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ABSTRACT

Autonomous vehicle teams have great potential in a wide range of maritime sensing
applications, including mine countermeasures (MCM). A key enabler for successfully
employing autonomous vehicles in MCM missions is motion planning, a collection of
algorithms for designing trajectories that vehicles must follow. For maximum utility,
these algorithms must consider the capabilities and limitations of each team member.
At a minimum, they should incorporate dynamic and operational constraints to ensure
trajectories are feasible. Another goal is maximizing sensor performance in the presence
of uncertainty. Optimal control provides a useful framework for solving these types of
motion planning problems with dynamic constraints and different performance objectives,
but they usually require numerical solutions. Recent advances in numerical methods
have produced a general mathematical and computational framework for numerically
solving optimal control problems with parameter uncertainty—generalized optimal control
(GenOC)—thus making it possible to numerically solve optimal search problems with
multiple searcher, sensor, and target models.

In this dissertation, we use the GenOC framework to solve motion planning problems
for different MCM search missions conducted by autonomous surface and underwater
vehicles. Physics-based sonar detection models are developed for operationally relevant
MCM sensors, and the resulting optimal search trajectories improve mine detection
performance over conventional lawnmower survey patterns—especially under time or
resource constraints. Simulation results highlight the flexibility of this approach for
optimal motion planning and pre-mission analysis. Finally, a novel application of this
framework is presented to address inverse problems relating search performance to sensor
design, team composition, and mission planning for MCM CONOPS development.
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CHAPTER 1:
Introduction

Over the last two decades, unmanned vehicle systems have grown steadily more capable,
reliable, and ubiquitous. Most systems, however, are still designed to conduct specific mis-
sion sets in a particular domain, with capabilities largely dependent on sensor payloads.
As system designers increasingly turn to commercial technologies and open architectures,
it is easier than ever for robotic systems to inter-operate. As a result, multiple dissimilar
vehicles can be combined into a collaborative team to overcome individual vehicle lim-
itations and deliver advanced capabilities—even across operating domains. Autonomous
vehicle teams have great potential in a wide range of scientific, commercial and defense
applications, and they are especially well-suited for remote sensing in maritime domains.

To maximize the utility of a heterogeneous vehicle team for a given sensing mission, motion
planning algorithms must consider the capabilities and limitations of each team member.
At a minimum, they should incorporate dynamic and operational constraints to produce
feasible trajectories. Optimization techniques can be used to allocate effort according to
individual vehicles’ sensor performance. Such techniques can produce motion plans which
are superior to conventional “lawnmower” survey patterns, which may be sub-optimal for
certain sensors and infeasible for under-actuated vehicles to follow exactly.

Autonomous systems must also operate with imperfect information about their environ-
ment. This is particularly true in the maritime domain, where sensor accuracy usually
depends on acoustic conditions and vehicle motion is subject to unknown disturbances at
the water surface. In underwater search applications, the ability to detect and localize a
target with sonar is impacted by several factors including acoustic noise, ambiguous ge-
ometry, and aspect-dependence. Consequently, the performance of an autonomous system
may depend greatly on its ability to cope with uncertainty. Motion planning algorithms
which consider uncertainty, therefore, can increase a system’s overall robustness.

Optimal control provides a useful mathematical framework for solving motion planning
problems with nonlinear dynamic constraints and different performance criteria [1], [2],
but these problems are extremely difficult to solve analytically. Pseudospectral computa-
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tional methods are a powerful tool for solving these problems numerically [3], [4]. Re-
cent developments in numerical methods have made it possible to explicitly incorporate
parameter uncertainty into the objective function of an optimal control problem [5]–[10].
Moreover, these generalized optimal control (GenOC) problems can incorporate sensor per-
formance models to produce optimal vehicle trajectories for a given sensor configuration.
Researchers have successfully applied these methods to solve motion planning problems
with complex, multi-agent interactions in a variety of scenarios including optimal search,
path coverage, and force protection [11].

This dissertation employs the GenOC framework as a mission planning tool for different
autonomous vehicles conducting sensing missions for mine countermeasures (MCM). In
this chapter, we first describe the motivation for developing motion planning algorithms
for heterogeneous autonomous vehicle teams. Next, we provide context for our technical
approach by reviewing relevant literature in the areas of MCM, search theory and sensor
modeling, coverage planning, and optimal control. Finally, we highlight specific contribu-
tions developed during our investigation.

1.1 Motivation
There are a number of complex sensing missions which could utilize autonomous vehicle
teams to deliver a mix of different capabilities. RIVERWATCH, for example, is a riverine
environmental monitoring system comprised of an unmanned surface vessel (USV) which
can launch and recover an unmanned aerial vehicle (UAV) to provide far-field sensing
and improve the USV’s perceptual map of the environment for safe navigation [12]. Au-
tonomous vehicle teams will play an even bigger role in missions and environments where
safety is paramount. The U.S. Navy has embraced this vision, and has invested heavily in
vehicle and sensor technologies for mine countermeasures (MCM). In general, MCM oper-
ations are conducted in a sequence of phases, each performed by various types of vehicles
and sensors [13]. Presently, these assets require dedicated support from manned platforms,
but a current thrust of naval research is aimed at enabling autonomous systems to support
other unmanned vehicles during MCM operations [14]. Since 2012, the Office of Naval
Research (ONR) has developed a concept of operations (CONOPS) for autonomous mine
hunting called Single Sortie Detect to Engage (SS-DTE). Figure 1.1 provides an artist’s
rendering of this future system in action. Under the SS-DTE concept, a USV host will

2



Figure 1.1. Concept for Single Sortie Detect to Engage for MCM operations.
Source: [16].

deploy, recover, and sustain (i.e., recharge batteries, extract and process collected data, up-
date mission objectives, etc.) multiple classes of autonomous underwater vehicles (AUVs)
conducting different phases of a mine hunting operation [15].

Other concepts for using collaborative autonomous vehicles in MCM operations have been
proposed. Researchers at the North Atlantic Treaty Organization (NATO) Undersea Re-
search Centre (NURC), for example, have developed autonomous maneuvers for keeping
a human-selected target in the sonar field of view of a USV to demonstrate a nascent target
reacquisition behavior [17]. NURC researchers subsequently tested a concept whereby a
highly capable USV detects and localizes a target in sonar imagery in order to guide an
expendable neutralizer into the target [18]. The Naval Postgraduate School (NPS) Center
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Figure 1.2. NPS CAVR Autonomous Surface and Underwater Vehicles.

for Autonomous Vehicle Research (CAVR) regularly deploys fleet-representative vehicles
and sensors in support of naval research objectives. Figure 1.2 shows two such vehicles,
a SeaFox USV and a Remote Environmental Monitoring UnitS (REMUS) 100 AUV in
Monterey Harbor. Motivated by their untapped potential for collaboration in MCM sensing
missions, this dissertation develops sensor-based motion planning strategies for a hetero-
geneous team comprised of these types of vehicles.

