

NAVAL
POSTGRADUATE

SCHOOL

MONTEREY, CALIFORNIA

 THESIS

Approved for public release. Distribution is unlimited.

ENTROPY-BASED FILE TYPE IDENTIFICATION AND
PARTITIONING

by

Calvin B. Paul

June 2017

Thesis Advisor: Roberto Cristi
Co-Advisor: Monique P. Fargues

THIS PAGE INTENTIONALLY LEFT BLANK

i

REPORT DOCUMENTATION PAGE Form Approved OMB
No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing
instruction, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection
of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden, to Washington headquarters Services, Directorate for Information Operations and Reports, 1215
Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork
Reduction Project (0704-0188) Washington, DC 20503.
1. AGENCY USE ONLY
(Leave blank)

2. REPORT DATE
June 2017

3. REPORT TYPE AND DATES COVERED
Master’s thesis

4. TITLE AND SUBTITLE
ENTROPY-BASED FILE TYPE IDENTIFICATION AND PARTITIONING

5. FUNDING NUMBERS

6. AUTHOR(S) Calvin B. Paul

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING
ORGANIZATION REPORT
NUMBER

9. SPONSORING /MONITORING AGENCY NAME(S) AND
ADDRESS(ES)

N/A

10. SPONSORING /
MONITORING AGENCY
REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the
official policy or position of the Department of Defense or the U.S. Government. IRB number ____N/A____.

12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release. Distribution is unlimited.

12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)

The need for file identification and partitioning in the digital forensic, reverse engineering,
and security analyst fields cannot be overstated. In this research, we investigate the use of the Shannon
entropy profile derived from the file expressed in byte format to characterize specific file types and
identify file segments based on entropy-level changes. The process consists of two stages. In the first
stage, a binary representation of the file is partitioned into chunks of fixed-length data bytes and
processed to extract the entropy profile. In the second stage, the detrended fluctuation analysis
(DFA) method is applied to determine the level of structure in the entropy profile. The Haar
continuous wavelet transform (CWT) is then used to partition the files identified as highly structured
into areas of distinct changes in entropy level. Experimental results show that the proposed approach is
effective in identifying file types and partitioning in segments of different entropy levels.

14. SUBJECT TERMS
file type identification, file partitioning, entropy, feature vector, detrended fluctuation analysis,
Haar continuous wavelet, statistical measure

15. NUMBER OF
PAGES

107
16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION
OF ABSTRACT

UU
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. 239-18

 ii

THIS PAGE INTENTIONALLY LEFT BLANK

iii

Approved for public release. Distribution is unlimited.

ENTROPY-BASED FILE TYPE IDENTIFICATION AND PARTITIONING

Calvin B. Paul
Civilian, Armaments Corporation of South Africa (Armscor)

B.Tech., Durban University of Technology, 2004

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL
June 2017

Approved by: Roberto Cristi
Thesis Advisor

Monique P. Fargues
Co-Advisor

R. Clark Robertson
Chair, Department of Electrical and Computer Engineering

 iv

THIS PAGE INTENTIONALLY LEFT BLANK

v

ABSTRACT

The need for file identification and partitioning in the digital forensic, reverse

engineering, and security analyst fields cannot be overstated. In this research, we

investigate the use of the Shannon entropy profile derived from the file expressed in byte

format to characterize specific file types and identify file segments based on entropy-

level changes. The process consists of two stages. In the first stage, a binary

representation of the file is partitioned into chunks of fixed-length data bytes and

processed to extract the entropy profile. In the second stage, the detrended fluctuation

analysis (DFA) method is applied to determine the level of structure in the entropy

profile. The Haar continuous wavelet transform (CWT) is then used to partition the files

identified as highly structured into areas of distinct changes in entropy level.

Experimental results show that the proposed approach is effective in identifying file types

and partitioning in segments of different entropy levels.

vi

THIS PAGE INTENTIONALLY LEFT BLANK

 vii

TABLE OF CONTENTS

I. INTRODUCTION AND LITERATURE REVIEW ...1
A. INTRODUCTION..1
B. LITERATURE REVIEW ...2

II. METHODOLOGY AND PROPOSED TECHNIQUES5
A. METHODOLOGY ..5
B. STATISTICAL TECHNIQUES ...6

1. Shannon Entropy ...7
2. Hamming Weight ...8
3. Arithmetic Mean ..8

C. DETRENDED FLUCTUATION ANALYSIS ...8
1. Step 1 ...9
2. Step 2 ...9
3. Step 3 ...10
4. Step 4 ...10

D. WAVELET ANALYSIS ..11

III. FILE ANALYSIS AND IDENTIFICATION ..13
A. DATA SET ..13
B. DATA PREPROCESSING ...15
C. FILE TYPE IDENTIFICATION ...16
D. FILE PARTITIONING ...16

IV. RESULTS ...19
A. STATISTICAL TECHNIQUES ...19

1. Plain Text ..19
2. Native PE Files ...21
3. Packed Native PE Files ..25
4. Encrypted Native PE Files ..29

B. FILE TYPE IDENTIFICATION ...35
1. Analysis of Results ...37

C. FILE PARTITIONING ...39
1. DFA Analysis ..39
2. CWT Partitioning ..44

V. CONCLUSIONS AND FUTURE WORK ...47

 viii

APPENDIX A. MATLAB SCRIPTS...49
A. FEATURE VECTOR EXTRACTION MAIN SCRIPT49
B. FILE_STATS FUNCTION ...51
C. DFA FUNCTION ...52
D. CWT FUNCTION ..55

APPENDIX B. ENTROPY PROFILE PLOTS ..57
A. PLAIN TEXT FILES ...57
B. 32-BIT NATIVE PE FILES ..61
C. 64-BIT NATIVE PE FILES ..65
D. PACKED 32-BIT NATIVE PE FILES ..69
E. PACKED 64-BIT NATIVE PE FILES ..73
F. ENCRYPTED 32-BIT NATIVE PE FILES ..77
G. ENCRYPTED 64-BIT NATIVE PE FILES ..81

LIST OF REFERENCES ..85

INITIAL DISTRIBUTION LIST ...87

 ix

LIST OF FIGURES

Figure 1. Process Adopted for File Type Identification and Partitioning6

Figure 2. Depiction of Detrended Fluctuation Analysis. Adapted from [11].9

Figure 3. Wavelet Analysis. Adapted from [12]. ..12

Figure 4. Flow Chart of the Experimental Process ...13

Figure 5. Entropy Profile Partitioning Illustrating the Haar versus the Morlet
CWT ...17

Figure 6. File: ‘10.txt’ Entropy Structure ..19

Figure 7. File: ‘1184–0.txt’ Entropy Structure ..20

Figure 8. File: 32-bit ‘Displayswitch.txt’ Entropy Structure21

Figure 9. File: 32-bit ‘FXSSVC.txt’ Entropy Structure ..22

Figure 10. File: 64-bit ‘DisplaySwitch.txt’ Entropy Structure24

Figure 11. File: 64-bit ‘FXSSVC.txt’ Entropy Structure ..24

Figure 12. File: ‘DisplaySwitch 32bit Packed.txt’ Entropy Structure26

Figure 13. File: ‘FXSSVC 32bit Packed.txt’ Entropy Structure26

Figure 14. File: ‘DisplaySwitch 64bit Packed.txt’ Entropy Structure28

Figure 15. File: ‘FXSSVC 64bit Packed.txt’ Entropy Structure28

Figure 16. File: ‘DisplaySwitch 32bit Encrypted.exe.txt’ Entropy Structure30

Figure 17. File: ‘FXSSVC 32bit Encrypted.exe.txt’ Entropy Structure31

Figure 18. File: ‘DisplaySwitch 64bit Encrypted.exe.txt’ Entropy Structure33

Figure 19. File: ‘FXSSVC 64bit Encrypted.exe.txt’ Entropy Structure33

Figure 20. Encrypted File: ‘calc.exe.txt’ Entropy and DFA Plot with α=
0.51678...40

Figure 21. Encrypted File: ‘msdt.exe.txt’ Entropy and DFA Plot with α=
0.5362...40

 x

Figure 22. Plain Text File: ‘1342–0.txt’ Entropy and DFA Plot with α= 0.5132741

Figure 23. Plain Text File: ‘203–0.txt’ Entropy and DFA Plot with α= 0.5684641

Figure 24. Native PE File: ‘RMActivate_ssp.txt’ Entropy and DFA Plot
withα=0.27785 ...42

Figure 25. Native PE File: ‘dccw.txt’ Entropy and DFA Plot withα=0.9401743

Figure 26. Packed PE File: ‘FlashUtil64_24_0_0_194_ActiveX.txt’ Entropy
and DFA Plot withα=1.3995 ...43

Figure 27. Partitioning of File: ‘RMActivate_ssp.txt’ ..44

Figure 28. Partitioning of File: ‘dccw.txt’ ...45

Figure 29. Partitioning of File: ‘FlashUtil64_24_0_0_194_ActiveX.txt’45

Figure 30. File: ‘1260–0.txt’ Entropy Structure ..57

Figure 31. File: ‘1399.txt’ Entropy Structure ..57

Figure 32. File: ‘1400–0.txt’ Entropy Structure ..58

Figure 33. File: ‘1497.txt’ Entropy Structure ..58

Figure 34. File: ‘203–0.txt’ Entropy Structure ..59

Figure 35. File: ‘2554–0.txt’ Entropy Structure ..59

Figure 36. File: ‘28054-0.txt’ Entropy Structure ..60

Figure 37. File: ‘3090–0.txt’ Entropy Structure ..60

Figure 38. File: 32-bit ‘aitstatic.txt’ Entropy Structure ...61

Figure 39. File: 32-bit ‘calc.txt’ Entropy Structure ...61

Figure 40. File: 32-bit ‘certutil.txt’ Entropy Structure ..62

Figure 41. File: 32-bit ‘dccw.txt’ Entropy Structure ...62

Figure 42. File: 32-bit ‘dfrgui.txt’ Entropy Structure ...63

Figure 43. File: 32-bit ‘icardagt.txt’ Entropy Structure ..63

Figure 44. File: 32-bit ‘ie4uinit.txt’ Entropy Structure ...64

 xi

Figure 45. File: 32-bit ‘lpksetup.txt’ Entropy Structure ..64

Figure 46. File: 64-bit ‘aitstatic.txt’ Entropy Structure ...65

Figure 47. File: 64-bit ‘calc.txt’ Entropy Structure ...65

Figure 48. File: 64-bit ‘certutil.txt’ Entropy Structure ..66

Figure 49. File: 64-bit ‘dccw.txt’ Entropy Structure ...66

Figure 50. File: 64-bit ‘dfrgui.txt’ Entropy Structure ...67

Figure 51. File: 64-bit ‘icardagt.txt’ Entropy Structure ..67

Figure 52. File: 64-bit ‘ie4uinit.txt’ Entropy Structure ...68

Figure 53. File: 64-bit ‘lpksetup.txt’ Entropy Structure ..68

Figure 54. File: ‘aitstatic 32bit Packed.txt’ Entropy Structure69

Figure 55. File: ‘calc 32bit Packed.txt’ Entropy Structure ..69

Figure 56. File: ‘certutil 32bit Packed.txt’ Entropy Structure70

Figure 57. File: ‘dccw 32bit Packed.txt’ Entropy Structure ..70

Figure 58. File: ‘dfrgui 32bit Packed.txt’ Entropy Structure71

Figure 59. File: ‘icardagt 32bit Packed.txt’ Entropy Structure71

Figure 60. File: ‘ie4uinit 32bit Packed.txt’ Entropy Structure72

Figure 61. File: ‘lpksetup 32bit Packed.txt’ Entropy Structure72

Figure 62. File: ‘aitstatic 64bit Packed.txt’ Entropy Structure73

Figure 63. File: ‘calc 64bit Packed.txt’ Entropy Structure ..73

Figure 64. File: ‘certutil 64bit Packed.txt’ Entropy Structure74

Figure 65. File: ‘dccw 64bit Packed.txt’ Entropy Structure ..74

Figure 66. File: ‘dfrgui 64bit Packed.txt’ Entropy Structure75

Figure 67. File: ‘icardagt 64bit Packed.txt’ Entropy Structure75

Figure 68. File: ‘ie4uinit 64bit Packed.txt’ Entropy Structure76

Figure 69. File: ‘lpksetup 64bit Packed.txt’ Entropy Structure76

 xii

Figure 70. File: ‘aitstatic 32bit Encrypted.exe.txt’ Entropy Structure77

Figure 71. File: ‘calc 32bit Encrypted.exe.txt’ Entropy Structure77

Figure 72. File: ‘certutil 32bit Encrypted.exe.txt’ Entropy Structure78

Figure 73. File: ‘dccw 32bit Encrypted.exe.txt’ Entropy Structure78

Figure 74. File: ‘dfrgui 32bit Encrypted.exe.txt’ Entropy Structure79

Figure 75. File: ‘icardagt 32bit Encrypted.exe.txt’ Entropy Structure79

Figure 76. File: ‘ie4uinit 32bit Encrypted.exe.txt’ Entropy Structure80

Figure 77. File: ‘lpksetup 32bit Encrypted.exe.txt’ Entropy Structure80

Figure 78. File: ‘aitstatic 64bit Encrypted.exe.txt’ Entropy Structure81

Figure 79. File: ‘calc 64bit Encrypted.exe.txt’ Entropy Structure81

Figure 80. File: ‘certutil 64bit Encrypted.exe.txt’ Entropy Structure82

Figure 81. File: ‘dccw 64bit Encrypted.exe.txt’ Entropy Structure82

Figure 82. File: ‘dfrgui 64bit Encrypted.exe.txt’ Entropy Structure83

Figure 83. File: ‘icardagt 64bit Encrypted.exe.txt’ Entropy Structure83

Figure 84. File: ‘ie4uinit 64bit Encrypted.exe.txt’ Entropy Structure84

Figure 85. File: ‘lpksetup 64bit Encrypted.exe.txt’ Entropy Structure84

 xiii

LIST OF TABLES

Table 1. Data Set Properties ...14

Table 2. Computed Statistical Measure Values: Plain Text Files20

Table 3. Computed Statistical Measure Values: 32-bit Native PE Files22

Table 4. Computed Statistical Measure Values: 64-bit Native PE Files25

Table 5. Computed Statistical Measure Values: Packed 32-bit Native PE Files27

Table 6. Computed Statistical Measure Values: Packed 64-bit Native PE Files29

Table 7. Computed Statistical Measure Values: Encrypted 32-bit Native PE
Files ..32

