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ABSTRACT 

The current manual process for aircraft flight scheduling at Naval Air Station 

(NAS) Lemoore accommodates the independent needs of 16 fighter resident squadrons as 

well as constraints imposed by limited military operating area (MOA) availability. Given 

the complexity of this scheduling problem, attempting to additionally avoid periods of 

high activity, which lead to congestion, would challenge the manual process. Congestion 

leads to long wait times for flight-line services. Refueling operations are particularly 

costly when operational time is lost and resources are backlogged. 

Avoiding inefficient periods of high demand for refueling operations is 

complicated by the two types of refueling available: hot refueling when the aircraft’s 

engine is running or cold refueling when the aircraft is shut down. Although cold 

refueling is more fuel efficient, it is also more time consuming. Scheduling aircraft to 

avoid inefficient periods of high demand and achieving a balance between the two 

refueling methods are keys to maximizing the effectiveness of NAS Lemoore operations, 

particularly as Lemoore’s aircraft population will grow in the coming years. 

This thesis creates an optimization model to determine the best daily flight 

schedules based on current NAS Lemoore squadrons, the squadrons’ flying and training 

requirements, the refueling infrastructure, and MOA availability. It also exercises the 

model to study the impact of the growing aircraft population estimated for 2017 and 

2018. 
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EXECUTIVE SUMMARY 

Minimizing aircraft wait time during land-based refueling has both operational 

and resource management benefits. In-land aircraft refueling can be done by hot 

refueling, in which aircrafts’ engines continue running during refueling, or by cold 

refueling, in which aircraft are shut down during refueling. Although cold refueling is 

more fuel efficient, it is also more time consuming; hot refueling can be completed faster 

than cold refueling and is used when aircraft need to immediately fly another mission, but 

it is more expensive and fuel inefficient due to the fuel burned while the aircraft’s 

engines are running. Scheduling aircraft to avoid inefficient periods of high demand and 

achieving a balance between these two refueling methods are keys to maximizing the 

effectiveness of Naval Air Station (NAS) Lemoore operations. 

NAS Lemoore’s refueling demand is generated by its 16 home-based fighter 

squadrons and the sporadic arrival of transient aircraft, most commonly C-40 cargo 

aircraft. Refueling is provided by Naval Supply Systems Command (NAVSUP) Fleet 

Logistics Center (FLC) San Diego. NAS Lemoore has limited refueling resources: hot 

pits for conducting hot refueling, personnel for conducting both types of refueling, and 

fuel trucks for conducting cold refueling and as a means of transportation for refueling 

personnel to conduct hot refueling. The assignment of these resources is done on a first-

come, first-served basis, creating a backlog during some peak hours while leaving 

refueling resources underused at other times. 

To exacerbate the problem, the aircraft population at NAS Lemoore will grow in 

the coming years, especially 2017 and 2018. This growth will be due to the introduction 

of the Joint Strike Fighters (JSF) F-35 and relocation of one or more F/A-18 E/F 

squadrons. Given the current bottleneck experienced by aircraft waiting to be refueled, 

the additional future demand will likely exceed NAS Lemoore’s refueling resources 

during peak demand times. Thus, it is prudent to consider optimizing the flying and 

refueling schedules now in order to operate the refueling system more efficiently and 

consequently improve the available flying time of the current and future aircraft. 
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At NAS Lemoore, the training officers of its home-based squadrons meet every 

Tuesday with Commander Strike Fighter Wing Pacific (CSFWP) staff to request and 

allocate Lemoore’s military operating area (MOA) and field carrier landing practice 

(FCLP) hours for the following week. Additionally, each squadron, based on its training 

requirements, requests hours from MOAs and ranges from other bases and creates its own 

flight schedule independently from the other squadrons. Having the ranges pre-assigned a 

week prior to the flying week guarantees that squadrons will not fly to a range at a 

specific time if another squadron is planning to go to the same range at the same time. 

However, there are joint missions in which more than one event, from one or more 

squadrons, will fly to the same range at the same time. Because the squadrons do not 

communicate their schedules among themselves, and because the times when aircraft take 

off and land are not taken into account as a whole, there are times when the number of 

aircraft landing exceeds the capacity of the refueling system. This results in delays in 

aircraft turnaround times, which compound throughout the flight day leading to MOA 

scheduling conflicts and ultimately sortie cancellations. 

After gathering data from CSFWP staff and NAS Lemoore Fuels Division, this 

thesis uses as inputs: the daily flight schedules of the 16 fighter squadrons, the estimated 

fuel to be consumed by each flight, the ranges assigned to squadrons, the number of 

refueling personnel available at various shifts during the day, the number of refueling 

trucks, the priority assigned to each squadron, the percentage of aircraft allowed to 

conduct hot refueling in a day, and the times to start and stop hot refueling determined by 

the refueling team. This thesis develops the optimization model Multiple Squadron Input 

Schedule Enhancer (MSISCHE), which is a linear mathematical optimization model 

based on series of penalties and rewards. MSISCHE takes as input the independent 

squadrons’ planned schedules and finds the optimal set of minor adjustments to the take-

off times that minimizes the refueling waiting time, and consequently maximizes the 

available flying time of aircraft refueling at NAS Lemoore. A critical characteristic of 

MSISCHE is that it seeks to make only small adjustments to the squadrons’ requested 

schedule, thus preserving squadron authority and accountability, and identifies 

adjustments with the greatest positive impact on operational efficiency. To show the 
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benefit of using the optimization model, we assess the aircraft refueling wait time based 

on the in-land refueling in both optimized and legacy operating protocols. 

Since a new squadron is scheduled to arrive at NAS Lemoore between 2017 and 

2018, this thesis evaluates the impact of modifying and growing the aircraft population. 

To include sensitivity analysis on some uncertain parameters, our study evaluates the 

impact of modifying the availability of fuel trucks and refueling personnel on the overall 

results. 

The only way to control the number of aircraft refueling demands at specific 

times is by creating a merged flight schedule for NAS Lemoore that includes all 16 

squadrons. Because of the numerous combinations, arranging the flights of 16 squadrons 

is quite difficult to accomplish by hand. An optimized refueling schedule can be obtained 

by utilizing the optimization model MSISCHE implemented in the General Algebraic 

Modeling System (GAMS). Using the squadrons’ daily flight schedules a day before the 

actual flight allows limited opportunities to adjust schedules based on range availability. 

Future applications to enhance this model could use flight schedules a week prior the 

flying date, which will provide more flexibility on range changes. 
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I. INTRODUCTION  

We are operating in challenging fiscal and operational times, and we must 
take appropriate action now to ensure the current and future vitality of 
Naval Aviation. To successfully achieve our missions today and in the 
future, all Naval Aviation stakeholders must be in sync and focused on the 
common goals of advancing readiness while reducing costs.  

—VADM D. Buss 
Commander, Naval Air Forces 

April 30, 2013 

Our number one priority is recovering and generating readiness so we can 
continue to send forces forward, as well as recovering readiness after 15 
years of combat and the effects of sequestration. … Our ability to give 
squadrons the numbers of airplanes they need in maintenance phase has 
been very challenging, based on getting the airplanes and the parts … 
That’s led to some limited flight hours for junior officers. We’ve taken 
that risk so those squadrons going through work-ups and deployments are 
getting resourced with what they need. 

—VADM M. Shoemaker 
Commander, Naval Air Forces 

September 13, 2016 

We all must be able to answer the question: Do you know what you do for 
the warfighter? … We must be ready so they are ready. 

—RADM J. A. Yuen, 
Commander, Naval Supply Systems Command and Chief of Supply Corps 

October 3, 2013 

Maximizing aviation readiness is a continuous concern and priority to the Naval 

Air Forces. Even though any logistics team should make its best effort to meet the 

customer’s demand, maximizing readiness goes beyond providing assets to meet any 

demand, which could be accomplished by adding resources whenever they appear to be 

insufficient. In order to have a balanced system, in which both outcomes and costs are 

important, logisticians must ensure that maximizing readiness also involves minimizing 

operational and resource costs. 
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A. BACKGROUND 

There are two methods to conduct land-based aircraft refueling: hot and cold. In 

hot refueling, aircraft’s engines are still operating, which means these aircraft must be 

equipped with a closed-circuit refueling receiver and single-point pressure refueling 

receiver that incorporate an automatic fuel shutoff capability. In cold refueling, the 

aircraft must shut down its engines, turn off all switches, and conduct a turnaround 

inspection prior to the refueling. The Naval Air Systems Command (NAVAIR) aircraft 

refueling manual 00-80T-109 provides definitions and guidelines for hot and cold 

refueling (NAVAIR, 2002). Although cold refueling is more fuel efficient, it is also more 

time consuming; hot refueling provides a much quicker turnaround. It would be easy to 

assume that the preferred method is hot refueling because it is faster than cold refueling; 

however, because fuel is consumed while refueling or waiting to refuel, hot refueling is 

costly. A squadron requests and schedules an aircraft to receive hot refueling if the 

aircraft needs to immediately fly another mission. Thus, achieving a balance between 

these two refueling methods and avoiding unmanageable peak demands are keys to 

maximizing the effectiveness of a refueling facility. 

Naval Air Station (NAS) Lemoore is the home base of 16 fighter squadrons. A 

number of squadrons are deployed away from NAS Lemoore at any given time. Each of 

the remaining at-home squadron generates a flight schedule with its respective events a 

day prior to the actual flying date. Each event includes, among other information, the 

takeoff and landing times, the number of aircraft, the range where the aircraft will go, and 

the estimated fuel that will be burned in that event. The events of all squadrons are 

independently scheduled with the exception of joint missions in which multiple events 

from one or more squadrons will fly to the same range at the same time. 

Because the squadrons do not communicate their schedules among themselves, 

and because the times when aircraft take off and land are not taken into account as a 

whole, there are times when the number of aircraft landing exceeds the capacity of the 

refueling system. The large number of aircraft coinciding in their landing time, in 

addition to the first-come, first-served distribution of the refueling resources, creates a 
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backlog during some peak hours while leaving refueling resources underused in other 

times. 

Additionally, NAS Lemoore’s aircraft population will grow in the coming years, 

particularly in 2017 and 2018. This growth will be due to the introduction of the Joint 

Strike Fighters (JSF) F-35 and relocation of one or more F/A-18 E/F squadrons. Given 

the current bottleneck experienced by the aircraft waiting to be refueled during peak 

operational periods, the additional future demand will likely increase wait times for 

refueling if a new approach to scheduling is not developed. Optimizing the flying and 

refueling schedules in order to operate the refueling system more efficiently will improve 

the available flying time of the aircraft.  