1.2 Background
Sensor-based motion planning means different things to different people. Choset and Bur-
dick define this term as an algorithm that “incorporates sensor information, reflecting the
current state of the environment, into a robot’s planning process” [19]. The authors dis-
tinguish this approach from classical planning, which has the luxury of full knowledge
about the world before planning begins. In this context, “sensor-based” can refer to any
online planning algorithm. Another definition for sensor planning, or sensor path plan-

ning used in the literature “refers to the problem of determining a strategy for gathering
sensor measurements to support a sensing objective” [20]–[22]. In this dissertation, we
extend this definition to develop motion plans which explicitly optimize the performance
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of a given sensor on a given platform for a given mission. This work is motivated by naval
underwater MCM missions, which are fundamentally sensing problems conducted to de-
tect and classify mine targets. In this context, sensor performance refers to the probability
of detecting a target in the available mission time. An optimal motion plan maximizes this
performance objective. We achieve this in our formulation by minimizing its complement,
the probability of failing to detect a target.

1.2.1 Mine Countermeasures
Washburn and Kress describe three methods for clearing a minefield: destruction, hunting,
and sweeping. Destruction refers to the application of “sufficient lethal force” to destroy
all the mines in an area. The monetary cost and severe impact to the environment of this
approach usually make destruction a method of last resort. Therefore, MCM operations
traditionally comprise both mine hunting and minesweeping tasks. The authors provide the
following definitions:

One sweeps for mines by attempting to cause the mine’s sensors to detonate the
mine in circumstances where the detonation is harmless. If the mine is located
by some means not involving its own sensors, and then either destroyed or
avoided, one is instead hunting . . . Sweeping and hunting are both essentially
search problems. [23]

The U.S. Navy (USN)’s MCM capabilities and practices are summarized in 21st Century

U.S. Navy Mine Warfare, published by the Program Executive Office for Littoral and Mine
Warfare. The authors state that since “minesweeping is more risky to the sweeping platform
than mine hunting and, when completed, generally leaves behind a higher residual risk to
vessels that transit the swept area” most MCM operational plans minimize risk by including
both mine hunting and mine sweeping [24]. This dissertation considers only mine hunting
operations, which are further described as follows:

Mine hunting provides a relatively high degree of certainty that an area of con-
cern is mine-free or the risk of a mine strike has been minimized. It comprises
five steps: detection, classification, localization, identification, and neutraliza-
tion. Sonars are the primary means to detect and classify mine-like contacts.
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Identifying each contact as a mine or a “NOMBO” (Non-Mine/Mine-Like Bot-
tom Object) can also be carried out by EOD divers and the Navy’s marine
mammal systems, video cameras on mine neutralization vehicles, and laser
systems. In this regard, advanced sonars on unmanned underwater vehicles
offer good promise to enhance mine-hunting capabilities. [24]

Our approach concerns the latter, since the performance of mine hunting sonars are directly
related to the capabilities of the vehicles that deploy them. Optimizing sensor performance
through vehicle motion is the objective of this dissertation, hence the title: Optimal Sensor-

Based Motion Planning for Autonomous Vehicle Teams. We do not address the neutraliza-
tion task, but this is often considered a special case of an identification mission whereby
an autonomous neutralizer vehicle reacquires (and destroys) a previously-identified target.
Mine hunting operations face several challenges due to uncertainty, namely:

A contact that is classified as mine-like must be identified as a mine or
NOMBO and, if a mine, rendered safe before the Navy mine countermeasures
commander . . . can declare a route or area cleared. Depending on the accuracy
of the location of the contact, the characteristics of the bottom (e.g., smooth
or rough), sediment type, amount of clutter, and the depth of the water, among
other factors, the process of reacquisition and identification of each mine-like
contact can take several hours. [24]

We note that while the SS-DTE concept “gets the man out of the minefield” by replacing
manned AUV support vessels with a special-purpose USV, it otherwise follows the same
operational paradigm employed today to carry out the five steps of detection, classifica-
tion, localization, identification, and neutralization. This represents a bottleneck in MCM
operations. In fact, a Naval Research Advisory Committee report from 2000 states:

While time lines have shortened, current sensors require repeated acquisition of
contacts to determine whether they are mine-like or NOMBOs to make positive
identification . . . The critical issue here is that this process is presently done
serially—one goes through the detection/classification processes by having to
reacquire the detected objects in order to classify them, and to do so again if
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there is a decision to neutralize. This is not only very time consuming, but
it also puts the MCM forces at risk, since little of the required action can be
carried out clandestinely at present. [25]

Since the publication of this report, AUVs have improved the Navy’s ability to conduct
clandestine actions at greatly reduced risk to MCM personnel, but this serialized process
is still time-consuming. We suggest that outfitting a host USV with wide-area mine detec-
tion sonar has potential to reduce current operational timelines by conducting the first four
steps in parallel. This dissertation develops sensor-based motion planning strategies that
investigate these new CONOPS.

Mine hunting tasks are often conducted in three distinct phases: 1) wide area detection
and localization of mine-like objects (MLOs) with long-range, low-resolution sensors; 2)
identification with short-range, high-resolution sensors; and 3) neutralization [26]. Phases
one and two are increasingly conducted with autonomous vehicles, while phase three is
still conducted primarily with explosive ordnance disposal (EOD) divers and/or remotely-
operated vehicles. Therefore, in this dissertation, we focus on sensor-based motion plan-
ning for phases one and two. The literature provides examples of planning methods ap-
plicable to both phases. Phase one is typically treated as a coverage problem [26]–[28],
especially when there is no prior information about mine locations. Large search areas are
usually subdivided into smaller regions which can be covered by a typical AUV mission
duration [27], or subdivided by bottom type [29], so that different sensors, track spacing,
etc. can be tailored to the local environment. Several coverage path planning methods may
be used, but vehicle paths for phase one are usually based on a deterministic coverage
pattern like the popular lawnmower pattern.

Phase two can be thought of as a targeted coverage problem, guided by prior information
about the expected target locations. When a vehicle must visit multiple MLOs during a
reacquire-identify (RID) mission, this is akin to solving a traveling salesman problem [28]
to visit each target location. Typically, a “standard” multiple aspect coverage pattern com-
prised of parallel tracks at different headings is then executed above each target. This
method ensures that high-resolution imagery is collected from several different aspect an-
gles in order to aid the identification effort. Often, the choice of sensor dictates the type of
vehicle paths considered for RID missions. Sidescan sonar, for example, does not produce
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good imagery when the search platform does not follow level, straight line paths. There-
fore, these planning methods do not consider vehicle dynamics beyond speed, minimum
turning radius and/or the time required to make a turn. Some methods account for the dis-
tance required to stabilize on the next track line after making a U-turn [30]. When planning
lawnmower-type coverage patterns for sidescan sonar (SSS), some algorithms optimize
over the space of track line headings [22], [31].

