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ABSTRACT 

The Marine Corps Warfighting Lab’s Unmanned Tactical Autonomous Control 

and Collaboration (UTACC) program seeks to integrate Marines and autonomous 

machines to address the challenges encountered in the complex battlefield environment 

of the twenty-first century. In order to harness its combat capabilities, the Marine-

machine team must be able to communicate. Successful integration of the Marine-

machine team relies on choosing the right interfaces to achieve man-machine 

communication, whether they are audio, visual, haptic, electromagnetic, or some method 

yet discovered.  

This thesis seeks to help determine the correct sensor suite needed to address the 

information exchange requirements for a successful Marine-machine team. The authors 

conducted their research using a top-down approach that started at the doctrinal level and 

finished with the Marine Corps Tasks List. The result is a recommended table of 

measures of effectiveness (MOEs) and measures of performance (MOPs) for insertion 

into the Marine Corps Task List to evaluate the communication nodes utilized by the 

Marine-machine team. Future research should seek to develop additional MOEs/MOPs 

deemed necessary for the progress of UTACC.  

 



 vi 

THIS PAGE INTENTIONALLY LEFT BLANK 



vii 

TABLE OF CONTENTS 

I. INTRODUCTION..................................................................................................1 
A. VISION OF UTACC..................................................................................2 
B. NECESSITY OF MOP/MOE ...................................................................2 
C. THESIS IMPACT AND ORGANIZATION ...........................................3 
D. CHAPTER CONCLUSION ......................................................................4 

II. LITERATURE REVIEW .....................................................................................5
A. USMC MISSIONS, DOCTRINE AND TTPS .........................................5 
B. MARINE-MACHINE INTEGRATION ..................................................6 
C. OBSERVABILITY, PREDICTABILITY, DIRECTABILITY .............9 
D. COMMUNICATION INTERFACES ....................................................10 
E. MOEs AND MOPs ...................................................................................14 
F. CHAPTER CONCLUSION ....................................................................14 

III. RESEARCH METHODOLOGY AND RELATED FACTORS .....................17
A. BASIC SYSTEMS ENGINEERING PROCESS ..................................17 
B. UTACC TERMS AND DEFINITIONS .................................................18 
C. UTACC ASSUMPTIONS .......................................................................20 
D. UTACC CONSTRAINTS .......................................................................21 
E. ROLE OF DOCTRINE AND TTPS ......................................................21 
F. ANALYSIS DEVELOPMENT LAYERS ..............................................23 

1. CJCS J-7 Commander’s Handbook for Assessment ................25
2. Director, Operational Test and Evaluation ...............................25
3. UTACC MOEs and MOPs ..........................................................28

G. CHAPTER CONCLUSION ....................................................................30 

IV. UTACC HMI MEASURES OF EFFECTIVENESS AND MEASURES
OF PERFORMANCE .........................................................................................31 
A. MOPs .........................................................................................................31 
B. MOEs ........................................................................................................32 
C. MCTL ORGANIZATION AND WARFIGHTING .............................32 
D. TESTING ENVIRONMENT ..................................................................33 
E. CHAPTER CONCLUSION ....................................................................34 

V. SUMMARIZING RESULTS AND RECOMMENDATIONS FOR 
FURTHER RESEARCH .....................................................................................37 
A. SUMMARIZING RESULTS ..................................................................37 



 viii 

1. MOP and MOE Final Tables ......................................................37 
2. Limitations of MOP and MOE Tables .......................................43 

B. RECOMMENDATIONS FOR FURTHER RESEARCH ...................43 
C. CHAPTER CONCLUSION ....................................................................45 

APPENDIX A.  MCT 5.1.4 MAINTAIN TWO-WAY COMMUNICATION WITH 
AUTONOMOUS ROBOTICS AND FIRST LEVEL SUB-TASKS ..................47 

APPENDIX B.  MCT 5.1.4.1 IDENTIFICATION OF TEAM MEMBERS AND 
SUB-TASKS .........................................................................................................49 

APPENDIX C.  MCT 5.1.4.2 EXPLICIT HUMAN-ROBOT 
COMMUNICATION AND SUB-TASKS............................................................51 

APPENDIX D.  MCT 5.1.4.3 EXPLICIT ROBOT-HUMAN 
COMMUNICATION AND SUB-TASKS............................................................53 

LIST OF REFERENCES ................................................................................................55 

INITIAL DISTRIBUTION LIST ...................................................................................59 

 

  



ix 

LIST OF FIGURES 

Figure 1. Four-Step UCD Process. Source: U.S. Department of Health and 
Human Services (2015). ...............................................................................8 

Figure 2. Safariland Group’s Tactical Throat Microphone Headset. Source: 
Safariland Group (n.d.). .............................................................................12 

Figure 3. Ergonomic Vibrotactile Feedback Device. Source: Schätzle et al. 
(2010). ........................................................................................................13 

Figure 4. Black Diamond Advanced Technology's Modular Tactical System 
(MTS). Source: Soldier Systems (n.d.). .....................................................13 

Figure 5. Systems Engineering Model. Source: Blanchard & Blyler (2016). ...........18 

Figure 6. Framework for HMI MOE and MOP Development ..................................24 

Figure 7. Generic “Vee” Developmental Model. Source: Blanchard & Blyler 
(2016). ........................................................................................................26 



 x 

THIS PAGE INTENTIONALLY LEFT BLANK 



xi 

LIST OF TABLES 

Table 1. Excerpt from MCTL 2.0. Source: United States Marine Corps 
(2016). ........................................................................................................22 

Table 2. Continuous Metric Example ......................................................................27 

Table 3. Discrete Metric Example ...........................................................................27 

Table 4. Discrete/Continuous Metric Application to MOEs and MOPs..................27 

Table 5. Preliminary UTACC MCTs of Interest. Source: United States 
Marine Corps (2016). .................................................................................29 

Table 6. Coactive Design IA Tables. Source: Zach (2016). ....................................30 

Table 7. Excerpt from MCTL 2.0. Source: United States Marine Corps 
(2016). ........................................................................................................32 

Table 8. Recommended Update to MCTL 2.0. Adapted from United States 
Marine Corps (n.d.). ...................................................................................33 

Table 9. Recommended Update to MCT 5.1.4 ........................................................33 

Table 10. MCT 5.1.4—Identification of Team Members ..........................................38 

Table 11. MCT 5.1.4.1.1—Visual Identification of Team Members ........................38 

Table 12. MCT 5.1.4.1.2—Audible Identification of Team Members ......................38 

Table 13. MCT 5.1.4.1.3—Electromagnetic Identification of Team Members .........38 

Table 14. MCT 5.1.4.2—Explicit Human-Initiated Communication ........................39 

Table 15. MCT 5.1.4.2.1—Visual Human-Initiated Communication .......................40 

Table 16. MCT 5.1.4.2.2—Audible Human-Initiated Communication .....................40 

Table 17. MCT 5.1.4.2.3—Electromagnetic Human-Initiated Communication .......40 

Table 18. MCT 5.1.4.2.4—Haptic Human-Initiated Communication .......................40 

Table 19. MCT 5.1.4.3—Explicit Robot-Initiated Communication ..........................41 

Table 20. MCT 5.1.4.3.1—Visual Robot-Initiated Communication .........................42 

Table 21. MCT 5.1.4.3.2—Audible Robot-Initiated Communication .......................42 



xii 

Table 22. MCT 5.1.4.3.3—Electromagnetic Robot-Initiated Communication .........42 

Table 23. MCT 5.1.4.3.4—Haptic Robot-Initiated Communication .........................42 



xiii 

LIST OF ACRONYMS AND ABBREVIATIONS 

AoA analysis of alternatives 

AC air carrier 

C2 command and control 

CJCS Chairman of the Joint Chiefs of Staff 

COE campaign of research and experimentation 

COI critical operational issues 

CONOPS concept of operations 

DAU Defense Acquisition University 

DC, CD&I Deputy Commandant, Combat Development and Integration 

DOE design of experimentation 

DOD Department of Defense 

DOT&E Director, Operational Test and Evaluation 

DT1 Developmental Test 1 

EF21 Expeditionary Force 21 

GC ground carrier 

GPS Global Positioning System 

HMI human-machine interface 

IA interdependence analysis 

IROC intuitive robotic operator control 

ITL in the loop 

LTA2 Limited Technical Assessment 2 

MCDP Marine Corps Doctrinal Publication 

MCRP Marine Corps Reference Publication 

MCT Marine Corps Task 

MCTL Marine Corps Task List 

MCWL Marine Corps Warfighting Laboratory 

MCWP Marine Corps Warfighting Publication 

MEF Marine Expeditionary Force 

MET Mission Essential Task 

METL Mission Essential Task List 



 xiv 

MOE measure of effectiveness  

MOP measure of performance 

MTS modular tactical system 

NATO North Atlantic Treaty Organization 

NPS Naval Postgraduate School 

OPD observability, predictability, and directability 

OTL on-the-loop 

SOW statement of work 

SoS system of systems 

TTPs tactics, techniques, and procedures 

UAV unmanned aerial vehicle 

UCD User Centered System Design 

UGV unmanned ground vehicle 

UIS user interface system 

USMC United States Marine Corps 

UTACC Unmanned Tactical Control and Collaboration  

  



xv 

ACKNOWLEDGMENTS 

The authors of this thesis would first and foremost like to thank their thesis 

advisors, Scot Miller and Dan Boger. Their guidance and assistance was instrumental in 

the completion of this thesis. Furthermore, the insight provided by Dr. Matt Johnson on 

his interdependence analysis model of observability, predictability, and directability 

laid the foundation and starting point for the authors in their research. The authors would 

also like to thank MCWL for driving forward the Commandant of the Marine Corps’ 

vision for the place robotics hold in the future of the Marine Corps. Attending MCWL’s 

Demonstration Test 1 would not have been possible without funding from the 

Consortium for Robotics and Unmanned Systems Education and Research. Enough 

cannot be said about how helpful, valuable, and patient the Graduate Writing Center 

and Thesis Processing Office were; thank you, Cheryldee, Kate, and Aileen. And 

finally, to our families, who gave us the leeway to work long hours while giving us the 

support that sustained us, we could not have done this without you.  



 xvi 

THIS PAGE INTENTIONALLY LEFT BLANK 

 



1 

I. INTRODUCTION 

This is a follow-on thesis to the Kirkpatrick and Rushing (2016) thesis regarding 

development of MOEs and MOPs for the Unmanned Tactical Autonomous Control 

and Collaboration (UTACC) program. UTACC is currently a complex robotic 

program, and the authors focused on the system-agnostic capabilities that are required 

for effective communication between Marines and machines. As Kirkpatrick and 

Rushing (2016) state, “It is a concept that has the potential to change the relationship of 

man and machine on the battlefield forever. The concept employs a team of aerial and 

ground robots, in conjunction with complex software enabling their interaction and 

sensor information exchange, to work as semi-autonomous teammates with a small 

Marine Corps unit” (Kirkpatrick & Rushing, 2016, p. 1).  

