
 

 

NAVAL 
POSTGRADUATE 

SCHOOL 
 

MONTEREY, CALIFORNIA 
 

 
 

THESIS 
 
 

Approved for public release. Distribution is unlimited. 

A SOLAR BRAYTON CYCLE WITH METAL PHASE 
CHANGE THERMAL STORAGE 

 
by 

 
Barrett C. Roof 

 
June 2017 

 
Thesis Advisor:  Anthony J. Gannon 
Second Reader: Garth V. Hobson 



THIS PAGE INTENTIONALLY LEFT BLANK 

  



 i 

REPORT DOCUMENTATION PAGE Form Approved OMB  
No. 0704–0188 

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing 
instruction, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection 
of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including 
suggestions for reducing this burden, to Washington headquarters Services, Directorate for Information Operations and Reports, 1215 
Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork 
Reduction Project (0704-0188) Washington, DC 20503. 

1. AGENCY USE ONLY 
(Leave blank) 

2. REPORT DATE  
June 2017 

3. REPORT TYPE AND DATES COVERED 
Master’s Thesis 

4. TITLE AND SUBTITLE  
A SOLAR BRAYTON CYCLE WITH METAL PHASE CHANGE THERMAL 
STORAGE 

5. FUNDING NUMBERS 
 

6. AUTHOR(S) Barrett C. Roof 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 
Naval Postgraduate School 
Monterey, CA 93943-5000 

8. PERFORMING 
ORGANIZATION REPORT 
NUMBER  

9. SPONSORING /MONITORING AGENCY NAME(S) AND 
ADDRESS(ES) 
 

10. SPONSORING / 
MONITORING AGENCY 
REPORT NUMBER 
 

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the 
official policy or position of the Department of Defense or the U.S. Government. IRB number ____N/A____. 

12a. DISTRIBUTION / AVAILABILITY STATEMENT  
Approved for public release. Distribution is unlimited. 

12b. DISTRIBUTION CODE 
 

13. ABSTRACT (maximum 200 words)  
 

The Department of the Navy (DON) has prioritized the establishment of a robust renewable energy 
platform for its installations. Solar energy has emerged in a way that has provided viable alternatives. The 
use of solar energy, however, poses a problem of maintaining continuity of power during hours when 
sunlight is not available. The development of Thermal Energy Storage (TES), while addressing this 
problem, introduces complexities that can reduce overall plant efficiency. This research aims to simplify 
the plant design in a way that minimizes such complexities and maximizes efficiency. 

The research in this thesis explores a new design that integrates static molten metal baths with the 
solar collector. The proposed initial design is centered on a simple open air Brayton cycle. Aluminum was 
selected as the phase change metal, providing latent heat to the air in the collector during hours of non-
daylight through freezing. The research focuses on the thermodynamic analysis of the system, initial 
collector design requirements, and minimum volumetric requirements of the aluminum phase change 
metal. An analytical and numerical flow optimization study of the system was performed for comparison to 
design calculations. 

 

 
14. SUBJECT TERMS  
thermal energy storage, thermodynamics, heat transfer, fluid dynamics 

15. NUMBER OF 
PAGES  

129 

16. PRICE CODE 

17. SECURITY 
CLASSIFICATION OF 
REPORT 

Unclassified 

18. SECURITY 
CLASSIFICATION OF THIS 
PAGE 

Unclassified 

19. SECURITY 
CLASSIFICATION OF 
ABSTRACT 

Unclassified 

20. LIMITATION 
OF ABSTRACT 
 

UU 

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)  
 Prescribed by ANSI Std. 239-18 



 ii

THIS PAGE INTENTIONALLY LEFT BLANK 

  



 iii

 
Approved for public release. Distribution is unlimited. 

 
 

A SOLAR BRAYTON CYCLE WITH METAL PHASE CHANGE THERMAL 
STORAGE 

 
 

Barrett C. Roof 
Lieutenant, United States Navy 

B.S., Thomas Edison State University, 2008 
 
 

Submitted in partial fulfillment of the 
requirements for the degree of 

 
 

MASTER OF SCIENCE IN MECHANICAL ENGINEERING 
 

from the 
 

NAVAL POSTGRADUATE SCHOOL 
June 2017 

 
 
 
 
 

Approved by:  Anthony J. Gannon, Ph.D. 
Thesis Advisor 

 
 
 

Garth V. Hobson, Ph.D. 
Second Reader 

 
 
 

Garth V. Hobson, Ph.D. 
Chair, Department of Mechanical and Aerospace Engineering 



 iv

THIS PAGE INTENTIONALLY LEFT BLANK 

  



 v

ABSTRACT 

The Department of the Navy (DON) has prioritized the establishment of a robust 

renewable energy platform for its installations. Solar energy has emerged in a way that 

has provided viable alternatives. The use of solar energy, however, poses a problem of 

maintaining continuity of power during hours when sunlight is not available. The 

development of Thermal Energy Storage (TES), while addressing this problem, 

introduces complexities that can reduce overall plant efficiency. This research aims to 

simplify the plant design in a way that minimizes such complexities and maximizes 

efficiency. 

The research in this thesis explores a new design that integrates static molten 

metal baths with the solar collector. The proposed initial design is centered on a simple 

open air Brayton cycle. Aluminum was selected as the phase change metal, providing 

latent heat to the air in the collector during hours of non-daylight through freezing. The 

research focuses on the thermodynamic analysis of the system, initial collector design 

requirements, and minimum volumetric requirements of the aluminum phase change 

metal. An analytical and numerical flow optimization study of the system was performed 

for comparison to design calculations. 
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I. INTRODUCTION 

The purpose of this thesis is to present an analysis of a new solar thermal plant 

design that integrates Thermal Energy Storage (TES) into the solar collector heat 

exchanger. The availability of sunlight is intermittent; therefore, TES systems are 

required to supplement the solar energy in order to meet the demands of supported 

installations. TES as separate sub-systems, however, can introduce complexities that are 

costly and reduce the overall efficiency of the plant. The design of the plant in this thesis 

focuses on simplicity in a way that eliminates the complexities presented by current TES 

systems. The goal is to provide a launch pad for continued research and refinement of the 

design. 

The standard Brayton cycle describes the basic design of the plant. The working 

fluid, air, receives heat directly via the concentration of the sun’s radiation into the solar 

collector heat exchanger. The heat exchanger air ducts in the prototype design are 

embedded in a static molten aluminum bath. This bath requires no pumping of the metal 

and simply freezes and thaws around the air ducts. The latent heat energy from this phase 

change metal continues to heat the air as the metal freezes. This thesis provides a 

thermodynamic analysis of the plant, minimum volumetric requirements of the aluminum 

phase change metal, as well as basic geometric design requirements of the solar collector. 

In addition to the prototype design requirements, the air flow was optimized to 

observe plant behavior. Given a specified design power, a basic thermodynamic analysis 

yields a design mass flow specification. By optimizing the mass flow for power, 

however, the same plant design could potentially exceed design power, allowing for a 

transitional operating range between day and night. Analytical and numerical methods 

were conducted in this study to determine the effects on power while varying mass flow. 

A. ENERGY GOALS 

The United States Department of Defense (DOD) is the largest consumer of 

energy of all the federal government agencies, making up at least 80% of the 

government’s energy consumption, as stated by Schwartz [1]. Of the DOD’s energy use, 
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Schwartz [1] also included that installations make up 25% of that share. In response, the 

DOD has taken action to revise its strategy toward energy, investing heavily in the 

research and development of renewable energy sources used to supplement commercial 

grid power for defense installations. Ultimately, the goal of the DOD, as discussed by 

Feldman [2], is to produce 25% of its energy from renewables by the year 2025. 

The Department of the Navy (DON) has responded to the DOD’s energy goals 

with a more aggressive agenda. In the DON’s Strategy for Renewable Energy, Secretary 

of the Navy (SECNAV) Ray Mabus set five energy goals for the Navy, one that directly 

applies to energy use by installations. He directed that “by 2020, DON will produce at 

least 50% of shore based energy requirements from alternative sources; 50% of DON 

installations will be net-zero” [3]. Security and independence were asserted by Mabus [3] 

as the Navy’s two energy priorities. Based on these priorities, the DON has taken action 

to reduce its carbon foot print both operationally and with its installations. 

The DON currently leads the DOD in solar energy development, as shown by the 

Solar Energy Industries Association (SEIA) [4]. Figure 1 illustrates the comparison of the 

Navy to other branches of service with regard to installed solar energy. 

 

Figure 1. Installed Solar Capacity by Branch. Source: [4]. 
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By comparison, the Navy has made significant gains over its counterparts in the 

development and implementation of solar energy. As of 2013, due largely in part to the 

implementation of the Navy’s One Gigawatt (1GW) program, the Navy has installed over 

58MW for various installations, as stated by SEIA [4]. It is through this program that the 

Navy executes its goals set by SECNAV. According to McGinn [5], by 2015 the Navy 

had actually exceeded its energy goals for installations, but not entirely due to organic 

renewable energy production on its own installations. Part of the 1GW program included 

provisions known as Power Purchase Agreements (PPA) that allow the procurement of 

renewable energy from outside commercial sources, according to the DON [6]. While 

PPAs might be a necessity for some installations where land availability is a challenge, 

they do not allow installations to operate independently from commercial grids. For true 

energy security, an installation would need to produce its own power through organic 

growth of its power production. 

Installations continue to be a viable candidate for the development of solar 

energy. Unlike vessels and other forms of operational equipment where space is limited, 

shore based installations provide the necessary space to build full-scale plants capable of 

supplying a significant share of the demand. 

While solar power is promising in enabling the DON achieve its strategic goals, it 

does not come without challenges. The primary concern of utilizing solar energy to 

power facilities is overcoming the intermittent loss of the power source, the sun. It is 

during these times that the disruption of power must be addressed, especially as a matter 

of security for DOD installations. 

B. BACKGROUND AND LITERATURE REVIEW 

The sun’s radiation is an excellent source of clean renewable energy. Many 

factors, however, can cause disruptions in the power source such as non-daylight hours, 

adverse weather conditions (cloud cover), and seasonal variations throughout the year. 

These factors are more prominent in some geographical regions than others that can 

further complicate the planning and development of solar renewable energy in DOD 

installations across the nation. 
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The National Renewable Energy Laboratory (NREL) [7] published a map of the 

United States that illustrates by color code the variance of concentrating solar resource on 

an average annual basis. Figure 2 illustrates how the change in local geographic climate 

across the country can provide either more or less advantage for the utilization of 

concentrating solar thermal energy. 

 

Figure 2. Concentrating Solar Resource of the United States. Source: [7]. 

The southern regions of California and Nevada, as well as Arizona and New 

Mexico, provide the best prospects for the development of solar power due to the 

generally dry and sunny climates. In other regions weather and seasonal variations are 

more prominent that result in a greater need for efficient TES systems to supplement the 

solar energy source. 

Thermal Energy Storage refers to methods where thermal energy is extracted and 

stored for later use, as described by the International Renewable Energy (IRENA) [8]. 

Many design concepts to supplement larger scale concentrating solar power plants 

currently exist that achieve this purpose and typically fall into two main categories: 

sensible heat storage and latent heat storage, both of which were discussed by IRENA 
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[8]. Figure 3 is an example of a centralized solar thermal plant that uses thermal salt 

thermal energy storage. 

Figure 3. Centralized Solar Thermal Plant with Thermal Energy Storage. 
Source: [9]. 

IRENA published general efficiency ratings for TES modes in Table 1.  TES 

systems are not 100% efficient. All forms of TES will lose some heat to the surroundings 

that can be mitigated through proper insulation technologies. Most forms of TES, 

however, require energy in the form of pumps or other devices to circulate the energy 

back into the cycle for continued power. Heat losses and design complexities can 

therefore impact the efficiency of these systems. 
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Table 1.   Efficiencies of Thermal Energy Storage Systems. Adapted from [8]. 

TES Mode Efficiency [%] 

Sensible Heat 50-90 

Latent Heat 75-90 

 

1. Sensible Heat Storage 

Sensible heat TES refers to methods where energy is transferred to a medium 

without the involvement of a phase change. Many designs using this method have two 

reservoirs of hot and cold media. Common sensible heat storage systems use water or 

molten salts as the heat transfer medium. 

While the cost of such systems may be relatively low, the volumetric 

requirements are higher due to the lower energy density of these materials, as discussed 

by IRENA [8]. These systems require additional energy to circulate the media in order to 

continue powering the cycle that can lead to lower plant efficiency and increased plant 

complexity. 

Herrmann and Kearney [10] show how sensible heat TES systems are among the 

most widely used form, with molten salts being the preferred candidate for larger scale 

plants. Other forms have been investigated, such as water. While hot water storage is 

inexpensive and easy to procure, its use is typically limited to micro grids, as discussed 

by Hinke [11]. Water has a low energy density; therefore, the resulting large volumetric 

requirements could be problematic when scaling up for commercial use. For this reason, 

existing commercial solar plants have widely been using molten salts, such as the 

Andasol Power Station in Figure 4, located in Andalusia, Spain. The Andasol Power 

Station in Spain operates a molten salt sensible heat thermal energy storage system. It 

consists of three power plants, each rated at 50 MW, and provides heating from thermal 

storage for up to eight hours [12]. 
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Figure 4. Andasol Parabolic Trough Solar Power Plant with 
Molten Salt TES. Source: [13]. 

