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1. Summary 

This report describes our findings and results for the DARPA MTO seedling project titled 
“SpiNN-SC: Stochastic Computing-Based Realization of Spiking Neural Networks” also known 
as “VINE: A Variational Inference-Based Bayesian Neural Network Engine.” The report is 
accompanied by the full set of prototype software and hardware design deliverables for the said 
project.  

2. Introduction 

The primary goal was to develop a Bayesian Neural Network (BNN) with an integrated 
Variational Inference (VI) engine to perform inference and learning (statically and on-the-fly) 
under uncertain or incomplete input and output features. A secondary goal is to enable robust 
decision making under noise and variability in the observed data and without reference to a 
ground truth. The key expected impact is to enable a new generation of BNNs that can operate 
on input and output features specified as random variables, that admit efficient hardware 
realization, and that can not only do inference but also can be retrained on-the-fly based on 
incoming data. 

2.1 Description of the Technical Approach 
The approach comprised of the following steps (see Figure 1).  

• Modeling of input and output features as random variables with arbitrary probability 
density functions (pdfs).  

• Cardinality reduction of the input feature space based on a type of independent 
component analysis (ICA).  

• Efficient generation of random values adhering to a desired arbitrary (but monotonic) 
pdf.  

• Implementation of a BNN with integrated VI engine and the ability to accept, process and 
store random variables as inputs or outputs.  

• Analysis of target application data and data/environmental modeling.  
• System integration and demonstration including hardware and software prototyping.   

 

 

Figure 1: Overall Flow of the VINE 
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3. Methods, Assumptions, and Procedures 

The project team developed software and prototype hardware realization of a variational 
inference engine for Bayesian neural network driven by the target application requirements. In 
the rest of this section, we first explain the VIBNN construction, training, and inference engine 
followed by the knowledge transfer framework of a variational inference-based Bayesian neural 
network (VIBNN) which can operate on training data without a ground truth. This is followed by 
descriptions of the random number generator and input dimension reduction modules. 

3.1 Construction and Optimization of the VIBNN  

3.1.1 VIBNN Construction, Training, and Inference Engine  
As shown in Figure 2, a BNN has a set of latent variables, 𝐳𝐳 = {𝑧𝑧1, 𝑧𝑧2, … }, which includes edge 
weights 𝑤𝑤𝑖𝑖𝑖𝑖

𝑙𝑙  from the 𝑖𝑖-th neuron at the layer 𝑙𝑙 to the 𝑗𝑗-th neuron at the layer 𝑙𝑙 + 1 and biases 𝐛𝐛𝑙𝑙 
at the layer 𝑙𝑙. Different from conventional artificial neural networks (ANNs), the latent variables 
in a BNN is specified as distributions instead of scalar values. Equivalently, a BNN can be 
viewed as an ensemble of a large number of neural networks with introduced variabilities on 
weights and biases. As a result, BNNs are robust to disturbances in the learning especially when 
the training set is noisy or incomplete. In addition, the over-fitting problem can be alleviated 
because regularizations are implicitly introduced by imposing prior distributions that are not 
uniform.  

 

Figure 2: Structure of a VIBNN 

The goal of learning a BNN is to find the posterior distribution over its latent variables 𝒛𝒛 given a 
training dataset 𝒟𝒟. As we know from the Bayes’ rule, the posterior distribution of latent 
variables, comprising of all node biases and edge weights in the network, denoted by 
𝑝𝑝(𝒛𝒛|𝒟𝒟), can be calculated as follows 

𝑝𝑝(𝒛𝒛|𝒟𝒟) =
𝑝𝑝(𝒟𝒟|𝒛𝒛) ⋅ 𝑝𝑝(𝒛𝒛)
∫ 𝑝𝑝(𝒟𝒟|𝒛𝒛′)d𝒛𝒛′𝒛𝒛′

 

where 𝑝𝑝(𝒛𝒛) is the prior distribution that is assumed a priori, and 𝑝𝑝(𝒟𝒟|𝒛𝒛) is the likelihood 
function which can be calculated based on the output of the network. However, for most cases of 
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interest, the integral in the denominator is intractable, which calls for efficient approximations. 
One of the most commonly used methods is the Markov Chain Monte Carlo (MCMC), which 
simulates a Markov chain whose stationary (invariant) states follow a given (target) probability 
distribution in a very high dimensional state space and which goal is to generate “fair” samples 
of the said state space by trying to identify and sample high probability states. However, MCMC 
is computationally very expensive and lacks a clear stopping criterion. 

We adopt a learning and inference method called Bayes by Backprop as proposed in [1]. To 
efficiently learn the distributions of the latent variables, the idea of variational inference is 
adopted in which the posterior distribution of latent variables given a dataset 𝒟𝒟, denoted by 
𝑝𝑝(𝒛𝒛|𝒟𝒟), is approximated using a distribution 𝑞𝑞(𝒛𝒛;𝜽𝜽) with a fixed form but a set of unknown 
parameters 𝜽𝜽. To learn the value of 𝜽𝜽, one can minimize the Kullback-Leibler (KL) divergence 
between the variational posterior 𝑞𝑞(𝒛𝒛;𝜽𝜽) and the actual posterior 𝑝𝑝(𝒛𝒛|𝒟𝒟). More precisely, 
finding the best estimation of  𝜽𝜽, denoted by 𝜽𝜽∗, is an optimization problem expressed as follows 