Just as in the Kirkpatrick and Rushing (2016) thesis, the authors focused on 

previous UTACC theses to serve as the foundation and starting point into researching 

autonomy and robotics in war through the lens of the man-machine team. According to 

Chen and Barnes (2014) and reiterated by Kirkpatrick and Rushing (2016), the two main 

types of interaction between man and machine can be classified as either “on the loop” 

(OTL) or “in the loop” (ITL). OTL interaction is the preferred method of interaction 

because it meets the UTACC requirement of decreasing the cognitive load on the human. 

Kirkpatrick and Rushing (2016) created quantifiable metrics to determine how well 

UTACC supports “on the loop” interaction. The authors took this research and applied it 

to the man-machine communication problem set.  

Following in Kirkpatrick and Rushing’s (2016) MOE and MOP work, this thesis 

recommends MOEs and MOPs to evaluate the communications modalities required to 

support man-machine teaming in a way that supports “man on the loop” interaction. This 

will support the process towards maturing UTACC for eventual use by the warfighter. 
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A. VISION OF UTACC 

As the UTACC program matures, the Marine Corps Warfighting Laboratory 

integrates the program into its campaign of experimentation (COE). MCWL has used 

testing ranging from limited technical assessments to developmental testing to evaluate 

new functionality in the program. In addition to directly testing, MCWL also sponsors 

events for academia and industry to participate and drive innovation. Each of these events 

generates new data sets that can be used to further the UTACC program and assess its 

likelihood of long-term success, justify funding, and continue research projects. The 

UTACC end state is incorporation into a program of record throughout the USMC. 

The ability of the Marine Corps to not only wage war but also conduct many other 

missions will drastically change with the integration of UTACC as an autonomous 

member of the fire team. A key benefit to integrating an autonomous robot is their ability 

to do the “dull, dangerous and dirty” (Singer, 2009, p. 63) jobs that are currently 

conducted by humans. Not only could these jobs be performed by robots, but working in 

a collaborative environment with robots would allow humans to leverage the machine’s 

capabilities that exceed the limits associated with a single human. Moreover, a single 

human could operate numerous robots thereby using the robots as a swarm and removing 

humans from the most dangerous portions of the battlefield (Jameson, Franke, Szczerba, 

& Stockdale, 2005, p. 2).  

B. NECESSITY OF MOP/MOE 

When research focus is lost and the warfighter’s input is minimized, programs 

tend to morph into something that is “pretty” or “gold plated” instead of a program that is 

useful. To ensure the success of any developmental program, accurate, well defined 

MOEs and MOPs are crucial. The creation of MOEs and MOPs helps keep programs on 

track throughout their development. Designed specifically for this purpose, “The 

assessment process uses MOPs to evaluate task performance and MOEs to determine 

progress of operations toward achieving objectives and ultimately the end state” (U.S. 

Joint Chiefs of Staff [USJCS] J-7, 2011, p. ix). 
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C. THESIS IMPACT AND ORGANIZATION 

The authors focused their research on a very specific piece of the UTACC 

program: human-machine interface (HMI) MOEs and MOPs. Narrow in its scope, this 

thesis focuses on the ability for Marine-machine interaction to take place, a crucial and 

necessary problem that requires resolution for UTACC to succeed. Developing MOEs 

and MOPs to evaluate the various sensors and communication interfaces is one of the 

first steps in selecting the right technology. Once solved, these HMI MOEs and MOPs 

will lay the framework for the development of additional UTACC MOEs and MOPs as 

the program evolves.  

This thesis consists of five chapters. Chapter I introduces the thesis and the 

purpose behind the research efforts, including the Marine Corps Warfighting Lab’s vision 

for the UTACC program and the impact this research will have on the Marine writ larger. 

Chapter II, the literature review, explores several fundamental publications and 

documents as they pertain to developing UTACC MOEs and MOPs. Those publications 

and documents include United States Marine Corps Missions, Doctrine and tactics, 

techniques, and procedures (TTPs), Marine/Machine Integration, the principle of 

observability, predictability, and directability (OPD) as it pertains to autonomous 

systems, current communication interfaces and finally the HMI MOPs and MOEs as they 

relate to the military technology selection process. 

Chapter III, Research Methodology and Related Factors, details the HMI MOPs 

and MOEs selection process. After an overview of the basic systems engineering process, 

the authors present UTACC definitions, assumptions, constraints, and the role USMC 

doctrine and TTPs play into the MOE and MOP process. Finally, the layers of analytical 

development are described, laying the framework for the construction of the HMI MOE 

and MOPs. 

Chapter IV, UTACC HMI MOPs and MOEs, is the heart of the thesis. In this 

chapter, the research is separated by components that are presented in a top-down 

approach. The recommended modifications to the MCTL organization are addressed, 

followed by the MOPs and finally the MOEs. Lastly, this thesis recommends future 
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testing scenario metrics and environments for MCWL to use in order to validate our 

research as well as further leverage the results as the UTACC program continues to 

evolve.  

Chapter V is a summary of our results with recommended future research. As is 

the case with previous UTACC theses, the HMI MOE/MOP thesis serves as another link 

in the chain in the evolution of UTACC and, therefore, includes recommendations meant 

to further the HMI components of the system. 

D. CHAPTER CONCLUSION 

UTACC is not simply employing robots on the battlefield; it is employing robots 

to revolutionize warfighting. Whereas previous theses discussed the vision, concept of 

operations, and overall MOEs and MOPs for the program, this thesis specifically targets 

the MOEs and MOPs required which ensure that the man and machine can communicate 

effectively to complete the mission. 
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II. LITERATURE REVIEW

This is the eighth thesis supporting the development of UTACC conducted 

through the Naval Postgraduate School (NPS). Previous theses discussed collaborative 

autonomy, robotics, human-machine interaction, MOEs and MOPs and USMC doctrine. 

Because the previous theses conducted such in depth reviews, this thesis will cover 

MOEs and MOPs specific to the human-machine interface while citing previous works as 

references. This literature review serves to summarize existing publications, current 

work, and thought processes relevant to UTACC design, including autonomy, doctrine, 

communication modalities, MOEs/MOPs, and man-machine integration. 

A. USMC MISSIONS, DOCTRINE AND TTPS 

For UTACC systems to be successful, they must effectively integrate into and 

improve the capabilities of a Marine unit’s ability to accomplish its respective mission. 

However, there are no Marine Corps Doctrinal Publications (MCDPs) which explain how 

to integrate UTACC systems into the force. 

MCDP 1 states that “a significant advantage can be gained by being first to 

exploit a development in the art and science of war” (USMC, 2011, p. 17). As mentioned 

in Rice, Chhabra, & Keim (2015) and paraphrased by Kirkpatrick and Rushing (2016), 

Expeditionary Force 21 (EF21) is the USMC’s vision document how the Marine Corps of 

the 21st century should operate. EF21 states that the modern force will “preserve the 

quantitative edge over opponents” and exploit “innovative concepts and approaches” 

(USMC, 2014). Moreover, EF21 also states that the Marine Corps of the 21st Century will 

be “light enough for rapid response” which is supported through Jameson, et al.’s (2005) 

research as interpreted by the UTACC program (USMC, 2014, p. 7). Most recently, the 

Marine Corps released the Marine Corps Operating Concept, which explicitly drives the 

Marine Corps to exploit automation and “integrate robotic autonomous systems with 

manned platforms and Marines” (United States Marine Corps, 2016, p. 16). UTACC is 

exactly the program that can bridge the current gap in automation and integration.  
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Rice et al. state, “A mature UTACC system requires full integration of 

warfighting functions (intelligence, maneuver, fires, logistics, force protection, command 

and control)” (Rice et al., 2015, p. 17). Kirkpatrick and Rushing (2016) developed MOEs 

and MOPs for the UTACC system writ large, however for the Human/System Integration 

to be effective, it is vital to develop additional MOEs and MOPs specific to the 

communication between Marines and the autonomous systems. This thesis, paired with 

Kirkpatrick and Rushing’s work, will aid in the creation of new doctrine inclusive of the 

autonomous systems in line with both EF21 and the Operating Concept. 

