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ABSTRACT 

It has been said that cyber attackers are attacking at wire speed (very fast), while 

cyber defenders are defending at human speed (very slow). Researchers have been 

working to improve this asymmetry by automating a greater portion of what has 

traditionally been very labor-intensive work. This work is involved in both the 

monitoring of live system events (to detect attacks), and the review of historical system 

events (to investigate attacks). One technology that is helping to automate this work is 

Security Information and Event Management (SIEM). In short, SIEM technology works 

by aggregating log information, and then sifting through this information looking for 

event correlations that are highly indicative of attack activity. For example: Administrator 

successful local logon and (concurrently) Administrator successful remote logon. Such 

correlations are sometimes referred to as indicators of compromise (IOCs). Though IOCs 

for network-based data (i.e., packet headers and payload) are fairly mature (e.g., Snort’s 

large rule-base), the field of end-device IOCs is still evolving and lacks any well-defined 

go-to standard accepted by all. This report addresses ontological issues pertaining to end-

device IOCs development, including what they are, how they are defined, and what 

dominant early standards already exist. 
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I. INTRODUCTION 

A. CYBER WAR  

Cyberspace as defined in JP 3-12, is “a global domain within the information 

environment consisting of the interdependent network of information technology 

infrastructures and resident data, including the internet, telecommunications networks, 

computer systems, and embedded processors and controllers” [1]. It is a very complex, 

dynamic virtual environment facilitated by a ubiquitous digital global infrastructure. It 

provides the perfect setting for the day-to-day execution of processes in commerce, 

communication, government, military, utilities, and education. Threats to cyberspace, or a 

cyber threat, originate from individuals who try to access a network and/or a control 

system device using a data communications path without authorization [2]. Threat actors 

arise from many different sources and motives, including disgruntled employees, terrorist 

groups, those seeking monetary gain, those pushing a political or philosophical point of 

view, and adversarial governments.   

Cyber threats during the 2013–2015 timeframe were ranked as the top strategic 

threat against the United States, even placing ahead of terrorism [3]. Threat actors have 

invested considerably in cyberspace, as it affords them with a practical, credibly deniable 

skillset with which to target the U.S. and cause damage to its interests. The use of cyber 

to cause harm to our national security interests has been a concern going back to at least 

the 1990s [4]. The measure and scope of these threats reveal that 97 percent of Fortune 

500 businesses have been hacked, and over a hundred governments are preparing for 

battles in this virtual domain. These problems have caused political concerns that are 

exemplified through events such as the WikiLeaks scandals, new cyberweapons like 

Stuxnet, domestic monitoring by NSA, individual concerns over personal privacy, and 

social networking’s role in events such as the Arab Spring revolutions. President Barack 

Obama stated that “cybersecurity risks pose some of the most serious economic and 

national security challenges of the 21st century,” and this sentiment has been echoed by 

leaders in countries around the world [5]. For this reason, the field of cybersecurity has 

become the fastest technological growth area in the world.   
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Bucci, Rosenzweig, and Inserra [6] wrote that cybersecurity has become a very 

important part of information technology and the internet. The internet is one of the most 

rapid growth regions of technological groundwork development. Around the world, 

access to the internet increased by more than two billion people in just the past eleven 

years. It has changed the way businesses use information technology to share their 

information and conduct business online. The authors also point out they now use next 

generation mobile computing and cloud computing for this. Countries also depend on 

cyberspace for nearly all of their daily management activities, such as movement of 

troops and financial business. This makes the world we live in today a “wired” world. 

This means all of our information is in digital form and very vulnerable to exploitation, 

compromise, and attack. This very fast expansion of the internet has provided a means to 

connect the whole world digitally and give everyone, from your everyday citizen to 

criminals and terrorists, a means to reach out and access large amounts of data almost 

instantly. An individual from anywhere in the world can use cyber capabilities to attack a 

network thousands of miles away, causing a disruption in business, the destruction of 

data, or even the shutdown of critical infrastructure. Thus, cybersecurity is a very critical 

and pressing matter for the U.S. today [6].   

According to “A Congressional Guide: Seven Steps to U.S. Security, Prosperity, 

and Freedom in Cyberspace” [6], the U.S. faces three different types of cyber threats. 

These threats are, cyber crime, cyber espionage, and cyberwarfare. Cyber crime affects 

many people in the form of cyber vandalism, identity theft, and phishing. Cyber 

espionage is frequently state-sponsored and goes after sizeable targets of great 

importance, such as proprietary ideas and military designs. Cyberwarfare attacks are acts 

of a nation-state to infiltrate another nation’s computers and information networks in an 

effort to cause damage and disruption. These nations target the critical systems/

infrastructures that are connected to and rely on those computers and networks. Taking 

down those critical systems such as transportation, communications, or power, would 

severely impair a response by the U.S. to a physical attack by an adversary [6]. The 

challenge of guarding against cyber threats is not only owed to their dispersed and 

diverse nature, but also due to the fact that so much depends on how establishments act in 
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response to cyber threats when the situation is critical and the time has come for action 

[5]. It is important to distinguish between the notion of a vulnerability and that of a threat 

when discussing cyber incidents or potential incidents. For example, a door left unlocked 

is considered a vulnerability (not a threat). The threat associated with the unlocked door, 

would be the terrorist desiring access to the building. Note that each vulnerability can be 

considered to “invite,” and facilitate threats that are designed to exploit the vulnerability: 

the door that is left unlocked might lead to terrorists slipping in a bomb, rivals walking 

out with the company’s trade secrets, robbers stealing valuable goods, or local thugs 

destroying property. The essential characteristics of threats are the actor and the 

consequence [5]. In order to measure and evaluate the characteristics of a cyber threat, 

cybersecurity incidents must be thoroughly examined.   

B. CYBER INCIDENTS 

The United States describes cybersecurity incidents and cyber events in a 

different manner than many other countries around the world. A cybersecurity incident is 

defined as, “actions taken through the use of computer networks that result in an actual or 

potentially adverse effect on an information system and/or the information residing 

therein” [7]. A cyber event is defined as, “a cybersecurity change that may have an 

impact on organizational operations (including mission, capabilities, or reputation)” [8]. 

When an event is caused by a malicious act, or else is suggestive of a malicious act, then 

that event is an indicator of an incident. The term “incident,” by definition, is indicative 

of a hostile action or consequence. The importance in understanding the difference 

between an incident (direct indication of maliciousness) and event (non-direct indication 

of maliciousness) can be seen in the DOD Cyber Incident Handling Program—the 

Chairman Joint Chiefs of Staff Manual 6510.01B [9]. Table 1 lists ten event and/or 

incident categories from this manual, which is detailed in Appendix A to  

Enclosure B [10].    
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Table 1.    CJCS Manual 6510.01B Event and/or Incident Categories. Source: [10].   

Precedence Category Description 

0 0 Training and Exercises 
1 1 Root Level Intrusion (Incident) 
2 2 User Level Intrusion (Incident) 
3 4 Denial of Service (Incident) 
4 7 Malicious Logic (Incident) 
5 3 Unsuccessful Activity Attempt (Event) 
6 5 Non-compliance Activity (Event) 
7 6 Reconnaissance (Event) 
8 8 Investigating (Event) 
9 9 Explained Anomaly (Event) 

 

The four categories described as incidents are the ones of interest for the focus of 

this thesis, and are explained in detail below. These categories are referenced straight 

from the DOD Cyber Incident Handling Program—the Chairman Joint Chiefs of Staff 

Manual 6510.01B [10].    

1. Category 1: Root Level Intrusion (Incident) 

Unauthorized privileged access to an information system (IS). Privileged 
access, often referred to as administrative or root access, provides 
unrestricted access to the IS. This category includes unauthorized access 
to information or unauthorized access to account credentials that could be 
used to perform administrative functions (e.g., domain administrator). If 
the IS is compromised with malicious code that provides remote 
interactive control, it will be reported in this category. 

2. Category 2: User Level Intrusion (Incident) 

Unauthorized non-privileged access to an IS. Non-privileged access, often 
referred to as user-level access, provides restricted access to the IS based 
on the privileges granted to the user. This includes unauthorized access to 
information or unauthorized access to account credentials that could be 
used to perform user functions such as accessing Web applications, Web 
portals, or other similar information resources. If the IS is compromised 
with malicious code that provides remote interactive control, it will be 
reported in this category. 
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3. Category 4: Denial of Service (Incident) 

Activity that denies, degrades, or disrupts normal functionality of an IS or 
DOD information network. 

4. Category 7: Malicious Logic (Incident) 

Installation of software designed and/or deployed by adversaries with 
malicious intentions for the purpose of gaining access to resources or 
information without the consent or knowledge of the user. This only 
includes malicious code that does not provide remote interactive control of 
the compromised IS. Malicious code that has allowed interactive access 
should be categorized as category 1 or category 2 incidents, not category 
7. Interactive active access may include automated tools that establish an 
open channel of communications to and/or from an IS [10]. 

C. CYBER INCIDENT RESPONSE 

According to Incident Response and Computer Forensics [11], not all incidents 

are preventable, but to lower their likelihood, risk assessments should be conducted, 

followed by the implementation of appropriate security controls. A computer security 

incident has the following characteristics: committed to cause harm, initiated or executed 

by a person, and involves a computing resource. This book observed that looking at the 

first two characteristics, we can see they are consistent with numerous kinds of everyday 

non-technical incidents, like assault, arson or theft. Without the commitment to cause 

harm, it is difficult to label an event as an incident. Also, not all incidents are going to 

cause immediately detectable harm, even though the intentions to cause harm are 

indisputable. The second characteristic—executed by a person—would preclude events 

such as chance system failures or power outages, unless these events were caused by a 

person. The last characteristic—includes a computing resource—, is what marks the 

occurrence as a computer security incident. A computing resource could be any number 

of different automated/digitized information technologies, such as phones, cameras, 

printers, TVs, tablets, and countless others. The book also suggested that nowadays, these 

devices are everywhere one looks and it is easy to forget the voluminous amount of 

information they store, what they are connected (or capable of connecting) to, and what 

they have the ability to control [11].  
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The Computer Security Incident Handling Guide [12] notes the most demanding 

and difficult element of the incident response procedure is the process of trying to 

determine if an incident truly has occurred, and if it is proven to be a true incident, 

determine its category, scope, and root cause. This guide also states what makes this 

process so difficult is a blending of three elements:    

1. The detection of incidents occurs through a variety of means, with 
differing levels of detail and reliability. Detection can be 
automated or occur through manual means. Automated detection is 
comprised of such devices as host and network based intrusion 
detection and prevention systems (IDSPs), log analyzers, and 
antivirus software. Manual means of detection would include a 
user reporting a problem, or an analyst that is manually reviewing 
system log data and discovering some anomaly. 

2. The volume of possible indicators of incidents is normally 
tremendous for a company. It is not unusual for these companies to 
have thousands or even millions of intrusion detection sensor 
alarms each day.   

3. The thorough and accurate evaluation of incident-related 
information requires a deep, expert-level, technical knowledge of 
all involved technology. [12]   

According to the Computer Security Incident Handling Guide [12], indicators and 

precursors are the two categories of information that can lead to detection of an incident. 

Indicators serve as clues that an incident might have happened or is happening now. 

Precursors are clues an incident might happen in the future. Examples of precursors are 

threats from an individual or group stating their intent to attack a target, or log entries 

from a Web server indicating the use of a vulnerability scanner. Precursors are relatively 

(to indicators) rare, but indicators occur quite regularly. Examples of indicators would be 

alerts from the antivirus software detecting a host is infected with malware, an email 

administrator detecting a very high volume of bounced emails with questionable content, 

or numerous unsuccessful login attempts from an unrecognized remote system.   

There are numerous sources for the identification of indicators and precursors. 

The most common sources are people, logs, publicly available information (e.g., news 
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report indicating that a terrorist group has announced a specific new target), and 

computer security software notifications. These sources are described in Table 2. 

Table 2.   Common Sources of Indicators and Precursors for each Category. Source: [12]. 

(continued on next page) 

 

Source Description 

Alerts 

IDPSs IDPS products identify suspicious events and record pertinent 
data regarding them, including the date and time the attack 
was detected, the type of attack, the source and destination IP 
addresses, and the username (if applicable and known). Most 
IDPS products use attack signatures to identify malicious 
activity; the signatures must be kept up to date so that the 
newest attacks can be detected. IDPS software often produces 
false positives—alerts that indicate malicious activity is 
occurring, when in fact there has been none. Analysts should 
manually validate IDPS alerts either by closely reviewing the 
recorded supporting data or by getting related data from other 

 
  

SIEMs Security Information and Event Management (SIEM) products 
are similar to IDPS products, but they generate alerts based on 
analysis of log data (see below). 
 

Antivirus and 
antispam 
software 

Antivirus software detects various forms of malware, 
generates alerts, and prevents the malware from infecting 
hosts. Current antivirus products are effective at stopping 
many instances of malware if their signatures are kept up to 
date. Antispam software is used to detect spam and prevent it 
from reaching users’ mailboxes. Spam may contain malware, 
phishing attacks, and other malicious content, so alerts from 
antispam software may indicate attack attempts. 
 File integrity 

checking 
software 

File integrity checking software can detect changes made to 
important files during incidents. It uses a hashing algorithm to 
obtain a cryptographic checksum for each designated file. If 
the file is altered and the checksum is recalculated, an 
extremely high probability exists that the new checksum will 
not match the old checksum. By regularly recalculating 
checksums and comparing them with previous values, changes 
to files can be detected. 
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(continued on next page) 

 

 

 

Source Description 

Third-party 
monitoring 
services 

Third parties offer a variety of subscription-based and free 
monitoring services. An example is fraud detection services 
that will notify an organization if its IP addresses, domain 
names, etc., are associated with current incident activity 
involving other organizations. There are also free real-time 
blacklists with similar information. Another example of a 
third-party monitoring service is a CSIRC notification list; 
these lists are often available only to other incident response 
teams. 
 Logs 

Operating 
system, service 
and application 
logs 

Logs from operating systems, services, and applications 
(particularly audit-related data) are frequently of great value 
when an incident occurs, such as recording which accounts 
were accessed and what actions were performed. 
Organizations should require a baseline level of logging on all 
systems and a higher baseline level on critical systems. Logs 
can be used for analysis by correlating event information. 
Depending on the event information, an alert can be generated 
to indicate an incident. Section 3.2.4 discusses the value of 
centralized logging. 
 

Network device 
logs 

Logs from network devices such as firewalls and routers are 
not typically a primary source of precursors or indicators. 
Although these devices are usually configured to log blocked 
connection attempts, they provide little information about the 
nature of the activity. Still, they can be valuable in identifying 
network trends and in correlating events detected by other 
devices. 
 

