
VINE: A VARIATIONAL INFERENCE-BASED BAYESIAN NEURAL
NETWORK ENGINE

UNIVERSITY OF SOUTHERN CALIFORNIA

JANUARY 2018

FINAL TECHNICAL REPORT

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

STINFO COPY

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE

AFRL-RI-RS-TR-2018-016

 UNITED STATES AIR FORCE ROME, NY 13441 AIR FORCE MATERIEL COMMAND

NOTICE AND SIGNATURE PAGE

Using Government drawings, specifications, or other data included in this document for any purpose other
than Government procurement does not in any way obligate the U.S. Government. The fact that the
Government formulated or supplied the drawings, specifications, or other data does not license the holder
or any other person or corporation; or convey any rights or permission to manufacture, use, or sell any
patented invention that may relate to them.

This report is the result of contracted fundamental research deemed exempt from public affairs security
and policy review in accordance with SAF/AQR memorandum dated 10 Dec 08 and AFRL/CA policy
clarification memorandum dated 16 Jan 09. This report is available to the general public, including
foreign nations. Copies may be obtained from the Defense Technical Information Center (DTIC)
(http://www.dtic.mil).

AFRL-RI-RS-TR-2018-016 HAS BEEN REVIEWED AND IS APPROVED FOR PUBLICATION IN
ACCORDANCE WITH ASSIGNED DISTRIBUTION STATEMENT.

FOR THE CHIEF ENGINEER:

 / S / / S /
CHRISTOPHER J. FLYNN JOHN D. MATYJAS
Work Unit Manager Technical Advisor, Computing

 & Communications Division
Information Directorate

This report is published in the interest of scientific and technical information exchange, and its publication
does not constitute the Government’s approval or disapproval of its ideas or findings.

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite
1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information
if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY)

JAN 2018
2. REPORT TYPE

FINAL TECHNICAL REPORT
3. DATES COVERED (From - To)

OCT 2016 – AUG 2017
4. TITLE AND SUBTITLE

VINE: A VARIATIONAL INFERENCE-BASED BAYESIAN NEURAL
NETWORK ENGINE

5a. CONTRACT NUMBER
N/A

5b. GRANT NUMBER
FA8750-17-2-0021

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)
Massoud Pedram, Yanzhi Wang

5d. PROJECT NUMBER
SAGA

5e. TASK NUMBER
US

5f. WORK UNIT NUMBER
C1

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

University of Southern California
3720 S. Flower St, CUB 303, MC 0701
Los Angeles CA 90089-0701

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Air Force Research Laboratory/RITA
525 Brooks Road
Rome NY 13441-4505

10. SPONSOR/MONITOR'S ACRONYM(S)

AFRL/RI
11. SPONSOR/MONITOR’S REPORT NUMBER

AFRL-RI-RS-TR-2018-016
12. DISTRIBUTION AVAILABILITY STATEMENT
Approved for Public Release; Distribution Unlimited. This report is the result of contracted fundamental research
deemed exempt from public affairs security and policy review in accordance with SAF/AQR memorandum dated 10 Dec
08 and AFRL/CA policy clarification memorandum dated 16 Jan 09
13. SUPPLEMENTARY NOTES

14. ABSTRACT
This report describes our findings and results for the DARPA MTO seedling project titled “SpiNN-SC: Stochastic
Computing-Based Realization of Spiking Neural Networks” also known as “VINE: A Variational Inference-Based
Bayesian Neural Network Engine.” The primary goal was to develop a Bayesian Neural Network (BNN) with an
integrated Variational Inference (VI) engine to perform inference and learning (statically and on-the-fly) under uncertain
or incomplete input and output features. A secondary goal is to enable robust decision making under noise and variability
in the observed data and without reference to a ground truth. The key expected impact is to enable a new generation of
BNNs that can operate on input and output features specified as random variables, that admit efficient hardware
realization, and that can not only do inference but also can be retrained on-the-fly based on incoming data.

15. SUBJECT TERMS
Machine learning, Neural networks, Inference engine, Independent component analysis, Hardware random number
generation, Transfer learning

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

UU

18. NUMBER
OF PAGES

19a. NAME OF RESPONSIBLE PERSON
CHRISTOPHER J. FLYNN

a. REPORT
U

b. ABSTRACT
U

c. THIS PAGE
U

19b. TELEPHONE NUMBER (Include area code)

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39.18

26

i

Table of Contents

1. Summary .. 1

2. Introduction ... 1

2.1 Description of the Technical Approach .. 1

3. Methods, Assumptions, and Procedures .. 2

3.1 Construction and Optimization of the VIBNN ... 2

3.1.1 VIBNN Construction, Training, and Inference Engine .. 2

3.1.2 Knowledge Transfer from Outcome Prediction to Action Recommendation 5

3.1.3 Random Number Generator Design ... 6

3.1.4 Input Dimension Reduction .. 9

4. Results and Discussions... 10

4.1 Evaluation of the Knowledge Transfer Framework in VINE ... 11

4.2 Hardware Implementation of the VINE .. 12

4.2.1 Random Number Generator Design ... 12

4.2.2 Input Dimension Reduction .. 13

4.2.3 VIBNN Hardware-Software Realization .. 16

4.3 Evaluation of the VINE ... 17

5. Conclusion ... 19

6. References…………………………………………………………………………………..20

7. List of Symbols, Abbreviations, and Acronyms……………………………………………21

ii

List of Figures

Figure 1: Overall Flow of the VINE ... 1
Figure 2: Structure of a VIBNN.. 2
Figure 3: Step 1: latent model construction .. 6
Figure 4: Step 2: knowledge transfer .. 6
Figure 5: Wallace algorithm ... 7
Figure 6: Block diagram of a Wallace GRNG .. 7
Figure 7: Control and Data Flow Graph of an RLF-GRNG ... 8
Figure 8: Comparison of register- and RAM-based LSFRs ... 8
Figure 9: Block diagram of EASI and required operations .. 10
Figure 10: Block diagram of the RLF-GRNG .. 13
Figure 11: EASI implementation from software to hardware .. 14
Figure 12: Design space exploration ... 15
Figure 13: Block Diagram of a BNN .. 18
Figure 14: Datapath of a Neuron Computation Block .. 18

List of Tables

Table 1 Performance evaluation of the proposed transfer learning framework at different network
configurations ... 12
Table 2 Summary of hardware resource utilization .. 13
Table 3 Hardware utilization of the FPGA implementation of a BNN .. 17

Approved for Public Release; Distribution Unlimited
1

1. Summary

This report describes our findings and results for the DARPA MTO seedling project titled
“SpiNN-SC: Stochastic Computing-Based Realization of Spiking Neural Networks” also known
as “VINE: A Variational Inference-Based Bayesian Neural Network Engine.” The report is
accompanied by the full set of prototype software and hardware design deliverables for the said
project.