B. MARINE-MACHINE INTEGRATION 

Prior research teams conducted in-depth reviews of Marine-machine integration 

and requirements for successful systems. Of significance to our focus on communication 

interfaces, Kirkpatrick and Rushing state: 

The UTACC system will need to facilitate dynamic information exchange. 
Gold (2009) describes the nature of complex information exchange in the 
four areas of “robot to human, environment to robot, human to robot, 
robot to environment” (Gold, 2009). In addition to these, UTACC 
planning would necessitate the inclusion of robot-to-robot information 
exchange, as the design incorporates more complex and multiple robotic 
systems. Sensors and computers organic to the robot systems will allow 
them to interact with the environment around them, but the UTACC 
collaborative concept will require these robots communicating this sensor 
data to the other UTACC elements involved in the mission including both 
human and machine teammate elements. It will therefore be necessary to 
ensure this communication piece is designed to present the sensor data to 
the decision maker in an effectively and timely manner. This subsequently 
facilitates his mental picture of the real environment around him and 
informs decision-making (Shattuck & Lewis Miller, 2006, p. 3). 
(Kirkpatrick & Rushing, 2016, pp. 9–10) 

The Army Research Lab in Maryland describes the challenges of communicating 

with and integrating autonomous systems:  

A critical challenge of the mid-21st century will involve successfully 
managing and integrating the collections, teams, and swarms of robots that 
would act independently or collaboratively as they undertook a variety of 
missions including the management and protection of communications and 
information networks and the provision of decision-quality information to 
humans. Success in this aspect of command and control would depend 
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upon developing new C2 concepts and approaches, in particular, 
developing and fielding an effective hybrid cognitive architecture that 
leverages the strengths of artificial intelligence and human intelligence to 
go along with the development of new robotic, communications, 
information, and systems technologies. From the various observations of 
workshop participants, the traditional balance between offense and 
defense may shift as it becomes more difficult for the defense to keep up. 
(Kott et al., 2015, p. 23) 

To help alleviate the challenges of communicating with and integrating 

autonomous systems, Donald Norman and Stephen Draper presented the User Centered 

System Design (UCD) concept as depicted in Figure 1. Through their design process, the 

user remains the central focus at each stage of development by asking questions such as, 

“What are the goals and desires of the user, what tools do they need, what type of task are 

they required to accomplish, and what methods do they prefer?” (Norman & Draper, 

1986, p. 2). With these questions in mind, the UCD process lays out four steps: specify 

the context of use; specify the requirements; create design solutions; and evaluate the 

designs (U.S. Department of Health and Human Services, 2015). This framework enables 

the designer to ensure the system being developed remains focused on the needs of the 

user within the context of its operating environment.  
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Figure 1.  Four-Step UCD Process. Source: U.S. Department of Health and 
Human Services (2015). 

The Department of Defense (DOD) published a report titled The Role of 

Autonomy in DOD Systems in 2012 that discussed the capabilities of integrating the 

autonomous systems in order to reduce cognitive load on the operator while 

simultaneously maximizing strengths of the machines: 

With proper design of bounded autonomous capabilities, unmanned 
systems can also reduce the high cognitive load currently placed on 
operators/supervisors. Moreover, increased autonomy can enable humans 
to delegate those tasks that are more effectively done by computer, 
including synchronizing activities between multiple unmanned systems, 
software agents and warfighters—thus freeing humans to focus on more 
complex decision making. (DOD, 2012, p. 1) 

Each of these reports, when combined and viewed through the lens of the Rice et 

al.’s definition of “collaborative autonomy,” describe the challenges to humans’ 

operating systems and the need for specific MOEs and MOPs relating to the Marine-

machine integration to help shape doctrine. 



9 

C. OBSERVABILITY, PREDICTABILITY, DIRECTABILITY 

The following quote from Johnson’s (2014) work clarifies what it means to be 

observable, predictable and directable: 

Observability means making pertinent aspects of one’s status and 
knowledge of the team, task and environment observable to others. 
Observability also involves the ability to observe and interpret pertinent 
signals. It plays a role in many teamwork patterns e.g., monitoring 
progress and providing backup behavior.  

Predictability means one’s actions should be predictable enough that 
others can reasonably rely on them when considering their own actions. 
Predictability also involves considering other’s actions when developing 
one’s own. It is essential to many teamwork patterns such as 
synchronizing actions and achieving efficiency in team performance.  

Directability means one’s ability to direct the behavior of others and 
complementarily by directed by others. It includes explicit commands 
such as task allocation and role assignment as well as subtler influences, 
such as providing guidance or suggestions or even providing salient 
information that is anticipated to alter behavior, such as a warning. 
Teamwork patterns that involve directability include such things as 
requesting assistance and querying for input during decision making.  

By using the OPD framework as a guide, a designer can identify the 
requirements for teamwork based on which interdependence relationships 
the designer chooses to support. The framework can help a designer 
answer questions such as ‘What information needs to be shared,’ ‘Who 
needs to share with whom,’ and ‘When is it relevant.’ The goal of the 
designer is to attain sufficient OPD to support the necessary 
interdependent relationships. (Johnson, 2014, pp. 68–70) 

This OPD framework shifts the focus from one individual component, either the 

robot or the human, to the team components and how they both affect one another 

(Johnson, 2014). Traum, Rickel, Gratch, and Marsella (2003) use three categories to 

discuss the relationship between machines and humans: agents in supporting individual 

team members, agents supporting the team as a whole, and agents as an equal team 

member (Traum et al., 2003). The UTACC program falls in the third category of 

assuming an equal role as the other team members. As noted by the National Research 

Council: 
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This is the hardest role for a software agent to assume, since it is difficult 
to create a software agent that is as effective as a human at both task 
performance and teamwork skills. Instead of merely assisting human team 
members, the software agents can assume equal roles in the team, 
sometimes replacing missing human team members. It can be challenging 
to develop software agents of comparable competency with human 
performers unless the task is relatively simple. (National Research 
Council, 2014, p. 53) 

Through answering the framework’s questions, the Marine Corps will be more 

able to adapt future doctrine to integrate the effectiveness and performance of the 

communication and interaction between the system and human. 

D. COMMUNICATION INTERFACES 

In viewing the UTACC problem set, redundant communication interfaces are 

essential to achieve mission accomplishment in the wide-ranging tactical environment. 

Marines currently use three sensory modes in order to communicate amongst themselves 

at the fire team level: visual, audio, and haptic. By adding a machine to the fire team, 

electromagnetic communication also becomes a viable interface. The selection of the 

correct mode or modes of communication directly relies on the environment in which the 

team is operating. When noise discipline is required, audio communication is a last resort, 

but visual, haptic, and electromagnetic are all viable modes. Conversely, when noise 

discipline is no longer a constraint, audio communication may be the most efficient way 

to disseminate orders and directions to team members. The remainder of this section will 

provide an overview of the available interfaces and is discussed in greater depth in later 

chapters. 

Visual communication is the primary method by which fire teams communicate. 

Additionally, the work of Calinon, Evrard, Gribovskaya, Billard, and Kheddar shows that 

robots, through observation of human behavior, can learn collaborative manipulation 

tasks (Calinon et al., 2009). This would allow the fire team to create team specific signals 

as well as enable the robot to relay and replicate hand-arm signals, creating a feedback 

loop. Some of the limitations of visual communications are poor visibility, restricted 
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terrain, replication error when relaying through the team, as well as enemy interception 

(United States Army, 1987, p. 1-1).   

Audio communication is easy to understand, straightforward, and is situationally 

adaptive. While generally used in situations that do not require noise discipline, a loud 

battlefield environment may reduce the effectiveness of this modality (United States 

Marine Corps, 2002, pp. 3-35). Voice recognition software coupled with a hands-free 

radio, like the Safariland Group’s Tactical Throat Microphone Headset as shown in 

Figure 2, is an example of achieving the audio interface. While voice recognition 

software is not ideal for everyday use such as typing emails or sending text messages, 

limiting the number of commands and the manner in which the commands are stated 

allows for customized software, tailored to the man-machine teaming requirements. 

Moreover, the Marine Corps uses the NATO phonetic alphabet to enable more accurate 

audio recognition in radio communications; this type of simplification can also improve 

man-machine communication. 
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Figure 2.  Safariland Group’s Tactical Throat Microphone Headset. Source: 
Safariland Group (n.d.). 

Haptic communication is the least commonly used method of communication in 

pure human-human interaction because it relies on the sense of touch. However, by 

introducing a machine to the fire team, this method becomes a more viable option by 

using devices such as Schätzle et al.’s ergonomic vibrotactile feedback apparatus, shown 

in Figure 3. This device overcomes the limitations of the audio and visual interfaces as 

well as provide machine acknowledgement of receiving various human commands 

(Schätzle et al., 2010, p. 675). 



13 

Figure 3.  Ergonomic Vibrotactile Feedback Device. Source: 
Schätzle et al. (2010). 

With the addition of a machine into the fire team, electromagnetic 

communication, such as personal digital assistant, iPad, smart glasses, or modular system 

as shown in Figure 4, becomes a fourth interface option for communication. According to 

Fong et al., this type of interface is gaining in popularity due to reduced weight, 

portability, and touch-sensitive displays (Fong et al., 2001, p. 301). As early as 2000, 

Perzanowski, Adams, Schultz, and Marsh showed the validity of using electromagnetic 

devices “as a part of a multi-modal interface for interacting with an autonomous robot” 

(Perzanowski et al., 2000, p. 1).  

Figure 4.  Black Diamond Advanced Technology's Modular Tactical System 
(MTS). Source: Soldier Systems (n.d.). 
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Because several information exchange technologies are in their infancy, the effort 

to identify and codify the MOEs and MOPs is a vital task to ensure the final product 

satisfies the real-world requirements. 

E. MOEs AND MOPs 

As the UTACC program matures, well measured MOEs and MOPs will be 

paramount to the selection process communication and integration of the Marine-machine 

team. This thesis will focus directly on outlining MOEs and MOPs for achieving HMI 

through reliable and redundant communication. 

Linking the results of tactical actions to the overall mission objectives, the Joint 

Chiefs of Staff J-7 defines the concept of Assessment using two metrics: MOPs and 

MOEs (USJCS J-7, 2011, p. viii). MOPs “evaluate task performance” or “task 

accomplishment” (USJCS J-7, 2011, p. ix). They are typically “developed and assessed at 

the component level for military tasks or at the agency or organizational level for non-

military tasks” (USJCS J-7, 2011, p. III-7). Because the UTACC program is still in the 

research and development phase, the MOP development falls under the non-military task 

category and is the responsibility of MCWL, in coordination with the NPS. 