Network flows A network flow is a particular communication session 
occurring between hosts. Routers and other networking 
devices can provide network flow information, which can be 
used to find anomalous network activity caused by malware, 
data exfiltration, and other malicious acts. There are many 
standards for flow data formats, including NetFlow, sFlow, 
and IPFIX. 
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The Computer Security Incident Handling Guide noted these sources of 

precursors and indicators are not guaranteed to be reliable/accurate, so it is often 

necessary to corroborate each one with additional precursors and indicators. The large 

volume of indicators received by an organization on a daily basis makes this task very 

daunting. Just by determining that an indicator is accurate, does not necessarily indicate 

an actual incident occurred. Such an instance is referred to as a false positive. In incident 

handling/response, timely detection of all true positives (i.e., actual incidents) is a 

challenging task. This is what makes the automated correlation of individual precursors 

and indicators so important and necessary for improved incident detection [12].   

Publicly Available Information 
Information on 
new 
vulnerabilities 
and exploits 

Keeping up with new vulnerabilities and exploits can prevent 
some incidents from occurring and assist in detecting and 
analyzing new attacks. The National Vulnerability Database 
(NVD) contains information on vulnerabilities. Organizations 
such as US-CERT and CERT®/CC periodically provide threat 
update information through briefings, Web postings, and 
mailing lists. 
 

People 
People from 
within the 
organization 

Users, system administrators, network administrators, security 
staff, and others from within the organization may report signs 
of incidents. It is important to validate all such reports. One 
approach is to ask people who provide such information how 
confident they are of the accuracy of the information. 
Recording this estimate along with the information provided 
can help considerably during incident analysis, particularly 
when conflicting data is discovered. 

People from 
other 
organizations 

Reports of incidents that originate externally should be taken 
seriously. For example, the organization might be contacted by 
a party claiming a system at the organization is attacking its 
systems. External users may also report other indicators, such 
as a defaced Web page or an unavailable service. Other 
incident response teams also may report incidents. It is 
important to have mechanisms in place for external parties to 
report indicators and for trained staff to monitor those 
mechanisms carefully; this may be as simple as setting up a 
phone number and email address, configured to forward 
messages to the help desk. 
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 The Computer Security Incident Handling Guide recognized incident response is 

an organized and well thought out methodology to go from incident discovery to 

resolution. Typically, an incident response effort is conducted by an investigating team 

that makes informed determinations regarding the technical details of what occurred, then 

takes appropriate response actions to remedy any damage done and—ideally—improve 

the targeted system’s defenses against the same or similar attack in the future. There are 

several phases to incident response. Though the exact naming of these phases varies by 

organization, the phases are typically named (and ordered) as follows: preparation, 

detection and analysis, containment, eradication and recovery, and post-incident  

activity [12]. This document stated the first phase comprises the establishment and 

training of an incident response team, and obtaining the essential resources and tools. 

This preparation phase is where an organization tries to curb the number of incidents by 

deciding on a set of controls based on risk assessment results, and then implementing 

them before an incident is actually encountered. Even after these controls are in place, 

there will still be some residual risk. This is what makes detection of security breaches 

essential for alerting an organization when an incident has occurred. Depending on the 

gravity of the incident, the organization can diminish an incident’s effect by containing it 

and—as quickly as possible—recovering any/all affected systems and information.   

The next phase of the incident life cycle is the detection and analysis phase. This 

is one of the most challenging elements of the incident response process because here one 

must accurately detect and assess possible incidents, determining whether what has 

occurred is truly an incident, or simply an accident or benign anomaly. Also, the 

methods/mechanisms that are used to introduce malicious artifacts/activities into the 

targeted system are numerous. These are often referred to as attack vectors. Attack 

vectors allow malicious actors to exploit vulnerabilities within the network. They can be 

any path or means an attacker would use to deliver a malicious payload to the system. 

Web, email, and attrition are examples of attack vectors. The behaviors associated with 

these attack vectors can be utilized in creating IOC rules. Behaviors associated with both 

Web and email are the way a system acts/responds when infected by malware. These 

behaviors could be registry keys that are added to the registry settings of the computer to 
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allow for persistence by the malicious code which would be indicative of malware. The 

malicious registry keys would be the IOCs used in creating the rule. Behaviors associated 

with a brute force attack would be indicative of an attrition attack vector. Usually a 

rootkit is installed on a system by an attacker attempting a brute force password attack. 

Behaviors associated with a rootkit that could be used as IOCs are MD 5 hash, process 

handles, unique filenames, and digital signature information that is invalid. Viewed 

separately, these IOCs may not provide a very good indication that a system has been 

compromised. The information could be combined into a correlation rule that would look 

for all of the aforementioned IOCs therefore providing a stronger indication that your 

system was actually compromised. The incident response team should be able to respond 

to any of these attacks quickly, analyzing and confirming each incident and documenting 

each step they took along the way. The scope of the incident; such as what systems, 

applications, or networks are affected; what or who initiated the incident; and how the 

incident is transpiring should be determined by the team. This information should give 

the team enough data to prioritize appropriate follow-on actions; e.g., is additional/deeper 

analysis needed, or is the team ready to proceed to containment and/or eradication  

actions [12].  

The Computer Security Incident Handling Guide wrote the next phase of the 

incident life cycle is containment, eradication, and recovery. The first thing the incident 

response team must do is contain the incident so as to prevent further damage. 

Containment gives the team time to establish a custom-made remediation plan. During 

this process, they must decide whether to remove the infected device from the network, 

shut the system down, or disable certain functions on the device. An organization’s 

containment strategy will differ based on the type of incident that has occurred. Preset 

containment strategies and actions should be developed for each main incident type, with 

well-defined criteria documented to enable more quick and precise decision-making. 

These criteria are:  the resources and time required to carry out the plan, success of the 

plan, service accessibility, possible theft and damage of resources, need to secure 

evidence, and how long the solution will last [12]. After containment of the incident is 

complete, eradication might be required in order to remove certain elements of the 
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incident. These elements could be anything from deactivating penetrated user accounts, 

to removing malware. It is imperative that all affected hosts are identified within the 

organization to ensure full remediation. Once this is accomplished the organization can 

begin the recovery process. Administrators will return systems to their normal operating 

conditions and verify they are functioning within normal (pre-incident) standards. This 

will typically be accomplished via clean backups of the system, replacement of 

compromised files with new versions, changing passwords, installing patches, or—in 

more extreme incidents—conducting a bare-metal reconstruction of the system. The 

recovery process will focus on longstanding security changes the organization can make 

to ensure they are as protected as they can possibly be against the same or similar attack 

in the future [12].   

The last phase, post-incident activity phase, is important because this is where the 

organization learns from their mistakes and improves upon their plans, policies, and 

defense posture. The “lessons learned” data can be used to help the organization 

determine how many man-hours were spent, and the total cost of the incident. Incident 

response teams use the lessons learned data to request and justify their need for additional 

funding. Another important task for the incident response team is to produce a follow-up 

report that can be referenced in the future to deal with incidents that are similar in  

nature [12].   

D. SECURITY INFORMATION AND EVENT MANAGEMENT 

SIEM technology employs a combination of what has historically been two 

separate categories of IT security management tools: security information management 

(SIM) and security event management (SEM) [9]. According to Network and System 

Security [13], the SIEMs underlying principle is the collection of pertinent data about an 

organization’s security posture gathered from near- or real-time observation of events and 

actions occurring on an organization’s essential systems. The clients, servers, and other 

security devices are those essential systems where the “raw” indicators and precursors of 

an incident comes from. The SIEM is a collector of all that “raw” data arriving from 

those essential systems. As such, the SIEM stands apart. It gathers all those indicators 
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and precursors and – owing to some well-written rules – will aggregate and correlate this 

data to add additional value to it. This value added is the core of what SIEM solutions 

with well-defined IOC rules bring to the cyber defense table.   

Organizations use log management and/or security information and event 

management (SIEM) tools to appropriately monitor for technical events which could lead 

to an investigation or incident. It allows for faster recovery from incidents by collecting, 

storing, and analyzing log and other security-relevant information. These tools are used 

by security managers and analysts to automate the collection and analysis (to varying 

degrees) of very large volumes of system-generated event data. One may imagine these 

automated tools as serving as intelligent pre-filters that allow human responders to more 

quickly identify and focus on only the most noteworthy events [13]. In addition to 

incident detection, these tools are also helpful in generating reports which are used for 

purposes of policy compliance. SIEM solutions typically arrive as either standalone 

appliances, remotely managed services, or loadable—often open source—software. A list 

of SIEM capabilities taken from “Network and System Security” are as follows:   

• Alerting: Automated evaluation of associated events and creation of alerts, 
used to warn recipients of urgent issues.  

• Compliance: SIEM functions are used to automate the collecting of 
compliance data, generating reports that conform to current security, 
auditing procedures, and governance.  

• Correlation: Searches for common characteristics and connects events 
together into significant packets. This technology delivers the capacity to 
execute an assortment of correlation techniques to incorporate diverse 
sources, for the sake of turning data into beneficial information.  

• Dashboards: SIEM/Log Management (LM) tools utilize event data and 
produce informational charts to help visualize patterns or identify actions 
which do not form a normal pattern.  

• Data Aggregation: SIEM/LM solutions combine data from numerous 
sources, including databases, servers, security, network, and applications, 
delivering the ability to consolidate censored data in order to prevent 
missing critical events.  
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• Retention: SIEM/SIM solutions use lifelong storage of historical data to 
enable the correlation of data over a certain period of time and offer the 
retention of this information needed for compliance obligations [13]. 

At the most fundamental level, a SIEM system will likely involve some 

combination of signature-, rule-, and statistics-based correlation mechanisms so as to 

determine incident-related semantic correlations among multiple logged events. As 

discussed previously, system “events” are captured (documented) by log messages 

collected from the various devices that have been configured to provide such. Example 

log sources are intrusion detection systems, firewalls, routers, hosts, etc. [14]. An 

example logged event is a user “login” event which would include such useful 

information as username, hostname, and a timestamp. All events collected by the SIEM 

system go through a sequence of “rules” called the “rule system.”  This rule system, or 

“ruleset,” produces “alerts” dependent upon the attributes of the events being processed 

[14]. The alerts produced signify that an important event or sequence of events has 

occurred, and which requires attention. Alerts are normally reviewed by security analysts, 

and will typically be prominently displayed on a SIEM dashboard for quick and easy 

notice. These alerts, along with the logged events which elicited them, are then saved in 

the database for tracking and reporting reasons [14].   

Incident Response and Computer Forensics believed this ruleset could be 

considered the heart of a SIEM, as it adds value to the relatively narrow information 

derivable from the many individual/isolated logs collected. As such, these rulesets, 

including their format and definitions, are important to the improvement of incident 

response. SIEM rules are often articulated in the language of indicators of compromise 

(IOCs). IOCs seek to define the forensic artifacts that constitute various intrusions. These 

specific artifacts can serve as reliable indicators of incident-related activity. They can 

take the form of domain names, email addresses, IP addresses of command and control 

servers, file hashes, file size, name, etc. The intent of creating IOCs for a specific piece of 

malware, or attack behavior, is to define their related artifacts in a manner that allows an 

automated system (e.g., a SIEM) to detect the defined artifacts much more quickly than is 

possible when attempting to do so manually. The creation of IOCs is the method of 

recording features and artifacts of a security incident or attack in an organized manner. 
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An important concern in deciding how to represent IOCs, is the capability to use this 

structure in a standardized, and thus distributable, way within any given organization 

[11]. Network-based IOCs are typically structured as Snort rules. Snort, as defined by 

snort.org, is an open source network intrusion prevention and detection system (IDS/IPS) 

developed by Sourcefire. It is the most commonly deployed IDS/IPS technology globally, 

and brings together all the benefits of protocol, anomaly-based, and signature inspection 

into one tool. For host-based IOCs, there is no single, uniformly agreed upon and/or 

utilized, format. Three nascent standards are, however, currently available for further 

consideration and development. These are:  Mitre’s CybOX, Mandiant’s OpenIOC, and 

YARA. 

 Chapter II will focus on how to detect these cyber incidents and other reportable 

cyber events through: 1) introducing the DOD Cyber Incident Handling Program, 2) 

enumerating the types of logged system events of most interest to attack sensing and 

warning (AS&W), and 3) discussing the merits of event correlation to improve attack 

sensing and warning. 
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II. DETECTING CYBER INCIDENTS AND OTHER 
REPORTABLE CYBER EVENTS 

A. THE DOD CYBER INCIDENT HANDLING PROGRAM (CJCSM 
6510.01B) 

The Chairman of the Joint Chiefs of Staff Manual 6510.01B is the manual that 

governs the Department of Defense (DOD) Cyber Incident Handling Program [10]. The 

purpose of this manual is to describe this program in detail and specify its main 

processes, employment requirements, and other related U.S. government interactions. 

This program promotes a unified ability to constantly improve the DOD’s capability to 

quickly recognize and respond to cyber incidents that negatively affect DOD information 

systems (ISs) [10]. The scope of this document is based on the fact that the DOD is 

comprised of numerous military commands, organizations, agencies, and functions that 

must direct, coordinate, and answer to technology attacks, threats, and incidents. Without 

appropriate controls to manage, protect, and detect their effects, these attacks, threats, and 

incidents could negatively affect DOD information systems and networks. The document 

provides overarching direction that promotes a shared and in-depth understanding of how 

the DOD’s local, regional, and global organizations synchronize attempts to positively 

affect response activities [10]. Direction contained within covers the high-level 

procedures associated with the Monitor, Analyze, Detect, Protect, and Respond stages of 

the Computer Network Defense (CND) life cycle. It provides the rudimentary framework 

necessary to structure a DOD-wide cyber incident-handling program. 

The activities described in this manual are intended to be hierarchically 

distributed across three levels—referred to as tiers—of organization: Tiers I, II, and III. 

Global organizations (Tier I) offer DOD-wide CND operational support or direction. 

USCYBERCOM is a Tier I entity. Regional (Tier II) organizations offer DOD 

component-wide operational support or direction and answers to Tier I. Combatant 

Command/Service/Agency/Field Activity Computer Network Defense Service Providers 

(CNDSPs) are Tier II entities. Local organizations (Tier III) offer local operational 
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support or direction, and answer to direction from their appropriate Tier II entity. Bases, 

stations, and posts are examples of Tier III entities [10].   

The basic method for DOD cyber incident management can be arranged into the 

following phases [10]:  

(1)  Detection of events 

(2)  Preliminary analysis and identification of incidents 

(3)  Preliminary response actions 

(4)  Incident analysis 

(5)  Response and recovery 

(6)  Post-incident analysis 

Phases 1 and 2 are of the greatest importance for this thesis as they focus on 

detection and preliminary investigation. These phases are where the SIEM can prove so 

valuable. Through the centralization of an organizations security events, via the logging 

capabilities of the SIEM, attacks can be detected that may not have otherwise been 

discovered. This is accomplished via the correlation rules within the SIEM. These rules 

will allow the SIEM to search for multiple individual indicators within a single rule. 

Basically, they help connect the dots on logically-related (to incident activity/behavior), 

yet otherwise unrelated data. Due to the vast number of sources that generate security log 

entries, the incident “first responders” need a single “console-type view” that would 

allow them to view, analyze, and report on the content found within these log entries. The 

automation the SIEM provides is also invaluable not only due to the large volume of data 

that can be ingested and analyzed, but also due to how rapidly this data can be analyzed.   