2. Introduction

The primary goal was to develop a Bayesian Neural Network (BNN) with an integrated
Variational Inference (VI) engine to perform inference and learning (statically and on-the-fly)
under uncertain or incomplete input and output features. A secondary goal is to enable robust
decision making under noise and variability in the observed data and without reference to a
ground truth. The key expected impact is to enable a new generation of BNNs that can operate
on input and output features specified as random variables, that admit efficient hardware
realization, and that can not only do inference but also can be retrained on-the-fly based on
incoming data.

2.1 Description of the Technical Approach
The approach comprised of the following steps (see Figure 1).

• Modeling of input and output features as random variables with arbitrary probability
density functions (pdfs).

• Cardinality reduction of the input feature space based on a type of independent
component analysis (ICA).

• Efficient generation of random values adhering to a desired arbitrary (but monotonic)
pdf.

• Implementation of a BNN with integrated VI engine and the ability to accept, process and
store random variables as inputs or outputs.

• Analysis of target application data and data/environmental modeling.
• System integration and demonstration including hardware and software prototyping.

Figure 1: Overall Flow of the VINE

Approved for Public Release; Distribution Unlimited
2

3. Methods, Assumptions, and Procedures

The project team developed software and prototype hardware realization of a variational
inference engine for Bayesian neural network driven by the target application requirements. In
the rest of this section, we first explain the VIBNN construction, training, and inference engine
followed by the knowledge transfer framework of a variational inference-based Bayesian neural
network (VIBNN) which can operate on training data without a ground truth. This is followed by
descriptions of the random number generator and input dimension reduction modules.

3.1 Construction and Optimization of the VIBNN

3.1.1 VIBNN Construction, Training, and Inference Engine
As shown in Figure 2, a BNN has a set of latent variables, 𝐳𝐳 = {𝑧𝑧1, 𝑧𝑧2, … }, which includes edge
weights 𝑤𝑤𝑖𝑖𝑖𝑖

𝑙𝑙 from the 𝑖𝑖-th neuron at the layer 𝑙𝑙 to the 𝑗𝑗-th neuron at the layer 𝑙𝑙 + 1 and biases 𝐛𝐛𝑙𝑙
at the layer 𝑙𝑙. Different from conventional artificial neural networks (ANNs), the latent variables
in a BNN is specified as distributions instead of scalar values. Equivalently, a BNN can be
viewed as an ensemble of a large number of neural networks with introduced variabilities on
weights and biases. As a result, BNNs are robust to disturbances in the learning especially when
the training set is noisy or incomplete. In addition, the over-fitting problem can be alleviated
because regularizations are implicitly introduced by imposing prior distributions that are not
uniform.

Figure 2: Structure of a VIBNN

The goal of learning a BNN is to find the posterior distribution over its latent variables 𝒛𝒛 given a
training dataset 𝒟𝒟. As we know from the Bayes’ rule, the posterior distribution of latent
variables, comprising of all node biases and edge weights in the network, denoted by
𝑝𝑝(𝒛𝒛|𝒟𝒟), can be calculated as follows

𝑝𝑝(𝒛𝒛|𝒟𝒟) =
𝑝𝑝(𝒟𝒟|𝒛𝒛) ⋅ 𝑝𝑝(𝒛𝒛)
∫ 𝑝𝑝(𝒟𝒟|𝒛𝒛′)d𝒛𝒛′𝒛𝒛′

where 𝑝𝑝(𝒛𝒛) is the prior distribution that is assumed a priori, and 𝑝𝑝(𝒟𝒟|𝒛𝒛) is the likelihood
function which can be calculated based on the output of the network. However, for most cases of

Approved for Public Release; Distribution Unlimited
3

interest, the integral in the denominator is intractable, which calls for efficient approximations.
One of the most commonly used methods is the Markov Chain Monte Carlo (MCMC), which
simulates a Markov chain whose stationary (invariant) states follow a given (target) probability
distribution in a very high dimensional state space and which goal is to generate “fair” samples
of the said state space by trying to identify and sample high probability states. However, MCMC
is computationally very expensive and lacks a clear stopping criterion.

We adopt a learning and inference method called Bayes by Backprop as proposed in [1]. To
efficiently learn the distributions of the latent variables, the idea of variational inference is
adopted in which the posterior distribution of latent variables given a dataset 𝒟𝒟, denoted by
𝑝𝑝(𝒛𝒛|𝒟𝒟), is approximated using a distribution 𝑞𝑞(𝒛𝒛;𝜽𝜽) with a fixed form but a set of unknown
parameters 𝜽𝜽. To learn the value of 𝜽𝜽, one can minimize the Kullback-Leibler (KL) divergence
between the variational posterior 𝑞𝑞(𝒛𝒛;𝜽𝜽) and the actual posterior 𝑝𝑝(𝒛𝒛|𝒟𝒟). More precisely,
finding the best estimation of 𝜽𝜽, denoted by 𝜽𝜽∗, is an optimization problem expressed as follows

𝜽𝜽∗ = argmin
𝜃𝜃

� 𝑞𝑞(𝒛𝒛;𝜽𝜽) log
𝑞𝑞(𝒛𝒛;𝜽𝜽)
𝑝𝑝(𝒛𝒛|𝒟𝒟) d𝒛𝒛

+∞

−∞

= argmin
𝜃𝜃

𝔼𝔼𝑞𝑞(𝒛𝒛;𝜽𝜽) �log
𝑞𝑞(𝒛𝒛;𝜽𝜽)
𝑝𝑝(𝒛𝒛|𝒟𝒟)�

= argmin
𝜃𝜃

𝔼𝔼𝑞𝑞(𝒛𝒛;𝜽𝜽)[log 𝑞𝑞(𝒛𝒛;𝜽𝜽) − log𝑝𝑝(𝒟𝒟|𝒛𝒛) − log𝑝𝑝(𝒛𝒛)]

where the expectation is often evaluated using a Monte Carlo integral by taking a small number
of sample points according to 𝑞𝑞(𝒛𝒛;𝜽𝜽). For convenience of expression, we define ℱ(𝜽𝜽) as the
objective function on the right-hand side of the equation above. In practice, the optimization
problem can be solved using the gradient descent method.