Johannsson et al. propose an algorithm for conducting both mine detection and RID mis-
sions from a single AUV [32]. The planning algorithm considers the benefit of altering the
plan to inspect a detected object immediately, or postpone identification until later, i.e., if
the current plan will already revisit the area where the detection occurred. This approach
is an exception to the current MCM practice of conducting phase two tasks with different
vehicles and sensors than the ones utilized for phase one.

The literature contains a few examples which conduct MCM tasks via heterogeneous vehi-
cle teams. Sariel et al. proposes a multi-vehicle architecture in which AUVs detect MLOs
and crawler robots revisit these locations to identify the targets with cameras. This imple-
mentation provides a mechanism for resource management; the available AUVs negotiate
amongst themselves to select from all possible waypoint locations, effectively dividing the
search area by construction of their search paths [33]. This example does not incorporate
realistic vehicle dynamics or sensor models, however. Bays et al. describe an automated
scheduling system for the Navy’s SS-DTE program, which schedules a sequence of opera-
tions for the team to complete, including USV transit operations to rapidly carry AUVs to
and from their search areas [34].

Shafer et al. describe a developmental system comprised of USVs and AUVs that can
carry different sonar to cooperatively conduct phases one and two. The authors employ
a behavior-based architecture that “performs multi-objective optimization to reconcile be-
havior output” from a set of desired behaviors [35]. In this approach, each vehicle stores a
gridded representation of the environment. When a vehicle’s sensor footprint passes over a
cell, the “clearance level” for that cell is updated and communicated to the other vehicles in
the team. In this manner, the authors successfully demonstrate various cooperative search
strategies. We note that the ideas expressed by these authors are fundamentally similar to
those presented in this dissertation. The main distinction of our approach, therefore, is the
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direct optimization of sensor performance through vehicle motion, rather than maximizing

sensor coverage through cooperative, emergent behaviors.

1.2.2 Search Theory
Search theory as a discipline in operations research grew out of work by the Antisubmarine
Warfare Operations Research Group in World War II, first published by Koopman in 1946
[36] and reprinted in expanded form in 1980 [37]. These principles are still widely used
today, and are the foundation for many practical search planning methods defined in the
International Aeronautical and Maritime Search and Rescue (IAMSAR) manual, as well
as computer-based methods like Search and Rescue Optimal Planning System (SAROPS)
[38]. Many of these ideas have been summarized in a report developed for the search and
rescue (SAR) community by [39]. Stone extended these concepts to address the optimal
allocation of search effort in [40]. In [41], Stone lists three basic elements of an optimal
search problem:

1. A probability distribution to quantify information about the target’s location.
2. A detection function that relates search effort to the probability of detection.
3. Constraints on the search effort.

Chapter 3 of this dissertation formulates different MCM missions using various combina-
tions of these elements. Stone illustrates the application of optimal search techniques for
finding a drifting vessel lost at sea in [42], and this example problem has many of the hall-
marks of MCM mission planning. Specifically, it involves sub-dividing a large search area
into discrete cells, each with an assumed prior target distribution model, and specifying par-
allel search paths according to the sensor sweep width. Detection probability as a function
of time (for random and ideal search strategies) and as a function of parallel path spacing
are both presented. Although searching for stationary targets (e.g., mines) is simpler than
searching for moving targets, MCM missions are complicated by sea floor characteristics
and clutter which can appear as mines in sonar imagery.

Stone and Stanshine consider optimal search problems in the presence of these false tar-
gets in [43], with additional theorems and solution strategies presented in [40]. In short,
this approach assumes that search is conducted in two phases: 1) broad search with a
broad-search sensor to detect contacts, and 2) contact investigation by a sensor with a
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much smaller sweep width to identify which contacts are actual targets. The question,
then, is how to optimally allocate search effort between these two phases, depending on
the contact investigation policy. Results are provided for conclusive contact investigation
policies, which, once begun, must continue until a contact is identified as a true or false
target. While searchers are not required to initiate a contact investigation upon each de-
tection event, search strategies which implement so-called immediate contact investigation
policies outperform those that delay this operation [40]. A recent example of this approach,
applied to a military surveillance operation, utilizes a verification team to investigate con-
tacts reported by an imperfect sensor in order to find a target in minimum time [44].

Stone’s solution strategies for problems with false targets mirror MCM search and RID
missions. We remark, however, that current operational practice does not conduct these
missions concurrently. Nevertheless, Stone’s results suggest that efficiencies can be real-
ized by cooperative, heterogeneous vehicle teams that can implement immediate contact
investigation. Since autonomous systems are reaching a level of maturity that makes such
cooperation possible, this is an area worthy of future development. While this disserta-
tion describes a method for generating optimal sensor-based search trajectories for a team
of dissimilar vehicles and sensors, the method does not yet accommodate motion plans
to conduct MCM search and RID missions concurrently. This capability would allow mis-
sion planners to address false targets through immediate contact investigation in the manner
of [40]. At present, however, we operate under the prevailing operational assumption that
separate RID missions are required to positively identify mine targets from a list of MLOs
detected by an initial survey. We then utilize the GenOC solution framework to generate
motion plans for both types of MCM missions.

The field of search theory is vast and continuously evolving. Benkoski provides a “com-
prehensive review of the existing published search theory literature,” with specific applica-
tions divided according to “one-sided search” for non-evading targets, and “search games”
whereby targets may work to thwart the search operation [45]. More recently, Chung et
al. surveyed the results in this field with particular relevance to search operations by mo-
bile robots. These authors generate a “partial taxonomy of the parameter space for search
and pursuit-evasion models” [46]. This taxonomy includes branches for searcher, target,
and environment models. The searcher branch incorporates models that quantify searcher
motion, sensor detection, and the number and type of search agents available. The target
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branch categorizes applications by the number and type of targets being hunted, whether
targets are stationary or mobile, and if mobile, whether their motion is adversarial. Envi-
ronmental models, meanwhile, are subdivided into continuous and discrete representations.
Under this taxonomy, the search problems considered in this dissertation include:

• one or more heterogeneous vehicles and sensors, conducting a one-sided search for
• one or more stationary targets, with known or unknown (uniform) prior distributions,
• in continuous time and space.

Historically, these problems derive from Koopman’s probabilistic search results and de-
fine measures of performance based on expected value [46]. This dissertation uses the
same theoretical approach, developing an objective function in Chapter 3 to quantify the
expected probability of failing to detect a target. Optimal search trajectories that minimize
this objective function in continuous time and space can be generated via numerical ap-
proximation techniques in the GenOC framework. In fact, Stone et al. refer to “optimal
search in continuous time and space subject to constraints” as uncertain optimal control

problems [47]. These techniques distinguish our approach from optimal search strategies

which rely on discrete representations of the environment, searchers, and/or sensors.