Current designs of molten salt TES systems are complex, involving the circulation 

of up to three heat transfer mediums: a heat transfer fluid (HTF), typically oil, the molten 

salt, and a Rankine cycle working fluid (water), as stated by Herrmann and Kearney [10, 

14]. Figure 5 provides an illustration of a typical molten salt TES system powering a 

Rankine cycle with a parabolic trough collector. 

 

Figure 5. Parabolic Trough Solar Power Plant Utilizing 
Molten Salt TES. Source: [15]. 



 8

In this system, the HTF is heated through the parabolic troughs that direct the 

sun’s radiation to heat transfer pipes. The hot HTF is circulated to power the Rankine 

cycle as well as heat the molten salts that are circulated through a common heat 

exchanger, shown by Abutayeh et al. [14]. During times when the sunlight is not 

available, the molten salts are then recirculated while heating the HTF to power the 

Rankine cycle, as discussed by Abutayeh et al. [14]. 

Complexity is often the main disadvantage of using molten salts as thermal 

energy storage, as well as the added volumetric requirements, although efforts have been 

made to explore design variations that address these problems. For example, Gil et al. 

[16] proposed a new concept that reduced the molten salt storage volume to one tank that 

is directly heated by the sun. The design prototype would also remove the need for 

pumping the salts as a result. 

2. Latent Heat Storage 

Other forms of TES systems utilize the latent heat of phase change materials 

(PCM) to provide additional thermal energy needed to power the cycle. In general, the 

sun’s radiation is used to melt a particular PCM at a constant temperature while the 

energy from the subsequent refreezing process is transferred back into the system. Unlike 

sensible heat storage, PCMs enable a more controlled form of energy transfer, as 

discussed by IRENA [8] as the temperature of the medium remains constant throughout 

the phase change. The energy density of PCMs can be much higher than that of sensible 

heat media, especially for metals, according to Li et al. [17], resulting in reduced 

volumetric requirements. 

Metals as a phase change material are an excellent form of TES. In addition to the 

higher energy density compared to sensible heat media, Kotze and von Backstrom [18] 

discuss how metals typically have a much higher conductivity that greatly enhances the 

heat transfer rate when the TES is in use. The metal selected for the integrated latent heat 

thermal storage in this thesis is Aluminum, based on its thermo-physical properties that 

make it an ideal candidate for Brayton cycle operation. 
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Jiang et al. [19] researched the possibility of using salt as a phase change material, 

exploiting its latent heat abilities, vice sensible heat. As shown in Table 2.  the molten 

salt under investigation, Na2CO3-NaCl showed comparable melting temperature and heat 

of fusion specifications to that of standard aluminum. The aluminum, however, has a far 

superior thermal conductivity for heat transfer. 

Table 2.   Latent Heat Material Properties of Aluminum and Molten Salt. 
Adapted from [10, 19]. 

Medium 
Melting Temperature 

[C] 
Heat of Fusion 

[kJ/kg] 
Thermal Conductivity 

[W/m-K] 

Molten Salt 637 332 2 

Aluminum 660 398 205 
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II. THERMODYNAMIC ANALYSIS 

When designing a new power system, the basic operating limits must first be 

established as a foundation to guide the design of the components. The first step is to 

conduct a thermodynamic analysis of the cycle based on known parameters and 

uncontrolled operating conditions, such as the atmosphere. 

A. GOVERNING EQUATIONS 

The governing equations of mass, energy, and entropy provide a complete 

description the cycle. These equations are coupled with reasonable assumptions of the 

fluid and processes that allow for the calculation of pressure, temperature, heat transfer, 

and work. 

1. Continuity 

The mass of a control volume is accounted for by the continuity equation that 

states that mass can neither be created nor destroyed. The mathematical equation that 

accounts for the sum of all mass entering the control volume, exiting the control volume, 

and any rate of change within, is commonly known. 

 
     

0
     

   
   

u v w

t x y z
 (1) 

This equation describes the continuity of mass in Cartesian coordinates. In 

thermodynamics, a broader definition is used to account for the sum of the mass flows 

entering and exiting a system, as well as any change inside. 

 . .C V
i e

dm
m m

dt
      (2) 

Power systems such as the cycle analyzed in this thesis, are typically analyzed as 

steady state processes, where the rate of change of mass equals zero. Therefore, the 

continuity equation, as applied to the analysis of a single entry-single exit system, can be 

written as: 
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 i em m m      (3) 

From this expression, the mass flow entering the system equals the mass flow 

exiting the system, and therefore the subscript can be removed. This key relationship will 

further guide the first and second law analysis of the plant. 

2. First Law of Thermodynamics 

The first law of thermodynamics describes the continuity of energy [20]. Similar 

to the law of conservation of mass, energy can neither be created nor destroyed. This law 

accounts for all sources of energy entering and exiting a system: heat, work, and flow. 

 2 2. .
. . . .

1 1
2 2

C V
C V C V i i i i e e e e

dE
Q W m h V gZ m h V gZ

dt
   

          
   

      (4) 

When analyzing plant cycles at steady state, it is assumed that the change in 

height and the change in velocity are negligible across each process. Additionally, since 

there is no change in the mass flow throughout the cycle, the first law equation is reduced 

to the following format and will be used to describe each process of the cycle. 

  . . . . 0C V C V i eQ W m h h        (5) 

3. Second Law of Thermodynamics 

The second law of thermodynamics, in conjunction with the first law, provides the 

total basis for a cycle analysis. While the first law conserves energy, the second law 

describes the direction a cycle actually occurs. 

 . . . .C V C V
i i e e gen

dS Q
m s m s S

dt T
   


    (6) 

This equation describes the entropy that exists in the flow as well as heat 

generated in the process. The last term describes the rate that entropy is generated in the 

process. For reversible processes, the generation term is zero but in reality it can never be 

less than zero, thereby showing that entropy is not necessarily conserved. Based on this 

phenomenon, the second law can be reduced to the following form that will be used to 

analyze the power cycle: 
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   . . 0C V
i e

Q
m s s

T
  


   (7) 

B. CYCLE ANALYSIS 

Figure 6 provides a basic illustration of the open air Brayton cycle with the solar 

collector and the connected turbine and compressor. 

 

Figure 6. Open Air Brayton Cycle with Solar Collector. 

In this cycle, air enters the compressor from the atmosphere (state 1) and is 

compressed to a high pressure gas before entering the solar collector (state 2). The solar 

collector transfers heat to the air, increasing its temperature in a constant pressure process 

(state 3). Finally, the high temperature, high pressure air is used to create work through 

the turbine process before exhausting to the atmosphere (state 4). 

1. Pressure and Temperature 

The initial design of the solar plant is based on the concept of an ideal open 

Brayton cycle. In this cycle, the compressor and turbine processes are assumed to be 

reversible, meaning there is no change in entropy as losses due to friction or other means 

are neglected. The heat transfer occurs by raising the temperature of the fluid on a 

constant pressure line, where state 3 represents an operating limit. 
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A Temperature-Entropy (T-S) diagram of a standard Brayton Cycle, as shown in 

Figure 7, illustrates the change of state of the fluid through each process of the cycle. 

Each number in the diagram represents the corresponding state of the fluid. 

 

Figure 7. Temperature-Entropy Diagram of Brayton Cycle. Adapted from 
[21]. 

The working fluid for this cycle is treated as an ideal gas, where the specific heat 

is assumed to be constant. Based on these assumptions, equation (7) can be expanded to 

the following form: 

 ln lne e
e i p

i i

T P
s s C R

T P
    . (8) 

Therefore, the relationship between temperature and pressure for an isentropic 

ideal gas process becomes: 

 ln lne e
p

i i

T P
C R

T P
  . (9) 

This expression is simplified by dividing both sides by the specific heat and 

taking the inverse of the equality. 
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p

R
C

e e

i i

T P
T P

 
   
 

  (10) 

The gas constant for an ideal gas is simply the difference between the specific 

heat for a constant pressure process and the specific heat for a constant volume process 

[20]. 

 p vR C C    (11) 

The specific heat ratio is the ratio of the specific heats for a constant pressure 

process and constant volume process. 

 p

v

C

C
    (12) 

Combining equations (10), (11), and (12), the relationship between temperature 

and pressure for an ideal gas process is defined using the specific heat ratio. 

 

1

e e

i i

T P
T P





 
   
 

  (13) 

This relationship is used to define the operating parameters for the compressor 

and turbine processes that are assumed to be isentropic. 

Because the air is exhausted from the turbine to the atmosphere, the pressures at 

the compressor inlet and turbine exit are equal. 

 
4 1P P   (14) 

Assuming the same pressure at these states, and a constant pressure process 

through the solar collector, the pressure ratios of the compressor and turbine are equal. 

 32

1 4


PP

P P
  (15) 

This relationship between the compressor and turbine is useful because it also 

shows a similar relationship among the temperatures through these processes. 



 16

 32

1 4


TT

T T
  (16) 

The known values in this case are the temperature of the air entering the 

compressor (based on atmospheric conditions), and the temperature of the air exiting the 

solar collector, a fixed design point. There are two unknown values: the temperature of 

the air exiting the compressor and the temperature of the air exiting the turbine. Solving 

the equation for the maximum work provides an additional equation that can be used to 

solve for the relationship between these two unknown values. This will produce the 

smallest plant possible to generate the desired amount of power. 

The specific net work for a Brayton cycle is defined as the difference between the 

work of the turbine and compressor. For an ideal gas the difference in enthalpy between 

two states equals the specific heat constant multiplied by the temperature difference. 

      3 4 1 2 3 4 1 2Net T C pw w w h h h h c T T T T            (17) 

The goal of the design is to achieve maximum power density which occurs when 

the derivative of the specific net work is zero. Since the compressor inlet and solar 

collector exit temperatures are fixed constants determined by atmospheric conditions and 

design constraints respectively, the maximum work can be found by varying the 

temperature of the compressor outlet, as shown by Greitzer et al.[22]. 

 3 4 1 2 4

2 2 2 2 2 2

0 0 1 0Net
p p

dw dT dT dT dT dT
c c

dT dT dT dT dT dT

   
             

  
  (18) 

After simplification, the relationship between both temperatures is obtained. 

 4

2

1
dT
dT

   (19) 

From this analysis, the maximum specific net work is achieved when the 

compressor exit temperature and the turbine exit temperature are equal. 

 
4 2T T   (20) 
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Combining equation (20) with equation (16), the design temperatures of the 

compressor exit and turbine exit are simply a function of the outside air temperature and 

the specified design temperature of the collector exit. 

 2 1 3 4T T T T    (21) 

The specific net work of the cycle can be analyzed as a function of the 

compressor pressure ratio, with the two design points (compressor inlet temperature and 

collector outlet temperature) as scaling factors. By combining equations (13), (17), and 

(20), the work equation becomes: 

 

1 1

2 2
3 1

1 1

1 1Net p

P P
w c T T

P P

 
 
     

                    
           

  (22) 

In this equation, the pressure ratio includes the exponential factor that is 

determined by the specific heat ratio of the ideal gas. By selecting an ideal gas for the 

cycle and specifying fixed design parameters for the compressor inlet and collector outlet 

temperatures, the work can be plotted against a range of compressor pressure ratios. This 

function will provide a visual representation of the compressor pressure ratio required to 

achieve maximum work. 

The metal selected as the phase change material for the latent heat thermal storage 

is Aluminum. As mentioned before, this is due to its melting temperature and high 

conductivity. As a starting point, the wall temperature of the collector is assumed to be a 

constant temperature, equal to that of the aluminum melting point. The collector air outlet 

temperature was then determined based on a reduced factor of the wall temperature, as 

the air would never actually reach the wall temperature, so long as there is flow.  

  3 0.83 0.83 933 774.39  wT T K K   (23) 

The compressor inlet temperature was specified as a fixed value, based on 

average seasonal variation. 

 1 15 288.15T C K    (24) 
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The cycle uses air as the working fluid that has unique values for the specific heat 

capacity and specific heat ratios, provided in Table 3.   

Table 3.   Ideal Gas Properties of Air. 

Property Value Units 

pC  1.005 [kJ/kg-K] 

  1.41 [-] 

 

Using the specified values from equations (23) and (24) while applying the ideal 

gas properties from Table 3.  the specific net work of the cycle was plotted as a function 

of the compressor pressure ratio in Figure 8. 

 

Figure 8. Design Cycle Net Work vs. Compressor Pressure Ratio. 

In this case, where the inlet temperature of the compressor is an assumed fixed 

value, the maximum net work of the cycle corresponds to a compressor pressure ratio of 

5.473. Because the cycle is open, where the turbine exit pressure is atmospheric and there 
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is no assumed pressure drop across the collector, the compressor pressure ratio also 

corresponds to the pressure drop through the turbine. 

The cycle analyzed in Figure 8 is based on an assumed average temperature of the 

air entering the compressor. For the same plant design, the net work was analyzed to 

include more extreme temperatures based on colder and warmer seasons throughout the 

year. Figure 9 illustrates the changes in the cycle net work as a function of the pressure 

ratio. 

 

Figure 9. Cycle Net Work vs. Compressor Pressure Ratio for 
Seasonal Variations. 

