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ABSTRACT 

The need for file identification and partitioning in the digital forensic, reverse 

engineering, and security analyst fields cannot be overstated. In this research, we 

investigate the use of the Shannon entropy profile derived from the file expressed in byte 

format to characterize specific file types and identify file segments based on entropy-

level changes. The process consists of two stages. In the first stage, a binary 

representation of the file is partitioned into chunks of fixed-length data bytes and 

processed to extract the entropy profile. In the second stage, the detrended fluctuation 

analysis (DFA) method is applied to determine the level of structure in the entropy 

profile. The Haar continuous wavelet transform (CWT) is then used to partition the files 

identified as highly structured into areas of distinct changes in entropy level. 

Experimental results show that the proposed approach is effective in identifying file types 

and partitioning in segments of different entropy levels.  
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I. INTRODUCTION AND LITERATURE REVIEW 

In this chapter we provide the motivations behind the recent developments in the 

large body of research conducted in file type identification and partitioning, summarize 

current literature in this field, and outline the remaining structure of the thesis.  

A. INTRODUCTION 

The recent significant advancements in man-machine interaction have had the 

undesired consequences of increased exposure across a multitude of disciplines to cyber-

attacks from maliciously obfuscated files. The number of malicious attacks has risen in 

recent years due to hackers circumventing current defense mechanism by employing code 

obfuscation techniques [1] such as encryption, polymorphism and metamorphism, 

rendering the obfuscated code immune to standard signature detection [2]. Polymorphic 

and metamorphic malware are capable of changing their internal structure without 

altering their malicious behavior. Although dedicated tools exist to study frequently 

occurring file types and system specific file formats, the study of suspicious binary 

objects is limited to the most elementary tools [3]. From the security analyst defending 

against attacks by malicious malware to the digital forensic analyst tasked with carving 

segmented files, the need for file type identification and partitioning is of paramount 

importance. 

 In this thesis we explore the application of statistical measures as a tool to aid in 

the identification of file types and file partitioning. This approach has applications in 

cybersecurity as it allows for a quick determination of compressed and encrypted file 

types which may possibly be malicious. Furthermore, this technique can also be of 

interest in forensic analysis of corrupted files, also called file carving.  

The rest of the thesis is organized as follows. In the rest of Chapter I, current 

literature dealing with statistical measures used for file type identification and 

partitioning is reviewed. The proposed methodology and the techniques adopted are 

concisely defined in Chapter II. The experiment setup for file analysis and identification 

detailing how the data set is generated, feature vector extracted, and file segmented is 
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covered in Chapter III. Results and analysis are reported in Chapter IV, followed with 

concluding remarks and recommendations for future work in Chapter V. 

B. LITERATURE REVIEW 

A significant body of work to classify file types using statistical measures 

including entropy has been reported in the literature. Using entropy as a measure of 

randomness and unpredictability in a series of data values or event sequence is a standard 

technique and appears in a number of related works [4]. Static analysis is used to 

determine those file characteristics that are necessary for their classification without 

having to execute the file, which could possibly be malicious malware within a protected 

environment. 

Orthogonal methods to analyze malware by using signal and image processing 

techniques were explored by [1] where malware samples are represented as images or 

signals. Image and signal based features were then extracted to characterize the malware. 

The efficacy of the methods on malware classification, detection, and retrieval was 

demonstrated and extended to the data forensics and data type classification field. 

The common trend in the case studies below is the application of file entropy 

profile as a measure for file type identification.    

Donabelle et al. [2] applied previous work by Sorokin [8] on structural entropy to 

the metamorphic detection problem of classifying whether a given file belongs to a 

specific metamorphic family. The results obtained indicated that similarity measures 

based on structural entropy can be implemented as a tool to classify potentially 

metamorphic malware. 

Conti et al. [3] used 1,000 segments, each of byte length equal to 1,024, from 14 

commonly encountered primitive files to develop statistical signatures for properly 

classifying segments into various types. Four statistical measurements, namely Shannon 

entropy, Hamming weight, Chi-squared value obtained from the Chi-Square Goodness of 

Fit Test, and the mean byte value, were selected as components of a feature vector to 

characterize each segment. The actual classification stage was implemented with a k-
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nearest neighbor (k-NN) algorithm, and classification results were high for segments of 

known primitive types but did not generalize well.  

Bintropy, a binary entropy analysis tool to discriminate between native 

executables and those with packed or encrypted formats, was developed and used in [4]. 

This approach relied on the fact that encrypted and compressed files tend to have high 

entropy values. Bintropy processes files by iterating through fixed-length binary data 

blocks of 256 bytes and generating the entropy profile. Next, the average and highest 

entropy values are derived. Finally, confidence intervals of these quantities are computed 

and used as basis for file type identification.  

Jochheim [5] used signal processing techniques to automatically detect malicious 

binary code possibly embedded within regular data. The Shannon entropy profile was 

also used to extract changes in the file structure. The Short-Time Fourier 

transform (STFT) was applied to the entropy profile to generate a set of power related 

parameters used as inputs to an artificial neural network (ANN) classifier. Results show 

that the proposed method is able to detect a variety of shellcode attacks with low system 

overload notwithstanding the following limitations; the test-data file size is limited to 

1MB per file-type and the classifier results in a number of false detections, which limits 

its usage. 

Fitzgerald et al. [6] explored the application of supervised machine learning 

techniques commonly applied in natural language processing to file segment 

classification. A large data set of file segments from 24 different file types was used for 

the analysis. A feature vector consisting of unigram and bigram counts of bytes in each 

segment and other statistical parameters was used to represent each file segment, and a 

support vector machine used as classifier.  Results showed a wide variation in 

classification rates for the file types considered in the study, ranging from 99.7% (for 

CSV types) to 2.3% (for pptx types), with better rates obtained for segments with low 

entropy levels, resulting in an overall average rate equal to 48%. The authors claimed 

their results were better than those obtained with studies based on a similar wide range of 

file types.  
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Jeong et al. [7] proposed a generic unpacking mechanism using entropy analysis 

to find the original entry point (OEP) of packed executables. They experimented with 110 

packed executables and demonstrated that the proposed mechanism can locate the OEPs 

of 72% of the packed executables and can also be applied to packed malware; however, 

the approach required unpacking of the packed executable in order to determine the OEP. 

In the approach adopted by [8], the entropy profile of the file structure was first 

computed using a sliding window approach; thereafter, file segmentation was carried out 

by applying the Haar discrete wavelet transform (DWT) to the computed file entropy 

profile.  The segments of the entropy profile were then compared to segments with 

known malware file types using the Levenshtein distance method based on the 

assumption that they had expected standard characteristics.  The method achieved a 

degree of similarity between two sequences of 87.56% and has a number of malware 

detection applications; however, the algorithm resulted in false alarms. As a result, the 

solution was only useful as a preliminary trigger to run other tests. 

The Haar DWT decomposition of structured entropy was used by [9], a 

commercial cybersecurity company, to reveal potential malware using the Haar DWT 

computed from the file entropy profile.  In their study, about 40,000 portable executable 

(PE) files were studied with 50% containing malware. A single scalar feature denoted as 

the Suspiciously Structured Entropic Change Score (SSECS) was defined to quantify 

files as malicious or not, and malware prediction accuracy results were shown to be equal 

to 68.7%.  

In this section, we described recent work conducted in the computer file segment 

type identification field and illustrated the use of entropy as a potential feature in several 

of these approaches. The approach used in our work is presented in Chapter II.  
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II. METHODOLOGY AND PROPOSED TECHNIQUES 

The method adopted and techniques used for collecting and analyzing the data 

needed for file type identification and partitioning are described in this chapter.  

A. METHODOLOGY 

This study has two main goals; first, to identify the specific file types for the files 

investigated and, second, to partition files identified as highly structured (i.e., with highly 

variable entropy profiles) into segments based on entropy changes. Three statistical 

parameters are considered in this study: Shannon entropy, Hamming weight, and 

Arithmetic mean. Files are split into chunks and statistical parameters computed in each 

chunks resulting in entropy profiles, Hamming weight profiles, and arithmetic mean 

profiles, respectively. This study is restricted to the four following file types: plain text, 

native Portable Executable (PE), packed native PE, and encrypted native PE files. A 

detailed description of the process shown in Figure 1 is provided below with the 

techniques adopted provided thereafter.  

First, each file is converted into a hexadecimal representation compatible with the 

Matlab platform, as analysis takes place in the Matlab environment using scripts included 

in Appendix A. Second, each file is converted into a binary vector and locally analyzed 

using a sliding window with a predefined window length equal to 256 and no overlap to 

segment the file. Third, the statistical measures considered in the study are applied to 

each file segment to extract statistical parameters, and a segment type decision is made 

from these values. In addition, a decision on the overall file type can be made by 

comparing the average entropy and the highest entropy parameters to the values derived 

from the file type dataset.  

