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Abstract:  Transition metal dichalcogenides (TMDs) have been recognized as a new class of 

semiconducting two-dimensional (2D) layered materials, which open up new opportunities in 

semiconductor technology for developing future 2D electronics and optoelectronics. Monolayer 

TMDs also feature their direct energy band gap, good carrier mobility and excellent ON/OFF current 

ratio when fabricated into field effect transistors, which are important properties for future low-power 

electronics and optoelectronics. For further applications in advanced circuits, the development of 

two-dimensional (2D) p-n junction is prerequisite. We have successfully shown the direct growth of 

atomically sharp p-n junction between WSe2 and MoS2. (Science, 349, 524 (2015)). This 

demonstrates the state-of-the-art growth in this field. The heterostructural interface presents a nice p-n 

junction, which is a key component for monolayer electronics.  

Introduction:  In this project, we focus on detailed mechanistic studies for the controlled growth of 

various lateral heterostructures. Strategic growth to achieve the direct formation of patterned devices 

based on various junctions shall also be carried out. The eventual project goal is to provide a 

foundation for the extreme scenario of future electronics, where only few strings of atoms (i.e. the 2D 

lateral junction) are used as the active components in electronic devices and circuits.  

Details are listed below  

(1) Study nucleation processes and explore methods to implant seeds at selected areas for 

subsequent 2DL material growth. Ideally, the growth of 1st 2DL materials can be guided by the 

location and shape of the seeds and the 2nd 2DL materials follows the morphology of the 1st 2DL 

materials.  

(2) Study the epitaxial mechanism of the 2nd 2DL material on the edge of the existing 2DL 

materials. The epitaxial process may start from the lateral edge or the basal plane of the edge 

depending on the lattice, edge morphology of the 2DL materials and the growth regime 

(thermodynamically or kinetically controlled).  Efforts will be spent to understand the mechanisms 

underlying the growth and lateral junction formation.   

Experiment:  The location-selective implement of seeds on substrates and related studies will be 

carried out. We will have 6 furnaces dedicated for the growth of TMD materials in Academia Sinica. 

Meanwhile, a customized cold wall chemical vapor deposition (CVD) system for growing wafer scale 

TMD has been designed and installed. In this project, we will be working on the growth of new types 

of various in-plane TMD-TMD structures and related devices including p-n junction diodes, bipolar 

junction transistors and photovoltaic cells based on TMD-TMD junctions.  

- Results and Discussion:  The 2D lateral WSe2-MoS2 heterojunction was synthesized on 

c-plane sapphire substrates by sequential chemical vapor deposition of WSe2 and MoS2 

(Figure 1a), where the growth of individual TMDC material has been demonstrated. To avoid 

the alloy reaction observed in one-pot synthesis, we first prepare single crystalline triangular 

WSe2 monolayer requiring a higher growth temperature (925 OC) and then perform the MoS2 

growth at 755 OC in a separate furnace. The WSe2 growth has been shown, where the WSe2 
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seeds are formed followed by the van der Waals epitaxy on sapphire substrates. The crucial 

point for successful heterostructure synthesis without alloy formation is to control the relative 

vapor amount of MoO3 and S during the 2nd step MoS2 growth. The excess in Mo precursors 

may enhance the MoS2 vertical growth, whereas the excess in S vapor promotes the formation 

of undesired WS2 at the interface. An even worse situation is that the excess of any of the 

sources may result in the formation of alloy structures such as MoxWySzSet. The morphology 

of in-plane heterostructures was examined by OM, PL and Raman spectroscopies. Figure 1b 

shows the OM image of the lateral WSe2-MoS2 heterojunctions. All the WSe2 triangles in the 

sample are uniformly surrounded by MoS2 and the domains for WSe2 and MoS2 can be 

distinguished from each other simply by their optical contrast. The lattice constant of WSe2 is 

5.53% larger than MoS2, which might be one of the reasons restricting the growth of MoS2 

onto WSe2 basal planes, but requires further studies. The Raman and photoluminescence 

spectra (not shown here) prove that the chemical composition of the inner WSe2 and outer 

MoS2, and these measurements also reveal the formation of seamless WSe2-MoS2 junctions.  

STEM is used to investigate the atomic structure for the lateral WSe2-MoS2 junctions. Figure 1c 

shows the annular dark field (ADF) image obtained at the WSe2-MoS2 interface. The ADF-STEM 

signal increases with the atomic number Z by approximately Z1.7 31. Therefore, the W 74, Mo 42, Se 

34, and S 16 atomic species can be clearly distinguished by their intensity. Figure 1d shows the ADF 

image for another location, where the atomic models corresponding to the obtained image are resolved 

with an atom-by-atom image quantification. One can see that an atomically sharp interface between 

the WSe2-MoS2 heterojunction is formed, where 90% of the W atoms are located at the interface 

bridging to two pairs of Se atoms and one pair of S atoms, as depicted in Figure 1e. In addition to the 

ADF image, the coherent interface is also identified by the electron energy loss spectroscopy (EELS) 

measurement. The EELS line scan (obtained by monitoring the EELS spectral change across the 

heterojunction) shown in Figure 1f-1i proves the atomically sharp change.  

This observation indicates that the growth may start from the replacement of Se atoms of the WSe2 

edge by S atoms. These results demonstrate that the MoS2 monolayer also out grows from the edge of 

the WSe2 monolayer. This important feature enables the controlled growth of lateral patterns for 

future monolayer electronics. Based on these preliminary results, we also intend to develop the growth 

of the TMDs with a narrower band gap such as MoTe2, WTe2, FeS and others. These are also 

important components for monolayer electronics. 

Most critical components in modern electronics/optoelectronics can be redesigned and produced based 

on this new class of 2D materials, where the great ability to tune the band gap, band offset, carrier 

density, carrier polarity and switching characteristics provide unparalleled control over device 

properties and possibly new physical phenomena. The new electronics based on 2DL materials is 

hence called “monolayer electronics”. Our research opens the path leading to future monolayer 

electronics. Also, the atomically sharp interface offers an interesting platform for the study of 

fundamental material science.   
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