Based on Figure 9, the cycle achieves a higher maximum net work during times 

when the air temperature is colder that is attributed by the larger temperature differential 

through the solar collector. As the outside air temperature gets colder, the compressor 

pressure ratio required to achieve this maximum work is slightly higher. The computed 
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values are provided in Table 4.  but in summary the compressor would operate in the 

pressure ratio range of 5–6. 

Table 4.   Maximum Specific Net Work and Compressor Pressure Ratios. 

Average Air Temperature Max Work  
[kJ/kg]  

Pressure Ratio 
[-] [C] [K] 

3 276.15 126.446 5.894 

15 288.15 118.520 5.473 

27 300.15 111.007 5.107 

 

Equation (13) can be used to solve for the design temperature of the compressor 

outlet, based on the assumed average inlet air temperature. 

  
1

1.41 1
2 1.41

2 1
1

288.15 5.473 472.377
P

T T K K
P





 
    

 
  (25) 

With the compressor exit temperature known, the temperature at the turbine exit 

can be solved for using the relationship of equation (16). The result shows that the 

maximum work occurs when the compressor outlet temperature equals the turbine exit 

temperature. 

 1
4 3 2

2

288.15
774.39 472.377

472.377
     
 

T K
T T K K T

T K
  (26) 

The lower pressure limit of the cycle is assumed to be atmospheric conditions, 

101.3 kPa. In order to determine the upper pressure limit of the cycle, equation (15) is 

used to solve for the pressure at the compressor exit, knowing that the compressor 

pressure ratio is equal to the pressure drop across the turbine. 

  2
3 2 1

1

101.3 5.473 554.455   
P

P P P kPa kPa
P

  (27) 
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2. Specific Work and Heat 

The design specific work of the compressor is determined using the First Law of 

Thermodynamics for a steady state process, adapted for an ideal gas, by using equation 

(5). Compressor work is expressed as a negative value to indicate the work is put into the 

system. 

    1 2 1 2 1.005 288.15 472.377 185.148       
C p

kJ kJ
w h h c T T K K

kg K kg
  (28) 

Similarly, the design specific work of the turbine is determined using the 

specified design temperature of the collector exit, and the fact that the turbine exit 

temperature is equal to the compressor exit temperature. Turbine work is expressed as a 

positive value to indicate the work extracted from the system. 

    3 4 3 4 1.005 774.39 472.377 303.523      
T p

kJ kJ
w h h c T T K K

kg K kg
  (29) 

Finally, the specific heat added to the air via the collector process can also be 

determined using the simple First Law analysis for an ideal gas. For maximum work, this 

value is equal to the specific work of the turbine. 

    3 2 3 2 1.005 774.39 472.377 303.523p

kJ kJ
q h h c T T K K

kg K kg
      


  (30) 

The basic design limits and parameters have been determined for the operation of 

the cycle. By establishing an average condition of the air, and setting the design 

temperature limit based on the melting temperature of aluminum, all states were 

determined for the ideal open cycle and provided in Table 5.   
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Table 5.   Open Brayton Cycle Design Parameters. 

Process 
Temperature 

[K] 
Pressure 

[kPa] 
Specific Work 

[kJ/kg] 
Specific Heat 

[kJ/kg] 

Compressor 
1T  288.150 1P 101.325 

-185.148 - 

Collector 
2T  472.377 2P 554.455 

- 303.523 
3T  774.390 3P  554.455 

Turbine 
4T  472.377 4P  101.325 

303.523 - 

 

3. Efficiency, Power, and Mass Flow 

The thermal efficiency of the system is calculated from the specific net work and 

the specific heat transfer of the collector and corresponds to the maximum work at the 

associated compressor pressure ratio. 

  
303.523 185.148

100% 39%
303.523

Net T C

kJ kJ
w w w kg kg
q q kJ

kg





      (31) 

Power, defined as the net work rate of the cycle, is a function of mass flow.  

 Net NetW mw    (32) 

The initial prototype design is that of a scaled down model, with a design power 

rating of 50 kW. The specific net work, defined as the sum of the compressor and turbine 

work, has been calculated, therefore equation (32) can be used to solve for the design 

mass flow of the cycle. 

 
50

0.422
303.523 185.148

   
 

Net Net

Net T C

W W kW kg
m

kJ kJw w w s
kg kg

 
   (33) 

Having determined the design mass flow rate of the air in the cycle, the individual 

plant component powers can now be calculated. 
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 0.422 185.148 78.204
 

     
 

C C

kg kJ
W mw kW

s kg
    (34) 

 0.422 303.523 128.204
 

   
 

T T

kg kJ
W mw kW

s kg
    (35) 

 0.422 303.523 128.204
 

   
 

kg kJ
Q mq kW

s kg
    (36) 

The thermodynamic analysis of the system modeled as an ideal open air Brayton 

cycle, allowed for the calculation of the initial design limits as well as power ratings for 

each of the three components of the system. These calculations provide baseline values 

for sizing the collector as well as selecting a compressor and turbine for the system. Table 

6.  summarizes the resulting design limits. 

Table 6.   Summary of Design Limits. 

Parameter Value Units 

Power 50.000 [kW] 

Mass Flow 0.422 [kg/s] 

Pressure Ratio 5.472 [-] 

THot 774.390 [K] 
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III. SOLAR COLLECTOR DESIGN 

In Chapter II, a thermodynamic analysis of the cycle yielded a set of design limits 

for the system. These calculations are the basis for designing the first iteration of the solar 

collector’s geometry. 

A. GEOMETRY 

The initial design of the collector is based on the idea of a simple geometry, one 

where reasonable assumptions of heat transfer and flow can be made, as well as the 

ability to support the integration of a phase change metal. 

In this design, the air exiting the compressor enters the solar collector where the 

flow is divided among a stack of evenly sized air ducts. These ducts would be wrapped 

with aluminum phase change metal, so the material is completely integrated into the 

collector heat exchanger. This system takes advantage of the latent heat of fusion. During 

the day, the aluminum is in a liquid state as the sun powers the cycle. When the sun is 

blocked, however, the aluminum undergoes a phase change back to a solid state, but at a 

constant temperature, as it continues to power the cycle. Figure 10 is a side view of the 

cycle that illustrates the TES integration. 

 

Figure 10. Side View of Solar Collector with Multiple Stacked Ducts. 
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1. Collector 

Similar to a traditional solar collector receiver, the radiation from the sun is 

directed by an appropriately positioned mirror farm through a small opening or aperture, 

as shown in Figure 11. The radiation is trapped inside the collector with some assumed 

minimal losses to the atmosphere. Heat is then transferred over a larger surface area that 

represents a stack of air ducts. Two design parameters are of particular importance, the 

required area of the aperture and mirror farm. 

 

Figure 11. Top Down View of Solar Collector. 

a. Aperture 

The radiative heat transfer equation describes the relationship of the area in which 

the radiation passes with the temperatures on each side of the aperture. 

  4 4
0   Apq A T T   (37) 
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The aperture is a small opening through which the sun’s radiation is captured by 

the mirror farm and then redirected into the collector. The area of the aperture is found by 

rearranging the radiative heat equation. 

 
 4 4

0 


Ap

q
A

T T
  (38) 

For this case, the collector is modeled as a black body, where the emissivity 

equals 1. The radiation equation is a function of the difference of ambient and internal 

temperatures, both to the fourth power. For the design, the internal temperature is 

modeled as the melting temperature of aluminum, 933 K. As discussed in Chapter II, the 

ambient temperature is assumed to be an average based on seasonal variation, 288.15 K. 

The heat losses through the aperture are assumed to be 5%. Based on these parameters, 

the aperture area is calculated. 

 

 
2

4 4 4 4
2 4

0.05 128156
0.15

1 5.67 8 933 288.15
 

    

Ap

W
A m

W
E K K

m K

  

In order to provide enough heating to power a 50 kW plant, the area of the 

aperture would be approximately 0.15 m2, assuming minimal losses. These losses can be 

customizable. 

b. Mirror Farm 

The area of the mirror farm typically accounts for the bulk of the area required by 

a solar collector. The equation to calculate this area is a function of the reflectivity of the 

mirror that can vary depending on the material of the mirror and particulate collection via 

dust and debris, as well as the losses through the aperture. 

 


 Ap
m

q
A

G
  (39) 
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In this case, the reflectivity is assumed to be 85%. The sun’s irradiance is known 

as 1000 W/m2. The mirror farm must be large enough to direct enough heat for the cycle 

plus losses from the aperture. 

  2

2

1.05 128156
158.31

0.85 1000
 

 
 
 

m

W
A m

W
m

  

For a 50 kW plant, based on reasonable assumptions of the mirror farm and 

considering the losses from the aperture, the area of the mirror farm is approximately 158 

m2. 

2. Heat Exchanger Ducting 

Having estimated the size of the mirror farm and aperture, the ducting was sized 

to get a complete picture of the collector. In this design, the air temperature is raised to 

the desired design temperature through the straight ducting under uniform heating by the 

by the phase change aluminum. By latent heat phase change, the aluminum maintains 

near melting temperature through the cyclic melting and re-freezing processes. Figure 12 

illustrates the basic model of a single duct. 

 

Figure 12. Single 3-D Square Duct with Molten Aluminum. 
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For the initial design, it was important to estimate the minimum volumetric 

requirements of the aluminum phase change metal required for thermal energy storage. 

To this effect, the boundaries that enclose the aluminum around the air duct were 

considered to be infinitesimally thin rigid walls. In reality, the aluminum would be 

encased by a non-corrosive and preferably conductive material, such as a ceramic with a 

high heat transfer coefficient. The thickness and material properties in this case would 

require additional modeling and would increase the amount of phase change material 

required. 

Since the collector will have a network of stacked ducts, each wrapped with 

aluminum phase change metal, the cross section was chosen based on a geometry that 

supports the reasonable stacking of ducts. A square cross section was chosen for uniform 

heat transfer and flow.  

a. Length 

The heat equation for the internal flow through a volume is a function of the heat 

transfer coefficient, the heat transfer surface area, and the temperature difference of the 

fluid through the duct as it relates to the wall temperature [23]. 

  s lmQ hA T   (40) 

For internal flow convection where the walls are of a constant temperature, the 

heat transfer equation is a function of the log mean temperature difference between the 

inlet and outlet. This relationship accounts for the non-linear temperature rise through a 

duct where the flow temperature approaches the wall temperature at a rate that is 

determined by the mass flow. 

 

ln

 
 

 
  

o i
lm

o

i

T T
T

T

T

  (41) 

The temperature differences described in this formula are those between the wall 

temperature and the average temperature of the flow at both the inlet an outlet of the duct. 
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 3  o wT T T   (42) 

 2  i wT T T   (43) 

Substituting equations (42) and (43) into equation (41), the log mean temperature 

difference can then be expanded and simplified to relate the wall temperature with the 

temperatures at the inlet and outlet. 

 
   3 2 3 2

3 2

2 3

ln ln

   
  

    
       

w w
lm

w w

w w

T T T T T T
T

T T T T

T T T T

  (44) 

The heat transfer coefficient accounts for the flow properties of the air, including 

conductivity. For this model, the flow is treated as laminar and fully developed. For a 

square cross section duct, the Nusselt number is a constant and relates the flow properties 

with the duct cross section. 

  h
D

hD
Nu

k
  (45) 

The Nusselt number, as shown by Incropera et al. [23], based on the specified 

square cross-section of the duct as well as the assumed flow state, is 3. The heat transfer 

coefficient can now be rewritten as an expression of the Nusselt number, conductivity, 

and hydraulic diameter. 

  D

h

Nu k
h

D
  (46) 

The thermal conductivity of the fluid changes as a function of temperature. 

Because the temperature changes non-linearly through the duct, the true conductivity may 

be difficult to model analytically. Therefore, for the initial calculations, a mean 

conductivity of the inlet and outlet was calculated to approximate the thermal behavior 

through the duct. Linear interpolation was used to obtain the true conductivity values at 

the inlet and outlet of the duct. 
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 3 2

2




k k
k   (47) 

3 2
5.609 2 3.883 2

4.746 2
2 2

       


W W
E Ek k Wm K m Kk E

m K
  

Since each duct exhibits uniform heating, the total heat transfer area for each duct 

is the sum of the areas of all four sides. 

 4s hA D L   (48) 

The heat equation can then be rewritten by substituting equations (44), (46), and 

(48) in to equation (40). 

    3 23 2

2 2

3 3

4
4

ln ln

 
 
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Nu kL T TT TNu k
Q D L

D T T T T

T T T T

   (49) 

Using a thermodynamics analysis, the heat transfer can also be described as a 

function of the mass flow, specific heat, and temperature difference through the collector. 

  3 2 pQ mc T T    (50) 

When equations (50) and (49) are combined, the collector length is then solved 

for using the temperature limits identified in Chapter II as well as the flow characteristics 

modeled in this chapter. 

 
 
 
3 2 2 2

3 2 3 3

ln ln
4 4

     
         

p pw w

D w D w

mc T T mcT T T T
L

Nu k T T T T Nu k T T

 
  (51) 

A summary of the flow parameters and the resulting length for a single duct 

system is provided in Table 7.  As mentioned, the wall temperature is modeled based on 

the melting temperature of Aluminum, and the flow was modeled as laminar and fully 

developed, which corresponds to a fixed Nusselt number for the square cross sectional 

duct. 
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Table 7.   Collector Duct Heat Transfer Parameters. 

