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I. INTRODUCTION 

Enteric fever is caused predominantly by infection with Salmonella serovars Typhi (Typhoid 

Fever) or Paratyphi (Paratyphoid Fever).  These infections represent a significant global health 

problem, causing 25 million illnesses and over 200,000 deaths each year.  Additionally, at the time 

this proposal originally was drafted, over 25,000 cases of Ebola virus (EBOV) infection occurred 

with nearly 11,000 fatalities. For enteric fever EBOV infection, the timely initiation of antibiotic 

therapy or supportive care (respectively) can significantly decrease morbidity and mortality.  

Current diagnostic approaches require specialist facilities and trained personnel, and are relatively 

slow, potentially delaying life-saving therapy.  We have developed a point-of-care test (POCT) 

platform—the “D4 assay”—that uses one drop of blood and requires no mixing of reagents, power, 

or equipment other than a smart phone.  The D4 POCT consists of a nanoscale “nonfouling” —

protein and cell resistant— poly(oligoethylene glycol methyl ether methacrylate) (POEGMA) 

brush coated glass chip that contains two types of printed microspots: “stable” microspots of 

capture antibodies (cAb) and “soluble” 

microspots of fluorophore labeled detection 

antibodies (dAb) (Fig. 1). The D4 assay is 

so named because it has four steps: first, 

fingerstick blood is dispensed on the chip, 

which dissolves the soluble spots of 

fluorescently labeled detection antibodies 

(dAbs), which diffuse and bind to their 

respective analyte-bound capture antibody 

(cAb) spots and generate a quantifiable 

optical signal that is detected by a custom 

fluorescence detector that attaches to a 

smart phone. The images of fluorescent spots captured by the smart phone camera are converted 

to analyte concentration by a phone app. The D4 POCT is ideally suited for far forward special 

operations field settings for the following reasons: it is far more sensitive than existing 

immunoassays, test cassettes cost pennies and are stable at room temperature for months, and is 

read with a smartphone, generating data with minimal sample processing and operator training.  

As described in greater detail in Section III below, the overall goal of this project was to develop 

a D4 POCT platform capable of early diagnosis of infectious pathogens of operational 

significance.   

 

II. KEYWORDS 

Nanoscale, nonfouling, polymer brush, inkjet printing, point of care, Ebola, Salmonella, antibody, 

antigen, smartphone, diagnostics, single-chain variable fragment, phage 

 

III. ACCOMPLISHMENTS 

A. Major Goals of the Project 

The overall goal of this project is to develop a D4 POCT platform for blood markers of infectious 

diseases for use by special operations’ personnel in any region of the world.  Specifically, the 

proposed work is expected to produce a portable, ruggedized D4 POCT that for timely 

 
Fig 1: D4 (Dispense, Dissolve, Diffuse, Detect) assay on 

POEGMA.  
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identification of infection with Salmonella serovars and Ebola virus (EBOV).  This diagnostic is 

based on the detection of circulating Salmonella and Ebola antigens (Ags) for early and rapid 

diagnosis of disease. This in turn would allow rapid interventions before reaching critical illness. 

Specifically, the technical objectives (TOs) are shown below, along with the percentage of 

completion: 

 

TO# Description Completion 

1 Generate a panel of EBOV-specific capture and detection Abs 95% 

2 Generate a panel of S. enterica-specific capture and detection Abs 50% 

3 Ab integration and technology optimization of D4 POCT 50% 

4 Validation of EBOV D4 POCT using blood samples obtained 

from EBOV-infected primates 

0% 

5 Validation of S. enterica D4 POCT using blood and serum samples 

form Salmonella-infected patients 

10% 

 

Significant Changes in Methods 

1.  Although not part of our original proposal, we modified our procedures to include the 

conversion of scFv clones to an scFV-Fc format.  This markedly accelerated our ability to 

identify clones that display the optimum binding characteristics.  We successfully developed 

a methodology to perform this conversion in a high-throughput manner.  

2. We developed a novel high-throughput screen in microarray format that both identifies 

paired capture and detection Abs, and identifies those Ab pairs that function with the highest 

sensitivity. This methodology was applied to identify the best Ab pair for EBOV.  

3. For Salmonella, we discovered that flagellin will not be an informative marker for S. 

Paratyphi.  This appears not to be true for S. Thyphi, but we will need to confirm this 

ourselves.  Thus we proceeded to identify numerous highly specific clones for both S. Thyphi 

flagellin and Vi Ag.  These are currently being converted to scFv-Fcs, which will be 

subjected to the same high-throughput screen used for EBOV.  If S. Thyphi Vi Ag works 

well, we will use it for S. Paratyphi. 

 

B. Accomplishments Under These Goals 

Major Activities & Specific Objectives 

Over the past funding year, the major activities of the project revolved around generation of 

highly-specific assay reagents and optimization of the D4 POCT platform. The specific objectives 

of the project that were pursued in parallel during the funding period (which correspond to the TOs 

in the original proposal) were as follows: 

1. Generate a panel of EBOV-specific capture and detection Abs 

2. Generate a panel of S. enterica-specific capture and detection Abs 

3. Ab integration and technology optimization of D4 POCT 

 

Significant Results & Key Outcomes 

Objective 1: Generate a panel of EBOV-specific capture and detection Abs.  

After screening for hundreds of individual scFv clones for binding to sGP in ELISA assays, we 

ultimately identified several dozen unique sGP-binding clones. From these, we selected 28 unique 

sGP-binding clones for further analysis. We even identified some that bind well to EBOV, but not 

Sudan virus, sGP, allowing us to distinguish these two strains. Because of the large number of 
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sGP-binding scFv clones we identified above, we decided to develop a novel high-throughput 

screen in microarray format that would: 1) identify paired capture and detection Abs; 2) identify 

those Ab pairs that detect sGP with the highest sensitivity; and 3) include use of the D4 assay 

format to ensure that the identified clones will function well in our final assay format. This high-

throughput screening approach proved to be very successful, as demonstrated with EBOV 

(described below).  

By applying our screening method, we successfully identified the sGP-binding scFv clone 

that would clearly function best as a capture Ab (clone A1F3-1).  We also identified multiple 

detection Abs that effectively paired with this capture Ab. These clones are shown below in Fig. 

1, and highlighted in green boxes.  Importantly, these detection Abs include several that detect 

both the Zaire and Sudan strains of Ebola virus and one that is specific for the Zaire strain, which 

will allow us to develop an assay that can distinguish infection by these two strains. In addition, in 

titration assays, these Ab pairs could detect sGP with a sensitivity of less than 1 ng/ml. The dose-

response behavior for each of these Ab pairs in D4 format is shown in Fig. 1, with each pair already 

showing excellent sensitivity (sub-nanogram/mL) and dynamic range in D4 assay format.  We 

converted the best clones into full length IgGs, which showed improved performance in ELISAs.  

We are in the process of testing these in the D4 format.   

Although not part of our original proposal, we modified our procedures to include the 

conversion of scFv clones to an scFV-Fc format. This markedly accelerated our ability to identify 

clones that display the optimum binding characteristics. In support of this change, we have now 

 
Fig. 1: EBOV sGP D4 assay. Results of Ab pair matching in D4 format. Best performing pairs indicated with green boxes.  

 



Page | 7 

successfully developed a methodology to perform this conversion in a high-throughput manner.  

One issue we are dealt with is the exact format in which scFv-Fc constructs are generated. For 

EBOV, we originally used an IgG1 Fc construct. However, purification of the scFv-Fcs produced 

proved to be suboptimal. We resolved this issue by changing our expression construct to include 

an IgG2a Fc segment, which enabled superior purification efficiency. 

 

Objective 2: Generate a panel of S. enterica-specific capture and detection Abs.  

