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ABSTRACT 

This thesis focuses on the replacement of a genetic algorithm currently 

used to optimize multi-junction solar cells with Silvaco Atlas simulation software. 

It introduces the nearly orthogonal Latin hypercube (NOLH) design of 

experiments (DoE) as a means for exploring and optimizing solar cell designs in 

Silvaco Atlas. The general applicability of this approach has been proven, and 

compared to the genetic algorithm optimization technique, the following 

achievements have been made. The pre-generated simulation designs can now 

be processed in parallel, which drastically reduces the time required to conduct 

multiple simulations. Moreover, the data generated using the NOLH enabled a 

better understanding of the simulation input/output relationship and helped to 

focus the solar cell development by highlighting the design parameters that 

matter most. Using stepwise regression to build a metamodel helped in finding 

an optimal design and revealing the interactions among the input parameters. 

The initial simulation has already yielded promising results and has clearly shown 

the preeminence of the NOLH over the genetic algorithm by identifying a design 

with greater than 21% more power output than in previous designs. The NOLH 

DoE should become the new standard for optimizing solar cells in Silvaco Atlas.  
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EXECUTIVE SUMMARY 

This thesis applies the nearly orthogonal Latin hypercube (NOLH) design 

of experiments (DoE) to optimize the design of multi-junction solar cells with 

Silvaco Atlas simulation software. The results show that the output power of a 

dual-junction solar cell can be increased by 21%. 

In previous research, a genetic algorithm was used to optimize the design 

of multi-junction solar cells in conjunction with Silvaco Atlas. The process 

suffered from the following limitations: 

• It was complex to set up and inflexible to cell design changes as well as 
produced an insufficient resolution; 

• Because only sequential simulation runs were possible, long run times 
were required; and 

• The process produced an estimated optimum, but no data were available 
in a form that facilitated understanding of the relationships between inputs 
and output. 

Given the aforementioned restrictions, the potential for that approach in the 

development of more complex multi-junction solar cells seemed exhausted.  

The introduction of the NOLH addresses all limitations and achieves the 

following improvements to the development process: 

• Design preparation is easy and flexible using the NOLH Excel 
spreadsheet; 

• Higher resolution is easy through rotation and stacking; 
• Pre-generating all input combinations allows parallel processing of the 

Silvaco Atlas simulation files (future implementation); and 
• Data analysis identifies relevant input parameters and their behaviors to 

focus cell design development.  

With the NOLH properties described, the limitations of the genetic algorithm can 

be mitigated and the development turnaround times reduced by an order of 

magnitude. The new process explores the experimentation space with a higher 

resolution and detects maximum output values with greater accuracy.  
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With the new process, solar cell developers have a powerful, efficient tool 

to focus their research on the solar cell design, no longer limited by the 

optimization process alone. The following table gives an overview of the input 

parameters used to obtain the highest power output. 

 

 

 

The starting point of the optimization process, called the basis design, was 

a dual-junction design optimized by the genetic algorithm for an AM1.5 spectrum. 

The most significant improvement from the basis design to the linear basis is 

explained by the first use of the AM0 spectrum. The linear basis is the first 

simulation run of the Silvaco Atlas for a design with NOLH-generated input 

variables. As shown in the table, the Lin stacked and the second iteration output 

values showed significant improvement over the Lin basis output value. This 

improvement resulted from better coverage of the experimentation space for the 

Lin stacked design and adjusted input parameter ranges for the second iteration 



 

 xix 

design. The adjustment procedure was refined in the third iteration and 

demonstrated a successful application of the method to improve cell design in 

Silvaco Atlas. 

The results of the simulations highlight the potential of the NOLH DoE. It is 

recommended that the NOLH replace the genetic algorithm as the new standard 

for developing solar cells with Silvaco Atlas.   
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I. INTRODUCTION 

The use of electrical solar energy dates back to 1839, when Alexandre 

Edmond Becquerel first observed the photovoltaic effect. This discovery marked 

the start of a long journey to improve the efficiency and make the effect and its 

application a commercial success. An important step along the way was the 1883 

construction of the first solid-state solar cell by Charles Fritts using selenium. In 

1887, Heinrich Hertz discovered the photoelectric effect, which Albert Einstein 

theoretically explained in 1905 on a quantum basis. From 1910 to 1940, several 

achievements in the field of semiconductor material were made, leading to the 

development of the first silicon-based solar cell in 1941 by Russell Ohl. In the 

following years, efficiency improved, as demonstrated in the first U.S. solar-

powered satellite, Vanguard I, in 1958 (U.S. Department of Energy, n.d.). 

Today, we have to distinguish between applications for commercial use, 

which are mostly silicon-based, and applications with higher efficiency obtained 

by using combinations of more exotic semiconductor materials such as gallium 

arsenide (GaAs) or gallium indium phosphate (GaInP). Due to the higher costs, 

solar cells consisting of these latter materials are more likely used in special 

applications, such as space operations, for which launch costs are a primary 

concern. The goal is to reduce the size of the solar panel and, subsequently, the 

weight, while generating the same amount of electrical power.  

This is achieved by researching substances and their photovoltaic 

behavior. Another promising approach is to experiment with multi-junction solar 

cells to improve the yield per photosensitive area by stacking different materials 

on each other. Multi-junction cells are able to use a wider spectrum of light than 

single-junction cells to produce electrical power. To develop such cells, a design 

method to build and test the cells is used. Due to the complexity of the buildup, 

this process is costly and time-consuming. A better, more cost-efficient way is to 

simulate the electrical behavior of such designs and improve their performance 
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by applying optimization algorithms. Such a computer model, able to accurately 

model multi-junction solar cells and predict their performance, is discussed in this 

thesis. The emphasis of the work lies in the introduction of a new technique to 

optimize the cell design rather than the optimization of the cell itself. 

This thesis builds on a long series of research on this subject, which 

started with Michalopolous (2002) and Green (2002), to model solar cells with the 

Silvaco ATLAS simulation environment. Theses by Bates (2004a) and Utzler 

(2006) improved the cell design with a genetic algorithm and a compendium of 

the prior work, while the dissertation by Tsutagawa (2013) refined the processes.  

Building on this earlier work, this thesis replaces the genetic algorithm with 

the nearly orthogonal Latin hypercube (NOLH) design of experiments (DoE) 

developed by Cioppa and Lucas (2007), Hernandez, Lucas, and Carlyle (2012), 

and MacCalman, Vieira, and Lucas (2017). The goal is to show the usefulness of 

this approach and to analyze whether the results produced are as good as or 

even better than the ones generated by the genetic algorithm. It is worth 

mentioning that the genetic algorithm and NOLH yield improved solutions to an 

optimization problem rather than optimize a solution in a mathematical sense. 

The outline of this thesis is as follows. Chapter II provides the background 

of semiconductor physics and its application to solar cells, introduces the main 

characteristics of the Silvaco ATLAS simulation environment, and describes the 

previous optimization algorithm and the novel approach using NOLHs as well as 

the advantages and disadvantages of the latter. Chapter III introduces the 

experimental setup and highlights the results using the statistical analysis tool 

JMP (SAS Institute, n.d.-c). Chapter IV discusses and compares the results with 

previous research, specifically the dual-junction cell first introduced by Japan 

Energy Corporation’s Central Research Laboratory (Agui, Takamoto, Ikeda, and 

Kurita, 1998).  This study was used as a reference by Tsutagawa (2013) to 

validate the Silvaco ATLAS simulation capability for use with the genetic 

optimization algorithm. Chapter V draws conclusions and makes 

recommendations for future research.   
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II. BACKGROUND  

This thesis is follow-on research to a sequence of efforts to optimize the 

energy output of multi-junction solar cells with the Silvaco ATLAS simulation 

environment (SILVACO Inc., n.d.). For a better understanding of the subject and 

to provide the basis for solar cell physics, this chapter first introduces 

semiconductor materials and their application in solar cells. Next, the previous 

genetic algorithm optimization technique and the replacement NOLH approach 

are discussed. The goal of this chapter is to highlight the benefit of the new 

approach in the design development of multi-junction solar cells with Silvaco 

ATLAS. 

A. GENERAL OVERVIEW SOLAR ENERGY USAGE 

Energy from the sun has become a vital part in the power-supply strategy 

for many countries and is the preferred source of energy for space operations. 

This thesis focuses on solar cells used in space applications because multi-

junction solar cells are currently too expensive for general commercial use. 

1. Semiconductor Basics (Solar Cell) 

In the world of electricity, there are two main types of materials, ones that 

conduct electricity freely, called conductors, and ones that have no freely moving 

electrons, called non-conductors or insulators. Semiconductor materials, as the 

name suggests, are somewhere in the middle; they are neither a true conductor 

nor an insulator. The most important materials that belong to this group include 

germanium, silicon, gallium arsenide, and a variety of other substances or their 

combinations. All these substances are crystalline inorganic solids. A different 

area of research is ongoing to investigate the properties of organic materials and 

their use in solar cell applications.  

The sole focus of this thesis is on inorganic materials. Each of these 

materials has very specific properties and, therefore, the understanding of its 
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behavior under certain environmental conditions is vital for the development of 

specific electronic applications such as solar cells. The most important physical 

properties are covered in the following paragraphs to explain the specific 

substance behavior. 

a. General physics 

Every chemical substance or semiconductor material structure can be 

described using the Bohr atomic model. The model consists of an atom 

comprised of a small, positively charged nucleus surrounded by free movable 

electrons that travel in orbits, or shells, around the center. The distance of the 

circular orbit from the center is defined by the electron’s energy levels. As 

depicted in Figure 1, for example, silicon has 14 electrons total in its neutral state 

with four valence electrons in its outer shell. This classifies silicon as a Group IV 

element in the Periodic Table of Elements and as an intrinsic semiconductor 

(Periodic Table of Elements, 2014). 

 

Figure 1.  Atomic structure of intrinsic semiconductor materials Silicon 
and Germanium. Source: Physics and Radio-Electronics (2014a). 

For a better understanding of the electrical properties of a semiconductor, the 

following paragraphs provide a brief discussion of the most important 

characteristics related to the technical application of solar cells.  
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b. Material Bands and their Energy levels 

The concept of energy bands is most useful for describing the electrical 

mechanism of semiconductor materials. According to the Pauli exclusion 

principle, “No two electrons in an atom can be at the same time in the same state 

or configuration” in an electron system such as a semiconductor crystal (“Pauli 

Exclusion Principle”, 2016). In such a crystalline material, many atoms are 

brought into proximity, which results in replacing the discrete energy levels with 

bands of energy states. Those states are separated by a gap as illustrated in 

Figure 2. 

 

Figure 2.  The Energy Band Diagram of a Semiconductor.  
Source: Hu (2009). 