MOEs are the “criterion used to assess changes in system behavior, capability, or 

operational environment that is tied to measuring the attainment of an end state, 

achievement of an objective, or creation of an effect” (USJCS, 2017, p. GL-13). They 

provide an “accurate baseline model” for determining whether the organization’s actions 

are achieving desired effects (USJCS J-7, 2011, p. III-9). Once the MOEs are established, 

the sensor(s) used to achieve HMI should be evaluated against the model proposed in this 

thesis. 

F. CHAPTER CONCLUSION 

This literature review summarized timely and relevant information primarily 

focused with the ability of man and machine to communicate and the most effective ways 

to measure the communication’s performance and effectiveness. The UTACC program is 

a multifaceted problem set attempting to harness the potential of the man-machine team. 
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While this is a new and exciting field, it does not come without its challenges. As 

Johnson states, the solutions to this challenging problem set are viewed through the OPD 

framework (Johnson, 2014). However, current doctrine does not include necessary MOEs 

and MOPs for the man-machine concept. Additionally, understanding and developing the 

relationship of and the communication between man and machine is a difficult issue that 

this thesis will seek to address. This thesis will capitalize on the aforementioned work to 

determine the most effective metrics for measuring communication and integration of 

Marines and autonomous systems. 
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III. RESEARCH METHODOLOGY AND RELATED FACTORS 

This chapter outlines the authors’ methodology used by the authors in building 

appropriate HMI MOEs and MOPs. First, the basic systems engineering process is 

reviewed, followed by explanations of UTACC terms and assumptions relevant to the 

authors’ research. Next, the derivation of MOE/MOPs is explained, beginning with an 

overview of high-level doctrine and reducing down to the detailed tasks Marines train for 

as outlined in the Marine Corps Task List. Finally, OPD requirements are reviewed for 

their applicability to the relevant MOE/MOPs, based on the uniqueness of the machine 

teammate.  

A. BASIC SYSTEMS ENGINEERING PROCESS 

As originally stated by the program sponsors and pioneered by Kirkpatrick and 

Rushing (2016), development of the MOPs and MOEs for this thesis and the UTACC 

program used the basic systems engineering processes, as shown in Figure 5, and the 

UTACC concept of operations (CONOPS) thesis (Kirkpatrick & Rushing, 2016). Rice et 

al. originally conducted an analysis of the basic systems engineering processes as defined 

in the Systems Engineering Management textbook (Blanchard, 2008) which Kirkpatrick 

and Rushing also referenced (Kirkpatrick & Rushing, 2016). Since that time, Blanchard 

published the 5th edition to the textbook and the authors verified that the systems 

engineering process referenced in previous theses remains the same (Blanchard, 2016). 

Based on Rice et al.’s (2015) recommendations and previous work conducted by 

Kirkpatrick and Rushing (2016), the authors viewed “UTACC as a system of systems 

(SoS) capable of independent operations while operating within the Marine Corps’ 

command and control model to ensure unity of effort when conducting operations” 

(Kirkpatrick & Rushing, 2016, p. 15). According to their findings, “The steps that were 

most applicable to this thesis were: definition of problem, operational requirements, and 

functional analysis. The entire process also incorporated feedback mechanisms as an 

important element of concept generation” (Rice et al., 2015, p. 21). The authors focused 

their research on these three steps to effectively determine quantifiable metrics for the 
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man-machine interface as specifically viewed through the lens of ensuring that humans 

and machines could communicate effectively over multiple modalities. 

 

Figure 5.  Systems Engineering Model. Source: Blanchard & Blyler (2016). 

Kirkpatrick and Rushing (2016) used the operational requirements identified by 

the UTACC CONOPS thesis to drive the development of system-level MOPs and MOEs 

(Kirkpatrick & Rushing, 2016). Those measures were based on Performance and Related 

Operational Parameters, Utilization Requirements, and Effectiveness Requirements 

(Kirkpatrick & Rushing, 2016). As stated by Rice, et al. (2015) and paraphrased by 

Kirkpatrick and Rushing (2016), the conduct of the Functional Analysis served as the 

“heart of the concept generation” for the UTACC CONOPS thesis (Rice et al., 2015, p. 

23). Kirkpatrick and Rushing (2016) used the results to develop pertinent MOPs and 

MOEs. The authors used the same systems engineering process to develop MOPs and 

MOEs for the man-machine interface resulting in key metrics for future testing and 

implementation. Follow on chapters discuss this research and the results in detail. 

B. UTACC TERMS AND DEFINITIONS 

Due to the growing number of theses in the UTACC program and the inherent 

requirement for consistency in terms, these definitions are directly sourced from Rice 

et al.’s work. 
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Small tactical unit–a Marine Corps infantry fire team, infantry squad, or 
reconnaissance team. 

UTACC–armed Marine(s) conducting operations with the assistance of a 
mix of semi-autonomous unmanned ground and air vehicles. One UTACC 
system is a triad of a human component, an air component, and a ground 
component. (SOW, 2016) 

Human Component– envisioned as a small tactical unit leader. UTACC 
should also be able to work with, provide input to, and receive direction 
from all members of a small tactical unit. 

User Interface System (UIS)–a combination of devices that stimulate 
multiple senses in the human. For example, this might allow him to do the 
following: see a map of the operations area or a live video of a specific 
person of interest; hear a warning informing him that a component has 
experienced a critical system failure; or, feel a warning of nearby enemy 
force. In addition to providing input to the human, the UIS will also 
receive input from the human and then relay that input to all the other 
UTACC components. The human inputs can also come in a variety of 
ways: hand and arm signals directing the tactical movement of UTACC; 
verbal messages given to human teammates as well as UTACC 
components; touch gestures/drawings on a UTACC generated map or 
preformatted report. 

Air Carrier (AC)–an unmanned ground vehicle capable of carrying, 
launching, recovering, and refueling multiple unmanned air vehicles 
(UAVs). In addition, the AC will be capable of carrying additional 
supplies (e.g., ammunition, food) for the small tactical unit as well as 
acting as a communications relay for the UTACC components. In the 
future, this vehicle will be capable of high-speed travel over rough terrain 
and off-road areas. 

Unmanned Air Vehicle (UAV)–an aerial platform capable of carrying any 
number of sensors to support mission specific intelligence, surveillance, 
and reconnaissance (ISR) requirements and capable of vertical takeoff and 
landing. The UAV will be capable of serving as a vital communications 
relay node between geographically separated ground components. 

Ground Carrier (GC)–an unmanned ground vehicle capable of carrying, 
deploying, and recovering multiple unmanned ground vehicles (UGVs). In 
addition, the GC will be capable of carrying additional supplies (e.g., 
ammunition, food) for the small tactical unit as well as acting as a 
communications relay for the UTACC components. This vehicle will be 
capable of high-speed travel over rough terrain and off-road areas. 
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Unmanned Ground Vehicle (UGV)–mission specific unmanned systems 
capable of performing discrete ISR missions. The UGVs, similar to the 
UAVs, could have a variety of sensors to support mission specific ISR 
requirements. 

Cue–is a notification issued by the UIS to the Human Component where 
human intervention is not required. 

Alert–is a prompt issued by the UIS to the Human Component requiring 
human intervention. (Rice et al., 2015, pp. 26–27) 

These terms remain relevant in the discussion of MOP/MOEs since they relate to 

the components of the UTACC system. 

C. UTACC ASSUMPTIONS 

Due to the lack of current doctrine and research in the field of man-machine 

teaming, the initial UTACC CONOPS included assumptions that were necessary to frame 

the problem; these assumptions are carried forward from thesis to thesis and modified as 

required. Although originally assumed that UTACC is a technology agnostic concept by 

Rice et al., subsequent analysis of alternatives (AoA) conducted by Roth and Buckler 

(2016) narrowed the systems and technology best suited for current UTACC 

developmental testing (Rice et al., 2015, p. 27). However, the incorporation of newly 

developed or even theoretical technologies, such as magnetic field communication, 

remains vital to the UTACC program. Just as Kirkpatrick and Rushing developed system 

specific MOPs and MOEs through a technologically agnostic methodology, the authors 

worked to do the same for the man-machine communication interface (Kirkpatrick & 

Rushing, 2016). 

A key assumption made by Kirkpatrick and Rushing (2016), which the authors 

carried forward into this thesis, is that UTACC could apply current USMC Task List 

elements to verify the same results in tasks independent of whether they were performed 

by a human or a robot (Kirkpatrick & Rushing, 2016). Thus, the authors assume the 

results of the actions taken during information exchange between the man and machine 

team will be commensurate with the results of information exchange between an all 

human fire team, although the modalities or interfaces may be different. 



 21 

Another assumption made by Kirkpatrick and Rushing (2016) and still valid for 

this thesis is that the MCTL metrics currently used in the UTACC developmental testing 

would “accurately reflect metrics applied to UTACC in future testing” (Kirkpatrick & 

Rushing, 2016, p. 18). Manpower, budget, and shifting priorities from the program 

sponsor may change the nature of future UTACC developmental tests; however, those 

changes should not affect the desired end state of the UTACC program. 

D. UTACC CONSTRAINTS 

The proprietary and closed nature of the Intuitive Robotic Operator Control 

(IROC) event held in October 2016 was a significant constraint in developing the metrics 

for man-machine communication was. In order to achieve a higher level of participation 

from industry leaders, MCWL did not allow outside researchers to attend. Although the 

benefit of this decision is a more open forum for participants of the event, academic 

research in man-machine teaming suffered. 

Due to the limited nature of developmental testing, the number of tasks to be 

evaluated will be constrained. As a result, the proposed MOEs and MOPs which can be 

evaluated are also constrained. Although the above assumptions state that MCTL metrics 

will be used in the testing, it is currently unknown when testing will be able to accurately 

and effectively test the UTACC system fully, so MOEs and MOPs must be designed in a 

modular and adaptable way as the system evolves.  