Table 8. Computed Statistical Measure Values: Encrypted 64-bit Native PE
Files ..34

Table 9. Computed Entropy Statistical Measure Values. Adapted from [4].35

Table 10. Computed Hamming Weight Statistical Measure Values36

Table 11. Computed Arithmetic Mean Statistical Measure Values37

Table 12. Final Entropy Statistical Measure Values. Adapted from [4].39

 xiv

THIS PAGE INTENTIONALLY LEFT BLANK

 xv

LIST OF ACRONYMS AND ABBREVIATIONS

AES Advanced Encryption Standard

ANN Artificial Neural Network

ASCII American Standard Code for Information Interchange

CWT Continuous Wavelet Transform

DFA Detrended Fluctuation Analysis

DWT Discrete Wavelet Transform

ELF Executable and Linkable Format

k-NN k-Nearest Neighbor

MB Megabyte

OEP Original Entry Point

PE Portable Executable

RMSE Root Mean Square Error

STFT Short-Time Fourier Transform

SSECS Suspiciously Structured Entropic Change Score

UPX Ultimate Packer for Executables

 xvi

THIS PAGE INTENTIONALLY LEFT BLANK

 xvii

ACKNOWLEDGMENTS

I would like to express my gratitude to my advisors for their direction and

continued support. I would like to thank my organization, Armscor, for affording me the

opportunity to pursue my master’s. Last but not least, I would like to acknowledge my

wife, Trisha, for her unwavering support and patience.

 xviii

THIS PAGE INTENTIONALLY LEFT BLANK

1

I. INTRODUCTION AND LITERATURE REVIEW

In this chapter we provide the motivations behind the recent developments in the

large body of research conducted in file type identification and partitioning, summarize

current literature in this field, and outline the remaining structure of the thesis.

A. INTRODUCTION

The recent significant advancements in man-machine interaction have had the

undesired consequences of increased exposure across a multitude of disciplines to cyber-

attacks from maliciously obfuscated files. The number of malicious attacks has risen in

recent years due to hackers circumventing current defense mechanism by employing code

obfuscation techniques [1] such as encryption, polymorphism and metamorphism,

rendering the obfuscated code immune to standard signature detection [2]. Polymorphic

and metamorphic malware are capable of changing their internal structure without

altering their malicious behavior. Although dedicated tools exist to study frequently

occurring file types and system specific file formats, the study of suspicious binary

objects is limited to the most elementary tools [3]. From the security analyst defending

against attacks by malicious malware to the digital forensic analyst tasked with carving

segmented files, the need for file type identification and partitioning is of paramount

importance.

 In this thesis we explore the application of statistical measures as a tool to aid in

the identification of file types and file partitioning. This approach has applications in

cybersecurity as it allows for a quick determination of compressed and encrypted file

types which may possibly be malicious. Furthermore, this technique can also be of

interest in forensic analysis of corrupted files, also called file carving.

The rest of the thesis is organized as follows. In the rest of Chapter I, current

literature dealing with statistical measures used for file type identification and

partitioning is reviewed. The proposed methodology and the techniques adopted are

concisely defined in Chapter II. The experiment setup for file analysis and identification

detailing how the data set is generated, feature vector extracted, and file segmented is

 2

covered in Chapter III. Results and analysis are reported in Chapter IV, followed with

concluding remarks and recommendations for future work in Chapter V.

B. LITERATURE REVIEW

A significant body of work to classify file types using statistical measures

including entropy has been reported in the literature. Using entropy as a measure of

randomness and unpredictability in a series of data values or event sequence is a standard

technique and appears in a number of related works [4]. Static analysis is used to

determine those file characteristics that are necessary for their classification without

having to execute the file, which could possibly be malicious malware within a protected

environment.

Orthogonal methods to analyze malware by using signal and image processing

techniques were explored by [1] where malware samples are represented as images or

signals. Image and signal based features were then extracted to characterize the malware.

The efficacy of the methods on malware classification, detection, and retrieval was

demonstrated and extended to the data forensics and data type classification field.

The common trend in the case studies below is the application of file entropy

profile as a measure for file type identification.

Donabelle et al. [2] applied previous work by Sorokin [8] on structural entropy to

the metamorphic detection problem of classifying whether a given file belongs to a

specific metamorphic family. The results obtained indicated that similarity measures

based on structural entropy can be implemented as a tool to classify potentially

metamorphic malware.

Conti et al. [3] used 1,000 segments, each of byte length equal to 1,024, from 14

commonly encountered primitive files to develop statistical signatures for properly

classifying segments into various types. Four statistical measurements, namely Shannon

entropy, Hamming weight, Chi-squared value obtained from the Chi-Square Goodness of

Fit Test, and the mean byte value, were selected as components of a feature vector to

characterize each segment. The actual classification stage was implemented with a k-

 3

nearest neighbor (k-NN) algorithm, and classification results were high for segments of

known primitive types but did not generalize well.

Bintropy, a binary entropy analysis tool to discriminate between native

executables and those with packed or encrypted formats, was developed and used in [4].

This approach relied on the fact that encrypted and compressed files tend to have high

entropy values. Bintropy processes files by iterating through fixed-length binary data

blocks of 256 bytes and generating the entropy profile. Next, the average and highest

entropy values are derived. Finally, confidence intervals of these quantities are computed

and used as basis for file type identification.

Jochheim [5] used signal processing techniques to automatically detect malicious

binary code possibly embedded within regular data. The Shannon entropy profile was

also used to extract changes in the file structure. The Short-Time Fourier

transform (STFT) was applied to the entropy profile to generate a set of power related

parameters used as inputs to an artificial neural network (ANN) classifier. Results show

that the proposed method is able to detect a variety of shellcode attacks with low system

overload notwithstanding the following limitations; the test-data file size is limited to

1MB per file-type and the classifier results in a number of false detections, which limits

its usage.

Fitzgerald et al. [6] explored the application of supervised machine learning

techniques commonly applied in natural language processing to file segment

classification. A large data set of file segments from 24 different file types was used for

the analysis. A feature vector consisting of unigram and bigram counts of bytes in each

segment and other statistical parameters was used to represent each file segment, and a

support vector machine used as classifier. Results showed a wide variation in

classification rates for the file types considered in the study, ranging from 99.7% (for

CSV types) to 2.3% (for pptx types), with better rates obtained for segments with low

entropy levels, resulting in an overall average rate equal to 48%. The authors claimed

their results were better than those obtained with studies based on a similar wide range of

file types.

 4

Jeong et al. [7] proposed a generic unpacking mechanism using entropy analysis

to find the original entry point (OEP) of packed executables. They experimented with 110

packed executables and demonstrated that the proposed mechanism can locate the OEPs

of 72% of the packed executables and can also be applied to packed malware; however,

the approach required unpacking of the packed executable in order to determine the OEP.

In the approach adopted by [8], the entropy profile of the file structure was first

computed using a sliding window approach; thereafter, file segmentation was carried out

by applying the Haar discrete wavelet transform (DWT) to the computed file entropy

profile. The segments of the entropy profile were then compared to segments with

known malware file types using the Levenshtein distance method based on the

assumption that they had expected standard characteristics. The method achieved a

degree of similarity between two sequences of 87.56% and has a number of malware

detection applications; however, the algorithm resulted in false alarms. As a result, the

solution was only useful as a preliminary trigger to run other tests.

The Haar DWT decomposition of structured entropy was used by [9], a

commercial cybersecurity company, to reveal potential malware using the Haar DWT

computed from the file entropy profile. In their study, about 40,000 portable executable

(PE) files were studied with 50% containing malware. A single scalar feature denoted as

the Suspiciously Structured Entropic Change Score (SSECS) was defined to quantify

files as malicious or not, and malware prediction accuracy results were shown to be equal

to 68.7%.

In this section, we described recent work conducted in the computer file segment

type identification field and illustrated the use of entropy as a potential feature in several

of these approaches. The approach used in our work is presented in Chapter II.

 5

II. METHODOLOGY AND PROPOSED TECHNIQUES

The method adopted and techniques used for collecting and analyzing the data

needed for file type identification and partitioning are described in this chapter.

A. METHODOLOGY

This study has two main goals; first, to identify the specific file types for the files

investigated and, second, to partition files identified as highly structured (i.e., with highly

variable entropy profiles) into segments based on entropy changes. Three statistical

parameters are considered in this study: Shannon entropy, Hamming weight, and

Arithmetic mean. Files are split into chunks and statistical parameters computed in each

chunks resulting in entropy profiles, Hamming weight profiles, and arithmetic mean

profiles, respectively. This study is restricted to the four following file types: plain text,

native Portable Executable (PE), packed native PE, and encrypted native PE files. A

detailed description of the process shown in Figure 1 is provided below with the

techniques adopted provided thereafter.

First, each file is converted into a hexadecimal representation compatible with the

Matlab platform, as analysis takes place in the Matlab environment using scripts included

in Appendix A. Second, each file is converted into a binary vector and locally analyzed

using a sliding window with a predefined window length equal to 256 and no overlap to

segment the file. Third, the statistical measures considered in the study are applied to

each file segment to extract statistical parameters, and a segment type decision is made

from these values. In addition, a decision on the overall file type can be made by

comparing the average entropy and the highest entropy parameters to the values derived

from the file type dataset.

Our simulations showed that native PE files and packed files included in our

dataset exhibited distinct transition levels in their entropy profiles, while plain text and

encrypted files did not.

Fourth, the Detrended Fluctuation Analysis (DFA) is selected as a tool to

automate the decision regarding the presence of distinct transitions in the entropy profile.

 6

Finally, for files identified as highly structured, the Haar CWT is applied to identify the

specific location of the entropy profile transitions.

Figure 1. Process Adopted for File Type Identification and Partitioning

In the rest of the chapter, we provide an overview of the techniques adopted for

file type identification and partitioning operations.

B. STATISTICAL TECHNIQUES

Three particular statistical measures were adopted in the algorithm: Shannon

entropy, Hamming weight, and Arithmetic mean.

Although these measures are in line with current research work [3], our

investigations showed that only the entropy is suitable for identification for the dataset

selected in our study; however, we present all for completeness.

 7

1. Shannon Entropy

In information theory, Shannon entropy is an established technique for measuring

the amount of randomness or disorder, i.e., information contained in a given segment. It

yields the amount of “information” and “randomness” in the given data in terms of

number of bits per sample. Its root is in combinatorics and is related to the total number

of realizations of data sequences associated to the given statistics.

The Shannon entropy (()H X) is computed as [5]

 2
1

() () log ()
n

i i
i

H X p X p X
=

= −∑ , (1)

where X is a vector of data where each symbol belongs to a finite alphabet composed of

“ n ” symbols. In the case of byte-level entropy analysis, as applied in this thesis, each

entry of X belongs to an alphabet composed of 256 symbols, corresponding to an 8-

bits/symbol encoding. The alphabet size n is of the form 2bn = where b is the number

of bits (b =8 bits in a byte). The probability mass function ()ip X is the probability of

occurrence of byte value i in the segment. Byte-level entropy analysis yields entropy

values ranging from 0 to 8
2log 2 8= .

As an example, using an alphabet of only two characters, {0;1}, results in an

entropy range between 0 and 2log 2 1= . If X = [0, 1, 1, 1], then 1() (0) 0.25p X p= = and

2() (1) 0.75p X p= = which yields

2 2() [(0.25 log 0.25) (0.75 log 0.75)] 0.8113.H X = − × + × =

Entropy analysis offers a convenient and quick method for analyzing a file at the binary

level as a possible preprocessing step to identify suspicious file regions. As we see later

in the work, files containing binary code, compressed data or text can be distinguished

fairly reliably by the entropy measure. As a consequence, file regions identified as

suspicious can be disassembled and further analyzed with reverse-engineering

disassembling tools such as OllyDbg and IDAPro [4].