Naturally, materials tend to equalize the different energy levels. However, 

in semiconductors, the lower energy bands are filled completely (as depicted by 

the valence band, energy level Ev) whereas the higher energy bands are 

completely empty (as depicted by the conduction band, energy level Ec). The 

region in between is called the band gap and does not allow conduction of 

current. The difference of the energy levels Ec and Ev is the energy gap Eg. 

Clearly, Eg = Ec – Ev, which is 1.1 eV for silicon. The number of free electrons 

(the valence band) and the holes (the conduction band) can change based on 
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the presence of impurities in the material called dopants. (Physics and Radio-

Electronics, 2014b) 

c. Doping 

Doping is the process of adding a small amount of impurity to the intrinsic 

semiconductor materials, making the impurity extrinsic. This process modifies the 

electrical characteristics of the basic intrinsic semiconductor material. The dopant 

is integrated into the atomic structure of the semiconductor crystal, so the 

number of outer electrons defines the type of doping. Silicon’s most used 

dopants are boron (three valence electrons) and phosphorus (five valence 

electrons). The element with three valence electrons is used for p-type doping; 

the substance with five valence electrons is used for n-type doping. Physics and 

Radio-Electronics, (2014b). 

N-type Doping: By introducing a five-valent dopant, four of the outer 

silicon electrons combine with one of the dopant electrons while the fifth electron 

moves freely and serves as a charge carrier (see Figure 3). Compared to intrinsic 

silicon, doped crystal materials need much less energy to overcome the band 

gap and move the free electrons from their valences into the conduction bands. 

The doping substance, which is used for n-doping, is known as an electron 

donor. 

 

Figure 3.  Phosphorus Doped Silicon Structure with Free Charge Carrier. 
Source: “Doping: N- and p-semiconductors” (n.d.). 
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P-type Doping: Three valence electrons have the opposite effect of five-

valet doping. Having only three valence electrons to combine with the outer 

silicon electrons leaves a hole instead of a free electron in the valence band of 

the silicon (see Figure 4). N-doping in one material and P-doping in another 

ensures the reduction of the energy level necessary to move an electron from the 

valence band into the conduction band. Hence, the material’s resistance lowers, 

so current is able to flow. Due to the controlled contamination of silicon material, 

the conductivity of the material can be increased by a large factor. (Doping: N- 

and p-semiconductors, n.d.). 

 

Figure 4.  Boron Doped Silicon Structure with Free New Hole.  
Source: “Doping: N- and p-semiconductors” (n.d.).  

d. P–N Junction 

The area where the n- and p-doped semiconductor materials come 

together is called the p-n junction. At the thermal equilibrium, there are no free 

charge carriers in this transition area. The free electrons from the n-doped region 

have recombined with the holes in the p-doped part of the material (see Figure 5) 

with the effect that no current flows if no external energy is applied to the 

semiconductor materials. 
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Figure 5.  P-N Junction. Source: “Depletion region” (2015). 

Due to the loss of free charge carriers—a positive charge in the n-doped 

region or a negative charge in the p-doped region—an area of differing energy 

level exists. Hence, a depletion zone forms at the interface between the two 

doped materials. The width of the depletion zone depends on the recombination 

of holes and electrons and is defined by the basic semiconductor material and 

the doping substances. The recombination comes to a total standstill because 

the free electrons and holes can no longer overcome the electric field. 

e. Solar Cell Operation 

As depicted in Figure 5, the p-n junction forms the basis of a single layer 

solar, or photovoltaic, cell. The cell is an electrical device that is able to transform 

the energy of light directly into electricity using the photovoltaic effect. 

The solar cell generally comprises three active layers. The top junction layer 

made of n-type semiconductor material is called the emitter layer, which emits 

solar energy–freed electrons into the p-n junction. The p-n junction region, called 

the absorber layer, is the depletion zone that provides the electrical voltage due 

to the electric field created by the different energy levels (as described in the 

previous paragraph d) and forces the freed electrons into a current. The back 

layer is made of p-type material, which provides the holes to absorb the electrons 

emitted from the n-type material. The front metal grid and the back metal plate 

ensure the flow of the collected current. To get the current to flow, front and rear 
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electrodes have to be attached to the surface of the semiconductor material, as 

shown in Figure 6 (“Solar cell structure” n.d.). 

 

Figure 6.  Basic Structure of a Single Layer Solar Cell.  
Source: “Solar cell structure” (n.d.). 

f. Solar Cell Parameter 

The efficiency of solar cells depends heavily on the material and its 

combination, the doping material, and the spectrum of light to which the cell is 

exposed. Other parameters affecting the efficiency include reflectance, 

thermodynamics, charge carrier separation, and conductive efficiency according 

to Bates (2004b). In this thesis, they are not considered. 

According to Shockley and Queisser (1961), there exists a maximum 

theoretical efficiency limit for a single solar cell derivable from the band gap and 

the spectrum of light (see Figure 7). They conclude that semiconductors with a 

band gap between 1 and 1.5 eV, which corresponds with a nearly infrared light 

spectrum, have the highest efficiency potential among single-junction solar cells.  
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Figure 7.  Solar Cell Efficiency by Material. Source: “Solar cell efficiency 
limit” (n.d.). 

Since the light spectrum is different under specific environmental and 

geographical conditions, solar cells have to be optimized for these settings. 

Hence, the material used for the solar cell and its fabrication becomes a vital part 

of optimizing efficiency. Optimizing a solar cell entails keeping illumination at a 

steady level as a fixed parameter and varying the material type, thickness, and 

doping levels. The PPanel (W) graph in Figure 8 shows the power output as the 

gauge of efficiency for definite levels of illumination.  
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Figure 8.  Current vs. Voltage (Green) and Power vs. Voltage (Blue) for 
a Solar Cell at a Number of Different Illumination Levels.  

Source: Celani (2013). 

2. Multi-junction Solar Cell 

Recent developments in high-efficiency multi-junction solar cells take 

advantage of different semiconductor substances using only certain ranges of the 

light spectrum to generate electrical power (see Figure 9, right illustration).  

 

Figure 9.  Solar Spectrum vs. Material and General Buildup of 
Multi-Junction Solar Cell. Source: Eurems (n.d.). 
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Stacking single-junction cells in series builds a bigger area to generate 

energy. Each layer has a different band gap. Therefore, each layer absorbs 

photons from light that has greater energy than the band-gap layer (see Figure 9, 

left illustration). Photon energy E and wavelength λ are inversely related by 

 ,  (1) 

 , (2) 

where h is Planck's constant ( ) and c is the speed of light. As 

shown in Figure 9, a highly doped, thin tunnel junction is placed between 

consecutive p-n junction layers to reduce the forward bias voltage drop from the 

normal p-n junction. Another limiting factor in multi-junction solar cells is the flow 

of the current. To avoid a current bottleneck, constructive measures are applied 

to balance the resistance of the overall structure and the solar physics to yield as 

much electricity from the sun as possible. The theoretical efficiency of stacking 

an infinite number of single-junction cells has a limit of 86.8% (Green, 2003, p. 

65). Current research has achieved a maximum of 46% efficiency for a 

concentrated four-junction cell, as shown in Figure 10. 

hcE
λ

=
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λ µ
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Figure 10.  Efficiency Chart by Solar Cell Design.  
Source: National Renewable Energy Laboratory (2017). 

The high cost of multi-junction solar cells limits their usage to very 

specialized applications, such as space operations. The main drivers of cost 

include the high price of materials and technological challenges associated with 

manufacturing very complex structures. 

3. Summary 

This section introduced the major chemical, physical, and constructive 

characteristics of single solar cells to provide an understanding of the basic 

changeable parameters for influencing the efficiency of solar cell design. The 

section presented a promising way to achieve higher efficiency by implementing 

solar cell basics and developing the design into multi-junction solar cells. The 

goal of this thesis is to develop an efficient way to simulate various solar cell 

designs and obtain fast results.  

This work focuses on internal solar-cell design efficiency. This thesis does 

not consider the following aspects of solar-cell efficiency: 
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• Reflection of light off the cell surface 

• Temperature increases that impede the flow of charge and, 
therefore, a decrease in efficiency 

• Internal recombinations of electrons and holes that reduce the cell’s 
current flow ability 

• Semiconductor material resistance that decreases the power output 
by an internal voltage drop 

• Material defects that create energy-absorbing states within a 
material’s band and decrease cell current 

• Shading spots from front metal grids that reduce the amount of light 
reaching the cell 

These areas remain subjects for future research. 

B. SILVACO ATLAS SIMULATION ENVIRONMENT 

Silvaco ATLAS is a one-, two-, and three-dimensional, physically based 

semiconductor-device simulation software, originally developed to mimic the 

physical implementation of structures and predict the electrical characteristics of 

electronic devices by SILVACO Inc (2004). This kind of simulation has become 

important because it is quicker and less expensive than conducting experiments 

to glean insights, which may be impossible due to the nature of the physical 

experiments. The Silvaco ATLAS simulation works by spanning a pre-defined 

mesh over the implemented device structure and computing the electrical 

characteristics for each of the mesh points. The simulation generates a result file, 

which requires analysis.  

This research compares the work by Tsutagawa (2013), which utilized a 

genetic algorithm to optimize the simulation output, to the recently developed 

NOLH design of experiments to reveal the applicability of the new approach in 

the context of optimizing solar-cell designs. 
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1. Main Characteristics 

Silvaco ATLAS uses two sets of input. The first file contains the structure 

description of the electronic device, and the second file contains the structure 

parameters for the simulation run. The objective of this thesis is to validate the 

NOLH design of experiment by varying the structure parameters in a predefined 

region on a fixed device such as a solar cell. The NOLH design is available as a 

Microsoft Excel spreadsheet that can generate the properly scaled design points 

for input. A design point is a unique input parameter combination. A novel 

approach implementing Silvaco ATLAS simulation software on the Naval 

Postgraduate School (NPS)’s high performance computer, called “Hamming,” 

leverages the ability for parallel processing and reduces the computational time 

compared to the sequential genetic algorithm optimization. Unfortunately, due to 

license server issues the parallel processing capacity could not be implemented 

during the time of this research and is considered future work. 