The SIEM is also crucial in the preliminary investigation of an incident. It can 

provide a “first responder” with the details necessary to make an intelligent, well 

informed decision regarding the appropriate response action for the threat. If the rules are 

well-written and configured properly with strong IOCs, then false positives and false 

negatives should be few, and only true positives will be presented to the SIEM operator. 

This will help ensure faster response times to the most severe incidents, possibly early 

enough in the attack phase so as to prevent (or limit) any actual damage to the system. 
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The preliminary investigation may also reveal new IOCs that are worth considering to be 

added to the SIEM’s ruleset.  

The purpose of minimum reporting timelines, in Table 3, are for organizations to 

report incidents as quickly as possible so that appropriate actions can be taken to stop or 

diminish harm [10]. This is made possible because the SIEM allows streamlined 

reporting via its customizable reporting and centralized logging capabilities. With good 

IOCs, and therefore stronger rules, the “first responder” will be able to collect many, if 

not all, of the pertinent details of the incident, thus producing more accurate and timely 

information for the initial report.   

Table 3.   Reporting Timelines for Cyber Incidents. Source: [10]. 

Category Impact Initial 
Notification 
to Next Tier 

Initial 
Report to 
Next Tier 

Initial 
Submission 

to JIMS 

Minimum 
Reporting 

1 

Root 
Level 
Intrusion 
(Incident)  

High Within 15 
minutes 

 Within 4 
hours  

 Within 6 
hours  

 Tier I 

Moderate Within 2 
hours 

Within 8 
hours 

Within 12 
hours 

Tier I 

Low Within 4 
hours 

Within 12 
hours 

Within 24 
hours 

Tier I 

2 

User 
Level 
Intrusion 
(Incident) 

High Within 15 
minutes 

Within 4 
hours 

Within 6 
hours  

Tier I 

Moderate Within 2 
hours 

Within 8 
hours 

Within 12 
hours 

Tier I 

Low Within 4 
hours 

Within 12 
hours 

Within 24 
hours 

Tier I 

 
(continued on next page) 
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Category Impact Initial 
Notification 
to Next Tier 

Initial 
Report to 
Next Tier 

Initial 
Submission 
to JIMS 

Minimum 
Reporting 

4 

Denial of 
Service 
(Incident) 

High Within 15 
minutes 

Within 4 
hours 

Within 6 
hours 

Tier I 

Moderate Within 15 
minutes 

Within 4 
hours 

Within 6 
hours of 
discovery 

Tier I 

Low As directed 
by CC/S/A/
FA Guidance 

As directed 
by CC/S/A/
FA 
Guidance 

As directed 
by CC/S/A/
FA Guidance 

Tier I 

7 

Malicious 
Logic 
(Incident) 

High Within 15 
minutes 

Within 4 
hours 

Within 6 
hours 

Tier I 

Moderate Within 2 
hours 

Within 8 
hours 

Within 12 
hours  

Tier II 

Low As directed 
by CC/S/A/
FA Guidance 

As directed 
by CC/S/A/
FA 
Guidance 

As directed 
by CC/S/A/
FA Guidance 

Tier II 

 

The cyber incident reporting format in Table 4 provides a format for reporting 

preliminary incidents by secure telephone, fax, or by some other electronic channels. 

Initial reports may not be complete. The reporting organization must balance the 

requirement of judicious reporting against comprehensive reports [10]. Timely reporting 

is critical, and complete information must be given as new details occur. The report 

format consists of the cyber incident tracking information, reporting information, 

categorization information, technical details, sites involved, impact assessment, and 

additional reporting or coordination. The section most relevant to this thesis is the 

technical details section as seen in Table 4. 
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Table 4.   Technical Details Section of the Cyber Incident Report Format. Source: [10].  

 

Field  Description  
Technical Details  

Event/Incident 
Description  

Provide a narrative description of the incident with technical 
details. Include DTGs of significant events (start, stop, or 
change of activity). State the use of the targeted IS and whether 
the IS is online or offline. Indicate whether the incident is 
ongoing.  

Root Cause(s)  

Identify the IS specific cause(s) of the incident. The root cause 
expands upon the identified delivery vector(s) and IS 
weaknesses by precisely identifying the sets of conditions 
allowing the incident to occur. Indicate whether the DAA or 
CIO had accepted a risk that led to the incident.  

Source IP and Port  

Provide source IP with resolution data identifying owner and 
country of source IP machine. Note: The source IP could be a 
DOD IP. If the intruder is known, provide all identifying 
information to include the intruder’s objective, if known. 
Source IP is not necessarily indicative of true origin. Footnote 
the source of resolution/attribution data (i.e., ARIN.org). Insert 
“Not Applicable” for incidents that do not involve source IP or 
port.  

Intruder(s) (if known)  Identify the intruder or group responsible for the incident, if 
known.  

Origin (Country)  Identify the source IP’s country of origin.  

Target IP(s) and Port  

Provide target IP with resolution identifying responsible 
command and physical location of target IP machine (e.g., B/
C/P/S, etc.). Footnote the source of resolution/attribution data 
(i.e., DDD NIC, nslookup, and whois). If machine is behind a 
network address translation enabled (NAT’ed) router or firewall 
then also provide the wide area network (WAN) routable 
address (i.e., the internet/SIPRNET routable IP address).  

Technique, Tool, or 
Exploit Used  Identify the technique, tool, or exploit used.  

Operating System (OS) 
and OS Version  

Record the OS and version number of the OS where the 
incident occurred.  

Use of Target (e.g., Web 
Server, File Server, 
Host)  

What the intruder/attacker used the target IS for, after it was 
exploited, if applicable.  

Method of Detection  Identify how the intrusion was detected (e.g., external 
notification, log files, network monitoring, IDS, user).  
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 For the cyber incident analysis framework, the type of analysis performed will 

vary based on what type of incident is being examined [10]. Incident analysis is a logical 

series of steps that an incident response team must go through in order to determine what 

occurred during an incident. The reason behind this evaluation is so the incident response 

team can fully understand the technical details; including what is often considered the 

most important aspect: root cause(s) [10]. Good IOCs can aid in providing the technical 

details required in an incident report. They can help determine the root cause of an 

incident by identifying what the attack vector was, based on the identified behavioral 

attributes. These behavioral attributes can be changes made to the registry keys, services 

started, a large increase in DNS requests from a specific host, or a process exits and then 

a privileged event occurs. Source IP and port as well as target IP and port are good IOCs 

to be included in a correlation rule as well.   

 The evaluation should also shed light on both actualized and potential effects of 

the incident on normal system operation. This knowledge will aid in establishing what 

added information to collect, how to synchronize information distribution with others, 

and what remediating courses of action (COAs) are most appropriate for response 

activities. If the possibility exists the incident will require legal action to be taken, the 

appropriate authorities must be contacted to ensure the proper legal actions are followed 

during the incident examination [10]. The type of incident, along with the technical 

details and operational impacts, will determine the extent to which an incident must be 

examined. It will also depend on what information and resources the incident response 

team has at their disposal [10].   

From the CJCSM 6510.01B, “A delivery vector is defined as the primary path or 

method used by the adversary to cause the incident or event to occur” [10]. This 

information is used in a portion of the incident report to help determine if there is a trend 

in how often the different vectors occur. By understanding vector methods, techniques 

and trends, strategic and tactical plans can be drafted or modified in order to advance the 

defensive stance of DOD information networks. Although the technical specifics of any 

given delivery vector are often multifaceted and evolving, generalizing their 
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methodology allows them to be classified into just a few categories. The main groupings 

and sub-groupings of delivery vectors are described in Table 5.   

Table 5.    Delivery Vectors Categories. Source: [10]. 

Delivery Vector  

Category Number  
Description   

1  

Sub-category  
Reconnaissance: Information was accessible and used to 
characterize ISs, applications, information networks, and users that 
may be useful in formulating an attack.  

A  Information Gathering and Data Mining: Activity that seeks to 
gather information from publicly available sources.  

B  Network Scan: Activity that targets multiple IP addresses. This is 
referred to as a horizontal scan.  

C  System Scan: Activity that targets a single IP address across a 
range of ports. This is referred to as a vertical scan.  

2  

Sub-category  Authorized User: A user with authorized access took specific 
actions that resulted in jeopardizing ISs or data.  

A  Purposeful: An authorized user knowingly took specific actions 
that jeopardized ISs or data.  

B  Accidental: An authorized user took actions that had consequences 
over and above the intentions and jeopardized ISs or data.  

3  

Sub-category  Social Engineering: Human interaction (social skills) or deception 
used to gain access to resources or information.  

A  Email: Email is the primary vehicle used to deliver a malicious 
payload or gain access to resources or information.  

B  website: A website is the primary vehicle used to deliver a 
malicious payload or gain access to resources or information.  

C  Other: A user was deceived or manipulated in a way that is not 
covered by the other types of social engineering.  

4  

Sub-category  Configuration Management: Compromise resulting from the 
inadequate or improper configuration of an IS.  

A  Network: An IS that provides network-based services was 
improperly or inadequately configured.  

B  OS: An OS was improperly or inadequately configured.  

(continued on next page) 
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Delivery Vector / 
Category Number  Description  

 C  Application: An application was improperly or inadequately 
configured.  

5  

Sub-category  
Software Flaw: A vulnerability in the software that allows for the 
unauthorized use of or access to an IS in a way that violates the 
IS’s security policy.  

A  
Exploited New Vulnerability: This vulnerability was unknown 
prior to the event or there was no mechanism available to prevent 
it.  

B  
Exploited Known Vulnerability: This vulnerability was known 
prior to the event and there was a mechanism available to prevent 
it.  

6  

Sub-category  Transitive Trust: Compromise resulting from the implicit or 
explicit trust relationship between security domains.  

A  Other IS Compromise: Compromise resulting from access 
previously gained on another IS.  

B  
Masquerading: Compromise resulting from the unauthorized use of 
a valid user’s credentials. This may include cryptographic material, 
account credentials, or other identification information.  

7  

Sub-category  
Resource Exhaustion: The consumption of IS resources that 
prevents legitimate users from accessing a resource, service, or 
information.  

A  
Non-Distributed Network Activity: Activity from a single IP 
address that overwhelms IS or information network resources. This 
is generally associated with a DoS incident.  

B  
Distributed Network Activity: Activity from multiple IP addresses 
that overwhelms IS or information network resources. This is 
generally associated with a DoS incident.  

8  

Sub-category  Physical Access: The unauthorized physical access to resources.  

A  Mishandled or lost resource: Equipment was stolen, lost, or left 
accessible to unauthorized parties.  

B  Local access to IS: An unauthorized user was provided local 
physical access to a DOD information network resource.  

C  Abuse of resources: The physical destruction of an information 
resource by an unauthorized party.  

9  

Sub-category  Other  

A  
New Delivery Vector: The delivery vector is not covered by the 
listed methods. Description of the delivery vector must be included 
in the incident comments.  

10  
Sub-category  Unknown.  

A  Unable to Determine: Delivery vector could not be determined 
with the information available.  
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The delivery vector categories described above are not all-inclusive. Reasonably, 

they generally define the main groupings of delivery vectors. Subcategories are used to 

provide a higher degree of granularity, so as to provide further specificity for any 

particular identified delivery vector. For example, the delivery vector category “Software 

Flaw” includes the following subcategories: “Exploited an Existing Vulnerability” or 

“Exploited a New Vulnerability.”  This additional specificity is informative to incident 

responders. If a vulnerability is determined to be one already existing, the most 

appropriate remediation action would be to patch the (known) vulnerability; while the 

other (new vulnerability), would require additional investigative effort to obtain sufficient 

understanding of the vulnerability to facilitate development of a patch, or mitigating 

security control.  

B. EVENTS OF INTEREST TO ATTACK SENSING AND WARNING 
(AS&W) 

“AS&W is defined as the identification, characterization, detection, and 

correlation of deliberate unauthorized cyber activity with a warning to command and 

decision authorities in order for a suitable response to be developed” [15]. Achieving an 

effective AS&W capability entails systematic gathering of intrusion-/attack-associated 

intelligence [16]. Such a capability benefits from a network of anomaly, intrusion, and 

misappropriation detection systems, which in turn feeds into a data fusion and evaluation 

facility that is capable of long-term pattern and trend analysis. 

 1. Log-Based Data 

Because it is becoming more and more challenging to identify malicious cyber 

activity, it is proving more critical to monitor log data from as many valuable sources as 

possible [17]. Event logs encompass a huge volume of data; so much so that manually 

sifting through these logs to uncover indications of malicious activity would be 

exceedingly time-consuming, if not outright impossible. There are four main kinds of 

event logs that are beneficial in detecting possible incidents and/or proceeding with their 

investigation once they have been detected. The four kinds of logs are detailed in Table 6.   
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Table 6.   Main Types of Event Logs. Source: [18]. 

Type of logs  Examples  

Networking logs  •  Firewall, Email, Net flow logs, and VPN  

Records from 
logging and cyber 
security monitoring 
tools  

• Network intrusion detection systems (NIDS)  
• Malware protection logs  
• Data loss protection (DLP)  
• Network intrusion prevention systems (NIPS)  
• Tools that utilize potential investigation techniques and 

malware isolation (virtual execution engines or sandboxing)  

System logs  

• Endpoint logs  
• System activity logs  
• Logs from customized and standard applications  
• Physical security logs  
• Authentication logs  

Technical logs  

• Web and SQL server logs  
• HTTP proxy logs  
• App flow logs 
• DNS, DHCP and FTP logs  

 

Evidence of an incident could potentially be captured in numerous logs that all 

contain different kinds of data, but all of which; nonetheless, provide useful detective or 

investigative information pertaining to the incident. For example, an application log 

could provide the username used by an attacker, while a firewall log could provide the 

destination IP address targeted by the attacker [18].  

Log-based data is raw data from numerous network sensor sources. Numerous 

network-based applications generate events which they write to log files. The source 

events that populate log files could come from many possible devices and services found 

on a typical network; e.g., firewalls, Web proxies, and mail server virus scanners. The 

information provided directly by, or inferable from, these log files, can be correlated by 

automated systems in order to enhance the speed and reliability at which incidents are 

detected [19].    
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 Network log-based detection is a method that centers on the examining of audit 

logs produced by network devices. Audit logs have two main components. One is a 

collection of audited events, which are considered indicative of “bad” behavior. This can 

include actions deemed to be unauthorized, obviously malicious, or otherwise suspicious 

owing to any number of metrics. The second element is an audit trail examination 

module. These audit trails are derived from a sequential record of actions on a system. 

The examination module assesses the observed system’s audit trail for actions that match 

activity in the catalog. If a match occurs, the activity is assumed to be intrusive [20].   

 Logged events are the main records of network and system activity. According to 

the “SANS Log Management Survey, Shank (2010),” the top reasons for an organization 

to collect log-based data are based on the data’s usefulness and benefits provided. Some 

of these reasons are listed next in the order of their importance: [10] 

• Prevent/detect insider abuse and unauthorized access 

• Forensic analysis and correlation 

• Ensure regulatory compliance 

• Track suspicious behavior 

• Monitor user activity  

Log management is a critical part of network security and more and more organizations 

are using it for troubleshooting purposes as well as detecting and analyzing suspicious 

behavior.   