 8

2. Hamming Weight

To determine the Hamming weight, each byte of the given segment is converted

into an 8-bit binary representation, i.e., a binary alphabet of zeros and ones. The

Hamming weight is the ratio of the number of ones to the total number of bits in the

given segment. As an example, the Hamming weight for an 8-bit binary number X = [10

11 00 10] is computed as

4() 0.5.
8

Number of onesHW X
Total number of bits

= = =

3. Arithmetic Mean

The arithmetic mean is defined as being equal to the sum of the byte values in the

given segment divided by the segment size

1

1 n

i
i

X
n

µ
=

= ∑ , (2)

where iX and n are the byte values (in decimal format) and the segment size,

respectively. As an example, the arithmetic mean for X = [100, 120, 256, 200] is

computed as

100 120 256 200 676 169.
4 4

µ + + +
= = =

C. DETRENDED FLUCTUATION ANALYSIS

The DFA algorithm may be applied to determine the level of structure in a time

series. The algorithm, introduced in [10], determines the potential level of stationarity of

a time series by analyzing the integral (or running sum) of the detrended sequence.

Following the analysis in [10], we can use a specific DFA statistic scaling factor

(α) to assess the stationarity of the data file. In particular, the larger the value of α the

more structured (non-stationary) the entropy profile tends to be [10]. Time series with a

value of α exceeding a given threshold can be further partitioned into regions of different

entropy values. The larger the value of α the more viable the file is to partitioning using

 9

the CWT. The DFA process is described in the following steps [11] with the aid of

Figure 2.

Figure 2. Depiction of Detrended Fluctuation Analysis. Adapted from [11].

1. Step 1

The entropy profile ()u i , illustrated in Figure 2 subplot (a), where i =1,…, N, and

N is the length of the entropy profile in bytes, is numerically integrated by computing the

running sum of the detrended times series as

1

() ()
k

i
y k u i u

=

= − ∑ , (3)

where u is the mean of the entropy profile [11].

2. Step 2

The resulting sequence y illustrated in Figure 2 subplot (b) is divided into chunks

of window length equal to n. A window length of 256 is used in this thesis, illustrated by

i

0 500 1000 1500 2000 2500 3000

u(
i)

6.8

7

7.2

7.4

k

0 500 1000 1500 2000 2500

y(
k)

-4

-2

0

2

4

(a)

(b)

 10

the dotted vertical lines in Figure 2 subplot (b). Next, in each window we fit y with an

ordinary least-square regression line yn that is representative of the trend in the particular

window, illustrated by the solid red lines in Figure 2 subplot (b).

3. Step 3

The sequence y is detrended by subtracting the local trend ny in each window,

and the root-mean square error fluctuation within each window is calculated using the

standard formula,

 []2

1

1() () () .
N

n
k

RMSE n y k y k
N =

 = −

∑ (4)

4. Step 4

The DFA statistic scaling factor (referred to asα) is calculated by fitting a linear

regression line to the sequence []log ()RMSE n as a function of log n. The slope of the

fitted linear regression line is the DFA statistic scaling factor α [10].

The decision to segment the entropy profile using the CWT is based on the size

ofα. The following criteria were applied [10]:

• α> 1 ⇔Non-Stationarity present, therefore, viable to partitioning using the
CWT,

• α≈0.5 ⇔Stationary entropy times series (white noise), not viable to
partitioning using the CWT.

If a time series is assessed as non-stationary, then it can be partitioned by a

number of techniques. As computational complexity was not an issue in this thesis

research and we were experimenting with digital signal processing techniques, we

selected the CWT in this study for its effectiveness; thus, the CWT is used to partition the

files determined by the DFA analysis as non-stationary.

 11

D. WAVELET ANALYSIS

Fourier analysis, as described in [12], decomposes a signal into its constituent

sinusoids of different frequencies, transforming the view of the signal from a time

domain to a frequency domain. A drawback of the Fourier analysis is that time

information (determining when a particular event took place) is lost during the

transformation, thereby making the Fourier analysis unsuited to detecting important

signal characteristics such as the beginning and end of events, drifts, abrupt changes, and

trends.

The Short-Time Fourier-Transform (STFT) addresses the above drawback of

Fourier analysis by computing the frequency spectrum on a sliding window, resulting in a

time-frequency spectrum so that events can be localized in both time and frequency [12].

The drawback of the STFT is what is called the “uncertainty principle,” for which an

event can be accurately localized in either time of frequency but not both.

Wavelet analysis overcomes the fixed window drawback of the STFT by using

windows of variable length according to the frequency content: longer windows for lower

frequencies and shorter windows for higher frequencies. Since sudden transitions are

associated to higher frequency components, a shorter window provides an accurate

localization of the transition [12]. From Figure 3, the time resolution (horizontal axis) for

different values of the “scaling factor” defined as the reciprocal of frequency (vertical

axis) can be seen. Essentially, per [12], wavelet analysis consists of breaking up the

signal being analyzed into shifted and scaled versions of the original (mother) wavelet.

In this chapter we proposed an approach to identify the file type and partition the

file based on Shannon entropy, Hamming weight and Arithmetic mean measures. In the

next chapter the proposed techniques are applied to the identified file types to determine

the effectiveness of the proposed methods.

 12

Figure 3. Wavelet Analysis. Adapted from [12].

 13

III. FILE ANALYSIS AND IDENTIFICATION

In the previous chapter we described our methodology and proposed techniques to

classify and partition files. In this chapter we apply the proposed techniques to the data

sets and assess the effectiveness of the proposed methods to file type identification and

partitioning. The experiment consists of the processes presented in Figure 4 with the

details presented in the sections that follow.

Figure 4. Flow Chart of the Experimental Process

A. DATA SET

The data set considered for our analysis presented in Table 1 was generated from

multiple diverse sources. We acquired files of different types with varying statistical

measure values to validate a general claim found in the literature that different file types

have different entropy properties. It is well documented that higher entropy levels tend to

correlate with the presence of encryption, compression, random data and binary

executables [3]. Furthermore, segments with medium entropy levels that exhibit a

noticeable file structure are indicative of machine code and human languages, whereas

 14

low entropy levels are indicative of segments with redundant information, such as plain-

text files, uncompressed media, etc. [3].

Table 1. Data Set Properties

File Type Number of
files

Number of file
chunks

Source

Plain Text 32 214322 https:www.gutenberg.org/

Native Portable
Executables (PE) 84 207648

Windows System Files
(alphabetically chosen) • 32-bit PE 42 88858

• 64-bit PE 42 118790

Packed PE 84 119035

Native PE files packed using UPX
Packer(http://upx.sourceforge.net) • 32-bit Packed PE 42 57898

• 64-bit Packed PE 42 61137

256-bit Encrypted PE 84 253485

Native PE files encrypted using AES
(https://www.aescrypt.com/) • 32-bit Encrypted PE 42 106535

• 64-bit Encrypted PE 42 146950

Plain text files included text-only books encoded in US-ASCII and were obtained

from https:www.gutenberg.org/.

Portable Executables (PE) file format used by Microsoft Operating Systems is a

format for executables that are not architecture specific and is highly popular amongst

https://www.gutenberg.org/
http://upx.sourceforge.net/
https://www.aescrypt.com/
https://www.gutenberg.org/

 15

computer users and source of security breaches [13]. The native PE files were

alphabetically selected from the system folders on a Windows 7 Professional Service

Pack 1, 32-bit and 64-bit operating system environment.

Packing is a method used to obfuscate an executable file by encrypting or

compressing it to protect its original content from reverse engineering. A packed

executable is in essence an executable file packed inside another executable file [14] and

is a technique used for malicious intent by malware authors to hide a malicious payload

inside an executable file, thus avoiding detection by malware detectors. When executed,

the outer executable unpacks the contents of the inner executable which could be

malicious code into memory and executes it [14]. As the malicious payload is only

unpacked at runtime and physically exists only in memory, the intent of this thesis is not

to unpack and analyze the packed PE files but rather to identify segments of files that

contain packed code which could potentially be malicious. The native PE files included

in this study were packed using the UPX packer, which is available online at

http://upx.sourceforge.net.

The Advanced Encryption Standard (AES) symmetric cipher with a 256-bit key

length was used to encrypt the native PE files using encryption software that is freely

available at https://www.aescrypt.com/. The encryption performs various substitutions

and transformations on the PE file creating a cipher text, which is an unintelligible

random stream of data [15].

B. DATA PREPROCESSING

The goal of the data preprocessing stage is to convert the files in the data sets into

a file format compatible with Matlab. A free version of a “hexadecimal” (or hex) editor

was used towards that goal where the inputs to the hex editor application are the

individual data files (each processed separately), and the output is a hexadecimal

representation of the input file.

We applied the statistical measures described in Chapter II, paragraph B using

Matlab to each of the data sets to generate individual feature vectors for file type

http://upx.sourceforge.net/
https://www.aescrypt.com/

 16

identification. Data located at the end of the binary file that did not constitute a complete

segment were ignored.

C. FILE TYPE IDENTIFICATION

Files of the same type exhibit similar statistical measures and, therefore, have

similar feature vectors, whereas dissimilar files types exhibit different statistical measures

and have different feature vectors. The difference in feature vectors is the basis for file

type identification. The feature vector identification process is extended to include a

confidence interval (CI) for the aggregated average and highest average statistical

measures for each data set type. The CI is a measure of the uncertainty in the statistical

data given the randomness of the data and provides a range in which to allow the

statistical measures to vary. Given that both the mean and variance of the data set is

estimated, the t-distribution is normally the applicable distribution when calculating the

CI bounds; however for data sample size N > 30, the normal distribution is used as it

approximates the t-distribution [16]. The normal distribution with various CI levels was

tested with a final CI of 95% determined as optimal since using CIs larger than 95%

results in range overlap in statistical measures between different file types and as such is

not useful as a discriminant. A 95% CI was applied to the aggregated average and highest

average measures to generate a feature vector for file type identification.

The upper and lower CI limits were calculated using [16]

 /2 /2 ,x x
x x x

z zm m m
N N

α ασ σ
∧ ∧

∧ ∧

− ≤ ≤ + (5)

where xm
∧

is the estimated mean, xσ
∧

is the estimated standard deviation, and α is the user

specified level of significance used to quantify the CI as: 1CI α= − .

D. FILE PARTITIONING

Any file can be characterized by its structure, and distinctive code and data areas

can be identified when they have different entropy levels; thus, detecting the significant

changes in the file entropy profile is the key to the file partitioning conducted in our

 17

work. That detection step is performed post determination by the DFA analysis that the

file can be partitioned using the CWT. Evaluation of various wavelet basic functions

revealed that the Haar CWT is best suited for file partitioning, as illustrated by its

superiority over the Morlet CWT in partitioning the entropy profile in Figure 5 subplot

(a) into regions of significant changes in entropy level; refer to Figure 5 subplot (b) and

subplot (c), respectively, for illustration purposes.

Figure 5. Entropy Profile Partitioning Illustrating the Haar versus the Morlet CWT

In this chapter we provided a brief description of the types of files included in the

data set used in this study. Next, we assessed the effectiveness of the proposed methods

to file type identification and partitioning, highlighting the superiority of the Haar CWT

in partitioning the entropy profile. In the next chapter, the results of the application of the

proposed techniques to the data sets are analyzed and conclusions drawn.

 18

THIS PAGE INTENTIONALLY LEFT BLANK

 19

IV. RESULTS

The results of the approach investigated are presented in this chapter. The

experiment is applied to the dataset designed for this study and individual and aggregated

statistical measures derived for all files contained within. Given the large number of files

analyzed and the repetitive nature of the results within file types, the tabulated results

presented are limited to a sample of ten files per file type with figures for two files within

each data set type presented for purposes of illustration followed by a tabulated summary

of the aggregated results for the entire data set in Table 9 through Table 11. Additional

entropy profile plots are presented in Appendix B.

A. STATISTICAL TECHNIQUES

1. Plain Text

Typical structural entropy profile plots obtained for plain text files are shown in

Figures 6 and 7, and the statistical analysis results obtained are provided in Table 2.

Figure 6. File: ‘10.txt’ Entropy Structure

bytestream (bytes)

0 2000 4000 6000 8000 10000 12000 14000 16000 18000

E
nt

ro
py

 (b
its

/b
yt

e)

3.4

3.6

3.8

4

4.2

4.4

4.6

4.8

5

5.2

5.4 File: 10.txt

 20

Figure 7. File: ‘1184–0.txt’ Entropy Structure

Table 2. Computed Statistical Measure Values: Plain Text Files

File Name

Average
Entropy

Average

Hamming Weight

Average

Arithmetic mean

‘10.txt’ 4.4076 0.4372 86.2056

‘1184-0.txt’ 4.4775 0.4465 92.1870

‘1260.txt’ 4.3789 0.4472 87.9721

‘1399-0.txt’ 4.3978 0.4475 89.7869

‘1400-0.txt’ 4.4370 0.4451 90.7995

‘1497.txt’ 4.2934 0.4507 89.6131

‘203-0.txt’ 4.4798 0.4459 91.5109

‘2554-0.txt’ 4.4554 0.4494 91.4683

‘28054-0.txt’ 4.4496 0.4466 91.9975

‘3090-0.txt’ 4.3917 0.4461 90.2056

bytestream (bytes)

0 2000 4000 6000 8000 10000 12000

E
nt

ro
py

 (b
its

/b
yt

e)

3.6

3.8

4

4.2

4.4

4.6

4.8

5

5.2

5.4

5.6 File: 1184-0.txt

 21

Results show the different files in the plain text data set analyzed have entropy

profiles with no noticeable variations in behavior and do not visually qualify for CWT

partitioning. This behavior is expected as the file structure consists entirely of plain text,

i.e., it is homogeneous in nature. Further, results show the files have average entropy

levels of approximately 4.4 bits/byte, and low average arithmetic means in the range 86

to 92, with approximately 45% of the files structure comprised of binary ones.