In our case, 𝑞𝑞(𝒛𝒛;𝜽𝜽) is assumed to be Gaussian. The set of parameters is 𝜽𝜽 = {𝝁𝝁, Σ}, where 𝝁𝝁 is
the mean vector, and Σ = diag(σ12,𝜎𝜎22, …) is a diagonal covariance matrix. For simplicity, we
define 𝝈𝝈 = (𝜎𝜎1,𝜎𝜎2, …)As a result, the latent variables can be re-parameterized in terms of 𝜽𝜽 as
follows

𝒛𝒛 = 𝝁𝝁 + Σ𝝐𝝐
= 𝝁𝝁 + 𝝈𝝈 ∘ 𝝐𝝐

where “∘” is element-wise multiplication operation, and 𝝐𝝐 ∼ 𝑁𝑁(𝟎𝟎, 𝑰𝑰). Furthermore, to eliminate
the constraint that 𝝈𝝈 is non-negative, we introduce 𝝆𝝆 ∈ ℝ such that 𝝈𝝈 = log(1 + exp𝝆𝝆). Since
there is a one-to-one mapping from 𝝆𝝆 to 𝝈𝝈, we will optimize 𝝆𝝆 instead of 𝝈𝝈. Consequently, ℱ(𝜽𝜽)
can be rewritten as

ℱ(𝜽𝜽) = 𝔼𝔼𝑞𝑞(𝝐𝝐)[log 𝑞𝑞(𝒛𝒛;𝝁𝝁,𝝆𝝆) − log 𝑝𝑝(𝒟𝒟|𝒛𝒛) − log 𝑝𝑝(𝒛𝒛)]

And the partial derivative of ℱ(𝜽𝜽) with respect to 𝝁𝝁 and 𝝆𝝆 can in turn be written as

Approved for Public Release; Distribution Unlimited
4

𝜕𝜕ℱ(𝜽𝜽)
𝜕𝜕𝝁𝝁

= 𝔼𝔼𝑞𝑞(𝝐𝝐) �
𝜕𝜕𝜕𝜕(𝒛𝒛;𝜽𝜽)
𝜕𝜕𝒛𝒛

+
𝜕𝜕𝑞𝑞(𝒛𝒛;𝝁𝝁,𝝆𝝆)

𝜕𝜕𝝁𝝁
�

𝜕𝜕ℱ(𝜽𝜽)
𝜕𝜕𝝆𝝆

= 𝔼𝔼𝑞𝑞(𝝐𝝐) �
𝜕𝜕𝜕𝜕(𝒛𝒛;𝜽𝜽)
𝜕𝜕𝒛𝒛

∘
𝝐𝝐

1 + exp(−𝝆𝝆) +
𝜕𝜕𝑞𝑞(𝒛𝒛;𝝁𝝁,𝝆𝝆)

𝜕𝜕𝝆𝝆
�

where
𝜕𝜕(𝒛𝒛;𝜽𝜽) = log 𝑞𝑞(𝒛𝒛;𝜽𝜽) − log 𝑝𝑝(𝒟𝒟|𝒛𝒛) − log𝑝𝑝(𝒛𝒛)

With 𝑞𝑞(𝒛𝒛;𝜽𝜽) local to each parameter (for a diagonal covariance matrix), 𝑝𝑝(𝒟𝒟|𝒛𝒛) available at the
network output after a round of forward propagation, and 𝑝𝑝(𝒛𝒛) assumed as prior knowledge
(Gaussian in our case), the value of 𝜕𝜕𝜕𝜕(𝒛𝒛;𝜽𝜽)

𝜕𝜕𝒛𝒛
 can be found using standard back-propagation

techniques from the output layer to the input layer. Meanwhile, 𝜕𝜕𝑞𝑞(𝒛𝒛;𝝁𝝁,𝝆𝝆)
𝜕𝜕𝝁𝝁

 and 𝜕𝜕𝑞𝑞(𝒛𝒛;𝝁𝝁,𝝆𝝆)
𝜕𝜕𝝆𝝆

 can be

directly computed independent of the network structure. After the gradient is obtained, gradient
descent can be applied as

𝜽𝜽 ← 𝜽𝜽 − 𝛼𝛼
𝜕𝜕ℱ(𝜽𝜽)
𝜕𝜕𝜽𝜽

where 𝛼𝛼 is the learning factor. We will refer to the BNN learned via variational inference as
explained above as the VIBNN. Considering the high computational complexity of learning a
BNN due to integral computation using Monte Carlo sampling, we choose not to include the
learning algorithm in the proposed FPGA realization. Instead, we choose to learn the BNN in
software and load the learned network parameters into the FPGA platform for inference.