Hollinger et al. propose methods for distributed, multi-vehicle search planning that al-
low searchers to share and fuse data about a target’s position and improve team perfor-
mance [48], [49]. Realistic communications constraints are enforced by a physics-based
model of the acoustic communications channel, but no motion constraints are imposed on
searcher motion, detection is simulated by ideal sensor models, and search plans consist
of transitions between discrete grid cells. Another information-based, discrete search for-
mulation is presented by Baylog and Wettergren in [50]. The authors model the intake
of sensor information during a search operation as an information flow through a com-
munications channel. This approach replaces traditional sensor models with information
measures that determine how much information can be gained from visiting discrete cells
in the search space. The resulting optimal search plan comprises an optimal cell visitation

sequence. While this framework can incorporate true target detections and false positives
as a function of the channel characteristics in each cell, this approach does not address
searcher dynamics.
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1.2.3 Sensor Performance Modeling
Our definition for sensor-based motion planning requires a model of the sensor whose per-
formance we seek to optimize. For underwater applications, sonar is the sensor of choice.
The MCM missions discussed thus far employ several different types of sonar, and mea-
sures of performance might therefore depend upon a specific mission objective. Operators
planning a wide area survey with a long-range sonar may be concerned only with detect-

ing MLOs. Meanwhile, operators planning a RID mission with high-resolution SSS or
multibeam sonar may be concerned only with achieving complete coverage of a designated
area of the sea floor. Even though several algorithms have been proposed that guarantee
complete coverage, this objective might not ensure even coverage, e.g., due to localized
environmental conditions. Therefore, we seek an objective function that can be applied to
different sensing objectives, yet still model realistic performance. In this dissertation, we
address phase one and two MCM missions as optimal search problems, and these prob-
lems typically require some type of detection model. Therefore, we make the following
assumptions with regard to mission performance:

1. Phase one succeeds if we detect a target with a long-range sensor.
2. Phase two succeeds if we detect a previously detected target with a high-resolution

sensor.

Many of the detection models developed for search theory by Koopman [36] are still in
wide use today. Washburn provides an excellent overview in [51], including models based
on definite range, lateral range curves, and the inverse cube law, as well as detection rates
based on “glimpses” with a physical sonar or radar model. The models derived in Chap-
ter 2 of this disseration are based on signal excess and utilize the latter approach. Hansen
provides a useful introduction to the principles of underwater sound for different sonar
applications in [52]. This information is helpful in understanding the concept of signal
excess. For the interested reader, a number of detailed texts on this subject are available,
including [53]–[56], to name a few.

The sonar detection models developed in this dissertation were designed to rapidly calcu-
late signal excess within a trajectory optimization routine, so complex environmental and
reverberation effects are neglected. Other sonar performance models, including the U.S.
Navy’s Comprehensive Acoustic System Simulation (CASS), can model these effects via
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different mathematical models tailored to a given operational environment. It has been used
to analyze the effects of uncertain environmental data on mine detection performance [57],
[58], but this model is too computationally-intensive for our application.

There are a number of existing sonar perfomance models to choose from (Etter lists
twenty six! [56]), but many do not lend themselves to motion planning, particularly if
environmental effects are desired. Once exception is Planning Aid for Tasking Hetero-
geneous Assets (PATHA), which uses Extensible Performance and Evaluation Suite for
Sonar (ESPRESSO), NATO’s standard minehunting sonar performance prediction tool.
This planning tool optimally assigns vehicles to straight line track segments according
to their sensing capabilities and the local sea floor characteristics [59]. PATHA estimates
detection probabilities by generating lateral range curves for a given sonar, target, seabed
type, and vehicle platform; it does not generate optimal trajectories for these vehicles to
follow, but simply specifies a location for their desired track lines.

Finally, some applications analyze sonar performance based on the imagery they produce,
and have developed models that simulate image construction by SSS and high-resolution
forward-looking sonar (FLS) [60], including modern imaging sonars like the BlueView
P900 FLS [61], [62]. These methods can be useful for simulating the performance of
computer-aided detection and classification algorithms on synthetic sonar imagery, accel-
erating the development of new capabilities when actual sonar data is scarce.

1.2.4 Coverage
For many robotic sensing applications, the stated objective is complete coverage of an
operating area with a sensor. A typical example is conducting a survey with an AUV to map
a region of the sea floor with high-resolution sonar imagery. In this dissertation, however,
the objective of sensor-based motion planning is to optimize the detection performance of
a given sensor. The difference is nuanced, but implies that a sensor’s performance can vary
along a path that was designed to obtain complete coverage. This is realistic, as we know
that factors like vehicle motion or localized environmental conditions at points along the
robot’s path can adversely impact its sensor performance.

Cai and Ferrari propose a sensor planning algorithm for classifying multiple fixed targets
by strict placement of a robotic sensor. The algorithm explicitly accounts for sensor place-
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ment by defining a subset of the robot’s configuration space from which the sensor’s field of
view (FOV), rigidly attached to the robot, will intersect each target. It then uses an approx-
imate cell-decomposition method to find a path that maximizes an information-theoretic
metric. The proposed application is similar to an MCM RID mission: a ground robot is
tasked with revisiting targets previously detected by an aircraft’s infrared sensor, and de-
ploying a ground penetrating radar to positively identify each target [20]. A weakness of
this algorithm is that near-perfect information about the robot and its environment are re-
quired. While this situation might be possible for ground robots, it is certainly not the case
for underwater vehicles. Nevertheless, this algorithm is representative of motion planning
based on a sensor’s FOV, or footprint; but not necessarily on its performance. The sonar
detection models developed in this dissertation incorporate three-dimensional FOVs based
on realistic sonar design criteria, however these FOV limits are reflected primarily through
the sonar’s detection performance.