2. Emulating a Solar-Cell Structure 

In a first step to optimize an electronic structure using the Silvaco ATLAS 

software, an electronic representation of the device needs to be implemented in 

the simulation software. The physical properties are specified by the kind of 

material, the dimensions of the material (region), the doping material, and the 

doping level. Simulating the device and its behavior entails computing electrical 

properties at predefined points (using a mesh) inside the material and placing 

specific measurement points in the structure to gain insights. (SILVACO Inc, 

2004). 

a. Mesh 

The construction of a mesh within the device’s structure is the essential 

part of simulating electrical characteristics. The mesh spans the entire structure, 

and at each mesh triangle, a node is created. At these nodes, Maxwell’s 

equations are used to determine the coarseness of the mesh. The analyst has to 

make a tradeoff between accuracy and numerical efficiency in the calculation. 
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Accurate results require a fine mesh but increase computational time. However, 

computational efficiency requires a coarse mesh that minimizes the total number 

of grid points, hence reducing the simulation run time. A good mesh structure 

requires a dense mesh in the areas of the structure where energetic transitions 

happen but wider spread nodes in less active zones. 

b. Regions 

The regions are numbered areas that refer to the mesh nodes’ specific 

information, assigning them material property parameters. An entire mesh must 

be assigned to a particular region. 

c. Materials 

Physical parameters of commonly used materials are defined in model 

libraries in the simulation environment itself, which contains among other 

properties the band gap, mobility, and lifetime. The more accurate the 

parameters, the closer the simulation result to the results of a physical cell. This 

applies particularly in cases for which materials are required that are not in the 

database. In addition to the material parameter itself, simulating solar cells 

requires data files on the optical properties to yield accurate simulation results. 

d. Electrodes 

Electrodes can be assigned to specific regions in the structure to gain 

insight into the electronic resistance conditions in those areas.  

e. Doping 

As highlighted in the semiconductor basics, doping levels are very 

important for manipulating the electric characteristics of semiconductors. 

Previously assigned regions will be doped as one of the inputs to the 

experimental design.  
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3. Summary 

Silvaco ATLAS was not primarily developed for simulating solar cell–type 

applications. However, due to the built-in function to mimic light-sensitive or light-

emitting semiconductor applications, such as photo sensors or light emitting 

diodes (LED), the program proved an accurate simulation tool when it validated 

the results gained from a research paper published by the Japan Energy 

Corporation’s Central Research Laboratory for a dual-junction cell (Agui et al., 

1998).  

Compared to the existing physical process of developing solar cells 

through hardware experimentation, using the Silvaco ATLAS simulation 

environment provides a cost- and time-effective tool for optimizing solar cells. 

C. OPTIMIZATION 

For a better understanding of the optimization techniques used in the past 

and the new technique introduced in this thesis, this section provides an 

overview of the main features of the two implementations.  It also answers the 

question of why NOLHs are a better way to optimize solar-cell designs in the 

Silvaco ATLAS simulation environment.  

1. Genetic Algorithm 

A genetic algorithm is a metaheuristic process to find solutions in 

optimization or search problems, inspired by natural selection processes such as 

mutation, crossover, and selection (“Genetic Algorithms Tutorial”, 2017). This 

procedure provides a stochastic yet systematic way to inspect the factor space 

and will usually gradually converge toward the best solution. The genetic 

algorithm is used to solve optimization problems that are not well suited to 

standard optimization algorithms, including problems in which the objective 

function is discontinuous, non-differentiable, stochastic or nonlinear. Considering 

the seven-bit implementation used by Tsutagawa in 2013, the size of 12810 

possible combinations for a single-junction cell shows the complexity the 
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algorithm has to solve. The algorithm is used to provide sufficiently good 

solutions whenever problem information is incomplete or imperfect or the 

computation time is limited.  

The basic mechanism used is adapted from nature, based on a theory introduced 

by Darwin (Darwin & Wallace, 1858). Parameters of the solution space are coded 

into a machine-readable format, or bit string, called a chromosome. An example 

of an eight-parameter solution space—with 16 design variations per parameter—

of a single-junction solar cell mapped into a four-bit granularity genetic algorithm 

coding, used by Bates (2004), is shown in Figure 11. 

 

Figure 11.  Example 32-bit Chromosome Genetic Representation of a 
Semiconductor Application. Source: Bates (2004). 

The algorithm chooses a random instance of the gene code, a 

chromosome, and uses this selection as the starting point, or chromosome 

parent. After evaluating the efficiency of the parent-chromosome simulation run, 

a child chromosome is generated by applying mutation (see Figure 12) and 

crossover (see Figure 13) techniques.  
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Figure 12.  Example of 1% Mutation of Genes in Chromosome.  
Source: Bates (2004). 

 

Figure 13.  Example Dual-Point Crossover of Genes in Chromosome. 
Source: Bates (2004). 

After comparison, the simulation result from the parent and the child with 

the fittest gene representation is selected. If the parent instance has a better 

performance, it becomes the starting point for a new child instance. If the child 

combination produces a better result, it becomes the new parent 

chromosome. There is not a single genetic algorithm implementation. Since it is a 

broad research area, this thesis focuses on the algorithm used by Tsutagawa 

(2013) in his dissertation. 

a. Implementation by Tsutagawa 

Tsutagawa (2013) implemented the solar-cell parameters into binary 

genes and combined the genes into chromosomes to build the entire solution 

space of a complete cell using a seven-bit gene representation for each 

parameter (128 design variations per parameter). Compared to Bates who used 
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only four bits to represent a gene, Tsutagawa drastically increased the resolution 

of the experimentation space. In his research, Tsutagawa varied the breeding 

process using triple-point crossovers and various mutation rates (one, two, and 3 

percent). Each simulation run was analyzed immediately to see whether the 

result yielded better power output for the solar cell than in the previous iteration. 

This process is called “survival of the fittest,” and if a chromosome is evaluated 

as fit, it is reinserted in the pool of parent chromosomes for another breeding 

process. In his implementation, Tsutagawa used the elitist strategy, which 

preserves the fittest chromosomes in a succeeding generation. This strategy 

increased the convergence tempo and grew a much healthier and stronger 

population, hence finding the solution closest to the optimum. The genetic 

algorithm provided a means for accomplishing a local hill-climbing search 

capability coupled with a random feature to jump out of local maxima due to the 

mutation feature. 

b. Results

In his dissertation, Tsutagawa (2013) combined all previous research in 

optimizing multi-junction solar cells and was able to develop and refine the 

genetic algorithm approach to improve the solar cell design efficiency. He listed 

seven major improvements to Bates’ (2004) original research on genetic 

algorithm implementation. Tsutagawa’s genetic algorithm–related enhancements 

were: 1) a seven-bit gene representation, which resulted in a much denser 

solution space coverage, 2) different mutation rates, and 3) a changed crossover 

rate, which improved the performance of the genetic algorithm itself. Arguably, 

the improvement by using Java® (ORACLE INC, n.d.) instead of MATLAB® (The 

MathWorks Inc, n.d.) is not worth mentioning as the tastes of the programmer 

determine the programming language he uses. 

Although Tsutagawa (2013) was able to improve the performance of a 

single-junction solar cell by 1.1% to 4.0% and 2.3% for the dual-junction solar cell 

depending on the substrate used, the origin of the improvement is unclear. A 
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higher resolution of the experimentation space and longer runtime of the genetic 

algorithm should perform better, but the contribution of the mutation or crossover 

rates in improving the results is uncertain.  

A weakness of Tsutagawa's approach is the complexity of the 

chromosome and, hence, the runtime of the simulation—up to 102 hours. The 

computational time reached a level that is unsatisfactory in developing more 

advanced solar-cell designs. Considering the number of parameters to simulate a 

solar cell with four or more junctions, it would be nearly impossible for the genetic 

algorithm in the current implementation to optimize the problem in a reasonable 

amount of time. 

Therefore, this thesis introduces a new approach to overcome these 

limitations, utilizing the NOLH design of experiments to optimize solar-cell 

designs. The following paragraphs highlight the basic characteristics and 

features of the NOLH design for the experimental Silvaco ATLAS simulation 

setup.  

2. NOLH Design of Experiments  

The NOLH is a modern design of experiments (DoE) technique. The basic 

idea behind the DoE is the efficient generation of values for simulation input 

variables, also called factors, to enable analysts to determine whether and how 

they affect the output, or response. After running the simulation with the input 

design, an analyst fits a regression model, and the resulting response surface 

metamodel approximates the input/output relationship. Getting an accurate fit 

from the metamodel requires calculating many possible points in the surface. 

Doing so necessitates a good space-filling property. Another important feature of 

the NOLH is orthogonality. A nearly orthogonal design means that effect 

estimates are nearly independent of each other. Orthogonality also provides 

minimum variance in estimating the response model coefficients. Thus, a smaller 

pairwise correlation between design columns is better.  
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In the past, researchers had the problem of compromising between 

minimal correlation and space-filling properties. McKay, Beckman, and Conover 

(1979) developed the Latin hypercube design to address the need for space-

filling design with continuous factors. Follow-on research aimed to address the 

high correlation confounding factor interrelations and the inability to accept 

different input factor types (discrete, categorical and continuous). One part of the 

research focused on correlation by sampling designs at the corners, edges, and 

center of the experimental space. The downside of this method is the loss of 

information in the regions between the design points. Another part of the 

research tried to make the design flexible and accept multiple types of input 

factors to adapt for different simulation requirements. 

The NOLH design of experiments developed by MacCalman (2013) 

symbolizes the state of the art of space-filling designs with minimal correlation 

between all second-order terms to explore complex simulation models. The 

property of accounting for second-order relations is its main distinction from the 

genetic algorithm. This behavior allows the analyst not only to identify the 

significant input factors but also to reveal the system’s complexity by showing the 

interactions between input factors. Considering only linear effects reveals the 

input parameters that have no effect or the most effect on the output of the 

simulation. Including quadratic terms rather than assuming the linear model for 

the simulation response might increase the information from the simulation 

output with smaller changes of the input parameter (diminishing returns). The 

third area the NOLH design is able to efficiently handle is two-way-interactions or 

synergistic effects. Due to the nature of the NOLH design, input parameters are 

varied simultaneously with each simulation step instead of varying only one 

parameter and keeping the others constant. With this characteristic, we are able 

to see the influence of one input parameter on the other input factors and their 

relationships. The history and intermediate steps that led to the second-order 

NOLH design are depicted in Figure 14. 
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Figure 14.  Research Steps Toward the NOLH DoE.  
Source: MacCalman (2013). 

After running the simulation and loading all the input and output 

parameters into a statistical analysis tool, a metamodel, which acts as a 

surrogate of the simulation, is computed using a stepwise regression technique. 

The resulting metamodel or response surface approximates the functional 

behavior between the simulation input parameters and the maximum output 

power per simulation run. With the stepwise regression, the model determines 

the input parameters that have the greatest effect on the output value. The 

metamodel also has a predictive property to conduct a sensitivity analysis of the 

input parameter and its effect on the output. This can be used to adjust the 

parameter values to get the largest output and the optimal input parameters. To 

represent the second-order model mathematically, a polynomial model is used 

covering all linear, quadratic, and two-way interactions, as shown in Figure 15 
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(MacCalman, 2013). With this model, we are able to explore the complex 

response surface of the simulation and find the local and global minima and 

maxima, stationary points, and ridges and saddles. 