Parameter Value Units 

DNu  2.98 [-] 

m  0.422 [kg/s] 

 0.047 [W/m-K] 

pc  1005 [J/kg-K] 

wT  933.450 [K] 

2T  472.377 [K] 

3T  774.390 [K] 

L (Single Duct) 799.206 [m] 

 

Using the values provided in Table 7.  the length of a single duct collector was 

calculated at 799.206 m. Since the collector is designed based on a multiple duct stacked 

array, the flow through each duct is proportional to the number of ducts, thus the 

collector length is inversely proportional. The relationship between the collector length 

and the number of ducts in the collector is illustrated in Figure 13. 

kair
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Figure 13. Collector Length vs. Number of Ducts. 

By stacking ducts, the length of the collector can be dramatically reduced. Some 

examples of collector lengths based on the number of ducts are provided in Table 8.   

Table 8.   Collector Length Compared to Number of Ducts. 

Number of Ducts [-] Collector Length [m] 

10 79.921 

50 15.984 

100 7.992 

200 3.996 

500 1.598 
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b. Hydraulic Diameter 

Sizing the collector length has been useful in analyzing how the overall length can 

be reduced as a factor of N (number of ducts). What also must be known is how the 

length of the collector is related to the hydraulic diameter of the square duct. 

The mass flow equation shows how the flow is related to the cross-sectional area 

of the duct. 

 m Au   (52) 

For the case of the square duct, the cross-sectional area is the square of the 

hydraulic diameter. 

 2 hA D   (53) 

When the relationship of equation (53) is substituted back into equation (52), the 

equation still yields two unknowns: the hydraulic diameter and the velocity of the flow. 

The Reynold’s Number for the flow is then used to add an additional equation in order to 

solve for the hydraulic diameter. 

 Re



 hD u
  (54) 

The Reynold’s Number can then be rearranged as an equation expressing the 

velocity of the flow. 

 
Re



h

u
D

  (55) 

Equation (55) can then be substituted in to equation (52) to express the mass flow 

as a function of the Reynold’s Number, viscosity, and hydraulic diameter. 

  2 Re
Re

 


 
  

 
h h

h

m D D
D
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Finally, the hydraulic diameter can then be solved for as a function of mass flow, 

the Reynold’s Number, and the viscosity of the flow. 

 
Re

h

m
D


  (57) 

As mentioned, the flow of the air through the duct is modeled as laminar and fully 

developed. For this flow, the Reynold’s Number was assumed to be 2300, the limit 

before the flow transitions to turbulent. 

Similar to the conductivity of the air, the viscosity is also a function of 

temperature that increases non-linearly through the duct for a constant temperature wall 

design. Therefore, a mean viscosity was calculated for the air flow just as it was for the 

conductivity. 

The hydraulic diameter was then calculated based off of the mass flow determined 

from Chapter II as well as the assumptions made for the flow. The flow parameters used 

and resulting size calculations are listed in Table 9.   

Table 9.   Collector Duct Flow Parameters and Hydraulic Diameter. 

Parameter Value Units 

Re 2300 [-] 

m  0.422 [kg/s] 

 3.108E-5 [kg/s-m] 

hD  5.902 [m] 

h

L

D
 135.413 [-] 

 

A single duct collector in this case would have a hydraulic diameter of 5.9 m, but 

just as the collector length, the hydraulic diameter of a single duct also reduces based on 

the number of ducts in the array. For this design, the length to hydraulic diameter ratio 

remains constant at approximately 135, regardless of how many ducts are stacked. 

air
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B. ALUMINUM REQUIREMENTS 

1. Mass and Volume 

In order to calculate the minimum amount of aluminum phase change metal 

required for the integrated TES, the total amount heat transfer from the collector must be 

determined. 

 Q Qt   (58) 

The amount of aluminum required for TES is dependent upon how long the phase 

change metal would be expected to provide latent heat to the plant in the absence of the 

sun. The heat transfer rate from the collector was calculated in Chapter II and is a 

function of the rated power and efficiency of the cycle. 

 


 Net

th

W
Q

   (59) 

Substituting equation (59) for the heat transfer rate in equation (58), the new 

expression for the total heat transfer is expressed as follows: 

 


 Net

th

W
Q t


  (60) 

For latent heat phase change, the total heat transfer is also a function of the mass 

of the phase change material and its latent heat of fusion. 

 , Al f AlQ m h   (61) 

In this case, the mass of the Aluminum required is expressed by the density and 

volume. 

 Al Al Alm V   (62) 

Combining equation (60) with (61), and substituting in equation (62), the 

minimum volume of Aluminum is expressed as a function of the rated power, efficiency, 

and the amount of time the phase change metal is expected to provide heating. 
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 Net
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th Al f Al

W t
V

h


  (63) 

The Andasol-1 power plant supplies heat from thermal energy storage for up to 

approximately eight hours [12], therefore the design of the aluminum phase change 

volume was determined as a comparable to that standard. Table 10.  lists the values used 

to calculate the resulting volumetric requirement using equation (63). 

Table 10.   Minimum Aluminum Volumetric Requirement. 

Parameter Value Units 

NetW   50 [kW] 

  39 [%] 

Al  2712 [kg/m3] 

,f Alh  398000 [J/kg] 

t   8 [hr] 

AlV   3.419 [m3] 

 

In summary, for a 50 kW rated plant operating within the limits defined in 

Chapter II, the minimum amount of Aluminum required to provide latent heating to the 

system is 3.4 m3. 

2. Collector Duct Thickness 

In the prototype design, each duct within the collector is wrapped in phase change 

aluminum. The minimum amount of Aluminum was determined in the previous section, 

therefore the additional duct thickness from the aluminum can be determined. For 

uniform thickness, the volume can be rewritten in terms of the number of ducts and the 

cross sectional area of the aluminum wrapping, remembering that the length and 

hydraulic diameter are inversely proportional to the number of ducts. 
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Equation (64) can then be rearranged to solve for the new outer diameter of the 

duct to account for the added aluminum, as a function of the number of ducts. 

 
2

2
 Al hV D

d
L N

  (65) 

For uniformity, the additional thickness can then be determined by subtracting the 

new outer diameter by the hydraulic diameter of the duct, and dividing that quantity by 

two. 

 
2

hDd
Ni


   (66) 

For this system, the volume of the aluminum is constant regardless of how many 

ducts are stacked in an array, as it depends on the amount of heating and duration. The 

result, as seen in Table 11.  is that the thickness of the aluminum wrapping increases 

when the collector is reduced in length by stacking ducts. 

Table 11.   Aluminum Thickness Compared to Number of Ducts. 

Ducts 
[-] 

Collector Length 
[m] 

Hydraulic Diameter 
[mm] 

Aluminum Thickness 
[mm] 

10 79.92 590.20 1.81 

50 15.98 118.04 8.46 

100 7.99 59.02 14.54 

200 4.00 29.51 21.12 

500 1.60 11.80 27.33 

 



 39

Table 11.  illustrates the disadvantage of spreading a fixed volume of Aluminum 

too thin for a small number of ducts. Stacking as many ducts as possible not only reduces 

the length of the collector, it also provides for a thicker layer of aluminum around the 

ducts, allowing for ease of machining and more uniform heat transfer. 

C. HEAT FLUX 

Of particular importance is the analysis of the heat flux for the prototype collector 

that can be used for sizing optimization. A central solar receiver is designed to focus the 

radiation from the sun on to a relatively small surface area. The expression for the heat 

flux is simply written as the ratio of the heat transfer rate to the heat transfer surface area. 

 "
s

q
q

A
   (67) 

The goal of central receiver design is to achieve as high of a heat flux as possible. 

Rodriguez-Sanchez et al. [24] showed how current receiver designs can achieve heat 

fluxes on the order of 105 and in some cases 106 W/m2. While the prototype solar 

collector proposed is not expected to achieve a heat flux of that magnitude, it is still an 

important factor in size optimization. 

Using MATLAB, the heat flux for the solar collector was first plotted as a 

function of the number of ducts, shown in Figure 14. See Appendix A for the MATLAB 

code. In this case, there was assumed to be no aluminum surrounding the ducts and they 

were stacked as a single array. 
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Figure 14. Heat Flux vs. Number of Ducts (Without Aluminum). 

This figure illustrates how the heat flux rises linearly with the number of ducts on 

a logarithmic scale. Based on this scenario the following ducting numbers of Table 12.  

correlate with each approximate heat flux order of magnitude. 

Table 12.   Ducting Requirements for Heat Flux Orders of Magnitude. 

Number of Ducts [-] Approximate Heat Flux [W/m2] 

50 103 

500 104 

5000 105 

 

In reality, each duct is wrapped in aluminum. The minimum thickness 

calculations provided in Table 11.  showed that the thickness of the aluminum increases 

around each duct as the number of ducts is increased. This leads to a rising total height of 
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the collector, offsetting the decrease in the surface area by reducing the length. Taking 

into consideration the added thickness of the aluminum, the heat flux was then plotted as 

a function of the number of ducts, shown in Figure 15. 

 

Figure 15. Heat Flux vs. Number of Ducts (With and Without Aluminum). 

Figure 15 provides a more accurate representation of the heat flux behavior based 

on collector sizing, and illustrates how the heat flux actually approaches a limit of 

approximately 2450 W/m2. Because of the added thickness around each duct, there is 

eventually a loss of benefit in the collector height sizing that is particularly useful in 

further design refinement. 

D. PRESSURE DROP 

The prototype model presented in this thesis assumed a constant pressure through 

the solar collector, as shown in Chapter II, as a means of conducting an initial cycle 

analysis using a thermodynamic analysis. In reality, there is an expected pressure drop 

across the duct, especially when the length becomes shorter as a result of adding ducts. 



 42

An analysis of the collector flow was conducted using fluid dynamics as a means of 

quantifying the pressure drop in order to validate the assumption. 

The expression of the pressure drop for a fully developed laminar flow in a non-

circular duct accounts for the wall shear stresses that play a role in the loss of pressure. 

 2 3 2

32
2
Max

h

uL
P

D




 
    

 
  (68) 

The length to diameter ratio is constant at 135, and the hydraulic diameter in this 

case is a function of N. The maximum velocity is at the exit of the collector where the 

temperature is the highest, and is unknown. Equation (68) can then be rewritten as a 

function of the velocity and N. 

 3
2 3 2160

h

N u
P

D


    (69) 

The exit velocity is also found by expanding the mass flow equation in terms of 

an ideal gas. 

 3 2
3 2

3 2

P P
Au Au

RT RT
   (70) 

For a constant area duct, the area on each side of the equation will cancel out, as 

well as the gas constant. Assuming a pressure drop across the collector, the outlet 

pressure can be expanded as a subtraction of the pressure drop from the inlet pressure. 

Equation (70) can then be rewritten in terms of the pressure drop. 

 3 2
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2 3
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T u

 
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  (71) 

By combining equations (69) and (71), the velocity at the outlet can be calculated 

by solving the resultant quadratic formula. 
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  (72) 
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The quadratic constants were coded using MATLAB to solve the equation. See 

Appendix A for the MATLAB code used. The inlet velocity was solved as an input array 

based on the scaled mass flow and area as a function of N. 

2

3
2 2

2

2160
h

N
a

D
b P

T
c P u

T


 



  

The solution set of the exit velocity as a function of the number of ducts was then 

substituted back into equation (69) and plotted for analysis in Figure 16. 

 

Figure 16. Collector Pressure Drop vs. Number of Ducts. 

The pressure drop was plotted across a domain of up to 5000 ducts. As the 

number of ducts increased, the pressure drop rose at an exponential rate; however it is 

still very small relative to the collector’s assumed pressure. The collector was assumed to 

operate at a constant 554 kPa, where it would require up to 4000 ducts to see a pressure 

drop of only 1 kPa. Based on this analysis, the assumption of a constant pressure process 

is a valid approximation. 
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IV. OPTIMIZATION 

In Chapter III, the basic sizing parameters of the solar collector for the 50 kW 

prototype plant were established using the operating limits as defined in Chapter II. The 

power of the plant, however, is a function of mass flow as well as the collector 

temperature rise that is also a function of mass flow. For a fully developed flow in a duct, 

exhibiting a constant wall temperature, the mean temperature of the fluid rises non-

linearly as it approaches the wall temperature, seen in Figure 17. 

 

Figure 17. Mean Temperature Profile for Fully Developed Flow, Constant 
Temperature Wall. Source: [25] 

The steepness of this curve depends on the mass flow rate of the fluid. A higher 

mass flow will yield a lower temperature rise, but a lower mass flow yields a lower 

power. This lends to the idea that there is an optimum mass flow where the power is 

maximized as it relates to the temperature rise of the air across the collector.  

An optimization study was conducted analytically to establish an operating curve 

for the plant as a function of mass flow. A similar analysis was conducted using 

numerical methods to capture the real effects of air. These results were compared to see 

how the plant would behave under a range of flows.  



 46

A. ANALYTICAL MODEL 

The temperature of the air exiting the collector was a fixed limit as discussed in 

Chapter II, but in reality, this temperature increases and decreases as a function of mass 

flow. Capturing this phenomenon analytically relies on the relationship between 

thermodynamics and the heat transfer properties of the collector duct. When equations 

(49) and (50) are combined, the logarithmic temperature profile is expressed as a function 

of the flow properties and duct geometry. 