Our simulations showed that native PE files and packed files included in our 

dataset exhibited distinct transition levels in their entropy profiles, while plain text and 

encrypted files did not.  

Fourth, the Detrended Fluctuation Analysis (DFA) is selected as a tool to 

automate the decision regarding the presence of distinct transitions in the entropy profile. 



 

 6 

Finally, for files identified as highly structured, the Haar CWT is applied to identify the 

specific location of the entropy profile transitions.  

 

Figure 1.  Process Adopted for File Type Identification and Partitioning 

In the rest of the chapter, we provide an overview of the techniques adopted for 

file type identification and partitioning operations.  

B. STATISTICAL TECHNIQUES  

Three particular statistical measures were adopted in the algorithm: Shannon 

entropy, Hamming weight, and Arithmetic mean. 

Although these measures are in line with current research work [3], our 

investigations showed that only the entropy is suitable for identification for the dataset 

selected in our study;  however, we present all for completeness. 
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1. Shannon Entropy 

In information theory, Shannon entropy is an established technique for measuring 

the amount of randomness or disorder, i.e., information contained in a given segment. It 

yields the amount of “information” and “randomness” in the given data in terms of 

number of bits per sample. Its root is in combinatorics and is related to the total number 

of realizations of data sequences associated to the given statistics. 

The Shannon entropy ( ( )H X ) is computed as [5]  

 2
1

( ) ( ) log ( )
n

i i
i

H X p X p X
=

= −∑  , (1) 

where X  is a vector of data where each symbol belongs to a finite alphabet composed of 

“ n ” symbols. In the case of byte-level entropy analysis, as applied in this thesis, each 

entry of X  belongs to an alphabet composed of 256 symbols, corresponding to an 8- 

bits/symbol encoding.  The alphabet size n  is of the form 2bn = where b  is the number 

of bits (b =8 bits in a byte). The probability mass function ( )ip X is the probability of 

occurrence of byte value i  in the segment. Byte-level entropy analysis yields entropy 

values ranging from 0 to 8
2log 2 8= .  

As an example, using an alphabet of only two characters, {0;1}, results in an 

entropy range between 0 and 2log 2 1= . If X = [0, 1, 1, 1], then 1( ) (0) 0.25p X p= =  and 

2( ) (1) 0.75p X p= =  which yields  

2 2( ) [(0.25 log 0.25) (0.75 log 0.75)] 0.8113.H X = − × + × =  

Entropy analysis offers a convenient and quick method for analyzing a file at the binary 

level as a possible preprocessing step to identify suspicious file regions. As we see later 

in the work, files containing binary code, compressed data or text can be distinguished 

fairly reliably by the entropy measure. As a consequence, file regions identified as 

suspicious can be disassembled and further analyzed with reverse-engineering 

disassembling tools such as OllyDbg and IDAPro [4]. 
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2. Hamming Weight 

To determine the Hamming weight, each byte of the given segment is converted 

into an 8-bit binary representation, i.e., a binary alphabet of zeros and ones. The 

Hamming weight is the ratio of the number of ones to the total number of bits in the 

given segment. As an example, the Hamming weight for an 8-bit binary number X = [10 

11 00 10] is computed as 

4( ) 0.5.
8

Number of onesHW X
Total number of bits

= = =
 

3. Arithmetic Mean 

The arithmetic mean is defined as being equal to the sum of the byte values in the 

given segment divided by the segment size  

 
1

1 n

i
i

X
n

µ
=

= ∑  , (2) 

where iX  and n  are the byte values (in decimal format) and the segment size, 

respectively. As an example, the arithmetic mean for X  = [100, 120, 256, 200] is 

computed as 

100 120 256 200 676 169.
4 4

µ + + +
= = =  

 

C. DETRENDED FLUCTUATION ANALYSIS  

The DFA algorithm may be applied to determine the level of structure in a time 

series.  The algorithm, introduced in [10], determines the potential level of stationarity of 

a time series by analyzing the integral (or running sum) of the detrended sequence.  

Following the analysis in [10], we can use a specific DFA statistic scaling factor 

(α) to assess the stationarity of the data file. In particular, the larger the value of α the 

more structured (non-stationary) the entropy profile tends to be [10]. Time series with a 

value of α exceeding a given threshold can be further partitioned into regions of different 

entropy values. The larger the value of α the more viable the file is to partitioning using 
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the CWT. The DFA process is described in the following steps [11] with the aid of 

Figure 2.  

  

Figure 2.  Depiction of Detrended Fluctuation Analysis. Adapted from [11]. 

1. Step 1 

The entropy profile ( )u i , illustrated in Figure 2 subplot (a), where i =1,…, N, and 

N is the length of the entropy profile in bytes, is numerically integrated by computing the 

running sum of the detrended times series as  

 
1

( ) ( )
k

i
y k u i u

=

=  −  ∑  , (3) 

where u  is the mean of the entropy profile [11]. 

2. Step 2 

The resulting sequence y illustrated in Figure 2 subplot (b) is divided into chunks 

of window length equal to n. A window length of 256 is used in this thesis, illustrated by 

i
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the dotted vertical lines in Figure 2 subplot (b). Next, in each window we fit y with an 

ordinary least-square regression line yn that is representative of the trend in the particular 

window, illustrated by the solid red lines in Figure 2 subplot (b). 

3. Step 3 

The sequence y  is detrended by subtracting the local trend ny   in each window, 

and the root-mean square error fluctuation within each window is calculated using the 

standard formula, 

 [ ]2

1

1( ) ( ) ( ) .
N

n
k

RMSE n y k y k
N =

 = − 
 
∑   (4) 

4. Step 4 

The DFA statistic scaling factor (referred to asα) is calculated by fitting a linear 

regression line to the sequence  [ ]log ( )RMSE n  as a function of log n. The slope of the 

fitted linear regression line is the DFA statistic scaling factor α [10].  

The decision to segment the entropy profile using the CWT is based on the size 

ofα. The following criteria were applied [10]: 

• α> 1 ⇔Non-Stationarity present, therefore, viable to partitioning using the 
CWT, 

• α≈0.5 ⇔Stationary entropy times series (white noise), not viable to 
partitioning using the CWT. 

If a time series is assessed as non-stationary, then it can be partitioned by a 

number of techniques. As computational complexity was not an issue in this thesis 

research and we were experimenting with digital signal processing techniques, we 

selected the CWT in this study for its effectiveness; thus, the CWT is used to partition the 

files determined by the DFA analysis as non-stationary. 
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D. WAVELET ANALYSIS 

Fourier analysis, as described in [12], decomposes a signal into its constituent 

sinusoids of different frequencies, transforming the view of the signal from a time 

domain to a frequency domain. A drawback of the Fourier analysis is that time 

information (determining when a particular event took place) is lost during the 

transformation, thereby making the Fourier analysis unsuited to detecting important 

signal characteristics such as the beginning and end of events, drifts, abrupt changes, and 

trends. 

The Short-Time Fourier-Transform (STFT) addresses the above drawback of 

Fourier analysis by computing the frequency spectrum on a sliding window, resulting in a 

time-frequency spectrum so that events can be localized in both time and frequency [12]. 

The drawback of the STFT is what is called the “uncertainty principle,” for which an 

event can be accurately localized in either time of frequency but not both. 

Wavelet analysis overcomes the fixed window drawback of the STFT by using 

windows of variable length according to the frequency content: longer windows for lower 

frequencies and shorter windows for higher frequencies. Since sudden transitions are 

associated to higher frequency components, a shorter window provides an accurate 

localization of the transition [12]. From Figure 3, the time resolution (horizontal axis) for 

different values of the “scaling factor” defined as the reciprocal of frequency (vertical 

axis) can be seen. Essentially, per [12], wavelet analysis consists of breaking up the 

signal being analyzed into shifted and scaled versions of the original (mother) wavelet.  

In this chapter we proposed an approach to identify the file type and partition the 

file based on Shannon entropy, Hamming weight and Arithmetic mean measures. In the 

next chapter the proposed techniques are applied to the identified file types to determine 

the effectiveness of the proposed methods.  
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Figure 3.  Wavelet Analysis. Adapted from [12]. 
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III.  FILE ANALYSIS AND IDENTIFICATION 

In the previous chapter we described our methodology and proposed techniques to 

classify and partition files. In this chapter we apply the proposed techniques to the data 

sets and assess the effectiveness of the proposed methods to file type identification and 

partitioning. The experiment consists of the processes presented in Figure 4 with the 

details presented in the sections that follow.  