2. Native PE Files

The 32-bit and 64-bit native PE files were selected alphabetically from a 32-bit

and 64-bit windows operating system.

a. 32-bit Native PE Files

The results of the analysis conducted on the 32-bit Native PE files are presented

in Table 3 and Figures 8 and 9.

Figure 8. File: 32-bit ‘Displayswitch.txt’ Entropy Structure

bytestream (bytes)

0 200 400 600 800 1000 1200 1400 1600 1800

E
nt

ro
py

 (b
its

/b
yt

e)

0

1

2

3

4

5

6

7

8

File: DisplaySwitch.txt

 22

Figure 9. File: 32-bit ‘FXSSVC.txt’ Entropy Structure

Results show that the 32-bit native PE files also have similar statistical measure

values irrespective of file size, as can be seen in Table 3.

Table 3. Computed Statistical Measure Values: 32-bit Native PE Files

File Name

Average
Entropy

Average

Hamming Weight

Average

Arithmetic mean

‘DisplaySwitch.txt’ 4.0511 0.4571 147.5016

‘FXSSVC.txt’ 5.6148 0.4732 115.3340

‘aitstatic.txt’ 5.9786 0.4927 118.2434

‘calc.txt’ 6.0695 0.5021 129.7081

‘certutil.txt’ 5.5500 0.4865 119.5562

‘dccw.txt’ 6.0067 0.4660 115.7338

‘dfrgui.txt’ 6.1701 0.5340 138.7358

‘icardagt.txt’ 5.5580 0.4927 125.9011

‘ie4uinit.txt’ 4.9052 0.4650 90.0859

‘lpksetup.txt’ 5.6778 0.5002 128.2776

bytestream (bytes)

0 200 400 600 800 1000 1200 1400 1600 1800

E
nt

ro
py

 (b
its

/b
yt

e)

0

1

2

3

4

5

6

7
File: FXSSVC.txt

 23

From Figures 8 and 9, we see that the 32-bit native PE files have highly structured

(non-stationary) entropy profiles with noticeable variations in the entropy levels, visually

qualifying these files for partitioning using the Haar CWT. The highly structured entropy

profile is expected as the file architecture of the native PE files consists of distinct areas

of code and data with different levels of entropy [8].

Notwithstanding a few exceptions, from the computed statistical measure values

shown in Table 3, results show the 32-bit native PE files have an average entropy level of

approximately 5.5 bits/byte, average Hamming weight values comparative with those of

the plain text files, and average arithmetic means that are clearly distinguishable from the

plain text results. Overall results show the entropy statistical measure values differ from

those obtained for the plain text files sufficiently to facilitate file type discrimination and

identification.

b. 64-bit Native PE Files

Sixty-four-bit native PE files are analyzed to reinforce the findings obtained with

32-bit native PE files. These files were analyzed separately and not as part of a grouping

of all native PE files in order to determine if files generated from different operating

systems produce similar results.

From Figures 10 and 11, we see that the 64-bit native PE files have varying

entropy profiles, also representative of the distinct code and data sections [8]. This non-

stationary sequence behavior exhibited by the entropy profile visually qualifies such files

for partitioning. Further, results show the entropy profile plots are similar to those

obtained with the 32-bit native PE files.

 24

Figure 10. File: 64-bit ‘DisplaySwitch.txt’ Entropy Structure

Figure 11. File: 64-bit ‘FXSSVC.txt’ Entropy Structure

Comparison of the results presented in Table 4 for the sample 64-bit native PE

files and the results for the 32-bit native PE files tabulated in Table 3 further reinforce the

intra-file type similarity in statistical measure values.

bytestream (bytes)

0 200 400 600 800 1000 1200 1400 1600 1800

E
nt

ro
py

 (b
its

/b
yt

e)

0

1

2

3

4

5

6

7

8

File: 64-bit DisplaySwitch.txt

bytestream (bytes)

0 500 1000 1500 2000 2500

E
nt

ro
py

 (b
its

/b
yt

e)

0

1

2

3

4

5

6

7

8
File: 64-bit FXSSVC.txt

 25

Table 4. Computed Statistical Measure Values: 64-bit Native PE Files

File Name

Average
Entropy

Average

Hamming Weight

Average

Arithmetic mean

‘DisplaySwitch.txt’ 4.0609 0.4550 146.8884

‘FXSSVC.txt’ 5.6064 0.4316 108.3282

‘aitstatic.txt’ 5.9240 0.4797 115.8622

‘calc.txt’ 5.9680 0.4666 120.5114

‘certutil.txt’ 5.5675 0.4387 113.3509

‘dccw.txt’ 6.0031 0.4616 114.9336

‘dfrgui.txt’ 6.1270 0.5214 135.6445

‘icardagt.txt’ 5.2734 0.4240 113.4340

‘ie4uinit.txt’ 4.9072 0.4511 87.5482

‘lpksetup.txt’ 5.6148 0.4413 113.6758

3. Packed Native PE Files

The packed native PE files were generated by applying a transformation

algorithm to the native PE files. Although many transformation algorithms are available,

testing was restricted to the application of the freely available UPX transformation

algorithm to native PE files. Packing of the native PE files using the UPX transformation

algorithm resulted in a compressed file with a change in the entropy profile structure and

an increase in the files entropy level due to the randomness introduced by the packer.

a. Packed 32-bit Native PE Files

From Figures 12 and 13, we conclude that packing the 32-bit native PE files

increases the entropy level and changes the entropy structure of the native PE files.

 26

Figure 12. File: ‘DisplaySwitch 32bit Packed.txt’ Entropy Structure

Figure 13. File: ‘FXSSVC 32bit Packed.txt’ Entropy Structure

bytestream (bytes)

0 100 200 300 400 500 600

E
nt

ro
py

 (b
its

/b
yt

e)

4

4.5

5

5.5

6

6.5

7

7.5

8

File: DisplaySwitch 32bit Packed.txt

bytestream (bytes)

0 100 200 300 400 500 600 700 800 900 1000

E
nt

ro
py

 (b
its

/b
yt

e)

4

4.5

5

5.5

6

6.5

7

7.5

8

File: FXSSVC 32bit Packed.txt

 27

The statistical measure values obtained for the packed 32-bit native PE files are

tabulated in Table 5. Results show that compression of the 32-bit native PE files results in

a change in statistical measure values noticeable in the average entropy level when

compared to the uncompressed 32-bit native PE files, the plain text files, and the 64-bit

native PE files. Packing has reduced the structure of the highly structured 32-bit native

PE files, making files less viable for partitioning by increasing the level of randomness in

the file structure.

Table 5. Computed Statistical Measure Values: Packed 32-bit
Native PE Files

File Name

Average
Entropy

Average

Hamming Weight

Average

Arithmetic mean

‘DisplaySwitch 32bit Packed.txt’ 6.3460 0.5451 135.2697

‘FXSSVC 32bit Packed.txt’ 6.8150 0.4618 110.6398

‘aitstatic 32bit Packed.txt’ 6.6113 0.5317 133.2898

‘calc 32bit Packed.txt’ 6.6252 0.5145 129.8092

‘certutil 32bit Packed.txt’ 6.8376 0.4755 114.2390

‘dccw 32bit Packed.txt’ 6.7279 0.5402 137.2465

‘dfrgui 32bit Packed.txt’ 6.7058 0.5355 135.5262

‘icardagt 32bit Packed.txt’ 6.8073 0.4668 112.0572

‘ie4uinit 32bit Packed.txt’ 6.7209 0.4681 110.2883

‘lpksetup 32bit Packed.txt’ 6.7993 0.4916 121.4254

 28

b. Packed 64-bit Native PE Files

From Figures 14 and 15, we see that packing the 64-bit native PE files increases

the entropy level and reduces its structure.

Figure 14. File: ‘DisplaySwitch 64bit Packed.txt’ Entropy Structure

Figure 15. File: ‘FXSSVC 64bit Packed.txt’ Entropy Structure

bytestream (bytes)

0 50 100 150 200 250 300 350 400 450 500

E
nt

ro
py

 (b
its

/b
yt

e)

3.5

4

4.5

5

5.5

6

6.5

7

7.5

8

File: DisplaySwitch 64bit Packed.txt

bytestream (bytes)

0 100 200 300 400 500 600 700 800 900 1000

E
nt

ro
py

 (b
its

/b
yt

e)

3.5

4

4.5

5

5.5

6

6.5

7

7.5

8

File: FXSSVC 64bit Packed.txt

 29

Statistical measure values obtained for the packed 64-bit native PE data set are

shown in Table 6.

Table 6. Computed Statistical Measure Values: Packed 64-bit
Native PE Files

File Name

Average
Entropy

Average

Hamming Weight

Average

Arithmetic mean

‘DisplaySwitch 64bit Packed.txt’ 6.6782 0.5098 126.0513

‘FXSSVC 64bit Packed.txt’ 7.0063 0.4708 115.0405

‘aitstatic 64bit Packed.txt’ 6.8591 0.5235 130.7379

‘calc 64bit Packed.txt’ 6.7795 0.5078 128.4976

‘certutil 64bit Packed.txt’ 7.0172 0.4686 114.8307

‘dccw 64bit Packed.txt’ 6.9114 0.5268 134.8972

‘dfrgui 64bit Packed.txt’ 6.9043 0.5175 130.9301

‘icardagt 64bit Packed.txt’ 6.9292 0.4721 114.3582

‘ie4uinit 64bit Packed.txt’ 6.9486 0.4564 110.4250

‘lpksetup 64bit Packed.txt’ 6.9149 0.4896 121.7160

Results show that the packed 64-bit native PE files have similar statistical

measure values as those obtained for the packed 32-bit native PE files but differ from

those obtained for the plain text and 32-bit native PE file types.

4. Encrypted Native PE Files

Testing was restricted to native PE files encrypted with the 256-bit AES

algorithm.

 30

a. Encrypted 32-bit Native PE Files

Typical structural entropy profile plots obtained after encrypting two 32-bit native

PE files are shown in Figures 16 and 17. We see that encrypting the 32-bit native PE files

increases the entropy level and removes all structure from the entropy profile, rendering

the files immune to partitioning using the Haar CWT. This change in the structure of the

entropy profile is expected as encryption removes any noticeable variations to avoid

possible reverse engineering of files.

Figure 16. File: ‘DisplaySwitch 32bit Encrypted.exe.txt’ Entropy Structure

bytestream (bytes)

0 500 1000 1500 2000 2500

E
nt

ro
py

 (b
its

/b
yt

e)

6.9

7

7.1

7.2

7.3

7.4

7.5

File: DisplaySwitch 32bit Encrypted.exe.txt

 31

Figure 17. File: ‘FXSSVC 32bit Encrypted.exe.txt’ Entropy Structure

Statistical measure values obtained for the encrypted 32-bit native PE files are

shown in Table 7. Results show that encrypting the 32-bit native PE files results in

significant changes in the average entropy statistical measure values when compared to

those of the un-encrypted 32-bit native PE files. The computed statistical measure results

obtained for the different encrypted 32-bit native PE files vary by negligible amounts

indicative of stationarity. Further, these encrypted files have the largest average entropy

values relative to all other data set types considered in the study. This alone is not an

indication of randomness as a file might have a high level of entropy, but the data might

still be highly structured and as such not random [4]. A large entropy value combined

with a successful DFA analysis test for stationarity is an indication of randomness.

bytestream (bytes)

0 500 1000 1500 2000 2500

E
nt

ro
py

 (b
its

/b
yt

e)

6.9

7

7.1

7.2

7.3

7.4

7.5

File: FXSSVC 32bit Encrypted.exe.txt

 32

Table 7. Computed Statistical Measure Values: Encrypted 32-bit
Native PE Files

File Name

Average
Entropy

Average

Hamming Weight

Average

Arithmetic mean

‘DisplaySwitch 32bit Encrypted.exe.txt’ 7.1740 0.5019 127.9343

‘FXSSVC 32bit Encrypted.exe.txt’ 7.1745 0.5022 127.9502

‘aitstatic 32bit Encrypted.exe.txt’ 7.1733 0.5020 127.9740

‘calc 32bit Encrypted.exe.txt’ 7.1715 0.5021 128.0909

‘certutil 32bit Encrypted.exe.txt’ 7.1718 0.5018 127.9664

‘dccw 32bit Encrypted.exe.txt’ 7.1726 0.5018 127.9770

‘dfrgui 32bit Encrypted.exe.txt’ 7.1709 0.5019 128.0067

‘icardagt 32bit Encrypted.exe.txt’ 7.1699 0.5023 128.1335

‘ie4uinit 32bit Encrypted.exe.txt’ 7.1728 0.5019 128.1281

‘lpksetup 32bit Encrypted.exe.txt’ 7.1738 0.5018 127.9404

b. Encrypted 64-bit Native PE Files

Typical structural entropy profile plots obtained after encrypting two 64-bit native

PE files are shown in Figures 18 and 19, with any noticeable changes in the structural

entropy profiles removed, also rendering the encrypted 64-bit native PE files immune to

partitioning. The computed statistical measure values are shown in Table 8.