We generated Ab pairs specific for S. Paratyphi flagellin, and these were shown to work well in 

the D4 assay. However, in studies that were not part of our actual proposal, we determined that 

significant levels of S. Paratyphi flagellin is not detected in the serum of individuals infected with 

this organism. We thus sought to develop Ab pairs specific for Vi capsular polysaccharide in 

parallel, and we are currently completing our analysis of both targets target for S. Typhi.  To date, 

we have identified 24 unique flagellin or Vi binding scFv clones for further analysis. The 

conversion of anti-flagellin clones to the scFV-Fc format has now been completed. These Abs 

have been slated for testing using the high-throughput Ab pair matching scheme in microarray 

format described above, which was highly effective for EBOV. We are in the process of converting 

Vi binding scFv clones to the scFV-Fc format. 

 

Objective 3: Ab integration and technology 

optimization of D4 POCT. 

We have successfully identified the optimal 

capture and detection spot placement on D4 chips. 

Chips utilizing a design incorporating capture spots 

printed within concentric rings of detection reagents 

showed optimal performance compared to other array 

layouts. This task was completed ahead of schedule. 

In our original proposal we sought to print spots 

of Ag onto the polymer surface to act as “self-

calibrating spots”.  Unfortunately, we observed that not 

all Ags immobilized as well as Abs onto the polymer 

surface. This is likely due to the diversity in size and 

structure of different Ags. To address this issue, we 

pursued 3 parallel strategies for constructing self-

calibrating D4 assay chips: (a) printing spots of pre-

bound Ab-Ag complexes as a dilution series (b) 

printing dilution series of anti-dAb Abs and (c) printing 

printing Ab-Ag chimeras, in which Ags are expressed 

with linker from Ab scaffolds. These approaches are 

motivated by the observation that Abs possess the ideal size (~150 kD) and physiochemical 

characteristics for noncovalent immobilization in the polymer brush surface. Remarkably, each 

method showed effective immobilization and activity. Based on the results of our experiments—

along with considering the cost per assay—we downselected our final approach to strategy (b)—

printing anti-dAb Abs as calibration spots (Fig. 2A). We used this approach to correlate 

fluorescence intensities to the true known concentration of spiked Ag in serum (Fig. 2B). 

Furthermore, correcting intensities by calibration spots reduces chip-to-chip variation (Fig. 2C).  

 
Fig. 2: Self-calibrating chip – anti-dAb Ab. (A) 
Schematic of calibration. (B) Extrapolated values vs. 

known values shows linear relationship.  (C) Chip-to-chip 

consistency of calibration spots.  
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In our work towards ruggedizing and further 

miniaturizing the D4 detector, we recognized that the 

optics were not sufficiently sensitive for visualizing 

organic fluorophores to the extent needed for our 

application. To address this, we elected to switch to 

quantum dot probes (which are several orders of 

magnitude brighter) as reporters. Quantum dot 

reporters are not susceptible to bleaching and show 

favorable optical characteristics (e.g. large Stokes 

shift between excitation and emissions wavelengths, 

large quantum efficiency). We pursued 2 main 

strategies for conjugating dAbs to quantum dot 

reporters: (1) covalent conjugation by EDC-NHS 

coupling and (2) coupling of streptavidin-

conjugated quantum dots to biotinylated dAb. 

Based on testing results, we downselected our 

choice down to strategy (2)—streptavidin-biotin 

conjugates. Using this approach, we achieve good 

assay sensitivities in D4 (sub-nanogram/mL) (Fig. 

3).  

For the portable detector, we have 

embedded redundancy into our approach by 

developing 3 detector embodiments.  These designs 

are displayed in Fig. 4, which shows the 

“handheld”, “flashlight-compatible”, and “pocket” 

versions of the detector. All 3 models are rugged 

and portable. This approach was adopted based on 

SOCOM input, wherein redundancy in readout 

provides backup plans in case of primary device 

failure. We continue to iterate cycles of ‘design-

test-modify’ for these detector embodiments in 

parallel with our assay development efforts. 

We continue to make progress in developing 

a D4 with sealed chip architecture. As displayed in Fig. 5, we have devised a simple, low-cost 

microfluidics chip that is driven to completion by capillary action. The chip encases all reagents 

and test components in a user-friendly format. Fabrication is also simple—chips and channel 

features are laser cut directly on a plexiglass sheet, and then adhered directly to a POEGMA-coated 

glass surface containing assay reagents. Since the chip is capillary-driven, no power, electronics, 

nor pumps/valves are required for chip operation other than applying liquid to the chip. 

Finally, we have initiated development of the smartphone app to quantify spot intensities.  

This task will be carried out at by a team at Duke. Our strategy for software development involves 

the use of Python code because it is free, open-source, well-documented, and highly versatile. 

These factors allow for a more agile development cycle and more precise control of our raw data; 

the versatility of Python’s OpenCV open-source computer vision software package has more 

intuitive image processing algorithms than our current proprietary software. 

C. Opportunities for Training and Professional Development 

 
Fig 3: Analytical performance of D4 chips utilizing 

streptavidin-QD/biotin-dAb conjugates as labeling 

strategy, showing sub-nanogram/mL sensitivity. 

 
Fig. 4: Ruggedized portable detector with redundancy 

in design. Handheld, flashlight, and pocket 

embodiments shown.  Representative array images 

with handheld and flashlight designs shown.    
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This project provides an exceptional training opportunity 

for three individuals – Margaret Lund (research associate), 

Daria Semeniak (PhD student), and Daniel Joh (MD-PhD 

student).  By working with other senior members of the 

laboratory, they gained proficiency in a wide range of 

skills. Examples include polymerization of POEGMA by 

SI-ATRP, characterization of the POEGMA brush on 

glass, inkjet printing of the microarrays, assay 

optimization, and assembly of cassettes/detectors of the 

“D4” point-of-care test (POCT).   

D. Dissemination of Results to Communities of Interest 

We made our research accessible and comprehensible to 

the general community by organizing lab tours for 

incoming college students at Duke.   

E. Plans During Next Reporting Period 

In the short-term, we plan to pursue several tasks which 

are continuations of the 3 Technical (Specific) Objectives 

outlined above. With respect to Ab development, for Ebola we will first confirm the performance 

of our anti-sGP IgGs in the D4 format using recombinant sGP spiked into human serum.  This 

assay will then be optimized by varying Ab concentrations and incubation times.  For S. Typhi, 

we are in the process of testing individual Ab clones in the D4 format using recombinant flagellin.  

Once this is completed, we will subject these Abs to Capture/Detection Ab pairing using our novel 

high-throughput matching procedure.  Optimal pairs will be converted to IgGs an validated in the 

D4 format using recombinant flagellin.  The assay will then be optimized and validated against 

serum obtained from S. Typhi infected humans.  Our anti-S. Typhi Vi Ab clones are currently 

being converted to scFv-Fc molecules.  Once this is accomplished, these Abs will be tested and 

validated as described for the flagellin Abs above.  If the anti-S. Typhi Vi Ab clones prove to 

function well, we will generate, test, and validate anti-S. Parahyphi Vi Ab clones in a manner used 

for the anti-S. Typhi Vi Ab clones. As candidates for assay reagents for each pathogen become 

available and finalized, we will fully characterize assay performance (including matrix effects) to 

downselect assay reagents that will be used for pre-clinical testing. These assay chips will also be 

iteratively optimized in conjunction with the 3 detector designs shown in Fig. 4 to ensure 

compatibility.  We are also completing a preliminary algorithm for the smartphone app.  The app 

will be capable of automatic identification of microspot arrays. It will also discriminate between 

capture spots versus detection spots, and then quantify capture spot intensities for the user. This 

will all occur in an automated manner.  

In the long-term, once final assay reagents are chosen and optimized individually on the chip, we 

will then combine them in multiplex format.  The goal is to complete integration and optimization 

of the multiplex D4 assay by month 9 of year 2. Months 9-10 will be occupied by testing each 

assay with simulated blood samples and comparing results to ELISAs produced in-house. The 

results will be interpreted by an interclass correlation (ICC) between our measure versus ELISA.  