 

Figure 4.  Flow Chart of the Experimental Process 

A. DATA SET  

The data set considered for our analysis presented in Table 1 was generated from 

multiple diverse sources. We acquired files of different types with varying statistical 

measure values to validate a general claim found in the literature that different file types 

have different entropy properties. It is well documented that higher entropy levels tend to 

correlate with the presence of encryption, compression, random data and binary 

executables [3]. Furthermore, segments with medium entropy levels that exhibit a 

noticeable file structure are indicative of machine code and human languages, whereas 
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low entropy levels are indicative of segments with redundant information, such as plain-

text files, uncompressed media, etc. [3]. 

Table 1.   Data Set Properties  

File Type Number of 
files 

Number of file 
chunks 

Source 

Plain Text 32 214322 https:www.gutenberg.org/ 

Native Portable 
Executables (PE) 84 207648 

Windows System Files 
(alphabetically chosen) • 32-bit PE  42 88858 

• 64-bit PE  42 118790 

Packed PE 84 119035 

Native PE files packed using UPX 
Packer( http://upx.sourceforge.net) • 32-bit Packed PE  42 57898 

• 64-bit Packed PE  42 61137 

256-bit Encrypted PE 84 253485 

Native PE files encrypted using AES 
(https://www.aescrypt.com/ )  • 32-bit Encrypted PE  42 106535 

• 64-bit Encrypted PE  42 146950 

 

Plain text files included text-only books encoded in US-ASCII and were obtained 

from https:www.gutenberg.org/. 

Portable Executables (PE) file format used by Microsoft Operating Systems is a 

format for executables that are not architecture specific and is highly popular amongst 

https://www.gutenberg.org/
http://upx.sourceforge.net/
https://www.aescrypt.com/
https://www.gutenberg.org/
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computer users and source of security breaches [13]. The native PE files were 

alphabetically selected from the system folders on a Windows 7 Professional Service 

Pack 1, 32-bit and 64-bit operating system environment.  

Packing is a method used to obfuscate an executable file by encrypting or 

compressing it to protect its original content from reverse engineering. A packed 

executable is in essence an executable file packed inside another executable file [14] and 

is a technique used for malicious intent by malware authors to hide a malicious payload 

inside an executable file, thus avoiding detection by malware detectors. When executed, 

the outer executable unpacks the contents of the inner executable which could be 

malicious code into memory and executes it [14]. As the malicious payload is only 

unpacked at runtime and physically exists only in memory, the intent of this thesis is not 

to unpack and analyze the packed PE files but rather to identify segments of files that 

contain packed code which could potentially be malicious. The native PE files included 

in this study were packed using the UPX packer, which is available online at 

http://upx.sourceforge.net. 

The Advanced Encryption Standard (AES) symmetric cipher with a 256-bit key 

length was used to encrypt the native PE files using encryption software that is freely 

available at https://www.aescrypt.com/. The encryption performs various substitutions 

and transformations on the PE file creating a cipher text, which is an unintelligible 

random stream of data [15]. 

B. DATA PREPROCESSING 

The goal of the data preprocessing stage is to convert the files in the data sets into 

a file format compatible with Matlab. A free version of a “hexadecimal” (or hex) editor 

was used towards that goal where the inputs to the hex editor application are the 

individual data files (each processed separately), and the output is a hexadecimal 

representation of the input file.    

We applied the statistical measures described in Chapter II, paragraph B using 

Matlab to each of the data sets to generate individual feature vectors for file type 

http://upx.sourceforge.net/
https://www.aescrypt.com/
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identification.  Data located at the end of the binary file that did not constitute a complete 

segment were ignored. 

C. FILE TYPE IDENTIFICATION  

Files of the same type exhibit similar statistical measures and, therefore, have 

similar feature vectors, whereas dissimilar files types exhibit different statistical measures 

and have different feature vectors. The difference in feature vectors is the basis for file 

type identification. The feature vector identification process is extended to include a 

confidence interval (CI) for the aggregated average and highest average statistical 

measures for each data set type. The CI is a measure of the uncertainty in the statistical 

data given the randomness of the data and provides a range in which to allow the 

statistical measures to vary. Given that both the mean and variance of the data set is 

estimated, the t-distribution is normally the applicable distribution when calculating the 

CI bounds; however for data sample size N > 30, the normal distribution is used as it 

approximates the t-distribution [16]. The normal distribution with various CI levels was 

tested with a final CI of 95% determined as optimal since using CIs larger than 95% 

results in range overlap in statistical measures between different file types and as such is 

not useful as a discriminant. A 95% CI was applied to the aggregated average and highest 

average measures to generate a feature vector for file type identification.  

The upper and lower CI limits were calculated using [16] 

 /2 /2 ,x x
x x x

z zm m m
N N

α ασ σ
∧ ∧

∧ ∧

− ≤ ≤ +    (5) 

where xm
∧

is the estimated mean, xσ
∧

is the estimated standard deviation, and α is the user 

specified level of significance used to quantify the CI as: 1CI α= − . 

D. FILE PARTITIONING 

Any file can be characterized by its structure, and distinctive code and data areas 

can be identified when they have different entropy levels; thus, detecting the significant 

changes in the file entropy profile is the key to the file partitioning conducted in our 
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work. That detection step is performed post determination by the DFA analysis that the 

file can be partitioned using the CWT. Evaluation of various wavelet basic functions 

revealed that the Haar CWT is best suited for file partitioning, as illustrated by its 

superiority over the Morlet CWT in partitioning the entropy profile in Figure 5 subplot 

(a) into regions of significant changes in entropy level; refer to Figure 5 subplot (b) and 

subplot (c), respectively, for illustration purposes. 

 

Figure 5.  Entropy Profile Partitioning Illustrating the Haar versus the Morlet CWT   

In this chapter we provided a brief description of the types of files included in the 

data set used in this study.  Next, we assessed the effectiveness of the proposed methods 

to file type identification and partitioning, highlighting the superiority of the Haar CWT 

in partitioning the entropy profile. In the next chapter, the results of the application of the 

proposed techniques to the data sets are analyzed and conclusions drawn. 
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IV. RESULTS  

The results of the approach investigated are presented in this chapter. The 

experiment is applied to the dataset designed for this study and individual and aggregated 

statistical measures derived for all files contained within. Given the large number of files 

analyzed and the repetitive nature of the results within file types, the tabulated results 

presented are limited to a sample of ten files per file type with figures for two files within 

each data set type presented for purposes of illustration followed by a tabulated summary 

of the aggregated results for the entire data set in Table 9 through Table 11. Additional 

entropy profile plots are presented in Appendix B. 

A. STATISTICAL TECHNIQUES 

1. Plain Text  

Typical structural entropy profile plots obtained for plain text files are shown in 

Figures 6 and 7, and the statistical analysis results obtained are provided in Table 2. 

 

Figure 6.  File: ‘10.txt’ Entropy Structure 
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Figure 7.  File: ‘1184–0.txt’ Entropy Structure 

Table 2.   Computed Statistical Measure Values: Plain Text Files 

 
File Name 

 

 
Average  
Entropy 

 

 
Average  

Hamming Weight 

 
Average  

Arithmetic mean 

‘10.txt’ 4.4076 0.4372 86.2056 

‘1184-0.txt’ 4.4775 0.4465 92.1870 

‘1260.txt’ 4.3789 0.4472 87.9721 

‘1399-0.txt’ 4.3978 0.4475 89.7869 

‘1400-0.txt’ 4.4370 0.4451 90.7995 

‘1497.txt’ 4.2934 0.4507 89.6131 

‘203-0.txt’ 4.4798 0.4459 91.5109 

‘2554-0.txt’ 4.4554 0.4494 91.4683 

‘28054-0.txt’ 4.4496 0.4466 91.9975 

‘3090-0.txt’ 4.3917 0.4461 90.2056 
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Results show the different files in the plain text data set analyzed have entropy 

profiles with no noticeable variations in behavior and do not visually qualify for CWT 

partitioning. This behavior is expected as the file structure consists entirely of plain text, 

i.e., it is homogeneous in nature. Further, results show the files have average entropy 

levels of approximately 4.4 bits/byte, and low average arithmetic means in the range 86 

to 92, with approximately 45% of the files structure comprised of binary ones.  

2. Native PE Files 

The 32-bit and 64-bit native PE files were selected alphabetically from a 32-bit 

and 64-bit windows operating system.  

a. 32-bit Native PE Files 

The results of the analysis conducted on the 32-bit Native PE files are presented 

in Table 3 and Figures 8 and 9. 

 

Figure 8.  File: 32-bit ‘Displayswitch.txt’ Entropy Structure 
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Figure 9.  File: 32-bit ‘FXSSVC.txt’ Entropy Structure 

Results show that the 32-bit native PE files also have similar statistical measure 

values irrespective of file size, as can be seen in Table 3. 