2. Findings from Sebring’s and Campbell’s Technical Report  

This section references Eric Sebring and Shaun Campbell’s Applied Cyber 

Operations CAPSTONE Project Report titled Enhancing CANES SIEM Performance via 

Optimized Event Logging [21]. This project was completed in September of 2016. The 

intent of their project was to analyze the inputs to the SIEM system and identify the 

typical system events most likely to be useful as indicators of malicious activity. Their 

work was conducted for the purpose of assessing the best collection of events to audit for 

collection and forwarding to an automated SIEM system. Determination of “best,” in this 

context, was based upon various researchers’ inputs, and industry-wide logging best 
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practices. Their effort, in combination with the efforts of other technical reports, 

including this one, is intended to result in a highly “tuned” SIEM that exhibits few false 

alerts (i.e., false-positives or false-negatives). This material is important to this thesis, 

because it identifies the specific (loggable) events deemed most prudent/useful for 

ingestion by the SIEM. IOCs deployed on a SIEM, are effectively limited by the quality 

of the raw event data provided to them.  

The United States Navy relies upon automated information systems to conduct 

their everyday operations and complete their missions. CANES is the present shipboard 

network infrastructure utilized onboard ships. The security suite implemented at the 

center of the CANES system is the SIEM. One of the key features of the SIEM is the 

broad platform and application support provided which includes Microsoft Windows. 

Microsoft Windows comprises most of the network systems onboard U.S. Navy ships. 

The SIEM collects and analyzes syslog data that is gathered from all organic and non-

organic network equipment onboard ships. This allows the SIEM to provide actual 

intelligence to the overwhelming amount of ostensibly unintelligent data that pours in. 

Event logs are an integral part of constructing a timeline of what has occurred on a 

system. For a SIEM to be of most benefit, it is prudent to ensure it is given the most 

useful log information for consideration. The ideal set of logged events would yield a 

high signal-to-noise ratio (S/N) with respect to their ability to capture true indicators of 

malicious activity. This means there will be more “signal” (useful logged events) 

provided to the SIEM than “noise” (un-useful logged events).  

From the findings of Sebring and Campbell, it is suggested that seven current 

Windows audit policy subcategory settings should be disabled, while thirteen current 

Windows audit policy settings should be enabled, so as to provide the most effective 

Windows auditing environment possible. This, they offered, will likely provide the 

optimal collection of events for the SIEM, and facilitate greater accuracy in identifying 

true/real events for attack sensing and warning. The actual Windows logging and auditing 

environment is established via configuration settings, which, with various degrees of 

granularity, describe the most critical events that should be examined by a SIEM. There 

are 53 settings which allow one to choose specifically which events to monitor. This 
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should, then, provide the SIEM with the best collection of logged events for it to run 

through its correlation engine.   

The seven audit policy settings recommended to be disabled were: 

1. Other Account Logon Events subcategory setting in the Account Logon 
category 

2. Application Group Management and Distro Group Management 
subcategories under Account Management  

3. RPC (Remote Procedure Call) Events under Detailed Tracking category 

4. Network Policy Server for both success and failure under the Logon/
Logoff category 

5. Other Logon/Logoff Events under the Logon/Logoff category 

6. Sensitive Privilege Use subcategory under Privilege Use category 

7. IPsec Driver subcategory under the System category 

 

The audit policy settings recommended to be enabled were: 

1. Kerberos Authentication Service and Kerberos Service Ticket Operations 
subcategory for both success and failure under the Account Logon 
category 

2. Increase the auditing level of the Process Creation and Process 
Termination subcategories to audit both success and failure events under 
the Detailed Tracking category 

3. Special Logon should be enabled for success under the Logon/Logoff 
category 

4. Any event associated with administrator privileges should be audited for 
both success and failure under the Logon/Logoff category 

5. Add failure to the setting mentioned above in number three 

6. File System subcategory for both success and failure under the Object 
Access category  

7. Registry subcategory for both success and failure events under the Object 
Access category 

8. Kernel Object subcategory under the Object Access category 
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9. Authorization Policy Change for success and failure under the Policy 
Change category 

10. Other Policy Change Events set to enabled for failure events only under 
the Policy Change category [21] 

These changes to the auditing policy will allow the SIEM to be better able to detect true 

positives for indicating malicious activity. The SIEM is a crucial tool in facilitating 

quicker detection and response of malicious activity by systems analysts. 

3. Other Sources of Incident Artifacts 

There are many security mechanisms that can be utilized for attack sensing and 

warning, besides the previously discussed log-based data. Intrusion detection systems 

(IDS), antivirus, firewalls/routers, and vulnerability scanners are but a few examples of 

such other sources [22]. 

According to “Survey of Event Correlation Techniques for Attack Detection in 

Early Warning Systems,” IDSs produce security reporting events which are comprised of 

information concerning both realized, or potentially realized, attacks. These reports vary 

in the detail they may provide, owing to the accuracy of the underlying intrusion 

signatures configured into the IDSs. Events produced via these detection systems will 

have alternating levels of importance, contingent upon the assessment method, and kind 

of input information and origin. This document also states methods for detection can be 

separated into two classes:  anomaly-based and signature-based.   Anomaly-based 

systems are only able to determine to a certain/limited likelihood, if the malicious 

event(s)/activity detected is a true-positive indicator of an incident. The results achieved 

through the use of signature-based systems largely depend upon the quality of the 

signatures used. Because of this variation in confidence, events are normally prioritized 

by the combination of an alarm and confidence level. The alarm level defines the gravity 

of the detected event, and the confidence level indicates how reliable the signatures are 

[19].   

The remainder of this section comes from Spadaro, “Event Correlation for 

Detecting, Advanced Multi-Stage and Cyber-Attacks.”  Antivirus software is used on 

individual computer system for the purposes of mitigating the threat of malware, which 
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includes Trojans, viruses, keystroke loggers, backdoors, worms, and blended threats, and 

all other manner of malicious logic artifices. This technology searches for traces of 

malware in critical components, file systems, and applications, via both signature-based 

and heuristic-based detection. If a file containing malware is discovered, the antivirus 

software will attempt to isolate or clean it. Typically, antivirus software and IDSs will 

complement each other [22].   

 Firewalls typically depend on basic protocol information, such as destination and 

source IP addresses, and port numbers, for filtering network traffic. They are intended for 

blocking unauthorized access efforts and can be reconfigured by certain IDSs to block a 

specifically identified threat. Certain router models can also monitor network traffic 

performance and collect data containing statistics and header information for a set of 

packets with like features; this can, in turn, be used to discover unusual flows [22]. Such 

unusual flows are often indicators of backdoors, worms, and distributed denial of service 

(DDoS) activity. 

 Vulnerability scanners are used to identify vulnerabilities in networks, 

applications for IT Security Assessment, and computer systems. Malicious actors may 

use them to gain information about vulnerabilities they can exploit in order to gain 

unauthorized entrance into a system or network [22]. This is why it is so crucial to utilize 

these scanners for defense purposes.   

 File integrity checking software detects alterations made to critical files. 

Cryptographic checksums can be obtained, via a hashing algorithm, for every file deemed 

a likely target of attack. Assuming the defender has done this, and thus has known good 

checksum values, then any alterations would be indicative of potential malicious activity. 

Through the use of continual recalculation of checksums and their comparison against 

previous—known good—values, unauthorized alterations to files can be identified [22].  

C. EVENT CORRELATION AS ATTACK SENSING AND WARNING 
(AS&W) 

According to the “Survey of Event Correlation Techniques for Attack Detection 

in Early Warning Systems,” event correlation is the process of integrating the information 
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inherent in each individual event, across multiple, related events. This integration is 

technically achieved via identifying Boolean relationships among the events; as those 

relationships pertain to particular (or typical) incident activity. A simple example is seen 

in the Boolean operator “AND” being applied to the two individual events of: 1) System 

firewall was disabled, and 2) Only user “Ben” was logged onto that system at the time 

that the firewall was disabled. Combined, these two individual events are thus correlated, 

with—in this example—a logical inference which suggests that further investigation/

follow-up is warranted. Meta data (such as administrative, time, network topology, or 

location information) may be used to increase the quality of a single or combined event 

[19]. The survey suggested correlative event evaluation methods can be generally 

separated into the same two classes as are most detective type technologies; anomaly-

based and signature-based.  

 Tobias states anomaly-based techniques are utilized in order to detect unusual 

system behavior. This can be accomplished via two different methods. A specification-

based method or a data-mining-based method. Data-mining techniques were developed 

for modeling extraction from huge databases. The first step in this process is to train the 

algorithm for a system where only “normal” actions take place. During this process, a 

model that defines the normal environment of the system is created. In the second step of 

the process, the real system is observed and continuously compared to the generated 

model. If the difference between the two systems is larger than some pre-defined 

threshold, then an event is generated that reports the abnormal behavior. There are many 

different algorithms applicable for anomaly analysis from the field of statistics, 

databases, learning-based systems, and pattern recognition. Specification-based solutions 

constantly analyze the behavior of the system and compare it to a known parameter 

range. If this range is violated, an event is produced which points to the potential attack.   

 Elsewhere in the document, Tobias notes signature-based techniques are based on 

pre-defined signatures and events as input data. The signature denotes a kind of filter, 

which is applied to all incoming events. If the signature matches the incoming 

information, a certain pre-determined action is implemented, like the notification of the 

detection to higher layers in the attack detection system. Occasionally, the filter/signature 
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combination, along with the executed action command(s), is called a rule. Normally, 

signature-based systems are inclined to generate fewer false positives as compared to 

anomaly-based systems. This is due to the fact that signatures attempt to identify a certain 

kind of data inside the input flow, such as a specific kind of exploit in a payload-based 

IDS. However, the quality of the detection is dependent upon the signatures that were 

created. Typically, IDSs like Snort offer the ability to create tailored signatures, which 

can result in a higher degree of true-positive detections and fewer false -positives and 

false-negatives. Specific attacks can be identified by adding new rules that are specially 

tailored for their detection. This allows the correlation algorithms to be adapted to 

changing requirements.  

 The remainder of this section comes from Spadaro, “Event Correlation for 

Detecting, Advanced Multi-Stage and Cyber-Attacks.”  Spadaro states event correlation 

can be viewed as operating in a layered security architecture with correlation methods 

applied across all layers. These layers are: event layer, report layer, and data layer. In the 

raw data layer, sensor data is gathered and processed, and then directed to the event layer, 

at which point “correlators” and IDSs prioritize, classify, and dispose of non-relevant 

data. Next, acquired data is directed to the report layer, to be post-processed. Correlation 

methods on the raw data layer primarily focus on combining the large volume of data 

generated by each sensor, removing data features, and detecting simple incidents. In the 

event layer, lower layer events, where traffic data analysis takes place, are processed in 

order to combine alerts into meta-alerts in order to gather all possible information for 

identifying the event that caused the incident. Meta-alerts are usually generated by 

combining alerts with like qualities caused by different sensors, for the purpose of 

acquiring high quality information results, reduce redundancy, and decrease the volume 

of redundant (i.e., related to same behavior that is the underlying cause of an alert) alerts. 

Examples of this would be alerts that were triggered by the same event, alerts denoting 

the exact same vulnerability, and alerts connected on a chronological basis. Assessing 

and evaluating likenesses of traits in alerts is the central focus of probabilistic reasoning 

approaches. Spadaro also states to identify a security incident, causal associations must 

be made between events.   
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 With regard to causality, the correlation techniques can be classified into four 

categories. Statistical-based, similarity-based, multi-stage-based, and scenario-based. 

Statistical-based approach is where connections among alerts during a certain time frame 

are analyzed statistically. Similarity-based method is where events are correlated based 

on a similarity within data features. Multi-stage-based techniques entail the correlation of 

events based on well-known preconditions and the results of multistage attacks. They are 

centered on the belief that suspicious events are typically connected to different phases of 

a multi-stage attack. The Scenario-based method is based on recognized attack scenarios. 

This method requires expert technical knowledge to define these attack scenarios in 

advance. According to Spadaro, the report layer is where the final analysis permits the 

product of the lower layers to be conceptualized, laid out, and post-processed. This is 

where active countermeasures to attacks/events and event verification take place. Also, 

manual assessment of statistical data can take place in this layer. Examples of this type of 

data are average packet sizes and data transfer rates. Event correlation as attack sensing 

and warning allows a more complete picture to be achieved. Correlation of data is of vital 

importance in every layer of early warning and attack detection systems. It helps improve 

the value of detected events and determine if they are linked to real incidents [22]. 

Individually obscure security events can be correlated via numerous logs, and in the 

process, produce the advanced level of vision required for precise and prompt intrusion 

analysis. 

 Chapter III will focus on what an ontology of cyber Indicators of Compromise 

(IOCs) looks like. This ontology is developed via analysis of IOCs definitions, structures, 

and examples, from established (or nascent) IOCs standards initiatives.   
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III. THE ONTOLOGY OF CYBER INDICATORS OF 
COMPROMISE (IOCS) 

A. IOC: DEFINITION, STRUCTURE, AND EXAMPLE 

Indicators of Compromise are defined as forensic artifacts that can be used as 

signs to denote a system has been compromised by an attack or was otherwise infected by 

malicious software [23]. The purpose of IOCs is to enable the automated detection of 

malicious information system (IS) activity [24]. According to Michael Cloppert, who is 

the lead analyst for Lockheed Martin’s Computer Incident Response Team’s (CIRT) Intel 

Fusion Team, IOCs can be classified into three categories based upon the type of 

compromise indicators used:  computed, behavioral, and atomic [25].   

Computed indicators are “computed.”  They are developed from material 

involved in the incident. A common example of this type of indicator is the hash of a 

known malicious file [26]. Behavioral indicators combine other indicators in order to 

create an overall profile of the targeted malicious behavior. Such combinations of 

indicators can be created from computed indicators, atomic indicators, and specific 

behaviors of the attacker. These component indicators may be identified during separate 

incident response actions, and may appear to have little investigative meaning when 

considered in isolation. However, when considered collectively, these indicators can be 

correlated to form composite behavioral indicators, which often provide more reliable 

indications of attacker activity. These behavioral indicators are often referred to as 

attacker tactics, techniques, and procedures (TTPs) [26].   

Atomic indicators are fragments of data that individually, by themselves, indicate 

adversary activity. Examples of this include fully-qualified domain names (FQDNs), IP 

addresses, or email addresses. These types of indicators can be a problem because they 

might or might not indicate adversary activity. For example, the source IP address of the 

attack could very well be an otherwise-valid site. Atomic indicators frequently require 

inspection through examination of accessible historical data to decide if they exclusively 

signify hostile intent [26].   
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In Jason Luttgens, et al., book, titled Incident Response & Computer Forensics 

[11], 3rd edition, the creation of IOCs is defined as “the process of documenting the 

characteristics and artifacts of an incident in a structured manner.”  These “characteristics 

and artifacts” can include virtually any informative piece of data that flows over the 

network (inter-host activity) or is generated on individual hosts (intra-host activity). Due 

to the fact that IOCs are merely a definition, it does not provide the actual mechanism 

used in finding matches. The technology used to leverage this IOCs language is the 

SIEM. The format chosen to represent IOCs depends on the organization using them. It 

can be either network-based indicators, such as Snort rules, or host-based indicators such 

as YARA, Mandiant’s OpenIOC, or Mitre’s CybOX. Host-based indicators are discussed 

in detail in the next section of this chapter, titled Established IOCs Formats [11].   