B. CURRENT FLIGHT SCHEDULING PROCESS AT NAS LEMOORE 

Every Tuesday, the training officer (TRAINO) of each of NAS Lemoore’s home-

based fighter squadrons meets with Command Strike Fighter Wing Pacific (CSFWP) 

staff to request and allocate Lemoore’s military operating area (MOA) and field carrier 

landing practice (FCLP) hours for the following week. Additionally, each squadron’s 

TRAINO requests hours at MOAs and ranges from other bases from the respective base 

MOA/range coordinators; this occurs a week prior to flight. Figure 1 shows a small 

example of a report indicating when a particular MOA/range is assigned to squadrons 

during one week. The numbers in the cells represent the squadrons assigned each day and 

time, indicated by column and row respectively. Actual reports are more complex than 

this example, as each location usually includes many MOA/ranges, and it also covers 

more hours during the day. 
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Figure 1.  Example of MOA/Range Assignments 

The following week, each day, each TRAINO utilizes the MOAs assigned to his 

or her squadron along with the squadron’s training requirements, and, without knowing 

the other squadrons’ flight plans, creates his or her squadron’s flight schedule. Figure 2 

illustrates the process each squadron’s TRAINO follows in order to create a daily flight 

schedule. Although these squadrons are geographically located at the same base, NAS 

Lemoore, they do not communicate their flight schedules among themselves; hence, the 

daily flight plan generated by each squadron is independently scheduled from the other 

squadrons. The only exception to this lack of communication occurs when planning a 

joint mission. 

1000/1015 22 22 86 86
1030/1045 122 122 122 22 22 122 122
1100/1115 122 122 122 94 22 22 86 86
1130/1145 94/22 94/22 94 94 122 122
1200/1215 94/22 122 122 122 86 86 86 86
1230/1245 122 122 122 122 122 122 122
1300/1315 94 94 94 94 86 86
1330/1345 86 86 94 122 122

M T W TH F
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Figure 2.  Squadrons’ Flight Scheduling Process 

C. CURRENT REFUELING PROCESS AT NAS LEMOORE 

The Naval Supply Systems Command (NAVSUP) Fleet Logistics Center (FLC) 

San Diego provides aircraft refueling services at NAS Lemoore. The current refueling 

demand at NAS Lemoore is generated by its 16 home-based fighter squadrons and the 

sporadic arrival of a C-40 or other logistics aircraft. NAS Lemoore has limited refueling 

resources, including fuel skids or hot pits for conducting hot refueling, personnel for 

conducting both types of refueling, and fuel trucks for conducting cold refueling and as a 

means of transportation for refueling personnel to conduct hot refueling. 

The fuel skids are available during specific hours, and each fuel skid is 

preassigned to specific squadrons due to its proximity to the squadrons’ maintenance 

shop. Cold refueling is conducted at the ramp, which is also close to the squadrons’ 

maintenance shop. The number of available personnel varies during the day. To avoid 

confusion with other personnel, this thesis uses the term “driver” as the designation for 

the refueling personnel and “maintainer” for personnel from the squadron’s maintenance 
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shop. The number of available fuel trucks may also vary due to routine or emergency 

maintenance requirements. 

To conduct cold refueling, the following resources are needed: one driver, one 

fuel truck, and one maintainer. To perform hot refueling, the following resources are 

needed: one driver, one fuel truck, and two maintainers. Each fuel skid can refuel two 

aircraft simultaneously using its right and left hot pits. If the fuel skid is refueling two 

aircraft simultaneously, then the total needed resources are one driver, one fuel truck, and 

four maintainers. 

Each squadron’s maintenance shop submits a daily flight schedule to the refueling 

team indicating which aircraft require hot and cold refueling. The assignment of the 

refueling resources to each aircraft is generally done in a first-come, first-served manner. 

If an aircraft needs cold refueling, it will go to its pre-assigned ramp, shut down, and wait 

for a driver and a truck to be available. Only one driver with a truck goes to each ramp; 

another driver with a truck will assist cold refueling in the same ramp only if there are 

three or more aircraft waiting in queue in that ramp. If an aircraft needs hot refueling and 

the two sides of its pre-assigned fuel skid are already taken, the aircraft waits until the 

fuel skid becomes available. Hot refueling also occurs in a first-come, first-served 

manner. 

NAS Lemoore Fuels Division records every refueling event. This information is 

used to track the percentage of hot refueling events and ensure that the percentage does 

not exceed the monthly allowed percentage.  

D. PROBLEM 

Refueling an aircraft involves the waiting time to receive fuel and the actual time 

consumed while receiving fuel. Although both cold and hot refueling should ideally be 

done without much waiting, hot refueling must be done expeditiously for two reasons: the 

cost of burning fuel and the need to ready the aircraft for its next scheduled event, which 

is what necessitated hot refueling in the first place. In general, it is beneficial to complete 

both types of refueling efficiently in order to increase flying time availability. 
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E. LITERATURE REVIEW 

Because this thesis utilizes the concept of operational effectiveness, it is necessary 

to define this term. The Defense Acquisition University (DAU, 2015), in its website 

Glossary of Defense Acquisition Acronyms and Terms, describes operational 

effectiveness as “the overall ability of a system to accomplish a mission.” Operational 

effectiveness can be improved by better resource utilization, which often requires 

changing operating policies. 

A number of studies at the Naval Postgraduate School have sought ways to 

decrease the amount of time aircraft wait to refuel. Geiser (2012) recommends a set of 

solutions to reduce delays when refueling at NAS Oceana by modifying policy and 

materiel resources. By using simulation and data analysis, and focusing on improving 

communication to coordinate and dispatch refueling services, Geiser approaches the fuel 

demand problem at NAS Oceana. He emphasizes the communication flow between the 

squadrons and the fuel truck operators when the squadron’s maintenance shop calls for 

refueling services. Moreover, Geiser’s thesis explores techniques to help forecast the 

request for aircraft refueling and minimize the number of times fuel trucks need to refill 

when conducting aircraft refueling, which consequently decreases aircraft refueling time. 

Gerber and Clark (2013) use simulation and data analysis to study refueling 

operations at NAS Lemoore. Specifically, they vary the aircraft arrival rate and determine 

the costs and benefits associated with the various policies, with aircraft fuel consumption 

and delay as their primary figures of merit. They first establish a baseline level of fuel 

consumed in the current practice; then consider the impact of future transitions to newer 

aircraft models in the coming years. Based on their analysis, Gerber and Clark 

recommend that planners “decrease variation in aircraft arrivals during peak periods by 

establishing a culture of squadron collaboration at the type-wing level through slot 

management” (p. 113). 

Another study was conducted in winter 2015 by a group of 11 students, led by 

CDR Peter Ward, in the OA4611 Joint Logistics Models class at the Naval Postgraduate 

School (Ward, 2016). This team modeled and assessed the ability of refueling personnel, 
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processes, and infrastructure at NAS Lemoore to meet future refueling demand around 

January 2017. They conclude that a range of policy changes, such as smoothing the 

refueling demand over the course of the operational day, would likely lead to the greatest 

reduction in refueling wait times. 

Notably, prior research has focused on modeling and simulation of airfield 

operations. This thesis leverages the understanding of flight-line processes developed in 

prior work to apply the technique of mathematical optimization. This thesis takes a step 

towards the implementation of slot management as recommended by Gerber and Clark, 

although ours is a soft approach that values and maintains the autonomy of squadron 

inputs. 

F. CONTRIBUTIONS AND OUTLINE 

The goal of this thesis is to study the factors impacting the land-based refueling 

wait time at NAS Lemoore, and to determine whether the wait time can be reduced by 

modifying existing policies or through improved decision support. This thesis develops 

the Multiple Squadron Input Schedule Enhancer (MSISCHE), an optimization-based 

decision support tool designed to evaluate the squadrons’ daily flight requests and the 

available refueling resources to create an optimal flying and refueling schedule. The 

current scheduling practice results in long wait times for refueling during periods of peak 

demand. These wait times are avoidable. MSISCHE makes small adjustments to 

scheduled takeoff times that are feasible given airspace scheduling constraints and 

deferential to squadron inputs. MSISCHE’s adjustments smooth demand for limited 

resources such as refueling, making operations at NAS Lemoore more efficient. 

Through optimization and sensitivity analysis, we identify critical elements that 

impair and constrain the efficiency of land-based aircraft refueling service at NAS 

Lemoore. The most significant outcome in our study is that, with the current squadrons 

and refueling infrastructure at NAS Lemoore, MSISCHE is able to find a combined 

optimal solution that minimizes the aircraft refueling wait time while making only small 

adjustments to the squadrons’ flight schedules.  
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With the current aircraft refueling demand at NAS Lemoore, the refueling 

resources are at the edge of sustainability. In order to maintain a balanced system, the 

refueling demand cannot surpass the available refueling resources. Decreasing the 

refueling resources or increasing the number of squadrons will force the cancellation of 

some flying events.  

We highly recommend the use of MSISCHE to improve the efficiency of the 

scheduling process at NAS Lemoore while minimizing changes to the squadrons’ flight 

schedules and deriving the benefits of reduced refueling wait times. 
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II. METHODOLOGY 

This study was conducted by gathering data from CSFWP and the NAS Lemoore 

Fuel Division, reviewing previous studies, setting up constraints, limitations, and 

assumptions, developing the optimization model, creating an interface, and generating 

scenarios needed to test the model and perform sensitivity analysis. 

A. OBJECTIVES 

Minimizing the time aircraft spend waiting for refueling service is of paramount 

importance. However, when refueling demands are concentrated during specific times of 

the day, there is a natural tension between the customer for refueling who expect 

immediate service even during periods of peak demand, and the refueling service 

provider team for whom it would be inefficient to be resourced to support peak demand 

with idle capability at all other times. Providing additional resources to avoid refueling 

delays during even peak demand periods might be the best solution from the customer’s 

perspective, but this is treating a symptom rather than addressing a root cause and does 

not address other effects of congestion on the flight-line or in the airspace. Also, 

resourcing to meet peak demand is just a temporary solution; eventually, the backlog will 

return either as the number of aircraft increases or the times of peak demand shift. A 

deeper analysis is needed to address the root cause of the problem, and consequently 

develop a robust solution. 

The peak demand hours and resulting congestion occur because aircraft 

participating in one or more events, from one or more squadrons, coincide in their 

landing time and thus in the time at which they require refueling. This issue can be 

mitigated by coordination of the squadrons’ flight schedules. Because of the complexity 

involved, reconciling the schedule requests from individual squadrons with an overall 

objective of avoiding peak demands would be tedious and time consuming to accomplish 

manually. In addition to the scheduling process, a further area of exploration is the policy 

of pre-assigning fuel skids to specific squadrons. This policy might be advantageous 

because the hot skids are close to the squadron’s maintenance facility, but it is also a 
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disadvantage because this assignment constrains the squadron’s aircraft to wait for 

refueling if their assigned hot skid is occupied while other hot skids are available. Having 

aircraft from 16 squadrons creates a high demand, but with the proper coordination of the 

squadrons and the refueling team, landing and refueling of aircraft can be executed more 

efficiently than is currently observed. Reducing the aircraft’s refueling waiting time 

increases the aircraft’s available flying time. 