Table 3.   Computed Statistical Measure Values: 32-bit Native PE Files 

 
File Name 

 

 
Average  
Entropy 

 

 
Average  

Hamming Weight 

 
Average  

Arithmetic mean 

‘DisplaySwitch.txt’ 4.0511 0.4571 147.5016 

‘FXSSVC.txt’ 5.6148 0.4732 115.3340 

‘aitstatic.txt’ 5.9786 0.4927 118.2434 

‘calc.txt’ 6.0695 0.5021 129.7081 

‘certutil.txt’ 5.5500 0.4865 119.5562 

‘dccw.txt’ 6.0067 0.4660 115.7338 

‘dfrgui.txt’ 6.1701 0.5340 138.7358 

‘icardagt.txt’ 5.5580 0.4927 125.9011 

‘ie4uinit.txt’ 4.9052 0.4650 90.0859 

‘lpksetup.txt’ 5.6778 0.5002 128.2776 
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From Figures 8 and 9, we see that the 32-bit native PE files have highly structured 

(non-stationary) entropy profiles with noticeable variations in the entropy levels, visually 

qualifying these files for partitioning using the Haar CWT. The highly structured entropy 

profile is expected as the file architecture of the native PE files consists of distinct areas 

of code and data with different levels of entropy [8].  

Notwithstanding a few exceptions, from the computed statistical measure values 

shown in Table 3, results show the 32-bit native PE files have an average entropy level of 

approximately 5.5 bits/byte, average Hamming weight values comparative with those of 

the plain text files, and average arithmetic means that are clearly distinguishable from the 

plain text results. Overall results show the entropy statistical measure values differ from 

those obtained for the plain text files sufficiently to facilitate file type discrimination and 

identification.  

b. 64-bit Native PE Files 

Sixty-four-bit native PE files are analyzed to reinforce the findings obtained with 

32-bit native PE files. These files were analyzed separately and not as part of a grouping 

of all native PE files in order to determine if files generated from different operating 

systems produce similar results. 

From Figures 10 and 11, we see that the 64-bit native PE files have varying 

entropy profiles, also representative of the distinct code and data sections [8]. This non-

stationary sequence behavior exhibited by the entropy profile visually qualifies such files 

for partitioning. Further, results show the entropy profile plots are similar to those 

obtained with the 32-bit native PE files. 
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Figure 10.  File: 64-bit ‘DisplaySwitch.txt’ Entropy Structure 

 

Figure 11.  File: 64-bit ‘FXSSVC.txt’ Entropy Structure 

Comparison of the results presented in Table 4 for the sample 64-bit native PE 

files and the results for the 32-bit native PE files tabulated in Table 3 further reinforce the 

intra-file type similarity in statistical measure values.  
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Table 4.   Computed Statistical Measure Values: 64-bit Native PE Files 

 
File Name 

 

 
Average  
Entropy 

 

 
Average  

Hamming Weight 

 
Average  

Arithmetic mean 

‘DisplaySwitch.txt’ 4.0609 0.4550 146.8884 

‘FXSSVC.txt’ 5.6064 0.4316 108.3282 

‘aitstatic.txt’ 5.9240 0.4797 115.8622 

‘calc.txt’ 5.9680 0.4666 120.5114 

‘certutil.txt’ 5.5675 0.4387 113.3509 

‘dccw.txt’ 6.0031 0.4616 114.9336 

‘dfrgui.txt’ 6.1270 0.5214 135.6445 

‘icardagt.txt’ 5.2734 0.4240 113.4340 

‘ie4uinit.txt’ 4.9072 0.4511 87.5482 

‘lpksetup.txt’ 5.6148 0.4413 113.6758 

 

3. Packed Native PE Files 

The packed native PE files were generated by applying a transformation 

algorithm to the native PE files. Although many transformation algorithms are available, 

testing was restricted to the application of the freely available UPX transformation 

algorithm to native PE files. Packing of the native PE files using the UPX transformation 

algorithm resulted in a compressed file with a change in the entropy profile structure and 

an increase in the files entropy level due to the randomness introduced by the packer. 

a. Packed 32-bit Native PE Files 

From Figures 12 and 13, we conclude that packing the 32-bit native PE files 

increases the entropy level and changes the entropy structure of the native PE files. 
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Figure 12.  File: ‘DisplaySwitch 32bit Packed.txt’ Entropy Structure 

 

Figure 13.  File: ‘FXSSVC 32bit Packed.txt’ Entropy Structure 
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The statistical measure values obtained for the packed 32-bit native PE files are 

tabulated in Table 5. Results show that compression of the 32-bit native PE files results in 

a change in statistical measure values noticeable in the average entropy level when 

compared to the uncompressed 32-bit native PE files, the plain text files, and the 64-bit 

native PE files. Packing has reduced the structure of the highly structured 32-bit native 

PE files, making files less viable for partitioning by increasing the level of randomness in 

the file structure. 

Table 5.   Computed Statistical Measure Values: Packed 32-bit 
Native PE Files 

 
File Name 

 

 
Average  
Entropy 

 

 
Average  

Hamming Weight 

 
Average  

Arithmetic mean 

‘DisplaySwitch 32bit Packed.txt’ 6.3460 0.5451 135.2697 

‘FXSSVC 32bit Packed.txt’ 6.8150 0.4618 110.6398 

‘aitstatic 32bit Packed.txt’ 6.6113 0.5317 133.2898 

‘calc 32bit Packed.txt’ 6.6252 0.5145 129.8092 

‘certutil 32bit Packed.txt’ 6.8376 0.4755 114.2390 

‘dccw 32bit Packed.txt’ 6.7279 0.5402 137.2465 

‘dfrgui 32bit Packed.txt’ 6.7058 0.5355 135.5262 

‘icardagt 32bit Packed.txt’ 6.8073 0.4668 112.0572 

‘ie4uinit 32bit Packed.txt’ 6.7209 0.4681 110.2883 

‘lpksetup 32bit Packed.txt’ 6.7993 0.4916 121.4254 
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b. Packed 64-bit Native PE Files 

From Figures 14 and 15, we see that packing the 64-bit native PE files increases 

the entropy level and reduces its structure.  

 

Figure 14.  File: ‘DisplaySwitch 64bit Packed.txt’ Entropy Structure 

 

Figure 15.  File: ‘FXSSVC 64bit Packed.txt’ Entropy Structure 

bytestream (bytes)

0 50 100 150 200 250 300 350 400 450 500

E
nt

ro
py

 (b
its

/b
yt

e)

3.5

4

4.5

5

5.5

6

6.5

7

7.5

8

File: DisplaySwitch 64bit Packed.txt

bytestream (bytes)

0 100 200 300 400 500 600 700 800 900 1000

E
nt

ro
py

 (b
its

/b
yt

e)

3.5

4

4.5

5

5.5

6

6.5

7

7.5

8

File: FXSSVC 64bit Packed.txt



 

 29 

Statistical measure values obtained for the packed 64-bit native PE data set are 

shown in Table 6. 

Table 6.   Computed Statistical Measure Values: Packed 64-bit 
Native PE Files 

 
File Name 

 

 
Average  
Entropy 

 

 
Average  

Hamming Weight 

 
Average  

Arithmetic mean 

‘DisplaySwitch 64bit Packed.txt’ 6.6782 0.5098 126.0513 

‘FXSSVC 64bit Packed.txt’ 7.0063 0.4708 115.0405 

‘aitstatic 64bit Packed.txt’ 6.8591 0.5235 130.7379 

‘calc 64bit Packed.txt’ 6.7795 0.5078 128.4976 

‘certutil 64bit Packed.txt’ 7.0172 0.4686 114.8307 

‘dccw 64bit Packed.txt’ 6.9114 0.5268 134.8972 

‘dfrgui 64bit Packed.txt’ 6.9043 0.5175 130.9301 

‘icardagt 64bit Packed.txt’ 6.9292 0.4721 114.3582 

‘ie4uinit 64bit Packed.txt’ 6.9486 0.4564 110.4250 

‘lpksetup 64bit Packed.txt’ 6.9149 0.4896 121.7160 

 

Results show that the packed 64-bit native PE files have similar statistical 

measure values as those obtained for the packed 32-bit native PE files but differ from 

those obtained for the plain text and 32-bit native PE file types. 

4. Encrypted Native PE Files 

Testing was restricted to native PE files encrypted with the 256-bit AES 

algorithm.  
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a. Encrypted 32-bit Native PE Files 

Typical structural entropy profile plots obtained after encrypting two 32-bit native 

PE files are shown in Figures 16 and 17. We see that encrypting the 32-bit native PE files 

increases the entropy level and removes all structure from the entropy profile, rendering 

the files immune to partitioning using the Haar CWT. This change in the structure of the 

entropy profile is expected as encryption removes any noticeable variations to avoid 

possible reverse engineering of files. 