The real power of IOCs is their ability to enable IR teams to uncover 

maliciousness in an automated manner, either via an enterprise IR program, or via 

Windows Management Instrumentation (WMI) and visual basic (VB) scripting.  

“Deploying” IOCs results in a capability to hunt for and report on IOCs throughout the 

enterprise in an automated fashion. IOCs, which are basically leads generated by IR 

teams, are used mainly for the scoping of an incident. The idea is that the IR team would 

first detect some malicious activity, then create IOCs that is tailored to that activity’s 

underlying behavior/signature, and then apply that IOC to both past and future events to 

see if the behavior is found elsewhere. The IR team will begin to receive notifications 

called “hits” once the IOCs have been deployed. Hits occur when an IOCs device finds a 

match for a specific rule or IOC. Validation of each hit is advisable before a response 

action is generated [11].   

Analyses of attacks that have been conducted, whether they were successful or 

unsuccessful, provides the incident response team with a good “roadmap” for facilitating 

future discovery. The details uncovered during the analysis may provide indications that 

the initial attack was only the first step in a series of attacks to come. It may also provide 

behavioral indicators for an adversary that will allow the IR team to build a profile on 

that particular adversary. This makes future discovery of attacks by the same adversary 

possible. Learning all of this detail allows adjustments to be made to existing IOCs as 
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well as provides new artifacts to be developed into new IOCs. The indicator life cycle is 

derived from this historical attack analysis. The indicator life cycle depicted in Figure 1 is 

cyclic, with the discovery and application of indicators, resulting in the discovery of 

additional indicators.   

  
Figure 1.  Indicator Life Cycle State Diagram. Source: [26]. 

The analysis transition from the utility state to the revelation state is where an 

indicator is shown to not only generate legitimate “hits,” but also useful in identifying 

(i.e., revealing) additional incident-related artifacts that can be considered for inclusion in 

the growing list of indicators associated with an identified-hostile actor. These leads/

indicators, can come from many places, such as intelligence from partners, internal 

investigations, the FBI, internet service providers (ISPs), or open source platforms such 

as IOC Bucket that allows sharing of IOCs. The searching and tuning transition from the 

revelation state to the maturation state is where analysts articulate the best definition to 

leverage the newly identified indicators. As the number and quality of indicators grows, 

detection tools are reconfigured/retuned and collection signatures are scripted or modified 

as necessary and appropriate. The discovery transition from maturation state to utility 

state, is where the full potential of the indicator is likely realized, and the result is a 
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collection of true-positive “hits” that are useful in detecting the extent/scope of the 

targeted incident [26].   

Figure 2 stacks up the numerous indicators that can be used in detecting an 

adversary’s actions, alongside the relative amount of effort required by the adversary to 

turn and continue with the intended attack, if indicators at each level are denied [14]. 

 
Figure 2.  Pyramid of Pain with IOCs. Image from AlienVault Blogs at 

https://www.alienvault.com/blogs/security-essentials. 

Starting with the base of the pyramid is the point where if the adversary were 

detected and denied, their required effort would be the lowest, are the Hash Values such 

as MD5 or SHA1. Hash values are regularly used to distinctively identify malicious files 

or malware involved in an intrusion. The adversary might possibly change an 

insignificant bit causing a different hash to be produced, hence making our earlier 

detected IOCs hash ineffective [14]. Next up the pyramid are the IP addresses. Since the 

adversary can alter IP addresses with minimal effort, it wouldn’t take them long to 

recover. This indicator would have no effect on the adversary if they used an anonymity 

proxy service like Tor. In contrast, Domain Names are harder to alter than IP addresses 

since they must be visible and registered on the internet. It is still achievable, but would 
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take the adversary more effort and time than IP addresses. Standard examples of network 

Artifacts are SMTP Mailer values, URI patterns, distinctive HTTP User-Agent, or C2 

information embedded in network protocols [14]. Examples of host artifacts might be 

values or registry keys recognized to have been generated by specific pieces of malware, 

directories or files using certain names or dropped in certain places, and malicious 

services or descriptions or names. Uncovering attacks using host/network artifacts can be 

very difficult for the adversary because they force the adversary to spend a great amount 

of effort in trying to identify the artifact, which revealed their approach, then revise and 

relaunch it. Next up the pyramid are Tools, including services intended to create 

password crackers, malicious documents for spearphishing, or backdoors used to 

establish C2 communication [14]. Tool indicators could be network alert tools with fuzzy 

hashes and a distinct communication protocol. If these tools are detected and the breach 

has been secured, the adversary has to build new tools to accomplish the same purpose 

which slows their progress. Lastly, at the very top of the pyramid, are the Tactics, 

Techniques, and Procedures (TTPs). This deals with the adversary’s propensities and 

behaviors. By negating any TTP of the adversary, we compel them to do the greatest time 

intensive activity; they must learn new behaviors [14].   

Next, we examine in more detail the host-based and network-based indicators 

mentioned above. According to “Incident Response and Computer Forensics,” host-based 

indicators are the way to implement binary classification of endpoints. Indicators are 

created by compiling a set of observable properties which describe a particular situation 

known to be suspicious. The usefulness of these observables relies upon the caliber of the 

members of the set. A valuable host-based indicator is comprised of numerous 

observables which are specific to a certain activity, yet is common enough to be applied 

to a spinoff of the activity. The aim of network-based indicators is much the same as that 

of the host-based indicators. This document points out the intent is to rapidly determine 

whether a specific network session is pertinent to the investigation. The characteristics 

and properties chosen are reliant upon the abilities of the monitoring system being used. 

The majority of indicators are simple such as “if a given set of bytes is present in the first 

n bytes of a session, raise an alert” [14]. These indicators however, might have a reduced 
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lifespan due to the fact the adversary could make changes to their procedures or tools 

used in the attack. If the incident response investigation runs for any large interval of 

time, one will probably have to edit the network signatures created for the malware 

repeatedly.  

Now that we know what IOCs are and their purpose, let’s examine where does the 

IOCs data come from. This data normally comes from many sources including a number 

of online security associations, industry and commercial groups, and numerous free 

IOCs-specific sites. Commercially created IOCs are frequently released by various 

security vendors. Typically, these feeds are very costly and are only sent to paying 

customers [25]. McAfee, RSA, and Symantec are a few of the security vendors providing 

these services. Furthermore, there are numerous academic factions such as Information 

Sharing and Analysis Center (ISAC) groups which distribute such data, usually separated 

by specific industry. Free IOCs data can frequently be located online on certain IOCs 

distribution sites. Various security companies utilize IOCs releases to discuss new attacks 

or malware [25]. There are also web-based tools that can be used for researching and 

sharing IOCs. IOC Bucket is one such tool that provides an easy, quick system for 

searching the uploaded data for a specific indicator. This tool also has a Twitter feature 

that sends out tweets as new IOCs are added. Lastly, custom IOCs may be developed. 

They may be constructed based on in-depth knowledge and analysis of our networks [25].   

There are many different tools available for creating and editing IOCs. Typically, 

an editor will be able to create new IOCs and easily edit current ones. IOC-EDT is one 

such open-source and free web-based tool. Because it is web-based, it is easy to access, 

use, and doesn’t need to be installed. It also works equally well across multiple platforms, 

i.e. Windows, Linux, Mac, Unix, etc. [25]. IOC Editor is another free but not open source 

tool that can be used for working with IOCs. It is a Windows-only GUI that allows you to 

import current IOCs, build your own from scratch, and shows you the difference between 

two IOCs records. Lastly, PyIOC is a free and open source tool that is Python-based. It is 

an attempt to make a fully featured editor minus the closed-source restraint that inhibits 

the security community from being able to really benefit from it [25].   
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We now examine a host-based indicator scenario. This IOC is based primarily on 

the artifacts created by execution of a file or the properties of the file itself. Let’s say we 

have a Portable Executable file that is a Win32 EXE file for the Windows command line 

subsystem. A simple indicator we could use to describe or identify the file consists of a 

solitary, high-assurance check is the MD5 hash of the file as shown here [11].   

 if 

 { 

 (file MD5 hash != “e2bf42217a67e46433da8b6f4507219e”) 

 } 

 then 

  raise alert 

This IOC has some extremely good attributes. It is looking for only a single, 

definite property which is the MD5 hash. This offers a high degree of confidence that if 

we get a match, we have found precisely what we were searching for [11]. The MD5 hash 

has a very low false positive rate so we would seldom ever get a match for something that 

wasn’t the file we were actually searching for [11]. This IOC has a limited lifespan 

however because if only a single bit in the file is changed, the MD5 hash will have 

changed and the IOC will no longer be equivalent.   

There are numerous data structures within a Windows Portable Executable file 

that can be examined and used to create IOCs. The header of the PE file has a compile 

timestamp. This is a time and date inserted by the compiler when the file is compiled. 

Attackers will often compile their binary and then go back and manually make alterations 

to it [11]. Sometimes, the compile timestamp alone will be unique enough to do a search 

for. Typically, it is combined with something else like the size of the file in order to 

reduce the chance of getting a false positive. The previous IOC we mentioned would be 

updated to incorporate these new conditions, as follows. This IOC validates for the MD5 

hash as well as inspects the file size and compile-time stamp [11].   
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 if 

 { 

  (file MD5 hash != 
“e2bf42217a67e46433da8b6f4507219e”) 

   OR 

  ( 

   (PE header Date/Time != “2010/08/24 01:00:23 
UTC”) 

    AND 

   (file size != “25076”) 

  ) 

 } 

 then 

  raise alert 

This IOC can be improved further by additional analysis of the binary executable 

of the file being examined. The binary has the ability to perform numerous actions on the 

system. For example, it can connect to sites on the internet or install a certain Windows 

service. These facts can be used to continue improving our IOCs by examining the 

artifacts associated with them. These artifacts are created on the host after the binary is 

executed and are not direct properties of the file itself. These attributes are good to have 

when the binary is no longer present on the system. Examples of this would be a DNS 

cache artifact pertaining to the host name the malware joins to and the exact service name 

created by the binary [11]. Another way to improve our IOCs is to define what the binary 

can accomplish. This is usually done through an examination of the import table. Our 

example binary has numerous imports. Any single import may not be unique because 

most malware uses tasks common to several other kinds of software. What would be 

unique, however, is the subset of the tasks normally not found jointly in a single binary. 

We would have to create our IOCs with many loosely or indistinct attributable properties.   
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Another factor to consider is that often times there is no malware associated with 

the attack and the IOCs would need to describe what the adversary does [11]. These IOCs 

would be used in detecting a normal sequence of actions that could be seen from an 

attacker. It is an anomaly-based indicator and can include property-based indicators with 

data on artifacts the active attacker left behind. The property-based indicators describe a 

set of known recognizable characteristics of malicious actions or software such as an 

MD5 hash or a registry key. Of course, we can continue to improve our IOCs if we spend 

additional time examining all the unique features of the binary. If we are not careful 

though, the indicator rapidly becomes unmanageable [11]. This is why we must pursue a 

compromise between too little and too much.  

Lastly, we will examine a network-based indicator scenario to provide an example 

of a network-based IOCs. We will use the malicious binary we examined in the previous 

section and continue analysis to identify network signatures which could be used to 

recognize the appearance of that malware. For our example, we consider a malicious 

binary that searches for the host name practicalmalwareanalysis.com. Network 

monitoring can effortlessly detect this DNS lookup but if the attacker deploys different 

mechanisms in the malware, relying on this DNS lookup alone could be insufficient [11]. 

Let’s assume we collected the network traffic on a live network and observed the DNS 

standard query via monitoring UDP port 53, which contains the main fields  

 DNS Query flags:  0x0100 

 Query Type:  A 

 Query Class:  IN 

 Query String: “practicalmalwareanalysis.com” 

We could use this to create a signature for the data structure used in the packet 

itself [11]. We could refer to RFC 1035 to see the relevant excerpt that describes what we 

should see during the query. We would see QNAME, QTYPE, and QCLASS. As stated 

in Incident Response & Computer Forensics, QNAME is a domain name characterized 

by a series of labels, each label consisting of a length octet then followed by that number 

of octets. The domain name is terminated by the zero-length octet denoting the null label 
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of the root. QTYPE is a two-octet code specifying what the query type is. It includes all 

codes acceptable for a TYPE field. Looking at the depiction for the QNAME section of 

the query, we can see searching for the simple string “practicalmalwareanalysis.com” 

would not work [11]. The payload includes a null-terminated series of strings, each with a 

specific octet set aside for the length of the string. The QNAME section of the query 

would have the following information: [11] 

 Length:  0x18 

 String:  practicalmalwareanalysis 

 Length:  0x03 

 String:  com 

 Terminating octet:  0x00 

The Snort manual would provide us with the material needed to create a signature that 

would signal when the sensor detected this specific query: [11]   

 alert udp $HOME_NET any - > any 53 ( 

  msg: “Lab03-03.exe 
Malware:practicalmalwareanalysis.com”; 

  content: “|18|practicalmalwareanalysis|03|com|00|”; 

  nocase;  threshold:  type limit, track by_src, count 1, 
seconds 300; 

  classtype:bad-unknown; sid:1000001; rev:1; 

 ) 

Using a search that is not case-sensitive, the signature will alert when the UDP 

traffic includes the following content “|18|practicalmalwareanalysis|03|com|00|.”  

However, any lookup will initiate this alert so a notification limit is incorporated to 

reduce duplicate events. By isolating the malware and letting it execute in a safe 

environment, we can capture packets received and sent between the remote site and the 

malware itself. This will provide us with additional detailed data that can be used in 

creating our network-based IOCs [11]. An example of this is network signatures which 

detect the payload sent from the remote site. When the server responds with an extended 
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status/error message or an actual file, this particular portion of the communication will be 

far less likely to cause a false positive. This simple example provides a general idea of 

the development of a network-based lead [11]. Almost all of our incident response 

investigations will cover countless systems and reach countless numbers of endpoints. 

With so many endpoints to scan, we have to be aware of how detailed we make our 

indicators and the quantity of data generated by the results in order for them to be most 

effective.   

B. ESTABLISHED IOCs FORMATS 

While Snort has been recognized as the predominant standard for network-based 

IOCs, there is no such widely accepted standard for host-based IOCs. The three-leading 

host-based IOCs definitions are YARA, Mandiant’s OpenIOC, and Mitre’s CybOX [11]. 

YARA offers a language and a tool which is mainly focused on identifying and 

classifying malware. Mandiant’s OpenIOC standard is more all-inclusive and has an IR 

collection tool that is publicly available called Redline. Also, Mitre’s CybOX standard is 

all-inclusive but the only tool offered, is IOCs format conversion scripts. No complete or 

enterprise-grade solution is easily available for any of these three options [11].   