Our hypothesis is that this sample size will lead to an ICC above 0.8, but the greater utility will be 

to assess the confidence interval of the ICC, which in samples this size will have bounds of ~+0.10. 

Bland-Altman methods will assess the degree of bias between the two measures.  Next, during 

 
Fig. 5: Self-calibrating chip. (A-B) Sealed, 

self-clearing, assay chip made from cheap, 

rugged materials (laser-cut plastic & glass). 

Images immediately after addition of sample 

(S; whole serum) and at conclusion of assay. 

Wash (W) and sample colored with food 

coloring for ease of visualization. Assay 

automatically timed and goes to completion 

after addition of serum, based on capillary 

action.  
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Months 11-12 of the funding period, we will test the ability for the D4 POCT to predict group 

membership (infection vs. no infection) in patient (Salmonella) specimens from Oxford and 

primate (EBOV) specimens in the BSL-4 facility in Galveston.  To interpret the results, we will 

use logistic regression to assess the degree of segregation measured by area under the curve (AUC).  

We anticipate that our test will yield an AUC > 0.8.  

IV. IMPACT 

A. Impact on development of the principal disciplines of the project 

If successful, this project will have major clinical impact by introducing an affordable, accurate 

blood test for early and accurate point-of-care detection of S. enterica and EBOV infection, 

potentially prior to the onset of symptoms.  Such technology has life-saving potential for special 

operations personnel by allowing clinical interventions before fulminant disease progression.   

This project also has potential to make a major scientific impact, as successful demonstration in 

human and animal cohorts will provide prima facie validation of novel early markers for S. enterica 

serovars and Ebola virus. This has practice-altering implications since early markers for these 

diseases are urgently needed.   

As a result of this project, we developed a novel high-throughput screen in microarray format that 

both identifies paired capture and detection Abs, and identifies those Ab pairs that function with 

the highest sensitivity. This methodology was successfully applied to identify the best Ab pair for 

EBOV. This approach is broadly applicable to any situation where Ab pair matching is required, 

and is thus likely to have a major impact specifically in the field of immunoassay development. 

Our goal is to complete a manuscript summarizing the techniques and our findings in a peer-

reviewed journal.  

B. Impact on Other Disciplines & Society  

D4 platform can target any analyte for which clinical reagents (such as antibodies) are available. 

Therefore, the approach described in this application is ideal for developing rapid and accurate 

point-of-care tests for the diagnosis and management of most diseases of operational and global 

health significance.  The endstate is being able to provide an array of D4 cassettes for specific 

regions of the world, i.e., an array of chips focused on the most important infectious agents on the 

African continent, or any other particular region of the world where military or global health 

personnel are deployed. This work also introduces a highly robust, generalized system for the rapid 

development, validation, translation, and scaling of biomarker tests with potential application to 

other diseases in need for early markers, in a manner not available to prior researchers in the field. 

This development would have large impact on military operations and global health applications. 

Examples include rapid deployment of tests for civilian disaster scenarios, bioterrorism, and 

population-based validation of novel blood tests for diseases in desperate need of new diagnostic 

options (e.g. cancer screening).   

C. Impact on Technology Transfer 

Nothing to report 

 

V. CHANGES & PROBLEMS AND PROBLEMS 

A. Changes in Approach and Reasons for Change 
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Conversion from scFv to scFv-Fc. Although not part of our original proposal, we modified our 

procedures to include the conversion of scFv clones to an scFV-Fc format.  This markedly 

accelerated our ability to identify clones that display the optimum binding characteristics.  We 

successfully developed a methodology to perform this conversion in a high-throughput manner.  

Salmonella Ags. For Salmonella, we discovered that flagellin will not be an informative marker 

for S. Paratyphi B infection. Thus, for S. Typhi, we proceeded to identify numerous highly specific 

clones for both flagellin and Vi Ag.  These are currently being converted to scFv-Fcs, which will 

be subjected to the same high-throughput screen used for EBOV.  If Vi clones function well for S. 

Typhi, we will use this strategy for S. Paratyphi. 

B. Actual or Anticipated Problems or Delays and Actions to Resolve Them 

Problem 1: In studies that were not part of our actual proposal, we determined that significant levels 

of S. Paratyphi flagellin are not detected in the serum of individuals infected with this organism.    

Solution: We identified Vi capsular polysaccharide as an alternative targt, which we will evaluate once 

we have completed our analysis of this target for S. Typhi. 

Problem 2: Our original plan was to directly print calibration gradients of Ags onto POEGMA as 

internal calibration spots.  However, we observed that directly printed protein Ags (typically smaller 

than Abs) do not always non-covalently immobilize as effectively as printed Abs. This led to some 

spots of printed Ag to appear quite dim after running the assay because of their poor immobilization.   

Solution: To overcome this obstacle, we explored 3 candidate approaches, based on the observation 

that that Abs possess the ideal size (~150 kD) and physiochemical characteristics for noncovalent 

immobilization in the POEGMA brush surface. These approaches were: (1) printing spots of pre-bound 

Ab-Ag complexes as a dilution series (2) printing dilution series of anti-dAb Abs and (3) printing Ab-

Ag chimeras using methods developed in our laboratory, in which Ags are expressed with linker from 

Ab scaffolds.  The results of our experiments allowed us to downselect our final strategy to strategy 

(2)—printing anti-dAb Abs as calibration spots. We used this approach to correlate fluorescence 

intensities to the true known concentration of spiked Ag in serum. Furthermore, correcting intensities 

by calibration spots reduces chip-to-chip variation.   

Problem 3: In our work towards ruggedizing and further miniaturizing the D4 detector, we recognized 

that portable optics were not sufficiently sensitive for visualizing spots of organic fluorophores.  

Solution: We performed parallel experiments using quantum dot probes as reporters instead of organic 

fluorophores. This approach was chosen since they are several orders of magnitude brighter than 

organic fluorophores, with much narrower emission wavelengths. Furthermore, quantum dots that emit 

in the visible range have zero spectral overlap between excitation and emission wavelengths (a large 

“Stokes shift”), further simplifying the detection optics. We pursued 2 main strategies for conjugating 

dAbs to quantum dot reporters: (1) covalent conjugation by EDC-NHS coupling and (2) coupling of 

streptavidin-conjugated quantum dots to biotinylated dAb. Based on testing results, we downselected 

our choice down to strategy (2)—streptavidin-biotin conjugates. Using this approach, we achieve good 

assay sensitivities in D4 (sub-nanogram/mL). 

Problem 4: For EBOV, we used an IgG1 Fc construct. However, purification of the ScFv-Fcs 

produced proved to be suboptimal.  

Solution: We are converted our expression construct to include an IgG2a Fc segment which 

successfully provided superior purification efficiency. 

C. Changes that Had Significant Impact on Expenditures 

Nothing to report 
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D. Significant Changes in Use or Care of Human Subjects, Vertebrate Animals, Biohazards, 

and/or Select Agents 

Nothing to report 
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The ELISA is the mainstay for sensitive and quantitative detection
of protein analytes. Despite its utility, ELISA is time-consuming,
resource-intensive, and infrastructure-dependent, limiting its
availability in resource-limited regions. Here, we describe a self-
contained immunoassay platform (the “D4 assay”) that converts
the sandwich immunoassay into a point-of-care test (POCT). The
D4 assay is fabricated by inkjet printing assay reagents as micro-
arrays on nanoscale polymer brushes on glass chips, so that all
reagents are “on-chip,” and these chips show durable storage sta-
bility without cold storage. The D4 assay can interrogate multiple
analytes from a drop of blood, is compatible with a smartphone
detector, and displays analytical figures of merit that are compa-
rable to standard laboratory-based ELISA in whole blood. These
attributes of the D4 POCT have the potential to democratize access
to high-performance immunoassays in resource-limited settings
without sacrificing their performance.