 2

3

4
ln
 

  
w D

w p

T T Nu kL

T T mc
  (73) 

The inverse log of both sides of the equation results in an exponential function, 

containing the mass flow term that can be used to scale the temperature profile. 
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For this analysis, the mean conductivity is again assumed to be a fixed average 

although in reality it changes as a function of temperature. The length can be expressed as 

the value calculated in Chapter III for a single duct collector, as the number of ducts that 

scale both the length and flow offset each other. The collector inlet temperature is then 

expressed in terms of the scaling function, wall temperature, and outlet temperature. 

  2 31    wT T T   (75) 

As discussed in Chapter II, from equation (21) the maximum work occurs when 

the collector inlet temperature equals the square of the compressor inlet temperature and 

collector outlet temperature. 

2 1 3T TT  

Substituting equation (21) into equation (75) produces a new expression for the 

collector outlet temperature that is assumed to be unknown. 
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By collecting like terms, equation (76) can then be rearranged in the form of a 

second order polynomial equation, where the scaling function contains the mass flow 

term. 
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Equation (77) is then solved for the collector outlet temperature for each value of 

mass flow across a specified domain using the quadratic formula and associated quadratic 

constants. 
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The quadratic formula was solved for the collector outlet temperature as a 

function of mass flow. See Appendix B for the code executed in MATLAB to solve the 

equation. 

Having solved for the collector outlet temperature, the plant power can then be 

calculated using equation (32) for ideal gases that expresses the net work in terms of 

temperature states. 

     3 4 1 2       Net T C pW m w w mc T T T T    

Recalling again that for maximum work, the compressor outlet temperature and 

the turbine outlet temperature are equal for the design prototype of the smallest size, the 
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power equation can be rewritten in terms of the compressor inlet temperature and 

collector outlet temperature that was just solved. 

      3 1 3 1 1 3 3 1 1 32        Net p pW mc T TT T TT mc T T TT     (79) 

The compressor inlet temperature again is a fixed uncontrollable constant based 

on the atmospheric conditions, but similar to the methods of Chapter II, it can be assumed 

based on an average of seasonal variation. Substituting the fixed limits into equation (79), 

as well as the solution for the collector outlet temperature, the power can then be plotted 

as a function of mass flow. The resulting operating curve for up to 2 kg/s of flow is 

shown in Figure 18. 

 

Figure 18. Analytical Solution of Power vs. Mass Flow for a 50 kW Plant. 

The analytical solution of the plant power as a function of mass flow yields a 

maximum power of the 50 kW plant design. Based on the operating curve, the previously 

calculated mass flow from Chapter II correlates with the design power of 50 kW on the 
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curve. The analysis, however, shows that the power can be maximized by increasing the 

mass flow to nearly 1 kg/s. Table 13.  provides a summary of the exact calculations for 

both design and maximum power conditions. 

Table 13.   Design and Maximum Power Calculations for a 50 kW Plant. 

 
Mass Flow [kg/s] Power [kW] 

Design 0.42 50.00 

Maximum 0.96 58.18 

 

The analytical analysis represents the potential to exceed design power by 16%. 

In this case, the lowered collector temperature difference is offset by the increased flow 

through the duct. Figure 19 shows how the collector temperature difference decreases in 

an exponential decay as the mass flow in increased. 

 

Figure 19. Analytical Solution of Collector Temperature Difference vs. Mass 
Flow for a 50 kW Plant. 
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The initial design prototype produced a basic operating collector temperature 

difference of approximately 301 K, but that difference can drop as low as 192 K when 

maximum power is preferred. The analysis shows that the plant could support a 

significant increase in flow relative to design for more power.  

The plant efficiency was also plotted against the same domain of mass flow to 

observe the difference between design and maximum power efficiencies, as shown in 

Figure 20. 

 

Figure 20. Analytical Solution of Thermal Efficiency vs. Mass Flow for a 50 
kW Plant. 

From Chapter II, the thermal efficiency of the plant modeled at 50 kW was 

calculated at 39%, but at maximum power, the thermal efficiency drops to 31%. This 

observation is particularly useful for the operational considerations of the plant. Solar 

thermal plants aim to maximize power over efficiency, so a higher mass flow would be 

preferred, especially during the day when the plant is powered by the sun. However, 

during night time operations or inclement weather conditions, the thermal energy stored 
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by the phase change aluminum must be conserved. The reduced flow in this case is 

preferred to minimize the power in a way that meets demands up to design limits but 

maximizes the duration of the phase change thermal storage capacity. 

Finally, the heat exchanger effectiveness was analyzed to observe the 

performance of the collector across the operating range of mass flows. The heat 

exchanger effectiveness is expressed as a percentage ratio based on the maximum heat of 

the collector. 

 
Max

q
q

    (80) 

The maximum heat from the collector is achieved when the collector outlet 

temperature equals the wall temperature. For the constant wall temperature duct model, 

the effectiveness of the heat exchanger is maximized when the mass flow is nearly zero, 

which is not ideal as the power is then minimized. Similar to the efficiency analysis, the 

heat exchanger effectiveness drops as a function of mass flow, as illustrated in Figure 21. 

 

Figure 21. Analytical Solution of Heat Exchanger Effectiveness vs. Mass Flow 
for a 50 kW Plant. 
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For the design parameters, the heat exchanger effectiveness is 0.65, but drops to 

0.37 when maximum power is achieved. This operating range shows how the heat 

exchanger should perform during day or night operation to maximize the use of the 

molten aluminum thermal storage. 

B. NUMERICAL MODEL 

The analytical model was useful in determining approximate curves to describe 

the behavior of the plant and solar collector. As stated previously, some broad 

assumptions were required to simplify the optimization model in a way that could be 

solved analytically. The flow was modeled as laminar and fully developed. The 

corresponding Nusselt number for a cross-sectional duct could then be used to define the 

heat transfer coefficient in the heat equation for the constant temperature wall duct. 

Additionally, both the thermal conductivity and viscosity of the flow were assumed to be 

fixed constants, calculated as mean values based on the inlet and outlet temperatures of 

the duct. In reality, as previously discussed, these values vary with temperature, which 

can change the profile through the duct. 

In order to better understand how the real flow through the duct would behave, a 

model was constructed to simulate similar conditions to the design while removing the 

assumptions of the temperature dependent flow parameters. ANSYS-CFX software was 

used to numerically solve for the flow behavior, using a model constructed with 

SolidWorks. 

1. Model Construction 

A single duct was created using SolidWorks software. By modeling a single duct, 

the behavior can be scaled accordingly for a multiple duct system. The length to 

hydraulic diameter ratio remains constant regardless of how many ducts are stacked in 

the solar collector. Therefore, the dimensions of the duct are irrelevant, so long as the 

geometric ratio is 135, and the mass flow rate through the duct is scaled accordingly. 

Figure 22 provides an illustration of the model, which represents the air duct under 

consideration. 
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Figure 22. SolidWorks Drawing of Single Duct Model. 

For the prototype duct, the length and hydraulic diameter were specified at 400 m 

and 2.95 m respectively. This model would correspond to a two-duct collector of a 50 

kW plant. The geometry was then imported into ANSYS-CFX software for a full-scale 

analysis of the flow. 

The first step of the analysis was to create a working mesh by which the model 

can be numerically solved. The resulting generated mesh, as shown in Figure 23 has a 

total of 28764 elements and 39200 nodes (see Appendix C). 

 

Figure 23. ANSYS-CFX Mesh for Single Duct Model. 
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2. Boundary Conditions 

The next step of the solution process was to establish the fluid domain and 

boundary conditions for the model. The fluid model for this analysis was selected such 

that the air behaved as an ideal gas and that the flow was laminar, but incorporated real 

effects in order to achieve more realistic results. In doing so, the effects of changing 

viscosity and conductivity were included. This real effect of the flow could not be easily 

captured analytically, but is accounted for numerically using Sutherland’s law that is 

expressed mathematically for both flow properties. 
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In this formula, the flow parameter changes as a function of temperature relative 

to a reference point. The “S” refers to Sutherland’s constant and is represented in units of 

Kelvin. By selecting this option, the program ANSYS-CFX invokes the relationship 

throughout the solution process. 

Table 14.   Sutherland’s Constant and Reference Properties. 

Property Value Units 

 110.4 [K] 

 273.15 [K] 

 1.72(10-5) [kg/m-s] 

 2.43(10-2) [W/m-K] 

 

The duct has a total of six boundaries: inlet, outlet, and four walls. The boundary 

conditions at the inlet and outlet were specified as mass flow, scaled for a two-duct 50 

kW model (0.211 kg/s). In order to resolve continuity, however, a temperature or 

pressure must be specified at the inlet mass flow boundary. The inlet temperature in this 

case was first specified as the same temperature calculated in Chapter II (472.377 K). 

S

Tref

ref

kref
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Each wall boundary for this model was established as a constant temperature wall, 

equal to the melting temperature of Aluminum (933 K). These wall boundaries were also 

expressed as no slip boundaries, where the velocity of the flow at the wall is zero. Figure 

24 illustrates the default domain and boundaries for the fluid model. 

 

Figure 24. ANSYS-CFX Default Domain with Boundaries for Single Duct 
Model. 

The model had a convergence target of 10–5 with the maximum number of 

iterations set to 500 with automatic time stepping. 

3. Initial Run 

The model was run once to check the flow behavior and properties at the outlet 

compared to the analytical calculations. Figure 25 is the plot of the convergence of mass 

and momentum for the initial run. 
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Figure 25. ANSYS-CFX Mass and Momentum Solution Convergence for 
Single Duct Model. 

According to the plot, the mass and momentum equations were resolved with 

good convergence. The results of the simulation were then observed to check the flow 

properties at the duct outlet. 

The first parameter checked was the temperature of the air at the outlet of the duct 

to compare with the value calculated in Chapter II. Figure 26 illustrates the temperature 

profile at the outlet of the duct.  
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Figure 26. Collector Duct Outlet Temperature Profile. 

The average temperature at this location was calculated to be 742 K. This value 

was slightly smaller than the temperature upper limit defined in Chapter II, which was an 

approximation based on an assumed reduction from the wall temperature (772 K). The 

numerical solution indicates a 20% reduction as opposed to the assumed 17% reduction 

previously defined, which shows that the analytical assumptions are reasonable. 

An important assumption about the flow in the analytical modeling process was 

that of the Reynold’s Number that was fixed at 2300, representing the limit before a flow 

transitions to turbulent. In order to validate that assumption, the Reynold’s Number was 

checked at the outlet of the duct where the velocity was expected to be a maximum. 

Figure 27 shows the velocity profile of the flow at the duct outlet. 
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Figure 27. Collector Duct Outlet Velocity Profile. 

The Reynold’s Number was computed using an expression in CFX, based on the 

average velocity of the flow at the outlet and equals 2620 for this model. This value is 

slightly higher than the assumed value, and just inside the transition region, but again 

shows that the analytical assumptions were reasonable. 

In Chapter III, the pressure drop in the collector was analyzed analytically as a 

function of the number of ducts. Based on that analysis, the pressure drop increased 

exponentially as a function of N. For collectors with two ducts, the pressure drop was 

found to be 2.46(10-4) Pa (see Appendix A). The pressure drop in the numerical model 

was quantified by observing the minimum and maximum pressures of the flow in the duct 

that correlate with the inlet and outlet of the duct, respectively, and was found to be 

4.60(10-4) Pa (see Appendix C). 

4. Optimization 

Having established satisfactory results from the initial simulation run, the model 

was then analyzed using the Optimization tool in ANSYS, (see Appendix D). This 
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feature allows the user to specify a range of design inputs, in this case mass flow, instead 

of just one. The software runs multiple simulations across evenly spaced values in that 

range and stores the resulting output parameter(s) specified by the user. For this model, 

the three output parameters of significance were the collector outlet temperature, the 

collector temperature difference, and the resulting plant power. 

a. Collector Outlet Temperature 

In order to capture a similar comparison numerically, the inlet temperature of the 

collector duct boundary was specified as an expression, using the same relationship 

defined by equation (21) for maximum work. This resulted in ANSYS-CFX calculating 

the inlet temperature iteratively throughout the solution process. After 25 simulations, the 

outlet temperature was recorded (see Appendix E) and plotted in excel with the analytical 

solution. Figure 28 illustrates the comparison of the outlet temperature as a function of 

mass flow between the analytical and numerical models. 

 

Figure 28. Comparison of Analytical and Numerical Solutions for Collector 
Outlet Temperature vs. Mass Flow. 
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Based on the plot, the results between both analysis methods were very similar, 

with the maximum error occurring at a mass flow value of approximately 0.1 kg/s. 

b. Collector Temperature Difference 

Similarly, the optimization tool was used to establish a curve for the collector 

temperature difference as a function of mass flow. Figure 29 illustrates comparison of 

both analytical and numerical models. 

 

Figure 29. Comparison of Analytical and Numerical Solutions for Collector 
Temperature Rise vs. Mass Flow. 

The results were again very similar in this case, with the maximum error also 

occurring at a mass flow value of approximately 0.1 kg/s. 

c. Power 

Most importantly, the plant power was observed using the optimization tool to 

compare with the analytical model when more real effects of the flow were invoked. In 

this case, the output parameter, power, was expressed as equation (79), such that the 
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numerical solution of the power only relied on the compressor inlet temperature (fixed) 

and the numerical solution of the collector outlet temperature as a function of mass flow. 