1. YARA 

According to Dias [26], YARA is an open source tool designed to assist malware 

researchers in identifying and classifying different malware samples. It is used to 

generate free form signatures which can be used to connect indicators to actors, and 

allows security analysts to go beyond the simple indicators of IP addresses, domains and 

file hashes. YARA also helps identify commands generated by the C2 infrastructure [27]. 

It also provides, as Dias further explains, the ability to generate descriptions of malware 

families founded on binary or textual patterns. Each description contains a Boolean 

expression and a set of strings which determines its logic. YARA has a simple and 

flexible rule syntax along with the following engine scanning abilities: external variables, 

file objects, and processes. It allows the development of custom modules as well as an 

extension of its engine’s abilities. Yara is a multiplatform tool that can be used via user-

written Python scripts or its command-line interface [27].   
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The syntax of YARA rules resembles, in plain text format, the C language and is 

comprised of condition, metadata, and strings sections. Dias [26], states each rule starts 

with the keyword “rule” followed by a unique rule identifier. Also, rule tags can be 

identified following the rule identifier. Dias points out these identifiers have to follow the 

same lexical conventions as the C programming language. He also states they can contain 

the underscore character and any alphanumeric character, but the initial character must 

not be a digit. Rule identifiers cannot exceed 128 characters and are case sensitive.  

Yara uses a number of reserved keywords that cannot be used as identifiers as seen in 

Table 7 [27].   

Table 7.   YARA Reserved Keywords. Source: [28]. 

all and any asci at condition contains 

entrypoint false filesize fullword for global in 

import include int8 int16 int32 int8be int16be 

int32be matches meta nocase not or of 

private rule strings them true uint8 uint16 

uint32 uint8be uint16be uint32be wide   

 

The information in this paragraph is taken from “Intelligence-Driven Incident 

Response with YARA.” The metadata section of YARA rules includes descriptive 

information about the rule. It has value/identifier pairs defined by the keyword “meta.”  

The strings definition section of the rule can be omitted if the rule does not rely on any 

string. This section is where strings that are a part of user-defined rules for pattern 

matching are defined by code sequences [27]. Each string is composed of a $ character 

followed by underscores and a series of alphanumeric characters. Strings can be defined 
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as regular expressions, or hexadecimal or text form. The condition section of the rule 

holds the Boolean expressions which define the logic of the rule. It tells under what 

conditions a process or file satisfies the rule or not. Unlike the strings definition section, 

the condition section is always required. Conditions will typically refer to strings that 

have been defined earlier in the signature by using their identifiers. This identifier will act 

as a Boolean variable that will equate to true if that particular string has been identified in 

the file, otherwise it will indicate false [27].  

YARA’s scan engine is offered for multiple operating systems such as Linus, 

MacOS X and Windows. This engine is typically invoked by Python with the YARA-

Python addition or command line. The engine will compare a parsed process’ memory or 

file object with a signature file that contains rules formatted in YARA [27].   

YARA delivers wide-ranging features that go far beyond just the simple file 

object parsing. The most significant of these features are discussed in the rest of this 

section. Portable executable file parsing is available via the PE module and enables the 

development of fine-grained rules. This module reveals almost all of the fields existent in 

a PE header and allows the user to write more targeted and expressive rules [26]. The 

process scanning feature lets YARA scan the whole memory of a process, which results 

in the engine being impervious to file obfuscation techniques. This feature allows YARA 

rules to uncover indicators which are integrated in the install stage of the intrusion kill 

chain. The “yarascan” plugin scans the process address area against the YARA rules [27].   

The metadata section of rules is one of the most ignored elements of YARA. In 

this section, the analyst can define an assortment of details concerning the rule [27]. This 

section will not affect the logic of the rule but will allow it to be used in tasks after 

processing. Metadata identifiers can be an integer, Boolean, or string. YARA rules can 

also support tags which are used in rule management, and output filtering.   

External variables allow rules to receive data from outside. This is an extremely 

beneficial feature when building rules dependent upon computed indicators like file 

hashes. Using these external operators permits the insertion of variables for the purpose 

of influencing the rule match. Executing YARA inside the framework of scripting 
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languages allows the fetching of values from numerous sources so they can be used when 

invoking the scan engine [27].   

YARA permits the making of rules that reference other rules. This supports the 

design of behavior-based signatures that contain both computed and atomic indicators. 

You can also create private rules in YARA that do not give any output when a match is 

detected [28]. When these rules are mixed with the rule referencing, they become useful. 

They can act as building blocks for additional rules, as well as prevent cluttering the 

output with irrelevant material [28]. Global rules have an effect on every rule within the 

same file while eliminating the need for referencing by each individual rule. They enable 

the ability to impose restrictions in each one of the rules at the same time.   

“Intelligence-Driven Incident Response with YARA” states YARA must initially 

compile its defined working rule set before it can start parsing data. When managing 

repositories that contain thousands of rules, overall scan time can be greatly enhanced by 

precompiled rules. Compilation of rules takes place via two different methods. The first 

method this document discusses takes place at the time of conventional same time as the 

YARA scan engine performance. The compiled version of the parsed file from the scan 

engine will be stored in memory [27]. The second method discussed in this document 

utilizes YARAC binary to transform clear text formatted rules into binary object 

structure. This allows the rules to be utilized by the scan engine [27]. This provides a 

benefit with regards to scanning speed and keeps the rule structure concealed from prying 

eyes.   

The aforementioned document illustrates how YARA was devised to be a very 

simple and fast engine and thus leaves out features like the ability to control the output. 

YARA’s input features offer file objects and memory parsing capabilities that will output 

the scan engine results to the standard output for viewing. This can be a problem if any 

post-processing is necessary. In order to overcome this, the YARA Python extension was 

developed [27]. This extension permits building Python scripts containing all the YARA 

core features which benefits from the huge variety of Python modules.   
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In order to implement and execute the scan engine throughout the enterprise, a 

package managing platform needs to be in place. Typically, this type of platform works 

with architectures that are agent-based and provides central implementation management 

for applications [27]. The YARA scan engine can be implemented on numerous clients 

by encapsulating it into an adaptable package.   

Now we will look at a few examples of YARA rules and their meanings in 

Figures 3, 4, and 5. 

    
Figure 3. Simple YARA Rule. Source: [28]. 

The simple rule in Figure 3 tells YARA that any file that includes one of the three 

strings should be reported as silent_banker.   
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Figure 4.  YARA Rule Featuring Rule Referencing. Source: [27]. 

Figure 4 is about rule referencing and shows the parent rule along with the 

referenced rules that are all reported when a match is detected. RULE_SUSP_BHV is the 

parent rule in the above example.   
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Figure 5.  YARA Rule Referencing Private Rules. Source: [27]. 

Figure 5 from “Intelligence-Driven Incident Response with YARA” demonstrates 

private referencing within the condition segment. Even though the “Atomic” rules are 

alike, they will be guarded against possible reverse engineering because the “closed” rule 

is maintained private [27]. 
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YARA is a very flexible tool that blends perfectly within the cyber threat 

intelligence model. It is a very simple, open source tool for creating indicators. The 

engines core qualities and rule flexibility, joined with a management structure are a great 

first step towards an intelligence driven response [27]. 

2. MANDIANT’S OpenIOC 

Mandiant’s OpenIOC is a system for sharing, recording, and defining threat data 

information. It enables the flexibility of modifying data on the fly as additional 

intelligence becomes available so that input from human subject matter experts can be 

incorporated [29]. The OpenIOC standard allows you to group artifacts in a logical 

manner. This data can then be transferred in a format that is machine readable.  “Fighting 

Back Malware with IOC & YARA” defines IOCs or indicators as a logically categorized 

group of terms that describe a precise threat, whereas the language used in describing 

those precise groups is referred to as OpenIOC [29].    

OpenIOC is an extensible XML framework to build and ingest IOCs. XML offers 

a well-ordered standard structure of encoding data turning it into machine-readable 

format [30]. This allows it to be used in numerous, standardized ways for sharing data. 

XML delivers numerous benefits to OpenIOC consumers. It can extend the rather small 

and lightweight base schema of OpenIOC with indicator sets (written in XML). Custom 

indicators can also be created that suit a specific setting or threat. It is also simple to build 

utilities that can parse or convert OpenIOC to other formats [30].   

“Sophisticated Indicators for the, Modern Threat Landscape: An Introduction to 

OpenIOC” notes indicator terms are the specific kinds of data elements which are 

incorporated in IOCs. They are often categorized into an XML document. When an 

investigator creates IOCs, they can use as few or as many terms as needed from however 

many sources are necessary.   

MANDIANT presently provides indicator terms for OpenIOC which detail over 

500 kinds of evidence that can be collected in an organization [30]. This factor in 

combination with the nested logical structures of OpenIOC, have led to far greater 

functionality than the typical static signature based tools.   
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Indicators begin in complexity with merely searching for signatures of explicit 

artifacts. These artifacts can be registry keys, MD5 checksums, compile times, or the size 

of a file. They may also contain elements obtained via advanced forensic procedures like 

exports used by an executable or artifacts that are considerably difficult for an attacker to 

modify. Multiple kinds of precise indicators can be combined into one IOC allowing one 

specific IOC to apply to several groups of complex signatures [30].  

“Sophisticated Indicators for the, Modern Threat Landscape: An Introduction to 

OpenIOC” points out there are other ways IOCs can be used besides just a direct query 

against a host. They state when probing against collected data sets, logical operators may 

be utilized to omit whole domains of the network or hosts being scanned. Instead of just 

searching for an exact file based on terms that must precisely match, IOCs may be used 

for matching every file that ought to reside on a specific segment of a system. An 

incident response investigator would gather data that is unfiltered from a system, and 

subsequently run IOCs against the gathered data to search for any file that stands out 

[30].   

 Examples of OpenIOC simple use cases that permit probing for forensic artifacts 

are [30]: 

• Searching for a particular entry or set of entries in the Windows Registry 

• Searching for a particular file via an MD5 hash, create data, file name, 
size, or additional file characteristics  

• Searching for a particular object in Memory 

• Joining together the entries above in assorted combinations offers 
improved matching and reduces the number of false positives. 

These difficult methods can be joined together to permit more depth to the IOCs [30]: 
 

• Rather than tracking down a particular file known to be bad, an incident 
responder can create a whitelist of files that should reside within a 
particular directory. This will allow them to catch any file not listed that 
should not be a part of that directory.    
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• OpenIOC logic can be used to combine collections of artifacts together to 
generate matches on artifacts that are from the same author or shared 
throughout malware families. 

Describing an attacker’s methodology could possibly be the most powerful 

method of making an Indicator. Indicators that try to detect methodology do not 

concentrate on a certain piece of forensic evidence directly connected to compromise or 

malware. Rather, they concentrate on the commonality of techniques that an attacker 

might use [30]. Indicators based on methodology do not necessarily illustrate a particular 

occurrence of compromise, but they do illustrate the result of recurrent tactics repeated by 

a particular group of adversaries. Essentially, making them the most difficult to write, but 

if done correctly, they can capture indication of a behavior that is done by only the 

adversary as opposed to valid users of a system [30].   

For OpenIOC, unlike several other data standards used to define threat 

information, there is no element by element diagramming of an instantiation of a threat. 

The best IOCs possess the following properties [30]:   

1. The IOCs are very costly for the attacker to elude. That is, to elude 
the IOCs, the attacker must radically change their approach, 
tactics, or tools.   

2. The IOCs recognizes only attacker actions.   

3. The IOCs must be simple and reasonable to assess. It analyzes data 
that is not costly to gather.  

At the heart of Mandiant’s incident response methods are IOCs. This is made 

possible by the machine-readable nature and adaptability of the OpenIOC format. The 

following framework taken directly from the “Sophisticated Indicators for the Modern 

Threat Landscape: An Introduction to OpenIOC” demonstrates how OpenIOC and IOCs 

make the steps of an incident response investigation possible [30]. 

• Initial Evidence:  Responders examine and identify evidence of a 
compromise on either the network or host which is a solid forensic 
indicator of an intrusion. 

• Construct IOCs for Network and Host:  After the preliminary discovery of 
this forensic proof, the incident response investigator will construct IOCs 
from the current data. The particular kind of IOCs constructed will change 
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based on the environment, evidence, and the comfort and proficiency level 
of the investigator. The adjustability of OpenIOC permits an unlimited 
number of permutations on the way an indicator can be constructed, which 
gives the investigator employing OpenIOC many options to follow.   

• Deploying IOCs in the Organization:  After an IOC or group of IOCs have 
been constructed, the investigator will run these in the SIEM to look for 
the presence of these IOCs on other portions of the network or on other 
systems. For the Mandiant workflow, the IOCs are fed into the Mandiant 
Intelligence Response (MIR) applications, which will then connect with 
MIR Agents on hosts, or monitor network traffic.  

• Identify Added Questionable Systems:  After the IOCs have been 
deployed to the SIEM, other systems that have been compromised will be 
identified, except in the case where the initial host was the only endpoint 
compromised.   

• Evidence Collection:  Supplementary evidence is obtained from the 
additional systems that were identified.   

• Analyze Evidence:  Supplementary data is collected and analyzed. This 
helps detect additional intrusions, added intelligence for investigators, or 
false positives. These assessments permit the investigator to enhance their 
searches and return to the beginning of the workflow.   

• Refine and Build New IOCs:  Based on all of their assessments and 
findings, investigators can generate new IOCs as needed for the task at 
hand.  

OpenIOC is an open source tool released by Mandiant. It includes two tools to 

create, edit, and use OpenIOC. The first tool is Mandiant IOC Editor. This tool permits 

the easy design of IOCs by utilizing a graphical interface instead of having to edit raw 

XML [30]. IOCs built with this editor can then be distributed to other responders within 

or outside of the organization.   The second tool is Mandiant IOC Finder. This tool can be 

used to gather data from a host once the IOCs have been built. Once the data has been 

gathered, IOC Finder could be employed to check the IOCs against the selection of data 

to determine if the host corresponded to the conditions exhibited in the IOCs. Based on 

these results, the IOCs can be refined or used to look for additional endpoints [30].   

IOCs constructed in OpenIOC let organizations describe fragments of threat 

intelligence in a consistent, logically structured manner. They also capture the knowledge 

and proficiency of human subject matter experts to a machine-readable form, which can 
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be quickly transferred across their organization [30]. Below is an example from 

“Sophisticated Indicators for the Modern Threat Landscape: An Introduction to 

OpenIOC” [30] of what IOCs written in Mandiant’s OpenIOC signature format would 

look like. 