E. ROLE OF DOCTRINE AND TTPS 

As originally discussed by Kirkpatrick and Rushing (2016), Marine Corps 

doctrine establishes the fundamentals for operations in both training and combat 

environments through the publication of 11 Marine Corps Doctrinal Publications 

(MCDP). “MCDPs are higher order doctrinal publications that contain the fundamental 

and enduring beliefs of warfighting” (Global Security, n.d.). In addition to the MCDPs, 

Marine Corps Warfighting Publications (MCWP) “have a narrower focus that details 

tactics, techniques and procedures (TTPs) used in the prosecution of war or other 

assigned tasks” and Marine Corps Reference Publications (MCRP) “contain general 
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reference material that is more specific/detailed than the MCWPs” (Global 

Security, n.d.). 

The Marine Corps Task List (MCTL) is a fourth element of Marine Corps 

doctrine which, “allows for quantifiable measurement of proficiency in military skills and 

capabilities” (Kirkpatrick & Rushing, 2016, p. 19). According to the MCTL Branch 

website: 

MCTL is the authoritative, standardized, and doctrinally-based lexicon  
of USMC capabilities defined as Marine Corps Tasks (MCTs) and  
used by units, installations and the supporting establishments in  
the development of Mission Essential Tasks and Task Lists 
(METs/METLs). METs/METLs are the list of “essential,” critical, 
discrete, externally-focused MCTs that directly enables the execution of 
the organizational mission. Capabilities, defined as “MCTs” and resident 
in MCTL enable Commanders to document their command warfighting 
operational abilities as METs/METLs, providing force sourcing planners, 
trainers and concept developers with single common language “tasks” 
articulating both Joint and USMC-specific, manpower, equipment and 
training requirements. (United States Marine Corps, 2016) 

Each Marine Corps Task (MCT) has a collection of relevant MOPs and MOEs for 

timely, quantifiable feedback pertaining to the unit’s ability to perform the stated task to a 

given standard. Table 1 is an overview of how a MCT is defined, broken down into its 

subcomponents, and how each subcomponent is assigned its respective metrics. 

Table 1.   Excerpt from MCTL 2.0. Source: United States Marine Corps (2016). 
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There are hundreds of MCTs breaking down every aspect of Marine Corps 

operations with thousands of associated MOP/MOEs. Existing MCTs do not, however, 

account for the evaluation of man-machine teams that may have a different set of grading 

criteria to assess their capabilities. Chapters IV and V discuss the criteria further. 

F. ANALYSIS DEVELOPMENT LAYERS 

To capture accurately the technical performance parameters while still 

incorporating the tactical requirements, the developmental layers of analysis must be 

clearly understood. These layers provide the framework in which the MOEs and MOPs 

are nested and are depicted in Figure 6. The Chairman of the Joint Chiefs of Staff (CJCS) 

J-7 serves as the 30,000-feet view for the author’s approach by articulating the joint 

definitions and purposes of MOEs and MOPs. Next, the Director, Operational Test and 

Evaluation (DOT&E) is responsible for the operational testing and evaluation of major 

DOD acquisition programs. They provide a more robust approach to developing metrics 

to accurately measure a system’s effectiveness. The final layer is the proposed UTACC 

MOEs and MOPs that are further refined by selected MCTs of interest and the OPD 

Interdependence Analysis (IA) Tables presented in Zach’s Coactive Design thesis 

(Zach, 2016). 
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Figure 6.  Framework for HMI MOE and MOP Development 
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1. CJCS J-7 Commander’s Handbook for Assessment 

The CJCS J-7’s Commander’s Handbook for Assessment Planning and Execution 

provides a starting point for the development of the UTACC system MOEs and MOPs. 

Linking the results of tactical action to overall mission objectives, MOEs and MOPs are 

developed metrics used to assess a system: 

The assessment process uses MOPs to evaluate task performance and 
MOEs to determine progress of operations toward achieving objectives, 
and ultimately the end state. MOEs help answer questions like: “are we 
doing the right things, are our actions producing the desired effects, or are 
alternative actions required?” MOPs are closely associated with task 
accomplishment. MOPs help answer questions like: “was the action taken, 
were the tasks completed to standard, or how much effort was involved?” 
… The intent in developing MOEs and their associated indicators is to 
build an accurate baseline model for determining whether joint and 
supporting agency actions are driving target systems toward or away from 
exhibiting the desired effects. As strategic and operational level effects are 
seldom attained or exhibited instantaneously, MOEs provide a framework 
for conducting trend analysis of system behavior or capability changes that 
occur over time, based on the observation of specific, discrete indicators. 
(USJCS J-7, 2011, pp. 11–12) 

The key purpose in developing MOEs and MOPs is to drive a system toward mission 
success.  

2. Director, Operational Test and Evaluation 

DOT&E is the U.S. government’s primary office responsible for the operational 

testing and evaluation of major DOD acquisition programs. While the UTACC program 

is currently in the developmental testing phase, it is important the guidelines and 

procedures laid out by DOT&E are taken into consideration early in the design process. 

As depicted in the “Vee” Developmental Model in Figure 7, developer and user 

perspectives are incorporated throughout the entire systems engineering process. These 

perspectives, when captured early in the design process, help prevent system setbacks and 

ensure the program continues to meet user requirements.  
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Figure 7.  Generic “Vee” Developmental Model. Source: 
Blanchard & Blyler (2016). 

Laid out in their “Mission Focused Evaluation - Guidance,” DOT&E articulates 

several concepts which will be used in Chapters IV and V to identify and formulate the 

MOEs and MOPs necessary for the success of UTACC’s Marine-machine interface 

solution (DOT&E, n.d., p. 1). Foremost, metrics are essential for the success of any test 

design effort. Selecting the right metrics requires a thorough understanding of the critical 

operational issues (COIs), or more plainly stated, “The key operational effectiveness or 

suitability issues that must be examined in operational test and evaluation to determine 

the system's capability to perform its mission” (DAU, n.d.). 

As DOT&E highlights, “The metrics will provide a determination of mission 

capability, lend well to good experimental design [Design of Experimentation], and 

encapsulate the reasons for procuring the system” (DOT&E, n.d., p. 1). When creating 

metrics, DOT&E uses two types, either discrete or continuous. Continuous metrics 

incorporate some type of quantitative feedback into their outputs. An example output of a 
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continuous metric is shown in Table 2. Although the “meets threshold” box is still a yes 

or no, the key to the metric is in the variable. 

Table 2.   Continuous Metric Example 

Task Variable Meets Threshold 
Relay information to fire team leader 100 meters Y 

 

Conversely, discrete metrics can best be described as pass/fail metrics. An example of a 

discrete metric is shown in Table 3. 

Table 3.   Discrete Metric Example 

Task Meets Threshold 
Relay information to fire team leader Y 

 

Unlike a continuous metric that provides context for measuring effectiveness, a discrete 

metric discards information and is limited in its usefulness. In the discrete metric 

example, it is unknown whether the machine is sitting immediately beside the fire team 

leader or located at a much greater distance; we lose content. For the purpose of this 

thesis, discrete metrics are used to formulate MOEs. Furthermore, to provide context, 

continuous metrics are nested inside the discrete metrics as MOPs. This idea is captured 

in Table 4.  

Table 4.   Discrete/Continuous Metric Application to MOEs and MOPs 

MOE Task Threshold 
1.0 Sensor is resilient to operating environment Y 

MOP Task Variable Threshold 
1.0.1 Sensor is waterproof 50 m Y 
1.0.2 Sensor is windproof 40 kts Y 
1.0.3 Sensor is temperature-proof -30o to 180o F Y 
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Lastly, DOT&E stresses that “metrics chosen must also be well-defined and 

meaningful. Evaluators should consider example operational scenarios to ensure that the 

metric can be unambiguously measured (scored) and calculated in all cases” (DOT&E, 

n.d., p. 2). Due to the dynamic operating environment of the Marine Corps, this principle 

of matching the metrics to environments will serve as a fundamental building block in the 

following chapters.  

3. UTACC MOEs and MOPs 

As mentioned at the beginning of this section, when developing MOEs and 

MOPs, the unique incorporation of a machine into the fire team leads to supplementary 

considerations. In addition to the traditional tactical requirements, a fire team must be 

able to meet technical tasks which must also be included to effectively evaluate and 

measure machine-specific contributions. 

Based on the scope of testing during MCWL’s Developmental Test 1 (DT1), the 

tactical requirements are limited to simple fire team concepts such as maintaining current 

position within the fire team and changing formations when given the proper signal. The 

preponderance of these tactical tasks are linked to MCTL 2.0 and provide the starting 

point for refining the UTACC MOEs and MOPs into HMI specific MOEs and MOPs. 

Table 5 depicts the preliminary UTACC MCTs of interest. 
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Table 5.   Preliminary UTACC MCTs of Interest. Source: United States 
Marine Corps (2016). 

MCT Description 

5 Exercise Command and Control 

5.1 Acquire, Process, Communicate Information, and Maintain Status 

5.1.3  Maintain Information and Force Status 

5.1.3.2  Provide Positive ID of Friendly Forces Within AO 

5.3 Direct, Lead, Coordinate Forces/Operations 

5.3.1  Direct Operations 

5.3.1.2  Exercise Tactical Command and Control 

 

Technical tasks are much more difficult to capture, as there is no real starting 

point to draw from in current Marine Corps doctrine or TTPs. The authors relied on the 

Coactive Design IA tables (Zach, 2016) and concurrent UTACC Immediate Actions 

research (Chenoweth & Wilcox, 2017) to form the initial framework to begin capturing 

required technical parameters. As seen in Table 6, the implied tactical tasks are in the 

leftmost column. By breaking each task down into specific OPD requirements necessary 

for the success of the man-machine team, specific, technically focused MOPs are derived. 

These OPD requirements help narrow down the necessary technical measures for 

incorporation into the UTACC MOEs and MOPs.  
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Table 6.   Coactive Design IA Tables. Source: Zach (2016). 