Our study is based on data provided by CSFWP staff and NAS Lemoore Fuels 

Division. This thesis develops, in the General Algebraic Modeling System (GAMS) 

(GAMS, 2015), the optimization model Multiple Squadron Input Schedule Enhancer 

(MSISCHE), which is a discrete-time mixed integer linear mathematical optimization 

model based on series of penalties and rewards. MISISCHE uses as inputs the daily flight 

schedules developed by the squadrons present at NAS Lemoore, the estimated fuel to be 

consumed by each flight, the MOA ranges assigned to squadrons, the priority assigned to 

each squadron, the number of refueling personnel in the various shifts, the number of 

refueling trucks, the capacity and safety levels of the refueling trucks, the percentage of 

aircraft allowed to conduct hot refueling in a day, and the times to start and stop hot 

refueling determined by the refueling team. 

A central precept of MSISCHE is to respect the daily flight schedules developed 

by the individual squadrons to the greatest extent possible. By making only small 

adjustments to the timing of events proposed by the squadrons, MSISCHE finds the 

optimal solution to the flight schedules at NAS Lemoore where optimal is defined as a 

balance between the minimization of refueling waiting time (and consequently 

maximization of the aircraft’s flying time availability) and minimization of deviation 

from the squadron’ proposed schedules. MSISCHE identifies and makes these small 

adjustments with the greatest positive impact on operational efficiency while preserving 

squadrons’ authority and accountability. 

To demonstrate the benefit of using the optimization model, the study assesses the 

operational availability of the aircraft based on the in-land refueling in both optimized 

and legacy operating protocols. In addition to the current situation, this thesis evaluates 
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the impact of growing the aircraft population, and modifying some uncertain parameters 

such as the availability of the fuel trucks and the number of refueling personnel. 

B. SCOPE, CONSTRAINTS, LIMITATIONS, AND MODEL ASSUMPTIONS 

1. Scope 

This thesis provides a model to optimize the current daily flight schedules 

generated by NAS Lemoore’s fighter squadrons for the following day in order to provide 

an alternate and optimal combined schedule that minimizes aircraft refueling waiting 

time, and accordingly maximizes aircraft available flying time. NAS Lemoore’s 

combined schedule is generated by utilizing all the data, in comma separated values 

(CSV) files, from the squadrons’ daily flight schedules, and data regarding the available 

refueling resources. By using the optimization model MSISCHE, this thesis shows that it 

is possible to have a collective schedule that, with only small adjustments to the 

squadrons’ requested schedules, guarantees the balance between minimizing schedule 

changes and minimizing aircraft’s refueling wait time. 

2. Constraints 

• CSFWP can modify only the pre-assigned times of events going to 
Lemoore MOAs and FCLPs. 

• Times of events going to MOAs and ranges other than NAS Lemoore are 
pre-assigned a week prior to the event and cannot be modified on short 
notice. 

3. Limitations 

• The model minimizes the refueling wait time by shifting events in small 
increments before or after the requested takeoff time given by the 
respective squadron. This self-imposed limitation is set in order to 
preserve the authority and accountability of individual squadrons. 

• Events represent a group of one or more aircraft going to a specific range, 
and at a specific time, to complete a mission. Missions are represented by 
a code. The study was not able to gather information linking the mission 
code to a range.  

• The model accounts only for the refueling services provided to NAS 
Lemoore’s squadrons. If other aircraft are visiting NAS Lemoore and 
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require refueling, these requirements must be added to the model in order 
to take full advantage of the optimization. 

• Besides refueling, the fuel truck operators have other duties on base; 
nonetheless, there is not enough data to represent these other duties, 
consequently they are not taken into consideration. 

4. Assumptions 

This thesis assumes the following in order to produce a mathematical model that 

optimizes NAS Lemoore’s combined flight schedule. Many of these assumptions can be 

modified by changing their corresponding parameters in MSISCHE. To avoid repetition 

in most of the assumptions, and because MSISCHE runs utilizing the squadrons’ flight 

schedules for a specific date, when an assumption says that a parameter remains constant 

it actually means that this parameter remains constant on that date. 

• All events, including refueling of aircraft and trucks, are based on time 
periods of 15-minute increments. 

• Drivers work following their schedule, and they are available for the entire 
shift. 

• Fuel trucks have perfect reliability. The number of fuel trucks remains 
constant, unless one breaks down or needs to be refueled. 

• The safety level percentage of the fuel trucks, which indicates when the 
truck needs to be refueled, remains constant.  

• Available trucks are used if there are enough drivers. 

• Trucks’ fuel capacity remains constant. 

• Fuel trucks are filled to their maximum capacity before starting the day. 

• Hot refueling is allowed only during the hours set by NAS Lemoore Fuels 
Division. 

• Cold refueling is available 24 hours per day. 

• In a 15-minute period, an aircraft can be refueled up to 1,800 gallons. 

• Aircraft requesting hot refuel could do so at any hot pit. 

• All fuel skids are operational and available. 
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• CSFWP provides the priorities for each squadron, giving VFA-122 the 
highest priority and squadrons preparing to deploy the next highest 
priority. 

• CSFWP provides the penalty incurred for each squadron for a shift in one 
15-minute time interval to an event’s requested takeoff time. 

• CSFWP provides the Lemoore MOAs available hours for the day. 

• Aircraft could fly to any of the MOA/ranges included in the NAS 
Lemoore Inflight Guide 2016 (CSFWP, 2016). 

• Transit time to MOA/ranges is assumed as one time period (15 minutes) 
for most MOA/ranges, and zero time periods for Lemoore, Hunter, FCLP, 
R_2508, and Ferry. 

• All squadrons’ flight schedules used as inputs are valid for the following 
day, and they are provided using time periods of 15-minute increments. 

• Some events do not land back at NAS Lemoore Airport (KNLC), and this 
situation is noted in the flight schedule. 

• Events going to joint missions are annotated in the flight schedule. 

• The estimated fuel burned in each event is annotated in the flight schedule. 

• More than one not-joint event could go to certain missions at the same 
time (FDMO, Ferry, and missions going to range R_2508). 

• Because events in the squadrons’ flight schedules do not include aircraft’s 
designation, aircraft in the model are not utilized in more than one event; 
however, aircraft that require hot refueling effectively model an aircraft 
that is going to perform multiple events. 

• To include the possibility of more constraints, Lemoore MOA is not 
available all day; instead, it is available during the hours of 0930–1130, 
1300–1500, and 1630–2400. 

• Events scheduled for Lemoore MOA, FCLP, FDMO, R_2508, and Ferry 
can be modified on a short notice. 

• The monthly percentage of refueling events allowed to conduct hot 
refueling applies equally to any day. 

• There is no restriction on the number of aircraft that can take off at the 
same time. 

• There is no restriction on the number of aircraft that can land at the same 
time. 
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III. THE MSISCHE OPTIMIZATION MODEL 

MSISCHE has three components: a Microsoft Excel interface (Microsoft, 2013), a 

discrete-time linear optimization model implemented in GAMS (GAMS, 2015), and a 

body of Visual Basic for Applications (VBA) code that links the two. The user interacts 

with MSISCHE via the Excel-based interface, while the VBA and GAMS code remain 

invisible to the user. 

A. INTERFACE 

Figure 3 through 5 present a few snapshots of the interface. Figure 3 shows the 

Dashboard, the first and main sheet of MSISCHE’s interface. It contains some parameters 

that the user can modify, a usage guide, and a number of buttons that allow the user to 

utilize various functions. 

 

Figure 3.  Snapshot of the Dashboard Worksheet, MSISCHE’s Interface 

Figure 4 shows how, by using the squadrons’ worksheets, the user enters the data 

corresponding to the events of the daily flight schedules. The worksheet includes a few 

notes to guide the user on the proper formatting when entering the data. 

 

Flying Total Joint Sorties Start hr Stop hr Sunset Same seed % ac to hr Truck safe
Squadrons 6 Events 45 3 94 800 2300 2000 TRUE 20% 20%

Squadrons # Events
VFA-122 25
VFA-2 STEPS:
VFA-14 1. Click Clean Sheets to erase data from Old Scenario
VFA-22 2. Review/Modify parameters in the top row
VFA-25 3. Type number of events per Squadron
VFA-41 4. Click Prepare Sheets to generate sheets with events
VFA-86 5. Enter data of events in each Squadron Sheet
VFA-94 9 6. Enter events doing Joint missions in Joint sheet
VFA-97 7. Verify and modify information related to trucks in sheets:
VFA-113   In_creating_mnt: trucks in maintenance
VFA-137 3   In_truck_cap: fuel capacity of trucks
VFA-146 3 8. Click Generate Scenario
VFA-147 2 9. Check Aircraft_hr sheet if  need to modify Hot/Cold to aircraft
VFA-151 10. Click Save & Run Model
VFA-154 11. Review results in Flight_Schedule sheet
VFA-192 3

Generate Scenario

Save & Run Model

Clean Sheets

Prepare Sheets
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Figure 4.  Snapshot of a Squadron Input Worksheet, MSISCHE’s Interface  

After generating the scenario, saving it, and running the model, the interface 

presents the results through the Flight Schedule worksheet. Figure 5 illustrates part of the 

results. 

 

Figure 5.  Snapshot of Flight Schedule Worksheet Results, MSISCHE’s Interface 

The interface workbook has approximately 50 worksheets, but many of them 

contain intermediate steps and are hidden because they should not be modified by users. 

 

take-off land fuel joint KNLC Range Sorties Hot/Cold Notes:
V122-e1 1000 1130 12 0 1 R_2508 1 1 Take-off: time in periods of 15 minutes
V122-e2 1200 1330 17 0 1 R_2508 1 0 Land: time in periods of 15 minutes
V122-e3 1200 1315 17 0 1 R_2508 2 0 Fuel: estimated in pounds
V122-e4 1200 1315 17 0 1 Hunter_High 2 1 Joint: number of events going with event at the same mission
V122-e5 1215 1345 17 0 1 R_2508 1 0 KNLC: 1 if event will finish landing at KNLC, 0 otherwise
V122-e6 1245 1415 17 0 1 R_2508 1 0 Range: where the event is going
V122-e7 1315 1445 17 0 1 Superior_Valley 4 0 Sorties: number of aircraft of the event
V122-e8 1315 1400 13 0 1 FCLP 4 0 Hot/Cold: 1 if required hot refueling, 0 if cold
V122-e9 1400 1515 17 0 1 R_2508 2 1
V122-e10 1400 1515 17 0 1 Hunter_High 2 0
V122-e11 1445 1530 13 0 1 FCLP 4 0
V122-e12 1445 1530 13 0 1 R_2508 1 0
V122-e13 1600 1715 17 0 1 Hunter_High 2 1

Flight Schedule
Squadron: VFA-122 Desired Time Computed Time Start
Event Aircraft Range T-Off Land T-Off Land Refuel Hot/Cold
V122-e1 V122-a1 R_2508 815 1000 815 1000 1000 Hot
V122-e1 V122-a2 R_2508 815 1000 815 1000 1000 Hot
V122-e2 V122-a3 Ferry 1515 1545 1515 1545 1545 Cold
V122-e3 V122-a4 Fallon_N2 930 1030 930 1030 1030 Hot
V122-e3 V122-a5 Fallon_N2 930 1030 930 1030 1030 Hot
V122-e4 V122-a6 R_2508 945 1045 945 1045 1045 Hot
V122-e5 V122-a8 R_2508 830 915 830 915 915 Hot
V122-e5 V122-a9 R_2508 830 915 830 915 915 Hot
V122-e6 V122-a12 Superior_Valley 1100 1200 1100 1200 1200 Hot

Squadron: VFA-2 Desired Time Computed Time Start
Event Aircraft Range T-Off Land T-Off Land Refuel Hot/Cold
V2-e1 V2-a1 Lemoore_A 1345 1430 1345 1430 1430 Hot
V2-e1 V2-a2 Lemoore_A 1345 1430 1345 1430 1430 Hot
V2-e2 V2-a4 R_2508 1830 1900 1830 1900 1900 Hot
V2-e2 V2-a6 R_2508 1830 1900 1830 1900 1900 Hot
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B. MODEL FORMULATION 

We now describe MSISCHE’s mathematical formulation. 