<?xml version=“1.0” encoding=“us-ascii”?> 

<ioc xmlns:xsi=“http://www.w3.org/2001/XMLSchema-instance” 

xmlns:xsd=“http://www.w3.org/2001/XMLSchema” 

id=“9121b0f5-d268-479a-aa73-aa89688b0741” 

last-modified=“2017-01-15T15:05:03” 

xmlns=“http://schemas.mandiant.com/2010/ioc”> 

<short_description>Kernel32.dll malware</short_description> 

<authored_by>Authors Name</authored_by> 

<authored_date>2017-01-15T15:00:45</authored_date> 

<links /> 

<definition> 

<Indicator operator=“AND” id=“5865f42f-fe4f-4b1e-87e3-
ca31702f6935”> 

<IndicatorItem id=“e2394125-efd8-4d46-a909-45866af9946c” 

condition=“contains”> 

<Context document=“FileItem” search=“FileItem/FullPath” type=“mir” /> 

<Content type=“string”>C:\Windows\System32\kernel32.dll</Content> 

</IndicatorItem> 

<IndicatorItem id=“92a2028b-81c6-40c3-b520-af7a35cb9d57” 

condition=“is”> 

<Context document=“FileItem” search=“FileItem/SizeInBytes” 
type=“mir” /> 

<Content type=“int”>1161216</Content> 
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</IndicatorItem> 

<IndicatorItem id=“90fc74ee-7ee2-4060-bcb2-24fb240d06bb” 

condition=“is”> 

<Context document=“FileItem” search=“FileItem/Md5sum” type=“mir” 
/> 

<Content type=“md5”>d8973e71f1b35cd3f3dea7c12d49d0f0</Content> 

</IndicatorItem> 

</Indicator> 

</definition> 

</ioc> 

 

 3. MITRE’S CybOX 

“CybOX, A Structured Language for Cyber Observables” implies CybOX is a 

free structured language for capturing, characterizing, specifying, and communicating 

events that are discernable within the domain of operation [31]. They note how an 

extensive array of complex cyber security use cases depends on this data to include 

sharing of indicators, intrusion detection, event logging, and attack pattern 

characterization. It also states CybOX offers a common configuration for denoting cyber 

observables throughout and amongst these different use cases thus improving total 

situational awareness, consistency, interoperability, and efficiency for the organization.   

The idea of observable attributes or events in the operational cyber domain is an 

essential underlying component of many of the distinctive activities incorporated in cyber 

security. Every use case, every activity area, and frequently every associate tool vendor 

practices its own unique method that impedes interoperability, total situational awareness, 

consistency, and efficiency [31]. CybOX attempts to help with this standardization by 

being flexible and not targeting just an individual cyber security use case. Its purpose is 

to provide an adaptable solution that can be used for every cyber security use case that 

has to handle cyber observables. Also, it is designed to permit very clear quality 

definitions of cyber observable occurrences within an operational setting [31]. By 
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identifying a common structured representation tool for these cyber observables, CybOX 

facilitates meticulous automated sharing, analysis heuristics, mapping, and detection.   

CybOX is aimed at supporting a broad range of important cyber security domains 

to include [31]:   

• Digital Forensics 

• Threat characterization and assessment 

• Operational event management 

• Cyber situational awareness 

• Malware characterization 

• Logging 

• Indicator Sharing  

• Incident response 

• Etc. 

By using the CybOX language to capture and share relevant observable properties 

or events, or define rules and indicators, logical pattern constructs can be tied to real-

world evidence of their presence or occurrence for attack characterization and detection. 

Incident response personnel can benefit from all these abilities to investigate occurring 

incidents, improve imminent attack prevention, detection, and response, and improve 

overall situational awareness [31].  

 There is a wide assortment of cyber observable use cases [32]: 

• Improved distribution between each cyber observable stakeholder 

• Possible capability to analyze data from all kinds of tools and all vendors 

• Identify new attack patterns 

• Detection of malicious activity though attack patterns 

• Facilitate automated signature rule generation 

• Etc. 
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 CybOX has two fundamental XML schemas to deliver the essential functionality 

and structure of CybOX:  CybOX Common and CybOX Core. CybOX objects, which are 

detailed in separate schema files, are accurate characterizations of specific kinds of 

observable cyber entities, such as a DNS query, HTTP session, and a Windows Registry 

Key [33]. XML namespaces deliver a means of preventing naming conflicts for attributes 

and elements. Every CybOX XML Schema describes a distinct namespace, permitting 

the integration of data types and fields among and within schemas. When constructing a 

CybOX Object, it is necessary for an author to describe their own schema fields and types 

namespace to exist within [33].   

The following steps show how to use and create a new CybOX Object:  

1. Decide what needs to be represented in CybOX. 

2. Determine what attributes/fields could be used to characterize that 
CybOX Object. 

3. Map those field data types to existing CybOX Object Property 
Types. 

4. Review existing CybOX Objects to see if the capabilities defined 
in steps 1–3 are already supported by an existing CybOX Object. 
Identify capability gaps if an existing CybOX object supports a 
subset of desired capabilities. 

5. Define a namespace for the object. 

6. Create the object schema. 

7. Add documentation to the schema. 

8. Use the newly-created object in CybOX content. [34] 
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<xs:schema elementFormDefault=“qualified” 
  xmlns:xs=“http://www.w3.org/2001/XMLSchema”  
  xmlns:cyboxCommon=“http://cybox.mitre.org/common-2”  
  xmlns:IPAddressObj=“http://example.com/objects#IPAddressObject-1”  
  targetNamespace=“http://example.com/objects#IPAddressObject-1” 
  version=“1.0”> 
   
  <xs:import namespace=“http://cybox.mitre.org/common-2” schemaLocation=“http://cybox.mitre.org/XM
LSchema/common/2.1/cybox_common.xsd”/> 
   

  <xs:element name=“IP_Address” type=“IPAddressObj:IPAddressObjectType”/> 
   
  <xs:complexType name=“IPAddressObjectType”> 
    <xs:complexContent> 

      <xs:extension base=“cyboxCommon:ObjectPropertiesType”> 
        <xs:sequence> 
          <xs:element name=“IP_Address_Value” type=“cyboxCommon:StringObjectPropertyType” minOcc
urs=“0”/> 
        </xs:sequence> 
        <xs:attribute name=“category” type=“IPAddressObj:CategoryTypeEnum” use=“optional”/> 
        <xs:attribute name=“is_source” type=“xs:boolean” use=“optional”/> 
        <xs:attribute name=“is_destination” type=“xs:boolean” use=“optional”/> 
      </xs:extension> 
    </xs:complexContent> 
  </xs:complexType> 
   
  <xs:simpleType name=“CategoryTypeEnum”> 
    <xs:restriction base=“xs:string”> 
      <xs:enumeration value=“ipv4”/> 
      <xs:enumeration value=“ipv6”/> 
    </xs:restriction> 
  </xs:simpleType> 
</xs:schema> 

Figure 6.  CybOX Object Schema Characterizing IP Address Information. Source: 
[34]. 

“How to Create a CybOX Object” [34] explains the XML snippet in Figure 6. The 

portion highlighted in yellow, describes the root xs:schema element and is used to 

establish the necessary schema imports and namespace definitions. The first line is used 

to denote that every element must be namespace qualified, if it is used by an XML 

instance document in this schema [34]. The next segment explained by this document, 

highlighted in blue, presents two new global XML structures: implementation of 

“IPAddressObjectType” of ObjectPropertiesType and “IP_Address” element. Extension 
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of the first new global XML structure provides fields like object_reference and 

Custom_Properties. The “IP_Address_Value” add category attribute is used for declaring 

IPv6 or IPv4. If the IP address is a source address, the “is_source” attribute is used. If the 

IP address is a destination address, the “is_destination” attribute is used [34]. The last 

segment, highlighted in green, allows the enumeration of category values to express if the 

designated IP address is IPv6 or IPv4.   

 Below are the steps of a Theoretical Flow for a Modern Security Incident [32].  

1. There is an attack on an information system that involves a 
vulnerability exploit, malware plus command and control, and 
social engineering.  

2. Operational sensors enabled by CybOX detect anomalous activity 
and then report it in CybOX/CEE (Common Event Expression) 
formats. CEE is a set of specifications to define parsing 
information, transport, logging recommendations, taxonomy, and 
syntax about event records. 

3. Automated analysis rules & tools try to correlate anomalous 
activity against CybOX-enhanced CAPEC (Common Attack 
Pattern Enumeration and Classification) attack methods but find no 
correlating methods. CAPEC is a catalog of attack patterns with a 
comprehensive schema and classification catalog built to assist in 
the making of secure software that is available to the public.   

4. Incident has been reported – Incident Management Response 
procedure is started.  

5. IR staffs acquire a discovered fact of an incident in CybOX- 
compatible formats, plus CEE.  

6. IR staffs discover malware as part of the current attack.  

7. Malware is subjected to automated analysis (static and/or dynamic) 
and the outcome is captured in Malware Attribute Enumeration 
and Characterization (MAEC) (CybOX- incorporated) language. 
MAEC is a standardized language for sharing malware information 
that is based upon attributes such as artifacts, attack patterns, and 
behaviors.  

8. Malware analysts are capable of associating the existing malware 
instance with a wide array of pre-existing malware samples and 
examine data from MAEC-enabled repositories.  



 62 

9. Malware analysts acquire a new discovered fact about the malware 
in MAEC format, as well as the Common Weakness Enumeration 
(CWE) or Common Vulnerabilities and Exposures (CVE) 
exploited. CWE is a software community project whose objectives 
are to create a catalog of software weaknesses and vulnerabilities. 
Common Vulnerabilities and Exposures (CVE) as defined by 
cve.mitre.org, “is a list of information security vulnerabilities and 
exposures that aims to provide common names for publicly known 
cyber security issues.” 

10. Sample and examined data from the existing malware instance are 
inserted into applicable malware repositories. 

11. CybOX observables pertaining to malware effects on hosts are 
separated from MAEC content to produce Open Vulnerability and 
Assessment Language (OVAL) checks to decide if there have been 
any host affected/infected by the existing malware instance. Open 
Vulnerability and Assessment Language (OVAL) is an information 
security standard accepted internationally and used for promoting 
security information that is openly available to the public.  

12. OVAL checks are disseminated and run against additional regions 
of the organization to define the extent of the compromise.  

13. IR/IM staff employ suitable remediations/mitigations to negate the 
consequences of the attack.  

14. A new CAPEC attack pattern is composed to define this new 
perceived attack behavior, and is enhanced as suitable with CybOX 
content detected for this pattern in the operational environment.   

15. IR/IM staff issue appropriate alerts for the detected incident with 
the new MAEC bundle, CAPEC pattern, and associated CEE/
CybOX content.  

16. Secure expansion takes advantage of this new CAPEC pattern to: 
structural threat analysis, define/refine appropriate security 
requirements; security testing and secure code review, guide 
control selection; identify applicable CVE vulnerabilities & CCE 
structure issues, CWE weaknesses; prioritize applicable CAPEC 
patterns based on real-world observed frequency described through 
automated observation of CybOX patterns in the operational 
environment.  

 CybOX makes it easier and faster to share information within and outside of an 

organization. It permits the entire information security community to add to and extend 

the context of threat information and threat intelligence.     
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C. SUMMARY 

There is currently no commonly accepted data format standard for incident 

response teams to utilize for sharing Indicators of Compromise (IOCs). This causes the 

processing and sharing of IOCs to be a manual process which impacts participation. 

Vendor agreement on any standard has been extremely limited.   

Mandiant’s OpenIOC uses an XML scheme for defining its signatures making 

them easy to create and use by analysts [35]. XML format can be parsed easily and used 

to hide unnecessary code from its users. This design’s advantage is based on XMLs 

extensive use and ease of processing with tools [35]. XML users even have the added 

ability of writing their own custom indicators that are more suitable for their specific 

environment. This format also allows users to whitelist files, in order to determine which 

files were already present and safe, and therefore exclude them from the search. 

However, OpenIOC has limited commercial adoption, viewed as a “vendor” solution, and 

provides no support for describing Tactics, Techniques, and Procedures (TTPs) [35]. 

For YARA, the rules are recognized by .yara extensions and are defined in a plain 

text structure for technology independence. YARA supports many conditions that employ 

these rules by means of Boolean logic to create more formidable detection and 

conditional operations [35]. Analysis of Malware Classification Schemas points out 

YARA is an open source tool that anyone can access and adapt to suit their needs. It is a 

system for users who don’t need large, complex frameworks like CybOX. Many tools are 

capable of easily taking a standard YARA scanner output and processing and formatting 

them in numerous ways due to their plain text format. However, processing, categorizing, 

and managing a large number of rules could be more difficult to do since the parsing of 

plain text format is not a trivial task and requires a lot of custom code [35]. Although, if 

working with a standardized language such as XML, a huge number of tools can be used 

virtually right out of the box. Nonetheless, YARA rules could significantly reduce the 

number of required declarations that would otherwise produce an enormous element 

count, making YARA very readable and maintainable [35].   



 64 

CybOX, a vendor neutral tool, provides an XML schema that can be used to 

define “objects.”  One can use a consistent XML-based schema to describe the files that 

are most tempting for an adversary to go after [36]. CybOX has the added capacity to 

represent “Events” or behaviors. This allows the possibility for full range transcription of 

an adversary’s actions within its framework. Because CybOX is very versatile, we have 

the ability to not only describe the observables we plan to seed our network with, but we 

can additionally convert simple intrusion data into multilayered Indicators of 

Compromise. For instance, if we built a file called banking.txt and then observed it for 

unauthorized access, we would be able to not just identify that access, but also log 

information about what additional system files it accessed, what process on the system 

opened its file handle, and what network ports it is currently utilizing [36]. The logging 

of all this data is supported by CybOX making it a perfect format to enable future 

incident response actions after a compromise is identified. Also, CybOX provides a 

comprehensive list of elements to build IOCs and can be integrated with other tools like 

CAPEC and MAEC, under STIX, for robust IOCs development [36].   

Comparing the formats, each format deals with the task of identifying a file of a 

given size, name, path, and hash. OpenIOC and CybOX both have an out-of-box 

provision for these requirements whereas YARA needs a little assistance from an external 

tool, which is a Python script [35]. The strength of YARA lies in its lightweight, flexible 

design that provides users the option of using regular expressions during scanning. Its 

disadvantage comes from the fact it is not a supported format but is only advanced 

through contributions made by users. Also, because it is not a simple format like 

OpenIOC which is XML based, its functions cannot be extended very easily [34]. The 

optimal format for users would be a combination of the CybOX expression strength and 

objectives, the flexibility of YARA, and the scanning capabilities and tools of OpenIOC.   

YARA can be used on all platforms because it is written in Python and its 

signatures are in plain text. OpenIOC can only be used on Microsoft Windows but it does 

provide a memory forensic tool for Mac OS called Memoryze [35]. CybOX can be used 

on all platforms because it is XML based, and there are no platform requirements for 

XML files. OpenIOC is proprietary because of paid support and indicator releases but 
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CybOX and YARA are free for public use. Since they all have their pluses and minuses 

and cannot meet 100% of the users’ needs, there is really no “best” IOCs format [35]. It 

all depends on the specific needs of an individual organization and what they are trying to 

accomplish [37]. A more concise comparison of the three can be seen in Table 8.  

Table 8.   Comparison of YARA, CybOX, and OpenIOC. Source: [35]. 

Properties YARA CybOX OpenIOC 
Signatures plain text XML XML 
Default scanning 
capabilities 

Yes No Yes 

Platforms All All Microsoft Windows 
Proprietary No No Yes 

 

Chapter IV will present real-world examples of Indicators of Compromise (IOCs). 