One simple way to use the learned BNN for inference is to put the maximum a posteiori (MAP)
estimation of the latent variables in the place of the edge weights and node biases of an ANN.
This way, any existing inference framework designed for an ANN can also be applied to a BNN.
However, to fully utilize the posterior distribution of the network weights which better represent
the network, one should derive the network output by averaging over the output produced by the
ensemble of networks specified according to the posterior distribution. In other words, instead of
using a point estimation of the latent variables, one should sample the latent variables multiple
times according to the posterior distribution, each producing a set of outputs, and then averaging
over all the produced output. Formally, given the input features 𝒙𝒙0, if the network function is
denoted by 𝒚𝒚 = 𝑔𝑔(𝒙𝒙0; 𝒛𝒛) where 𝒚𝒚 is the output of the network after one round of forward
propagation using latent variables (edge weights and node biases) 𝒛𝒛, then the output of the
VIBNN, denoted by 𝒚𝒚�, given 𝒙𝒙0 and 𝑞𝑞(𝒛𝒛;𝜽𝜽) is computed as

𝒚𝒚� = 𝔼𝔼𝑞𝑞(𝒛𝒛;𝜽𝜽)[𝑔𝑔(𝒙𝒙𝟎𝟎; 𝒛𝒛)]

≅�𝑔𝑔(𝒙𝒙0; 𝒛𝒛𝑠𝑠)
𝑀𝑀

𝑠𝑠=1

Approved for Public Release; Distribution Unlimited
5

where 𝒛𝒛𝑠𝑠 is a sample of 𝒛𝒛 according to 𝑞𝑞(𝒛𝒛;𝜽𝜽), and 𝑀𝑀 is the number of samples used (typically
set to 5 or 10).

3.1.2 Knowledge Transfer from Outcome Prediction to Action Recommendation
A conventional BNN cannot be used for action recommendation without encountering the “no
ground truth” problem. Therefore, we propose a knowledge transfer framework which first
constructs a BNN for outcome prediction only (i.e. latent model construction) and then transfer
the knowledge learned to the domain of action recommendation. A graphical demonstration of
the proposed knowledge transfer framework can be found in Figure 3 and Figure 4.

In the latent model construction phase, the BNN for outcome prediction is learned by only
considering the actions reported in the training dataset. Therefore, standard learning techniques
such as a VIBNN can be used for this phase. Note that we consider both “good” actions and
“bad” actions in this phase in the hope that the latent model network can adapt to a wide range of
input cases.

In the knowledge transfer phase, another BNN is trained with recommended actions as outputs.
Since the reported actions are not guaranteed to be the best possible ones, only inputs of the
samples in the training dataset are used so that the inference engine is trained with the right
distribution over inputs. While the output values (i.e. desirable actions) for the inference engine
cannot be explicitly set during the training phase (because there are no assumed ground truths),
desirable actions are implicitly specified as those that produce desirable outcomes (which can be
deduced from pre-existing domain knowledge.) For instance, in the context of an emergency
room visit by a patient, although we cannot easily know what prescription to give to a patient,
our goal is to keep the patient’s vital signs within a healthy range. Therefore, by concatenating
the latent model network after the inference engine (which is yet to be learned) and placing the
desirable outcome for each input sample as the final output, we can guide the inference engine to
produce better actions. The loss function required for learning a VIBNN can then be expressed
by a measure of difference between the desirable outcome and the (estimated) achieved outcome
with the current inference engine (e.g., mean squared error or cross entropy.) Note that while the
network parameters in the latent model should not be modified anymore in this training phase,
the underlying BNN structure is amenable to updates by the neural back-propagation algorithm
in combination with any with any gradient-based optimizer such as the gradient descent method.
Clearly, the back-propagation algorithm plus the gradient descent method can be employed to
learn the latent variables of the inference engine.

Approved for Public Release; Distribution Unlimited
6

Figure 3: Step 1: latent model construction

Figure 4: Step 2: knowledge transfer

3.1.3 Random Number Generator Design
To implement a VIBNN in hardware, one crucial step is to design a Gaussian random number
generator (GRNG) that has high bandwidth and low resource usage.

Our first attempt is a GRNG using the Wallace algorithm (as shown in Figure 5). After a lookup
table of 𝐾𝐾 × 𝐿𝐿 Gaussian random numbers are initialized as “seeds”, the Wallace algorithm can
generate a Gaussian random number flow by (i) sampling 𝐾𝐾 elements from the lookup table at
random (using an LFSR or a Tausworth RNG), (ii) performing a linear transformation on the 𝐾𝐾
samples using a Hadamard matrix, (iii) updating the lookup table with transformed values, and
(iv) returning the transformed values as outputs once in 𝑅𝑅 iterations. A block diagram of our
implementation is shown in Figure 6. Our preliminary results show that a small size of lookup
table of 128 or 256 entries with a 16-bit fixed point number for each entry will be sufficient to
generate random numbers for the Bayesian neuron, and random numbers could be generated in
each clock cycle.

Approved for Public Release; Distribution Unlimited
7

Later on, we observe that the Wallace GRNG has a large memory overhead and design a RAM-
based Linear Feedback Gaussian Random Number Generator (RLF-GRNF) which is ideal for
parallel random number generation.

Figure 5: Wallace algorithm

Figure 6: Block diagram of a Wallace GRNG

Approved for Public Release; Distribution Unlimited
8

Precisely, the binomial approximation method [2] has been adopted in the design of a Gaussian
random number generator. This method is implemented by using a 128-bit Linear Feedback Shift
Register (LFSR) for parallel random seed bit production and a Parallel Counter (PC) to convert
the number of 1's in the LFSR to a binary number. An LFSR is capable of exhaustive pseudo-
random number generation and is easy to implement in hardware. The PC can be implemented
using adders in a tree structure. This method is, however, not suitable for parallel implementation
due to its high usage of LFSR registers. That is why we opted to implement the linear feedback
function in a RAM as described below.

The architecture of a RAM-based linear feedback GRNG (RLF-GRNG) is shown in Figure 7.
The RAM block is used for seed bits storing. Instead of performing shifting as LFSRs, the RLG-
GRNG method uses an indexer to perform the equivalent operation in RAM. The indexer
memorizes the head and tap locations, and increments their values in each iteration.

Figure 7: Control and Data Flow Graph of an RLF-
GRNG

Figure 8: Comparison of register- and RAM-based LSFRs

As a simple example shown in Figure 8, the LFSR uses fixed head locations in which the head is
always the MSB or the LSB of the register, and shift its contents in each cycle. The RAM based
linear feedback logic stores all seeds in a RAM block and uses an indexer to track the head
location and the taps locations. The buffer register stores the values of the current taps and head.
In addition, the buffer register and the updater shifts its updated values to minimize the RAM
access frequency if there are taps that are consecutive (in other words, a tap whose value still
requires updating in the following iteration can be stored in the buffer register instead of being
written back to the RAM in the current iteration and being read again in the following iteration.
The updater performs the XOR function with the head for each tap and updates their values. The
controller implements a state machine. In each state, the head or one of the taps is updated. The
PC calculates the number of 1's in the new taps values, while the previous values are stored in
the tap register. The rest of the operations are performed in the second stage. The tap difference
is obtained using the subtractor before being added to the previous result which is stored in the
result register. The initial result values can be pre-calculated and stored in a ROM block for the
result register initialization.