 

𝜽𝜽∗ = argmin
𝜃𝜃

� 𝑞𝑞(𝒛𝒛;𝜽𝜽) log
𝑞𝑞(𝒛𝒛;𝜽𝜽)
𝑝𝑝(𝒛𝒛|𝒟𝒟) d𝒛𝒛

+∞

−∞
 

= argmin
𝜃𝜃

𝔼𝔼𝑞𝑞(𝒛𝒛;𝜽𝜽) �log
𝑞𝑞(𝒛𝒛;𝜽𝜽)
𝑝𝑝(𝒛𝒛|𝒟𝒟)� 

= argmin
𝜃𝜃

𝔼𝔼𝑞𝑞(𝒛𝒛;𝜽𝜽)[log 𝑞𝑞(𝒛𝒛;𝜽𝜽) − log𝑝𝑝(𝒟𝒟|𝒛𝒛) − log𝑝𝑝(𝒛𝒛)] 

 

where the expectation is often evaluated using a Monte Carlo integral by taking a small number 
of sample points according to  𝑞𝑞(𝒛𝒛;𝜽𝜽). For convenience of expression, we define ℱ(𝜽𝜽) as the 
objective function on the right-hand side of the equation above. In practice, the optimization 
problem can be solved using the gradient descent method. 

In our case, 𝑞𝑞(𝒛𝒛;𝜽𝜽) is assumed to be Gaussian. The set of parameters is 𝜽𝜽 = {𝝁𝝁, Σ}, where 𝝁𝝁 is 
the mean vector, and Σ = diag(σ12,𝜎𝜎22, … ) is a diagonal covariance matrix.  For simplicity, we 
define 𝝈𝝈 = (𝜎𝜎1,𝜎𝜎2, … )As a result, the latent variables can be re-parameterized in terms of 𝜽𝜽 as 
follows 

𝒛𝒛 = 𝝁𝝁 + Σ𝝐𝝐 
= 𝝁𝝁 + 𝝈𝝈 ∘ 𝝐𝝐 

 

where “∘” is element-wise multiplication operation, and 𝝐𝝐 ∼ 𝑁𝑁(𝟎𝟎, 𝑰𝑰). Furthermore, to eliminate 
the constraint that 𝝈𝝈 is non-negative, we introduce 𝝆𝝆 ∈ ℝ such that 𝝈𝝈 = log(1 + exp𝝆𝝆). Since 
there is a one-to-one mapping from 𝝆𝝆 to 𝝈𝝈, we will optimize 𝝆𝝆 instead of 𝝈𝝈. Consequently, ℱ(𝜽𝜽) 
can be rewritten as 

ℱ(𝜽𝜽) = 𝔼𝔼𝑞𝑞(𝝐𝝐)[log 𝑞𝑞(𝒛𝒛;𝝁𝝁,𝝆𝝆) − log 𝑝𝑝(𝒟𝒟|𝒛𝒛) − log 𝑝𝑝(𝒛𝒛)] 
 

And the partial derivative of ℱ(𝜽𝜽) with respect to 𝝁𝝁 and 𝝆𝝆 can in turn be written as 
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𝜕𝜕ℱ(𝜽𝜽)
𝜕𝜕𝝁𝝁

= 𝔼𝔼𝑞𝑞(𝝐𝝐) �
𝜕𝜕𝜕𝜕(𝒛𝒛;𝜽𝜽)
𝜕𝜕𝒛𝒛

+
𝜕𝜕𝑞𝑞(𝒛𝒛;𝝁𝝁,𝝆𝝆)

𝜕𝜕𝝁𝝁
� 

𝜕𝜕ℱ(𝜽𝜽)
𝜕𝜕𝝆𝝆

= 𝔼𝔼𝑞𝑞(𝝐𝝐) �
𝜕𝜕𝜕𝜕(𝒛𝒛;𝜽𝜽)
𝜕𝜕𝒛𝒛

∘
𝝐𝝐

1 + exp(−𝝆𝝆) +
𝜕𝜕𝑞𝑞(𝒛𝒛;𝝁𝝁,𝝆𝝆)

𝜕𝜕𝝆𝝆
� 

where 
𝜕𝜕(𝒛𝒛;𝜽𝜽) = log 𝑞𝑞(𝒛𝒛;𝜽𝜽) − log 𝑝𝑝(𝒟𝒟|𝒛𝒛) − log𝑝𝑝(𝒛𝒛) 

 

With 𝑞𝑞(𝒛𝒛;𝜽𝜽) local to each parameter (for a diagonal covariance matrix), 𝑝𝑝(𝒟𝒟|𝒛𝒛) available at the 
network output after a round of forward propagation, and  𝑝𝑝(𝒛𝒛) assumed as prior knowledge 
(Gaussian in our case), the value of 𝜕𝜕𝜕𝜕(𝒛𝒛;𝜽𝜽)

𝜕𝜕𝒛𝒛
 can be found using standard back-propagation 

techniques from the output layer to the input layer. Meanwhile, 𝜕𝜕𝑞𝑞(𝒛𝒛;𝝁𝝁,𝝆𝝆)
𝜕𝜕𝝁𝝁

 and 𝜕𝜕𝑞𝑞(𝒛𝒛;𝝁𝝁,𝝆𝝆)
𝜕𝜕𝝆𝝆

 can be 

directly computed independent of the network structure. After the gradient is obtained, gradient 
descent can be applied as 

𝜽𝜽 ← 𝜽𝜽 − 𝛼𝛼
𝜕𝜕ℱ(𝜽𝜽)
𝜕𝜕𝜽𝜽

 

 

where 𝛼𝛼 is the learning factor. We will refer to the BNN learned via variational inference as 
explained above as the VIBNN. Considering the high computational complexity of learning a 
BNN due to integral computation using Monte Carlo sampling, we choose not to include the 
learning algorithm in the proposed FPGA realization. Instead, we choose to learn the BNN in 
software and load the learned network parameters into the FPGA platform for inference.  