1. Indices and Sets [Approximate Cardinality] 

 Squadrons   [16] 

 Events    [~500] 

 Aircraft   [~550] 
 Ranges/MOAs  [~114] 

 Refueling Trucks [11] 

 Time periods   [128] 

 

 Mapping of pairs (i,j): squadron i requests event j 
 Mapping of pairs (j,k): aircraft k performs event j 
 Mapping of pairs (j,r): event j requires range r 
 Mapping of tuples  : events and  belong to a joint 

mission  
 Mapping of triplets (i,r,q): squadron i can occupy range r at 

time q 
 Mapping of triplets (i,r,q): squadron i going to range r can 

take off at time q 
 Mapping of tuples : aircraft k of event j can go 

to range r taking off at time q and refueling at time  
 Mapping of tuples : aircraft k of event j can be 

refueled by truck t at time q 
 Set of time periods when hot refueling is available  
 Set of time periods when hot refueling is not available  

 Set of ranges that may have more than 1 event at the same 
time 

 Set of events that will land and refuel in Lemoore (KNLC) 

 Set of aircraft assigned to do hot refuel 
  

2. Parameters [Units] 

 
Requested takeoff time of event j [time period] 

 
Requested landing time of event j [time period] 

 
Estimated fuel consumed by event j [1000 lbs] 

 
Number of events going with event j to a joint mission 

,i i I′∈
,j j J′∈
,k k K′∈

r R∈
{ 1,.., 11}t T t t∈ =

, ,q q q Q′ ′′∈

E I J⊆ ×
A J K⊆ ×
ER J R⊆ ×
EJ J J⊆ × ( , )j j′ j j′

M I R Q⊆ × ×

M I R Q′ ⊆ × ×

N J K R Q Q⊆ × × × × ( , , , , )j k r q q′
q′

TRUCKN J K T Q⊆ × × × ( , , , )j k t q

HQ Q⊆
NHQ Q⊆
1R R⊆

1J J⊆
1K K⊆

jto

jla

jff

jjoint
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[events] 
 Number of time periods to reach range r [time periods] 

 Priority assigned to squadron i [reward] 

 Penalty for changing takeoff time of events of squadron i 
[penalty] 

 Penalty for an aircraft waiting to refuel [penalty] 
 Penalty per thousand gallon fuel shortage of truck below 

safety level [penalty/1000 gal] 
 Fuel capacity of truck t [1000 gallons]  
 Percentage of fuel capacity below which trucks incur a 

penalty  [percentage]    
 Number of fuel personnel assigned to time period q 

[drivers] 
 Number of hot-fuel skids [hot fuel-skids] 
 Number of cold pits [cold pits] 

 1 if truck t is in maintenance in time period q, 0 otherwise 
[binary] 

 Factor to convert pounds of fuel to gallons [0.15 gal/lb] 
 Percentage of aircraft allowed to do hot refueling 

[percentage] 
      

3. Derived Data [Units] 

 Estimated flying time of event j [time periods] 
                                                 

 Estimated time to refuel aircraft of event j [time periods] 

                                       

 Penalty to an aircraft of event j for changing its takeoff time 
to time period q [penalty]  

              

 Penalty to an aircraft of event j for waiting for hot refueling 
between landing time q and refueling time [penalty] 

 

 
 Penalty to an aircraft of event j for waiting for cold refueling 

between landing time q and refueling time [penalty] 

rtr

ipr

ipc

pw
pt

tcapt
safe

qnp
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ncp
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4. Variables [Units] 

 
1 if event j arrives at range r at time q [binary] 

 1 if aircraft k of event j going to range r takes off at time q 
and starts hot refueling at time  [binary] 

 1 if aircraft k of event j going to range r takes off at time q 
and starts cold refueling at time  [binary] 

 1 if aircraft k of event j uses truck t to start hot refueling at 
time q [binary] 

 1 if aircraft k of event j uses truck t to start cold refueling at 
time q [binary] 

 1 if truck t is getting fuel at at time q  [binary] 
 Amount by which truck t’s fuel is below safety level at 

time q [1000 gal] 
 Fuel inventory of truck t at start time q [1000 gal] 

 Fuel received by truck t at time q [1000 gal] 
 Fuel received by aircraft k of event j from truck t at time q 

[1000 gal] 

 

5. Formulation 

 

s.t.  
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6. Discussion 

The objective function maximizes a series of rewards while it minimizes penalties 

that reflect the quality of NAS Lemoore’s combined daily flight schedule. The user can 

modify the rewards and penalties through MSISCHE’s interface. Some time-based 

penalties are also computed within GAMS (GAMS, 2015). The first and second parts of 

the objective function include the rewards and penalties for aircraft conducting hot and 

cold refueling, respectively. These portions reward those aircraft which belong to events 

that were requested in the input flight schedules and are still included in the optimal 

solution, and they penalize aircraft for taking off at a different time than desired, and also 

aircraft that waited for refueling after landing. The last part of the objective function 

reflects the penalty for trucks being below their safety level of fuel. 
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Constraint set (1) guarantees the time uniqueness of the events by requiring that 

each aircraft k of event j going to range r does not get more than one time period q to take 

off and one time period  to start refueling, either hot or cold. Constraint set (2) ensures 

that the total number of aircraft conducting hot refueling does not exceed the percentage 

of hot refueling allowed. Constraint set (3) ensures that each range or MOA r, except 

those in set , is not assigned to more than one event j or joint mission in time period q. 

Constraint set (4) pertains to joint missions; it makes sure that all aircraft going to a joint 

mission take off at the same time period q and fly to the same range r. Constraint set (5) 

ensures that all aircraft of event j take off at the same time period q and go to the same 

range r, but they could refuel at different time period . Constraint sets (6) and (7) 

assign truck t to aircraft k at time  to start refueling, hot and cold respectively. 

Constraint set (8) ensures that each truck t performs at most one activity in each time 

period. Constraint set (9) limits, at every time period q, the number of cold refueling 

aircraft to the capacity of cold refueling stations. Constraint set (10) prevents the number 

of hot refueling aircraft from exceeding the capacity of hot refueling stations in any time 

period. Constraint set (11) ensures that the number of trucks being used, at any time 

period q, do not exceed the number of available drivers. Constraint set (12) fixes a truck’s 

starting fuel to be equal to its fuel capacity. Constraint set (13) prevents truck t from 

exceeding its fuel capacity at any time period q. Constraint set (14) allows truck t, at any 

time period q, to get fuel without exceeding its fuel capacity; a truck can also receive fuel 

before coming back from maintenance. Constraint set (15) calculates how much fuel 

truck t transfers to aircraft k during cold refueling at time period q. Constraint set (16) 

computes the amount of fuel that truck t holds at any time period q. Constraint set (17) 

models the fuel safety levels of the trucks. Constraint sets (18) to (27) define decision 

variable domains. 
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IV. ANALYSIS AND RESULTS 

We now exercise MSISCHE to study its performance in various scenarios, each 

with a unique configuration of squadrons and their respective daily flight schedules. In 

order to conduct sensitivity analysis, 400 scenarios were generated to simulate aircraft 

landing and refueling at NAS Lemoore. 

A. DATA 

All data was provided by CSFWP and NAS Lemoore Fuels Division. NAS 

Lemoore has a total of 5 double fuel skids (10 hot pits) for conducting hot refueling, 

drivers for conducting both types of refueling, and 11 fuel trucks for conducting cold 

refueling and as a means of transportation for refueling personnel to conduct hot 

refueling. 

1. Squadrons 

NAS Lemoore currently has 16 fighter squadrons: VFA-122, VFA-2, VFA-14, 

VFA-22, VFA-25, VFA-41, VFA-86, VFA-94, VFA-97, VFA-113, VFA-137, VFA-146, 

VFA-147, VFA-151, VFA-154, and VFA-192. To conduct sensitivity analysis, a 

symbolic squadron VFA-999 is added to this list. 

2. MOA/Ranges 

Aircraft conducting events departing from NAS Lemoore may be scheduled to fly 

to any MOA/range included in the NAS Lemoore inflight guide (CSFWP, 2016). 

3. Fuel Skids 

The fuel skids, used to conduct hot refueling, are available during specific hours 

set by NAS Lemoore Fuels Division. Hot refueling usually goes from 0800 to 2300 

Monday through Thursday and from 0800 to 1600 on Friday. Each fuel skid is 

preassigned to specific squadrons based on proximity to the squadrons’ maintenance 

facility. Cold refueling is conducted at the ramp, which is also close to the squadron’s 
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maintenance facility. Table 1 shows these assignments, and Figure 6 displays the 

locations of hot pits and ramps for hot and cold refueling respectively. 

Table 1.  Ramps and Fuel Skids Assignments 

Ramp 1 2 3 4 5 
Hot Pits 1 & 2 3 & 4 5 & 6 7 & 8 9 & 10 
Squadrons 
  
  
  
  

VFA-122 VFA-14 VFA-146 VFA-2 VFA-137 
 VFA-97 VFA-147 VFA-22 VFA-86 
 VFA-25 VFA-192 VFA-154  
 VFA-113 VFA-151 VFA-41  
  VFA-94   

 

 

Figure 6.  Ramp and Hot Pit Locations 
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4. Drivers 

The drivers’ work schedule is distributed in four shifts provided by NAS Lemoore 

Fuels Division; thus, the number of drivers varies during the day. Even though refueling 

is the drivers’ primary duty, they have other tasks to complete such as cargo handling and 

sweeping runways, taxiways, and ramps. Figure 7 displays the distribution of drivers per 

hour, and Table 2 summarizes the number of drivers per shift assignment. 