 33

Figure 18. File: ‘DisplaySwitch 64bit Encrypted.exe.txt’ Entropy Structure

Figure 19. File: ‘FXSSVC 64bit Encrypted.exe.txt’ Entropy Structure

bytestream (bytes)

0 500 1000 1500 2000 2500

E
nt

ro
py

 (b
its

/b
yt

e)

6.95

7

7.05

7.1

7.15

7.2

7.25

7.3

7.35

7.4

7.45 File: DisplaySwitch 64bit Encrypted.exe.txt

bytestream (bytes)

0 500 1000 1500 2000 2500 3000

E
nt

ro
py

 (b
its

/b
yt

e)

6.95

7

7.05

7.1

7.15

7.2

7.25

7.3

7.35

7.4

7.45 File: FXSSVC 64bit Encrypted.exe.txt

 34

Table 8. Computed Statistical Measure Values: Encrypted 64-bit
Native PE Files

File Name

Average
Entropy

Average

Hamming Weight

Average

Arithmetic mean

‘DisplaySwitch 64bit Encrypted.exe.txt’ 7.1739 0.5018 127.9310

‘FXSSVC 64bit Encrypted.exe.txt’ 7.1728 0.5019 127.9472

‘aitstatic 64bit Encrypted.exe.txt’ 7.1728 0.5018 128.0412

‘calc 64bit Encrypted.exe.txt’ 7.1734 0.5018 127.8774

‘certutil 64bit Encrypted.exe.txt’ 7.1715 0.5018 127.8792

‘dccw 64bit Encrypted.exe.txt’ 7.1725 0.5020 128.0127

‘dfrgui 64bit Encrypted.exe.txt’ 7.1734 0.5018 127.9497

‘icardagt 64bit Encrypted.exe.txt’ 7.1722 0.5022 128.0133

‘ie4uinit 64bit Encrypted.exe.txt’ 7.1721 0.5019 127.9789

‘lpksetup 64bit Encrypted.exe.txt’ 7.1709 0.5017 127.9939

Results show that encrypting the 64-bit native PE files results in a significant

change in statistical measure values, most noticeably in the average entropy level when

compared to those obtained for the un-encrypted 64-bit native PE files. The results

obtained for the encrypted 64-bit native PE files are similar to those obtained for the

encrypted 32-bit native PE files; therefore, distinguishing between the two encrypted file

types using unique feature vectors is not possible. In summary the different data set file

types analyzed exhibit intra-file type similarity and inter-file type dissimilarity. These

characteristics are fundamental to generating the unique feature vectors for file type

identification.

 35

B. FILE TYPE IDENTIFICATION

A 95% CI is computed for the aggregated average and highest average statistical

measure values for each file type included in our data set to create the respective feature

vectors for file type identification. A summary of resulting statistical measure values is

shown in Tables 9 to 11, with results discussed next.

Table 9. Computed Entropy Statistical Measure Values.
Adapted from [4].

 36

Table 10. Computed Hamming Weight Statistical Measure Values

 37

Table 11. Computed Arithmetic Mean Statistical Measure Values

1. Analysis of Results

Results show that the statistical measure CI values for the plain text data set is

clearly distinguishable from the results obtained for the other data sets types. The entropy

statistical measure CI values for the 32-bit and 64-bit file formats (demarcated by

cells in Table 9) overlap. There is no clear intra-file type distinction in entropy statistical

 38

measure values; thus, overall entropy statistical measure CI values are based on results

obtained by combining values obtained with both 32-bit and 64-bit file formats. The

entropy statistical measure CI results for the different data set types analyzed, demarcated

by ready cells in Table 9, shows inter-file type distinction in entropy statistical measure CI

range and qualifies the entropy feature as a suitable parameter for file type identification.

 Results show the computed Hamming weight statistical measure values obtained

for the 32-bit and 64-bit file formats also exhibit overlap in CI range, as demarcated by

cells in Table 10; thus, the final Hamming weight statistical measure values are

also based on results obtained by combining results obtained with 32-bit and 64-bit file

formats. The combined CI results have ranges of inter-file type overlap in the native PE

and packed PE file-types highest average Hamming weight range, demarcated by

cells in Table 10. Further, there is overlap in the CI ranges between the packed and

encrypted file-type aggregated average Hamming weight results, demarcated by ready

cells in Table 10; thus, overall, the CI range overlaps make the Hamming weight

statistical measure unsuitable as a discriminator for file type identification.

The computed arithmetic mean CI results for the 32-bit and 64-bit file formats

also exhibit overlap in CI ranges, as demarcated by cells in Table 11. As for

the previous statistical measures, the computed arithmetic mean statistical measure values

are based on combining files with 32-bit and 64-bit file formats. The combined CI results

have ranges of inter-file type overlap in the native PE and packed PE file-types

aggregated average arithmetic mean, demarcated by cells in Table 11; thus,

results show the arithmetic mean also unsuitable as a discriminator for file type

identification.

The final feature for file type identification shown in Table 12 includes only the

entropy as a discriminant for file type identification.

 39

Table 12. Final Entropy Statistical Measure Values. Adapted from [4].

File Type

Average
Entropy

Average Entropy
95% CI

(Low – High)

Highest
Entropy

(Average)

Highest Entropy
95% CI

(Low – High)

Plain Text 4.3842 4.3631 - 4.4053 4.4959 4.4748 - 4.5170

Native Portable Executables
(PE) 5.5240 5.4245 - 5.6236 6.1701 6.0705 - 6.2696

Packed Executables 6.7377 6.6807 - 6.7948 7.0563 6.9992 - 7.1133

Encrypted Executables 7.1725 7.1723 - 7.1727 7.1748 7.1746 - 7.1750

C. FILE PARTITIONING

Files determined by the DFA analysis as having highly structured (non-stationary)

entropy profiles are subjected to partitioning using the Haar CWT.

1. DFA Analysis

The DFA analysis is applied to the files in the data sets to determine the DFA

statistic scaling factor α which is used to identify files with non-stationary entropy

profiles.

a. Encrypted Files

Sample figures for the application of the DFA analysis on the encrypted files are

shown in Figure 20 and 21. For the samples files shown, the computed value α is around

0.5, which is representative of stationary files that show no significant changes in

structural entropy profile and are not viable to partitioning.

 40

Figure 20. Encrypted File: ‘calc.exe.txt’ Entropy and DFA Plot with α= 0.51678

Figure 21. Encrypted File: ‘msdt.exe.txt’ Entropy and DFA Plot with α= 0.5362

b. Plain Text

From earlier figures and analysis, the plain text files used displayed properties of

stationarity. Sample figures for the application of the DFA analysis on plain text files are

shown in Figure 22 and 23. Results show the computed α value is around 0.5, which is

bytestream (bytes)

0 500 1000 1500 2000 2500 3000

E
nt

ro
py

 (b
its

/b
yt

e)

6.8

7

7.2

7.4
 = 0.51678

k(bytes)

0 500 1000 1500 2000 2500

y(
bi

ts
/b

yt
e)

-4

-2

0

2

4

bytestream (bytes)

0 500 1000 1500 2000 2500 3000 3500

E
nt

ro
py

 (b
its

/b
yt

e)

6.8

7

7.2

7.4
 = 0.5362

k(bytes)

0 500 1000 1500 2000 2500 3000 3500

y(
bi

ts
/b

yt
e)

-2

0

2

4

 41

representative of stationary behavior so that further partitioning is not needed. Further,

this further strengthened the DFA criterion that files with α≈0.5 exhibit stationary

entropy profiles.

Figure 22. Plain Text File: ‘1342–0.txt’ Entropy and DFA Plot with α= 0.51327

Figure 23. Plain Text File: ‘203–0.txt’ Entropy and DFA Plot with α= 0.56846

bytestream (bytes)

0 500 1000 1500 2000 2500

E
nt

ro
py

 (b
its

/b
yt

e)

4

4.5

5

5.5
 = 0.51327

k(bytes)

0 500 1000 1500 2000 2500

y(
bi

ts
/b

yt
e)

-20

0

20

40

bytestream (bytes)

0 500 1000 1500 2000 2500 3000 3500 4000

E
nt

ro
py

 (b
its

/b
yt

e)

4

4.5

5

5.5
 = 0.56846

k(bytes)

0 500 1000 1500 2000 2500 3000 3500 4000

y(
bi

ts
/b

yt
e)

-20

0

20

40

 42

c. Native PE and Packed PE Files

The native PE files and packed PE files included in our dataset exhibit entropy

profiles with large variations, with the native PE files having a greater frequency of

occurrence of highly structured files than packed PE files. Evaluations show that files

with α> 1 are more likely to have highly structured entropy profiles, but this does not

preclude files with α˂ 1 from having highly structured entropy, as illustrated in

Figures 24 and 25. Depending on the extent and effectiveness of the packing

(compression) algorithm, we see that the packed PE files can still exhibit changes in

structural entropy, as illustrated in Figure 26. As a quick determination of files with

highly structured entropy, the limit of α > 1 is a fair assumption without the requirement

to visually determine whether files have highly structured entropy profiles or not.

Figure 24. Native PE File: ‘RMActivate_ssp.txt’ Entropy and DFA Plot
withα=0.27785

bytestream (bytes)

0 200 400 600 800 1000 1200 1400 1600 1800

E
nt

ro
py

 (b
its

/b
yt

e)

2

4

6

8
 = 0.27785

k(bytes)

0 200 400 600 800 1000 1200 1400 1600

y(
bi

ts
/b

yt
e)

-200

-100

0

100

 43

Figure 25. Native PE File: ‘dccw.txt’ Entropy and DFA Plot withα=0.94017

Figure 26. Packed PE File: ‘FlashUtil64_24_0_0_194_ActiveX.txt’ Entropy and DFA
Plot withα=1.3995

bytestream (bytes)

0 500 1000 1500 2000 2500 3000

E
nt

ro
py

 (b
its

/b
yt

e)

0

2

4

6

8
 = 0.94017

k(bytes)

0 500 1000 1500 2000 2500 3000

y(
bi

ts
/b

yt
e)

-500

0

500

bytestream (bytes)

0 500 1000 1500 2000

E
nt

ro
py

 (b
its

/b
yt

e)

0

2

4

6

8
 = 1.3995

k(bytes)

0 500 1000 1500 2000

y(
bi

ts
/b

yt
e)

-1000

0

1000

2000

3000

 44

2. CWT Partitioning

The purpose of this section is to demonstrate the effectiveness of the Haar CWT

as a tool for file partitioning. The goal is to provide a convenient and quick method to

partition the file into its distinct code and data sections as well as to possibly identify

suspicious file regions for further analysis. No detailed entropy analysis of the partitioned

structure is undertaken as this requires developing feature vectors for the numerous file

types available which could include compressed files (gif, mpeg, jpeg, pdf, etc.), machine

code (Windows and Linux operating system based), data, regular functions, library

functions, instructions, zipped files, etc. The application is only limited by the availability

of the training data to generate the entropy statistical measure values needed for the file

type identification step. The ability of the Haar CWT in detecting transitional changes in

entropy profile level, making it suitable for file partitioning, is illustrated in Figure 27

through Figure 29. Recall that changes in entropy profile levels are indicative of changes

in the file structure, and the Haar CWT can be used to partition the file into distinct

regions.

Figure 27. Partitioning of File: ‘RMActivate_ssp.txt’

bytestream (bytes)

0 200 400 600 800 1000 1200 1400 1600 1800

E
nt

ro
py

 (b
its

/b
yt

e)

2

4

6

8
 = 0.27785

 45

Figure 28. Partitioning of File: ‘dccw.txt’

Figure 29. Partitioning of File: ‘FlashUtil64_24_0_0_194_ActiveX.txt’

In this chapter the results from the application of the proposed techniques to the

data set developed for the study were presented. Results show that the entropy feature is a

suitable parameter for file type identification, and DFA analysis can be used as a quick

determination of files with highly structured entropy provided that the DFA statistic

bytestream (bytes)

0 500 1000 1500 2000 2500 3000

E
nt

ro
py

 (b
its

/b
yt

e)

0

2

4

6

8
 = 0.94017

bytestream (bytes)

0 500 1000 1500 2000

E
nt

ro
py

 (b
its

/b
yt

e)

0

2

4

6

8
 = 1.3995

 46

scaling factor α > 1. Further, results show that the Haar CWT is effective in partitioning

the file by detecting the transitional changes in entropy profile levels. In the next chapter,

we summarize findings and make recommendations for future work.