Coverage planning is another method which has historically focused more on sensor place-
ment than sensor performance. A number of coverage planning algorithms for robotics
exist. In his survey of this literature, Choset describes “applications such as floor clean-
ing, lawn mowing, mine hunting, harvesting, painting, etc. [that] require a coverage path

planning algorithm, which as its name suggests, specifically emphasizes the space swept
out by the robot’s sensor” [63]. Historically, coverage planners first decompose a two-
dimensional planar region into cells which are easy to cover individually, then achieve
provably complete coverage by planning a path that visits each region. A famous ex-
ample of this approach is the boustrophodon exact cellular decomposition by Choset and
Pignon [64], which allows each cell to be covered by simple back-and-forth motions in an
“ox-plowing” or lawnmower pattern. Latimer et al. have extended this approach to multiple
vehicles [65]. Similar approaches have produced coverage path planners which optimize
the robot’s path length or minimize the number of turns, e.g., [66]. A recent survey of
this literature in [67] reports on efforts to develop path planning approaches to cover three-
dimensional surfaces such as urban structures and underwater bathymetry [68].
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Coverage planning algorithms are used extensively to plan underwater surveys with imag-
ing sonar. As Williams explains:

The path-planning approach currently used in practice for underwater mine
detection operations is to design a simple ladder survey with equidistant tracks
over the mission area. The adherence to traversing parallel tracks in MCM
operations is partly because the collected raw data is subsequently processed
into imagery (e.g., synthetic aperture sonar (SAS) imagery), for which such
data is preferable. Thus, the crux of the path-planning task becomes how to
design the spacing of (parallel) tracks. [69]

Conceding that parallel survey tracks are often required to satisfy sonar imagery require-
ments, Williams stresses that historical coverage planning algorithms which produce equal

track spacing are sub-optimal for MCM operations. Specifically, they do not account for
sensor performance along a given track line. Mine detection performance is usually a func-
tion of highlight-to-shadow patterns in sonar images that indicate an object proud of the sea
floor. As these patterns depend on range, geometry, and seabed type, Williams proposes
an algorithm to determine the optimal track spacing based on these characteristics, in con-
junction with SAS data. The algorithm outperforms uniform spacing, as measured by the
proportion of search area with detection probability above a given threshold [69].

Paull et al. develop sensor-driven online coverage algorithms designed to optimize the in-
formation collected by a sensor. These algorithms utilize information gain from sidescan
sonar, modeled by classification confidence [21] or detection probability [22] (both ob-
tained from lateral range curves of the environment computed by ESPRESSO). While these
algorithms incorporate sonar performance data in the manner of [69], they have the added
advantage of adapting their patterns to align survey tracks on headings which maximize
their objective function. Planning is accomplished on a discrete hexagonal decomposition.
Another multi-objective coverage planning method which accounts for sensor detection
performance via lateral range curves is described by Abreu and Matos [26]. The authors
claim that this approach, which uses evolutionary algorithms to optimize the AUV’s sur-
vey path, obtains higher detection probabilities than the optimal track spacing algorithm
suggested by [69].
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Yetkin et al. propose a method for estimating the number of targets in each cell of a dis-
crete grid. This algorithm assumes that probabilistic sensor performance corresponds to
the environment in each cell, and these environments are drawn stochastically from a fi-
nite set of possible environments. The authors propose a “decision-theoretic cost function
for realistic search problems that include the effects of false alarms, missed detections,
uncertainty in the environment, and any prior information” about the number of objects
at a location [70]. As with the other algorithms described above, sidescan sonar motion
constraints are imposed, so this algorithm determines the best rows to traverse in the time
available. After sampling the first cell in its current plan, it adaptively plans the first N steps
of a new optimal path in a receding horizon fashion. Simulations reveal that this adaptive
approach outperforms a traditional lawnmower pattern. While no other MCM planning or
coverage method I encountered in the literature incorporated all of these factors on search
performance, the current implementation of this approach lacks realistic sensor models and
vehicle dynamics.

All of these approaches implement an exhaustive area coverage pattern by a set of straight-
line survey tracks. In de-mining applications, Acar et al. observe that “exhaustive coverage
is the best strategy when the robot has unlimited time (less than what is required by a ran-
dom strategy) and no a priori information” [71]. When time or resource constraints prevent
complete coverage, however, these authors recommend a probabilistic planning method
to discover and/or exploit any prior information about the minefield itself. The rationale
for this approach is that minefields typically have a regular pattern arising from traditional
mine-laying methods. Once this pattern is discovered, a robot can conduct an opportunistic
search of expected mine locations. Kim and Healey reach a similar conclusion in [72], and
provide detailed simulation results comparing random and deterministic search strategies
for mine clearance operations by robots with different capabilities.

While the sensor-based motion planning algorithm in this dissertation has commonalities
with coverage planning methods that attempt to maximize sonar performance, our approach
does not rely on straight-line survey tracks. Indeed, the GenOC framework can accommo-
date complete six-degrees of freedom (DOF) models of search vehicle dynamics to generate
feasible vehicle trajectories that optimize detection performance.
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1.2.5 Motion Planning via Optimal Control
LaValle states that “a fundamental need in robotics is to have algorithms that convert high-
level specifications of tasks from humans into low-level descriptions of how to move. The
terms motion planning and trajectory planning are often used for these kinds of problems”
[73]. Under this broad definition, the field of robot motion planning encompasses a number
of widely different applications. Like search theory, the literature dedicated to this field is
already immense. Unlike search theory, however, this field is growing at an exponentially
faster rate. Many texts like [73] provide a good introductory overview of this subject, so
we restrict our discussion to motion planning algorithms based on optimal control.

Hurni presents useful definitions that help distinguish between path planning, motion plan-
ning, and trajectory planning in [74]. Under these definitions, path planning finds feasible
paths from one robot configuration to another; motion planning computes these paths, pa-
rameterized by time; and trajectory planning calculates the complete evolution of a robot’s
state and actuator control variables as a function of time. Therefore, the techniques de-
scribed in this dissertation implement trajectory planning; they generate vehicle state and
control trajectories that optimize a search objective. However, we continue to refer to the
outputs of this process as motion plans in the context of MCM mission planning.

Hurni also compares several path/trajectory planning methods applied to the solution of
a benchmark obstacle avoidance problem. Multiple bug algorithms are implemented, in
addition to various artificial potential field, roadmap, cellular decomposition, and optimal
control-based planning methods. When evaluated against several criteria including opti-
mality, feasibility, computational complexity, and portability, Hurni suggests that optimal
control trajectory planning methods (solved via numeric optimization) outperform all other
methods tested against his benchmark problem [74].

A standard optimal control problem seeks a control trajectory ~u(t) that forces a dy-
namic system ~̇x(t) = ~f

(
~x(t),~u(t), t

)
from its initial state ~x(t0) = ~x0 to a desired fi-

nal state ~x(t f ) = ~x f while minimizing some cost functional. A Bolza cost functional
J[~x(·),~u(·), t0, t f ] comprises an end-point cost E

(
~x(t0),~x(t f ), t0, t f

)
and a running cost

R
(
~x(t),~u(t), t

)
accumulated over the time domain t ∈ [t0, t f ] . In its most general form,

this problem is [75]:
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Standard Optimal Control Problem

minimize
~u(t)

J[~x(·),~u(·), t0, t f ] = E
(
~x(t0),~x(t f ), t0, t f

)
+

∫ t f

t0

R
(
~x(τ),~u(τ), τ

)
~f
(
~x(t),~u(t), t

)
= ~̇x(t) (the state dynamics)

subject to ~e
(
~x(t0),~x(t f ), t0, t f

)
= ~0 (the end-point conditions) (1.1)

~h
(
~x(t),~u(t)

)
≤ ~0 (the state-control path constraints)

For all but the simplest optimal control problems, solutions must be obtained by computa-
tional methods. “Pseudospectral optimal control theory, a term coined by Ross, is a joint
theoretical-computational framework” for solving constrained, nonlinear optimal control
problems [4]. Ross and Karpenko review the theoretical foundations for this framework,
discuss the ramifications for selecting a pseudospectral method, and describe practical im-
plementations which utilize this approach [4]. At its heart, this solution framework trans-
forms an optimal control problem from the physical domain to a computational domain
where it can be approximated by a grid of interpolation nodes (and weighting functions)
that have been carefully selected for convergence. Additional theoretical results are pro-
vided in [3], [75]–[77].