One simple way to use the learned BNN for inference is to put the maximum a posteiori (MAP) 
estimation of the latent variables in the place of the edge weights and node biases of an ANN. 
This way, any existing inference framework designed for an ANN can also be applied to a BNN. 
However, to fully utilize the posterior distribution of the network weights which better represent 
the network, one should derive the network output by averaging over the output produced by the 
ensemble of networks specified according to the posterior distribution. In other words, instead of 
using a point estimation of the latent variables, one should sample the latent variables multiple 
times according to the posterior distribution, each producing a set of outputs, and then averaging 
over all the produced output. Formally, given the input features 𝒙𝒙0, if the network function is 
denoted by 𝒚𝒚 = 𝑔𝑔(𝒙𝒙0; 𝒛𝒛) where 𝒚𝒚 is the output of the network after one round of forward 
propagation using latent variables (edge weights and node biases) 𝒛𝒛, then the output of the 
VIBNN, denoted by 𝒚𝒚�, given 𝒙𝒙0 and 𝑞𝑞(𝒛𝒛;𝜽𝜽) is computed as 

𝒚𝒚� = 𝔼𝔼𝑞𝑞(𝒛𝒛;𝜽𝜽)[𝑔𝑔(𝒙𝒙𝟎𝟎; 𝒛𝒛)] 

≅�𝑔𝑔(𝒙𝒙0; 𝒛𝒛𝑠𝑠)
𝑀𝑀

𝑠𝑠=1
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where 𝒛𝒛𝑠𝑠 is a sample of 𝒛𝒛 according to 𝑞𝑞(𝒛𝒛;𝜽𝜽), and 𝑀𝑀 is the number of samples used (typically 
set to 5 or 10). 

3.1.2 Knowledge Transfer from Outcome Prediction to Action Recommendation 
A conventional BNN cannot be used for action recommendation without encountering the “no 
ground truth” problem. Therefore, we propose a knowledge transfer framework which first 
constructs a BNN for outcome prediction only (i.e. latent model construction) and then transfer 
the knowledge learned to the domain of action recommendation. A graphical demonstration of 
the proposed knowledge transfer framework can be found in Figure 3 and Figure 4. 

In the latent model construction phase, the BNN for outcome prediction is learned by only 
considering the actions reported in the training dataset. Therefore, standard learning techniques 
such as a VIBNN can be used for this phase. Note that we consider both “good” actions and 
“bad” actions in this phase in the hope that the latent model network can adapt to a wide range of 
input cases. 

In the knowledge transfer phase, another BNN is trained with recommended actions as outputs. 
Since the reported actions are not guaranteed to be the best possible ones, only inputs of the 
samples in the training dataset are used so that the inference engine is trained with the right 
distribution over inputs. While the output values (i.e. desirable actions) for the inference engine 
cannot be explicitly set during the training phase (because there are no assumed ground truths), 
desirable actions are implicitly specified as those that produce desirable outcomes (which can be 
deduced from pre-existing domain knowledge.) For instance, in the context of an emergency 
room visit by a patient, although we cannot easily know what prescription to give to a patient, 
our goal is to keep the patient’s vital signs within a healthy range. Therefore, by concatenating 
the latent model network after the inference engine (which is yet to be learned) and placing the 
desirable outcome for each input sample as the final output, we can guide the inference engine to 
produce better actions. The loss function required for learning a VIBNN can then be expressed 
by a measure of difference between the desirable outcome and the (estimated) achieved outcome 
with the current inference engine (e.g., mean squared error or cross entropy.) Note that while the 
network parameters in the latent model should not be modified anymore in this training phase, 
the underlying BNN structure is amenable to updates by the neural back-propagation algorithm 
in combination with any with any gradient-based optimizer such as the gradient descent method. 
Clearly, the back-propagation algorithm plus the gradient descent method can be employed to 
learn the latent variables of the inference engine. 
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Figure 3: Step 1: latent model construction 

 

Figure 4: Step 2: knowledge transfer 

3.1.3 Random Number Generator Design 
To implement a VIBNN in hardware, one crucial step is to design a Gaussian random number 
generator (GRNG) that has high bandwidth and low resource usage.  

Our first attempt is a GRNG using the Wallace algorithm (as shown in Figure 5). After a lookup 
table of 𝐾𝐾 × 𝐿𝐿 Gaussian random numbers are initialized as “seeds”, the Wallace algorithm can 
generate a Gaussian random number flow by (i) sampling 𝐾𝐾 elements from the lookup table at 
random (using an LFSR or a Tausworth RNG), (ii) performing a linear transformation on the  𝐾𝐾 
samples using a Hadamard matrix, (iii) updating the lookup table with transformed values, and 
(iv) returning the transformed values as outputs once in 𝑅𝑅 iterations. A block diagram of our 
implementation is shown in Figure 6. Our preliminary results show that a small size of lookup 
table of 128 or 256 entries with a 16-bit fixed point number for each entry will be sufficient to 
generate random numbers for the Bayesian neuron, and random numbers could be generated in 
each clock cycle. 
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Later on, we observe that the Wallace GRNG has a large memory overhead and design a RAM-
based Linear Feedback Gaussian Random Number Generator (RLF-GRNF) which is ideal for 
parallel random number generation.  