 47

V. CONCLUSIONS AND FUTURE WORK

In this thesis, we reviewed the current literature dealing with statistical methods

for file-type identification and partitioning. Three different statistical measures were

investigated in our study: Shannon entropy, Hamming weight and Arithmetic mean. The

proposed methods were applied to a generated data set consisting of files with plain text,

native PE, packed PE, and encrypted PE formats with the aim of generating a feature

vector for file type identification. Experimental results indicate that only the entropy

profile was useful to distinguish between plain text, native PE, packed native PE, and

encrypted native PE file types.

We also examined the use of the detrended fluctuation analysis as a means of

identifying files that have highly structured entropy behavior, which tends to indicate

non-stationarity in the entropy profile. Finally, the CWT was applied to the entropy

profiles identified as non-stationary to partition the file into distinct regions.

Future work could include analyzing a dataset including a larger set of file types

and considering the implementation of an automated approach for file type identification

and partitioning.

 48

THIS PAGE INTENTIONALLY LEFT BLANK

 49

APPENDIX A. MATLAB SCRIPTS

A. FEATURE VECTOR EXTRACTION MAIN SCRIPT

%**
% Calvin Brendan Paul
% Naval Postgraduate School
% July 2017
% Main Script
% Feature_Vector_Extraction.m
% This script calls the File_Stats and DFA function
% Calculates the data set aggregate average and highest average CI range
% for entropy profile, Hamming weight (HW) profile, arithmetic mean profile
% NOTE1: Input file type of .txt extension
% NOTE2: Limit the number of files evaluated as processing is
% computationally intensive
% NOTE3: Adjust WindowLength and overlap as required.
%%%%%%%%%%%%%% PARAMETERS %%%%%%%%%%%%%%
% USER INPUT:
% 1) files: files to be analyzed
% 2) WindowLength: WindowLength over which to calculate file
% statisic measures
% 3) Overlap: Overlap between windows
%**
clear all
close all
files = dir('*.txt'); % loads files to be analysed into file struct
WindowLength=256;overlap=0;% define WindowLength and overlap
% Calls Function: File_Stats
% Variables passed: files,WindowLength,overlap
% Variables returned:
% 1) entr_all: entropy profile for data set analysed
% 2) mean_entropy_each: average entropy profile per file analysed
% 3) mean_mean_each: average mean profile per file analysed
% 4) mean_HammingWeight_each: average HammingWeight profile per file analysed
% 5) count: total number of chunks analysed
[entr_all,mean_entropy_each,mean_mean_each,mean_HammingWeight_each,...count]=F
ile_Stats(files,WindowLength,overlap);
%%
%calculates the entropy CI range for the aggregate average and highest
%average entropy profile
stdE_y95=std(mean_entropy_each);% determines the standard deviation
meanE_y95=mean(mean_entropy_each); %de-select if calculating Confidence
%Interval (CI) range for max entropy

 50

meanE_y95=max(mean_entropy_each); %select if calculating CI
%range for max entropy
CI=0.95; %adjust to required CI
alpha=1-CI; % level of significance
Nb=length(mean_entropy_each);
% calculates the CI range for selected parameter
Z_alpha2=qfuncinv(alpha/2);
myE_lower95=meanE_y95-((Z_alpha2*stdE_y95)/sqrt(Nb));
myE_upper95=meanE_y95+((Z_alpha2*stdE_y95)/sqrt(Nb));
CILimitsE=[myE_lower95;myE_upper95];
%%
%calculates the HW CI range for the aggregate average and highest
%average HW profile
stdHW_y95=std(mean_HammingWeight_each);
meanHW_y95=mean(mean_HammingWeight_each); %de-select if calculating CI
%range for max HW
%meanHW_y95=max(mean_HammingWeight_each); %select if calculating CI
%range for max HW
CI=0.95;% adjust to required CI
alpha=1-CI; % level of significance
Nb=length(mean_HammingWeight_each);
% calculates the CI range for selected parameter
Z_alpha2=qfuncinv(alpha/2);
myHW_lower95=meanHW_y95-((Z_alpha2*stdHW_y95)/sqrt(Nb));
myHW_upper95=meanHW_y95+((Z_alpha2*stdHW_y95)/sqrt(Nb));
CILimitsHW=[myHW_lower95;myHW_upper95];
%%
%calculates the Arithmetic mean(AM) CI range for the aggregate average and
%highest average AM profile
stdAM_y95=std(mean_mean_each);
meanAM_y95=mean(mean_mean_each); %de-select if calculating CI
%range for max AM
%meanAM_y95=max(mean_mean_each); %select if calculating CI
%range for max AM
CI=0.95; % adjust to required CI
alpha=1-CI; %level of significance
Nb=length(mean_mean_each);
% calculates the CI range for selected parameter
Z_alpha2=qfuncinv(alpha/2);
myAM_lowerCI=meanAM_y95-((Z_alpha2*stdAM_y95)/sqrt(Nb));
myAM_upperCI=meanAM_y95+((Z_alpha2*stdAM_y95)/sqrt(Nb));
CILimitsAM=[myAM_lowerCI;myAM_upperCI];
%%%END%%%

 51

B. FILE_STATS FUNCTION

%**
% Calvin Brendan Paul
% Naval Postgraduate School
% July 2017
% File_Stats.m Function
% This script calls the DFA Function
%**
%%%%%%%%%%%%%% PARAMETERS %%%%%%%%%%%%%%
% Variables passed: files,WindowLength,overlap
% Variables returned:
% 1) entr_all: entropy profile for data set analysed
% 2) mean_entropy_each: average entropy profile per file analysed
% 3) mean_mean_each: average mean profile per file analysed
% 4) mean_HammingWeight_each: average HammingWeight profile per
% file analysed
% 5) count: total number of chunks analysed
function [entr_all,mean_entropy_each,mean_mean_each,...
mean_HammingWeight_each,count]= File_Stats(files,WindowLength,overlap)
%%%%%declare variables needed
count=0;
mean_entropy_each=[];mean_mean_each=[];
mean_HammingWeight_each=[];
entr_all=[];mean_all=[];
Hweight_all=[];alpha_all=[];
%%%%%
for i=1:length(files)% for loop conditioned on number of files
b=textread(files(i).name,'%2c'); % read in text files as character
b=hex2dec(char(b)); % convert from hexadecimal to decimal
b=single(reshape(b,1,[])); %reshape file as row vector
b=b(b~=0); % remove zeros
NumOfFrames=floor(length(b)/(WindowLength)); % calc number of file frames
M=b(1:NumOfFrames*WindowLength); % truncate file
M=M';
curPos=1; % set curPos to one
entr=[];meanc=[];Hweight=[];
for j=1:NumOfFrames;% for loop conditioned on number of frames (per file)
 %calculates statistical measures per window
 c = M(curPos:curPos+WindowLength-1);
 binranges=unique(c);[bincounts] = histc(c,binranges);
 p=bincounts/sum(bincounts);
 entropy_1=sum(p.*log2(1./p)); % calculates window entropy
 entr=[entr,entropy_1]; % creates entropy profile
 meanc=[meanc,mean(c)]; % creates mean profile
 Hweightf=nnz(dec2bin(c,8).' == '1')/numel(dec2bin(c,8));

 52

 Hweight=[Hweight,Hweightf]; % creates Hamming weight profile
 curPos=curPos+WindowLength-overlap; % slide window
 count=count+1; % increment chunk count
end
%Average statistic measure per file analysed
mean_entropy_each=[mean_entropy_each,mean(entr)];
mean_mean_each=[mean_mean_each,mean(meanc)];
mean_HammingWeight_each=[mean_HammingWeight_each,mean(Hweight)];

%Column vectors of statistic measure profiles
entr_all(1:numel(entr),i)=entr;
mean_all(1:numel(meanc),i)=meanc;
Hweight_all(1:numel(Hweight),i)=Hweight;

figure
plot(entr);xlabel('bytestream (bytes)');ylabel('Entropy (bits/byte)');
legend(['File: ' , files(i).name],'fontsize',10);
ylim([min(entr)-0.5 max(entr)+1]);xlim([0 length(entr)]);
%legend boxoff
h = findobj('type','figure');
n = length(h); % number figures plotted thus far
DFAWindowLength=256; %windowlength to perform DFA over
%calls the DFA function
% Variables passed:
% 1) entr_all: entropy profile
% 2) n: number of figures plotted so far
% 3) DFAWindowLength: windowlength to perform DFA over
% 4) files: files being analysed
% Variables returned:
% 1) alpha: DFA statistic scaling factor
alpha=DFA(entr_all(:,i),n,DFAWindowLength,files(i,:));
alpha_all=[alpha_all,alpha];% DFA statistic scaling factors for all files
end
end
%%%END%%%

C. DFA FUNCTION

%**
% Calvin Brendan Paul
% Naval Postgraduate School
% July 2017
% DFA.m Function
% This script calls the CWT Function
%**
%%%%%%%%%%%%%% PARAMETERS %%%%%%%%%%%%%%

 53

% Variables passed:
% 1) entr_all: entropy profile
% 2) n: number of figures plotted so far
% 3) DFAWindowLength: windowlength to perform DFA over
% 4) files: files being analysed
% Variables returned:
% 1) alpha: DFA statistic scaling factor
%**
function alpha = DFA(entr_all,n,DFAWindowLength,files)
ss=size(entr_all); % determine number of entropy profiles
test1=entr_all'; % reshape
k=ss(2); % determine for loop variable
f_all1=cell(1,k);y_all=cell(1,k);% variable setup
for i=1:k % for loop conditioned on the number of entropy profiles
u=test1(i,1:end); % read in entropy profile for analysis
u=u(u~=0); % remove zeros
mt=mean(u); % determine mean
yk=cumsum(u-mt); % determine running sum y(k)
NumOfFrames=floor(length(yk)/(DFAWindowLength)); % calc number of frames
x=1:1:length(yk); % needed for polyfit x variable
yk=yk(1:NumOfFrames*DFAWindowLength); % truncated entropy profile
y_all{1,i}=yk; % stores truncated entropy profiles into a cell
x=x(1:NumOfFrames*DFAWindowLength);%truncated to length of entropy profile
curPos=1; % set curpos to 1
count=0; % count of number of frames analysed
vert=[];f=[];
for j=1:NumOfFrames % for loop conditioned on number of frames
 y_w = yk(curPos:curPos+DFAWindowLength-1); %sliding window for y
 x_w = x(curPos:curPos+DFAWindowLength-1); %sliding window for x
 curPos=curPos+DFAWindowLength; % cursor positioned to start of
 %new window
 count=count+1; % increment counter
 vert=[vert,j*DFAWindowLength];
 [p1,s1]=polyfit(x_w,y_w,1); %determine OLS regression line polynomial
 y1=polyval(p1,x_w);% Determine data points for OLS line
 f=[f,y1]; % vector of OLS line points
 figure (i+n);
 subplot(211);plot(u); % plot entropy profile
 %title(['Entropy using probabilities: ' ,files(i).name],'fontsize',10);
 %legend(['File: ' , files(i).name],'fontsize',10);
 %legend boxoff;
 xlabel('i');ylabel('u(i)');
 xlim([0 length(u)]);
 subplot(212); % plot showing DFA analysis
 if count==NumOfFrames;

 54

 yTicks = get(gca, 'ytick');
 yline= linspace(min(yTicks),max(yTicks),length(vert));
 for ii=1:length(vert);
 xline = ones(length(yline))*vert(ii);
 plot(xline,yline,'k:','LineWidth',2) % plot vertical lines
 end
 end
 plot(x,yk,'b');hold on % plot running sum
 plot(x_w,y1,'r-','LineWidth',3); % plot OLS lines
 xlabel('bytestream(bytes)');ylabel('Entropy(bits/byte)');
 xlim([0 length(x)]);
end
f_all1{1,i}=f; %cell with OLS line points for all the entropy profile
end
s=size(f_all1);
alpha=[]; % variable to save DFA statistic scaling factor
for i=1:s(2); %for loop conditioned on number of entropy profiles
f_all=f_all1(1,i); % read in OLS line point for entropy profile (i)
f_all=cell2mat(f_all);
yk=y_all(1,i);% y(k) for specific entropy profile
yk=cell2mat(yk);
RMSE=sqrt(1/length(f_all)*cumsum((f_all-yk).^2)); % determine RMSE
RMSE=log2(RMSE); % log of RMSE
x=1:1:length(f_all);
[p2,s2]=polyfit(log2(x),RMSE,1); %Log fit to determine DFA exponential
gradient=num2str(p2(1)); %alpha converted to a string
subplot(211);title(['\alpha = ',gradient],'Fontsize',10);
alpha=[alpha,p2(1)]; %DFA statistic scaling factor for all entropy profiles
end
h = findobj('type','figure');
n2 = length(h); % number of figures plotted thus far
% Calls the CWT function for file partitioning
CWT(files,n2,entr_all); % partitions the entropy profile
% Note: All files are partitioned however the function could be
% conditioned to partition only files that meet the DFA requirements
% Variables passed:
% 1) entr_all: entropy profile
% 2) n2: number of figures plotted so far
% 3) files: files being analysed
% Variables returned: None
% 1) alpha: DFA statistic scaling factor
end
%%%END%%%