Recent advances in numerical methods have made it possible to explicitly incorporate pa-
rameter uncertainty into the objective function of an optimal control problem. This situa-
tion arises when conducting an optimal search for stationary targets at unknown locations,
or mobile targets whose motion can be conditionally-determined by an uncertain param-
eter. Foraker develops a framework for solving such problems in continuous time and
space as “generalized optimal control problems,” and proves that his proposed “discretiza-
tion schemes are consistent approximations” to the original problem [78]. Foraker et al.
expand upon these results in [6], [7]. The objective functional for this optimal search prob-
lem “involves an expectation of a Bolza-type cost functional over a space of stochastic
parameters” ~ω ∈ Ω ⊂ RNω described by the continuous probability density function (PDF)
φ(~ω) : Ω 7→ R. This yields the generalized optimal control (GenOC) problem [5]:
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Generalized Optimal Control (GenOC) Problem

minimize
~u(t)

J[~x(·),~u(·),T f ] =

∫
Ω

E
(
~x(T f ), ~ω

)
+ G

(∫ Tf

0
R

(
~x(τ),~u(τ), τ, ~ω

)
dτ

)
φ(~ω)d ~ω

~f
(
~x(t),~u(t)

)
= ~̇x(t) (the state dynamics)

subject to ~x(0) − ~x0 = ~0 (the initial condition) (1.2)

~h
(
~u(t)

)
≤ ~0 (the control constraint)

The time domain t ∈ [0,T f ] is used to indicate a specified mission duration T f , and G(·)
is a single-valued function of the integrated running cost R

(
~x(t),~u(t), t

)
. Subsequent work

by Phelps et al. have produced a computational algorithm (with consistency proofs) for
discretizing the parameter space to produce a family of standard optimal control problems
that can be “solved using pseudospectral discretization in the time domain” [5]. Theoretical
foundations for this solution approach are summarized in [47]. Walton further generalizes
this framework to problems “with parameter uncertainty in both the cost and dynamics of
optimal control problems,” and analyzes the consistency of states and costates propagated
by control trajectories [79]. To support these efforts, Walton developed a flexible software
package for specifying and solving these problems via MATLAB. This software allows
users to specify different discretization methods, e.g., Euler or pseudospectral, in the time
and parameter domains, and “automates the creation of features which are crucial to effi-
cient implementation such as gradient information and sparsity patterns” [79]. All of the
simulation results in this dissertation were produced using Walton’s software package.

Finally, we note that Ross et al. define a similar framework for solving optimal control
problems with uncertain, or “tychastic” parameters. The authors refer to these problems
as Riemann-Stieltjes optimal control problems, because their cost functional is given by
a Riemann-Stieltjes “functional of functionals” [80]. When applied to an optimal search
problem, this formulation produces the same objective function as Equation (1.2), which
can be solved via the same computational methods described in [5]. A recent implementa-
tion of this framework to solve a problem with uncertain dynamic constraints is described
in [9].

19



1.3 Contributions
Recent theoretical results in [5], [78], [81] have produced a general mathematical and com-
putational framework for solving optimal control problems with parameter uncertainty—
generalized optimal control (GenOC). Leveraging a numerical toolbox developed in [79],
we formulate and solve several motion planning problems for MCM operations by au-
tonomous vehicles. The application of GenOC to this important naval mission set is a
novel contribution of this dissertation. In addition, this dissertation:

1. Develops physics-based sonar detection models to make the GenOC solution frame-
work operationally relevant to the vehicles and sensors currently employed for MCM.

2. Demonstrates, through specific examples, the utility of this method for both optimal
trajectory planning and pre-operational mission analysis.

3. Highlights how the proposed approach improves mine detection performance vs.
conventional planning methods, especially under time and resource constraints.

4. Illustrates how optimal solutions obtained from this framework can be used to solve
inverse problems related to a specific sonar design or vehicle team configuration.

These features make GenOC an attractive technique for investigating new MCM concepts
of operations (CONOPS). Each contribution is presented sequentially by chapter1, as sum-
marized below.

Chapter 2 derives probabilistic detection models for various mine detection and identifica-
tion sonars carried by MCM vehicles such as the Mk 18 Mod 2 Kingfish and Mk 18 Mod 1
Swordfish AUVs. These models utilize existing techniques from sonar engineering and op-
erations research for predicting sonar performance based on signal excess (computed from
the physics-based sonar equations for a given sonar design) and detection rate. Foraker
implemented simple models of this form to solve optimal search problems in the GenOC
framework [78]. Walton extended this approach to applications beyond optimal search by
replacing detection rates with attrition rate functions, deliberately shaped to model desired
multi-agent interactions [79]. We present a method for shaping each sonar’s detection rate
to accurately reflect its physical field of view in three dimensions. This contribution ex-
plicitly relates a sonar’s performance to the trajectory executed by its search vehicle. Long

1Portions of Chapters 2 through 4 were presented at OCEANS 2016 MTS/IEEE Monterey on September
21, 2016 and will be published in ISBN 978-1-5090-1527-6 (IEEE Catalog Number CFP16OCE-POD).
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acknowledged in the literature as an important aspect of MCM mission planning, this fact
has historically been addressed only by heuristic search patterns.

Chapter 3 presents a flexible method for formulating different MCM operations as opti-
mal search problems readily solved by the GenOC framework. The method’s flexibility
derives from its modular approach. Depending on the prior information available, differ-
ent target distribution models can be constructed to produce motion plans ranging from
wide area mine detection surveys to target identification missions. Similarly, models for
different search vehicles and sensors can be combined to identify the most effective multi-
vehicle team for a given MCM scenario. Chapter 4 demonstrates the ability of the GenOC
framework to solve sensor-based motion planning problems for different single- and multi-
vehicle MCM missions. A single-vehicle example illustrates how optimal trajectories out-
perform conventional coverage patterns when the time available for conducting a search is
limited.