 

Figure 7.  Distribution of Drivers per Hour 

Table 2.  Assignment of Drivers per Shift 

Shift 1st shift 
(0630–1500) 

1st shift late 
(0700–1530) 

2nd shift 
(1200–2030) 

3rd shift 
(1500–2330) 

4th shift 
(2300–0730) 

Drivers 7 3 2 6 3 
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5. Trucks 

The number of trucks, currently 11, remains constant until one becomes 

unavailable because of breaking down or refueling its own tank. The fuel capacities of 

the trucks are 10,000 (10 trucks) or 8,000 (1 truck) gallons. The safety level to be 

refueled, currently 20%, is set by NAS Lemoore Fuels Division and remains constant. All 

available trucks can be used if there are enough drivers. 

6. Penalties and Rewards 

MSISCHE uses penalties and rewards to find the combined flight schedule’s 

optimal solution. Penalties and rewards are assigned to squadrons based on their priority 

or proximity to being deployed. The penalty is used to weight the aircraft refueling wait 

time and the modification of the events’ takeoff time. Table 3 displays the values 

assumed for priorities and penalties, in which VFA-122 has the highest values as the 

training fighter squadron. 
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Table 3.  Priorities and Penalties Assigned to Squadrons 

Squadron 
VFA-
122 

VFA- 
2 

VFA-
14 

VFA-
22 

VFA-
25 

VFA-
41 

VFA-
86 

VFA-
94 

VFA-
97 

VFA-
113 

VFA-
137 

VFA-
146 

VFA-
147 

VFA-
151 

VFA-
154 

VFA-
192 

Priority 20 19 18 17 16 1 1 1 1 1 1 1 1 1 1 1 
Penalty 10 5 5 5 5 1 1 1 1 1 1 1 1 1 1 1 
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B. SCENARIO DEVELOPMENT 

The scenarios are simulated using Microsoft Excel VBA code (Microsoft, 2013). 

The VBA scenario developer will be referenced as “Generator.” 

1. Assumptions 

Besides the assumptions previously described in Section II.B.4, Generator 

assumes the following in order to produce a realistic scenario that provides the input data 

to the optimization model and heuristics: 

• Some of NAS Lemoore fighter squadrons are deployed. To simulate this, 
the user defines the minimum of squadrons to fly, and Generator randomly 
selects a number of flying squadron between that minimum and the total 
of squadrons at NAS Lemoore. 

• The training squadron, VFA-122, gets between 5 and 30 flight events 
daily. Other squadrons, selected to fly, have between 2 and 8 flight events. 
The number of flight events for each squadron is selected uniformly at 
random using these lower and upper bounds. 

• The number of daily joint missions is approximately 5% of the total of 
flying events for that date. 

• The number of events going to a joint mission could be 2 or 3, with 75 and 
25 percent probability respectively. 

• As in MSISCHE, squadrons receive deterministic priorities that are set by 
CSFWP. 

• Assignment of MOA/ranges is based on the probability. Range R_2508 
gets 50% of the events. 

• The length of an event, from its takeoff time to its landing time, follows a 
discrete uniform distribution of 15-minute increments and could be as 
little as 30 minutes or up to 2 hours.  

• The number of aircraft, or sorties, going to an event follows a discrete 
uniform distribution and could be between 1 and 5. 

• The probability of an aircraft going to fly again after being refueled is 
based on its landing time. The landing times are separated in six groups: 
before 1500, between 1500 and 1700, between 1700 and 1900, between 
1900 and 2100, between 2100 and 2200, and after 2200. The probabilities 
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for each group are 0.9, 0.7, 0.5, 0.3, 0.1, and 0, respectively. Whether or 
not an aircraft flies again is independent from aircraft to aircraft. 

• Considering the monthly allowed hot refueling percentage, and using the 
assumed probabilities that an aircraft could be flying again after refueling, 
Generator designates if the aircraft will need hot or cold refueling. 

• At most, one truck can be out of service and in maintenance on any day. If 
the scenario includes a breakdown, the truck is randomly selected out of 
the 11 trucks. 

• Events’ takeoff times are generated using a discrete uniform distribution 
of 15-minute increments from the time KNLC is open to an hour before 
KNLC is closed. 

2. Scenario Generator 

The workbook Generator creates each scenario by filling out the spreadsheets, 

exporting the spreadsheets as CSV files, executing MSISCHE’s GAMS portion using the 

CSV files as input, and importing the results into a spreadsheet of the same workbook. 

Displayed in Figure 8 is the main screen of Generator. Besides allowing modification of 

parameter values to configure the scenarios, Generate also offers five choices to produce 

and run the scenarios: Generate Scenarios & Run MSISCHE (N), Generate Scenarios & 

Run MSISCHE (All), Generate Scenarios & Run Modified, Generate Scenarios & Run 

Current, and Generate Scenarios & Run all 3. 

 

Figure 8.  Snapshot of Generate, the Main Sheet of Generator  

Min Max On base Total Joint Sorties Start hr Stop hr Sunset Same seed & a/c hr Truck safe Scenarios Scenario
Squadrons 10 16 14 Events 80 4 187 800 2300 1745 TRUE 30% 20% 100 10

Squadrons # Events
VFA-122 25
VFA-2 3
VFA-22 7
VFA-25 6
VFA-41 4
VFA-86 3
VFA-97 6
VFA-113 4
VFA-137 5
VFA-146 2
VFA-147 2
VFA-151 4
VFA-154 4
VFA-192 5

Generate Scenarios & Run MSISCHE (All)

Generate Scenarios & Run Modified

Generate Scenarios & Run Current

Generate Scenarios & Run all 3

Generate Scenarios & Run MSISCHE (N)
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The first choice generates all the scenarios annotated under the Scenarios cell, but 

it only runs MSISCHE using the data of the last scenario. This option is useful to review 

the details of each event and each aircraft of the combined flight schedule solution. 

Figure 9 depicts a portion of the results of a scenario after using this choice. G T-Off and 

G Land are the takeoff and landing times generated-requested in the squadron’s flight 

schedule, while M T-Off and M Land correspond to the takeoff and landing times 

recommended by MSISCHE. The Refuel cell indicates when the aircraft will refuel, 

having the minimum wait time after its landing. 

 

Figure 9.  Snapshot of a Portion of Scenario_Results Sheet from Generator 

  

Event Aircraft Range G T-Off  G Land M T-Off M Land Refuel Hot/Cold
V122-e1 V122-a1 R_2508 830 930 830 930 930 Hot
V122-e1 V122-a2 R_2508 830 930 830 930 930 Cold
V122-e2 V122-a7 FCLP 845 915 845 915 915 Cold
V122-e3 V122-a8 R_2508 800 845 800 845 845 Hot
V122-e4 V122-a9 FCLP 800 845 800 845 845 Cold
V122-e4 V122-a10 FCLP 800 845 800 845 845 Hot
V122-e5 V122-a11 W_283 815 900 815 900 915 Cold
V122-e5 V122-a12 W_283 815 900 815 900 900 Hot
V14-e1 V14-a1 Fallon_B17 945 1030 945 1030 1045 Hot
V14-e1 V14-a2 Fallon_B17 945 1030 945 1030 1145 Cold
V14-e2 V14-a3 Lemoore_A 930 1015 945 1030 1030 Hot
V14-e2 V14-a4 Lemoore_A 930 1015 945 1030 1115 Cold
V22-e2 V22-a5 R_2508 1445 1515 1445 1515 1515 Hot
V22-e2 V22-a6 R_2508 1445 1515 1445 1515 1700 Cold
V22-e3 V22-a7 FERRY 2215 2300 2230 2315 2330 Cold
V22-e3 V22-a8 FERRY 2215 2300 2230 2315 2330 Cold
V25-e1 V25-a2 FCLP 1245 1315 1245 1315 1315 Hot
V25-e1 V25-a3 FCLP 1245 1315 1245 1315 1345 Cold
V25-e2 V25-a4 Superior_Valley 1315 1400 1315 1400 1415 Cold
V25-e2 V25-a5 Superior_Valley 1315 1400 1315 1400 1430 Cold
V25-e3 V25-a7 W_291 1315 1400 1315 1400 1445 Cold
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The second choice creates all the scenarios requested under the Scenarios cell and 

runs MSISCHE using the data of each scenario. This option is useful to review the 

summary of the combined flight schedule solution. Figure 10 depicts the results after 

selecting this choice with several scenarios. The report includes number of events and 

aircraft given, flying, and landing in KNLC; it also summarizes, separately for hot and 

cold refueling, the total number of aircraft conducting each type of refueling, the number 

of aircraft waiting to be refueled, the total refueling wait time by all aircraft, and the 

maximum time an aircraft has to wait to be refueled. Additionally, this report presents 

other values related to MSISCHE’s performance such as the percentage of hot refueling 

aircraft obtained, the model and solver status, the upper bound and found solutions, and 

the execution elapsed time. 
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Figure 10.  Snapshot of Summarized Results after Using the Second Choice of Generator 

Scenario Events Events Events Sorties Sorties Sorties Hot Ref Hot Ref Hot Ref Hot Ref Cold Ref Cold Ref Cold Ref Cold Ref hot ref % Model Solver Best MIP Relative Elapsed
Given Flying la KNLC Given Flying la KNLC Total AC AC wait Total Wait Max AC Wait Total AC AC wait Total Wait Max AC Wait Status Status Possible Solution Gap Time