  
 

G. CHAPTER CONCLUSION 

The development of MOEs and MOPs is a difficult task, which requires input and 

validation from multiple sources. Add in the complexities of a man-machine team and the 

number of issues grows exponentially. However, by using the methodology in Table 6, 

the authors were able to narrow their focus to the design of those specific MOEs and 

MOPs necessary for the successful communication between man and machine.  
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IV. UTACC HMI MEASURES OF EFFECTIVENESS AND 
MEASURES OF PERFORMANCE 

A preliminary look at the MCT 5 family of tasks, “Exercising Command and 

Control,” served as the basis for the creation of UTACC HMI MOEs and MOPs. From 

the Marine Expeditionary Force (MEF) level to the fire team level, Marine Corps 

Command and Control is an absolute necessity in ensuring the success of Marine Corps 

operations. Due to the uniqueness and complexities accompanying the UTACC program, 

additional MOEs and MOPs were derived from insight provided by the prior research of 

Zach (2016), Johnson (2014), and Rice, et al. (2015) as well as the current research of 

Chenoweth and Wilcox (2017). While the current MCTL lacks metrics for the UTACC 

program, nesting newly developed sub-tasks within the current framework allows for a 

rapid integration with minimal disruption. 

A. MOPs 

As stated in Chapter II, MOPs evaluate task performance or task accomplishment 

(USJCS J-7, 2011, p. ix). With this in mind, the authors worked with the assumption that, 

as long as a metric is applied, the task’s performance can be assessed. The MOPs are not 

designed to state whether the mission was accomplished, but only to show how the 

human and machine are interacting compared to the objective standards.  

As an example, a metric for audio communication from the machine to the human 

may be “did the human hear the machine.” If the answer is “yes,” then the metric was 

achieved. However, the MOP does not explain whether the machine communicated the 

correct information or if the human understood the correct information. It only answers 

the question of “did the human hear the machine.” Both a metric and a way to take the 

measurement are vital to succeed in effectively measuring the MOPs; if either is lacking, 

evaluation of the MOP may not be correct. Also critical to the MOPs and their use is the 

threshold that must be achieved. If, for example, the MOP measures a percentage of 

correct commands communicated, then that result must be compared against a threshold 

to determine whether it meets an acceptable value.  
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Table 7 depicts an excerpt from MCTL 2.0 and the MOPs associated with MCT 

5.3.1.2- Exercise Tactical Command and Control. 

Table 7.    Excerpt from MCTL 2.0. Source: United States Marine Corps (2016). 

 
 

B. MOEs 

As stated in Chapter II, MOEs are the “criterion used to assess changes in system 

behavior, capability, or operational environment that is tied to measuring the attainment 

of an end state, achievement of an objective, or creation of an effect” (USJCS, 2017, p. 

GL-13). The authors of this thesis focused on the MOEs’ use in assessing whether or not 

the objective was achieved during the testing. The MOE associated with Table 7’s MOPs 

is MCT 5.3.1.2, Exercise Tactical Command and Control, or more simply, “Was tactical 

command and control exercised effectively?” An MOE is defined in such a way that the 

associated MOPs support the MOE. Therefore, if the threshold standards for the 

associated MOPS are met, then the MOE will be met.  

C. MCTL ORGANIZATION AND WARFIGHTING 

After a thorough review of MCTL 2.0, the authors focused on the addition of a 

MCT sub-task rather than rewriting the current MCTL due to the limited nature of 

robotics throughout the Operating Forces. Based on the scope of this thesis, the authors 

recommend that an additional sub-task be listed as 5.1.4- Maintain Two-Way 

Communications with Autonomous Robotics which would be subordinate to 5.1- Acquire, 

Process, Communicate Information, and Maintain Status and ultimately subordinate to 

MCT 5- Exercise Command and Control (United States Marine Corps, 2016). Table 8 

depicts this recommended hierarchy. 
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Table 8.   Recommended Update to MCTL 2.0. Adapted from United States 
Marine Corps (n.d.). 

 
 

The recommended location of this new sub-task was chosen due to the intrinsic 

communication requirement of UTACC “acting collaboratively with each other and with 

humans” (NPS & MCWL, 2016, p. 1). The chosen interfaces for the communication 

between UTACC and Marines must not overburden the Marine’s cognitive load while 

maintaining effective command and control. Table 9 depicts the sub-tasks subordinate to 

MCT 5.1.4 which will measure the performance over the different communication 

modalities as discussed in Chapter II. 

Table 9.   Recommended Update to MCT 5.1.4 

 
 

D. TESTING ENVIRONMENT 

The key to an accurate evaluation of the UTACC program through the authors’ 

MOEs and MOPs is ensuring the correct item is evaluated at the correct time in the 

correct way. More simply, UTACC should not be penalized because another fire team 

member was not on task. The team failing in this manner would be the fault of a human 

fire team member, not the robot.  

MCT Title
5 Exercise Command and Control

5.1 Acquire, Process, Communicate Information, and Maintain Status
5.1.1 Provide and Maintain Communications
5.1.2 Manage Means of Communicating Information
5.1.3 Maintain Information and Force Status
5.1.4 Maintain Two-Way Communication with Autonomous Robotics

MCT Title
5.1.4 Maintain Two-Way Communication with Autonomous Robotics
5.1.4.1 Identification of Team Members
5.1.4.2 Explicit Human-Initiated Communication
5.1.4.3 Explicit Robot-Initiated Communication
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During UTACC’s DT1, this situation manifested itself several times. DT1 was a 

preliminary test that focused on the UTACC software. To assist in evaluating and logging 

data during the test, software toolkits were utilized which, among other items of interest, 

displayed the global positioning system (GPS) data of the human fire team members and 

the robot. One of the issues encountered throughout testing was GPS error in locating 

both the humans and the robot. GPS data was continually transmitted to the UTACC 

software, which then computed a velocity vector. The robot used the velocity vector to 

maintain its position or move into the correct position. When inaccurate GPS data was 

directed to UTACC, an invalid velocity vector was sent to the robot. Consequently, 

UTACC’s algorithms would maneuver the robot out of position. At a surface level, one 

could argue that the software’s algorithms failed in that they did not compute velocity 

vectors that accurately positioned the robot due to poor filtering of the data. However, 

after closer examination of the testing toolkits, the UTACC algorithms were accurately 

computing velocity vectors based off the GPS data received. In other words, the UTACC 

software was correctly doing what it was supposed to do while something outside the 

testing—the navigation data—was failing.  

With this example in mind, future testing of UTACC HMIs must ensure the 

testing environment creates a scenario that accurately captures the right data points for 

the MOPs under test. With four different modes of possible man-machine 

communication, isolating and independently testing each mode is critical in evaluating 

the UTACC HMI system as a whole. Current thesis work by Beierl and Tschirley (2017) 

is exploring UTACC situational awareness and seeks to provide insight on how to 

accurately test the fire team members’ situational awareness throughout execution of a 

mission. Their work will provide the framework for future testing of UTACC’s HMI 

system.  

E. CHAPTER CONCLUSION 

Instituting change in any bureaucratic organization, let alone the Marine Corps, is 

a daunting task. For change to be successful, minimizing disturbance to the organization 

while easing the transition helps facilitate the integration of new ideas. This thought 
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process guided the authors in their decision to nest the UTACC HMI MOEs and MOPs 

within current MCTL 2.0 tasks. Furthermore, the decision was made to work exclusively 

within the proposed MCT 5.1.4- Maintain Two-Way Communications with Autonomous 

Robotics task and not modify or add new MOEs and MOPs to currently published tasks. 

Lastly, defining an accurate testing environment for the evaluation of UTACC’s HMI 

system is a crucial step in effectively applying and validating the MOEs and MOPs 

proposed in the final tables, and are discussed in Chapter V.   
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V. SUMMARIZING RESULTS AND RECOMMENDATIONS FOR 
FURTHER RESEARCH  

This chapter provides a summary of the authors’ research results, broken down by 

the type of communication requiring evaluation. Additionally, limitations of the resulting 

tables are discussed which, the authors believe, will require further research and 

development as the UTACC program progresses. Lastly, future research topics are 

recommended to drive UTACC closer to integration in the Marine Corps writ large.  

A. SUMMARIZING RESULTS 

1. MOP and MOE Final Tables 

As discussed in previous chapters, the MOEs and MOPs required to evaluate the 

effectiveness of the HMI communication were broken down into sub-tasks subordinate to 

the recommended MCT 5.1.4. The next sections will discuss each of these sub-tasks 

(originally shown in Table 9) in more depth. 

The following tables will focus on the identification of team members by UTACC 

and communication that is human-UTACC and UTACC-human. The authors did not 

recommend either human-human or UTACC-UTACC MOEs/MOPs as it was outside of 

the scope of this thesis. 

a. MCT 5.1.4.1—Identification of Team Members 

Table 10 depicts the MOPs associated with MCT 5.1.4.1. In order to evaluate the 

MOPs listed, the authors created additional sub-tasks with their own MOPs as depicted in 

Tables 11, 12, and 13. By assessing MCTs 5.1.4.1.1, 5.1.4.1.2, and 5.1.4.1.3, MCT 

5.1.4.1 will be evaluated as a whole. 
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Table 10.   MCT 5.1.4—Identification of Team Members 

 

Table 11.   MCT 5.1.4.1.1—Visual Identification of Team Members 

 
 

Table 12.   MCT 5.1.4.1.2—Audible Identification of Team Members 

 
 

Table 13.   MCT 5.1.4.1.3—Electromagnetic Identification of Team Members 

 
  

5.1.4.1 Metric Identification of Team Members
M1 Percent Of time UTACC can identify fire team members
M2 Percent Of modalities UTACC can successfully use to identify fire team members
M3 Distance Between team members during successful identification

5.1.4.1.1 Metric Visual Identification of Team Members
M1 Percent Of fire team members UTACC can identify visually
M2 Percent Of time UTACC can visually identify the primary human (fire team leader)
M3 Time To visually identify the primary human (fire team leader)

5.1.4.1.2 Metric Audible Identification of Team Members
M1 Percent Of fire team members UTACC can identify audibly
M2 Percent Of time UTACC can audibly identify the primary human (fire team leader)
M3 Time To audibly identify the primary human (fire team leader)

5.1.4.1.3 Metric Electromagnetic Identification of Team Members
M1 Percent Of fire team members UTACC can identify electromagnetically
M2 Percent Of time UTACC can electromagnetically identify the primary human (fire team leader)
M3 Time To electromagnetically identify the primary human (fire team leader)
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In order to measure the effectiveness of UTACC in identifying the team members, 

and specifically identifying the team leader, the authors separated the task of 

identification into the modalities that were discussed in Chapter II. The key factors 

measured are the ability for UTACC to identify the team leader, the time it takes UTACC 

to identify the team leader, and the ability for UTACC to identify other members of the 

team. 

b. MCT 5.1.4.2—Explicit Human-Robot Communication 

MCT 5.1.4.2 pertains to all communication originating from the human and 

directed to UTACC. Tables 14–18 depict the MCTs along with their respective MOPs 

associated with evaluating the effectiveness of explicit human-UTACC communication. 