 

Figure 15.  Mathematical Metamodel of NOLH DoE Simulation Result 
Analysis. Source: MacCalman (2013). 

a. Implementation of the NOLH 

In his dissertation, MacCalman (2013) introduced a “genetic algorithm” 

(GA) for generating designs that allow experimenters to simultaneously identify 

critical input variables and fit commonly used second-order models with nearly 

uncorrelated coefficient estimates.” This design is called a nearly orthogonal 

Latin hypercube as it produces simulation parameter inputs as a Latin hypercube 

with an absolute pairwise correlation between any two input parameters no 

greater than 0.05 (Hernandez, 2008). By not exceeding this threshold, results 

suffer minimal adverse multicollinearity effects. The NOLH designs also provide 

“flexibility to fit more complex relationships on a modest number of factors” 

(MacCalman, 2013). In the case of simulating solar-cell designs with Silvaco 

ATLAS, this property of design generation is essential since the input factors 

require a wide range of values. For the simulation of semiconductor material 

doping, levels with a range of 1016 to 1020 are necessary. The NOLH design 

implementation in Excel prevents generating these high numbers. In order to 

overcome the limitation, a transformation of the design parameter values is 

considered. 
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The NOLH-generating algorithm developed by Cioppa and Lucas (2007) 

was implemented in Microsoft Excel by Susan M. Sanchez (2011) and is freely 

available at the NPS’ Simulation, Experiments, and Efficient Designs (SEED) 

Center website (see http://my.nps.edu/web/seed/software-downloads). The tool 

does not use licensed software or external libraries. As depicted in Table 1, 

creating the design of experiments with the tool provided by Sanchez was 

straightforward and limited only by the number of design factors. Currently, the 

tool is available for up to 29 parameters, which generate 257 different design 

points, to run in the simulation environment.  

Table 1.   Head Snapshot of NOLH Design Generating Matrix. 

low level 1 1 1 1 
high level 257 257 257 257 
decimals 0 0 0 0 

factor name         

 

103 227 153 158 

 

31 103 216 246 

 

42 153 31 144 

 

For designs with more than 29 factors, using Vieira’s (2012) nearly 

orthogonal balanced (NOB) DoE implementation is recommended. It is also 

available at http://my.nps.edu/web/seed/software-downloads. 

To create the experimental design, the user has to provide the tool with 

the upper and lower bounds of each factor and the number of decimal digits 

required, and the algorithm computes all intermediate design points (see Table 

1). Once all required factors are specified in the tool, the design is ready to 

import into the simulation system and run. Each row of the table contains the 

values for the parameters and represents the input space for one simulation run. 

Before the start of the simulation using the NOLH, all experimental designs are 

generated, a major difference from the genetic algorithm.  
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b. Results and their analysis 

Each single simulation run produces one or more output values, the 

response values of the simulation. In order to capture the respective result, one 

or more columns of the existing simulation matrix have to be created and filled 

with values.  

Once all the simulation runs have completed, the evaluation of the entire 

simulation space, consisting of the input values and the simulation’s output 

values, can start. For the evaluation, we have to build the response surface 

metamodel. The first step is loading the whole matrix into a statistical evaluation 

and model-building tool such as JMP (SAS Institute, n.d.-c). Subsequently, a 

model needs to be fit to capture the importance and the possible relationships of 

the factors.  

In the case of using Silvaco ATLAS to evaluate solar-cell designs, all 

simulation input parameters are the x-variables, and the maximum power output 

of the solar-cell design is the response variable y. If a denser filling of the 

experimental space is required and if the computational cost allows, the design 

can be rotated and stacked to generate more design points. 

3. Summary 

This chapter highlighted the main characteristics of the genetic algorithm 

and NOLH along with their pros and cons to compare the two approaches. In his 

dissertation, Tsutagawa (2013) demonstrated the capabilities of the genetic 

algorithm to optimize multi-junction solar cells. He combined the Silvaco ATLAS 

simulation environment used by Bates (2004) with the genetic algorithm to 

improve solar-cell design. He was able to refine the optimization process and 

subsequently improve solar-cell performance by nearly four percent. Despite 

such improvements, this approach has exhibited some weaknesses. The genetic 

algorithm requires the output of the previous run to generate the next input. 

Therefore, the process is a closed loop and requires sequential processing. This 

marks one of the main disadvantage of this simulation input-preparation 



 

 27 

technique. With more advanced solar-cell designs, simulation runs have taken as 

long as 100 hours to complete. Therefore, the only possibility of decreasing the 

runtime is to use a higher powered computer to reduce the time of each 

simulation run.  

A more promising way is utilizing parallel processing. Several simulation 

runs can be computed simultaneously, limited only by the number of nodes 

implemented in NPS’ high performance computer, Hamming. However, in the 

case of this research, the number of available software licenses limits the 

number of possible concurrent simulation runs. 

To use parallel processing, the NOLH design of experiments provides the 

right setting. Since all simulation factor settings are pre-calculated by the NOLH, 

parallel runs are possible. Once the simulation inputs and outputs are stored in a 

matrix, statistical software can easily evaluate the results. 

Parallel processing reduces the runtime proportionally to the number of 

processors available and enables the solar-cell developer a much faster 

experimentation turnaround cycle. Compared to previous experimental designs, 

the NOLH exhibits better space-filling properties, more design points, and better 

analysis properties. The reduced runtime of running the NOLH on a cluster 

allows more experiments in the same amount of time. This enables the developer 

to maintain the overall factor ranges in the input matrix but increase the 

resolution of the factors. To achieve this characteristic for the genetic algorithm, 

the only possibility is to increase the number of bits used to code each single 

parameter, with the downside of increasing the complexity and simulation 

runtime. 

Another disadvantage of the genetic algorithm is that it does not give any 

directional information about where improvement of the design can be found. The 

algorithm does not exploit the shape of the response surface and as such does 

not support the solar cell developer to give information on further steps in design 

improvements. 
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This thesis introduces the novel use of the NOLH to design solar cells 

using the Silvaco ATLAS simulation environment. The implementation and 

results are discussed in the following chapters. 
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III. EXPERIMENTAL DESIGN 

The focus of this research is to prove the applicability of the nearly 

orthogonal Latin hypercube (NOLH) in optimizing solar-cell designs in 

conjunction with the Silvaco ATLAS simulation environment. This chapter uses 

the physical model containing the cell design and performance results published 

by Agui et al. (1998) and verified by Tsutagawa (2013) to replace the genetic 

algorithm and compare the accuracy and validity of the experimentation results. 

The second goal of this chapter, besides determining general applicability, is 

developing an easy process for creating the design of experiments (DoE), 

running the design in Silvaco ATLAS, and analyzing the results. This keeps the 

focus of the solar-cell developer on the solar-cell design itself without getting 

distracted by the very complex process of generating the optimal cell design. 

A. EXPERIMENTAL SET UP 

To utilize the full advantage of the NOLH DoE, parallel computing is highly 

desired. At NPS, the high-performance computer cluster Hamming is the first 

choice in that all setup issues can be handled locally. In the case of this 

research, it was essential since the Silvaco ATLAS simulation system requires a 

very specific set of software to run in a distributed environment. License handling 

with the server was a challenge in making this happen. 

Since the setup of Silvaco ATLAS on Hamming could not be finished prior 

to the start of the experimentation phase, the sequential approach was used at 

the beginning. The advantage of starting this way was that initial results were 

being generated and the process to evaluate the simulation output could be 

developed further. Moreover, a direct comparison of the runtimes of both 

approaches was possible under the same experimental and cell design setup. 
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1. Framework / Assumptions 

The general experimental setup is shown in Figure 16. The starting point 

is the solar-cell design to be simulated and the resulting factors that represent 

the design within the simulation environment. Then, the factors and their ranges 

are specified within the NOLH Excel spreadsheet. Once this is done, the 

resulting matrix of factor values are transferred to files in the Silvaco ATLAS 

simulation environment, which is now able to execute and produce the 

deterministic simulation result. Since each factor matrix row represents the value 

set for one single simulation run, a software script has to make sure each set 

runs and the simulation result is captured. The software script also ensures the 

logarithmic transformation of the doping levels since the NOLH spreadsheet does 

linear scaling and cannot handle the values required in the 1016 to 1020 range. 

Once the simulation has completed, the design matrix and the appended 

outcome column are loaded into the statistical analysis software and analyzed. 

The resulting metamodel gives an estimate of the factor values that optimize the 

solar-cell design; that is, they produce the most power. These analysis steps 

mark the end of one optimization iteration and can be repeated as appropriate.  

 

Figure 16.  Experimentation Setup Schematic. 

The aforementioned experimentation setup can be repeated as required to 

compress the factor space for each single variable and to increase the resolution 



 

 31 

in the whole factor space. The repetitive experimentation is one of the 

achievements of the NOHL over the genetic algorithm, made possible only by the 

simple generation procedure for space parameters using the NOLH Excel 

spreadsheet and the runtime reduction utilizing parallel computing with 

Hamming. These factors focus on the design of the solar cell rather than spend 

time designing the optimization algorithm for the experiment. Analyzing previous 

work in this field  highlights that 80% of the time was invested for the optimization 

algorithm itself and 20% for the solar-cell design. One of the main achievements 

of this research is that the developer of solar cells now has an easy-to-handle 

tool for focusing on solar-cell design rather than spending time on optimization. 

2. Design Creation 

The basis for creating the experimental design is the NOLH Excel 

spreadsheet developed at the NPS SEED center. Taking the Agui et al. (1998) 

design as the baseline, the published values for thickness and doping levels 

have been taken and lower and upper bonds placed in the heading section of the 

spreadsheet. The Agui design emulated in Silvaco ATLAS requires 24 different 

factors to characterize all imported design features.  

Table 2.   NOLH Excel Header with Some Example Values. 

low level 0,01 17 0,02 17 0,2 16 
high level 0,05 19 0,08 19 0,8 18 
decimals 3 3 3 3 3 3 

factor name winthick windopconc emthick emdopconc basethick basedopconc 

 
0,026 18,766 0,056 18,227 0,577 17,797 

 
0,015 17,797 0,07 18,914 0,631 17,063 

 
0,016 18,188 0,027 18,117 0,777 17,625 

 
0,026 17,32 0,044 18,266 0,638 17,492 

 
0,025 18,117 0,057 17,813 0,758 17,586 

 
0,028 17,734 0,077 17,32 0,718 17,813 

 

An extract of the design parameters is shown in Table 2. Notably, the 

values for the doping level reflect only the exponent, and in a follow-on step, 

these values have to be transformed into the region the simulation system 
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requires for the values. This is done with a 10-to-the-power of the design value 

transformation. Once the intermediate values have been computed by the 

spreadsheet, only the design points have to be copied and pasted into a different 

Excel spreadsheet. Finally, the new document with the design values is saved as 

a comma-separated values (CSV) format file in the folder where the 

experimentation runs later. 