 

Figure 5: Wallace algorithm 

 

 

Figure 6: Block diagram of a Wallace GRNG 
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Precisely, the binomial approximation method [2] has been adopted in the design of a Gaussian 
random number generator. This method is implemented by using a 128-bit Linear Feedback Shift 
Register (LFSR) for parallel random seed bit production and a Parallel Counter (PC) to convert 
the number of 1's in the LFSR to a binary number. An LFSR is capable of exhaustive pseudo-
random number generation and is easy to implement in hardware. The PC can be implemented 
using adders in a tree structure. This method is, however, not suitable for parallel implementation 
due to its high usage of LFSR registers. That is why we opted to implement the linear feedback 
function in a RAM as described below. 

The architecture of a RAM-based linear feedback GRNG (RLF-GRNG) is shown in Figure 7. 
The RAM block is used for seed bits storing. Instead of performing shifting as LFSRs, the RLG-
GRNG method uses an indexer to perform the equivalent operation in RAM. The indexer 
memorizes the head and tap locations, and increments their values in each iteration.  

 

Figure 7: Control and Data Flow Graph of an RLF-
GRNG 

 

 
Figure 8: Comparison of register- and RAM-based LSFRs 

As a simple example shown in Figure 8, the LFSR uses fixed head locations in which the head is 
always the MSB or the LSB of the register, and shift its contents in each cycle. The RAM based 
linear feedback logic stores all seeds in a RAM block and uses an indexer to track the head 
location and the taps locations. The buffer register stores the values of the current taps and head. 
In addition, the buffer register and the updater shifts its updated values to minimize the RAM 
access frequency if there are taps that are consecutive (in other words, a tap whose value still 
requires updating in the following iteration can be stored in the buffer register instead of being 
written back to the RAM in the current iteration and being read again in the following iteration. 
The updater performs the XOR function with the head for each tap and updates their values. The 
controller implements a state machine. In each state, the head or one of the taps is updated. The 
PC calculates the number of 1's in the new taps values, while the previous values are stored in 
the tap register. The rest of the operations are performed in the second stage. The tap difference 
is obtained using the subtractor before being added to the previous result which is stored in the 
result register. The initial result values can be pre-calculated and stored in a ROM block for the 
result register initialization. 
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3.1.4 Input Dimension Reduction 
Optionally, an input dimension reduction module can be included in the design. We choose to 
implement an algorithm using the independent component analysis (ICA) method. 

In the standard linear model, input features are modeled as linear combinations of some 
independent components: 

xm×1 = Am×nsn×1    m ≥ n 
 

where x is a column vector of input features, A is the mixing matrix comprised of row vectors 
ai, i = 1,2, . . . , m, s is a column vector of random independent components sj, j = 1,2, . . . , n, m is 
the dimensionality of input features, and n is the dimensionality of independent components. 
Independent components are assumed to be non-stationary, so that different linear models may be 
in effect at different times. 

The objective of ICA is to find a separation matrix that finds an estimate of independent 
components, without having any prior information about independent components, s , or the 
mixing matrix, A. This can be written as: 

yn×1 = Bn×mxm×1 
 

where y is a column vector of estimates of independent components and B is the separation matrix. 

One of the major advantages of ICA over other dimensionality reduction techniques such as PCA 
and factor analysis is that it deals with non-Gaussian distributions, e.g. heavy-tailed distributions 
that are common in many real-world datasets. Another advantage of ICA is that it finds 
components that are statistically independent. This property has an impact on machine learning 
models that deal with probability density functions (PDFs). For example, in Bayesian neural 
networks where inputs, weights, and/or outputs are represented by PDFs, a challenging and 
computationally expensive step is sampling these possibly dependent density functions. This 
problem becomes more complicated when the dependency among distributions involves higher-
order statistics (HOS). Consequently, if ICA is applied to input features as a preprocessing step, 
the PDF of each feature in reduced space can be easily sampled independent of other features.  

There are two general ways for estimating independent components. The first one is by direct use 
of HOS and by maximizing a measure of non-Gaussianity. The intuition behind these methods is 
that because sum of two random variables is closer to a Gaussian than original ones, estimated 
components are independent when a measure of non-Gaussianity is maximized. The second one is 
by indirect use of HOS through nonlinear decorrelation. The rationale behind these methods is that, 
if yi  and yj  are independent, any nonlinear transformations g(yi)  and h(yj)  are uncorrelated. 
Therefore, they try to find the separation matrix such that yi  and yj  are uncorrelated and 
transformed components g(yi) and h(yj) are also uncorrelated. 
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Equivariant Adaptive Separation via Independence (EASI) [3] is a gradient-based algorithm that 
estimates independent components using nonlinear decorrelation. EASI has several advantages 
compared to other algorithms for ICA. First, it is an adaptive algorithm which makes it suitable 
for problems where underlying distributions of input features change. In problems where 
adaptivity is not a must, there are superior algorithms such as FastICA, which seeks an orthogonal 
rotation of whitened data through a fixed-point iteration scheme. Second, it is equivariant, i.e. 
convergence rates, stability conditions, and interference rejection levels depend only on 
distributions of source signals and are independent of the mixing matrix. Third, unlike other 
methods that require whitening of input features as a preprocessing step, it merges whitening with 
separation, which improves parallelism. Last but not least, the basic operations are computationally 
efficient since it only requires addition and multiplication. 