In order to measure the effectiveness of the communication, the authors ensured 

that the following questions would be answered through evaluation: 

• Did UTACC receive the message? 

• Did UTACC relay the message? 

• Did the human verify UTACC’s relay? 

Through answering the above questions in each of the modalities, the authors 

believe that the effectiveness of human-UTACC communication can be effectively 

measured and evaluated.  

Table 14.   MCT 5.1.4.2—Explicit Human-Initiated Communication 

 

5.1.4.2 Metric Explicit Human-Initiated Communication
M1 Percent Of successful human-initiated messages
M2 Percent Of successful human-initiated messages on first transmission
M3 Percent Of modalities able to be used in acheiving successful human-initiated messages
M4 Percent Of modalities able to be used in acheiving successful human-initiated messages on first transmission
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Table 15.   MCT 5.1.4.2.1—Visual Human-Initiated Communication 

 
 

Table 16.   MCT 5.1.4.2.2—Audible Human-Initiated Communication 

 
 

Table 17.   MCT 5.1.4.2.3—Electromagnetic Human-Initiated Communication 

 
 

Table 18.   MCT 5.1.4.2.4—Haptic Human-Initiated Communication 

 
 

5.1.4.2.1 Metric Visual Human-Initiated Communication
M1 Percent Of visual messages UTACC received
M2 Percent Of visual messages UTACC received correctly
M3 Percent Of visual messages UTACC received correctly on first transmission
M4 Percent Of visual messages UTACC relayed correctly
M5 Time For UTACC to relay correctly from time of initial transmission
M6 Percent Of UTACC relayed messages understood by human
M7 Distance Between human and UTACC during messaging

5.1.4.2.2 Metric Audible Human-Initiated Communication
M1 Percent Of audible messages UTACC received
M2 Percent Of audible messages UTACC received correctly
M3 Percent Of audible messages UTACC receives correctly on first transmission
M4 Percent Of audible messages UTACC relays correctly
M5 Time For UTACC to relay correctly from time of initial transmission
M6 Percent Of UTACC relayed messages understood by human
M7 Distance Between human and UTACC during messaging

5.1.4.2.3 Metric Electromagnetic Human-Initiated Communication
M1 Percent Of electromagnetic messages UTACC received
M2 Percent Of electromagnetic messages UTACC received correctly
M3 Percent Of electromagnetic messages UTACC receives correctly on first transmission
M4 Percent Of electromagnetic messages UTACC relays correctly
M5 Time For UTACC to relay correctly from time of initial transmission
M6 Percent Of UTACC relayed messages understood by human
M7 Distance Between human and UTACC during messaging

5.1.4.2.4 Metric Haptic Human-Initiated Communication
M1 Percent Of haptic messages UTACC received
M2 Percent Of haptic messages UTACC received correctly
M3 Percent Of haptic messages UTACC receives correctly on first transmission
M4 Percent Of haptic messages UTACC relays correctly
M5 Time For UTACC to relay correctly from time of initial transmission
M6 Percent Of UTACC relayed messages understood by human
M7 Distance Between human and UTACC during messaging
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c. MCT 5.1.4.3—Explicit Robot-Human Communication 

Similar to how MCT 5.1.4.2 pertains to human-initiated communication, MCT 

5.1.4.3 pertains to communication originated by UTACC. Tables 19–23 show the 

corresponding MCTs and their MOPs which can be used to evaluate the effectiveness of 

the UTACC-initiated communications. 

Just as in the previous section, three questions must be answered to verify 

effective communication: 

• Did the human receive the message? 

• Did the human acknowledge the message? 

• Did UTACC understand the acknowledgement? 

The difference between these and the previous sections’ questions pertain to 

UTACC relaying as opposed to the human acknowledging the original message. The 

distinction between these two ideas is that UTACC, just like a human member of the fire 

team, needs to relay the message to other team members; those members will then 

continue the relay process until the entire team is notified. Although the human will also 

be relaying the message to other team members, the MOP for testing UTACC is how well 

it can track the human’s acknowledgement, not the ability of the human to conduct the 

relay. The human relaying the message to another human is beyond the scope of this 

thesis. 

Table 19.   MCT 5.1.4.3—Explicit Robot-Initiated Communication 

 

5.1.4.3 Metric Explicit Robot-Initiated Communication
M1 Percent Of successful robot-initiated messages
M2 Percent Of successful robot-initiated messages on first transmission
M3 Percent Of modalities able to be used in acheiving successful robot-initiated messages
M4 Percent Of modalities able to be used in acheiving successful robot-initiated messages on first transmission
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Table 20.   MCT 5.1.4.3.1—Visual Robot-Initiated Communication 

 
 

Table 21.   MCT 5.1.4.3.2—Audible Robot-Initiated Communication 

 
 

Table 22.   MCT 5.1.4.3.3—Electromagnetic Robot-Initiated Communication 

 

Table 23.   MCT 5.1.4.3.4—Haptic Robot-Initiated Communication 

 
 

5.1.4.3.1 Metric Visual Robot-Initiated Communication
M1 Percent Of visual messages human received
M2 Percent Of visual messages human received correctly
M3 Percent Of visual messages human received correctly on first transmission
M4 Percent Of human acknowledgements understood by UTACC
M5 Percent Of human acknowledgements understood by UTACC on first acknowledgement
M6 Time For human to acknowledge correctly from time of initial transmission
M7 Distance Between human and UTACC during messaging

5.1.4.3.2 Metric Audible Robot-Initiated Communication
M1 Percent Of audible messages human received
M2 Percent Of audible messages human received correctly
M3 Percent Of audible messages human received correctly on first transmission
M4 Percent Of human acknowledgements understood by UTACC
M5 Percent Of human acknowledgements understood by UTACC on first acknowledgement
M6 Time For human to acknowledge correctly from time of initial transmission
M7 Distance Between human and UTACC during messaging

5.1.4.3.3 Metric Electromagnetic Robot-Initiated Communication
M1 Percent Of electromagnetic messages human received
M2 Percent Of electromagnetic messages human received correctly
M3 Percent Of electromagnetic messages human received correctly on first transmission
M4 Percent Of human acknowledgements understood by UTACC
M5 Percent Of human acknowledgements understood by UTACC on first acknowledgement
M6 Time For human to acknowledge correctly from time of initial transmission
M7 Distance Between human and UTACC during messaging

5.1.4.3.4 Metric Haptic Robot-Initiated Communication
M1 Percent Of haptic messages human cognitively received
M2 Percent Of haptic messages human cognitively received on first transmission
M3 Percent Of human acknowledgements understood by UTACC
M4 Percent Of human acknowledgements understood by UTACC on first acknowledgement
M5 Time For human to acknowledge correctly from time of initial transmission
M6 Distance Between human and UTACC during messaging
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2. Limitations of MOP and MOE Tables

The authors identified three main limitations while developing these MOEs and 

MOPs. First, due to changing environment and conditions, the thresholds for testing will 

not be static. Given a testing scenario and in line with the proposed MCTs, a range of 

thresholds will need to be developed to realistically assess the effectiveness and 

performance of the communication modalities. Second, the electromagnetic modality is a 

rapidly evolving method of communication. As a result, rather than drive the 

requirements process, it was left intentionally vague to serve as a guideline for future 

development, testing, and implementation.  

Third, operating UTACC often requires rapid tactical adaptation. From an HMI 

perspective, this rapid adaptation means the modality used for communication, and thus 

the interface used, changes during a mission. Thus, an MOP might show that a given set 

of devices work, but the team leader, for tactical reasons, may not choose that method. 

Therefore, determining the overall MOP of communications between Marines and 

machines is made more complicated due to the dynamic nature of tactical operations. 

Thus, several modalities may need to be used during a mission. Selection of the correct 

modality for communication based on the tactical situation is an area ripe for further 

research.  