1 86 86 83 210 210 204 61 0 0 0 143 56 3000 240 29.90% 8 3 1946.95 1946.87 0.00% 3623.91
2 68 68 62 158 158 147 44 0 0 0 103 31 1800 180 29.93% 1 1 1271.95 1271.95 0.00% 49.53
3 52 52 51 121 121 120 36 0 0 0 84 10 195 30 30.00% 1 1 1045.98 1045.98 0.00% 29.83
4 57 57 56 112 112 109 32 0 0 0 77 21 720 90 29.36% 1 1 1177.81 1177.81 0.02% 25.79
5 63 63 60 136 136 129 38 0 0 0 91 25 570 45 29.46% 1 1 974 974 0.00% 51.53
6 71 71 67 156 156 144 43 0 0 0 101 32 1905 150 29.86% 1 1 1350.82 1350.82 0.01% 67.3
7 54 54 54 122 122 122 36 0 0 0 86 32 2085 165 29.51% 1 1 875.51 875.51 0.06% 79.75
8 78 78 77 160 160 156 46 0 0 0 110 31 1080 105 29.49% 1 1 1484.9 1484.9 0.01% 139.47
9 76 76 71 167 167 158 47 0 0 0 111 43 3945 255 29.75% 1 1 1359.17 1359.17 0.01% 108.77
10 80 80 76 187 187 178 53 0 0 0 125 55 2430 195 29.78% 8 3 1813.59 1813.59 0.02% 3619.5
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The module also implements two heuristic approaches: the “current refueling 

policy” and the “modified refueling policy.” The current refueling policy is designed to 

mimic the current practice at NAS Lemoore, while the modified policy models a slight 

relaxation of the current policy which MSISCHE also models. Both heuristics handle 

takeoff requests in order of priority. The highest priority event is examined first given its 

requested takeoff time. As lower priority events are examined, they may be asked to wait 

for takeoff if they conflict with higher-priority events that are already assigned to the 

same MOA/range. Once the takeoff schedule is determined, the heuristics determine 

when refuelings will occur. Although takeoffs are assigned according to priority, landings 

are done on a first-come, first-served basis. In the current policy, each aircraft is only 

allowed to use its preassigned hot pit; whereas in the modified policy, all aircraft are 

allowed to use any hot pit, as in MSISCHE. Under both policies, aircraft arriving for 

refueling enter a queue and are assigned to their respective hot pits as the pits become 

available. A pit may be unavailable because it is currently occupied by another aircraft or 

because no truck is available to service it. Both heuristics model the amount of fuel 

available in the trucks as in MSISCHE. For the current policy, each hot skid has its own 

queue. For the modified policy, there is only a single queue for all hot pits. The third and 

fourth choices of Generator produce all the scenarios annotated under the Scenarios cell 

and run the VBA code that simulates the modified and current aircraft refueling process 

at NAS Lemoore. Figures 11 and 12 show snapshots with the results for heuristics after 

selecting the third and fourth choices respectively. 
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Figure 11.  Snapshot of Summarized Results for a Heuristic Solution after Using the Third Choice of Generator 

 

Figure 12.  Snapshot of Summarized Results for a Heuristic Solution after Using the Fourth Choice of Generator 

Scenario Events Events Sorties Sorties Hot Ref Hot Ref Hot Ref Hot Ref Cold Ref Cold Ref Cold Ref Cold Ref hot ref
Given la KNLC Given la KNLC Total AC AC waiting Total Wait (m) Max AC Wait (m) Total AC AC waiting Total Wait (m) Max AC Wait (m) %

1 86 82 209 195 58 0 0 0 137 70 2205 75 29.74%
2 72 72 172 172 51 7 105 15 121 61 1950 75 29.65%
3 79 75 187 175 52 9 165 30 123 37 1155 60 29.71%
4 56 52 126 117 35 0 0 0 82 17 330 30 29.91%
5 65 61 161 152 45 2 30 15 107 33 570 30 29.61%
6 65 61 146 136 40 6 90 15 96 68 3030 75 29.41%
7 63 61 142 138 41 6 90 15 97 51 2355 75 29.71%
8 59 58 134 133 39 0 0 0 94 10 180 30 29.32%
9 65 63 152 147 44 0 0 0 103 10 210 30 29.93%
10 77 74 181 171 51 2 30 15 120 21 390 30 29.82%
11 68 65 164 160 48 7 105 15 112 70 2280 60 30.00%
12 81 79 203 199 59 2 30 15 140 91 3525 75 29.65%

Scenario Events Events Sorties Sorties Hot Ref Hot Ref Hot Ref Hot Ref Cold Ref Cold Ref Cold Ref Cold Ref hot ref
Given la KNLC Given la KNLC Total AC AC waiting Total Wait (m) Max AC Wait (m) Total AC AC waiting Total Wait (m) Max AC Wait (m) %

1 86 82 209 195 58 23 1185 105 137 118 6765 165 29.74%
2 72 72 172 172 51 14 450 60 121 92 7080 180 29.65%
3 79 75 187 175 52 11 390 60 123 107 7980 225 29.71%
4 56 52 126 117 35 13 435 60 82 58 2445 135 29.91%
5 65 61 161 152 45 10 240 60 107 76 3420 105 29.61%
6 65 61 146 136 40 15 675 75 96 73 6345 195 29.41%
7 63 61 142 138 41 8 210 45 97 72 4410 135 29.71%
8 59 58 134 133 39 4 75 30 94 59 2565 135 29.32%
9 65 63 152 147 44 10 345 60 103 57 1830 180 29.93%
10 77 74 181 171 51 18 420 45 120 87 4905 240 29.82%
11 68 65 164 160 48 13 420 60 112 89 8445 240 30.00%
12 81 79 203 199 59 15 330 45 140 122 9990 225 29.65%
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The fifth choice calls choices two, three, and four; therefore, after generating all 

the scenarios requested, this choice executes and summarizes the results of using 

MSISCHE, the VBA code with modified refueling policy, and the VBA code with 

current refueling policy. 

C. SENSITIVITY ANALYSIS 

To conduct sensitivity analysis, we evaluated the results of 400 scenarios with the 

fifth choice of Generator; thus, under the three main executions of Generator: using 

MSISCHE, using the VBA code to simulate the current refueling policy, and using the 

VBA to simulate the modified refueling policy. These 400 scenarios were distributed as 

follows: 100 scenarios use the current setup of squadrons and refueling resources, and 

assumptions previously stated in Section II.B.4; 100 scenarios utilize the same setup but 

add a squadron; 100 scenarios use the original setup but with one less truck; and 100 

scenarios utilize the same basic setup but with one less driver. Even though an 

optimization model provides the value of its objective function, the sensitivity analysis 

was focused on figures of merit such as maximum and average aircraft refueling wait 

time, number of aircraft waiting to be refueled, and frequency of refueling wait time, all 

measured during both hot and cold refueling. 

Each of our scenarios applied to MSISCHE was generated and computed using a 

Dell, Precision T7910 computer with two Intel® Xenon® CPU E5-2699 @2.3GHz 

processors, 128 GB of RAM installed and running the Windows 7 Professional operating 

system (Microsoft, 2009). The program software used for the optimization is GAMS 

24.4.2 utilizing CPLEX solver (GAMS, 2015). With these conditions our model typically 

contains approximately from 45,397 to 113,674 constraints and from 122,911 to 346,881 

decision variables, of which 89,085 to 923,222 decision variables are integer. Solution 

times vary for each scenario; Figure 13 depicts a histogram with the time used to solve a 

scenario using MSISCHE with five and zero percent optimality gaps. Figure 13 and 

subsequent figures are developed using Microsoft Excel (Microsoft, 2013). 
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Figure 13.  Frequency of Solution Times Used by MSISCHE over All Scenarios 
with 0% and 5% Optimality Gaps 

1. Using Current Squadrons and Refueling Resources 

Figures 14 through 17 present the comparisons, in regards to hot refueling wait 

time, among the three executions of Generator after running the 100 scenarios produced 

using the current squadrons, current refueling resources, and assumptions. Figure 14 

shows the difference in the maximum wait time that aircraft have to incur to conduct hot 

refueling. Figure 15 displays the comparison of the average aircraft wait time before hot 

refueling. Figure 16 illustrates the number of aircraft that waited to conduct hot refueling. 

Figure 17 displays a comparison of histograms with the frequency of waiting time that 

aircraft experience before receiving hot refueling over all scenarios. 
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Figure 14.  Maximum Wait Time to Conduct Hot Refueling in 100 Scenarios with 
Current Squadrons and Refueling Resources 

 

Figure 15.  Average Wait Time to Conduct Hot Refueling in 100 Scenarios with 
Current Squadrons and Refueling Resources (Averaged over 

all Flights) 
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Figure 16.  Number of Aircraft Waiting to Conduct Hot Refueling in 100 
Scenarios with Current Squadrons and Refueling Resources 

The following histogram compares the hot refueling wait time when aircraft 

follow the three alternatives of flight and refueling schedules: flight and refueling 

schedules obtained from MSISCHE, flight schedule generated-requested by Generator 

and refueling schedule per current refueling policy, and flight schedule generated-

requested by Generator and refueling schedule per modified refueling policy. 

 

Figure 17.  Frequency of Hot Refueling Wait Time over 100 Scenarios with 
Current Squadrons and Refueling Resources 
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These previous four figures indicate a large difference in values during hot 

refueling between aircraft that land per the generated-requested flight schedules and 

refuel according to the current and modified refueling policies against aircraft that land 

and refuel according to MSISCHE’s schedule. Additionally, these graphs show that, 

using the generated-requested flight schedules, their values improve by just using the 

modified instead of the current refueling policy; however, those values improve even 

more when aircraft follow MSISCHE’s schedule. The values of maximum aircraft 

refueling wait time, average aircraft refueling wait time, and number of aircraft waiting 

for hot refueling is small in most of the scenarios when following MSISCHE’s solution. 

On average, these values were reduced by 96.9%, 99.5%, and 99.1%, respectively when 

using MSISCHE instead of the current refueling policy. Figure 14 indicates that, in some 

scenarios, the maximum aircraft refueling wait time following MSISCHE might be 

higher than when using the modified refueling policy, but the average wait time and 

number of aircraft waiting are lower using MSISCHE. This happens because the 

objective value of MSISCHE minimizes the waiting time over all aircraft, not just for 

one. 

Since hot refueling wait time is more expensive than cold, the main objective of 

MSISCHE is to minimize the hot refueling wait time. A secondary objective of 

MSISCHE is to minimize the cold refueling wait time without jeopardizing the hot 

refueling wait time. Similar results for cold refueling appear in Figures 18 through 21. 

Figure 18 shows the difference in the maximum wait time that aircraft have to incur to 

conduct cold refueling. Figure 19 compares the average aircraft wait time before cold 

refueling. Figure 20 illustrates the number of aircraft that waited to conduct cold 

refueling. Figure 21 displays a comparison of histograms with the frequency of waiting 

time that aircraft experience before receiving cold refueling. 
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Figure 18.  Maximum Wait Time to Conduct Cold Refueling in 100 Scenarios 
with Current Squadrons and Refueling Resources 

 

Figure 19.  Average Wait Time to Conduct Cold Refueling in 100 Scenarios with 
Current Squadrons and Refueling Resources (Averaged over 

all Flights) 
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Figure 20.  Number of Aircraft Waiting to Conduct Cold Refueling in 100 
Scenarios with Current Squadrons and Refueling Resources 

The following histogram compares the cold refueling wait time when aircraft 

follow the three variants of flight and refueling schedules. 

 

Figure 21.  Frequency of Cold Refueling Wait Time over 100 Scenarios with 
Current Squadrons and Refueling Resources 
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These previous four figures indicate the differences in values during cold 

refueling between aircraft that land based on the generated-requested flight schedules and 

refuel according to the current and modified refueling policies against aircraft that land 

and refuel according to MSISCHE’s schedule. Additionally, and following the same 

behavior with the hot refueling comparison, these graphs show that their values improve 

simply by using the modified instead of the current refueling policy; however, those 

values improve even more when following MSISCHE’s schedule. On average, the values 

of maximum aircraft refueling wait time, average aircraft refueling wait time, and number 

of aircraft waiting for cold refueling improved by 62.7%, 90.1%, and 82.2%, 

respectively, when using MSISCHE rather than the current refueling policy. The values 

of average aircraft refueling wait time and number of aircraft waiting for cold refueling 

are lower in all the scenarios by following MSISCHE; however, the maximum aircraft 

refueling wait time, in some scenarios, might appear higher when using MSISCHE 

instead of the modified policy. This is explained by the objective value of MSISCHE 

which minimizes the waiting time over all aircraft. 