Figure 9 shows an overview of the EASI algorithm and the operations required to implement it. 
First, the separation matrix is initialized with random values. Then, in each iteration, the separation 
matrix is multiplied by input features to generate output features. A nonlinear function g(. ) is 
applied element-wise to output features to introduce HOS to the problem. The output of nonlinear 
function and output features are fed to the module that calculates relative gradient H (aka natural 
gradient). Finally, relative gradient is multiplied by learning rate µ to update elements of the 
separation matrix for the next iteration. The same steps are repeated until convergence. 

 

Figure 9: Block diagram of EASI and required operations 

 

4. Results and Discussions 

We delivered the following reports, software packages, and hardware as part of this project.  

Software packages and hardware deliverable: 

• Hardware realization of a random number generator meeting an arbitrary monotonic pdf 
(based on the mean field sampling framework) – delivered in April 2017. GRNG.zip: 
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Verilog code for Wallace GRNG and RLF-GRNG in the attached source code and data 
files. 

• Implementation of the EASI Algorithm for input feature reduction (software and 
hardware) – delivered in May 2017. See EASI.zip: Software and hardware code for input 
feature reduction module in the attached source code and data files 

• Implementation of the VIBNN for some target applications (software and hardware) – 
delivered with this report. See VIBNN.zip: Software (Tensorflow) and hardware 
(Verilog) code for VIBNN for different applications in the attached source code and data 
files. 

• System integration, test and performance evaluation – delivered as part of this report. See 
evaluation and results below. 

 

The aforesaid software and hardware design files can be downloaded from the following 
password protected URL: http://sportlab.usc.edu/downloads/download-protected/. For username 
and password information, please write to PI, Massoud Pedram, at pedram@usc.edu.  

Reports and publications: 

1. M. Nazemi, S. Nazarian and M. Pedram, "High-performance FPGA implementation of 
equivariant adaptive separation via independence algorithm for Independent Component 
Analysis," in Proceedings of the 28th IEEE International Conference on Application-
specific Systems, Architectures and Processors (ASAP), 2017. 

2. R. Cai, A. Ren, L. Wang, M. Pedram and Y. Wang, "Hardware Acceleration of Bayesian 
Neural Networks using RAM based Linear Feedback Gaussian Random Number 
Generators," in Proceedings of the IEEE International Conference on Computer Design 
(ICCD), 2017. 

3. R. Cai, A. Ren, N. Liu, L. Wang, M. Pedram, and Y. Wang. “VIBNN: Hardware 
Acceleration of Bayesian Neural Networks,” to appear in Proc. of the 23rd ACM 
International Conference on Architectural Support for Programming Languages and 
Operating Systems (ASPLOS), Mar. 2018. 
 

4.1 Evaluation of the Knowledge Transfer Framework in VINE 
To evaluate the performance of the proposed knowledge transfer framework, we use the UCI 
mushroom dataset [4], which contains descriptions of hypothetical samples corresponding to 23 
species of gilled mushrooms in the Agaricus and Lepiota Family. Each species is identified as 
edible or poisonous. There is no simple rule for determining the edibility of a mushroom. It 
contains 8,124 instances, each consisting of 22 features (e.g., cap-shape, stalk-shape, habitat, 
etc.). The whole dataset is split of which 80% is used for training and 20% is used for testing. 
Since all features are of enumeration type, we apply one-hot encoding and get a total of 118 
binary features as a result. Binary actions (whether to eat a mushroom or not) are considered 
while non-deterministic rewards are assigned based on the edibility of the mushroom and the 
action taken. When one chose not to eat, the reward is set to zero. If a poisonous mushroom is 
eaten, a reward is generated from a Gaussian distribution 𝑁𝑁(−3.0, 2.25). On the other hand, if an 
edible mushroom is eaten, a reward is generated from a Gaussian distribution 𝑁𝑁(3.0, 2.25). The 
goal is to maximize the average reward given the features of mushrooms in the test set. While 
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actions are not included in the original data, we preprocess the dataset to generate reported 
actions. It is assumed that 80% of reported actions are correct (i.e. to eat an edible mushroom or 
not to eat a poisonous mushroom). 

The BNN used for latent model construction (referred to as BNN IAO) generates predicted 
outcome in terms of rewards while taking the input features and reported actions. The BNN used 
for action recommendation (referred to as BNN IA) produces possible best actions in terms of 
possibilities from a softmax normalization from input features and the output of the BNN IAO. In 
Table 1, the performance of the proposed inference engine with various sizes of hidden layers is 
compared against three baselines, namely, (i) “always eat”, (ii) “never eat”, and (iii) “take the 
reported action”. The mean squared error (MSE) between rewards produced by the trained latent 
model BNN IAO and rewards for the training dataset at the training epoch 10 decreases from 
1.1827 to 1.1793. This indicates BNN with smaller network size would be more accurate for 
reward prediction after a same number of training epochs. The mean reward achieved by taking 
recommended actions produced form BNN IA would decrease from 1.5569 to 1.5233 when the 
hidden layer size reduces from 200 to 32. Except for the as-mentioned difference in network 
size, all networks are trained using the same dataset and hyper parameter settings as discussed. 