To improve the coverage of the experimentation space, a technique called 

rotating and stacking is applied. First, the header of the NOLH Excel with the 

factor’s lower and upper bonds is selected and copied. Then, the entire copied 

section is pasted one column to the right (a rotation). The resulting intermediate 

values generated by the spreadsheet are different from the ones generated in the 

previous step. Next, they are copied and pasted again beneath the previous 

generated values in the CSV document. This procedure can be repeated as 

required, keeping in mind with each rotation and stacking the number of 

experiments increases in our case by 257, which at the end requires a longer 

runtime. The analyst must find a balance between the experimentation space 

density and coverage and the simulation system runtime.  

3. Silvaco ATLAS Input File Setup 

The NOLH design point insertion into the Silvaco ATLAS solar-cell design 

file is the next step in the sequence. The solar-cell design parameters in the 

existing design template file have to be overwritten with the values generated in 

the NOLH Excel and saved in the CSV file with a unique name to ensure the right 

mapping of design input and output. In addition, all the output statements forcing 

Silvaco ATLAS to generate an output file have to be numbered as well to ensure 

the output data can be mapped to the generating simulation run. 

There are two approaches to tackle this step in the process. One is to 

generate as many design files as rows in the CSV matrix (all in one); the other is 

to do it sequentially as required by the program controlling the simulation runs in 

Silvaco ATLAS. 
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In this research and in the attempt to utilize Hamming, the all-in-one 

approach was used, and the respective number of experiments generated 

simulation files with numbered naming for each file.  

The practical application is a Python script (Python Software Foundation, 

n.d.), which assigns the NOLH-generated values, with the parameter variable in 

the Silvaco ATLAS solar-cell design template. It is worth mentioning that for this 

step, having the solar cell–defining variables in one single block one after 

another reduced the complexity of assigning the NOLH values to the right Silvaco 

ATLAS file parameter variables using the Python script.  

B. EXPERIMENTAL EXECUTION 

1. Silvaco ATLAS Simulation Run 

Due to the unavailability of Hamming, the initial experimentation was done 

sequentially. A Python script was run to preprocess the input files. A second 

Python script controlled the simulation runs in Silvaco ATLAS and captured the 

runtime for each simulation for evaluation purposes.  

Utilizing Hamming would not have required such a control mechanism. 

The system itself would have picked the simulation file to run and saved the 

output for further analysis. 

2. Simulation Output  

Each simulation run generated a number of values for the cathode current 

versus anode voltage curve under the AM0 spectrum of light, as shown in  

Figure 17, and was saved in a text file format.  
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Figure 17.  Current vs. Voltage (I–V Curves) and Output Power vs. 
Voltage Generated from the Maximum Output Power Simulation 

Run. 

For analysis purposes, all output files had to be read and processed with a 

Python script, and the solar cell’s current and voltage values provided by Silvaco 

had to be multiplied to calculate the output power. The maximum overall power 

value for each simulation run was saved in a vector, which appears as the green 

curve in Figure 17. 

Once all simulation runs finished, the vector with the maximum power 

values was appended to the solar-cell design input CSV file. In the same 

processing step all doping level transformation values were calculated and 

written in the input and output CSV file as the final step to prepare the data for 

analysis. In this research, JMP by SAS was used to analyze the data. 

Another preparation step, namely copying the names of the parameter in a 

headline and saving the CSV file under a different name before analysis, proved 

to be helpful. This made the analysis more “readable”. 
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IV. EXPERIMENTAL ANALYSIS 

The starting point for analysis of the simulation is loading the CSV file, 

which contains the simulation input values and the maximum output power 

values, into the analysis software, JMP. The general sequence to analyze the 

data is as follows: 

1. Get a general overview of the data, which includes checking for 

unusual observations and the general dispersion of each single 

parameter or outliers. Find the factor combination that generates 

the highest output power values among all experiments. In the case 

of this experimental setup, find the experiments whereby the 

simulation environment could not converge to a result and gave a 

zero or close-to-zero output power result.  

2. Fit stepwise a multiple regression model to analyze the input and 

output relationship. The fitted model aids in understanding the 

relationship between the response variable and the factors, 

including main effects, interactions, and non-linear effects. The 

result of the prediction profiler indicates the direction where to shift 

the factor range in the next iteration. 

A. EXPERIMENTAL ANALYSIS  

Within this research, five different sets of NOLH designs were used to 

simulate the Agui solar-cell design. In a first attempt, two basic 257-design-point 

NOLH designs were utilized with the goals of proving the general applicability of 

the concept and producing initial simulation results. The difference of the designs 

was the method of transforming the doping levels.  

Subsequently, the technique of rotating and stacking was applied to 

improve space-filling in the designs and improve the resolution to explore the 

experimentation space. By fully utilizing the capacity of the NOLH-generating 

Excel spreadsheet, five rotations and stackings produced two 1,542-design-point 
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designs for which only the linear-transformed doping-level design was analyzed. 

Later, two iterations of an improved 1,542-design-point design were simulated, 

with the focus of improving the output power by narrowing the experimentation 

space to the most promising regions for higher granularity.  

The aforementioned two-step sequence was used to analyze the data, 

reveal insight into the input/output relationship, and better understand the 

interactions among the design factors and using the locality information to 

improve the design. 

1. Agui Solar Cell with 257 Design Points 

Considering the genetic algorithm method previously used to find the 

optimal solar-cell design, the research could have stopped at this point because 

the experimentation found a cell configuration that produced the maximum power 

output among all input value combinations. One row of the NOLH design’s input 

produced an output power of 40.76 mW/cm2. From an engineering standpoint, an 

increase of more than 10% may have been good enough, but no insight on the 

data would have been gleaned. The following paragraphs show some steps in 

statistical analysis and the interpretation of the results. 

a. General Data Screening 

Data analysis typically starts with a screening of the data to detect 

anomalies within the dataset. For the first 257-design-point logarithmic-

transformed Agui solar-cell design, 13 out of the 257 simulation runs produced a 

zero output value. Those experiments were excluded from further analysis. The 

dispersion of some of the variable design points is depicted in Figure 18. As 

shown, not all the areas are equally dense due to the exponential transformation. 
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Figure 18.  Extract of Scatterplot Matrix of 257-Design-Point Agui Cell 
Design Using Logarithmic-Transformed Dopants. 

The semiconductor’s thickness-layer parameters are distributed all over 

the space, with some limitations at the edges and corners, while the values for 

the doping level simulation are denser at the lower side of the area. This is due to 

the logarithmic transformation and the effect of small differences of the pre-

transformation numbers resulting in huge differences after transformation. The 

dissimilar distribution of the logarithm is the reason that only the linear-

transformed doping levels were considered in further experimentation.  

An extract of linear transformed doping input values is depicted in Figure 

19. As shown, the linear transformation covers the whole factor space much 

better than the logarithmic-transformed values do. 

 

 

Scatterplot Matrix Logarithmic Transformed Dopants 
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Figure 19.  Extract of Scatterplot Matrix of 257-Design-Point Agui Cell 
Design Using Linear-Transformed Dopants. 

The matrix in Table 3 shows all of the correlations among the input 

parameters and the simulation result values. As constructed, the NOLH design 

kept the correlations among the input variables as small as possible; hence, 

results suffered minimal adverse multicollinearity effects. 

Scanning through the values shows the correlations between the input 

variables are below 0.05, as required by Hernandez (2008). The output variable 

gives a clear indication of which input variables have a significant effect on the 

simulation output. The fitted regression model in the following section supports 

this assertion. 
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Table 3.   Correlation Matrix of Input Parameters and Output Power Values of 257-Design-Point Agui Cell Design 
Using Linear-Transformed Dopants 
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Figure 20 shows the simulation power-output distribution and related 

statistics summary. Considering the 247 successful simulation runs, the 

histogram looks relatively normal. This is an indicator that the experimentation 

space yielded a wide variety of output values. The interesting area for this 

research is the right side of the histogram where the highest output values are 

found. 

 

Figure 20.  Simulation Output Power Distribution of the 257-Design-Point 
Agui Cell Using Linear-Transformed Dopants. 

In general, the initial data screening revealed no major obstacles or 

concerns for using the data in further analysis. Better space filling is achieved 

through rotation and stacking. The results and their differences are discussed in 

the following paragraphs. 

b. Model Fit and Response Surface Analysis  

Given no major inconsistency in the data, a regression model was fit to 

characterize the effect of variation of the independent explanatory variables on 

the response, or output variable, using an estimated regression function called 

the response surface. 

Due to the use of the NOLH design algorithm, a non-linear model fit was 

possible. In the case of this research, the JMP software (SAS Institute, n.d.-c) 

was utilized to fit the model and subsequently analyze the resulting response 

surface. 
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JMP offers a handy user interface to fit the model with all desired effects. 

This study used all main effects, two-way interactions, and quadratic terms for 

the explanatory variables.  

Using the stepwise regression functionality, a model was fit using least 

squares estimation, which facilitated a search-and-select mechanism among 

many potential models. This approach selects a subset of effects for a regression 

model that provide a good model fit and improves predictive performance by 

reducing the variance from unnecessary terms (SAS Institute, n.d.-b). 

The resulting model using the JMP’s stepwise regression function is 

depicted in Table 4. Scanning the parameters reveals all kinds of explanatory 

variables and their effects in the model. Not only are main effects significant; two-

way interactions and quadratic terms are also important in the model. This is one 

of the significant achievements using the NOLH DoE instead of the genetic 

algorithm; interaction effects had not been revealed previously. The NOLH 

approach provides a much deeper understanding of the effects input variables 

have on the output.  

Table 4.   Effect Summary Model Fit for 257-Design-Point Agui Cell Design 
Using Linear-Transformed Dopants. 

 

Source LogWorth  PValue 
basethick 35.519  0.00000 
botbasethick 28.780  0.00000 
winthick 25.119  0.00000 
botbasedopconc 20.063  0.00000 
basethick*basethick 18.982  0.00000 
botbasethick*botbasethick 17.924  0.00000 
basethick*botbasedopconc 13.119  0.00000 
buffdopconc 11.882  0.00000 
winthick*basethick 10.314  0.00000 
emdopconc 9.537  0.00000 
emdopconc*basethick 5.775  0.00000 
basethick*botbasethick 5.550  0.00000 
botemdopconc 5.230  0.00001 
botbasethick*botbasedopconc 4.867  0.00001 
buffdopconc*buffdopconc 3.343  0.00045 
botwinthick 2.981  0.00105 
windopconc 2.265  0.00544 
bsfthick 1.774  0.01681 
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It is worth noticing the corresponding information given by the correlation 

matrix in Table 3 and the effect summary in Table 4. The parameters for 

botbasethick and winthick were noticeable as the highest absolute values in the 

correlation matrix and were selected by the stepwise regression function as the 

most significant.  

