµ(1−µ) in ln gj(k) is
negligible. As a result, whenR is practical (close to1.6 ∼ 3), ln gτ+∆ would be at most(Θ(−k|∆|)− ln gτ )
for ∆ ≥ 1. After all, gτ effectively dominates the probabilitypk, i.e., ln pk is roughly proportional toln gτ .

By assigningτ = ln k−lnnyl

lnR , we obtain

ln pk ≈ C − 1

2lµ(1− µ)

(

ln k − lnnyl

lnR
− µl

)2

− 1

2
ln k

= C ′ − 1

2lµ(1− µ)(lnR)2

(

ln k − lnnyl − lµ lnR− 1

2
lµ(1− µ)(lnR)2

)2

− ln k .

for some constantC ′. Therefore, the degree distributionpk approximately follows the log-normal as de-
scribed in Theorem 6.1.

E Appendix: Power-law Distribution

Proof of Lemma 7.2: Sinceai’s are independently distributed Bernoulli random variables, Lemma 7.2
holds.

Proof of Lemma 7.3: Let’s definePj(u, v) as the edge probability betweenu andv when considering only
up to thej-th attribute,i.e.,

Pj(u, v) =

j
∏

i=1

Θi [ai(u), ai(v)] .

Thus, what we aim to show is that for a nodev,

E [Pl(u, v)] =

l
∏

i=1

(µiαi + (1− µi)βi)
1{ai(u)=0} (µiβi + (1− µi)γi)

1{ai(u)=1} .

Whenl = 1, it is trivially true by Lemma 3.2. Whenl > 1, suppose that the above formula holds for
l = 1, 2, · · · , k. SincePk+1(u, v) = Pk(u, v)Θk+1 [ak+1(u), ak+1(v)],

E [Pk+1(u, v)]

= E [Pk(u, v)]E [Θk+1[ak+1(u), ak+1(v)]]

= E [Pk(u, v)] (µk+1αk+1 + (1− µk+1)βk+1)
1{ak+1(u)=0}(µk+1βk+1 + (1− µk+1)γk+1)

1{ak+1(u)=1}

=
k+1
∏

i=1

(µiαi + (1− µi)βi)
1{ai(u)=0} (µiβi + (1− µi)γi)

1{ai(u)=1} .

Therefore, the expected degree formula described in Lemma 7.3 holds for everyl ≥ 1.

Proof of Theorem 7.1: Before the main argument, we need to define the ordered probability mass of
attribute vectors asp(j) for j = 1, 2, · · · , 2l. For example, if the probability of each attribute vector
(00, 01, 10, 11) is respectively0.2, 0.3, 0.4, and0.1 whenl = 2, the ordered probability mass isp(1) = 0.1,
p(2) = 0.2, p(3) = 0.3, andp(4) = 0.4.
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Then, by Theorem D.1, we can express the probability of degreek, pk, as follows:

pk =

(

n− 1

k

) 2l
∑

j=1

p(j)(Ej)
k(1− Ej)

n−1−k (2)

whereEj denotes the average edge probability of the node which has the attribute vector corresponding to
p(j). If p(j)’s andEj ’s are configured so that few terms dominate the probability,we may approximatepk
as

(n−1
k

)

p(τ)(Eτ )
k(1−Eτ )

n−1−k for τ = argmaxj p(j) (Ej)
k (1− Ej)

n−1−k. Assuming that this approx-
imation holds, we will propose a sufficient condition for thepower-law degree distribution and suggest an
example for this condition.

To simplify computations, we propose a condtion thatp(j) ∝ E−δ
j for a constantδ. Then, thej-th term

is
(

n− 1

k

)

p(j) (Ej)
k (1− Ej)

n−1−k ∝
(

(Ej)
k−δ (1− Ej)

n−1−k
)

,

which is maximized whenEj ≈ k−δ
n−1−δ . Moreover, under this condition, ifEj+1/Ej is at least(1 + z) for

a constantz > 0, then
p(τ+∆) (Eτ+∆)

k (1− Eτ+∆)
n−1−k

p(τ) (Eτ )
k (1− Eτ )

n−1−k

is o(1) for ∆ ≥ 1 asn → ∞. Therefore, theτ -th term dominates the Equation (2).
Next, by the Stirling approximation with above conditions,

pk ≈
(

n− 1

k

)(

k − δ

n− 1− δ

)k−δ (n− 1− k

n− 1− δ

)n−1−k

∝ 1
√

k(n − 1− k)
(k − δ)−δ

(

(n − 1)(k − δ)

k(n− 1− δ)

)k ( n− 1

n− 1− δ

)n−1−k

∝ k−1/2 (k − δ)−δ

(

1− δ

k

)k

≈ k−δ−1/2 exp(−δ)

for sufficiently largek andn. Thus,pk is approximately proportional tok−
1
2
−δ for largek asn → ∞.

Last, we prove that the two conditions for the power-law degree distribution are simultaneously feasible
by providing an example configuration.

If everyp(j) is distinct and µi

1−µi
=

(

µiαi+(1−µi)βi

µiβi+(1−µi)γi

)−δ
, then we satisfy the condition thatp(j) ∝ (Ej)

−δ

by Lemma 7.2 and Lemma 7.3. On the other hand, if we setµi

1−µi = (1 + z)−2iδ, then the other condition,
Ej+1/Ej ≥ (1+z) is also satisfied. Since we are free to configureµi’s andΘi’s independently, the sufficient
condition for the power law degree distribution is feasible.
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