 55

D. CWT FUNCTION

%**
% Calvin Brendan Paul
% Naval Postgraduate School
% July 2017
% CWT.m Function
% OUTPUT: Plots graphs showing CWT segmentation
% INPUT: files, n2, entr_all
%**
%%%%%%%%%%%%%% PARAMETERS %%%%%%%%%%%%%%
% Variables passed:
% 1) files: files to be analysed
% 2) n2: number of figures plotted in DFA
% 3) entr_all: entropy profiles
% Variables returned: None
function CWT(files,n2,entr_all)
w=size(entr_all);
w=w(:,2); % determine number of files to segment
for i=1:w; % for loop conditioned on number of files
entr_series=entr_all(:,i); % read entropy profile to be segmented
entr_series=entr_series(entr_series~=0);
figure (i+n2); % plots sequential figures
subplot(211);plot(entr_series); % plot entropy profile
legend(['File: ' , files(i).name],'fontsize',10);
%legend boxoff;
ylabel('Entropy (bits/byte)');xlabel('bytestream (bytes)');
xlim([0,length(entr_series)]);
subplot(212);cwt(entr_series,1:1:64,'haar','plot'); %partitioned
%entropy profiles
title(' ');ylabel('Scale');xlabel('bytestream (bytes)')
end
end
%%%END%%%

 56

THIS PAGE INTENTIONALLY LEFT BLANK

 57

APPENDIX B. ENTROPY PROFILE PLOTS

A. PLAIN TEXT FILES

Figure 30. File: ‘1260–0.txt’ Entropy Structure

Figure 31. File: ‘1399.txt’ Entropy Structure

bytestream (bytes)

0 500 1000 1500 2000 2500 3000 3500 4000 4500

E
nt

ro
py

 (b
its

/b
yt

e)

3.6

3.8

4

4.2

4.4

4.6

4.8

5

5.2

5.4

5.6 File: 1260.txt

bytestream (bytes)

0 1000 2000 3000 4000 5000 6000 7000 8000

E
nt

ro
py

 (b
its

/b
yt

e)

3.5

4

4.5

5

5.5
File: 1399-0.txt

 58

Figure 32. File: ‘1400–0.txt’ Entropy Structure

Figure 33. File: ‘1497.txt’ Entropy Structure

bytestream (bytes)

0 500 1000 1500 2000 2500 3000 3500 4000 4500

E
nt

ro
py

 (b
its

/b
yt

e)

3.6

3.8

4

4.2

4.4

4.6

4.8

5

5.2

5.4

5.6
File: 1400-0.txt

bytestream (bytes)

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

E
nt

ro
py

 (b
its

/b
yt

e)

3.6

3.8

4

4.2

4.4

4.6

4.8

5

5.2

5.4

5.6

File: 1497.txt

 59

Figure 34. File: ‘203–0.txt’ Entropy Structure

Figure 35. File: ‘2554–0.txt’ Entropy Structure

bytestream (bytes)

0 500 1000 1500 2000 2500 3000 3500 4000 4500

E
nt

ro
py

 (b
its

/b
yt

e)

3.6

3.8

4

4.2

4.4

4.6

4.8

5

5.2

5.4

5.6

File: 203-0.txt

bytestream (bytes)

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

E
nt

ro
py

 (b
its

/b
yt

e)

3.5

4

4.5

5

5.5
File: 2554-0.txt

 60

Figure 36. File: ‘28054-0.txt’ Entropy Structure

Figure 37. File: ‘3090–0.txt’ Entropy Structure

bytestream (bytes)

0 1000 2000 3000 4000 5000 6000 7000 8000

E
nt

ro
py

 (b
its

/b
yt

e)

3

3.5

4

4.5

5

5.5 File: 28054-0.txt

bytestream (bytes)

0 2000 4000 6000 8000 10000 12000

E
nt

ro
py

 (b
its

/b
yt

e)

3.5

4

4.5

5

5.5 File: 3090-0.txt

 61

B. 32-BIT NATIVE PE FILES

Figure 38. File: 32-bit ‘aitstatic.txt’ Entropy Structure

Figure 39. File: 32-bit ‘calc.txt’ Entropy Structure

bytestream (bytes)

0 500 1000 1500 2000 2500 3000 3500 4000 4500

E
nt

ro
py

 (b
its

/b
yt

e)

3

4

5

6

7

8
File: aitstatic.txt

bytestream (bytes)

0 500 1000 1500 2000 2500 3000

E
nt

ro
py

 (b
its

/b
yt

e)

2

3

4

5

6

7

8
File: calc.txt

 62

Figure 40. File: 32-bit ‘certutil.txt’ Entropy Structure

Figure 41. File: 32-bit ‘dccw.txt’ Entropy Structure

bytestream (bytes)

0 500 1000 1500 2000 2500 3000

E
nt

ro
py

 (b
its

/b
yt

e)

2

3

4

5

6

7

8
File: certutil.txt

bytestream (bytes)

0 500 1000 1500 2000 2500 3000 3500

E
nt

ro
py

 (b
its

/b
yt

e)

0

1

2

3

4

5

6

7

8
File: dccw.txt

 63

Figure 42. File: 32-bit ‘dfrgui.txt’ Entropy Structure

Figure 43. File: 32-bit ‘icardagt.txt’ Entropy Structure

bytestream (bytes)

0 200 400 600 800 1000 1200 1400 1600 1800

E
nt

ro
py

 (b
its

/b
yt

e)

0

1

2

3

4

5

6

7

8
File: dfrgui.txt

bytestream (bytes)

0 200 400 600 800 1000 1200 1400 1600 1800 2000

E
nt

ro
py

 (b
its

/b
yt

e)

3

4

5

6

7

8
File: icardagt.txt

 64

Figure 44. File: 32-bit ‘ie4uinit.txt’ Entropy Structure

Figure 45. File: 32-bit ‘lpksetup.txt’ Entropy Structure

bytestream (bytes)

0 500 1000 1500 2000 2500 3000

E
nt

ro
py

 (b
its

/b
yt

e)

3.5

4

4.5

5

5.5

6

6.5

7

7.5

8
File: ie4uinit.txt

bytestream (bytes)

0 200 400 600 800 1000 1200 1400 1600

E
nt

ro
py

 (b
its

/b
yt

e)

3.5

4

4.5

5

5.5

6

6.5

7

7.5

8
File: lpksetup.txt

 65

C. 64-BIT NATIVE PE FILES

Figure 46. File: 64-bit ‘aitstatic.txt’ Entropy Structure

Figure 47. File: 64-bit ‘calc.txt’ Entropy Structure

bytestream (bytes)

0 500 1000 1500 2000 2500 3000 3500 4000 4500

E
nt

ro
py

 (b
its

/b
yt

e)

3

4

5

6

7

8
File: 64-bit aitstatic.txt

bytestream (bytes)

0 500 1000 1500 2000 2500 3000 3500

E
nt

ro
py

 (b
its

/b
yt

e)

2

3

4

5

6

7

8
File: 64-bit calc.txt

 66

Figure 48. File: 64-bit ‘certutil.txt’ Entropy Structure

Figure 49. File: 64-bit ‘dccw.txt’ Entropy Structure

bytestream (bytes)

0 500 1000 1500 2000 2500 3000 3500 4000

E
nt

ro
py

 (b
its

/b
yt

e)

3

4

5

6

7

8
File: 64-bit certutil.txt

bytestream (bytes)

0 500 1000 1500 2000 2500 3000 3500

E
nt

ro
py

 (b
its

/b
yt

e)

0

1

2

3

4

5

6

7

8
File: 64-bit dccw.txt

 67

Figure 50. File: 64-bit ‘dfrgui.txt’ Entropy Structure

Figure 51. File: 64-bit ‘icardagt.txt’ Entropy Structure

bytestream (bytes)

0 200 400 600 800 1000 1200 1400 1600 1800

E
nt

ro
py

 (b
its

/b
yt

e)

1

2

3

4

5

6

7

8
File: 64-bit dfrgui.txt

bytestream (bytes)

0 500 1000 1500 2000 2500 3000 3500 4000 4500

E
nt

ro
py

 (b
its

/b
yt

e)

3

3.5

4

4.5

5

5.5

6

6.5

7

7.5

8
File: 64-bit icardagt.txt

 68

Figure 52. File: 64-bit ‘ie4uinit.txt’ Entropy Structure

Figure 53. File: 64-bit ‘lpksetup.txt’ Entropy Structure

bytestream (bytes)

0 500 1000 1500 2000 2500 3000

E
nt

ro
py

 (b
its

/b
yt

e)

3

3.5

4

4.5

5

5.5

6

6.5

7

7.5

8

File: 64-bit ie4uinit.txt

bytestream (bytes)

0 500 1000 1500 2000 2500

E
nt

ro
py

 (b
its

/b
yt

e)

3

3.5

4

4.5

5

5.5

6

6.5

7

7.5

8 File: 64-bit lpksetup.txt

 69

D. PACKED 32-BIT NATIVE PE FILES

Figure 54. File: ‘aitstatic 32bit Packed.txt’ Entropy Structure

Figure 55. File: ‘calc 32bit Packed.txt’ Entropy Structure

bytestream (bytes)

0 500 1000 1500 2000 2500 3000 3500

E
nt

ro
py

 (b
its

/b
yt

e)

4.5

5

5.5

6

6.5

7

7.5

8

File: aitstatic 32bit Packed.txt

bytestream (bytes)

0 500 1000 1500

E
nt

ro
py

 (b
its

/b
yt

e)

2

3

4

5

6

7

8

File: calc 32bit Packed.txt

 70

Figure 56. File: ‘certutil 32bit Packed.txt’ Entropy Structure

Figure 57. File: ‘dccw 32bit Packed.txt’ Entropy Structure

bytestream (bytes)

0 200 400 600 800 1000 1200 1400 1600 1800 2000

E
nt

ro
py

 (b
its

/b
yt

e)

5

5.5

6

6.5

7

7.5

8

File: certutil 32bit Packed.txt

bytestream (bytes)

0 500 1000 1500 2000 2500

E
nt

ro
py

 (b
its

/b
yt

e)

3.5

4

4.5

5

5.5

6

6.5

7

7.5

8

File: dccw 32bit Packed.txt

 71

Figure 58. File: ‘dfrgui 32bit Packed.txt’ Entropy Structure

Figure 59. File: ‘icardagt 32bit Packed.txt’ Entropy Structure

bytestream (bytes)

0 200 400 600 800 1000 1200 1400 1600

E
nt

ro
py

 (b
its

/b
yt

e)

4

4.5

5

5.5

6

6.5

7

7.5

8

File: dfrgui 32bit Packed.txt

bytestream (bytes)

0 200 400 600 800 1000 1200

E
nt

ro
py

 (b
its

/b
yt

e)

4.5

5

5.5

6

6.5

7

7.5

8

File: icardagt 32bit Packed.txt

 72

Figure 60. File: ‘ie4uinit 32bit Packed.txt’ Entropy Structure

Figure 61. File: ‘lpksetup 32bit Packed.txt’ Entropy Structure

bytestream (bytes)

0 100 200 300 400 500 600 700

E
nt

ro
py

 (b
its

/b
yt

e)

4

4.5

5

5.5

6

6.5

7

7.5

8

File: ie4uinit 32bit Packed.txt

bytestream (bytes)

0 100 200 300 400 500 600 700 800 900 1000

E
nt

ro
py

 (b
its

/b
yt

e)

4

4.5

5

5.5

6

6.5

7

7.5

8

File: lpksetup 32bit Packed.txt

 73

E. PACKED 64-BIT NATIVE PE FILES

Figure 62. File: ‘aitstatic 64bit Packed.txt’ Entropy Structure

Figure 63. File: ‘calc 64bit Packed.txt’ Entropy Structure

bytestream (bytes)

0 500 1000 1500 2000 2500 3000 3500

E
nt

ro
py

 (b
its

/b
yt

e)

3.5

4

4.5

5

5.5

6

6.5

7

7.5

8

File: aitstatic 64bit Packed.txt

bytestream (bytes)

0 500 1000 1500

E
nt

ro
py

 (b
its

/b
yt

e)

2.5

3

3.5

4

4.5

5

5.5

6

6.5

7

7.5

8

File: calc 64bit Packed.txt

 74

Figure 64. File: ‘certutil 64bit Packed.txt’ Entropy Structure

Figure 65. File: ‘dccw 64bit Packed.txt’ Entropy Structure

bytestream (bytes)

0 200 400 600 800 1000 1200 1400 1600 1800

E
nt

ro
py

 (b
its

/b
yt

e)

4.5

5

5.5

6

6.5

7

7.5

8

File: certutil 64bit Packed.txt

bytestream (bytes)

0 500 1000 1500 2000 2500

E
nt

ro
py

 (b
its

/b
yt

e)