nanoscale | nonfouling | polymer brush | inkjet printing | point of care

Diagnostic assessment of protein biomarkers plays an essen-
tial role in modern medical practice, and its availability has a

considerable impact on clinical evaluation and decision making
in human health and disease (1). Diagnostic biomarkers are not
only used for identifying disease in individual patients but also
for developing treatment strategies, tracking treatment response,
monitoring recurrence, conducting clinical trials, and performing
epidemiological analysis (2). However, shortages in sophisticated
laboratory resources, highly trained personnel, and modern fa-
cilities (with clean water, cold storage, and reliable power) have
hampered the discovery and use of diagnostic and therapeutic
biomarkers in the developing world (3). The mainstay approach
for sensitive and quantitative detection of protein biomarkers is
the ELISA. In developed countries, highly sensitive ELISA and
ELISA-like (4) sandwich immunoassay technologies are readily
accessible in centralized facilities and are performed by trained
operators or even automated to handle the multistep workflow.
Much of the workflow is directed toward reducing biomolecular
noise due to nonspecific binding of proteins and other compo-
nents in complex biological fluids that lower signal-to-noise ratio
(SNR). Depending on the assay, steps can include sample pre-
processing, liquid transfer, blocking, incubation, and wash steps,
in addition to data acquisition and analysis with bulky in-
strumentation. Taken together, these characteristics represent
major barriers to obtaining highly sensitive quantitation of pro-
tein biomarkers in limited-resource settings (LRSs) (3). Fur-
thermore, these barriers can also delay treatment, as test results
from laboratory-based immunoassays may not always reach
healthcare providers and patients in LRSs quickly enough to
impact critical clinical decisions (1). To address these concerns,
we sought to design and implement a broadly applicable protein

biomarker detection platform with performance comparable to
resource- and personnel-intensive technologies such as ELISA
while retaining the many attractive features (i.e., low cost, por-
tability, and ease of use) of “passively” driven platforms such as
lateral flow immunoassays (LFIAs) (5), paper-based diagnostics
(PBDs) (6), and passive microfluidics (PMFs) (7).
In our previous work, we fabricated Ab-based microarrays on

nanoscale poly(oligo(ethylene glycol) methacrylate) (POEGMA)
polymer brushes that were capable of femtomolar detection of
analytes directly from complex biological milieu (8). The Ab
arrays were directly spotted onto POEGMA brushes that were
grown from glass by surface-initiated atom transfer radical po-
lymerization (SI-ATRP) (8, 9). The POEGMA’s ability to resist
nonspecific adsorption of proteins greatly improved SNR by
reducing “biomolecular noise,” translating to femtomolar limit
of detection (LOD) of protein analytes even from whole blood
and serum (8, 10, 11). The observation that Ab microarrays
could be directly spotted and noncovalently immobilized onto
POEGMA coatings, and that spots of Abs dried and captured
within the POEGMA brush retained their activity even after
drying and ambient storage, greatly simplified assay fabrication
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and subsequent storage of the microarrays. Significantly, the
POEGMA-based microarrays also decreased the time needed to
perform a sandwich immunoassay by eliminating the need for
blocking steps and reducing the number of rinsing steps. Like
most other immunoassays, however, this approach still required
separate incubation steps for labeling with detection reagents to
achieve a quantifiable signal. We therefore sought to build upon
this body of work and the robust design concepts of existing
“point-of-care test” (POCT) technologies to develop a quanti-
tative and sensitive platform that stores all necessary reagents so
that the assay is ready for readout following direct addition of
blood or serum, while minimizing user intervention.
Here, we report a quantitative, self-contained, multiplexable

immunoassay (the “D4 POCT”) that stores all necessary capture
and detection reagents “on-chip” in a dry state, shows durable
stability without cold storage, and detects analytes with sensi-
tivity comparable to ELISA directly from whole blood without
sample preprocessing.

Results
Design of the D4 Immunoassay. The challenge we faced in rede-
signing an immunoassay on POEGMA brushes as a POCT, and
one that is common to most POCTs, is how to spatiotemporally
separate the capture and detection reagents, and how to time the
precise sequence of events upon introduction of the analyte into
the assay to yield a readout. Whereas recent work in PBDs that
use highly innovative and robust sequential delivery techniques
has been shown to be effective (12–15), our approach was to
instead design a passive POCT that uses lateral diffusion in the
polymer brush as the temporally programmable mixing principle.
The architecture of the D4 assay consists of a glass chip with a
∼50-nm-thick POEGMA coating that contains two types of
microspots that are inkjet-printed on the polymer brush: “stable”
spots of capture antibodies (cAb) and “soluble” spots of de-
tection reagents (Fig. 1). Here, the capture and detection re-
agents are placed in very close proximity to one another (several
hundred micrometers), unlike LFIAs in which reagents must
travel larger distances. The detection reagent spots are soluble,
as they consist of a mixture of fluorescently labeled detection
Abs (dAbs) and excipient (such as PEG or trehalose) to enable
dissolution upon liquid exposure (Fig. 1 A and B). The D4 assay
is so named because of the chain of events that drive the assay
to completion upon addition of a drop of blood (Fig. 1 A–D):
(A) dispense blood onto chip, (B) dissolution of “soluble” de-
tection reagent spots, (C) diffusion of analyte-bound dAb across
surface and binding to respective cAb spots, and (D) detection of
binding event by fluorescence imaging. An overall schematic of
the fabrication of the D4 assay chip is shown in Fig. 1E and
consists of the following sequential steps: (i) SI-ATRP to grow
∼50-nm-thick POEGMA brushes on the glass surface, (ii) fol-
lowed by noncontact inkjet printing of the cAb from buffer and a
fluorescently labeled dAb with a molar excess of an excipient,
typically PEG.

D4 Detection of Human IgM/IgG from Fingerstick. We first sought to
test the concept of the D4 POCT and chose the detection of
human IgG and IgM as a test case, as both analytes are present
at high concentration in blood and should thus be detected by
the assay. Furthermore, detection of IgG and IgM in the same
assay also allowed us to assess the feasibility of carrying out a
multiplexed D4 assay. To test this concept, a POEGMA-coated
glass slide was stamped with a wax grid to confine the sample to
the active area of the chip containing an inkjet-printed Ab array
(Fig. 2A). The detection mixture was printed as three outer rings
of soluble dAb spots containing a mixture of mouse Cy-5-anti-
human-IgG and/or mouse Cy-5-anti-human-IgM (dAbs with a
different epitope against human IgG and IgM than the cAb),
with linear PEG (molecular weight 116,000), an excipient that

was added to enable dissolution of the dAbs upon contact with
blood, and heparin to prevent coagulation of blood. The inner
4 × 4 array contains spots of “stable” cAb. Rows 1 and 4 are an
anti-mouse cAb (positive control), row 2 is an anti-human IgG
cAb, and row 3 is an anti-human IgM cAb.
Representative steps performed by a user are shown in Fig. 2 B–D.