Approved for Public Release; Distribution Unlimited
9

3.1.4 Input Dimension Reduction
Optionally, an input dimension reduction module can be included in the design. We choose to
implement an algorithm using the independent component analysis (ICA) method.

In the standard linear model, input features are modeled as linear combinations of some
independent components:

xm×1 = Am×nsn×1 m ≥ n

where x is a column vector of input features, A is the mixing matrix comprised of row vectors
ai, i = 1,2, . . . , m, s is a column vector of random independent components sj, j = 1,2, . . . , n, m is
the dimensionality of input features, and n is the dimensionality of independent components.
Independent components are assumed to be non-stationary, so that different linear models may be
in effect at different times.

The objective of ICA is to find a separation matrix that finds an estimate of independent
components, without having any prior information about independent components, s , or the
mixing matrix, A. This can be written as:

yn×1 = Bn×mxm×1

where y is a column vector of estimates of independent components and B is the separation matrix.

One of the major advantages of ICA over other dimensionality reduction techniques such as PCA
and factor analysis is that it deals with non-Gaussian distributions, e.g. heavy-tailed distributions
that are common in many real-world datasets. Another advantage of ICA is that it finds
components that are statistically independent. This property has an impact on machine learning
models that deal with probability density functions (PDFs). For example, in Bayesian neural
networks where inputs, weights, and/or outputs are represented by PDFs, a challenging and
computationally expensive step is sampling these possibly dependent density functions. This
problem becomes more complicated when the dependency among distributions involves higher-
order statistics (HOS). Consequently, if ICA is applied to input features as a preprocessing step,
the PDF of each feature in reduced space can be easily sampled independent of other features.

There are two general ways for estimating independent components. The first one is by direct use
of HOS and by maximizing a measure of non-Gaussianity. The intuition behind these methods is
that because sum of two random variables is closer to a Gaussian than original ones, estimated
components are independent when a measure of non-Gaussianity is maximized. The second one is
by indirect use of HOS through nonlinear decorrelation. The rationale behind these methods is that,
if yi and yj are independent, any nonlinear transformations g(yi) and h(yj) are uncorrelated.
Therefore, they try to find the separation matrix such that yi and yj are uncorrelated and
transformed components g(yi) and h(yj) are also uncorrelated.

Approved for Public Release; Distribution Unlimited
10

Equivariant Adaptive Separation via Independence (EASI) [3] is a gradient-based algorithm that
estimates independent components using nonlinear decorrelation. EASI has several advantages
compared to other algorithms for ICA. First, it is an adaptive algorithm which makes it suitable
for problems where underlying distributions of input features change. In problems where
adaptivity is not a must, there are superior algorithms such as FastICA, which seeks an orthogonal
rotation of whitened data through a fixed-point iteration scheme. Second, it is equivariant, i.e.
convergence rates, stability conditions, and interference rejection levels depend only on
distributions of source signals and are independent of the mixing matrix. Third, unlike other
methods that require whitening of input features as a preprocessing step, it merges whitening with
separation, which improves parallelism. Last but not least, the basic operations are computationally
efficient since it only requires addition and multiplication.

Figure 9 shows an overview of the EASI algorithm and the operations required to implement it.
First, the separation matrix is initialized with random values. Then, in each iteration, the separation
matrix is multiplied by input features to generate output features. A nonlinear function g(.) is
applied element-wise to output features to introduce HOS to the problem. The output of nonlinear
function and output features are fed to the module that calculates relative gradient H (aka natural
gradient). Finally, relative gradient is multiplied by learning rate µ to update elements of the
separation matrix for the next iteration. The same steps are repeated until convergence.

Figure 9: Block diagram of EASI and required operations

4. Results and Discussions

We delivered the following reports, software packages, and hardware as part of this project.

Software packages and hardware deliverable:

• Hardware realization of a random number generator meeting an arbitrary monotonic pdf
(based on the mean field sampling framework) – delivered in April 2017. GRNG.zip:

Approved for Public Release; Distribution Unlimited
11

Verilog code for Wallace GRNG and RLF-GRNG in the attached source code and data
files.

• Implementation of the EASI Algorithm for input feature reduction (software and
hardware) – delivered in May 2017. See EASI.zip: Software and hardware code for input
feature reduction module in the attached source code and data files

• Implementation of the VIBNN for some target applications (software and hardware) –
delivered with this report. See VIBNN.zip: Software (Tensorflow) and hardware
(Verilog) code for VIBNN for different applications in the attached source code and data
files.

• System integration, test and performance evaluation – delivered as part of this report. See
evaluation and results below.

The aforesaid software and hardware design files can be downloaded from the following
password protected URL: http://sportlab.usc.edu/downloads/download-protected/. For username
and password information, please write to PI, Massoud Pedram, at pedram@usc.edu.

Reports and publications:

1. M. Nazemi, S. Nazarian and M. Pedram, "High-performance FPGA implementation of
equivariant adaptive separation via independence algorithm for Independent Component
Analysis," in Proceedings of the 28th IEEE International Conference on Application-
specific Systems, Architectures and Processors (ASAP), 2017.

2. R. Cai, A. Ren, L. Wang, M. Pedram and Y. Wang, "Hardware Acceleration of Bayesian
Neural Networks using RAM based Linear Feedback Gaussian Random Number
Generators," in Proceedings of the IEEE International Conference on Computer Design
(ICCD), 2017.

3. R. Cai, A. Ren, N. Liu, L. Wang, M. Pedram, and Y. Wang. “VIBNN: Hardware
Acceleration of Bayesian Neural Networks,” to appear in Proc. of the 23rd ACM
International Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS), Mar. 2018.