 

Figure 16.  File: ‘DisplaySwitch 32bit Encrypted.exe.txt’ Entropy Structure 

bytestream (bytes)

0 500 1000 1500 2000 2500

E
nt

ro
py

 (b
its

/b
yt

e)

6.9

7

7.1

7.2

7.3

7.4

7.5

File: DisplaySwitch 32bit Encrypted.exe.txt



 

 31 

 

Figure 17.  File: ‘FXSSVC 32bit Encrypted.exe.txt’ Entropy Structure 

Statistical measure values obtained for the encrypted 32-bit native PE files are 

shown in Table 7. Results show that encrypting the 32-bit native PE files results in 

significant changes in the average entropy statistical measure values when compared to 

those of the un-encrypted 32-bit native PE files. The computed statistical measure results 

obtained for the different encrypted 32-bit native PE files vary by negligible amounts 

indicative of stationarity. Further, these encrypted files have the largest average entropy 

values relative to all other data set types considered in the study. This alone is not an 

indication of randomness as a file might have a high level of entropy, but the data might 

still be highly structured and as such not random [4]. A large entropy value combined 

with a successful DFA analysis test for stationarity is an indication of randomness. 
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Table 7.   Computed Statistical Measure Values: Encrypted 32-bit 
Native PE Files 

 
File Name 

 

 
Average  
Entropy 

 

 
Average  

Hamming Weight 

 
Average  

Arithmetic mean 

‘DisplaySwitch 32bit Encrypted.exe.txt’ 7.1740 0.5019 127.9343 

‘FXSSVC 32bit Encrypted.exe.txt’ 7.1745 0.5022 127.9502 

‘aitstatic 32bit Encrypted.exe.txt’ 7.1733 0.5020 127.9740 

‘calc 32bit Encrypted.exe.txt’ 7.1715 0.5021 128.0909 

‘certutil 32bit Encrypted.exe.txt’ 7.1718 0.5018 127.9664 

‘dccw 32bit Encrypted.exe.txt’ 7.1726 0.5018 127.9770 

‘dfrgui 32bit Encrypted.exe.txt’ 7.1709 0.5019 128.0067 

‘icardagt 32bit Encrypted.exe.txt’ 7.1699 0.5023 128.1335 

‘ie4uinit 32bit Encrypted.exe.txt’ 7.1728 0.5019 128.1281 

‘lpksetup 32bit Encrypted.exe.txt’ 7.1738 0.5018 127.9404 

 

b. Encrypted 64-bit Native PE Files 

Typical structural entropy profile plots obtained after encrypting two 64-bit native 

PE files are shown in Figures 18 and 19, with any noticeable changes in the structural 

entropy profiles removed, also rendering the encrypted 64-bit native PE files immune to 

partitioning. The computed statistical measure values are shown in Table 8.  
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Figure 18.  File: ‘DisplaySwitch 64bit Encrypted.exe.txt’ Entropy Structure 

 

Figure 19.  File: ‘FXSSVC 64bit Encrypted.exe.txt’ Entropy Structure 
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Table 8.   Computed Statistical Measure Values: Encrypted 64-bit 
Native PE Files 

 
File Name 

 

 
Average  
Entropy 

 

 
Average  

Hamming Weight 

 
Average  

Arithmetic mean 

‘DisplaySwitch 64bit Encrypted.exe.txt’ 7.1739 0.5018 127.9310 

‘FXSSVC 64bit Encrypted.exe.txt’ 7.1728 0.5019 127.9472 

‘aitstatic 64bit Encrypted.exe.txt’ 7.1728 0.5018 128.0412 

‘calc 64bit Encrypted.exe.txt’ 7.1734 0.5018 127.8774 

‘certutil 64bit Encrypted.exe.txt’ 7.1715 0.5018 127.8792 

‘dccw 64bit Encrypted.exe.txt’ 7.1725 0.5020 128.0127 

‘dfrgui 64bit Encrypted.exe.txt’ 7.1734 0.5018 127.9497 

‘icardagt 64bit Encrypted.exe.txt’ 7.1722 0.5022 128.0133 

‘ie4uinit 64bit Encrypted.exe.txt’ 7.1721 0.5019 127.9789 

‘lpksetup 64bit Encrypted.exe.txt’ 7.1709 0.5017 127.9939 

 

Results show that encrypting the 64-bit native PE files results in a significant 

change in statistical measure values, most noticeably in the average entropy level when 

compared to those obtained for the un-encrypted 64-bit native PE files. The results 

obtained for the encrypted 64-bit native PE files are similar to those obtained for the 

encrypted 32-bit native PE files; therefore, distinguishing between the two encrypted file 

types using unique feature vectors is not possible. In summary the different data set file 

types analyzed exhibit intra-file type similarity and inter-file type dissimilarity. These 

characteristics are fundamental to generating the unique feature vectors for file type 

identification. 
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B. FILE TYPE IDENTIFICATION  

A 95% CI is computed for the aggregated average and highest average statistical 

measure values for each file type included in our data set to create the respective feature 

vectors for file type identification. A summary of resulting statistical measure values is 

shown in Tables 9 to 11, with results discussed next. 

Table 9.   Computed Entropy Statistical Measure Values. 
Adapted from [4]. 
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Table 10.   Computed Hamming Weight Statistical Measure Values  
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Table 11.   Computed Arithmetic Mean Statistical Measure Values  

 
 

1. Analysis of Results 

Results show that the statistical measure CI values for the plain text data set is 

clearly distinguishable from the results obtained for the other data sets types. The entropy 

statistical measure CI values for the 32-bit and 64-bit file formats (demarcated by  

cells in Table 9) overlap. There is no clear intra-file type distinction in entropy statistical 
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measure values; thus, overall entropy statistical measure CI values are based on results 

obtained by combining values obtained with both 32-bit and 64-bit file formats. The 

entropy statistical measure CI results for the different data set types analyzed, demarcated 

by ready cells in Table 9, shows inter-file type distinction in entropy statistical measure CI 

range and qualifies the entropy feature as a suitable parameter for file type identification. 

  Results show the computed Hamming weight statistical measure values obtained 

for the 32-bit and 64-bit file formats also exhibit overlap in CI range, as demarcated by  

cells in Table 10; thus, the final Hamming weight statistical measure values are 

also based on results obtained by combining results obtained with 32-bit and 64-bit file 

formats. The combined CI results have ranges of inter-file type overlap in the native PE 

and packed PE file-types highest average Hamming weight range, demarcated by 

cells in Table 10. Further, there is overlap in the CI ranges between the packed and 

encrypted file-type aggregated average Hamming weight results, demarcated by ready  

cells in Table 10; thus, overall, the CI range overlaps make the Hamming weight 

statistical measure unsuitable as a discriminator for file type identification.  

The computed arithmetic mean CI results for the 32-bit and 64-bit file formats 

also exhibit overlap in CI ranges, as demarcated by  cells in Table 11. As for 

the previous statistical measures, the computed arithmetic mean statistical measure values 

are based on combining files with 32-bit and 64-bit file formats. The combined CI results 

have ranges of inter-file type overlap in the native PE and packed PE file-types 

aggregated average arithmetic mean, demarcated by cells in Table 11; thus, 

results show the arithmetic mean also unsuitable as a discriminator for file type 

identification.  

The final feature for file type identification shown in Table 12 includes only the 

entropy as a discriminant for file type identification. 
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Table 12.   Final Entropy Statistical Measure Values. Adapted from [4]. 

 
File Type 

 

 
Average 
Entropy 

 

Average Entropy 
95% CI 

(Low – High) 

 
Highest 
Entropy 

(Average) 
 

Highest Entropy 
95% CI 

(Low – High) 

Plain Text 4.3842 4.3631 - 4.4053 4.4959 4.4748 - 4.5170 

Native Portable Executables 
(PE) 5.5240 5.4245 - 5.6236 6.1701 6.0705 - 6.2696 

Packed Executables 6.7377 6.6807 - 6.7948 7.0563 6.9992 - 7.1133 

Encrypted Executables 7.1725 7.1723 - 7.1727 7.1748 7.1746 - 7.1750 

 

C. FILE PARTITIONING 

Files determined by the DFA analysis as having highly structured (non-stationary) 

entropy profiles are subjected to partitioning using the Haar CWT.  