This will be accomplished by describing and presenting IOCs examples for ZeuS (Trojan 

Horse), ATM malware attacks, and NetIQ in detail. 
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IV. REAL-WORLD EXAMPLE 

A. ZEUS  

The real-world example that will be discussed in this chapter is ZeuS, also known 

as Zbot. ZeuS is a Trojan horse malware kit that runs on versions of Microsoft Windows. 

It steals IDs like online banking accounts by using Web injection [38]. It was first 

identified in 2007 when it was used to steal data from the U.S. Department of 

Transportation. In 2009, it was discovered that ZeuS had compromised over 74,000 FTP 

accounts on the following companies’ websites:  NASA, Oracle, Bank of America, 

Amazon, Cisco, ABC, Monster.com, Play.com, and BusinessWeek. The source code for 

ZeuS was leaked in 2011 and several variants have since been discovered [38].   

ZeuS is made up of two main components. The first is a panel that allows Web 

command and control giving its operators the ability to execute and monitor payloads on 

host that have been compromised.   The second is the generation of the Zeus bot 

executable which can be delivered via a website or the panel.  

There are two versions of Zeus, each one providing different functionality. The 

earlier version had multiple hidden files located in a hidden directory. This hidden 

directory included the encrypted payload, configuration file, and log file. It was placed in 

the system32 directory. These files were obscured utilizing the NtQueryDirectoryFile 

API within the Windows API hooks. Therefore, if a victim of Zeus were to use Windows 

Explorer to search their system directory, they would not be able to see these hidden files.   

When Zeus is executed, thread injection is used in an effort to infect some of the 

other processes resident on that system. Explorer.exe, winlogon.exe, and svchost.exe are 

the processes most often infected. The code located in the memory of these processes will 

be found in high memory segments as a result of obscure thread injection.   

ZeuS malware behavior/characteristics include: gathering data of infected 

machines, anti-forensics, code injection, and Web injection. ZeuS obfuscates important 

strings (as seen below). The strings are decoded upon their execution. De-obfuscated 
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strings are good indicators of a Zeus malware infection [38]. These de-obfuscated strings 

in Figure 7 are necessary for recognizing the payload code.   

 
Figure 7.  De-obfuscated Zeus String Algorithm. Image from Bromium at 

https://labs.bromium.com. 
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Figure 8 presents some indicators of ZeuS variants. In the “Imodule” variant, top 

diagram, many obfuscated strings are added. The Citadel variant, depicted in the bottom 

diagram, is used for detecting sandboxes for anti-analysis [38].   

 

 
Figure 8.  Indicators of ZeuS Variants. Source: [38]. 
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Figure 9 illustrates IOCs that can be used for detecting the Zeus malware using 

OpenIOC.   

 
Figure 9. Mandiant’s OpenIOC Indicators of Compromise for ZeuS [38]. 

 

B. ATM MALWARE ATTACKS 

The next real world example to be discussed is ATM malware attacks. In recent 

years, new cyber-attacks targeting ATMs have been discovered. The latest techniques do 
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not need skimmers or the other usual physical tools. However, these attacks utilize 

malicious code on operating systems that are unsupported with unpatched vulnerabilities 

[39]. This code will be uploaded to the terminal in one of two ways. It can be uploaded 

directly into the terminal or via remote system access. The spoils resulting from these 

activities range from large cash withdrawals to sensitive data being exposed. Frequently, 

the attacks mix the cyber and physical realms, using partners who physically collected the 

money once the terminal was infected. There are four malware subfamilies that 

specifically target ATMs [39]: Backdoor.Ploutus, Backdoor.Tyupkin, 

Backdoor.ATM.Suceful, and Backdoor.GreenDispenser.   

Backdoor.Ploutus was one of the first ATM malware variants to be publically 

disclosed and is typically installed via USB. A mobile phone tied to the ATM is used to 

control the malware via SMS messages. This allows the attacker to control the operating 

system of the ATM. There are two separate SMS commands [39]:   

• The first includes an activation ID to allow the Ploutus malware on the 
ATM. 

• The second includes a command to distribute the money. 

The phone forwards authorized SMS messages as UDP or TCP packets to the 

ATM OS. The ATM network packet module collects the UDP/TCP packet and (if valid) 

executes them, potentially resulting in the machine immediately dispensing cash. The 

amount of cash distributed is frequently pre-configured into the malware, and the cash is 

often collected in person by an associate of the attacker [39].   

Backdoor.Tyupkin is a malware family that can be installed through physical 

access to the ATM terminal by means of a bootable CD, or by means of RDP from an 

alternative device on the network. This malware family manipulates the NCR Persona 

chain of ATM machines which run Microsoft Windows 32-bit OS. As Maccaglia and 

Myers explain, irrespective of the means used to infect the ATM system, two files are 

copied onto the ATM machine: 

• An executable (the malicious binary itself) 

• A debugging file (responsible for imbedding the malware in the registry 
before it is deleted) [39] 
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The malware offers the attacker (or the assistant) direct access to the terminal by 

means of the ATM’s keypad upon entry of the correct passcode and session key. The 

terminal then prompts the attacker to select which cash box to dispense the cash from. 

The amount of cash is limited by how much is physically available in the machine [39]. 

The malware also restricts the ATM’s communication on the local area network, almost 

certainly to interrupt remote monitoring or troubleshooting. This malware could also be 

configured to operate during specific time windows [39].      

In September 2015, a new ATM malware variant, named Backdoor.ATM.Suceful, 

was discovered. Originally the sample was uploaded to VirusTotal (VT) from a Russian 

IP address. According to the timestamp, it was likely composed on August 25, 2015 [39]. 

This malware family is possibly still being developed and being tested by its 

authors. Nevertheless, the sophisticated capabilities of this malware signify the authors 

are evolving and planning to steal data that hasn’t previously been harvested by any other 

ATM malware. Presently documented capabilities of Backdoor.ATM.Suceful include 

[39]:  

• Suppressing ATM sensors to avoid detection 

• Reading all the debit/credit card track data 

• Control of the malware via ATM PIN pad 

• Retention or ejection of a card inserted into the ATM  

• Reading data from the EMV chip4 of the card 

Backdoor.ATM.GreenDispenser is the latest entry onto the ATM malware scene 

and was initially discovered in Mexico in September 2015. Initial analysis suggests this 

malware must be installed manually. This malware is similar to the Tyupkin family in 

functionality, but does display some unique functionality [39]: 

• Two-factor identification composed of a hardcoded PIN, and a second one 
obtained by decoding a QR code  

• Malicious code will only run on a system whose time and date is post-
September 2015 
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It communicates with the hardware of the terminal, such as the cash dispenser and the 

PIN pad. The malware could be constructed to show a message to the potential ATM 

user, written in Spanish or English, indicating the machine is out of service. While 

routine cardholders may walk away when seeing this error, the attackers merely type in 

an access code to contact the malware’s menu and gain access to the system [39]. Figure 

10 shows how the YARA rules match the ATM sample analyzed [39]. Figure 11 shows 

the YARA rules used for describing the malware variants.   

 
Figure 10.  YARA Rules for ATM Sample. Source: [39]. 
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Figure 11.  YARA Rules for Describing the Malware Variants. Source: [39]. 
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C. CANES 

This last example is included because this thesis is part of a larger “CANES 

CDOSS” initiative aimed at introducing a CDOSS IR capability to CANES-outfitted 

Navy vessels. NetIQ SM is the current SIEM deployed onboard U.S. Navy ships. At the 

time of this thesis, the underlying IOCs for the 1066 rules within CANES, were not 

available. However, some examples of how rules are written in NetIQ will be presented 

and provide insight into how the 1066 rules were constructed.   

CANES rules are built into the NetIQ security manager (SM). Rules are entered 

into the security manager via scripts using VBScript or JScript. VBScript and JScript are 

both Microsoft scripting languages. The scripts are written in XML utilizing a 

combination of Boolean logic and regular expressions. NetIQ does not specifically use 

YARA, CybOX, or OpenIOC for writing their rules, but instead utilizes its own 

proprietary format for them.   

All of the rules presented in this section come directly from the NetIQ Sentinel 

User Guide [40]. The first NetIQ example is for detecting a spreading attack. This type of 

rule is considered a correlation rule because a comparison must be made between a 

current event and a past event. The expression for this rule is as follows:  

filter(e.TaxonomyLevel1=“Attack”) flow window(w.dip=e.sip, filter(e.rv51=“Attack”), 

15m). The second example is a rule that will detect whether or not the source IP address 

of a current event matches one in an event that occurred 60 seconds ago. The past events 

would be limited to those containing source IP addresses within the specified subnet. The 

rules is as follows:  window(w.sip = e.sip, filter(e.sip match subnet (10.0.0.10/22),60). 

The third example is a rule that can be considered a “domino effect” kind of rule. This 

type of rule would be appropriate for an attacker who has exploited a vulnerable system 

and then used that as an attack platform against other systems. The rule is expressed as 

follows:   

filter(e.XDASTaxonomyName = “XDAS_AE_IDS_PROBE” OR 
e.XDASTaxonomyName = “XDAS_AE_IDS_PENETRATE”) flow 
window((e.sip = w.dip AND e.dp = w.dp AND e.evt = w.evt), 
filter(e.XDASTaxonomyName = “XDAS_AE_IDS_PROBE” OR 
e.XDASTaxonomyName = “XDAS_AE_IDS_PENETRATE”), 1h).  
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The fourth example is a rule that identifies if your system was subject to a 

potential security breach following a denial of service attack. This rule will cause an alert 

if a service within the destination of the attack stopped within 60 seconds of the attack. 

This rule is expressed as: filter(e.rv51=“Service” and e.rv52=“Stop”) flow window (e.sip 

= w.dip, filter(e.XDASTaxonomyName = “XDAS. The last example is a rule that will 

detect whether an attack came from outside your firewall. It will check whether or not an 

IDS attack event detected inside your network passed through your firewall within the 

past 10 seconds. The rule is expressed as follows: filter(e.TaxonomyLevel1=“Attack”) 

flow window(w.dip=e.sip, filter(e.rv32=“FW”), 10).   

D. SUMMARY 

This chapter covered three real-world examples of IOCs and how they can be 

used to write good rules for detecting malicious activities on a network. Each example 

used a different IOC format. This provided a distinct perspective on how each IOC’s 

format could be used in writing rules based on the type of malicious activity and the 

needs and preferences of the user. 

Chapter V, the final chapter, summarizes the main points of this thesis research 

and proposes recommendations for future research.   
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V. CONCLUSIONS AND FUTURE WORK 

The Navy has placed almost all of its warfighting abilities onto mission-essential 

cyber systems. These systems provide high-speed automation, but bring with them 

potential vulnerabilities. These vulnerabilities can be mitigated through leveraging the 

current SIEM technology and the incident “first responders” not only onboard ships, but 

within any organization that is concerned with security and protection of their networks. 

The SIEM’s ability to accurately collect, detect, correlate, and alert on possible security-

related events is mission essential. The SIEM’s effectiveness is limited by the quality of 

the rules that are “fed” to it. The “ruleset” is the heart of the SIEM and the underlying 

foundation of this “ruleset” are good IOCs. Good IOCs will result in SIEMs that provide 

more reliable and rapid incident detection, and provide better data with which to respond 

to those incidents. Well defined IOCs will, in the final analysis, result in a SIEM that 

detects more true positives, and suffers fewer “falses”—whether negative or positive.   

A. CONCLUSIONS  

This thesis provides an ontology of indicators of compromise (IOCs). An 

ontology, in the information science context, “is a formal naming and definition of the 

types, properties, and interrelationships of the entities that really, or fundamentally, exist 

for a particular domain of discourse” [41]. In this research, the domain of discourse is 

cyber IOCs. In Jason Luttgens et al., book, Incident Response & Computer Forensics, 3rd 

edition, IOCs creation is defined as “the process of documenting the characteristics and 

artifacts of an incident in a structured manner.”  The text goes on to state that “the goal of 

IOCs is to help you effectively describe, communicate, and find artifacts related to an 

incident.”  It is noteworthy that IOCs are only definitions. To actually affect detection of 

an incident, these definitions must ultimately be actualized via technology. The current 

state of the practice regarding this technology, is the security control (tool) typically 

referred to as Security Information and Event Management (SIEM). In order for the 

SIEM to be effective, theses definitions must be turned into a high-quality ruleset and 
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supplied to the SIEM. They play a vital role in the detection, as well as the investigation 

phases, of the incident life cycle.   

The purpose of this thesis is to explore the existing space of the IOCs domain of 

study (i.e., its current ontology), to summarize it, and to—if efficacious—suggest 

“extensions” or alterations that would best benefit the incorporation of well-defined cyber 

IOCs into a target SIEM solution. The current U.S. Navy SIEM solution for the CANES 

environment is NetIQ.  

There is currently no preferred or accepted standard for representing IOCs. The 

three nascent IOCs standards examined in this thesis are CybOX, OpenIOC, and YARA. 

The definition, structure, and examples of each standard were examined and then 

compared in Chapter III. Each standard has its own pluses and minuses. CybOX and 

OpenIOC offer their users the ability to create signatures in XML whereas YARA offers 

this ability in plain text. YARA and CybOX can be used on any platform but OpenIOC is 

specific to Microsoft Windows only. No one standard is better than the other. It depends 

on the organization and their security needs. The Navy currently uses Snort and 

Microsoft scripting languages built into NetIQ to write their rules. When compared to the 

three nascent standards in this thesis, OpenIOC seems to be the closest match.   

A research objective for this thesis has been to help enhance the overall quality of 

the cyber incident response capability, by informing would be SIEM operators and 

developers of the structure and semantics of the IOCs that lie at the heart of a SIEM’s 

functionality. 

B. FUTURE WORK 

Follow on work to this thesis would be identifying the IOCs specific to the 

shipboard environment and using these to generate rules specific to NetIQ onboard U.S. 

Navy ships. This can be done through the creation of new rules along with the 

modification of the existing 1066 rules currently built into the SIEM. This would allow 

the SIEM’s ruleset to be fine-tuned producing fewer false positives and more accurate 

results. Examining the IOCs used in creating the current NetIQ ruleset will provide a 
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better understanding of the current rules, along with their purpose, and allow them to be 

adjusted or deleted as necessary.   

Another focus for future research is the training and education of Sailors/analysts 

that are part of the incident response process. This training would be NetIQ-specific and 

provide a quick reference guide to what IOCs are, what good IOCs looks like, and an 

example format. It would also provide examples of strong rules and the IOCs used in 

building them. This would provide the analyst creating or modifying these rules with a 

quick reference guide as to what the best and most fruitful IOCs are. This could also 

benefit the intelligence analyst who is providing these IOCs to be used in rule creation. It 

would give them a better understanding of what data to look for in their daily intel 

searches. It would allow them to act quicker and with greater confidence on any piece of 

information they believe is IOCs worthy.   

A combination of these suggestions will provide the best overall enhancement to 

the SIEM onboard Navy ships, resulting in a hardening of naval networks. It will provide 

a more fine-tuned system and better trained personnel. It will provide the skillsets 

necessary for the incident “first responders” to quickly and more accurately identify 

possible security-related incidents or events. This will help identify and stop future 

system compromise.   
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