 

Table 1 Performance evaluation of the proposed transfer learning framework at different network configurations 

BNN IAO 
Configuration 

BNN IA 
Configuration 

Mean 
Reward 

(BNN IA) 

Mean 
Reward 
(always 

eat) 

Mean 
Reward 

(reported) 

Mean 
Reward 
(oracle) 

BNN 
IAO 

(MSE) 

119x200x200x1 118x200x200x1 1.5569 0.1104 0.9596 1.5622 1.1827 
119x128x128x1 118x128x128x1 1.5501 0.1218 0.9596 1.5692 1.1846 

119x64x64x1 118x64x64x1 1.5306 0.1416 0.9596 1.5621 1.1750 
119x32x32x1 118x32x32x1 1.5233 0.1305 0.9596 1.5827 1.1793 

 

4.2 Hardware Implementation of the VINE  

4.2.1 Random Number Generator Design 
The block diagram of the implemented RLF-GRNG is shown in Figure 10. The Initialization 
ROM stores the initial summation results of the seeds RAM in the GRNG. The seeds RAM 
stores all seeds for random variable generation. Each bit of the word read from the RAM is 
propagated to an LF-updater for tap update and random variable calculation. Each LF-updater 
implements the 2-stage pipeline structure discussed above. The updated taps per tap location are 
collected from all LF-updaters and formed into one word to be written back to the seed RAM. 
The results generated by every four LF-updaters are selected sequentially by 4 outputs with 
different orders through its multiplexer for enhanced randomness. All select signals are shared 
and generated by the controller. The controller also produces indices and memory access signals 
for the seeds RAM, as well as command signals for all LF-updaters. 
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Figure 10: Block diagram of the RLF-GRNG 

 

A comparison of hardware utilization of Wallace GRNG and RLF-GRNG to generate 64 random 
numbers in parallel is shown in Table 2. One can see that the RLF-GRNG implementation 
achieves significant saving on the amount of required memory. 

 

Table 2 Summary of hardware resource utilization 

 Wallace GRNG RLF-GRNG 
ALM 401/113,560 ( < 1% ) 831/113,560 ( < 1% ) 
Register count 1166 1780 
Block memory bits 1,048,576/12,492,800 ( 8% ) 16,384/12,492,800 ( < 1% ) 
RAM blocks 103/1220 ( 8% ) 3/1220 ( < 1% ) 

 

4.2.2 Input Dimension Reduction 
Figure 11 provides an overview of the hardware realization flow of the EASI algorithm. More 
precisely, to realize EASI in hardware, the following steps are taken. The algorithm is 
implemented in software to tune the learning rate and find an appropriate nonlinear function. 
Design space exploration follows to investigate the power-performance trade-offs of various 
architectures. Finally, the target circuit is implemented in Chisel [5] for hardware realization. 
The details of each step are explained later in the report. 
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Figure 11: EASI implementation from software to hardware 

Implementation in software allows us to quickly compare the quality of outputs for various 
nonlinear functions and learning rates. The Python implementation that will be turned in is a 
parameterized implementation of the EASI algorithm in the sense that the number of output 
dimensions can be determined by the user. After that, the learning rate can be tuned for the selected 
dimensions count. The nonlinear function used in this implementation is 𝑔𝑔(ℎ) = 𝑦𝑦3  and the 
learning rate is set to 0.001.  

The basic building blocks required to implement the EASI algorithm include vector and matrix 
operations, such as vector-vector outer product, matrix-vector multiplication, and matrix-matrix 
multiplication/addition/subtraction. These operations can be implemented using nested loops in 
which various iterations of a loop are independent of each other. This introduces an opportunity 
for optimization where a loop may be unrolled fully or partially to increase parallelism at the cost 
of higher power and area consumption. 

At a higher level of abstraction, EASI can be divided into macroblocks that have a limited 
communication with each other. This introduces another avenue for optimization which allows 
breaking down the hardware implementation into these macroblocks and use a pipelined 
architecture to increase throughput at the cost of slightly higher power and area consumption.  



 

Approved for Public Release; Distribution Unlimited 
15 

 

Figure 12: Design space exploration 

Figure 12 shows the power-delay trade-offs for a non-pipelined design and a pipelined design 
(obtained using Aladdin [6]). We can see that in a non-pipelined design (the left-hand plot), the 
power-delay curve is almost linear while in a pipelined design (the right-hand plot), there are 
regions where 5% increase in the delay can lead to 40% reduction in power consumption. 

Baseline hardware implementation using Chisel 

Because of the loop-carried dependency in the data dependency graph shown in Figure 9, EASI 
algorithm cannot be implemented efficiently using a pipelined architecture. As a result, we choose 
a single-cycle architecture to implement the algorithm. However, it may be possible to change the 
EASI algorithm to use a mini-batch gradient descent optimization instead of a stochastic gradient 
descent optimization to benefit from a pipelined architecture. This modification is explained later 
in the report. 

All the operations shown in the data dependency graph of Figure 9 plus some additional operations 
including floating-point addition/subtraction/multiplication were implemented in Chisel. For each 
individual module, unit testing was performed and the modules passed all the tests. Additionally, 
the top module was tested and its correctness was verified.  