1. DFA Analysis 

The DFA analysis is applied to the files in the data sets to determine the DFA 

statistic scaling factor α which is used to identify files with non-stationary entropy 

profiles. 

a. Encrypted Files 

Sample figures for the application of the DFA analysis on the encrypted files are 

shown in Figure 20 and 21. For the samples files shown, the computed value α is around 

0.5, which is representative of stationary files that show no significant changes in 

structural entropy profile and are not viable to partitioning.  
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Figure 20.  Encrypted File: ‘calc.exe.txt’ Entropy and DFA Plot with α= 0.51678 

  

Figure 21.  Encrypted File: ‘msdt.exe.txt’ Entropy and DFA Plot with α= 0.5362 

b. Plain Text 

From earlier figures and analysis, the plain text files used displayed properties of 

stationarity. Sample figures for the application of the DFA analysis on plain text files are 

shown in Figure 22 and 23. Results show the computed α value is around 0.5, which is 
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representative of stationary behavior so that further partitioning is not needed. Further, 

this further strengthened the DFA criterion that files with α≈0.5 exhibit stationary 

entropy profiles. 

 

Figure 22.  Plain Text File: ‘1342–0.txt’ Entropy and DFA Plot with α= 0.51327  

  

Figure 23.  Plain Text File: ‘203–0.txt’ Entropy and DFA Plot with α= 0.56846  
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c. Native PE and Packed PE Files 

The native PE files and packed PE files included in our dataset exhibit entropy 

profiles with large variations, with the native PE files having a greater frequency of 

occurrence of highly structured files than packed PE files. Evaluations show that files 

with α> 1 are more likely to have highly structured entropy profiles, but this does not 

preclude files with α˂ 1 from having highly structured entropy, as illustrated in 

Figures 24 and 25. Depending on the extent and effectiveness of the packing 

(compression) algorithm, we see that the packed PE files can still exhibit changes in 

structural entropy, as illustrated in Figure 26. As a quick determination of files with 

highly structured entropy, the limit of α > 1 is a fair assumption without the requirement 

to visually determine whether files have highly structured entropy profiles or not.   

  

Figure 24.  Native PE File: ‘RMActivate_ssp.txt’ Entropy and DFA Plot 
withα=0.27785  
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Figure 25.  Native PE File: ‘dccw.txt’ Entropy and DFA Plot withα=0.94017 

  

Figure 26.  Packed PE File: ‘FlashUtil64_24_0_0_194_ActiveX.txt’ Entropy and DFA 
Plot withα=1.3995 
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2. CWT Partitioning 

The purpose of this section is to demonstrate the effectiveness of the Haar CWT 

as a tool for file partitioning. The goal is to provide a convenient and quick method to 

partition the file into its distinct code and data sections as well as to possibly identify 

suspicious file regions for further analysis. No detailed entropy analysis of the partitioned 

structure is undertaken as this requires developing feature vectors for the numerous file 

types available which could include compressed files (gif, mpeg, jpeg, pdf, etc.), machine 

code (Windows and Linux operating system based), data, regular functions, library 

functions, instructions, zipped files, etc. The application is only limited by the availability 

of the training data to generate the entropy statistical measure values needed for the file 

type identification step. The ability of the Haar CWT in detecting transitional changes in 

entropy profile level, making it suitable for file partitioning, is illustrated in Figure 27 

through Figure 29. Recall that changes in entropy profile levels are indicative of changes 

in the file structure, and the Haar CWT can be used to partition the file into distinct 

regions. 

 

Figure 27.  Partitioning of File: ‘RMActivate_ssp.txt’ 
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Figure 28.  Partitioning of File: ‘dccw.txt’ 

 

Figure 29.  Partitioning of File: ‘FlashUtil64_24_0_0_194_ActiveX.txt’ 
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scaling factor α > 1. Further, results show that the Haar CWT is effective in partitioning 

the file by detecting the transitional changes in entropy profile levels. In the next chapter, 

we summarize findings and make recommendations for future work. 
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V. CONCLUSIONS AND FUTURE WORK 

In this thesis, we reviewed the current literature dealing with statistical methods 

for file-type identification and partitioning. Three different statistical measures were 

investigated in our study: Shannon entropy, Hamming weight and Arithmetic mean. The 

proposed methods were applied to a generated data set consisting of files with plain text, 

native PE, packed PE, and encrypted PE formats with the aim of generating a feature 

vector for file type identification. Experimental results indicate that only the entropy 

profile was useful to distinguish between plain text, native PE, packed native PE, and 

encrypted native PE file types.  

We also examined the use of the detrended fluctuation analysis as a means of 

identifying files that have highly structured entropy behavior, which tends to indicate 

non-stationarity in the entropy profile. Finally, the CWT was applied to the entropy 

profiles identified as non-stationary to partition the file into distinct regions.  

Future work could include analyzing a dataset including a larger set of file types 

and considering the implementation of an automated approach for file type identification 

and partitioning.  
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APPENDIX A.  MATLAB SCRIPTS 

A. FEATURE VECTOR EXTRACTION MAIN SCRIPT 

%************************************************************** 
% Calvin Brendan Paul 
% Naval Postgraduate School 
% July 2017 
% Main Script 
% Feature_Vector_Extraction.m 
% This script calls the File_Stats and DFA function 
% Calculates the data set aggregate average and highest average CI range 
% for entropy profile, Hamming weight (HW) profile, arithmetic mean profile 
% NOTE1: Input file type of .txt extension 
% NOTE2: Limit the number of files evaluated as processing is  
% computationally intensive 
% NOTE3: Adjust WindowLength and overlap as required.  
%%%%%%%%%%%%%% PARAMETERS %%%%%%%%%%%%%% 
% USER INPUT: 
% 1) files: files to be analyzed 
% 2) WindowLength: WindowLength over which to calculate file  
% statisic measures 
% 3) Overlap: Overlap between windows 
%************************************************************** 
clear all 
close all 
files = dir('*.txt'); % loads files to be analysed into file struct 
WindowLength=256;overlap=0;% define WindowLength and overlap 
% Calls Function: File_Stats 
% Variables passed: files,WindowLength,overlap 
% Variables returned: 
% 1) entr_all: entropy profile for data set analysed 
% 2) mean_entropy_each: average entropy profile per file analysed 
% 3) mean_mean_each: average mean profile per file analysed 
% 4) mean_HammingWeight_each: average HammingWeight profile per file analysed 
% 5) count: total number of chunks analysed 
[entr_all,mean_entropy_each,mean_mean_each,mean_HammingWeight_each,...count]=F
ile_Stats(files,WindowLength,overlap); 
%%  
%calculates the entropy CI range for the aggregate average and highest 
%average entropy profile 
stdE_y95=std(mean_entropy_each);% determines the standard deviation  
meanE_y95=mean(mean_entropy_each); %de-select if calculating Confidence  
%Interval (CI) range for max entropy 
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meanE_y95=max(mean_entropy_each); %select if calculating CI 
%range for max entropy 
CI=0.95; %adjust to required CI 
alpha=1-CI; % level of significance 
Nb=length(mean_entropy_each); 
% calculates the CI range for selected parameter 
Z_alpha2=qfuncinv(alpha/2); 
myE_lower95=meanE_y95-((Z_alpha2*stdE_y95)/sqrt(Nb)); 
myE_upper95=meanE_y95+((Z_alpha2*stdE_y95)/sqrt(Nb)); 
CILimitsE=[myE_lower95;myE_upper95]; 
%%  
%calculates the HW CI range for the aggregate average and highest 
%average HW profile 
stdHW_y95=std(mean_HammingWeight_each);  
meanHW_y95=mean(mean_HammingWeight_each); %de-select if calculating CI  
%range for max HW  
%meanHW_y95=max(mean_HammingWeight_each); %select if calculating CI  
%range for max HW 
CI=0.95;% adjust to required CI  
alpha=1-CI; % level of significance 
Nb=length(mean_HammingWeight_each); 
% calculates the CI range for selected parameter 
Z_alpha2=qfuncinv(alpha/2); 
myHW_lower95=meanHW_y95-((Z_alpha2*stdHW_y95)/sqrt(Nb)); 
myHW_upper95=meanHW_y95+((Z_alpha2*stdHW_y95)/sqrt(Nb)); 
CILimitsHW=[myHW_lower95;myHW_upper95]; 
%%  
%calculates the Arithmetic mean(AM) CI range for the aggregate average and 
%highest average AM profile 
stdAM_y95=std(mean_mean_each); 
meanAM_y95=mean(mean_mean_each); %de-select if calculating CI 
%range for max AM 
%meanAM_y95=max(mean_mean_each); %select if calculating CI 
%range for max AM  
CI=0.95; % adjust to required CI 
alpha=1-CI; %level of significance 
Nb=length(mean_mean_each); 
% calculates the CI range for selected parameter 
Z_alpha2=qfuncinv(alpha/2); 
myAM_lowerCI=meanAM_y95-((Z_alpha2*stdAM_y95)/sqrt(Nb)); 
myAM_upperCI=meanAM_y95+((Z_alpha2*stdAM_y95)/sqrt(Nb)); 
CILimitsAM=[myAM_lowerCI;myAM_upperCI]; 
%%%END%%% 
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B. FILE_STATS FUNCTION 