Figure 30 shows the resulting comparison between both the analytical and numerical 

curves. 

 

Figure 30. Comparison of Analytical and Numerical Solutions for Power vs. 
Mass Flow. 

The analytical model, which assumed a constant average viscosity and 

conductivity, yielded a maximum power of 58 kW corresponding to a mass flow of 

approximately 1 kg/s. For the numerical model, the optimization showed that the 

maximum power of 59 kW could actually be achieved at a higher mass flow, 

approximately 1.26 kg/s. In general, the curve shapes were very similar, with the 

calculated maximum power values having only an approximate 1 kW difference. Table 

15.  shows a summary of the exact calculations from each model. 
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Table 15.   Maximum Power and Pressure drop Based on Analytical and 
Numerical Solutions 

Model 
Mass Flow 

[kg/s] 
Maximum Power 

[kW] 
Pressure Drop 

[10-4 Pa] 

Analytical 0.96 58.18 2.46 

Numerical 1.26 59.46 4.62 

 

In summary, the numerical model was intended to provide a more exact solution 

to compare against the analytical solution, which made more broad assumptions of the 

flow. The comparison of both models indicated that the assumptions and approximations 

made to enable an analytical solution were fairly accurate and could be used for 

extremely fast approximations. 
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V. DISCUSSION 

Thermal Energy Storage systems in use today are very complex and require the 

pumping and circulation of multiple fluids to power solar thermal plants during non-

daylight hours. These complexities can add additional operational burden, increased plant 

maintenance, and drive down overall plant efficiency. The purpose of this thesis was to 

establish a new design centered on simplicity, completely removing any pumping of hot 

liquid to foster the automatic transition between solar power supply and thermal energy 

storage. Many plants today operate on a Rankine cycle, but the prototype design in this 

thesis is based off of a Brayton cycle, so that air is the only moving fluid, further 

simplifying the plant. 

In order to only have only one moving fluid for this plant, the thermal energy 

storage integrated into the collector for this design utilized the latent heat of phase change 

of aluminum as this minimized the volumetric requirements of the material. Other metals 

may be possible but Aluminum was suitable for operation when a Brayton cycle is used, 

because of its ready availability and relative low cost. 

The prototype design model presented in this thesis intended to establish some 

basic operating limits and sizing specifications, as well as minimum volumetric 

requirements of the aluminum phase change metal. The assumptions of the collector flow 

were the largest contributor to the geometric design. For the 50 kW prototype, the 

Reynold’s Number was assumed to be 2300 based on those assumptions. As stated in 

Chapter III, the hydraulic diameter is a function of mass flow, which scales 

proportionally with plant power. If the prototype were scaled up, the resulting collector 

height would not be feasible. A 50 MW plant, for example, would have a minimum 

height of 5900 m. In order to reduce the collector height for a larger plant, the flow 

should not be modeled as laminar. By increasing the Reynold’s Number to turbulent 

flow, the minimum collector height as well as the length could be dramatically reduced. 

Another option would be to change the material to a higher temperature metal. 
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The model intended to estimate the minimum volumetric requirements of 

aluminum to sustain up to eight hours of power without the sun. This calculation required 

that the boundaries encasing the aluminum were infinitesimally thin and rigid. In reality, 

the aluminum would be wrapped with a non-corrosive material, preferably of a high 

conductivity to maximize the heat transfer. 

Solar central receivers in operation and under design achieve extremely high heat 

fluxes. The prototype design in this thesis achieved a maximum heat flux on the order of 

103, limited by the aluminum wrapping. The analysis in Chapter III showed how the 

thickness of the aluminum around the ducts increases as the ducts are stacked, although 

the length and hydraulic diameters are reduced by a factor of N. The limit assumed some 

customizable losses from the aperture and mirror farm, which can be explored further to 

seek ways to improve the heat flux for this design. 
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VI. CONCLUSION 

The design is a new concept; therefore, a basic thermodynamic analysis was used 

to conduct a complete cycle analysis of the system to establish operating limits necessary 

to design the collector. The upper temperature limit was established based on the melting 

temperature of Aluminum. By fully integrating latent heat thermal storage into the 

collector, the efficiency loss would be very minimal, limited only to heat losses to the 

atmosphere. These losses are easily mitigated with proper insulation technologies. 

The collector was sized based on the limits defined from the cycle analysis. The 

collector duct geometry was selected based on the idea of stacking multiple ducts, which 

reduces the length and hydraulic diameters as the ducts are stacked in a column. Stacking 

ducts also increases the heat flux by minimizing the heat transfer surface area in the 

collector. The model was assumed to have no pressure drop, which was validated by 

analytical and numerical methods, that showed very little pressure drop. 

The plant behavior as it pertains to mass flow was analyzed using both analytical 

and numerical methods. Using the equations from thermodynamics and heat transfer, the 

plant power and performance characteristics were calculated and plotted as a function of 

mass flow to see how these parameters behave under different conditions. The results 

showed that the design power could actually be exceeded by increasing the mass flow to 

a certain extent. Other performance characteristics were also analyzed to establish 

operating bands of the plant between day time and night time. The power and 

temperature calculations were compared to a numerical model which incorporated more 

real effects of the air and flow. The results from both models showed some similarities, 

and the assumptions made in the analytical model were validated as good 

approximations. 
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VII. RECOMMENDATIONS 

The research conducted in this thesis has hopefully established a foundation on 

which the prototype plant can be further developed. In an effort to guide the continued 

effort in this design study, the following recommendations are provided: 

1. Analyze larger scale plant design 

2. Revise flow model for larger collector sizing 

3. Investigate suitable materials to encase the phase change metal around the 
ducts, such as high conductivity ceramics 

4. Investigate modifications to the cycle such as a bottoming Rankine cycle 
to improve the plant efficiency 
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APPENDIX A. MATLAB CODE FOR ANALYSIS OF PRESSURE 
DROP AND HEAT FLUX OF 50 KW PLANT 

% LT Collin Roof, Thesis 
%% Collector Pressure Drop and Heat Flux 
  
Power = 50000;       % [W] Rated Power 
nu = 0.39;        % [N/A] Thermal Efficiency 
Q = Power/nu;       % [W] Collector heat xfer 
P1 = 101325;       % [Pa] Compressor inlet pressure 
T1 = 288.15;       % [K] Compressor inlet temperature 
Tw = 933;        % [K] Collector wall temperature 
f = 0.83;        % [N/A] Collector outlet reduction 
T3 = f*Tw;        % [K] Collector outlet temperature 
T2 = sqrt(T1*T3);      % [K] Collector inlet temperature 
gamma = 1.4;       % [N/A] Air specific heat ratio 
P2 = P1*(T2/T1)^(gamma/(gamma-1));  % [Pa] Collector inlet pressure 
mu3 = ((1.458e-6)*T3^(3/2))/(T3+110.4); % [kg/ms] Collector out viscosity 
          % (Sutherland’s Law) 
R = 287;        % [kJ/kgK] Air Gas Constant 
D = 5.902;        % [m] Single Duct Diameter 
L = 799.206;       % [m] Single Duct Length 
C = L/D;        % [N/A] 
  
N = 5:50:5000;       % [N/A] Number of Ducts 
mdot = 0.422./N;      % [kg/s] Mass Flow/duct 
d = D./N;        % [m] Diameter/duct 
l = L./N;        % [m] Length/duct 
A = d.^2;        % [m^2] Area/duct 
As = N.*l.*d;       % [m^2] Heat xfer surface area 
V2 = (R*T2/P2).*mdot./A;    % [m/s] Inlet velocity/duct 
Qf = Q./As;        % [W/m2] Heat flux 
  
% Quadratic Constants 
a = 16*C*(mu3./d); 
b = -P2; 
c = P2*(T3/T2).*V2; 
  
% Solve Quadratic Equation for V3 (Collector Outlet) 
for i = 1:length(N) 
 V3(:,i) = roots([a(i) b c(i)]); 
end 
  
% Removing erroneous root 
V3 = V3(2,:);  
  
% Plug V3 back into formula for Pressure Drop 
dP = ((16*C*mu3)./d).*V3; % [Pa] Collector Pressure Drop 
  
% Plot Pressure Drop vs. Number of Ducts 
figure(01) 
set(gca,’fontsize’,15, ‘linewidth’, 2) 
hold on 
plot(N, dP, ‘LineWidth’,4) 
xlabel(‘Number of Ducts [-]’) 
ylabel(‘Collector Pressure Drop [Pa]’) 
grid on 
  
% Plot Heat Flux vs. Number of Ducts 
figure(02) 
loglog(N, Qf, ‘LineWidth’,4) 
set(gca,’fontsize’,15) 
hold on 
xlabel(‘Number of Ducts [-]’) 
ylabel(‘Heat Flux [W/m^2]’) 
grid on 
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APPENDIX B. MATLAB CODE FOR ANALYTICAL 
OPTIMIZATION OF 50 KW PLANT 

%% LT Collin Roof, Thesis, Solar Plant Optimization, 50kW Plant 
%% Introduction 
  
% The following script optimizes mass flow of the solar collector Brayton  
% cycle for maximum power.  
% 
% Assumptions: 
% 1) Air - Ideal Gas 
% 2) Duct(s) - Constant area square cross section, L/a = constant 
% 3) Fully developed flow, Nu provided from text, Re = 2300 
% 4) Average constant conductivity through duct 
% 6) Ideal, Open Cycle - Compressor and Turbine processes  
%  reversible/adiabatic 
% 7) Design Power - 50 [kW] 
  
clear all 
close all 
clc 
  
%% Setup 
  
T1 = 288.15;  % [K] Compressor Inlet Temperature 
P1 = 101.325; % [kPa] Compressor Inlet Pressure  
cp = 1.005;  % [kJ/kg-K] Specific Heat Capacity of Air  
gamma = 1.41;  % [N/A] Specific Heat Ratio of Air  
R  = 0.287;  % [kJ/kg-K] Gas Constant of Air  
Tw = 933.45;  % [K] Wall Temperature (Melting temperature of Al... 
     % and max operating temperature of cycle) 
P4 = P1;   % [kPa] Turbine Outlet Pressure  
Nu = 2.98;  % [N/A] Nusselt Number for Square X-Section Duct 
k  = 4.746e-5; % [kW/m-K] Average Conductivity of Air through duct 
L  = 799.206; % Length of a single duct 
  
%% Initialization 
  
% Set domain for Mass Flow 
mdot = linspace(0.01,2,135); % [kg/s] Mass Flow 
  
% Coefficient function of mdot from heat equation 
alpha = exp((4*Nu*k*L/cp)./mdot);  
  
% Quadratic Solver for T3 using max power relationship with T2 
a = 1; 
b = ((2.*(alpha-alpha.^2).*Tw./T1)-1)./((alpha.^2)./T1); 
c = (((1-alpha).^2).*(Tw^2)./T1)./((alpha.^2)./T1); 
  
% Root solver loop  
for i = 1:length(mdot) 
 T3(:,i) = roots([a b(i) c(i)]); 
end 
  
% Removing 2nd root array as not realistic 
T3 = T3(1,:); 
  
% Solving for T2 using max power relationship 
T2o = sqrt(T1.*T3); % Optimizer T2 (Varies with T3) 
  
% Delta T through duct 
dT = T3-T2o;  
  
% Cycle Power as a function of Mass Flow, Max Power 
P = mdot.*cp.*T1.*((T3./T1)-2.*sqrt(T3./T1)+1);  
[M I] = max(P); 
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% Heat Exchanger Effectiveness 
epsilon = (dT)./(Tw - T2o); 
  
% Cycle Efficiency 
eta = P./(mdot.*cp.*dT); 
%% Results/Figures 
  
% Delta T Through Duct as a Function of Mass Flow 
figure(01) 
set(gca,’fontsize’,15, ‘linewidth’, 2) 
hold on 
plot(mdot, dT(1,:), ‘LineWidth’,4) 
plot(0.422, dT(29), ‘.g’, ‘markersize’, 30)  
hold on 
plot(mdot(I), dT(I), ‘.r’, ‘markersize’, 30) 
hold on 
text(0.422, dT(29), sprintf([‘Design’]),... 
 ‘VerticalAlignment’,’bottom’, ‘HorizontalAlignment’,’Left’,... 
 ‘fontsize’,15) 
hold on  
text(mdot(I), dT(I), sprintf([‘Maximum’]),... 
 ‘VerticalAlignment’,’bottom’, ‘HorizontalAlignment’,’Left’,... 
 ‘fontsize’,15) 
xlabel(‘Mass Flow [kg/s]’) 
ylabel(‘Delta T [K]’) 
%title(‘Collector Delta T vs. Mass Flow’) 
grid on 
  