Pipelined Implementation of the EASI algorithm 

Because of the loop-carried data dependency in EASI with SGD, a fast and scalable hardware 
implementation is almost impossible. To design a hardware that is capable of operating at high 
speeds, we need to introduce a new optimization algorithm which is suitable for hardware 
implementation. Sequential mini-batch gradient descent (SMBGD) optimization is an update rule 
we propose to integrate with EASI. Similar to mini-batch gradient descent (MBGD) optimization, 
SMBGD allows multiple training samples to use the same separation matrix before updating the 
separation matrix for next iterations. As a result, a new training sample can be fed to the pipeline 
in each clock cycle, which improves the throughput. Additionally, it improves convergence by 
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considering multiple training samples, in contrast to SGD that considers a single training sample 
at a time and causes noisier steps towards the minimum and may complicate convergence.  

Our simulations show that using SMBGD can improve convergence rate by 24%, clock frequency 
by 3.2 times, and throughput by 13 times (for a 2-input, 2-output problem). The hardware resources 
required for implementing EASI with SMBGD are summarized as follows: 

# of input 
dimensions 

# of output 
dimensions 

# of adaptive logic modules 
(ALMs) 

# of 
registers 

# of 
DSPs 

2 2 6104 2144 26 
4 2 10355 3377 42 

 
4.2.3 VIBNN Hardware-Software Realization  
The block diagram of the proposed hardware implementation of the VIBNN is shown in Figure 
13. The ROM block stores software-learned variational parameters (for each connection in the 
VIBNN, there are two stored parameter values, one corresponding to the mean, the other to the 
variance.)  The RAM is used to store intermediate results such as the layer output of intermediate 
layers. The core functionality of forward propagation is implemented using the layer 
computation block, which is comprised of multiple neuron computation blocks. Figure 14 shows 
the data-path in a neuron computation block, which calculates the output for one neuron. The 
inputs of the neuron (primary inputs or outputs from the previous layer) are read from the RAM 
block and multiplied with corresponding weights. The GRNG block produces a random value 
distributed per a zero-mean, unit-variance Gaussian distribution. This block, also called RLF-
GRNG, was explained above. The Shift-and-Scale block takes as input the random number, 
which is generated by the GRNG block, and suitably shifts and scales this value so that the 
transformed value serves as a random number matching an arbitrary Gaussian distribution with 
the specified mean and variance, which were read from the ROM. The products are then 
accumulated at the next stage. Given the limited amount of resources, each neuron is updated in 
a time-multiplexed manner in which only a subset of its inputs and weights are multiplied and 
accumulated in each cycle. The activation function block is implemented as the rectified linear 
unit (ReLU) for its good performance as well as hardware complexity concern. 

The full forward propagation in a BNN is implemented as a series of single-layer neuron 
computations. More precisely, a 𝑘𝑘-layer deep neural network is implemented in 𝑘𝑘 steps, each 
step realizing exactly one of the 𝑘𝑘 layers in increasing order. The layer computation block 
contains exactly eight neuron computation blocks, each of which implements the connection 
from eight input neurons to one output neuron. In total, the layer computation block can perform 
forward propagation from at most eight input neurons to at most eight output neurons 
simultaneously. If a layer has more than eight neurons and exceeds the bandwidth of the layer 
computation block, one has to time share the neuron computation blocks by decomposing the 
forward propagation into smaller problems. For example, the full forward propagation from 30 
neurons to 30 neurons will be decomposed into 4 × 4 = 16 subproblems. 



 

Approved for Public Release; Distribution Unlimited 
17 

The controller coordinates memory access and arithmetic operations. The memory access 
addresses and the control signals are generated by the controller. The inputs, immediate layers 
outputs, and variational parameters are stored in the RAM and the ROM in ascending order. 
Therefore, memory accessing can be controlled by counter based logics. The controller 
implements three counters for read addresses for RAM, write addresses for RAM, and read 
addresses for ROM respectively. A finite state machine is implemented to generate all control 
signals such as register load and write enable according to the network structure. 

Combining all aforementioned components, a VIBNN is implemented as a five-stage pipeline. 
The first two stages are used for random number generation. A pipeline stage is inserted after the 
weight update block. The last two stages are for the layer computation block for inner products 
calculations. 

4.3 Evaluation of the VINE 
We implement the proposed design of BNN on an Altera Cyclone V FPGA (Model Number 
5CGTFD9E5F35C7) for the MNIST dataset [7]. Using a 784-200-200-10 network, a non-
Bayesian ANN with Dropout applied can achieve 97.50% test accuracy. For a VIBNN, the 
software implementation can achieve 98.10% test accuracy whereas the hardware 
implementation can achieve 97.81% accuracy. In other words, the proposed implementation of 
BNN on FPGA degrades only 0.29% compared to its software model but can still achieve higher 
accuracy compared to a non-Bayesian ANN. The hardware resource utilization of the 
implemented BNN is shown in Table 3. 