First, a drop of blood from a finger stick (Fig. 2B) is applied directly
to the microarray and contained within the hydrophobic corral (Fig.
2C). After a predetermined incubation period (5 min for this ex-
periment), the surface is rinsed with ∼1 mL wash buffer from a
squeeze bottle, which displaces the loosely bound blood cells and
proteins (Fig. 2D). Interestingly, the blood flows to the margins and
binds to the hydrophobic corrals, as seen from the red color around
the margins in Fig. 2D, but is completely removed from the non-
fouling POEGMA surface. The slide is then imaged with a fluores-
cence detector. The output of the D4 from a fluorescent scanner is
shown in Fig. 2 E–J. Before exposure to blood, the inner 4 × 4 cAb
array has no intrinsic fluorescence (Fig. 2E). Negative control ex-
periments in which the D4 chip was incubated with either PBS (Fig.
2F) or whole chicken blood (Fig. 2G) show that only the positive-
control spots (rows 1 and 4) generate signal, while middle rows 2 and
3 (specific for human IgG and IgM, respectively) show no fluores-
cence. Upon incubation with human blood with an array that is
printed with a detection mixture of both Cy5-anti-human IgM and
Cy5-anti-human IgG dAbs (Fig. 2H), rows 2 and 3 show positive
fluorescence signal by “sandwiching” circulating human IgG (row 2)
and IgM (row 3) analytes between a cAb and the Cy5-labeled dAb
specific to each analyte. In contrast, when the outer dAb spots only
contain Cy5-anti-human IgM dAb (Fig. 2I), only row 3 (IgM cAb) is
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Fig. 1. D4 immunoassay on POEGMA brushes. (A) “Stable” spots of cAb and
“soluble” spots of the fluorescently labeled dAb are printed onto the
POEGMA brush. Whole blood or serum is dispensed directly onto the chip.
(B–D) The sequence of events after addition of blood or serum is as follows.
(B) “Soluble” dAb dissolves and binds to analyte. (C) These complexes diffuse
and bind to their respective cAb spots, and subsequently (D) generate a
quantifiable fluorescent signal. (E) D4 chip fabrication. Glass chips are
coated with POEGMA with SI-ATRP. The cAb and detection reagents are
spotted onto the surface with noncontact inkjet printing (NCP). After drying,
chips are ready for use.
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visible but not row 2 (IgG cAb). The converse is true when the outer
spots only contain Cy5-anti-human IgG dAb (Fig. 2J).
In summary, this proof-of-concept experiment demonstrated

that printing both cAb and dAb together on POEGMA coatings
greatly simplifies the sandwich immunoassay by eliminating the
multistep procedures typically used in standard ELISA. It also
suggested that multiplexed detection should be possible with the
D4 assay, a desirable feature that has been historically difficult
with LFIAs (16).

Quantitative Single-Analyte D4. The concentration of total Ig is
relatively high in whole blood [approximately in the micromolar
range (17)], so we next sought to examine the quantitative re-
sponse of the D4 assay for analytes that occur at lower concen-
trations in complex biological matrices such as serum and whole
blood. Fig. 3A shows representative image data of a D4 assay for
the cytokine IL-6 exposed to whole chicken blood with and
without spiked analyte (right and left panels, respectively).
Similar to the array design in Fig. 2, soluble spots of anti–IL-6
dAb are printed as outer rings surrounding centrally located
capture spots of anti–IL-6 cAb. These anti–IL-6 cAb spots were
printed alongside spots of vehicle control (PBS) and positive-
control capture spots (labeled “ctrl”) comprised of anti-dAb
Abs targeting the Fc portion of dAbs. These positive-control
spots not only indicate whether dAbs were successfully local-
ized to the active area of the assay but also help quantitatively
correct for interassay variation as calibration spots (SI Appendix,
Fig. S1). The images in Fig. 3A show minimal background signal,
due to the nonfouling polymer brush, near-zero signal from anti–
IL-6 cAb spots in the absence of analyte, and brightly fluorescent
anti–IL-6 cAb spots in the presence of human IL-6–spiked blood.
As expected, D4 signal was absent from vehicle control and brightly

fluorescent in positive-control spots in both cases. By measuring
the fluorescence emission from cAb spots across a range of dif-
ferent concentrations in IL-6–spiked serum and whole blood (Fig.
3B), we obtained the dose–response curves shown in Fig. 3 C and
D. For this IL-6–D4 assay, we calculated that the LODs in serum
and blood were approximately 6.3 pg/mL and 10.9 pg/mL, which
correspond to ∼310 and 536 fM, respectively, with a dynamic range
spanning greater than three orders of magnitude [details for calcu-
lating figures of merit (FOM) are provided inMaterials and Methods].
The D4 is a flexible platform for rapid immunoassay devel-

opment. By inkjet printing spots of stable cAb and soluble dAb
for various targets onto POEGMA-coated chips in a layout like
that of Fig. 3A we were able to develop D4 chips for a variety of
different markers. To demonstrate this versatility, in SI Appen-
dix, Fig. S2 we show the performance of D4 immunoassays
pertinent to oncology [prostate-specific antigen (PSA) and
alpha-fetoprotein (AFP)], endocrinology (leptin), cytokine pro-
filing (TNFα and IL-6), cardiology [B-type natriuretic peptide
(BNP)], and infectious disease (HIV p24), in both serum and
whole blood. The quantitative FOM for each analyte are sum-
marized in Table 1. The data show that for each analyte tested
the D4 is quantitative and sensitive with LODs that range from
approximately 6.3 to 113 pg/mL, dynamic ranges between 2.3 to
3.9 orders of magnitude, and acceptable intra- and interassay
coefficients of variation (COVintra and COVinter; no greater than
15% and 20%, respectively). While the assays in Table 1 used
incubation times of 90 min to maximize sensitivity, we observed
that much shorter times can be used for sensitive assay readout.
To examine the effect of incubation time on LOD, we carried
out a leptin-D4 assay for incubation times ranging from 15 min
to 90 min and found that the LOD only increased to 57 pg/mL
for a D4 assay carried out for 15 min compared with 38 pg/mL
for an assay carried out for 90 min (SI Appendix, Fig. S3).
An important design feature that we also considered in our

implementation of the D4 was accounting for variability in fac-
tors such as sample volume and dissolution efficiency of soluble
dAb, which may impact signal quantitation. Our approach to do
so is described in greater detail in SI Appendix. Briefly, however,
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the effect of these variations can be eliminated by incorporating
positive control calibration spots comprised of anti-dAb Abs that
target the Fc portion of dAbs that are printed in the center of the
D4 arrays alongside anti-analyte cAb spots, as shown in the image
data of Fig. 3A and SI Appendix, Fig. S1A. The data in SI Appendix,
Fig. S1 show a significant reduction in interassay variability upon
normalization of the cAb spot intensity to the fluorescence in-
tensity of control spots, and the normalized signal intensities are
consistent across a range of sample volumes from 50 to 150 μL.

Quantitative Multianalyte D4. We next assessed the performance of
the D4 assay to simultaneously quantify multiple biomarkers using
an approach similar to that shown in Fig. 2. Printing spatially dis-
tinct capture spots on a 2D surface enables the detection of mul-
tiple targets from a single chip with the same fluorescent reporter.
As a proof-of-concept demonstration, we developed duplexed as-
says against cytokine markers TNFα and IL-6 (Fig. 4) and cancer
markers AFP and PSA (SI Appendix, Fig. S4). Fig. 4A shows an
image of the multiplexed D4 against cytokines TNFα and IL-6 af-
ter incubation with analyte-negative chicken blood and indicates
the location of capture spots and Cy5-labeled detection reagents.
In a format similar to that of the single-analyte assays shown ear-
lier, labeled detection reagents containing dAb for TNFα and
IL-6 were printed in the region surrounding cAb spots.
As shown in Fig. 4B, performing the D4 in whole blood spiked

with a mixture of both TNFα and IL-6 shows detectable fluo-
rescence at both cAb spots for each analyte, in a dose-dependent
manner, similar to that of the single-analyte assays shown in SI
Appendix, Fig. S2. In contrast, Fig. 4 C and D show that when the
multiplexed assays are exposed to either TNFα or IL-6 alone
only cAb spots specific to each respective analyte show dose-
dependent fluorescence. Similar multiplexed data for AFP and
PSA are shown in SI Appendix, Fig. S4.

Pilot Clinical Study with D4. We next sought to test the D4 in
human patients using a biomarker that would be useful for POC
applications. From the panel of analytes shown in Table 1 we
elected to test the performance of a D4 against leptin in a clinical
setting. This choice was motivated by a recent study in Uganda
by investigators at Duke University and Mulago Hospital which
determined that a low serum leptin level (even below 50 pg/mL)

is a major biochemical risk factor predicting infant mortality due to
malnutrition (18). The authors of this study suggested that leptin
measurements could be used to identify and provide targeted
treatment to malnourished children at highest risk of death. Un-
fortunately, many low-resource settings lack the infrastructure to
perform hormone assays at such sensitivities and require blood
specimens to be transported to larger facilities, which delays po-
tentially life-saving treatment. We therefore speculated that the
D4 may provide a useful diagnostic alternative to hormone assays
carried out in a centralized laboratory by allowing sensitive and
quantitative on-site leptin measurements.