Finally, Chapter 5 proposes a novel use of the GenOC framework to investigate inverse
problems concerning the best vehicle or sensor configuration to use in a given MCM sce-
nario. The ability to rapidly solve multiple optimal search problems makes Monte Carlo
analysis possible, providing engineering insights about the search assets themselves. This
capability stems from the choice of sonar models derived in Chapter 2, which reflect spe-
cific sonar design parameters. Hence, it is possible to analyze the impact of parame-
ter changes on optimal search performance and recommend improvements that yield the
biggest potential payoff. This dissertation provides examples of several inverse problems
and highlights an added benefit of this approach. Namely, since each simulation produces
a set of optimal search trajectories for the system under test, inverse problem analyses can
be used to construct a library of optimal motion plans for a wide array of MCM missions.
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CHAPTER 2:
Sonar Detection Models

In this chapter, we develop probabilistic models for two types of sensors routinely deployed
during mine countermeasures (MCM) operations: forward-looking sonar (FLS) and sides-
can sonar (SSS). While these sonar systems can differ widely according to their intended
application, they share several common characteristics. First, both FLS and SSS are exam-
ples of active sonar. That is, they transmit acoustic signals into the water and process the
echoes reflected from objects in the environment to detect their presence. For a given sonar,
this process occurs at an average rate, so detection performance depends on time. Second,
active sonar systems employ transmit/receive arrays of transducers to improve detection
performance in a desired direction and often add acoustic baffling to reject echoes from
unwanted directions. A sonar design’s array geometry therefore produces an effective field
of view (FOV) within which targets can be reliably detected, so detection performance
also depends on a sonar’s orientation relative to targets in the environment. Last, since
these sonar systems are rigidly-mounted onto a vehicle platform, the sonar’s orientation
ultimately depends on that vehicle’s trajectory through the search area. This trajectory de-
fines the position, orientation, and velocity of the vehicle as a function of time. Since these
quantities are constrained by the vehicle’s equations of motion, we note that a sonar’s over-
all detection performance is a function not only of its design parameters but also its vehicle
platform dynamics.

Assuming that detection performance defines a sonar’s effectiveness for a given mission,
this metric can be generalized to any sonar. That is, a mission to detect and localize mines
with a long-range, low-resolution sonar has the same objective as a mission to reacquire
and identify these mines with a high-resolution sonar. We assume that detection with such
a sonar is sufficient for successful identification to occur. Under these assumptions, sensor-
based motion planning algorithms for mine countermeasures (MCM) should employ sonar
detection models with the following characteristics:

• Detection probability reflects an actual sonar’s dependence on array design, vehicle
dynamics, and three-dimensional search geometry. In this way simulation can serve
as a powerful tool to evaluate the effectiveness of different sonar designs deployed
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from various vehicle platforms.
• Simulated detection performance agrees with the expected/observed performance of

actual sonar. This can be assessed by model verification and validation.
• Detection functions permit rapid calculations within numeric optimization routines.

This requires trade-offs between accuracy and execution speed. Smooth, differen-
tiable functions with analytic gradients, for example, significantly reduce solution
times when using gradient-based optimization.

Many sensor models commonly used in search theory are chosen for their computational
simplicity and do not satisfy all of these desired characteristics. Most ignore three-
dimensional geometry, for example, but this can greatly impact detection performance
when searching for mines on the sea floor with a surface craft’s FLS (Figure 2.1) or an
underwater vehicle’s SSS. It is also well-known that SSS can not detect targets located
directly beneath a vehicle’s path of travel, in the so-called near-nadir region (Figure 2.2).
For this reason, overlapping sensor swaths are required to obtain complete coverage with
this sensor [82].

Definite range models, or “cookie cutter” sensors, simply assume that detection is certain
within a fixed range of the sensor and impossible outside it. Washburn and Kress note
the appeal of such a model for analysis, but acknowledge that “attempts to forecast fixed
ranges in the real world are often disappointing,” remarking that “forecast detection ranges
for sonars are notoriously subject to error—it is not uncommon to be off by a factor of two
or more” [23].

One alternative to definite range models are so-called lateral range curves. This approach
graphs a sensor’s detection probability as a function of lateral range, defined as the distance
from a searcher’s straight line track at its point of closest approach to a target. The area un-
der a sensor’s lateral range curve defines its sweep width, a measure of sensor effectiveness
used when planning to search an area with evenly-spaced track lines, e.g., with a lawn-
mower coverage pattern [83]. Lateral range curves can be derived analytically, assuming
detection rate is proportional to range via an inverse cube law, or derived empirically via
repeated experiments [51], [84].

Figure 2.3 depicts the lateral range curve and corresponding sweep width for a typical
sensor and for the special case of a definite range sensor with radius R overlaid in green.
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Figure 2.1. Problem geometry for a surface craft with bow-mounted forward-
looking sonar.

We note that in general, both sensor models produce maximum detection probabilities at
target ranges approaching zero. While appropriate for optical sensors (this was one of
the original motivations for deriving the inverse cube law in World War II), these models
usually require modifications to accurately simulate sensors like SSS.

One example of a sensor profile used to approximate the expected coverage pattern of SSS
(Figure 2.4) is presented in [30]. This model modifies a “cookie cutter” sensor by adding a
“blind zone” of zero detection probability in the near-nadir region below the vehicle. The
resulting sensor profile is shown in Figure 2.5. This model is well-suited for this specific
application, namely finding an optimal track line location that maximizes the probability
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Figure 2.2. Problem geometry for an underwater vehicle with sidescan sonar,
showing negligible sensor coverage directly below the vehicle.

Figure 2.3. Lateral range curves and sweep widths for a typical sensor (black)
and a de�nite range sensor (green). Adapted from [23].
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Figure 2.4. Sidescan sonar image
showing near-nadir gap. Source: [85].

Figure 2.5. Sensor pro�le modi�ed with
near-nadir gap. Adapted from [30].

of detecting targets for a given track line direction, but it does not generalize well to other
applications. Furthermore, this sensor model does not depend explicitly on vehicle dynam-
ics; the knowledge that SSS performs better when its vehicle platform follows straight line
tracks is implicit in the problem formulation, which considers only straight path segments.