Figure 22, from Gerber and Clark (2013), illustrates the number of aircraft 

arriving by day of the week and by time of the day. The peaks during certain hours, 

which can represent more than 15 arrivals, certainly increase the aircraft refueling 

demand. Having multiple arrivals at the same time is fine; however, sometimes these 

peak demands exceed the availability of refueling resources and cause high refueling 

wait time. 
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Figure 22.  Daily Aircraft Arrival Patterns. Source: Gerber & Clark (2013). 

MSISCHE’s objective of minimizing the aircraft refueling wait time is obtained 

by leveraging the number of aircraft arrivals throughout the day. Comparisons of the 

number and time of aircraft arrivals are displayed in Figures 23 and 24. For a randomly 

selected scenario, Figure 23 shows the difference of aircraft arriving when they follow 

the generated-requested flight schedules provided from the scenario against aircraft 

arriving per the flight schedules obtained from MSISCHE.  
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Figure 23.  Number of Aircraft Landing during a Scenario when Aircraft Follow 
Takeoff from the Requested Flight Schedule and Takeoff 

Recommended by MSISCHE 

For a randomly selected scenario, Figure 24 displays a radar-type comparison of 

the number and time of aircraft landing when aircraft follow the flight schedules from the 

scenario and the flight schedules obtained from MSISCHE against the refueling resources 

per time period. This graph illustrates the aircraft arrivals against the boundaries of 

number of drivers, number of trucks, and maximum number of refueling stations. The 

maximum number of refueling stations is computed by using the number of drivers, 

number of trucks, and number of hot skids. Because of the double capability of each hot 

skid, the number of aircraft arriving could exceed the number of drivers or trucks at any 

time period; however, in order to minimize the aircraft refueling wait time, the number of 

arrivals should not exceed the maximum number of refueling stations. The red line, 

which indicates the arrivals following the scenario’s generated-requested flight schedules, 

sometimes surpasses the maximum number of stations’ boundary. The blue dashed line, 

representing the arrivals per time period following MSISCHE’s flight schedule, does not 

exceed this boundary. 
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Figure 24.  Aircraft Landings When Aircraft Follow Takeoff from the Requested 
Flight Schedule and Takeoff Recommended by MSISCHE against 
Drivers, Trucks, and Maximum Refueling Stations per Time Period 

In order to increase the aircraft flying time available while preserving squadrons’ 

authority and accountability, MSISCHE’s optimal solution corresponds to a balance 

between the minimization of refueling wait time and minimization of deviation from the 

squadrons’ proposed schedules. Figure 25 displays the percentage of events that changed 

their takeoff time in each scenario. On average, 97% of the squadron’s requested flying 

times are followed. When MSISCHE suggests a change from the request, it is with the 
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knowledge that the change is feasible based on MOA/range availability, the change is 

minimal, and the requests from the highest priority squadrons are protected. 

 

Figure 25.  Percentage of Events Changed per Scenario 

2. Adding One Squadron to the Original Setup 

To simulate the arrival of the JSF to NAS Lemoore, a new squadron VFA-999 

was added to the list of Lemoore home-based fighter squadrons. Per Lemoore Fuels 

Division, even though a JSF holds more fuel than an F-18, the average rate of fuel 

transfer to the JSF is about the same as that to an F-18; thus, refueling a JSF is expected 

to take longer. 

Figures 26 through 29 present the comparisons, in regards to hot refueling wait 

time, among the three executions of Generator with the 100 scenarios produced after 

adding the JSF squadron. Figure 26 shows the difference in the maximum wait time that 

aircraft have to incur to conduct hot refueling. Figure 27 displays the comparison of the 

average aircraft wait time before hot refueling. Figure 28 illustrates the number of aircraft 

that waited to conduct hot refueling. Figure 29 compares the hot refueling wait time when 

aircraft follow the three alternatives of flight and refueling schedules. The UnA column 

in Figure 29 represents the 0.1% of unassigned sorties in MSISCHE’s solution. 

Unassigned sorties occur because refueling demand cannot be adequately smoothed using 
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at most a two-hour schedule shift in either direction to avoid refueling delays. These 

unassigned sorties reflect instances in which CSFWP cannot achieve the goal of short 

refueling wait times while also preserving a large degree of squadron-level autonomy. 

The two heuristic approaches do not result in unassigned aircraft because they allow 

arbitrarily long delays. However, in practice, refueling delays can cause cancellations if 

the aircraft is scheduled for another event before refueling can be completed; this is not 

reflected in our model. Figures 26 through 28 only display data pertaining to the aircraft 

that actually fly in each of the three executions (MSISCHE, modified refueling policy, 

and current refueling policy) and do not reflect the flights that are unassigned by 

MSISCHE. 

 

Figure 26.  Maximum Wait Time to Conduct Hot Refueling in 100 Scenarios 
When Adding a Squadron to the Original Setup 
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Figure 27.  Average Wait Time to Conduct Hot Refueling in 100 Scenarios When 
Adding a Squadron to the Original Setup (Averaged over all Flights) 

 

Figure 28.  Number of Aircraft Waiting to Conduct Hot Refueling in 100 
Scenarios When Adding a Squadron to the Original Setup 
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The far-right column represents the percentage of unassigned aircraft. 

Figure 29.  Frequency of Hot Refueling Wait Time over 100 Scenarios When 
Adding a Squadron to the Original Setup  

These previous four figures indicate that the results of conducting hot refueling 

with the added squadron generally mirror those from conducting hot refueling with the 

baseline. On average, the value of average aircraft refueling wait time increased by 5% 

after adding the squadron; however, by using MSISCHE, this value is reduced by 99.2% 

for those events scheduled by MSISCHE. On average, the values of maximum aircraft 

refueling wait time and number of aircraft waiting for hot refueling, for those events 

scheduled by MSISCHE, improved by 95.8% and 98.8%, respectively, when following 

MSISCHE instead of the current refueling policy. 

Similar results for cold refueling appear in Figure 30 through Figure 33. Figure 30 

shows the difference in the maximum wait time that aircraft have to incur to conduct cold 

refueling. Figure 31 displays the comparison of the average aircraft wait time before cold 

refueling. Figure 32 illustrates the number of aircraft that waited to conduct cold 

refueling. Figure 33 compares the cold refueling wait time when aircraft follow the three 

variants of flight and refueling schedules. The UnA column represents the 0.1% of 

unassigned sorties or aircraft not included in MSISCHE’s solution. Figures 30 through 32 
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only display data pertaining to the aircraft that actually fly in each of the three executions 

(MSISCHE, modified refueling policy, and current refueling policy). 

 

Figure 30.  Maximum Wait Time to Conduct Cold Refueling in 100 Scenarios 
When Adding a Squadron to the Original Setup 

 

Figure 31.  Average Wait Time to Conduct Cold Refueling in 100 Scenarios 
When Adding a Squadron to the Original Setup (Averaged over 

all Flights) 
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Figure 32.  Number of Aircraft Waiting to Conduct Cold Refueling in 100 
Scenarios When Adding a Squadron to the Original Setup 

 
The far-right column represents the percentage of unassigned aircraft. 

Figure 33.  Frequency of Cold Refueling Wait Time over 100 Scenarios When 
Adding a Squadron to the Original Setup 
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These previous four figures show that the results of conducting cold refueling 

with the added squadron in general mirror those from conducting cold refueling with the 

baseline. On average, the values of maximum aircraft refueling wait time, average 

aircraft refueling wait time, and number of aircraft waiting for cold refueling, for those 

events scheduled by MSISCHE, improved by 62.7%, 91.2%, and 85.1%, respectively, 

when following MSISCHE in place of the current refueling policy. 

About four percent of the 100 scenarios did not include every requested event in 

MSISCHE’s optimal solution, resulting on 0.1% of requested sorties not being scheduled 

over all scenarios. Therefore, to keep a balanced solution, in which high peak demands 

do not supersede the available refueling resources, adding a squadron requires the 

addition of more refueling resources or decrease the number of flying events per 

squadron. 

3. Adding Truck Breakdowns to the Original Setup 

In order to conduct sensitivity analysis of having a truck breakdown, Generator 

randomly selected a truck to be out of service and in maintenance for a specific length of 

time. The times to start and finish maintenance are randomly chosen between 0000 to 

0800 and 1800 to 2400, respectively by using a discrete uniform distribution of 15-

minute increments. Only one truck can be in maintenance during a day, and it could 

refuel before going back to service.  

Figures 34 through 37 present the comparisons, in regards to hot refueling wait 

time, among the three executions of Generator with the 100 scenarios produced while 

having a truck in maintenance. Figure 34 shows the difference in the maximum wait time 

that aircraft have to incur to conduct hot refueling. Figure 35 displays the comparison of 

the average aircraft wait time before hot refueling. Figure 36 illustrates the number of 

aircraft that waited to conduct hot refueling. Figure 37 compares the hot refueling wait 

time when aircraft follow the three alternatives of flight and refueling schedules. The 

UnA column represents the 0.1% of unassigned sorties in MSISCHE’s solution. 

Referring to our previous statement in Section IV.C.2, unassigned sorties occur because 

refueling demand cannot be adequately smoothed using at most a two-hour schedule shift 
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in either direction to avoid refueling delays. Figures 34 through 36 only display data 

pertaining to the aircraft that actually fly in each of the three executions (MSISCHE, 

modified refueling policy, and current refueling policy) and do not reflect the flights that 

are unassigned by MSISCHE. 

 

Figure 34.  Maximum Wait Time to Conduct Hot Refueling in 100 Scenarios 
When Adding a Truck Breakdown to the Original Setup 

 

Figure 35.  Average Wait Time to Conduct Hot Refueling in 100 Scenarios When 
Adding a Truck Breakdown to the Original Setup (Averaged over 

all Flights) 
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Figure 36.  Number of Aircraft Waiting to Conduct Hot Refueling in 100 
Scenarios When Adding a Truck Breakdown to the Original Setup 

 
The far-right column represents the percentage of unassigned aircraft. 

Figure 37.  Frequency of Hot Refueling Wait Time Over 100 Scenarios When 
Adding a Truck Breakdown to the Original Setup 
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These previous four figures indicate that the results of conducting hot refueling 

while including a truck breakdown generally behave like those from conducting hot 

refueling with the baseline. On average, the value of average aircraft refueling wait time 

increased by 6% after including the truck breakdown; however, by using MSISCHE, this 

value is reduced by 99.2% for those events scheduled by MSISCHE. On average, the 

values of maximum aircraft refueling wait time and number of aircraft waiting for hot 

refueling, for those events scheduled by MSISCHE, improved by 95.1% and 98.6%, 

respectively, when following MSISCHE instead of the current refueling policy. 