Table 1. D4 assay FOM

Analyte LOB, pg/mL LOD, pg/mL COVintra, % COVinter, % DR, log10

AFP
Calf serum 20.1 47.5 4.7 14.5 2.7
Chicken blood 30.0 58.9 6.3 13.5 2.8

PSA
Calf serum 54.4 82.8 5.5 10.5 2.7
Chicken blood 51.0 112.9 8.0 11.0 2.5

Leptin
Calf serum 10.3 38.2 6.4 8.2 3.2
Chicken blood 10.4 44.3 4.8 13.4 3.1

BNP
Calf serum 2.1 25.2 10.8 19.1 3.7
Chicken blood 8.7 28.2 8.9 15.2 3.3

IL-6
Calf serum 3.8 6.3 7.6 10.0 3.4
Chicken blood 3.7 10.9 7.1 14.1 3.1

TNFα
Calf serum 2.0 11.1 9.8 19.9 3.0
Chicken blood 24.3 54.2 7.4 18 2.3

HIV p24
Calf serum 4.8 11.0 9.9 13.3 3.9
Chicken blood 3.1 16.5 9.1 15.6 3.4
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(A) D4 image after incubation with whole chicken blood alone (without ana-
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As proof of concept, we conducted a small IRB-approved pilot
study at Duke University Medical Center (DUMC) comparing
serum leptin levels detected by the D4 assay versus clinical
ELISA from 3 lean [body mass index (BMI) <10%] and 10 obese
(BMI 83.9–99.58%) pediatric patients. We selected this patient
population to clinically test the D4 assay across a wide range of
leptin levels, as serum leptin levels are proportional to adipose
mass (19, 20). Our pilot studies demonstrated high concordance
between D4 and clinical ELISA (Fig. 5). Fig. 5A shows D4 images
from a representative obese and lean patient in whole blood, im-
mediately after blood draw. The obese patients exhibited higher
fluorescence intensities (indicating higher leptin levels) than lean
patients (Fig. 5B), which is consistent with known adipocytokine
physiology. Significantly, we found that the leptin levels measured
by D4 correlated strongly with those measured by clinical ELISA
performed in parallel in a central laboratory at DUMC across all
13 patients (P < 0.0001) (Fig. 5 E and F).
The readout of D4 microarray chips shown thus far was

obtained using a sensitive table-top fluorescence scanner to as-
sess the sensitivity of the D4 assay. While this approach would
allow for POC testing in a peripheral laboratory near or attached
to a clinic in LRSs (21), we recognize that a table-top scanner is
too burdensome for use in the field. To address this issue, we
next investigated the feasibility of portable fluorescence imaging
of the D4 assay using a mobile phone-based fluorescence mi-
croscope (Fig. 6 and SI Appendix, Fig. S5). This apparatus is a
compact and cost-effective imaging system that uses an external
lens, in addition to the existing lens of the mobile phone camera
(22, 23). The illumination is introduced at an oblique illumina-
tion angle of ∼75° to increase the SNR of the acquired fluores-
cence images on the phone.
These experiments imaged leptin-D4 assays in both simulated

and patient samples. For comparison, we also imaged the same
set of D4 arrays (to maintain consistency) with the table-top
scanner in the usual fashion. The fluorescence images in Fig. 6 A
and B depict representative cAb spots of leptin-D4s (with and
without analyte) using the table-top scanner and the mobile
phone-based imager, respectively. In both cases, the fluorescence
readout behaves as expected for leptin-spiked and leptin-
deficient serum (left and right image panels), with good SNR.
The dose–response curves using a dilution series of leptin-spiked
calf serum are shown in Fig. 6 A and B. Both scanner and
mobile phone-based imaging modalities showed quantitative,
dose-dependent fluorescence intensities. In this experiment,

the scanner was more sensitive than the mobile phone, with
LODs determined to be 0.037 ng/mL and 0.71 ng/mL, re-
spectively. We next imaged a set of leptin-D4 arrays against
clinical specimens obtained from obese patients in our pilot
clinical study. The D4 readouts from the scanner (red trace)
and from the mobile phone platform (blue trace) are shown in
Fig. 6C. In both cases, as expected the data show good corre-
spondence with ELISA values (dashed black trace).
Transitioning to the mobile phone-based detection platform

reduced detection sensitivity and interassay consistency, as seen by
the higher LOD and larger error bars with the mobile phone de-
vice. Nevertheless, these proof-of-concept studies demonstrate the
feasibility of merging D4 assay technology with compact, field-
portable, cost-effective, and easy-to-use mobile phone-based de-
tection platforms. As mobile phone detector technology, compu-
tational imaging, and sensing approaches continue to evolve we
expect that the fluorescence collection efficiency and hence sensi-
tivity of these portable, low-cost detectors will rival table-top
fluorescence scanners. Despite the lower sensitivity of this first-
generation mobile phone detector, the field portability of mobile
phone-based imaging provide a detection strategy that is well-
matched to complement the robustness of the D4 assay technology
with FOM that are sufficient for many clinical applications.

Fig. 5. Pilot clinical studies using D4 to measure leptin levels in pediatric
patients. (A–D) Representative D4 imaging of whole blood specimens from
an (A) obese patient and (B) lean patient immediately after blood draw. For
comparison, D4 data of (C) whole chicken blood (WCB) spiked with 1 ng/mL
human leptin (D) and human leptin-negative chicken blood alone are also
shown. (E) D4 fluorescence readout compared with results from standard
sandwich immunoassay in all patients. D4 data are shown in red and sandwich
immunoassay data in black. (Inset) Zoomed graph of lean patients alone (NC =
negative control serum). (F) Plot showing correlation between D4 versus
sandwich immunoassay (R-squared = 0.965; P < 0.0001, two-tailed t test).
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Storage Stability of D4. Because use of the leptin D4 POCT in
LRSs would necessitate long-distance shipment of assay mate-
rials to sites around the world, an important issue that needed to
be addressed is the need for a “cold chain” and the storage
stability of D4 chips. We hence measured the performance of
D4 chips targeting leptin at different time points and under el-
evated temperatures after chip fabrication. Fig. 7 compares
dose–response curves of leptin-D4s exposed to analyte-spiked
calf serum under different storage conditions. In Fig. 7A,
vacuum-sealed packets containing leptin-D4 chips were stored
1–92 d under ambient conditions. The data showed no significant
difference in assay performance. Likewise, we also observed
minimal difference in assay performance when vacuum-sealed
chips were stored at 45 °C for up to 120 h (5 d) (Fig. 7B).

Discussion
The D4 POCT offers a promising platform for democratizing
access to sensitive and quantitative assessment of diagnostic
protein biomarkers. We first showed proof-of-concept applica-
tion of multiplexed detection of human immunoglobulins. We
observed ELISA-like performance across a wide range of protein
analytes when assayed in unmodified serum and blood and
showed the feasibility of quantification for multiple analytes
from the same chip. Our pilot validation studies showed high
concordance between D4 and ELISA in human patients, sug-
gesting that this platform may ultimately be translatable to the
clinical setting. Next, we introduced the feasibility of combining
D4 chip technology with sensitive and cost-effective mobile
phone readout for truly distributed use of the platform. Finally,
the D4 chips showed durable storage stability, as evidenced by
acceptable assay performance following exposure to heat or
prolonged storage.
Much work has been previously done toward developing POCT

platforms for LRSs. An “active” approach is to incorporate a fluid
handling system where the reagents are stored on the device sepa-
rately and then mixed and washed using pumps and valves, or al-
ternatively by mechanisms that are conceptually similar but with
smaller microfluidic devices (7, 24–27). This pioneering design
strategy has seen commercial success in some embodiments (e.g.,
Abbott i-Stat) and shown encouraging field performance in others
(26, 27). However, such systems have many parts, which increases the
complexity and cost, and the finite possibility of malfunction from
each individual component can limit the robustness of the device.
To date, “passively” driven immunoassays have experienced the