Translating these findings in the solar cell–developing world, the higher 

the LogWorth value shown in Table 4, the more influence the variable has on the 

performance of the solar-cell design. Small changes in those variables have a 

significant effect on the output power performance. In other words, the 

parameters that have been omitted from the model are not as relevant for the 

output power performance and, therefore, can be kept constant at economical 

settings within the ranges specified in the NOLH Excel spreadsheet for the 

experimental design.  

How well the model fits is revealed in the measure of RSquare, as shown 

in Table 5. This coefficient of determination indicates that for the previously fitted 

model, 83.2% of the variability is explained by the regression. A higher RSquare 

value is generally better, but the algorithm implemented in JMP balances 

between under and overfitting the model.  Overfitting would be indicated by a 

large difference between RSquare and RSquare Adj. An overfitted model would 

have a higher RSquare value but would introduce effects in the response surface 

that are not realistic in describing the input/output relationship of the simulation.  

Table 5.   Summary of Fit Model of 257-Design-Point Agui Cell Design Using 
Linear-Transformed Dopants. 
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The reason for fitting a model was to use the metamodel for predicting 

output by varying the input variables. In the case of this research, a maximum 

output power of the simulated solar-cell design was desired. JMP has a built-in 

prediction profiler used for sensitivity analysis and desirability profiling to find the 

optimum response value. The technique is based on “setting up desirability 

functions, and searching for factor values that optimize a composite desirability of 

a number of responses” (SAS Institute, n.d.-a). 

Figure 21 shows the JMP prediction profiler with the desirability profiling 

function. According to the metamodel, the tested solar-cell design should have 

an expected maximum output power of 40.5 mW/cm2 with a confidence interval 

from 39.6 mW/cm2 to 41.4 mW/cm2.  

 

Figure 21.  Prediction Profiler for Response Surface of 257-Design-Point 
Agui Cell Design Optimization. 
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The selected design factors were tested in a single simulation run to verify 

the values. The prediction was not exact, but using the recommended values in 

the simulation yielded an output power of 40.7 mW/cm2, which is a dramatic 

improvement from the basic configuration of 35.76 mW/cm2. The former process 

proved not to be as successful as anticipated. The resulting metamodel response 

surface optimization values from the prediction profiler tend to produce lower 

values as predicted. Therefore, the analysis of the experimentation was changed 

to using the simulation run that produced the highest outcome, and the prediction 

profiler is giving the direction to change the factor ranges for the next iteration. 

c. Conclusion 

With the process of applying the NOLH DoE in the Silvaco ATLAS 

simulation environment, initial results were generated and a statistical analysis of 

those results conducted. Already, the initial testing proved the general 

applicability of this approach and produced insights into the relationships and 

interactions of the input variables for the simulation.  

Since the starting point for this research was the genetic algorithm in 

conjunction with Silvaco ATLAS, the following improvements may be achieved. 

By scanning the experimentation space, a higher maximum output power 

generated by a certain input parameter combination may be found. That was the 

achievement of the genetic algorithm application as well, but neither further 

insights nor parallel processing capabilities were possible. 

With the statistical analysis of the results, a deeper understanding of the 

importance of each individual solar-cell design parameter may be highlighted. 

This knowledge gives the solar-cell developer a powerful tool for focusing 

attention and resources toward the most productive design parameters. This 

enhances the ability, in conjunction with the parallel processing, to achieve much 

faster and more goal-oriented turnarounds in the design development, which in 

the end should lead to a better product in a shorter amount of time. 
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In sum, having already promising results with the initial data run, 

improving the design process with more design points or more in-depth 

adaptation of the design-space range should lead quickly to better solar-cell 

designs. Following the path of the DoE in this regard yields noticeable 

improvements over the genetic algorithm technique used in the past. In the 

following paragraphs, the same solar-cell design, only with more design points, is 

discussed.  

2. Agui Solar Cell with 1,542 Design Points (Rotated and Stacked) 

For the generation of the 1,542-design-point Agui solar cell, the method of 

rotating and stacking was used. The goal was to get a denser filling of the design 

space to find a better combination of input parameters with higher output power. 

It was also expected that prediction accuracy of the fitted regression model would 

improve. The results are compared and contrasted in the following paragraphs. 

a. General Data Screening and Analysis 

Comparing Figure 19 with Figure 22 provides a good indication of how 

well the process of rotating and stacking works. With the rotated and stacked 

design, most of the areas in the experimentation space are densely covered, 

which ensures a better approximation of the input/output relationship in the 

regression model fit. Again, the challenge is always in finding a balance between 

necessary accuracy and the required runtime. In the case of this research, by 

using the rotated and stacked design, the runtime increased from seven to 48 

hours. If this is acceptable, more experiments will improve the odds of precisely 

fitting the metamodel and finding an optimum. 
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Figure 22.  Extract of Scatterplot Matrix of 1,542-Design-Point Agui Cell 
Design Using Linear-Transformed Dopants. 

Regarding output value statistics, Figure 23 shows that there was not 

much of a difference in the mean of the output power. The value increased 

slightly from 33.57 mW/cm2 to 33.62 mW/cm2 with a confidence interval of 33.5 

mW/cm2 to 33. 74 mW/cm2, and this was an indicator that the additional 

simulation runs did not produce output with a tendency toward higher values. The 

factor region is still the same as in the previous experiment. The increased 

number of simulation runs produced output with a similar distribution, but the 

number of successful simulation runs is worth mentioning.  

 

 
 
 
 
 
 

Figure 23.  Simulation Output Power Distribution Improved in 1,542-
Design-Point Agui Cell Design Using Linear Transformed 

Dopants. 
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The experimentation had the highest percentage of runs that did not 

converge. Ninety-seven out of 1,542 is a rate of 6.3%, which is approximately 

two percent over the rate of the other experiments. 

In general, the data structure was similar to that of the basic design, with 

the advantage of having much denser space coverage. 

b. Model Fit and Response Surface Analysis  

The resulting model created using JMP’s stepwise regression function is 

depicted in Table 6. For example, in the basic experiment, all statistically 

significant effects were covered by the model, indicating to the solar-cell 

developer which parameters have the greatest influence on output power. 
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Table 6.   Effect Summary Model Fit for 1,542-Design-Point Agui  
Cell Design Using Linear-Transformed Dopants. 

 
 

Compared to the basic experiment, this model had more parameters and 

interactions with a statistically significant effect on output power. This was 

expected, as more samples increase statistical power. 

In Table 7, the RSquare value is slightly higher than the one in the basic 

experiment. This has to do with the greater number of parameters and their 

interactions in the model. This model explains 84.5% of the variance. 

  

Source LogWorth  PValue  
basethick 241.699  0.00000  
botbasethick 155.315  0.00000  
botbasedopconc 151.940  0.00000  
winthick 151.861  0.00000  
basethick*basethick 114.921  0.00000  
botbasethick*botbasethick 95.407  0.00000  
winthick*basethick 84.372  0.00000  
botemdopconc 59.962  0.00000  
buffdopconc 54.548  0.00000  
basethick*botbasedopconc 38.541  0.00000  
basethick*botbasethick 37.066  0.00000  
emdopconc 36.761  0.00000  
emdopconc*basethick 33.616  0.00000  
botbasethick*botbasedopconc 30.398  0.00000  

botwinthick 14.640  0.00000  
windopconc 14.054  0.00000  
windopconc*basethick 12.888  0.00000  
botemthick*botemdopconc 12.623  0.00000  
winthick*emdopconc 12.104  0.00000  
buffdopconc*buffdopconc 11.473  0.00000  
botemthick 6.293  0.00000 ^ 
basethick*buffthick 5.767  0.00000  
emthick*basethick 5.302  0.00000  
winthick*botbasethick 4.855  0.00001  
emthick 4.135  0.00007 ^ 
basethick*bsfthick 3.935  0.00012  
basethick*botemdopconc 3.594  0.00025  
windopconc*windopconc 3.050  0.00089  
botbasedopconc*botbasedopconc 2.480  0.00331  

bsfthick 1.092  0.08088 ^ 
buffthick 0.548  0.28337 ^ 
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Table 7. Summary of Fit Model for 1,542-Design-Point Agui 
Cell Design Using Linear-Transformed Dopants. 

With the prediction profiler, a kind of sensitivity analysis was conducted to 

learn more about the influence of each factor on the overall result. The winthick 

parameter is a good example of the rationale behind this process. As depicted in 

Figure 24, the best output values are achieved if the winthick parameter is at the 

lowest end of the experimentation input value range. In the next iteration of the 

development process for that specific solar cell, the value range for winthick 

should be lowered to capture the best range of values for that factor. 
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Figure 24.  Prediction Profiler for Response Surface Improved 1,542-
Design-Point Agui Cell Design Optimization for Linear-

Transformed Dopants. 

c. Conclusion

With the analysis of the rotated and stacked design, it appears that the 

technique provides much better coverage of the experimentation space and 

detects trends in the data better. Therefore, the predicting capability for the fitted 

model is better. Of course, it is up to the developer to decide what is good 

enough to support his work. With rotating and stacking, there is a scalable 

method to adjust for requirements of the solar cell’s current development phase.   

3. Improved Agui Solar Cell with 1,542 Design Points (Rotated
and Stacked)

Next, the improved solar cell marks the second step in an iterative process 

to improve the design of the cell further. For each factor, the ranges have been 

adapted to produce a much denser coverage around the areas that deliver the 
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best output values. In the case of the Agui cell design, input values from the row 

that produced the highest output value were the basis for creating a narrower 

wrapper than the one in the previous experiment. The result of this technique is 

discussed in the following paragraphs. 

a. General Data Screening and Analysis

Comparing the design point distribution from Figure 22 with that of Figure 

25, we see differences in how the values are dispersed in the space. For 

example, the winthick value was more or less a continuous value in the previous 

experiment. In the case of this experiment, the developers chose to limit the 

value space to a few discrete values. However, the developer has to consider 

many options during this process. Due to the complexity of the subject, this 

section does not discuss those considerations at length. The best advice for 

developers is to familiarize themselves with the possibilities of this new approach 

and use all relevant information as appropriate. 

Figure 25.  Extract of Scatterplot Matrix for Improved 1,542-Design-Point 
Agui Cell Design Using Linear Transformed Dopants. 
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The distribution of the output power values in Figure 26 gives a completely 

different picture than that depicted in Figure 23. The shape deviates from the 

normal distributed type of curve in Figure 23 to a curve concentrated toward the 

right side. This distribution indicates a new stage in which the developer shifted 

the output power distribution in the desired direction. The mean of 38.4 mW/cm2, 

compared to the previously recorded 33.6 mW/cm2, is a clear indication. In 

addition, nearly all simulation runs converged. A convergence of 1532 out of 

1542 runs is a very good outcome, indicating that most of the input factors were 

already in the active range of the design. 