Similar results for cold refueling appear in Figures 38 through 41. Figure 38 

shows the difference in the maximum wait time that aircraft have to incur to conduct cold 

refueling. Figure 39 displays the comparison of the average aircraft wait time before cold 

refueling. Figure 40 illustrates the number of aircraft that waited to conduct cold 

refueling. Figure 41 compares the cold refueling wait time when aircraft follow the three 

variants of flight and refueling schedules. The UnA column represents the 0.1% of 

unassigned sorties or aircraft not included in MSISCHE’s solution. Figures 38 through 40 

only display data pertaining to the aircraft that actually fly in each of the three executions 

(MSISCHE, modified refueling policy, and current refueling policy).  

 

Figure 38.  Maximum Wait Time to Conduct Cold Refueling in 100 Scenarios 
When Adding a Truck Breakdown to the Original Setup 
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Figure 39.  Average Wait Time to Conduct Cold Refueling in 100 Scenarios 
When Adding a Truck Breakdown to the Original Setup (Averaged 

over all Flights) 

 

Figure 40.  Number of Aircraft Waiting to Conduct Cold Refueling in 100 
Scenarios When Adding a Truck Breakdown to the Original Setup 
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The far-right column represents the percentage of unassigned aircraft. 

Figure 41.  Frequency of Cold Refueling Wait Time over 100 Scenarios When 
Adding a Truck Breakdown to the Original Setup 

These previous four figures show that the results of conducting cold refueling 

while including a truck breakdown in general behave like those from conducting cold 

refueling with the baseline. On average, the values of maximum aircraft refueling wait 

time, average aircraft refueling wait time, and number of aircraft waiting for cold 

refueling, for those events scheduled by MSISCHE, improved by 61.1%, 88.9%, and 

81.6%, respectively, when following MSISCHE rather than the current refueling policy.  

About three percent of the 100 scenarios did not include every requested event in 

MSISCHE’s optimal solution, resulting in 0.1% of requested sorties not being scheduled 

over all scenarios. Therefore, we do not recommend to decrease the number of fuel 

trucks; in other words, a fuel truck must be replaced before it goes to maintenance. 

Otherwise, to keep a balanced solution, in which high peak demands do not supersede the 

available refueling resources, it will be necessary to decrease the number of flying events 

per squadron. 
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4. Including Reduction in Fuel Truck Driver Workforce to the Original 
Setup 

Sensitivity analysis of reducing the fuel truck driver workforce by one driver was 

done by randomly selecting one of the four drivers’ shifts that will have one fewer driver. 

Only one driver can be down in a day. Each of the 100 scenarios does its shift selection 

independently. 

Figures 42 through 45 present the comparisons, in regards to hot refueling wait 

time, among the three executions of Generator with the 100 scenarios produced while 

having a reduction by one of the driver workforce. Figure 42 shows the difference in the 

maximum wait time that aircraft have to incur to conduct hot refueling. Figure 43 

displays the comparison of the average aircraft wait time before hot refueling. Figure 44 

illustrates the number of aircraft that waited to conduct hot refueling. Figure 45 compares 

the hot refueling wait time when aircraft follow the three alternatives of flight and 

refueling schedules while reducing the fuel truck driver workforce by one driver. The 

UnA column represents the 0.4% of unassigned sorties in MSISCHE’s solution. As 

previously mentioned in Section IV.C.2, unassigned sorties occur because refueling 

demand cannot be adequately smoothed using at most a two-hour schedule shift in either 

direction to avoid refueling delays. Figures 42 through 44 only display data pertaining to 

the aircraft that actually fly in each of the three executions (MSISCHE, modified 

refueling policy, and current refueling policy) and do not reflect the flights that are 

unassigned by MSISCHE. 
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Figure 42.  Maximum Wait Time to Conduct Hot Refueling in 100 Scenarios with 
One Fewer Driver from the Original Setup 

 

Figure 43.  Average Wait Time to Conduct Hot Refueling in 100 Scenarios with 
One Fewer Driver from the Original Setup (Averaged over all Flights) 



 64 

 

Figure 44.  Number of Aircraft Waiting to Conduct Hot Refueling in 100 
Scenarios with One Fewer Driver from the Original Setup 

 
The far-right column represents the percentage of unassigned aircraft. 

Figure 45.  Frequency of Hot Refueling Wait Time over 100 Scenarios with One 
Fewer Driver from the Original Setup 
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These previous four figures indicate that the results of conducting hot refueling 

while including a reduction on the fuel truck driver workforce generally mirror those 

from conducting hot refueling with the baseline. On average, the value of average aircraft 

refueling wait time increased by 1% after including the workforce’s reduction; however, 

by using MSISCHE, this value is reduced by 99.7% for those events scheduled by 

MSISCHE. On average, the values of maximum aircraft refueling wait time and number 

of aircraft waiting for hot refueling, for those events scheduled by MSISCHE, improved 

by 98.4% and 99.4%, respectively, when following MSISCHE instead of the current 

refueling policy. 

Similar results for cold refueling appear in Figures 46 through 49. Figure 46 

shows the difference in the maximum wait time that aircraft have to incur to conduct cold 

refueling. Figure 47 displays the comparison of the average aircraft wait time before cold 

refueling. Figure 48 illustrates the number of aircraft that waited to conduct cold 

refueling. Figure 49 compares the cold refueling wait time when aircraft follow the three 

variants of flight and refueling schedules. The UnA column represents the 0.1% of 

unassigned sorties or aircraft not included in MSISCHE’s solution. Figures 46 through 48 

only display data pertaining to the aircraft that actually fly in each of the three executions 

(MSISCHE, modified refueling policy, and current refueling policy). 
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Figure 46.  Maximum Wait Time to Conduct Cold Refueling in 100 Scenarios 
with One Fewer Driver from the Original Setup 

 

Figure 47.  Average Wait Time to Conduct Cold Refueling in 100 Scenarios with 
One Fewer Driver from the Original Setup (Averaged over all Flights) 
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Figure 48.  Number of Aircraft Waiting to Conduct Cold Refueling in 100 
Scenarios with One Fewer Driver from the Original Setup 

 
The far-right column represents the percentage of unassigned aircraft. 

Figure 49.  Frequency of Cold Refueling Wait Time Over 100 Scenarios with One 
Fewer Driver from the Original Setup 
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These previous four figures show that the results of conducting cold refueling 

while including a reduction on the fuel truck driver workforce in general mirror those 

from conducting cold refueling with the baseline. On average, the values of maximum 

aircraft refueling wait time, average aircraft refueling wait time, and number of aircraft 

waiting for cold refueling, for those events scheduled by MSISCHE, improved by 68.8%, 

92.5%, and 84.2%, respectively, when following MSISCHE rather than the current 

refueling policy.  

About six percent of the 100 scenarios did not include every requested event in 

MSISCHE’s optimal solution, resulting on 0.2% of requested sorties not being scheduled 

over all scenarios. Therefore, we do not recommend decreasing the number of truck 

drivers. If a truck driver does not show for work and in order to keep a balanced solution, 

in which high peak demands do not supersede the available refueling resources, it might 

be necessary to decrease the number of flying events per squadron.  
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V. CONCLUSIONS AND FUTURE WORK 

A. CONCLUSIONS 

The most important finding in our study is that, with the current squadrons and 

refueling infrastructure at NAS Lemoore, it is possible to significantly reduce aircraft 

refueling wait time with only small adjustments to the squadrons’ flight schedules; thus, 

the squadrons maintain their autonomy when creating their flight schedules and the 

aircraft increase their available flying time. MSISCHE has the ability to produce an 

optimized combined flying and refueling schedule, a balanced solution in which high 

peak demands do not supersede the available refueling resources. By using penalties and 

rewards, MSISCHE allows CSFWP and NAVSUP FLC San Diego to emphasize the 

priorities of the squadrons and their refueling service.  

MSISCHE is fast and flexible, and can be adjusted if the refueling infrastructure 

changes. Nevertheless, if the refueling resources decrease or the number of squadrons 

increases, there is a possibility that some flying events will be unscheduled because 

MSISCHE does not allow aircraft to wait beyond two hours. In practice, flying events do 

get cancelled due to delays in refueling, and such cancellations would become more 

frequent as aircraft number increases or refueling infrastructure declines. NAS Lemoore 

leadership must carefully consider the cost of burning fuel while aircraft wait at hot skids 

and the balance between minimizing the aircraft refueling wait time and minimizing the 

changes to the squadrons’ flight schedules when using MSISCHE or any scheduling tool. 

Our findings also indicate that the aircraft refueling wait time can also be 

decreased simply by changing the refueling policy from only allowing aircraft to conduct 

hot refueling at the pre-assigned fuel skid to allowing aircraft to receive hot refueling at 

any fuel skid. Our simulation results indicate that this modification results in lower wait 

times than the current policy, but not as low as when aircraft follow MSISCHE’s 

schedule. 
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B. FUTURE WORK 

The following recommendations can improve MSISCHE’s design and 

performance. 

(1) Week-Prior Inputs 

Because the squadrons’ flight schedules are provided only a day prior to the 

flying date, the possibilities of modifying events are very low. To allow the possibility of 

modifying events of aircraft flying to additional MOA/ranges, we recommend providing 

the flight requests a week before the flying date.  

(2) Hot Refueling Vehicle 

Fuel trucks are currently used for both cold and hot refueling; however, for hot 

refueling, fuel trucks are used just as means of transportation for refueling personnel. 

Having another type of vehicle for hot refueling services could improve cold refueling 

wait time. 

(3) Personnel Breaks 

For simplicity, we do not model breaks during drivers' work shifts. To improve 

MSISCHE’s accuracy, we recommend that breaks be modeled. 

(4) Time Horizon 

MSISCHE is a discrete-time model, and our study used 15-minute time 

increments in order to coincide with the squadrons’ flight schedules as provided. In order 

to improve MSISCHE’s accuracy while refueling aircraft, time increments could be 

shortened. 

(5) Aircraft Assignment 

Our study did not track individual aircraft in order to ensure that they have 

completed refueling prior to being assigned to additional events. Future work could add 

this level of fidelity. 
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(6) Compute Fuel 

For simplicity, we assumed that the estimated fuel burned in an event is annotated 

in the flight schedule. If more information about the events is provided, the fuel burned 

for each event could be computed using the type of mission and duration of the flight. 

(7) Include Aircraft Defueling 

Along with aircraft refueling, NAS Lemoore Fuels Division also performs aircraft 

defueling. Fuel trucks are not an issue because, besides the 11 trucks used for refueling, 

another truck exists for defueling purposes; however, one of the available drivers will be 

occupied with that duty. We recommend taking aircraft defueling into consideration. 
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