most success as POCTs for protein analyte detection. LFIAs—the
most widely used embodiment in LRSs—use nitrocellulose strips
impregnated with dried capture/detection reagents that are pas-
sively colocated by applying liquid; this design permits a low-cost,
rapid approach to protein detection in a user-friendly manner
(fluid application with or without premixing, sometimes followed
by buffer addition step and/or signal amplification) (5, 28). Despite

its strengths, the LFIA is not a substitute for the ELISA for two
major reasons. First, LFIAs provide semiquantitative or qualitative
readouts (in the absence of a dedicated reader), while conventional
ELISA provides quantitative results with high accuracy and pre-
cision. Second, most LFIAs are not as sensitive as ELISA (29–31),
as more antigen-antibody (Ag–Ab) interactions are necessary to
generate a positive signal. This leads to certain clinical scenarios in
which LFIA technology is unable to meet the required sensitivity to
be practically useful (32). Furthermore, PBDs have been ground-
breaking in further evolving passively driven devices for use in
LRSs and offer many advantages over existing POCTs for their low
cost, disposability, and ability to be assembled into multidimen-
sional structures (33, 34). While a frequently encountered short-
coming with PBDs has been limited sensitivity, several innovative
signal amplification techniques that reduce detection limit without
significantly compromising usability have been described, most
notably those using paper networks for automated sequential re-
agent delivery (12, 15) and enzymatic amplification (35). Such
advances have made PBDs a promising platform for “lab-on-a-
chip” diagnostics; however, more work remains toward addressing
issues such as controlling the consistency of paper matrices, the
underlying need for the sequential delivery of reagents and/or
washing, challenges with multiplex analysis, and further improving
detection sensitivities (34, 36). In contrast, capillary-driven PMFs
(e.g., MBio and Philips Minicare) have overcome challenges in
sensitivity faced by LFIAs and PBDs while retaining ease of use,
with some platforms reaching subpicomolar LODs within 15 min
(7, 37–42). By eliminating “active” elements (e.g., pumps), PMFs
reduce the complexity and cost of microfluidic-based designs and
significantly reduce instrumentation footprint compared with
standard assays. While PMFs show great promise, challenges
remain in further reducing instrumentation footprint and/or
lowering cost of readers to fulfill the accessibility and sustain-
ability requirements that are critical for successful dissemina-
tion and implementation in LRSs.
Our contribution toward democratizing accesses to clinical

diagnostics—the D4—builds upon, but also departs significantly
from, the accomplishments of existing “passive” POCT designs
such as LFIAs, PBDs, and PMFs. The POEGMA interface is the
critical element responsible for the high performance and sim-
plicity of the D4. In the D4, the POEGMA brush is nonfouling in
its hydrated state. The hydrated POEGMA brush virtually elimi-
nates nonspecific binding of cells, proteins, and other biomolecular
noise (8, 9, 43), yielding high SNRs even at low analyte concen-
tration in complex matrices such as blood and obviates the need for
microfluidic separation (preprocessing) of cells.
In the dry state, however, the POEGMA brush readily entraps

Abs that are inkjet-printed into the polymer brush. Printing cAbs
onto the dry brush without excipient leads to their stable im-
mobilization within the brush and prevents bleeding or dissolu-
tion of cAb spots upon hydration with biological matrix (8). This
leads to uniform capture spot morphology, which facilitates
quantification and analysis. In contrast, printing detection re-
agents with an excess of soluble excipient onto the dry brush
creates a reservoir for assay reagents. Contact with blood or
other aqueous fluid causes dissolution of the excipient in printed
spots of the dAb and releases the dAb from the chip, and the
released dAb freely diffuses across the surface and drives the
assay to completion. The direct inkjet printing of reagents onto
POEGMA brush is another key element of the D4 assay, as it
allows precise control over assay geometry, spot concentration,
and composition, without the need for covalent coupling steps,
which simplifies assay fabrication. Like many existing “passive”
designs, the D4 stores all necessary reagents on the same device,
but it does so by inkjet printing capture and detection reagents in
very close proximity onto a nonfouling polymer brush. This de-
sign eliminates the need to control fluid movement with fluidics or
include sequential liquid transfer steps. Combined, these features
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of the D4 platform translate to a robust, self-contained, and quan-
titative POCT without compromising assay performance or cost.
The low-cost fabrication of the D4 and smartphone-based

reader, coupled to its sensitivity and quantitative performance,
may offer a scalable and sustainable route to manufacturing
multiplexed immunoassays for LRSs that are both affordable
and analytically robust. When produced in bulk, we estimate that
D4 chips would cost <$1 each (SI Appendix, Table S1) and the
3D-printed mobile phone attachment would cost <$30 each. In
terms of workflow, we envision that the D4 platform can provide
a streamlined protocol for protein analyte detection in both
healthcare and research settings and can expand the capabilities
of both. The ability to achieve multiplexed results with ELISA-
like sensitivity after a single incubation/rinse step and without
blocking greatly simplifies protein quantification, reduces time to
results, and ultimately lowers costs. Admittedly, creating a mul-
tiplexed test in LFIA format is also relatively straightforward as
it involves spotting multiple capture reagents onto a strip or
adding additional test “lines.” However, the LFIA is highly dy-
namic, as its constituents are constantly changing at a given location
across a test strip and never fully equilibrate. Subsequently, assay
readout relies on binding kinetics specifically during which reactants
are sufficiently close to interact on a molecular level, and this varies
for each individual test. Unless each test is isolated from the others,
the same assay condition (e.g., running buffer, porous membrane,
and flow rate) is applied to all tests, and one set of conditions is often
not optimal for the multiple analytes of interest. While isolation of
individual tests is not overly difficult and various strategies to this end
are available (44), this adds to complexity of sample handling and
cost. In contrast, the design of the D4 assay—by effectively coloc-
alizing the detection and capture reagents and relying on 2D diffu-
sion and equilibration “above” a nonfouling polymer brush—allows
multiplexing without significantly increasing the assay complexity.
Difficulty in storage is a major factor restricting the imple-

mentation of laboratory-based tests in LRSs. We speculate that the
storage stability of D4 is related to the high oligo(ethylene glycol)
density of the POEGMA “bottle brush,” which provide a protective
environment that stabilizes the printed proteins against denaturation
(8, 45). To put our results into context, LFIAs are already well-
suited for LRSs since they are generally stable for 1 to 2 y at am-
bient temperature and 6 mo at elevated temperature (45 °C) (16),
and similar reagent stability has also been shown in other POCTs
(46, 47) . The timescales for storage stability used in our studies with
the D4 (Fig. 7) were shorter than those determined for LFIAs.
Thus, while encouraging, we recognize that further studies are re-
quired to characterize the storage limitations of the D4 and, if
needed, modifying packing and/or printing solutions with existing
methods for reagent stabilization (35, 48) to meet the storage de-
mands of LRSs.
For patient care, we envision that this technology will provide

a robust POCT that is widely applicable for the diagnosis of a
disease by quantification of the levels of one or more markers for
which orthogonal Ab pairs are available. In the developed world,
this will bring highly sensitive immunoassays to first responders
and to the bedside, while in LRSs it will allow them to simply
become more routinely available. The low cost of the chips and
detectors also suggests that wide dissemination of this technology
is feasible, so that it would also provide new opportunities for
spatiotemporal mapping and remote analysis of measurement
results, which would be highly valuable for epidemiology in
general. However, it is worthwhile to note that the actual need
for ELISA-like sensitivities depends on the disease and bio-
marker, which must be considered when deciding between the
D4 POCT and other robust alternatives such as LFIAs or PBDs
when such sensitivities are not required.
There are several challenges that still need to be resolved. The

first is the requirement to remove the blood from the chip before
imaging. Because proteins do not adsorb to the POEGMA brush