4

4.5

5

5.5

6

6.5

7

7.5

8

File: dccw 64bit Packed.txt

 75

Figure 66. File: ‘dfrgui 64bit Packed.txt’ Entropy Structure

Figure 67. File: ‘icardagt 64bit Packed.txt’ Entropy Structure

bytestream (bytes)

0 500 1000 1500

E
nt

ro
py

 (b
its

/b
yt

e)

4.5

5

5.5

6

6.5

7

7.5

8

File: dfrgui 64bit Packed.txt

bytestream (bytes)

0 200 400 600 800 1000 1200 1400 1600 1800

E
nt

ro
py

 (b
its

/b
yt

e)

5

5.5

6

6.5

7

7.5

8

File: icardagt 64bit Packed.txt

 76

Figure 68. File: ‘ie4uinit 64bit Packed.txt’ Entropy Structure

Figure 69. File: ‘lpksetup 64bit Packed.txt’ Entropy Structure

bytestream (bytes)

0 100 200 300 400 500 600

E
nt

ro
py

 (b
its

/b
yt

e)

4

4.5

5

5.5

6

6.5

7

7.5

8

File: ie4uinit 64bit Packed.txt

bytestream (bytes)

0 200 400 600 800 1000 1200

E
nt

ro
py

 (b
its

/b
yt

e)

3.5

4

4.5

5

5.5

6

6.5

7

7.5

8

File: lpksetup 64bit Packed.txt

 77

F. ENCRYPTED 32-BIT NATIVE PE FILES

Figure 70. File: ‘aitstatic 32bit Encrypted.exe.txt’ Entropy Structure

Figure 71. File: ‘calc 32bit Encrypted.exe.txt’ Entropy Structure

bytestream (bytes)

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

E
nt

ro
py

 (b
its

/b
yt

e)

6.9

7

7.1

7.2

7.3

7.4

7.5

File: aitstatic 32bit Encrypted.exe.txt

bytestream (bytes)

0 500 1000 1500 2000 2500 3000 3500

E
nt

ro
py

 (b
its

/b
yt

e)

6.9

7

7.1

7.2

7.3

7.4

7.5

File: calc 32bit Encrypted.exe.txt

 78

Figure 72. File: ‘certutil 32bit Encrypted.exe.txt’ Entropy Structure

Figure 73. File: ‘dccw 32bit Encrypted.exe.txt’ Entropy Structure

bytestream (bytes)

0 500 1000 1500 2000 2500 3000 3500 4000

E
nt

ro
py

 (b
its

/b
yt

e)

6.9

7

7.1

7.2

7.3

7.4

7.5

File: certutil 32bit Encrypted.exe.txt

bytestream (bytes)

0 500 1000 1500 2000 2500 3000 3500

E
nt

ro
py

 (b
its

/b
yt

e)

6.9

7

7.1

7.2

7.3

7.4

7.5

File: dccw 32bit Encrypted.exe.txt

 79

Figure 74. File: ‘dfrgui 32bit Encrypted.exe.txt’ Entropy Structure

Figure 75. File: ‘icardagt 32bit Encrypted.exe.txt’ Entropy Structure

bytestream (bytes)

0 500 1000 1500 2000 2500

E
nt

ro
py

 (b
its

/b
yt

e)

6.9

7

7.1

7.2

7.3

7.4

7.5

File: dfrgui 32bit Encrypted.exe.txt

bytestream (bytes)

0 500 1000 1500 2000 2500

E
nt

ro
py

 (b
its

/b
yt

e)

6.9

7

7.1

7.2

7.3

7.4

7.5

File: icardagt 32bit Encrypted.exe.txt

 80

Figure 76. File: ‘ie4uinit 32bit Encrypted.exe.txt’ Entropy Structure

Figure 77. File: ‘lpksetup 32bit Encrypted.exe.txt’ Entropy Structure

bytestream (bytes)

0 500 1000 1500 2000 2500 3000

E
nt

ro
py

 (b
its

/b
yt

e)

6.95

7

7.05

7.1

7.15

7.2

7.25

7.3

7.35

7.4

7.45 File: ie4uinit 32bit Encrypted.exe.txt

bytestream (bytes)

0 200 400 600 800 1000 1200 1400 1600 1800 2000

E
nt

ro
py

 (b
its

/b
yt

e)

6.9

7

7.1

7.2

7.3

7.4

7.5

File: lpksetup 32bit Encrypted.exe.txt

 81

G. ENCRYPTED 64-BIT NATIVE PE FILES

Figure 78. File: ‘aitstatic 64bit Encrypted.exe.txt’ Entropy Structure

Figure 79. File: ‘calc 64bit Encrypted.exe.txt’ Entropy Structure

bytestream (bytes)

0 500 1000 1500 2000 2500 3000 3500 4000

E
nt

ro
py

 (b
its

/b
yt

e)

6.9

7

7.1

7.2

7.3

7.4

7.5

File: calc 64bit Encrypted.exe.txt

 82

Figure 80. File: ‘certutil 64bit Encrypted.exe.txt’ Entropy Structure

Figure 81. File: ‘dccw 64bit Encrypted.exe.txt’ Entropy Structure

bytestream (bytes)

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

E
nt

ro
py

 (b
its

/b
yt

e)

6.9

7

7.1

7.2

7.3

7.4

7.5

File: certutil 64bit Encrypted.exe.txt

bytestream (bytes)

0 500 1000 1500 2000 2500 3000 3500

E
nt

ro
py

 (b
its

/b
yt

e)

6.9

7

7.1

7.2

7.3

7.4

7.5

File: dccw 64bit Encrypted.exe.txt

 83

Figure 82. File: ‘dfrgui 64bit Encrypted.exe.txt’ Entropy Structure

Figure 83. File: ‘icardagt 64bit Encrypted.exe.txt’ Entropy Structure

bytestream (bytes)

0 500 1000 1500 2000 2500

E
nt

ro
py

 (b
its

/b
yt

e)

6.95

7

7.05

7.1

7.15

7.2

7.25

7.3

7.35

7.4

7.45 File: dfrgui 64bit Encrypted.exe.txt

bytestream (bytes)

0 1000 2000 3000 4000 5000 6000

E
nt

ro
py

 (b
its

/b
yt

e)

6.9

7

7.1

7.2

7.3

7.4

7.5

File: icardagt 64bit Encrypted.exe.txt

 84

Figure 84. File: ‘ie4uinit 64bit Encrypted.exe.txt’ Entropy Structure

Figure 85. File: ‘lpksetup 64bit Encrypted.exe.txt’ Entropy Structure

bytestream (bytes)

0 500 1000 1500 2000 2500 3000

E
nt

ro
py

 (b
its

/b
yt

e)

6.95

7

7.05

7.1

7.15

7.2

7.25

7.3

7.35

7.4

7.45 File: ie4uinit 64bit Encrypted.exe.txt

bytestream (bytes)

0 500 1000 1500 2000 2500 3000

E
nt

ro
py

 (b
its

/b
yt

e)

6.9

7

7.1

7.2

7.3

7.4

7.5

File: lpksetup 64bit Encrypted.exe.txt

 85

LIST OF REFERENCES

[1] L. Nataraj, “A signal processing approach to malware analysis,” Ph.D.
dissertation, Dept. Elect. and Comp. Eng., Univ. California, Santa Barbara, CA,
2015.

[2] B. Donabelle, R. M. Low, and M. Stamp, “Structural entropy and metamorphic
malware,” Journal of Computer Virology and Hacking Techniques, vol. 9, no. 4.
pp. 179–192, 2013.

[3] G. Conti, S. Bratus, A. Shubina, B. Sangster, R. Ragsdale, M. Supan, A.
Lichtenberg, and R. Perez-Alemany, “Automated mapping of large binary objects
using primitive fragment type classification,” Digital Investigation, vol. 7, no.
Supplement 1, pp. S3-S12, 2010. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S1742287610000290

[4] R. Lyda and J. Hamrock, “Using entropy analysis to find encrypted and packed
malware,” IEEE Security and Privacy, vol. 5, no. 2, pp. 40–45, Apr. 2007.

[5] B. Jochheim, “On the automatic detection of embedded malicious binary code
using signal processing techniques,” Project report, Dept. Info. and Elect. Eng.,
Univ. Hamburg University of Applied Science, 2012.

[6] S. Fitzgerald, G. Mathews, C. Morris, and O. Zhulyn, “Using nlp techniques for
file fragment classification,” Digital Investigation, vol. 9, no. Supplement 1, pp.
S44–S49, 2012.

[7] G. Jeong, E. Choo, J. Lee, M. Bat-Erdene, and H. Lee, “Generic unpacking using
entropy analysis,” IEEE Xplore Proceedings of 5th International Conference on
Malicious and Unwanted Software, pp. 98–105, 2010.

[8] I. Sorokin, “Comparing files using structural entropy,” Journal in Computer
Virology, vol. 7, no. 4, pp. 259–265, 2011.

[9] M. Wojnowicz, G. Chisholm, and M. Wolff, “Suspiciously structured entropy:
Wavelet decomposition of software entropy reveals symptoms of malware in the
energy spectrum,” Proceedings of the Twenty-Ninth International Florida
Artificial Intelligence Research Society Conference, pp. 288–293, 2016, Irvine,
CA: Cylance, Inc.

[10] M. Wojnowicz, G. Chisholm, and M. Wolff, “Structural entropy analysis for

automated malware classification,” RSA Conference 2015. [Online] Available:
https://www.rsaconference.com/writable/presentations/file_upload/hta-t09-
structural_entropy_analysis_for_automated_malware_classification_final_v2.pdf

 86

[11] Z. Chen, P.C. Ivanov, K. Hun, and H.E. Stanley, “Effect of nonstationarities on
detrended fluctuation analysis,” Physical Review E, vol. 65(4), no. 041107, 2002.
[Online]. Available: https://journals.aps.org/pre/abstract/10.1103/PhysRevE.65
.041107

[12] Wavelet Toolbox For Use with Matlab, User Guide, Apple Hill, MA: The
MathWorks, Inc.

[13] S. Naval, V. Laxmi, M. S. Gaur, and Vinod P, “An efficient block-discriminant
classification of packed Malware,” Sadhana, vol. 40, no. 5, pp 1435–1456, doi:
10.1007/s12046-015-0399-x. [Online]. Available: https://link.springer.com/
article/10.1007/s12046-015-0399-x

[14] P. Thulasiraman, Course Notes, “Principles of reverse engineering: reverse
engineering malware,” , EC3740, Dept. of Elec. and Comp. Eng., Naval
Postgraduate School, Monterey, CA, 2017.

[15] W. Stallings, Cryptography and Network Security, 7th ed. Hoboken, NJ: Pearson
Education, Inc., 2017.

[16] M. Fargues, Course Notes, “I-Random concepts: Review & applications to signal
& information processing,” EC3410, Dept. of Elec. and Comp. Eng., Naval
Postgraduate School, Monterey, CA, 2016.

 87

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
 Ft. Belvoir, Virginia

2. Dudley Knox Library
 Naval Postgraduate School
 Monterey, California

	NAVAL
	POSTGRADUATE
	SCHOOL
	I. INTRODUCTION AND LITERATURE review
	A. INTRODUCTION
	B. LITERATURE REVIEW

	II. METHODOLOGY AND PROPOSED TECHNIQUES
	A. METHODOLOGY
	B. STATISTICAL TECHNIQUES
	1. Shannon Entropy
	2. Hamming Weight
	3. Arithmetic Mean

	C. DETRENDED FLUCTUATION ANALYSIS
	1. Step 1
	2. Step 2
	3. Step 3
	4. Step 4

	D. WAVELET ANALYSIS

	III. FILE ANALYSIS AND IDENTIFICATION
	A. Data Set
	B. Data Preprocessing
	C. File TYPE IDENTIFICATION
	D. FILE PARTITiONING

	IV. Results
	A. Statistical Techniques
	1. Plain Text
	2. Native PE Files
	a. 32-bit Native PE Files
	b. 64-bit Native PE Files

	3. Packed Native PE Files
	a. Packed 32-bit Native PE Files
	b. Packed 64-bit Native PE Files

	4. Encrypted Native PE Files
	a. Encrypted 32-bit Native PE Files
	b. Encrypted 64-bit Native PE Files

	B. FILE TYPE identification
	1. Analysis of Results

	C. FILE PARTITIONING
	1. DFA Analysis
	a. Encrypted Files
	b. Plain Text
	c. Native PE and Packed PE Files

	2. CWT Partitioning

	V. CONCLUSIONS AND FUTURE WORK
	APPENDIX A. MATLAB SCRIPTS
	A. Feature Vector Extraction main script
	B. File_Stats function
	C. DFA Function
	D. CWT function

	APPENDIX B. ENTROPY PROFILE PLOTS
	A. Plain text files
	B. 32-bit NATIVE PE files
	C. 64-bit NATIVE PE files
	D. PACKED 32-bit NATIVE PE files
	E. PACKED 64-bit NATIVE PE files
	F. ENCRYPTED 32-bit NATIVE PE files
	G. ENCRYPTED 64-bit NATIVE PE files

	list of REFERENCES
	INITIAL DISTRIBUTION LIST