% Power as a function of mass flow 
figure(02) 
set(gca,’fontsize’,15, ‘linewidth’, 2) 
hold on 
plot(mdot, P(1,:), ‘LineWidth’,4) 
hold on 
plot(mdot(I), M, ‘.r’, ‘markersize’, 30) 
hold on 
text(mdot(I), M, sprintf([‘\nMaximum:\nPower = 58 [kW]\nMass Flow = 1 [kg/
s]’]),... 
 ‘VerticalAlignment’,’top’, ‘fontsize’,15) 
hold on 
plot(0.422, 50, ‘.g’, ‘markersize’, 30) 
text(0.422, 50,... 
 sprintf(‘\nDesign:\nPower = 50 [kW]\nMass Flow = 0.4 [kg/s]’),... 
 ‘VerticalAlignment’,’top’, ‘fontsize’,15) 
hold on 
xlabel(‘Mass Flow [kg/s]’) 
ylabel(‘Power [kW]’) 
%title(‘Cycle Power vs. Mass Flow’) 
grid on 
  
% Heat exchanger effectiveness as a function of mass flow 
figure(03) 
set(gca,’fontsize’,15, ‘linewidth’, 2) 
hold on 
plot(mdot, epsilon, ‘LineWidth’,4) 
hold on 
plot(0.422, epsilon(29), ‘.g’, ‘markersize’, 30) 
hold on 
plot(mdot(I), epsilon(I), ‘.r’, ‘markersize’, 30)  
hold on 
text(0.422, epsilon(29), sprintf([‘Design’]),... 
 ‘VerticalAlignment’,’bottom’, ‘HorizontalAlignment’,’Left’,... 
 ‘fontsize’,15) 
hold on  
text(mdot(I), epsilon(I), sprintf([‘Maximum’]),... 
 ‘VerticalAlignment’,’bottom’, ‘HorizontalAlignment’,’Left’,... 
 ‘fontsize’,15) 
xlabel(‘Mass Flow [kg/s]’) 
ylabel(‘\epsilon [-]’) 
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%title(‘Heat Exchanger Effectiveness vs. Mass Flow’) 
grid on 
  
% Cycle efficiency as a function of mass flow 
figure(04) 
set(gca,’fontsize’,15, ‘linewidth’, 2) 
hold on 
plot(mdot, eta, ‘LineWidth’,4) 
hold on 
plot(0.422, eta(29), ‘.g’, ‘markersize’, 30) 
hold on 
plot(mdot(I), eta(I), ‘.r’, ‘markersize’, 30) 
hold on 
text(0.422, eta(29), sprintf([‘Design’]),... 
 ‘VerticalAlignment’,’bottom’, ‘HorizontalAlignment’,’Left’,... 
 ‘fontsize’,15) 
hold on  
text(mdot(I), eta(I), sprintf([‘Maximum’]),... 
 ‘VerticalAlignment’,’bottom’, ‘HorizontalAlignment’,’Left’,... 
 ‘fontsize’,15) 
xlabel(‘Mass Flow [kg/s]’) 
ylabel(‘\eta [-]’) 
%title(‘Cycle Efficiency vs. Mass Flow’) 
grid on 
  
%% Temperature Distribution Through Single Duct, Fixed Mass Flows 
  
% Analyzing the Temperature Profile Through the Duct for Mass FLows 
  
T2 = 472.491;      % [K] Collector Inlet Temperature 
  
mdot1 = [0.01 0.42 0.96 1.5 2]’;  % [kg/s] Mass Flow Samples  
  
x = linspace(0,800,1000);   % [m] Duct Length (Dependent Variable) 
l = x/800;       % [N/A] Normalized Length 
  
alpha = exp(((4*Nu*k/cp)./mdot1).*x); % [N/A] Scaling Function 
  
T = (1-1./alpha)*Tw + (1./alpha)*T2; % [K] Temperature Across Duct 
  
% Results/Plot 
  
figure(05) 
set(gca,’fontsize’,15, ‘linewidth’, 2) 
hold on 
plot(l,T(1,:), l,T(2,:), ‘-g’, l,T(3,:), ‘-r’, l,T(4,:), l,T(5,:),... 
 ‘LineWidth’,4) 
xlabel(‘Normalized Duct Length [-]’) 
ylabel(‘Average Temperature [K]’) 
h=legend(‘0.010 [kg/s]’, ‘0.422 [kg/s] (Design)’,... 
 ‘0.960 [kg/s] (Maximum)’, ‘0.150 [kg/s]’,... 
 ‘0.200 [kg/s]’) 
set(h, ‘Position’,... 
 [0.219433992346939 0.572591553287982 0.286607142857143 0.204761904761905])  
%title(‘Average Temperature Distribution Through Single Duct’) 
grid on 
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APPENDIX C. ANSYS-CFX SOLUTION REPORT FOR 50KW 
PLANT 

 

Title 

Solar Collector Single Duct 

Author 

LT Collin Roof 

Date 

2017/05/23 20:45:37 

 

Contents 

1. File Report 
 Table 1 File Information for CFX 1 
2. Mesh Report 
 Table 2 Mesh Information for CFX 1 
 Table 3 Mesh Statistics for CFX 1 
3. Physics Report 
 Table 4 Domain Physics for CFX 1 
 Table 5 Boundary Physics for CFX 1 
4. Solution Report 
 Table 6 Boundary Flows for CFX 1 
 Table 7 Forces and Torques for CFX 1 
5. Pictures 
 Figure 1 Pressure Profile 
 Figure 2 Temperature Profile 
 Figure 3 Velocity Profile 
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1. File Report  
Table 1. File Information for CFX 1 

Case CFX 1 

File Path 
H:\MyDocs\Thesis\Model\SingeDuct(Scaled)_files\dp0\CFX-1\CFX\Fluid Flow 
CFX_061.res 

File Date 22 May 2017 

File Time 10:25:13 PM 

File Type CFX5 

File 
Version 

17.2 

 
. Mesh Report  
Table 2. Mesh Information for CFX 1 

Domain Nodes Elements Tetrahedra Wedges Pyramids Hexahedra Polyhedra

Default Domain 39200 28764 0 0 0 28764 0
 

 
Table 3. Mesh Statistics for CFX 1 

Domain 
Minimum 
Face Angle 

Maximum 
Face Angle 

Maximum Edge 
Length Ratio 

Maximum 
Element Volume 

Ratio

Connectivity 
Range 

Default 
Domain 

90 [ degree ] 90 [ degree ] 1.01691 1.00006 1 8
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3. Physics Report  
Table 4. Domain Physics for CFX 1 

Domain - Default Domain

Type Fluid 

Location B30 

Materials 

Air Ideal Gas 

  Fluid Definition Material Library

  Morphology Continuous Fluid

Settings 

Buoyancy Model Non Buoyant 

Domain Motion Stationary 

Reference Pressure 5.5491e+02 [kPa]

Heat Transfer Model Total Energy 

  Include Viscous Work Term Off 

Turbulence Model Laminar 
 

 
Table 5. Boundary Physics for CFX 1 

Domain Boundaries

Default Domain 

Boundary - Inlet

Type INLET 

Location Inlet 

Settings 

Flow Direction Normal to Boundary Condition 

Flow Regime Subsonic 

Heat Transfer Static Temperature 

  Static Temperature T2 

Mass And Momentum Mass Flow Rate 

  Mass Flow Rate MassFlow 

  Mass Flow Rate Area As Specified 
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Boundary - Outlet

Type OUTLET 

Location Outlet 

Settings 

Flow Regime Subsonic 

Mass And Momentum Mass Flow Rate 

  Mass Flow Rate MassFlow 

  Mass Flow Rate Area As Specified 

Boundary - Bottom

Type WALL 

Location Bottom 

Settings 

Heat Transfer Fixed Temperature 

  Fixed Temperature 9.3300e+02 [K] 

Mass And Momentum No Slip Wall 

Boundary - Side1

Type WALL 

Location Side1 

Settings 

Heat Transfer Fixed Temperature 

  Fixed Temperature 9.3300e+02 [K] 

Mass And Momentum No Slip Wall 

Boundary - Side2

Type WALL 

Location Side 2 

Settings

Heat Transfer Fixed Temperature 

  Fixed Temperature 9.3300e+02 [K] 

Mass And Momentum No Slip Wall 
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Boundary - Top

Type WALL 

Location Top 

Settings 

Heat Transfer Fixed Temperature 

  Fixed Temperature 9.3300e+02 [K] 

Mass And Momentum No Slip Wall 
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4. Solution Report  
Table 6. Boundary Flows for CFX 1 

Location Type Mass Flow 
Momentum

X Y Z

Bottom Boundary 0.0000e+00 4.3131e-10 -2.7280e-01 -6.8225e-04

Inlet Boundary 2.1000e-01 -2.4106e-14 3.7373e-14 1.2185e-03

Outlet Boundary -2.1000e-01 1.3553e-07 1.6927e-07 1.5106e-03

Side1 Boundary 0.0000e+00 -2.7280e-01 3.0748e-10 -6.8225e-04

Side2 Boundary 0.0000e+00 2.7280e-01 3.3885e-10 -6.8225e-04

Top Boundary 0.0000e+00 4.1045e-10 2.7280e-01 -6.8225e-04
 

 
Table 7. Forces and Torques for CFX 1 

Location Type X Y Z

Bottom 

Pressure Force 0.0000e+00 2.7280e-01 0.0000e+00

Viscous Force -4.3132e-10 5.6631e-07 6.8225e-04

Total Force -4.3132e-10 2.7280e-01 6.8225e-04

Pressure Torque -7.2782e+01 0.0000e+00 -3.8641e-08

Viscous Torque -1.0248e-03 -1.6459e-07 -6.4290e-10

Total Torque -7.2783e+01 -1.6459e-07 -3.9284e-08

Side1 

Pressure Force 2.7280e-01 0.0000e+00 0.0000e+00

Viscous Force 5.6630e-07 -3.0748e-10 6.8225e-04

Total Force 2.7280e-01 -3.0748e-10 6.8225e-04

Pressure Torque 0.0000e+00 7.2782e+01 5.6216e-08

Viscous Torque 1.1879e-07 1.0248e-03 3.9457e-10

Total Torque 1.1879e-07 7.2783e+01 5.6611e-08

Side2 

Pressure Force -2.7280e-01 0.0000e+00 0.0000e+00

Viscous Force -5.6761e-07 -3.3885e-10 6.8225e-04

Total Force -2.7280e-01 -3.3885e-10 6.8225e-04

Pressure Torque 0.0000e+00 -7.2782e+01 -4.8739e-08

Viscous Torque 1.2992e-07 -1.0253e-03 -5.9973e-10

Total Torque 1.2992e-07 -7.2783e+01 -4.9338e-08

Top 

Pressure Force 0.0000e+00 -2.7280e-01 0.0000e+00

Viscous Force -4.1046e-10 -5.6760e-07 6.8225e-04

Total Force -4.1046e-10 -2.7280e-01 6.8225e-04



 81

Pressure Torque 7.2782e+01 0.0000e+00 3.9689e-08

Viscous Torque 1.0253e-03 -1.6161e-07 6.2895e-10

Total Torque 7.2783e+01 -1.6161e-07 4.0318e-08
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5. Pictures 
 

Figure 1. Pressure Profile 

Figure 2. Temperature Profile 

Figure 3. Velocity Profile 
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APPENDIX D. ANSYS-CFX OPTIMIZATION REPORT FOR 50KW 
PLANT 

 
Summary  

Project: SingleDuct(Scaled) 

Date: 5/23/2017 

Time: 8:19:37 PM 

Product Version: Release 17.2 

Last Saved Version: Release 17.2 

 
Project Schematic View 
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Files  
 

Name Size Type Date Modified Location 

SingleDuct(Scaled).x_t 5 KB Geometry File 
12/2/2016 10:22:51 
AM 

H:\MyDocs\Thesis\
Model 

CFX1.cmdb 6 MB CFX Mesh File 2/20/2017 5:07:51 PM dp0\CFX\MECH 

CFX.mshdb 6 MB Mesh Database File 2/20/2017 5:07:54 PM dp0\global\MECH 

SingeDuct(Scaled).w
bpj 

484 
KB 

Workbench Project 
File 

5/23/2017 12:24:36 
AM 

H:\MyDocs\Thesis\
Model 

 
Design Points  
 

Name 
P5 - 
MassFlow 

P2 - 
DeltaT 

P3 - 
Power 

P4 - 
T3 

Retained
Retained 
Data 
State 

Report Note 

Units kg s^-1 K W K 

DP 0 
(Curre
nt) 

0.21 282.91 22653 747.21 yes 
 

 

DP 1 0.6184 
   

  

Created 
from 
Response 
Surface 

 
Outline of All Parameters  
 

ID Parameter Name Value Unit 

Input Parameters 

3-D Single Duct (2 Duct System) 

P5 MassFlow 0.21 kg s^-1 

Output Parameters 

3-D Single Duct (2 Duct System) 

P2 DeltaT 282.91 K 
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P3 Power 22653 W 

P4 T3 747.21 K 

 
Response Surface Optimization  
 
Design of Experiments  
 
The Design of Experiments is the initial step building a Response Surface over the design 
space. This section describes the selected input parameters and their variation range, the 
chosen Design of Experiments type, and the generated Matrix of Experiments. 
 
Parameters  
 
The explored design space is defined by the range of variation of the following 1 input 
parameters. 
 

ID Name Classification Lower Bound Upper Bound

P5 MassFlow Continuous 0.01 [kg s^-1] 1 [kg s^-1] 

 
Design of Experiments Properties  
 

Property Value 

Design of Experiments Type Central Composite Design 

Design Type Auto Defined 

 
Matrix of Experiments  
 
All of the 5 points are up-to-date.  
The full Matrix of Experiments is provided in the Appendices.  
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Parameters Parallel Chart 
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Design Points vs Parameter Chart 
 

 
 
Response Surface  
 
The Response Surface is a meta-model built from the Design of Experiments for an 
efficient exploration of the design space. This section describes the selected type of meta-
model, including its properties, the obtained quality, and the generated Response Points 
and charts. 
 