B. RECOMMENDATIONS FOR FURTHER RESEARCH 

a. MOE/MOP Tables for Situational Awareness Sensor Suite

During DT1, UTACC relied on GPS data from fire team members to form its 

situational awareness with respect to its position in the fire team. While GPS was chosen 

to facilitate timely testing, issues brought on by localization error highlighted a critical 

area requiring future research. This thesis developed MOE/MOP tables for the sensors 

used in fire team communications with UTACC. Concurrent to this thesis is research by 

Beierl and Tschirley (2017) on UTACC situational awareness. However, a fundamental 

area has yet to be researched: MOEs and MOPS used to assess situational awareness of 

UTACC and the fire team members. This thesis, in conjunction with Beierl and 

Tschirley’s (2017), provides the framework for the next logical step in Marine-machine 
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teaming: developing MOE/MOP tables to assess UTACC’s situational awareness sensor 

suite, as well as developing MOE/MOP tables to assess the cognitive load on fire team 

member’s situational awareness brought on by the incorporation of new sensors.  

b. MOE/MOP Tables for Sensor Suite Supporting Targeting Data

As mentioned by Kirkpatrick and Rushing (2016), during LTA-2, networked 

UTACC sensors were used semi-autonomously to generate targeting data which was then 

relayed to a notional strike platform for follow-on execution of the strike package 

(Kirkpatrick & Rushing, 2016). They go on to recommend research that explores 

UTACC’s role in supporting air-to-surface targeting. In conjunction with this research, 

establishing MOEs and MOPs for the target acquisition sensor suite needs to be 

researched concurrently. MCRP 3-16.1.A Tactics, Techniques, And Procedures for Field 

Artillery Target Acquisition serves as starting point for both of these areas.  

c. Changing the Role/Scale of UTACC

This thesis explored and created MOEs and MOPs to assist in the selection of 

sensors used for human-machine communication at the fire team level. Furthermore, the 

authors constrained themselves to UTACC operating in the role of automatic rifleman in 

order to remain consistent with concurrent research. Because the authors limited the 

relationship to the automatic rifleman within a fire team, MOEs and MOPs focused 

specifically on that relationship. However, as UTACC progresses, MOE/MOP tables will 

need to be established to help developers evaluate relationships such as robot-robot 

communication, robot-higher (squad, company, etc.) communication, or UTACC 

communicating directly with a node or database informing the common operating picture. 

d. Doctrinal Changes with the Addition of UTACC

As mentioned in Chapter II, this thesis, paired with Kirkpatrick and Rushing’s 

(2016) work, will aid in the creation of new doctrine inclusive of the autonomous 

systems in line with both EF21 and the Marine Corps Operating Concept. Current 

doctrine establishes TTPs based on the firepower provided by the automatic rifleman. 

However, the technological advantages afforded a Marine-machine fire team will 
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certainly require an evolution of current fire team-level TTPs to maximize UTACC’s 

potential. Exploring and researching what these doctrinal changes will look like is 

another step forward in developing the UTACC program.  

C. CHAPTER CONCLUSION 

MCWL’s UTACC program seeks to address the challenges encountered in the 

complex battlefield environment of the twenty-first century with the integration of 

Marines and autonomous machines at the fire team level. This thesis explored a small 

piece of that equation: communication interface requirements between man and machine. 

While the communication interfaces are a fraction of the overall UTACC problem set, 

choosing the right interfaces to achieve man-machine communication is essential for the 

continued success of the Marine-machine teaming concept. The authors of this thesis 

established recommended MOEs/MOPs for evaluating the communication interfaces 

required for Marine-machine communication as well as where they fit within the MCTL. 

Furthermore, recommended future research topics will continue to drive the progress of 

the UTACC program. While still in the early stages of development, the UTACC 

program has the potential to fundamentally shift the way mankind approaches warfare in 

the years to come.  
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APPENDIX A.  MCT 5.1.4 MAINTAIN TWO-WAY COMMUNICATION 
WITH AUTONOMOUS ROBOTICS AND FIRST LEVEL SUB-TASKS 

This shows the highest level breakdown of MCT 5.1.4. 

 
  

5.1.4 Metric Maintain Two-Way Communication with Autonomous Robotics
M1 Percent Of successfully communicated messages
M2 Percent Of successfully communicated messages on first transmission
M3 Distance Between team members during successful communication

5.1.4.1 Metric Identification of Team Members
M1 Percent Of time UTACC can identify fire team members
M2 Percent Of modalities UTACC can successfully use to identify fire team members
M3 Distance Between team members during successful identification

5.1.4.2 Metric Explicit Human-Initiated Communication
M1 Percent Of successful human-initiated messages
M2 Percent Of successful human-initiated messages on first transmission
M3 Percent Of modalities able to be used in acheiving successful human-initiated messages
M4 Percent Of modalities able to be used in acheiving successful human-initiated messages on first transmission

5.1.4.3 Metric Explicit Robot-Initiated Communication
M1 Percent Of successful robot-initiated messages
M2 Percent Of successful robot-initiated messages on first transmission
M3 Percent Of modalities able to be used in acheiving successful robot-initiated messages
M4 Percent Of modalities able to be used in acheiving successful robot-initiated messages on first transmission
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APPENDIX B.  MCT 5.1.4.1 IDENTIFICATION OF TEAM MEMBERS 
AND SUB-TASKS 

This shows the highest level breakdown of MCT 5.1.4.1. 

 
 

  

5.1.4.1 Metric Identification of Team Members
M1 Percent Of time UTACC can identify fire team members
M2 Percent Of modalities UTACC can successfully use to identify fire team members
M3 Distance Between team members during successful identification

5.1.4.1.1 Metric Visual Identification of Team Members
M1 Percent Of fire team members UTACC can identify visually
M2 Percent Of time UTACC can visually identify the primary human (fire team leader)
M3 Time To visually identify the primary human (fire team leader)

5.1.4.1.2 Metric Audible Identification of Team Members
M1 Percent Of fire team members UTACC can identify audibly
M2 Percent Of time UTACC can audibly identify the primary human (fire team leader)
M3 Time To audibly identify the primary human (fire team leader)

5.1.4.1.3 Metric Electromagnetic Identification of Team Members
M1 Percent Of fire team members UTACC can identify electromagnetically
M2 Percent Of time UTACC can electromagnetically identify the primary human (fire team leader)
M3 Time To electromagnetically identify the primary human (fire team leader)
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APPENDIX C.  MCT 5.1.4.2 EXPLICIT HUMAN-ROBOT 
COMMUNICATION AND SUB-TASKS 

This shows the highest level breakdown of MCT 5.1.4.2. 

 
 

  

5.1.4.2 Metric Explicit Human-Initiated Communication
M1 Percent Of successful human-initiated messages
M2 Percent Of successful human-initiated messages on first transmission
M3 Percent Of modalities able to be used in acheiving successful human-initiated messages
M4 Percent Of modalities able to be used in acheiving successful human-initiated messages on first transmission

5.1.4.2.1 Metric Visual Human-Initiated Communication
M1 Percent Of visual messages UTACC received
M2 Percent Of visual messages UTACC received correctly
M3 Percent Of visual messages UTACC received correctly on first transmission
M4 Percent Of visual messages UTACC relayed correctly
M5 Time For UTACC to relay correctly from time of initial transmission
M6 Percent Of UTACC relayed messages understood by human
M7 Distance Between human and UTACC during messaging

5.1.4.2.2 Metric Audible Human-Initiated Communication
M1 Percent Of audible messages UTACC received
M2 Percent Of audible messages UTACC received correctly
M3 Percent Of audible messages UTACC receives correctly on first transmission
M4 Percent Of audible messages UTACC relays correctly
M5 Time For UTACC to relay correctly from time of initial transmission
M6 Percent Of UTACC relayed messages understood by human
M7 Distance Between human and UTACC during messaging

5.1.4.2.3 Metric Electromagnetic Human-Initiated Communication
M1 Percent Of electromagnetic messages UTACC received
M2 Percent Of electromagnetic messages UTACC received correctly
M3 Percent Of electromagnetic messages UTACC receives correctly on first transmission
M4 Percent Of electromagnetic messages UTACC relays correctly
M5 Time For UTACC to relay correctly from time of initial transmission
M6 Percent Of UTACC relayed messages understood by human
M7 Distance Between human and UTACC during messaging

5.1.4.2.4 Metric Haptic Human-Initiated Communication
M1 Percent Of haptic messages UTACC received
M2 Percent Of haptic messages UTACC received correctly
M3 Percent Of haptic messages UTACC receives correctly on first transmission
M4 Percent Of haptic messages UTACC relays correctly
M5 Time For UTACC to relay correctly from time of initial transmission
M6 Percent Of UTACC relayed messages understood by human
M7 Distance Between human and UTACC during messaging
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APPENDIX D.  MCT 5.1.4.3 EXPLICIT ROBOT-HUMAN 
COMMUNICATION AND SUB-TASKS 

This shows the highest level breakdown of MCT 5.1.4.3. 

 
  

5.1.4.3 Metric Explicit Robot-Initiated Communication
M1 Percent Of successful robot-initiated messages
M2 Percent Of successful robot-initiated messages on first transmission
M3 Percent Of modalities able to be used in acheiving successful robot-initiated messages
M4 Percent Of modalities able to be used in acheiving successful robot-initiated messages on first transmission

5.1.4.3.1 Metric Visual Robot-Initiated Communication
M1 Percent Of visual messages human received
M2 Percent Of visual messages human received correctly
M3 Percent Of visual messages human received correctly on first transmission
M4 Percent Of human acknowledgements understood by UTACC
M5 Percent Of human acknowledgements understood by UTACC on first acknowledgement
M6 Time For human to acknowledge correctly from time of initial transmission
M7 Distance Between human and UTACC during messaging

5.1.4.3.2 Metric Audible Robot-Initiated Communication
M1 Percent Of audible messages human received
M2 Percent Of audible messages human received correctly
M3 Percent Of audible messages human received correctly on first transmission
M4 Percent Of human acknowledgements understood by UTACC
M5 Percent Of human acknowledgements understood by UTACC on first acknowledgement
M6 Time For human to acknowledge correctly from time of initial transmission
M7 Distance Between human and UTACC during messaging

5.1.4.3.3 Metric Electromagnetic Robot-Initiated Communication
M1 Percent Of electromagnetic messages human received
M2 Percent Of electromagnetic messages human received correctly
M3 Percent Of electromagnetic messages human received correctly on first transmission
M4 Percent Of human acknowledgements understood by UTACC
M5 Percent Of human acknowledgements understood by UTACC on first acknowledgement
M6 Time For human to acknowledge correctly from time of initial transmission
M7 Distance Between human and UTACC during messaging

5.1.4.3.4 Metric Haptic Robot-Initiated Communication
M1 Percent Of haptic messages human cognitively received
M2 Percent Of haptic messages human cognitively received on first transmission
M3 Percent Of human acknowledgements understood by UTACC
M4 Percent Of human acknowledgements understood by UTACC on first acknowledgement
M5 Time For human to acknowledge correctly from time of initial transmission
M6 Distance Between human and UTACC during messaging
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