4.1 Evaluation of the Knowledge Transfer Framework in VINE
To evaluate the performance of the proposed knowledge transfer framework, we use the UCI
mushroom dataset [4], which contains descriptions of hypothetical samples corresponding to 23
species of gilled mushrooms in the Agaricus and Lepiota Family. Each species is identified as
edible or poisonous. There is no simple rule for determining the edibility of a mushroom. It
contains 8,124 instances, each consisting of 22 features (e.g., cap-shape, stalk-shape, habitat,
etc.). The whole dataset is split of which 80% is used for training and 20% is used for testing.
Since all features are of enumeration type, we apply one-hot encoding and get a total of 118
binary features as a result. Binary actions (whether to eat a mushroom or not) are considered
while non-deterministic rewards are assigned based on the edibility of the mushroom and the
action taken. When one chose not to eat, the reward is set to zero. If a poisonous mushroom is
eaten, a reward is generated from a Gaussian distribution 𝑁𝑁(−3.0, 2.25). On the other hand, if an
edible mushroom is eaten, a reward is generated from a Gaussian distribution 𝑁𝑁(3.0, 2.25). The
goal is to maximize the average reward given the features of mushrooms in the test set. While

Approved for Public Release; Distribution Unlimited
12

actions are not included in the original data, we preprocess the dataset to generate reported
actions. It is assumed that 80% of reported actions are correct (i.e. to eat an edible mushroom or
not to eat a poisonous mushroom).

The BNN used for latent model construction (referred to as BNN IAO) generates predicted
outcome in terms of rewards while taking the input features and reported actions. The BNN used
for action recommendation (referred to as BNN IA) produces possible best actions in terms of
possibilities from a softmax normalization from input features and the output of the BNN IAO. In
Table 1, the performance of the proposed inference engine with various sizes of hidden layers is
compared against three baselines, namely, (i) “always eat”, (ii) “never eat”, and (iii) “take the
reported action”. The mean squared error (MSE) between rewards produced by the trained latent
model BNN IAO and rewards for the training dataset at the training epoch 10 decreases from
1.1827 to 1.1793. This indicates BNN with smaller network size would be more accurate for
reward prediction after a same number of training epochs. The mean reward achieved by taking
recommended actions produced form BNN IA would decrease from 1.5569 to 1.5233 when the
hidden layer size reduces from 200 to 32. Except for the as-mentioned difference in network
size, all networks are trained using the same dataset and hyper parameter settings as discussed.

Table 1 Performance evaluation of the proposed transfer learning framework at different network configurations

BNN IAO
Configuration

BNN IA
Configuration

Mean
Reward

(BNN IA)

Mean
Reward
(always

eat)

Mean
Reward

(reported)

Mean
Reward
(oracle)

BNN
IAO

(MSE)

119x200x200x1 118x200x200x1 1.5569 0.1104 0.9596 1.5622 1.1827
119x128x128x1 118x128x128x1 1.5501 0.1218 0.9596 1.5692 1.1846

119x64x64x1 118x64x64x1 1.5306 0.1416 0.9596 1.5621 1.1750
119x32x32x1 118x32x32x1 1.5233 0.1305 0.9596 1.5827 1.1793

4.2 Hardware Implementation of the VINE

4.2.1 Random Number Generator Design
The block diagram of the implemented RLF-GRNG is shown in Figure 10. The Initialization
ROM stores the initial summation results of the seeds RAM in the GRNG. The seeds RAM
stores all seeds for random variable generation. Each bit of the word read from the RAM is
propagated to an LF-updater for tap update and random variable calculation. Each LF-updater
implements the 2-stage pipeline structure discussed above. The updated taps per tap location are
collected from all LF-updaters and formed into one word to be written back to the seed RAM.
The results generated by every four LF-updaters are selected sequentially by 4 outputs with
different orders through its multiplexer for enhanced randomness. All select signals are shared
and generated by the controller. The controller also produces indices and memory access signals
for the seeds RAM, as well as command signals for all LF-updaters.

Approved for Public Release; Distribution Unlimited
13

Figure 10: Block diagram of the RLF-GRNG

A comparison of hardware utilization of Wallace GRNG and RLF-GRNG to generate 64 random
numbers in parallel is shown in Table 2. One can see that the RLF-GRNG implementation
achieves significant saving on the amount of required memory.

Table 2 Summary of hardware resource utilization

 Wallace GRNG RLF-GRNG
ALM 401/113,560 (< 1%) 831/113,560 (< 1%)
Register count 1166 1780
Block memory bits 1,048,576/12,492,800 (8%) 16,384/12,492,800 (< 1%)
RAM blocks 103/1220 (8%) 3/1220 (< 1%)

4.2.2 Input Dimension Reduction
Figure 11 provides an overview of the hardware realization flow of the EASI algorithm. More
precisely, to realize EASI in hardware, the following steps are taken. The algorithm is
implemented in software to tune the learning rate and find an appropriate nonlinear function.
Design space exploration follows to investigate the power-performance trade-offs of various
architectures. Finally, the target circuit is implemented in Chisel [5] for hardware realization.
The details of each step are explained later in the report.

Approved for Public Release; Distribution Unlimited
14

Figure 11: EASI implementation from software to hardware

Implementation in software allows us to quickly compare the quality of outputs for various
nonlinear functions and learning rates. The Python implementation that will be turned in is a
parameterized implementation of the EASI algorithm in the sense that the number of output
dimensions can be determined by the user. After that, the learning rate can be tuned for the selected
dimensions count. The nonlinear function used in this implementation is 𝑔𝑔(ℎ) = 𝑦𝑦3 and the
learning rate is set to 0.001.

The basic building blocks required to implement the EASI algorithm include vector and matrix
operations, such as vector-vector outer product, matrix-vector multiplication, and matrix-matrix
multiplication/addition/subtraction. These operations can be implemented using nested loops in
which various iterations of a loop are independent of each other. This introduces an opportunity
for optimization where a loop may be unrolled fully or partially to increase parallelism at the cost
of higher power and area consumption.