Response Surface Properties  
 

Property Value 

Response Surface Type Genetic Aggregation 

Random Generator Seed 0 

Maximum Number of Generations 12 
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Display Level Final 

Generate Verification Points No 

 
Goodness of Fit  
 
The Goodness of Fit report provides charts and metrics to understand how each output 
parameter is approximated by the response surface. 
 
Details of ‘Goodness Of Fit’  
 
Predicted vs Observed Scatter Chart 
 

 

P2 - DeltaT P3 - Power P4 - T3 

Coefficient of Determination (Best Value = 1) 

Learning Points 
1 1 1 
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Cross-Validation on Learning Points 
1 1 1 

Root Mean Square Error (Best Value = 0) 

Learning Points 7.8215E-05 4.4538E-05 7.1423E-06 

Cross-Validation on Learning Points 0.00037587 0.00033711 1.3094E-05 

Relative Maximum Absolute Error (Best Value = 0%) 

Learning Points 
0 0 0 

Cross-Validation on Learning Points 
0.00066882 6.1964E-06 1.0682E-05 

Relative Average Absolute Error (Best Value = 0%) 

Learning Points 
0 0 0 

Cross-Validation on Learning Points 
0.00022649 1.7665E-06 6.3594E-06 

 
Minimum and maximum values  
 
This section reports the minimum and maximum values for each output parameter. These 
values are approximations found by the Min-Max Search on the Response Surface. 
 

Name Minimum value Maximum value

P2 - DeltaT (K) 117.26 407.33 

P3 - Power (W) 1850.7 29731 

P4 - T3 (K) 495.04 933 

 
The input parameter values corresponding to the minimum and maximum values are 
provided in the Appendices. 
 
Response Points  
 
The Response Points provide the output parameter values obtained by evaluating the 
Response Surface. This section lists all the Response Points and their associated charts. 
 

Name 
P5 - MassFlow (kg 
s^-1)  

P2 - DeltaT 
(K)  

P3 - Power 
(W)  

P4 - T3 
(K)  

Report
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Response 
Point 

0.505 187.07 29424 604.63 
 

 
Details of ‘Response Point’  
 
Response Chart 
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Local Sensitivity Chart 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 94

Local Sensitivity Curves Chart  
 
Axes Range = Use Min Max of the Output Parameter 
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Spider Chart 
 

 
 
Optimization  
 
The Optimization is based on Response Surface evaluations. This section describes the 
chosen Optimization type and the generated candidates and charts. 
 
Parameters  
 
The explored design space is defined by the range of variation of the following 1 input 
parameters. 
 

ID Name Classification Lower Bound Upper Bound

P5 MassFlow Continuous 0.01 [kg s^-1] 1 [kg s^-1] 
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Properties  
 

Property Value 

Method Name Screening 

Verify Candidate Points No 

Number of Samples 1000 

Maximum Number of Candidates 3 

 
Definition  
 
Objectives and constraints of the optimization study 
 

P5 - MassFlow (kg s^-1) P3 - Power (W)

Domain [0.01;1] 

Objective Maximize 

 
Description  
 

Optimization 
Method  

Screening 

The Screening optimization method uses a simple approach based on sampling and sorting. It 
supports multiple objectives and constraints as well as all types of input parameters. Usually it 
is used for preliminary design, which may lead you to apply other methods for more refined 
optimization results. 

Configuration Generate 1000 samples and find 3 candidates. 

Status Converged after 1000 evaluations. 

 
Status  
 

Property Value 

Converged Yes 

Number of Evaluations 1000 

Number of Failures 0 

Size of Generated Sample Set 1003 
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Number of Candidates 3 

 
Candidates  
 
Candidates of the optimization study 
 

 
P5 - MassFlow (kg 
s^-1) 

P2 - DeltaT 
(K) 

P3 - Power 
(W) 

P4 - T3 
(K) 

Report

Candidate Point 
1 

0.6176 165.24 
29731 

570.75 
 

Candidate Point 
2 

0.67875 155.31 
29664 

555.37 
 

Candidate Point 
3 

0.74013 146.41 
29484 

541.51 
 

 
The table of Rating Values is provided in the Appendices.  
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History Chart 
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History Chart 
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Tradeoff Chart  
 
Number of Pareto Fronts to Show = 995/995 
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Samples Chart  
 
Mode = Pareto Fronts 
Coloring method = per Pareto Front 
Number of Pareto Fronts to Show = 995/995 
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Sensitivities Chart 
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Candidates Chart  
 
Coloring method = per Candidate 
 

 
 
Appendix  
 
Matrix of Experiments (Response Surface Optimization system)  
 

Name P5 - MassFlow (kg s^-1) P2 - DeltaT (K) P3 - Power (W) P4 - T3 (K)  Report

1 0.505 187.07 29424 604.63 

2 0.01 407.33 1850.7 933 

3 1 117.26 27959 495.04 

4 0.2575 260.01 24557 713.76 

5 0.7525 144.73 29437 538.88 
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Output Parameter Minimums (Response Surface Optimization system)  
 

Name P5 - MassFlow (kg s^-1) P2 - DeltaT (K) P3 - Power (W)  P4 - T3 (K) 

P2 - DeltaT 1 117.26 27959 495.04 

P3 - Power 0.01 407.33 1850.7 933 

P4 - T3 1 117.26 27959 495.04 

 
Output Parameter Maximums (Response Surface Optimization system)  
 

Name P5 - MassFlow (kg s^-1) P2 - DeltaT (K) P3 - Power (W)  P4 - T3 (K) 

P2 - DeltaT 0.01 407.33 1850.7 933 

P3 - Power 0.6176 165.24 29731 570.75 

P4 - T3 0.01 407.33 1850.7 933 

 
Table of Rating Values (Response Surface Optimization system)  
 

P3 - Power (W)  

Objective Maximize 

 

[ 27407 ; 29731 ] 

 

[ 22761 ; 27407 ] 

 

[ 18114 ; 22761 ] 

 

[ 13467 ; 18114 ] 

 

[ 8820.7 ; 13467 ] 

 

[ 4174 ; 8820.7 ] 

 

[ 1850.7 ; 4174 ] 
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APPENDIX E. ANSYS-CFX OPTIMIZATION RAW DATA FOR 
50KW PLANT  

Mass Flow [kg/
s]  T3 [K]  dT [K]  Power [kW] 

0.02  933 407.3290384 3.701339955

0.1025  898.6047457 377.5018905 17.23358692

0.185  862.0005805 349.7800669 27.90234773

0.2675  824.1123246 324.113039 35.49245444

0.35  785.8689574 300.4774403 41.08261961

0.4325  748.3235337 278.9230139 45.53495101

0.515  713.7579984 260.0088857 49.11380011

0.5975  691.6929407 244.6514758 51.97397773

0.68  671.6875067 230.9024898 54.22868854

0.7625  652.98166 218.3910802 55.96955214

0.845  635.536148 206.9727605 57.27484372

0.9275  619.3964533 196.5559324 58.21355049

1.01  604.6250075 187.0721207 58.84759985

1.0925  591.2289457 178.4503371 59.23398199

1.175  579.0219231 170.574234 59.42401775

1.2575  567.8161804 163.3392515 59.45684005

1.34  557.4652728 156.6625267 59.3618072

1.4225  547.8526508 150.4770975 59.1614127

1.505  538.8839875 144.7279626 58.87320006

1.5875  530.4818445 139.3693151 58.51106224

1.67  522.5818596 134.3625463 58.08614696

1.7525  515.1299579 129.6747742 57.60750197

1.835  508.0802721 125.2777347 57.08254418

1.9175  501.3935634 121.1469344 56.51740676

2  495.0360063 117.2609916 55.91720001

 



 106

THIS PAGE INTENTIONALLY LEFT BLANK  



 107

LIST OF REFERENCES 

[1] Schwartz, M. et al., 2012, “Department of Defense Energy Initiatives: 
Background and Issues for Congress,” Cong. Research. Serv., Washington, DC, 
Rep. R42558. 

[2] Feldman, R., 2014, “Renewable Energy for Military Installations: 2014 Industry 
Review,” Amer. Counc. On Renew. Ener., Washington, DC 

[3] Mabus, R., 2012, “Strategy for Renewable Energy,” U.S. Depart. of the Navy, 
Washington, DC 

[4] Solar Energy Industries Association, 2013, “Enlisting the Sun: Powering the U.S. 
Military with Solar Energy 2013,” Washington, DC 

[5] McGinn, D., 2016, “Microgrids: Macro Benefits for our Navy Bases,” 
http://navylive.dodlive.mil/2016/05/02/microgrids-macro-benefits-for-our-navy-
bases/ 

[6] Office of the Secretary of the Navy, 2012, Renewable Energy Projects, 
http://greenfleet.dodlive.mil/energy/shore/renewable-energy-projects/ 

[7] National Renewable Energy Laboratory, 2012, Dynamic Maps, GIS Data, and 
Analysis Tools, http://www.nrel.gov/gis/solar.html 

[8] IRENA and IEA-ETSAP, 2013, “Technology Brief 4: Thermal Energy Storage,” 
https://www.irena.org/DocumentDownloads/Publications/IRENA-
ETSAP%20Tech%20Brief%20E17%20Thermal%20Energy%20Storage.pdf 

[9] Solar Reserve, n.d., Molten Salt Energy Storage, http://www.solarreserve.com/en/
technology/molten-salt-energy-storage 

[10] Herrmann, U. and Kearney, D., 2002, “Survey of Thermal Energy Storage for 
Parabolic Trough Power Plants,” J. Sol. Energy Eng., 124(2), pp. 145–152. 

[11] Hinke, T., 2014, “Hot Thermal Storage in a Variable Power, Renewable Energy 
System,” M.S. thesis, Mech. Eng., Naval Postgraduate School, Monterey, CA. 

[12] National Renewable Energy Laboratory, 2017, Concentrating Solar Power 
Projects: Andasol-1, https://www.nrel.gov/csp/solarpaces/project_detail.cfm/
projectID=3 

[13] Skumanich, A, 2011, CSP: Developments in Heat Transfer and Storage Materials, 
http://www.renewableenergyfocus.com/view/17095/csp-developments-in-heat-
transfer-and-storage-materials/ 



 108

[14] Abutayeh, M. et al., 2016, “A Case Study of Augmenting Solar Power Generation 
With Thermal Energy Storage,” in ASME 2016 10th International Conference on 
Energy Sustainability, Charlotte, NC, pp. 1–8. 

[15] Roman, C. and Fireteanu, V., 2011, “An Overview on Solar Energy, Molten Salts 
and Electromagnetic Pumping Technologies,” http://ieeexplore.ieee.org/stamp/
stamp.jsp?arnumber=5874692 

[16] Gil, A. et al., 2015, “Design of a 100 kW Concentrated Solar Power on Demand 
Volumetric Receiver With Integral Thermal Energy Storage Prototype,” in ASME 
2015 Power Conference, San Diego, CA, pp. 1–7. 

[17] Li, X. et al., 2013, “Metallic Composites Phase-Change Materials for High-
Temperature Thermal Energy Storage,” in ASME 2013 7th International 
Conference on Energy Sustainability, Minneapolis, MN, pp. 1–5. 

[18] Kotze, J. and von Backstrom, T., 2013, “High Temperature Thermal Energy 
Storage Utilizing Metallic Phase Change Materials and Metallic Heat Transfer 
Fluids,” J. Sol. Energy Eng., 135(3), pp. 1–6. 

[19] Jiang, Y. et al., 2016, “A New Phase Change Material for High Temperature 
Thermal Energy Storage,” in ASME 2016 10th International Conference on 
Energy Sustainability, Charlotte, NC, pp. 1–6. 

[20] Borgnakke, C. and Sonntag, R., 2009, Fundamentals of Thermodynamics, 
Seventh ed., Hoboken, J. Wiley & Sons, Inc. 

[21] ME Mechanical, 2016, Brayton Cycle, https://me-mechanicalengineering.com/
brayton-cycle/ 

[22] Greitzer, E. et al., n.d., 3.7: Brayton Cycle, http://web.mit.edu/16.unified/www/
SPRING/propulsion/notes/node27.html 

[23] Incropera, F. et al., 2007, Introduction to Heat Transfer, Fifth ed., Hoboken, J. 
Wiley & Sons, Inc., pp. 456–498. 

[24] Rodriguez-Sanchez, M. et al., 2013, “New Designs of Molten-Salt Tubular-
Receiver for Solar Power Tower,” Energy Pro., 49, pp. 504–513. 

[25] Global Digital Central, n.d., File:Fig5.4.png, [Online], Available 
http://www.thermalfluidscentral.org/encyclopedia/index.php/File:Fig5.4.png. 
Accessed Jun. 1, 2017. 

 
  



 109

INITIAL DISTRIBUTION LIST 

1. Defense Technical Information Center 
 Ft. Belvoir, Virginia 
 
2. Dudley Knox Library 
 Naval Postgraduate School 
 Monterey, California 
 
 
 