surface and cells similarly do not adhere and are only settled on
to the surface by gravity, removal of the blood from the chip is
currently easy to perform using a buffer rinse. We acknowledge,
however, that the open wash requirement is not ideal for bio-
safety reasons and possible specimen contamination. The ability
to read out the assay in a sealed system with an automated wash
or even in the presence of blood would make this a completely
hands-off POCT, which is desirable. We are currently pursuing
several solutions to this problem, including a PMF-based
enclosed chip design that passively removes the blood before
readout, as well as electronic modes of detection where the
blood does not interfere with the signal, which will be reported
separately. The second issue is the sensitivity of the fluorescence
detector. While the current design of the cell phone detector is
sensitive enough for many clinical applications, we believe that
optimization of the detector design will yield the necessary 10- to
20-times improvement to match the performance of table-top
fluorescence scanners that are the “gold standard” for imaging
microarrays. This assessment is supported by reports of mobile
phone-based fluorescence imaging of individual fluorescent
nanoparticles and viruses (22) and fluorescently labeled single
DNA molecules (23). Third, while the ubiquitous nature of
mobile phones makes it a promising platform for dedicated and
nondedicated POCT platforms, there will be challenges with
effectively integrating them into healthcare systems. A thorough
discussion of this topic is provided in the review by Byrnes et al.
(33), but in brief, issues related to developing protocols for
transmitting and interpreting results and subsequently making
management decisions from POC data must be resolved. Fur-
thermore, the diversity of phone models and short life cycles in
both hardware and software lead to challenges in compatibility
and maintaining common standards; the slow pace of regulatory
approval also introduces its own set of obstacles. However, these
are challenges faced by the entire field of mobile phone-based
diagnostics and are not limited to the D4 POCT. We believe the
widespread dissemination of phones, their user friendliness, and
their computing power make them very attractive vehicles to-
ward democratizing access to gold-standard diagnostic testing. In
conclusion, the D4 POCT, combined with the field portability
of mobile phone-based imaging, may pave the way for high-
performance and user-friendly diagnostic immunoassays that
are virtually independent from infrastructural requirements.

Materials and Methods
SI-ATRP of POEGMA on SiO2 Substrates. In brief, POEGMA surfaces were de-
posited by SI-ATRP, specifically using an activator regenerated by electron
transfer approach under aqueous conditions (49, 50). The experimental
conditions used to create POEGMA polymer brush coatings “grafted from”

substrate surfaces for our experiment are described in extensive detail
elsewhere (8). These methods involve first functionalizing the substrate
surface with a bromide ATRP initiator and then immersing the substrates in
polymerization solution, producing surface-tethered brushes of POEGMA
∼50 nm thick.

Spotting of Antibody Microarrays. All capture/detection Ab pairs and Ag were
obtained from R&D Systems. The dAbs were directly conjugated to fluo-
rophores per the manufacturer’s instructions. The cAbs (1 mg/mL) were
spotted onto POEGMA-coated substrates using a PerkinElmer Piezorray
noncontact printer under ambient conditions at 1 mg/mL concentration.
Spots of soluble detection reagents were composed of dAbs (1 mg/mL)
mixed with excipient (1 mg/mL PEG 115,000 or 0.25 mg/mL trehalose)
and printed in a similar fashion. For experiments using fingerstick blood
(Fig. 2), spots of heparin were also included in arrays to maintain anti-
coagulation. After printing, D4 chips were placed under vacuum dessication
(30 KPa) overnight to facilitate noncovalent immobilization of Abs into the
polymer brush.

D4 Immunoassay. To generate dose–response curves, D4 chips were in-
cubated with dilution series of analyte-spiked calf serum (Clontech) or whole
chicken blood (Innovative Research, Inc.) for 90 min. Substrates were then
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briefly rinsed in 0.1% Tween-20/PBS then dried. Arrays were imaged on an
Axon Genepix 4400 tabletop scanner (Molecular Devices, LLC). The limit-of-
blank (LOB) was estimated from the mean fluorescence intensity (μ) and SD
(σ) from 10 blank samples, defined as LOB = μblank + 1.645σblank, as described
by Armbruster and Pry (51). LOD was estimated from spiked low-
concentration samples (LCS) above the LOB, such that LOD = LOB +
1.645σLCS. Low, intermediate, and high concentrations within the working
range of each assay were used to determine the COVintra and COVinter. The
dynamic range (DR) was defined as the range of concentrations from the
LOD to the greatest concentration that had a fluorescence signal greater
than 3σ of that from the next-lower concentration in the dilutions series.
Data were fit to a five-parameter logistic (5-PL) fit curve (52) using OriginPro
9.0 (OriginLab Corp.). Details on the effect of shorter incubation times
(15 min and 60 min) on assay results are shown in SI Appendix, Fig. S2.

D4 and ELISA Measurements of Patient Leptin. Approval for clinical studies was
obtained from the Duke University Health System Institutional Review Board
(protocol no. Pro00064838). Parental assent and subject assent were first
obtained, and then 0.5–1.0 mL of blood was drawn in a lavender-top col-
lection tube containing K2-EDTA. For D4 assays in whole blood the blood
was directly applied to D4 chips immediately after collection then processed
and analyzed as usual. For D4-sandwich immunoassay comparisons the tube
was then centrifuged for 10 min at 1,500 × g, and the resulting serum was
aliquoted into cryovials and stored at −80 °C for later use. Samples were
then thawed and analyzed with D4 and ELISA in parallel. Standard leptin
sandwich immunoassays (Quantikine ELISA kit; R&D Systems) were per-
formed per the manufacturer’s instructions, which required a 100× dilution
with assay diluent buffer for all specimens. For D4 measurements, specimens
from lean patients were directly run without dilution. In contrast, we found
that two obese patient specimens had extremely high leptin levels, above
the upper limit of quantitation of the leptin D4. Thus, all specimens from
obese patients (to maintain consistency) were diluted 10× with whole calf
serum (and not sandwich immunoassay diluent buffer, to effectively main-
tain complexity of the biological milieu) before running the leptin D4.

Mobile-Phone Imaging of D4 Arrays. The mobile phone-based D4 assay reader
device was created by integrating a 3D-printed optomechanical attachment
to a smartphone (Lumia 1020; Nokia) which included an oblique illumination
source for highly sensitive fluorescence detection (SI Appendix, Fig. S5) (22,
23). A standard microscope slide can be inserted into the smartphone at-

tachment from the side and illuminated by an excitation beam from a
battery-powered laser diode (638 nm, 180 mW; Mitsubishi Electric) at an
incidence of ∼75° from the back side (SI Appendix, Fig. S5A). The fluores-
cence signal of the sample was collected from the other side of the glass
slide by an external lens (f2 = 2.6 mm; UCTronics) and passed through an
emission filter (690/50 nm; Semrock) before entering the smartphone cam-
era unit (SI Appendix, Fig. S5A). The smartphone camera is equipped with a
2/3-inch complementary metal-oxide semiconductor sensor with 41 mega-
pixels and 1.12 μm in pixel pitch. The default smartphone camera lens as-
sembly (Carl Zeiss) has an effective focal length of f1 = ∼6.86 mm, and
therefore the nominal magnification (M) of the smartphone-based fluo-
rescence microscope is M = ∼2.6× . This mobile microscope design provides a
half-pitch resolution of ∼0.98 μm over an imaging field of view of ∼0.8 mm2

as characterized earlier (53). The size of the device is about 14.5 × 8.0 ×
7.8 cm in length, width, and height, respectively, and the weight of the
attachment excluding the smartphone is ∼185 g. For a typical fluorescence
image, an integration time of 4 s was used on the mobile phone. Fluores-
cence images were initially saved in raw DNG format (7,152 × 5,368 pixels)
on the phone memory and subsequently converted into 16-bit TIFF for fur-
ther analysis. Image analysis and quantification were performed by ImageJ
on a desktop computer for this study and can be conducted by a custom-
developed smart application running on the same phone in future designs.
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