At a higher level of abstraction, EASI can be divided into macroblocks that have a limited
communication with each other. This introduces another avenue for optimization which allows
breaking down the hardware implementation into these macroblocks and use a pipelined
architecture to increase throughput at the cost of slightly higher power and area consumption.

Approved for Public Release; Distribution Unlimited
15

Figure 12: Design space exploration

Figure 12 shows the power-delay trade-offs for a non-pipelined design and a pipelined design
(obtained using Aladdin [6]). We can see that in a non-pipelined design (the left-hand plot), the
power-delay curve is almost linear while in a pipelined design (the right-hand plot), there are
regions where 5% increase in the delay can lead to 40% reduction in power consumption.

Baseline hardware implementation using Chisel

Because of the loop-carried dependency in the data dependency graph shown in Figure 9, EASI
algorithm cannot be implemented efficiently using a pipelined architecture. As a result, we choose
a single-cycle architecture to implement the algorithm. However, it may be possible to change the
EASI algorithm to use a mini-batch gradient descent optimization instead of a stochastic gradient
descent optimization to benefit from a pipelined architecture. This modification is explained later
in the report.

All the operations shown in the data dependency graph of Figure 9 plus some additional operations
including floating-point addition/subtraction/multiplication were implemented in Chisel. For each
individual module, unit testing was performed and the modules passed all the tests. Additionally,
the top module was tested and its correctness was verified.

Pipelined Implementation of the EASI algorithm

Because of the loop-carried data dependency in EASI with SGD, a fast and scalable hardware
implementation is almost impossible. To design a hardware that is capable of operating at high
speeds, we need to introduce a new optimization algorithm which is suitable for hardware
implementation. Sequential mini-batch gradient descent (SMBGD) optimization is an update rule
we propose to integrate with EASI. Similar to mini-batch gradient descent (MBGD) optimization,
SMBGD allows multiple training samples to use the same separation matrix before updating the
separation matrix for next iterations. As a result, a new training sample can be fed to the pipeline
in each clock cycle, which improves the throughput. Additionally, it improves convergence by

Approved for Public Release; Distribution Unlimited
16

considering multiple training samples, in contrast to SGD that considers a single training sample
at a time and causes noisier steps towards the minimum and may complicate convergence.

Our simulations show that using SMBGD can improve convergence rate by 24%, clock frequency
by 3.2 times, and throughput by 13 times (for a 2-input, 2-output problem). The hardware resources
required for implementing EASI with SMBGD are summarized as follows:

of input
dimensions

of output
dimensions

of adaptive logic modules
(ALMs)

of
registers

of
DSPs

2 2 6104 2144 26
4 2 10355 3377 42

4.2.3 VIBNN Hardware-Software Realization
The block diagram of the proposed hardware implementation of the VIBNN is shown in Figure
13. The ROM block stores software-learned variational parameters (for each connection in the
VIBNN, there are two stored parameter values, one corresponding to the mean, the other to the
variance.) The RAM is used to store intermediate results such as the layer output of intermediate
layers. The core functionality of forward propagation is implemented using the layer
computation block, which is comprised of multiple neuron computation blocks. Figure 14 shows
the data-path in a neuron computation block, which calculates the output for one neuron. The
inputs of the neuron (primary inputs or outputs from the previous layer) are read from the RAM
block and multiplied with corresponding weights. The GRNG block produces a random value
distributed per a zero-mean, unit-variance Gaussian distribution. This block, also called RLF-
GRNG, was explained above. The Shift-and-Scale block takes as input the random number,
which is generated by the GRNG block, and suitably shifts and scales this value so that the
transformed value serves as a random number matching an arbitrary Gaussian distribution with
the specified mean and variance, which were read from the ROM. The products are then
accumulated at the next stage. Given the limited amount of resources, each neuron is updated in
a time-multiplexed manner in which only a subset of its inputs and weights are multiplied and
accumulated in each cycle. The activation function block is implemented as the rectified linear
unit (ReLU) for its good performance as well as hardware complexity concern.

The full forward propagation in a BNN is implemented as a series of single-layer neuron
computations. More precisely, a 𝑘𝑘-layer deep neural network is implemented in 𝑘𝑘 steps, each
step realizing exactly one of the 𝑘𝑘 layers in increasing order. The layer computation block
contains exactly eight neuron computation blocks, each of which implements the connection
from eight input neurons to one output neuron. In total, the layer computation block can perform
forward propagation from at most eight input neurons to at most eight output neurons
simultaneously. If a layer has more than eight neurons and exceeds the bandwidth of the layer
computation block, one has to time share the neuron computation blocks by decomposing the
forward propagation into smaller problems. For example, the full forward propagation from 30
neurons to 30 neurons will be decomposed into 4 × 4 = 16 subproblems.

Approved for Public Release; Distribution Unlimited
17

The controller coordinates memory access and arithmetic operations. The memory access
addresses and the control signals are generated by the controller. The inputs, immediate layers
outputs, and variational parameters are stored in the RAM and the ROM in ascending order.
Therefore, memory accessing can be controlled by counter based logics. The controller
implements three counters for read addresses for RAM, write addresses for RAM, and read
addresses for ROM respectively. A finite state machine is implemented to generate all control
signals such as register load and write enable according to the network structure.

Combining all aforementioned components, a VIBNN is implemented as a five-stage pipeline.
The first two stages are used for random number generation. A pipeline stage is inserted after the
weight update block. The last two stages are for the layer computation block for inner products
calculations.

4.3 Evaluation of the VINE
We implement the proposed design of BNN on an Altera Cyclone V FPGA (Model Number
5CGTFD9E5F35C7) for the MNIST dataset [7]. Using a 784-200-200-10 network, a non-
Bayesian ANN with Dropout applied can achieve 97.50% test accuracy. For a VIBNN, the
software implementation can achieve 98.10% test accuracy whereas the hardware
implementation can achieve 97.81% accuracy. In other words, the proposed implementation of
BNN on FPGA degrades only 0.29% compared to its software model but can still achieve higher
accuracy compared to a non-Bayesian ANN. The hardware resource utilization of the
implemented BNN is shown in Table 3.