Figure 26.  Simulation Output Power Distribution for Improved 1,542-
Design-Point Agui Cell Design Using Linear Transformed 

Dopants. 

b. Model Fit and Response Surface Analysis

The effect summary of the experiment in Table 8 shows a decrease of the 

LogWorth values compared to those in Table 6. Since the stepwise regression 

model fit selects the input factor values that have the greatest effect on the 

output power, lower LogWorth values indicate only slightly less influence on the 

simulation output value than in the previous model. As anticipated, the smaller 

region is dominated by a smaller number of factors. 
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Table 8.   Effect Summary Model Fit Improvements for 1,542-Design-Point 
Agui Cell Design Using Linear-Transformed Dopants. 

 
 

The summary of fit in Table 9 shows an RSquare of only 0.22. The low 

value cannot be explained, so it requires further analysis.  
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Table 9.   Summary of Fit Model Improvements for 1,542-Design-Point Agui 
Cell Design Using Linear-Transformed Dopants. 

 
 

To explain the low RSquare value a residual plot might be helpful to 

identify the reason for the bad model fit. The residual plot in Figure 27 does not 

reveal any irregularities and does not explain the low RSquare value.  

 

Figure 27.  Residual by Prediction Plot for 1,542-Design-Point Agui Cell 
Design Using Linear-Transformed Dopants. 

The prediction profiler, depicted in Figure 28, identifies the parameters 

that have the greatest influence on the output as well as the direction in which 

they need altering to produce the desired effect. In the case of that experiment, 

the basethick and tunemthick values had the greatest effect on the output power 

value and required exploration in the next iteration to increase the odds of 

producing a higher output value. The predicted value of the model increased 

from 39.83 mW/cm2 with a confidence interval of 39.53 mW/cm2 to 40.13 mW/cm2 

in Figure 24 to 43.16 mW/cm2 with a confidence interval of 42.25 mW/cm2 to 

44.06 mW/cm2 in Figure 28, indicating how the regression model detected the 

shape of the response surface. 
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Figure 28.  Prediction Profiler for Response Surface Improved 1,542-
Design-Point Agui Cell Design Optimization Using Linear-

Transformed Dopants. 

c. Conclusion 

The second step of this new approach confirmed the expected behavior of 

the condensed design space with narrower factor ranges. A higher output power 

value was predicted, and the general trend of the data, depicted in Figure 26, 

shifted to the right. This was the expected outcome of bounding the response 

surface to the region of highest output. The regression model gives for each 

statistically significant input factor the direction for the parameter’s range in the 

simulation’s next iteration. The reduced number of parameters in the model 

indicated that only a few affected the output power value.  

4. Second Iteration of Improved Agui Solar Cell with 1,542 Design 
Points (Rotated and Stacked) 

The second iteration of the improved solar cell illustrated some of the 

features the new process included by design. For each single input value, the 

ranges were adapted again for much denser coverage around the areas that 
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produced the best output values, and the granularity of some of the parameters 

was increased as well. The procedure was the same as described in the previous 

section. 

a. General Data Screening and Analysis 

Comparing the design-point distribution from Figure 25 and the one in 

Figure 29 shows differences in how the values were dispersed in the space. For 

example, the winthick values in the first column exhibited some discrete values in 

the previous experiment but reverted to continuous numbers in the current 

experiment.  

 

Figure 29.  Extract of Scatterplot Matrix from Second Iteration of Improved 
1,542-Design-Point Agui Cell Design Using Linear-Transformed 

Dopants. 

Another interesting aspect of the scatterplot is the distribution of the 

simulation results in the basethick column. As shown, the simulation result 

increases with increases of the basethick input value, which is precisely the 

information a developer needs to focus the new design. Still, this step in the data 

analysis is meant primarily to scrutinize the data to see whether the structure is 

as intended.  

The distribution of the output power values does not change much from 

Figure 26 to Figure 30. The shape still tends toward the right side. The mean of 

38.27 mW/cm2 with a confidence interval of 38.11 mW/cm2 to 38.42 mW/cm2 is 
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0.1 mW/cm2 less than in the previous experiment, but the maximum output power 

value has improved to 42.86 mW/cm2. Even more simulation runs, 1,536 out of 

1542, converged, indicating that most of the input factors were already in the 

active range of the design. Developers should also consider exploring the outlier 

output values to learn what might have caused the values so far from the mean. 

 

 

Figure 30.  Simulation Output Power Distribution for Second Iteration of 
Improved 1,542-Design-Point Agui Cell Design Using Linear-

Transformed Dopants.  

b. Model Fit and Response Surface Analysis  

The effect summary in Table 10 shows more or less the same picture as 

in the previous experiments. The expectation was that this run would lower 

LogWorth values of factors in the model again. However, this iteration of the 

simulation did not improve the fitted model. Although a new maximum output 

power value was produced, there is still the potential for obtaining a higher value.  
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Table 10.   Effect Summary Model Fit for Second Iteration of Improved 1,542-
Design-Point Agui Cell Design Using Linear-Transformed Dopants. 

 
 

The summary of fit in Table 11 gives a very high value in this iteration. 

Compared to the value obtained in the previous experiment, this is better and an 

indication the model is more reliable in its prediction power. 
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Table 11.   Summary of Fit Model for Second Iteration of Improved 1,542-
Design-Point Agui Cell Design Using Linear-Transformed Dopants. 

 
 

The prediction profiler, as shown in Figure 31, identifies the parameters 

that have the greatest influence on the output and the direction in which they 

have to be altered to produce the desired effect. In the case of this experiment, 

the basethick values still have the greatest influence. Considering the prediction 

value of 43.11 mW/cm2, the metamodel does detect the response surface shape 

of the simulated solar-cell design much better than the previous model.  

 

Figure 31.  Prediction Profiler for Response Surface in Second Iteration of 
Improved 1,542-Design-Point Agui Cell Design Optimization 

Using Linear-Transformed Dopants. 
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c. Conclusion 

In the third step of this new approach, the expected behavior of the 

condensed design space with narrower parameter ranges proved to work. A new 

maximum output power value was generated by the simulation system, and the 

general trend of the output data, depicted in Figure 30, still shifted to the right 

toward higher output power values. This was the intended outcome of bounding 

the response surface in an area of the highest output value. The regression 

model gives for each statistically significant input factor the direction for 

determining the range of that parameter for the next iteration. The prediction 

profiler and the height of the LogWorth values suggest the benefit of continuing 

the optimization process to obtain better values.  

Figure 32 gives the I–V curve derived from the simulation runs that 

produced the highest output power value and shows the improvement of the 

cathode current flow, from the AM1.5 genetic algorithm–optimized design to the 

design optimized with the NOLH DoE. Solar-cell developers are particularly 

interested in deriving information from the shape of I–V curves. 

 

Figure 32.  Current vs. Voltage (I–V Curves) for the NOLH Basic and 
Optimized Two-Junction Solar-Cell Designs Generated from the 

Maximum Output Power Simulation Run. 
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V. CONCLUSION AND RECOMMENDATION 

This thesis introduced a new approach using the NOLH DoE to optimize 

multi-junction solar cells and demonstrated its success. Many of the limitations 

that come with the use of the genetic algorithm were eliminated. The major 

shortcomings of the genetic algorithm include the complexity in setting up all the 

parameters of the design, the inflexibility in addressing cell design changes, and 

the inefficient use of the simulation data to analyze the input/output relationship 

of the model. The latter is the only way to see whether the simulation is doing 

exactly what it is designed to do. Another limitation is that the genetic algorithm 

allows only sequential simulation runs, so more complex studies require longer 

runtimes.  

The complexity issue of the genetic algorithm was mitigated using the 

easy-to-implement NOLH Excel spreadsheet provided by the NPS SEED center. 

As long as the spreadsheet design permits, further simulation parameters can be 

added and/or their ranges changed. In addition, the granularity was increased 

using the NOLH design—highlighted by the 257 design points of the NOLH 

versus the 128 intermediate variable parameters of the genetic algorithm 

introduced by Tsutagawa (2013). Using the rotating and stacking technique 

achieves much better space filling. 

The analysis of the input/output data relationship unveils new possibilities 

for understanding which factors affected the response, and how. It was the first 

time this powerful tool was introduced in the solar-cell development process, and 

it guided the changes of the design effectively. Using JMP statistical analysis 

software makes exploring the data easy, ultimately leading to a tremendous 

decrease in design turnaround time. No separate experimentation was necessary 

to determine the course of the next design step. In addition, determining the 

initial parameter ranges became straightforward. It is recommended that 

researchers use a wide experimentation space at the beginning and narrow the 

intervals in subsequent iterations. In this regard, the NOLH DoE demonstrates 
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the advantage of revealing parameter interactions. If in the utilization of the 

genetic algorithm a mechanism is utilized to track the input and output data, a 

basic data analysis may be possible. 

The design’s pre-generating property in the new approach solved the 

runtime issue. Although the NPS high performance computer Hamming was not 

available, this thesis established its theoretical applicability. Processing different 

simulation designs in parallel, limited at NPS by the number of available Silvaco 

Atlas software licenses, could have reduced the runtime by at least an order of 

magnitude. Moreover, by using Hamming, additional processors may have been 

available to reduce the runtime of each single simulation run, since Silvaco Atlas 

enables symmetric multiprocessing. A runtime reduction from several hours or 

even days to only a few hours or minutes drastically accelerates cell 

development and turnaround times. The potential of this reduction can only be 

adumbrated. The Hamming implementation should be considered in future work.  

The most important achievement of such a process is the realization of a 

desired simulation result, which in this case was the increase of power output 

from a dual-junction solar cell. The basic design optimized the genetic algorithm 

for an AM1.5 spectrum, taken from the work of Tsutagawa (2013) in his 

dissertation and rebuilt by R. Kilway, personal communication, March 24, 2017, 

yielding an output value of 35.76 mW/cm2. The design was improved to 39.58 

mW/cm2 in the basis application run and improved again by rotating and stacking 

to 40.38 mW/cm2. In the first run with the condensed experimentation space, a 

value of 42.1 mW/cm2 was attained. That is a major achievement since it 

compares the value from the initial run, which is already an AM0-optimized 

design, with the second iteration in this process. The second iteration to improve 

the design obtained an output power value of 42.86 mW/cm2, which is again an 

increase, and the data analysis indicates potential for higher values. The first re-

run of the experiment accomplished a noticeable increase in the power 

performance of the solar-cell design.  
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Due to the easy overall process and the simulation results, the NOLH DoE 

should become the new standard for optimizing solar cells with Silvaco Atlas; no 

major obstacles were identified that require future work with the exception of 

getting Hamming up and running. 