%************************************************************** 
% Calvin Brendan Paul 
% Naval Postgraduate School 
% July 2017 
% File_Stats.m Function 
% This script calls the DFA Function 
%************************************************************** 
%%%%%%%%%%%%%% PARAMETERS %%%%%%%%%%%%%% 
% Variables passed: files,WindowLength,overlap 
% Variables returned: 
% 1) entr_all: entropy profile for data set analysed 
% 2) mean_entropy_each: average entropy profile per file analysed 
% 3) mean_mean_each: average mean profile per file analysed 
% 4) mean_HammingWeight_each: average HammingWeight profile per  
% file analysed 
% 5) count: total number of chunks analysed 
function  [entr_all,mean_entropy_each,mean_mean_each,... 
mean_HammingWeight_each,count]= File_Stats(files,WindowLength,overlap) 
%%%%%declare variables needed 
count=0; 
mean_entropy_each=[];mean_mean_each=[]; 
mean_HammingWeight_each=[]; 
entr_all=[];mean_all=[]; 
Hweight_all=[];alpha_all=[]; 
%%%%% 
for i=1:length(files)% for loop conditioned on number of files 
b=textread(files(i).name,'%2c'); % read in text files as character 
b=hex2dec(char(b)); % convert from hexadecimal to decimal 
b=single(reshape(b,1,[])); %reshape file as row vector 
b=b(b~=0); % remove zeros 
NumOfFrames=floor(length(b)/(WindowLength)); % calc number of file frames  
M=b(1:NumOfFrames*WindowLength); % truncate file 
M=M'; 
curPos=1; % set curPos to one 
entr=[];meanc=[];Hweight=[]; 
for j=1:NumOfFrames;% for loop conditioned on number of frames (per file) 
    %calculates statistical measures per window 
    c = M(curPos:curPos+WindowLength-1); 
    binranges=unique(c);[bincounts] = histc(c,binranges); 
    p=bincounts/sum(bincounts); 
    entropy_1=sum(p.*log2(1./p)); % calculates window entropy 
    entr=[entr,entropy_1]; % creates entropy profile 
    meanc=[meanc,mean(c)]; % creates mean profile 
    Hweightf=nnz(dec2bin(c,8).' == '1' )/numel(dec2bin(c,8)); 
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    Hweight=[Hweight,Hweightf]; % creates Hamming weight profile 
    curPos=curPos+WindowLength-overlap; % slide window  
    count=count+1; % increment chunk count 
end 
%Average statistic measure per file analysed  
mean_entropy_each=[mean_entropy_each,mean(entr)]; 
mean_mean_each=[mean_mean_each,mean(meanc)]; 
mean_HammingWeight_each=[mean_HammingWeight_each,mean(Hweight)]; 
  
%Column vectors of statistic measure profiles 
entr_all(1:numel(entr),i)=entr;  
mean_all(1:numel(meanc),i)=meanc; 
Hweight_all(1:numel(Hweight),i)=Hweight; 
    
figure  
plot(entr);xlabel('bytestream (bytes)');ylabel('Entropy (bits/byte)'); 
legend(['File: ' , files(i).name],'fontsize',10); 
ylim([min(entr)-0.5 max(entr)+1]);xlim([0 length(entr)]); 
%legend boxoff      
h =  findobj('type','figure'); 
n = length(h); % number figures plotted thus far 
DFAWindowLength=256; %windowlength to perform DFA over 
%calls the DFA function 
% Variables passed:  
% 1) entr_all: entropy profile 
% 2) n: number of figures plotted so far 
% 3) DFAWindowLength: windowlength to perform DFA over 
% 4) files: files being analysed 
% Variables returned: 
% 1) alpha: DFA statistic scaling factor 
alpha=DFA(entr_all(:,i),n,DFAWindowLength,files(i,:)); 
alpha_all=[alpha_all,alpha];% DFA statistic scaling factors for all files 
end 
end 
%%%END%%% 

C. DFA FUNCTION 

%************************************************************** 
% Calvin Brendan Paul 
% Naval Postgraduate School 
% July 2017 
% DFA.m Function 
% This script calls the CWT Function 
%************************************************************** 
%%%%%%%%%%%%%% PARAMETERS %%%%%%%%%%%%%% 
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% Variables passed:  
% 1) entr_all: entropy profile 
% 2) n: number of figures plotted so far 
% 3) DFAWindowLength: windowlength to perform DFA over 
% 4) files: files being analysed 
% Variables returned: 
% 1) alpha: DFA statistic scaling factor 
%************************************************************** 
function alpha = DFA(entr_all,n,DFAWindowLength,files) 
ss=size(entr_all); % determine number of entropy profiles  
test1=entr_all'; % reshape 
k=ss(2); % determine for loop variable 
f_all1=cell(1,k);y_all=cell(1,k);% variable setup 
for i=1:k % for loop conditioned on the number of entropy profiles 
u=test1(i,1:end); % read in entropy profile for analysis 
u=u(u~=0); % remove zeros 
mt=mean(u); % determine mean 
yk=cumsum(u-mt); % determine running sum y(k) 
NumOfFrames=floor(length(yk)/(DFAWindowLength)); % calc number of frames  
x=1:1:length(yk); % needed for polyfit x variable 
yk=yk(1:NumOfFrames*DFAWindowLength); % truncated entropy profile 
y_all{1,i}=yk; % stores truncated entropy profiles into a cell 
x=x(1:NumOfFrames*DFAWindowLength);%truncated to length of entropy profile 
curPos=1; % set curpos to 1 
count=0; % count of number of frames analysed 
vert=[];f=[]; 
for j=1:NumOfFrames % for loop conditioned on number of frames 
    y_w = yk(curPos:curPos+DFAWindowLength-1); %sliding window for y  
    x_w = x(curPos:curPos+DFAWindowLength-1); %sliding window for x 
    curPos=curPos+DFAWindowLength; % cursor positioned to start of  
    %new window 
    count=count+1; % increment counter 
    vert=[vert,j*DFAWindowLength]; 
    [p1,s1]=polyfit(x_w,y_w,1); %determine OLS regression line polynomial 
    y1=polyval(p1,x_w);% Determine data points for OLS line  
    f=[f,y1]; % vector of OLS line points 
    figure (i+n); 
    subplot(211);plot(u); % plot entropy profile 
    %title(['Entropy using probabilities: ' ,files(i).name],'fontsize',10); 
    %legend(['File: ' , files(i).name],'fontsize',10); 
    %legend boxoff; 
    xlabel('i');ylabel('u(i)'); 
    xlim([0 length(u)]); 
    subplot(212); % plot showing DFA analysis 
    if count==NumOfFrames; 
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        yTicks = get(gca, 'ytick'); 
        yline= linspace(min(yTicks),max(yTicks),length(vert)); 
        for ii=1:length(vert); 
            xline = ones(length(yline))*vert(ii); 
            plot(xline,yline,'k:','LineWidth',2) % plot vertical lines 
        end 
    end 
    plot(x,yk,'b');hold on  % plot running sum 
    plot(x_w,y1,'r-','LineWidth',3); % plot OLS lines 
    xlabel('bytestream(bytes)');ylabel('Entropy(bits/byte)'); 
    xlim([0 length(x)]); 
end 
f_all1{1,i}=f; %cell with OLS line points for all the entropy profile 
end 
s=size(f_all1); 
alpha=[]; % variable to save DFA statistic scaling factor 
for i=1:s(2); %for loop conditioned on number of entropy profiles 
f_all=f_all1(1,i); % read in OLS line point for entropy profile (i) 
f_all=cell2mat(f_all); 
yk=y_all(1,i);% y(k) for specific entropy profile 
yk=cell2mat(yk);  
RMSE=sqrt(1/length(f_all)*cumsum((f_all-yk).^2)); % determine RMSE 
RMSE=log2(RMSE); % log of RMSE 
x=1:1:length(f_all); 
[p2,s2]=polyfit(log2(x),RMSE,1); %Log fit to determine DFA exponential 
gradient=num2str(p2(1)); %alpha converted to a string 
subplot(211);title(['\alpha = ',gradient],'Fontsize',10); 
alpha=[alpha,p2(1)]; %DFA statistic scaling factor for all entropy profiles  
end 
h =  findobj('type','figure'); 
n2 = length(h); % number of figures plotted thus far 
% Calls the CWT function for file partitioning 
CWT(files,n2,entr_all); % partitions the entropy profile 
% Note: All files are partitioned however the function could be  
% conditioned to partition only files that meet the DFA requirements 
% Variables passed: 
% 1) entr_all: entropy profile 
% 2) n2: number of figures plotted so far 
% 3) files: files being analysed 
% Variables returned: None 
% 1) alpha: DFA statistic scaling factor 
end 
%%%END%%% 
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D. CWT FUNCTION 