Table 3 Hardware utilization of the FPGA implementation of a BNN

Type of resource Utilization
ALMs 2765/113,560 (2%)
Register count 3438
Block memory bits 4,355,456/12,492,800 (35%)
RAM blocks 426/1220 (35%)
DSP blocks 128/342 (37%)

Approved for Public Release; Distribution Unlimited
18

Figure 13: Block Diagram of a BNN

Figure 14: Datapath of a Neuron Computation Block

We have also applied the proposed framework to a mortality prediction task in which a VIBNN
is used to predict the chance of survival of a number of patients given severity scores (such as
SAPS-II [8]), prior clinical notes, and other information. We extracted from the MIMIC-III
dataset [9] 91 features for each patient (gender, age, nine different severity scores, 20 Elixhauser
comorbidity [10], and 50 features extracted from the clinical notes using a latent Dirichlet
allocation [11]) and measured the area under receiver’s operating characteristic curve (AUROC).
A 91-256-256-1 network is used for this task. The software version without and quantization
achieves an AUROC of 0.8479, which is similar to the result of ANN with Dropout (0.8493).
The hardware version results in only a minor degradation and achieves an AUROC of 0.8457
while being significantly faster.

Approved for Public Release; Distribution Unlimited
19

5. Conclusion

This report described our findings and results for the DARPA MTO seedling project titled
“SpiNN-SC: Stochastic Computing-Based Realization of Spiking Neural Networks” also known
as “VINE: A Variational Inference-Based Bayesian Neural Network Engine.” A set of prototype
software and hardware design deliverables for the said project was produced. Experimental
results proved the effectiveness and anticipated benefits of the Bayesian Neural Network (BNN)
with an integrated Variational Inference (VI) engine for performing inference and learning.
Future work may apply the developed platform to a variety of applications ranging from natural
language processing to cybersecurity, from dynamic energy governance in mobile systems to
data center resource management, and from object classification to trend forecasting.

Approved for Public Release; Distribution Unlimited
20

6. References

[1] C. Blundell, J. Cornebise, K. Kavukcuoglu and D. Wierstra, "Weight uncertainty in neural
networks," arXiv preprint arXiv:1505.05424, 2015.

[2] G. E. Box, W. G. Hunter and J. S. Hunter, Statistics for experimenters: an introduction to
design, data analysis, and model building, JSTOR, 1978.

[3] J.-F. Cardoso and B. H. Laheld, "Equivariant adaptive source separation," IEEE
Transactions on signal processing, vol. 44, no. 12, pp. 3017-3030, 1996.

[4] J. Schlimmer, "Mushroom records drawn from The Audubon Society field guide to north
American mushrooms," GH Lincoff (Pres), New York, 1981.

[5] J. Bachrach, H. Vo, B. Richards, Y. Lee, A. Waterman, R. Avižienis, J. Wawrzynek and K.
Asanović, "Chisel: constructing hardware in a scala embedded language," in Proceedings
of the 49th Annual Design Automation Conference, 2012.

[6] Y. S. Shao, B. Reagen, G.-Y. Wei and D. Brooks, "Aladdin: A pre-rtl, power-performance
accelerator simulator enabling large design space exploration of customized architectures,"
in Computer Architecture (ISCA), 2014 ACM/IEEE 41st International Symposium on,
2014.

[7] Y. LeCun, L. Bottou, Y. Bengio and P. Haffner, "Gradient-based learning applied to
document recognition," Proceedings of the IEEE, vol. 86, no. 11, pp. 2278-2324, 1998.

[8] J.-R. Le Gall, S. Lemeshow and F. Saulnier, "A new simplified acute physiology score
(SAPS II) based on a European/North American multicenter study," Jama, vol. 270, no. 24,
pp. 2957-2963, 1993.

[9] A. E. Johnson, T. J. Pollard, L. Shen, L.-w. H. Lehman, M. Feng, M. Ghassemi, B. Moody,
P. Szolovits, L. A. Celi and R. G. Mark, "MIMIC-III, a freely accessible critical care
database," Nature Publishing Group, 2016.

[10] A. Elixhauser, C. Steiner, D. R. Harris and R. M. Coffey, "Comorbidity measures for use
with administrative data," Medical care, vol. 36, no. 1, pp. 8-27, 1998.

[11] D. M. Blei, A. Y. Ng and M. I. Jordan, "Latent dirichlet allocation," Journal of machine
Learning research, vol. 3, no. Jan, pp. 993-1022, 2003.

Approved for Public Release; Distribution Unlimited
21

7. List of Symbols, Abbreviations and Acronyms

ANN Artificial Neural Network

BNN Bayesian Neural Network

EASI Equivariant Adaptive Separation via Independence

FPGA Field Programmable Gate Array

GRNG Gaussian Random Number Generator

HOS High Order Statistics

ICA Independent Component Analysis

LFSR Linear Feedback Shift Register

LUT Look Up Table

MAP Maximum A Posterior

MBGD Mini-Batch Gradient Descent

MCMC Markov Chain Monte Carlo

PC Parallel Counter

PDF Probability Density Function

RAM Random Access Memory

RLF-GRNF RAM-based Linear Feedback Gaussian Random Number Generator

ROM Read Only Memory

RNG Random Number Generator

SGD Sequential Gradient Descent

SMBGD Sequential Mini-Batch Gradient Descent

VI Variational Inference

VIBNN Variational Inference Based Bayesian Neural Network

	1. Summary
	2. Introduction
	2.1 Description of the Technical Approach

	3. Methods, Assumptions, and Procedures
	3.1 Construction and Optimization of the VIBNN
	3.1.1 VIBNN Construction, Training, and Inference Engine
	3.1.2 Knowledge Transfer from Outcome Prediction to Action Recommendation
	3.1.3 Random Number Generator Design
	3.1.4 Input Dimension Reduction

	4. Results and Discussions
	4.1 Evaluation of the Knowledge Transfer Framework in VINE
	4.2 Hardware Implementation of the VINE
	4.2.1 Random Number Generator Design
	4.2.2 Input Dimension Reduction
	4.2.3 VIBNN Hardware-Software Realization

	4.3 Evaluation of the VINE

	5. Conclusion
	7. List of Symbols, Abbreviations and Acronyms