 

Table 3 Hardware utilization of the FPGA implementation of a BNN 

Type of resource Utilization 
ALMs 2765/113,560 ( 2% ) 
Register count 3438 
Block memory bits 4,355,456/12,492,800 ( 35% ) 
RAM blocks 426/1220 ( 35% ) 
DSP blocks 128/342 ( 37% ) 
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Figure 13: Block Diagram of a BNN 

 

Figure 14: Datapath of a Neuron Computation Block 

We have also applied the proposed framework to a mortality prediction task in which a VIBNN 
is used to predict the chance of survival of a number of patients given severity scores (such as 
SAPS-II [8]), prior clinical notes, and other information. We extracted from the MIMIC-III 
dataset [9] 91 features for each patient (gender, age, nine different severity scores, 20 Elixhauser 
comorbidity [10], and 50 features extracted from the clinical notes using a latent Dirichlet 
allocation [11]) and measured the area under receiver’s operating characteristic curve (AUROC). 
A 91-256-256-1 network is used for this task. The software version without and quantization 
achieves an AUROC of 0.8479, which is similar to the result of ANN with Dropout (0.8493). 
The hardware version results in only a minor degradation and achieves an AUROC of 0.8457 
while being significantly faster. 
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5. Conclusion 

This report described our findings and results for the DARPA MTO seedling project titled 
“SpiNN-SC: Stochastic Computing-Based Realization of Spiking Neural Networks” also known 
as “VINE: A Variational Inference-Based Bayesian Neural Network Engine.” A set of prototype 
software and hardware design deliverables for the said project was produced. Experimental 
results proved the effectiveness and anticipated benefits of the Bayesian Neural Network (BNN) 
with an integrated Variational Inference (VI) engine for performing inference and learning. 
Future work may apply the developed platform to a variety of applications ranging from natural 
language processing to cybersecurity, from dynamic energy governance in mobile systems to 
data center resource management, and from object classification to trend forecasting.  

  



 

Approved for Public Release; Distribution Unlimited 
20 

6. References 

[1]  C. Blundell, J. Cornebise, K. Kavukcuoglu and D. Wierstra, "Weight uncertainty in neural 
networks," arXiv preprint arXiv:1505.05424, 2015.  

[2]  G. E. Box, W. G. Hunter and J. S. Hunter, Statistics for experimenters: an introduction to 
design, data analysis, and model building, JSTOR, 1978.  

[3]  J.-F. Cardoso and B. H. Laheld, "Equivariant adaptive source separation," IEEE 
Transactions on signal processing, vol. 44, no. 12, pp. 3017-3030, 1996.  

[4]  J. Schlimmer, "Mushroom records drawn from The Audubon Society field guide to north 
American mushrooms," GH Lincoff (Pres), New York, 1981.  

[5]  J. Bachrach, H. Vo, B. Richards, Y. Lee, A. Waterman, R. Avižienis, J. Wawrzynek and K. 
Asanović, "Chisel: constructing hardware in a scala embedded language," in Proceedings 
of the 49th Annual Design Automation Conference, 2012.  

[6]  Y. S. Shao, B. Reagen, G.-Y. Wei and D. Brooks, "Aladdin: A pre-rtl, power-performance 
accelerator simulator enabling large design space exploration of customized architectures," 
in Computer Architecture (ISCA), 2014 ACM/IEEE 41st International Symposium on, 
2014.  

[7]  Y. LeCun, L. Bottou, Y. Bengio and P. Haffner, "Gradient-based learning applied to 
document recognition," Proceedings of the IEEE, vol. 86, no. 11, pp. 2278-2324, 1998.  

[8]  J.-R. Le Gall, S. Lemeshow and F. Saulnier, "A new simplified acute physiology score 
(SAPS II) based on a European/North American multicenter study," Jama, vol. 270, no. 24, 
pp. 2957-2963, 1993.  

[9]  A. E. Johnson, T. J. Pollard, L. Shen, L.-w. H. Lehman, M. Feng, M. Ghassemi, B. Moody, 
P. Szolovits, L. A. Celi and R. G. Mark, "MIMIC-III, a freely accessible critical care 
database," Nature Publishing Group, 2016. 

[10]  A. Elixhauser, C. Steiner, D. R. Harris and R. M. Coffey, "Comorbidity measures for use 
with administrative data," Medical care, vol. 36, no. 1, pp. 8-27, 1998.  

[11]  D. M. Blei, A. Y. Ng and M. I. Jordan, "Latent dirichlet allocation," Journal of machine 
Learning research, vol. 3, no. Jan, pp. 993-1022, 2003.  

 

 
 
 
 
 



 

Approved for Public Release; Distribution Unlimited 
21 

7. List of Symbols, Abbreviations and Acronyms 

ANN   Artificial Neural Network 

BNN   Bayesian Neural Network 

EASI   Equivariant Adaptive Separation via Independence 

FPGA   Field Programmable Gate Array 

GRNG   Gaussian Random Number Generator 

HOS   High Order Statistics 

ICA   Independent Component Analysis 

LFSR   Linear Feedback Shift Register 

LUT   Look Up Table 

MAP   Maximum A Posterior 

MBGD  Mini-Batch Gradient Descent 

MCMC   Markov Chain Monte Carlo 

PC   Parallel Counter 

PDF    Probability Density Function 

RAM   Random Access Memory 

RLF-GRNF  RAM-based Linear Feedback Gaussian Random Number Generator 

ROM   Read Only Memory 

RNG   Random Number Generator 

SGD   Sequential Gradient Descent 

SMBGD   Sequential Mini-Batch Gradient Descent 

VI   Variational Inference 

VIBNN  Variational Inference Based Bayesian Neural Network 
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