%************************************************************** 
% Calvin Brendan Paul 
% Naval Postgraduate School 
% July 2017 
% CWT.m Function 
% OUTPUT: Plots graphs showing CWT segmentation 
% INPUT: files, n2, entr_all 
%************************************************************** 
%%%%%%%%%%%%%% PARAMETERS %%%%%%%%%%%%%% 
% Variables passed: 
% 1) files: files to be analysed 
% 2) n2: number of figures plotted in DFA 
% 3) entr_all: entropy profiles 
% Variables returned: None 
function CWT(files,n2,entr_all) 
w=size(entr_all);  
w=w(:,2); % determine number of files to segment 
for i=1:w; % for loop conditioned on number of files 
entr_series=entr_all(:,i); % read entropy profile to be segmented 
entr_series=entr_series(entr_series~=0); 
figure (i+n2); % plots sequential figures 
subplot(211);plot(entr_series); % plot entropy profile 
legend(['File: ' , files(i).name],'fontsize',10); 
%legend boxoff; 
ylabel('Entropy (bits/byte)');xlabel('bytestream (bytes)'); 
xlim([0,length(entr_series)]); 
subplot(212);cwt(entr_series,1:1:64,'haar','plot'); %partitioned  
%entropy profiles 
title(' ');ylabel('Scale');xlabel('bytestream (bytes)') 
end 
end 
%%%END%%% 
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APPENDIX B.  ENTROPY PROFILE PLOTS 

A. PLAIN TEXT FILES 

 

Figure 30.  File: ‘1260–0.txt’ Entropy Structure 

 

Figure 31.  File: ‘1399.txt’ Entropy Structure 

bytestream (bytes)

0 500 1000 1500 2000 2500 3000 3500 4000 4500

E
nt

ro
py

 (b
its

/b
yt

e)

3.6

3.8

4

4.2

4.4

4.6

4.8

5

5.2

5.4

5.6 File: 1260.txt

bytestream (bytes)

0 1000 2000 3000 4000 5000 6000 7000 8000

E
nt

ro
py

 (b
its

/b
yt

e)

3.5

4

4.5

5

5.5
File: 1399-0.txt



 

 58 

 

Figure 32.  File: ‘1400–0.txt’ Entropy Structure 

 

Figure 33.  File: ‘1497.txt’ Entropy Structure 
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Figure 34.  File: ‘203–0.txt’ Entropy Structure 

 

Figure 35.  File: ‘2554–0.txt’ Entropy Structure 
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Figure 36.  File: ‘28054-0.txt’ Entropy Structure 

 

Figure 37.  File: ‘3090–0.txt’ Entropy Structure 
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B. 32-BIT NATIVE PE FILES 

 

Figure 38.  File: 32-bit ‘aitstatic.txt’ Entropy Structure 

 

Figure 39.  File: 32-bit ‘calc.txt’ Entropy Structure 
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Figure 40.  File: 32-bit ‘certutil.txt’ Entropy Structure 

 

Figure 41.  File: 32-bit ‘dccw.txt’ Entropy Structure 
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Figure 42.  File: 32-bit ‘dfrgui.txt’ Entropy Structure 

 

Figure 43.  File: 32-bit ‘icardagt.txt’ Entropy Structure 
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Figure 44.  File: 32-bit ‘ie4uinit.txt’ Entropy Structure 

 

Figure 45.  File: 32-bit ‘lpksetup.txt’ Entropy Structure 
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C. 64-BIT NATIVE PE FILES 

 

Figure 46.  File: 64-bit ‘aitstatic.txt’ Entropy Structure 

 

Figure 47.  File: 64-bit ‘calc.txt’ Entropy Structure 
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Figure 48.  File: 64-bit ‘certutil.txt’ Entropy Structure 

 

Figure 49.  File: 64-bit ‘dccw.txt’ Entropy Structure 
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Figure 50.  File: 64-bit ‘dfrgui.txt’ Entropy Structure 

 

Figure 51.  File: 64-bit ‘icardagt.txt’ Entropy Structure 
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Figure 52.  File: 64-bit ‘ie4uinit.txt’ Entropy Structure 

 

Figure 53.  File: 64-bit ‘lpksetup.txt’ Entropy Structure 
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D. PACKED 32-BIT NATIVE PE FILES 

 

Figure 54.  File: ‘aitstatic 32bit Packed.txt’ Entropy Structure 

 

Figure 55.  File: ‘calc 32bit Packed.txt’ Entropy Structure 
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Figure 56.  File: ‘certutil 32bit Packed.txt’ Entropy Structure 

 

Figure 57.  File: ‘dccw 32bit Packed.txt’ Entropy Structure 
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Figure 58.  File: ‘dfrgui 32bit Packed.txt’ Entropy Structure 

 

Figure 59.  File: ‘icardagt 32bit Packed.txt’ Entropy Structure 
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Figure 60.  File: ‘ie4uinit 32bit Packed.txt’ Entropy Structure 

 

Figure 61.  File: ‘lpksetup 32bit Packed.txt’ Entropy Structure 
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E. PACKED 64-BIT NATIVE PE FILES 

 

Figure 62.  File: ‘aitstatic 64bit Packed.txt’ Entropy Structure 

 

Figure 63.  File: ‘calc 64bit Packed.txt’ Entropy Structure 

 
 
 

bytestream (bytes)

0 500 1000 1500 2000 2500 3000 3500

E
nt

ro
py

 (b
its

/b
yt

e)

3.5

4

4.5

5

5.5

6

6.5

7

7.5

8

File: aitstatic 64bit Packed.txt

bytestream (bytes)

0 500 1000 1500

E
nt

ro
py

 (b
its

/b
yt

e)

2.5

3

3.5

4

4.5

5

5.5

6

6.5

7

7.5

8

File: calc 64bit Packed.txt



 

 74 

 

Figure 64.  File: ‘certutil 64bit Packed.txt’ Entropy Structure 

 

Figure 65.  File: ‘dccw 64bit Packed.txt’ Entropy Structure 
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Figure 66.  File: ‘dfrgui 64bit Packed.txt’ Entropy Structure 

 

Figure 67.  File: ‘icardagt 64bit Packed.txt’ Entropy Structure 
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Figure 68.  File: ‘ie4uinit 64bit Packed.txt’ Entropy Structure 

 

Figure 69.  File: ‘lpksetup 64bit Packed.txt’ Entropy Structure 
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F. ENCRYPTED 32-BIT NATIVE PE FILES 

 

Figure 70.  File: ‘aitstatic 32bit Encrypted.exe.txt’ Entropy Structure 

 

Figure 71.  File: ‘calc 32bit Encrypted.exe.txt’ Entropy Structure 
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Figure 72.  File: ‘certutil 32bit Encrypted.exe.txt’ Entropy Structure 

 

Figure 73.  File: ‘dccw 32bit Encrypted.exe.txt’ Entropy Structure 
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Figure 74.  File: ‘dfrgui 32bit Encrypted.exe.txt’ Entropy Structure 

 

Figure 75.  File: ‘icardagt 32bit Encrypted.exe.txt’ Entropy Structure 
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Figure 76.  File: ‘ie4uinit 32bit Encrypted.exe.txt’ Entropy Structure 

 

Figure 77.  File: ‘lpksetup 32bit Encrypted.exe.txt’ Entropy Structure 
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G. ENCRYPTED 64-BIT NATIVE PE FILES 

 

Figure 78.  File: ‘aitstatic 64bit Encrypted.exe.txt’ Entropy Structure 

 

Figure 79.  File: ‘calc 64bit Encrypted.exe.txt’ Entropy Structure 
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Figure 80.  File: ‘certutil 64bit Encrypted.exe.txt’ Entropy Structure 

 

Figure 81.  File: ‘dccw 64bit Encrypted.exe.txt’ Entropy Structure 
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Figure 82.  File: ‘dfrgui 64bit Encrypted.exe.txt’ Entropy Structure 

 

Figure 83.  File: ‘icardagt 64bit Encrypted.exe.txt’ Entropy Structure 
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Figure 84.  File: ‘ie4uinit 64bit Encrypted.exe.txt’ Entropy Structure 

 

Figure 85.  File: ‘lpksetup 64bit Encrypted.exe.txt’ Entropy Structure 
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