Another wide area of further work is in the area of physical implementation 

of the optimized solar-cell designs and the performance in comparing the 

simulated models. Considering manufacturing tolerances, creating a consumer 

product ready with increased efficiency has a long way to go. 
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APPENDIX A. SILVACO ATLAS TEMPLATE FILE 

#Recreating Michal. multijunction cell, pg 122 (InGaP/GaAs dual MJ cell) 
 
go atlas simflags="-P 6" 
 
set winthick= 0.03  
set windopconc= 2E18  
set emthick= 0.05  
set emdopconc= 2E18  
set basethick= 0.55  
set basedopconc= 1.5E17  
set bsfthick= 0.03  
set bsfdopconc= 2E18  
set buffthick= 0.03  
set buffdopconc= 1E18  
set tunemthick= 0.015 
set tunemdopconc= 8E18 
set tunbasethick= 0.015 
set tunbasedopconc= 1E19 
set botwinthick= 0.05 
set botwindopconc= 1E19 
set botemthick= 0.1 
set botemdopconc= 2E18 
set botbasethick= 3 
set botbasedopconc= 1E17 
set botbsfthick= 0.1  
set botbsfdopconc= 2E18  
set botbuffthick= 0.3  
set botbuffdopconc= 7E18  
 
mesh auto  
x.m loc=0.0 s=0.25 
x.m loc=1.0 s=0.25  
 
#top cell  
region name="n+ type AlInP" material=AlInP  bot thick=$winthick donors=$windopconc  ny=10 
x.comp=0.52 
region name="n+ type InGaP" material=InGaP  bot thick=$emthick  donors=$emdopconc    ny=10 
x.comp=0.51      
region name="p+ type InGaP" material=InGaP  bot thick=$basethick accept=$basedopconc   
ny=10 x.comp=0.51 
region name="p+ type InGaP" material=InGaP  bot thick=$bsfthick accept=$bsfdopconc    ny=10 
 
region name="p+ type AlInP" material=AlInP  bot thick=$buffthick accept=$buffdopconc ny=10 
x.comp=0.52 
 
#tunnel 
 
region name="p+ type InGaP" material=InGaP  bot thick=$tunemthick accept=$tunemdopconc 
ny=100 x.comp=0.51 
region name="n+ type InGaP" material=InGaP  bot thick=$tunbasethick 
donors=$tunbasedopconc ny=100 x.comp=0.51 
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#bottom cell 
 
region name="n+ type AlInP" material=AlInP bot thick=$botwinthick donors=$botwindopconc 
ny=10 x.comp=0.52 
region name="n+ type GaAs" material=GaAs bot thick=$botemthick donors=$botemdopconc 
ny=10 
region name="p+ type GaAs" material=GaAs bot thick=$botbasethick 
acceptors=$botbasedopconc  ny=10 
region name="p+ type InGaP" material=InGaP  bot thick=$botbsfthick acceptors=$botbsfdopconc    
ny=10 x.comp=0.51 
region name="p+ type GaAs" material=GaAs  bot thick=$botbuffthick acceptors=$botbuffdopconc 
ny=10 
electrode name=cathode material=AlInP top 
electrode name=tunnel material=InGaP 
y.min=$winthick+$emthick+$basethick+$bsfthick+$buffthick 
y.max=$winthick+$emthick+$basethick+$bsfthick+$buffthick+$tunemthick+$tunbasethick   
electrode name=anode material=GaAs bottom   
contact name=tunnel resist=1E17 
 
material mat=GaAs sopra=Gaas.nk  
material material=InGaP sopra=Againp0_mod.nk  
material material=Ge sopra=Ge.nk 
material material=AlInP sopra=Againp10_mod.nk 
 
#quit 
 
material material=InGaP EG300=1.9 PERMITTIVITY=11.8 AFFINITY=4.09 
material material=InGaP MUN=3500 MUP=400 
material material=InGaP NC300=9.3268e17 NV300=9.3268e18 NI=323 
material material=InGaP AUGN=3e-30 AUGP=3e-30 COPT=1e-10 TAUN=1e-03 TAUP=1e-03 
material material=Vacuum real.index=3.3 imag.index=0 
material material=AlInP EG300=2.4 PERMITTIVITY=12.5 AFFINITY=4.04 
material material=AlInP MUN=3000 MUP=150  
material material=AlInP NC300=6.617e20 NV300=6.617e21 NI=100 
material material=AlInP AUGN=5.447e-30 AUGP=2.957e-29 COPT=1e-10 TAUN=1e-03 
TAUP=1e-03 
material material=GaAs EG300=1.424 PERMITTIVITY=12.9 AFFINITY=4.07 
material material=GaAs MUN=8500 MUP=400  
material material=GaAs NC300=4.7e17 NV300=9e18  
material material=GaAs AUGN=1e-30 AUGP=1e-30 COPT=7.2e-10 TAUN=1e-03 TAUP=1e-03 
models srh auger optr fermi conmob bgn temp=300 print 
method itlimit=40 maxtraps=20  
beam num=1 x.origin=0 y.origin=-5 angle=90 back.refl wavel.start=0.12 wavel.end=3.455 
wavel.num=1500 AM0  
 
solve init  
solve b1=1e-01 
solve b1=1 
save outf=Agui_Dual_Resist.str  
 
log outf=Agui_Dual_Resist.log 
save outf=0V.str 
solve previous 
solve vanode=0.001 
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solve vanode=0.05 
solve vstep=0.05 vfinal=2.1 name=anode 
solve vanode=2.1 vstep=0.005 vfinal=2.7 name=anode 
 
extract init infile="Agui_Dual_Resist.log" 
extract name="Jsc" max(curve(v."anode", i."cathode")) 
extract name="Jsc_mAcm2" $Jsc*1e08*1e03 
extract name="Voc" x.val from curve(v."anode", i."cathode") where y.val=0.0  
extract name="Pm" max(curve(v."anode", (v."anode" * i."cathode")))  
extract name="Pmax_mW/cm2 " $Pm*1e08*1e03 
extract name="Vm" x.val from curve(v."anode", (v."anode"*i."cathode") ) where y.val=$"Pm" 
extract name="Im_mAcm2" $Pm/$Vm*1e08*1e03 
extract name="FF" ($Pm/($Jsc*$"Voc"))*100 
extract name="intens" max(beam."1") 
extract name="Eff" (1e8*$Pm/$intens)*100 
extract name="iv" curve(v."anode", i."cathode"*1e08*1e03) outfile="Agui_Dual_Resist.dat" 
 
quit 
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APPENDIX B. PYTHON SCRIPTS 

A. PYTHON SCRIPT FOR SILVACO ATLAS FILE PRE-PROCESSING 

# -*- coding: utf-8 -*- 
 
Created on Wed Mar 22 21:41:53 2017 
 
@author: Silvio 
 
""" 
import codecs  # Keeping the Silvaco file in the right format 
import csv              # Read in the CSV 
 
with open("Sim Input lin transf and stacked secound iteration.csv", "r") as csvfile: 
 
  Input_data = csv.reader(csvfile)  # Save the CSV in a variable 
 
  for row_index, row in enumerate (Input_data):  # Looping the Input data matrix by row and 
generating the row index 
 
    with codecs.open("Japanize Solar Silvaco Template.in",'r',encoding='utf8') as f:  # Open the 
default Silvaco scriped 
 
      lines = f.readlines()    # Read the scriped line by line 
 
      for index in range (3, 3 +len(row)):     # index the line range where to change the parameter  
 
       parameter, value = lines[index].split("=", 1)  # split the line at the “=” chr 
 
        if (index & 1) == 1: # Selecting the doping level lines in the skript 
 
          lines[index] = parameter + "=" + " " + str(row[index - 3] + "\n")   # Build the new content 
 
        else: 
 
          lines[index] = parameter + "=" + " " + str(float(1E16) * float(row[index - 3])) + "\n"   # Linear 
transformation of the doping levels 
 
      for out in [88, 90, 99, 110]:  # Exception handling 
 
        if out == 110: 
 
          resitual = lines[out].split(".")  # split the line at the . chrs 
 
          lines[out] = resitual[0] + "." + resitual[1] + "." + resitual[2] + str(row_index + 1) + "." + 
resitual[3].rstrip('\n') + "\n"  # Build the new content 
 
        else: 
 
          resitual = lines[out].split(".")  # split the line at the . chr 
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          lines[out] = resitual[0] + str(row_index + 1) + "." + resitual[1].rstrip('\n') + "\n"   # Build the 
new content 
 
    with 
codecs.open("Silvaco_Japanize_Solar_Design_Input_linear_transformed_and_stacked_second_i
teration" + str(row_index + 1) + ".in",'w',encoding='utf8') as file:  # Open a new file for each design 
 
         for line in lines: 
 
            file.write(line)   # Write the lines into the file 
 
    file.close() 
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B. PYTHON SCRIPT TO RUN THE SILVACO ATLAS FILE  

 
# -*- coding: utf-8 -*- 
 
""" 
Created on Thu Apr 6 19:44:11 2017 
 
@author: Silvio 
 
""" 
 
import subprocess  # Required to call other programs 
import time   # Required to get the system time 
 
timetracker = []   # Time capturing vector 
 
for filenumber in range(1,1543,1):  # Run of the number of designs 
 
 
 
  outputcmd = "deckbuild -run 
Silvaco_Japanize_Solar_Design_Input_linear_transformed_and_stacked" + str(filenumber) + ".in" 
 # Specifying the design to run in Silvaco 
 
  start = time.time()    # Capturing the start ime 
 
  subprocess.check_output(outputcmd,shell=True) # Call Silvaco to run the design 
 
  timetracker.append(time.time() - start)  # Appending the runtime to the time vector 
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C. PYTHON SCRIPT FOR SILVACO ATLAS OUTPUT VALUE POST-
PROCESSING 

# -*- coding: utf-8 -*- 
 
""" 
Created on Mon Apr 10 20:13:52 2017 
 
@author: Silvio 
 
""" 
import numpy as np  # Required to apply multiplication to complete vector 
import pandas as pd  # Required to read in CSV file 
 
maxpower = []  # Vector to preserve the maximum output power 
 
for filenumber in range(1, 1543, 1): 
 
  arr = np.loadtxt('Agui_Dual_Resist' + str(filenumber) + '.dat',delimiter=' ', skiprows = 4) 
 # Read the output value file from Silvaco 
 
  maxpower.append (max(np.multiply(arr[:, 0], arr[:, 1]))) # Compute the max power output value 
 
df = pd.read_csv('Japanize Solar Design Input linear transformed and stacked.csv', 
header=None)  # Read the input value CSV file 
 
for c in df.columns: 
 
  if (c & 1) == 1: 
 
    df[c] = df[c].apply( lambda x: (float(1E16) * x))   # Linear transformation of doping levels 
 
new_column = pd.DataFrame(maxpower) # Change vector into pandas data frame column 
 
df = df.merge(new_column, left_index = True, right_index = True) # Merge input and output data 
df.to_csv('AAASimulation result linear transformation and stacked.csv',header=False, 
index=False)  # Write the combined data back to a CSV ready for analysis 
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