An engineering-based approach to modeling sensors like radar and sonar calculates “sig-
nal excess” from physical models of the sensor and its operating environment to determine
when detection is possible [51], [84]. Moreover, the Poisson Scan model described in [51]
and [86] can be used to derive a sensor’s detection rate. Sensor models of this form are
used to solve optimal search problems in [7], [11], [78], although these models implement
a much simpler approximation of an actual signal excess equation. Nevertheless, [79] de-
scribes how models based on rate functions can be calibrated to “shape” their performance
and solve a wide variety of problems, highlighting the flexibility of this modeling approach.
The following sections present a detailed derivation of the sonar detection models used in
the remainder of this dissertation. The main technical contribution of this chapter is a signal
excess model that incorporates sonar design parameters and three-dimensional geometery
to compute detection probability as a function of a vehicle’s trajectory.
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2.1 Signal Excess
The signal excess model of sonar detection simulates the conditions under which an ac-
tive or passive sonar system can detect an underwater object, based on well-known sonar
equations. First proposed in [36], signal excess is still widely used in many sonar per-
formance models today, including the U.S. Navy’s CASS, a Navy Standard maintained
by its Ocean and Atmospheric Master Library (OAML) [87], [88]. CASS is a modular
software framework which can interact with multiple different mathematical models, e.g.,
the Navy’s Gaussian Ray Bundle (GRAB) eigenray sound propagation model, to compute
individual terms in the sonar equation. For this reason, CASS is an example of a model
operating system (MOS), which can solve complex sonar performance modeling problems
by decomposing them into smaller sub-problems, each tailored to a specific sonar con-
figuration or operational environment. The flexibility of a MOS can be invaluable when
designing a new sonar system or developing a tactical decision aid (TDA) to optimize a
sonar’s performance in a given environment [56]. Their complexity and large computa-
tional runtime, however, make these systems unsuitable for sensor-based motion planning
algorithms. Anecdotally, when CASS “is used as the acoustic calculation engine . . . com-
putation of signal excess in support of a complex multistatic active sonar analysis task can
take days,” with the “vast majority of runtime” devoted to computing eigenrays connecting
a sonar transmitter, sound-scattering features, and a sonar receiver [89].

Our implementation, therefore, makes simplifying assumptions in order to rapidly compute
signal excess for an active sonar attached to a moving vehicle platform:

• We assume detection performance is limited only by acoustic background noise and
neglect reverberation due to the sonar’s backscattered acoustic energy. Reverberation
is a complex function of time, range, and the environment itself (e.g., the roughness
of the sea bed) [54]. By using the noise-limited form of the active sonar equation,
a constant parameter called the figure of merit (FOM) can be computed for a given
sonar design, facilitating qualitative comparisons of detection performance in a given
environment.

• We assume that the environment is homogeneous, with a flat bottom type and con-
stant water depth. We further assume a constant sound velocity profile, even though
the speed of sound actually varies as a function of temperature, salinity, and depth.
These assumptions allow us to forgo computationally expensive ray-tracing calcula-
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tions.
• We ignore multipath propagation effects, as MCM sonars typically operate at higher

frequencies and relatively short ranges, e.g., hundreds of meters as opposed to tens
of kilometers for a submarine sonar system.

The signal excess model assumes that detections can only occur when the acoustic energy
transmitted by a sonar is sufficient to overcome the two-way propagation losses in the
environment, and the received signal reflected by a target exceeds a detection threshold
relative to the prevailing background noise. This signal excess can be computed using well-
known sonar equations, “simple algebraic expressions used to quantify various aspects of
sonar performance” [84]. Because many terms in the sonar equations represent ratios of
measured physical quantities to standard reference values, it is convenient to express them
in units of decibels (dB), defined as 10 log10 (Ratio). For example, the reference intensity
(power per unit area) for sonar is defined as the intensity of a planar sound wave with
root mean square (RMS) pressure of one micropascal (µPa). Table 11.1 in [56] defines
several sonar parameters and their corresponding reference values. A typical signal excess
equation for an active sonar operating against a noise background is given in [84]:

SE = SL − 2PL + T S − (N − AG) − DT (2.1)

where SE = signal excess,

SL = source level,

PL = one-way propagation loss,

T S = target strength,

N = omni-directional sonar self-noise,

AG = array gain,

DT = detection threshold.

An equivalent expression that includes signal processing terms for computing the detection
threshold with frequency modulated (FM) or continuous wave (CW) active pulse types can
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be found in [54]:

SE = SL − 2PL + T S − (N − DI + 10 log10 B) − DT (2.2)

where DI = directivity index,

DT = 5 log10 d − 10 log10 BT − 5 log10 n,

B = pulse bandwidth [Hz],

T = pulse duration [s],

d = detection index,

n = number of pings used in detection decisions.

Recall that each term in Equation (2.2) is expressed in dB units, unless otherwise specified.
We will use this form of the sonar equation in the sections to follow, which derive the
physics-based probabilistic sensor models at the heart of our motion planning algorithm.
The first step combines terms related to a specific sonar design into a figure of merit (FOM).
This metric simplifies performance calculations during trajectory optimization, but permits
the direct comparison of different sonar models in a given scenario.

2.2 Figure of Merit
For sonar performance analysis, the terms of the signal excess equation are often combined
into the following form:

SE(t) = FOM − PL (D(t)) (2.3)

where FOM = figure of merit,

PL = one-way propagation loss,

D(t) = distance to the target.

In this form, the one-way propagation loss is a function of the distance between a sonar
and a target location ~ω at each moment in time: D(t) = ~ω − ~x(t). In our MCM search
problem, the target location ~ω is uncertain but characterized by the probability density
function φ(~ω) : Ω 7→ R (see Section 3.3). Figure of Merit (FOM), on the other hand, is
a useful metric for comparing the performance of different passive or noise-limited active
sonars. For these cases, FOM is constant and independent of both range and environmental
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propagation characteristics. It therefore captures all of the sonar design-related parameters
for a given sonar operating in a specified noise environment against a defined target.

Physically, FOM represents the maximum allowable one-way propagation loss resulting in
zero signal excess. Wagner et al. note that the FOM metric for active sonar “today has fallen
into disuse in both shipboard detection range prediction [and] in sonar system design,”
since the benefit of a constant metric is lost in the reverberation-limited case when FOM
must vary with range and environment. “Instead, the individual components of active sonar
equations . . . are each considered separately in arriving at a performance prediction” [84].
Since analysis of this type often requires a sophisticated MOS like CASS, however, we
have elected to continue using FOM and limit our analysis to the noise-limited case.

Assuming target detection is possible when SE ≥ 0, we compute FOM by substituting
Equation (2.2) into Equation (2.3) when SE = 0. Combining terms yields an expression
for FOM as a function of the relevant design parameters [54]:

0 = SL − 2FOM + T S − (N − DI + 10 log10 B) − (5 log10 d − 10 log10 BT − 5 log10 n)

FOM =
1
2

(
SL + T S − N + DI + 10 log10 T − 5 log10 d + 5 log10 n

)
. (2.4)

We briefly describe each of these parameters, and provide sample calculations for the val-
ues used in our simulations. Parameter values specific to the models corresponding to
individual sonar designs are derived in Section 2.6.1, Section 2.6.2, and Section 2.7.

• Directivity index (DI) of a transducer array describes its ability to “concentrate trans-
mitted sound in a given direction” (DIt), and improve the signal-to-noise ratio (SNR)
received from a given direction (DIr). The DI is “a special case of the array

gain (AG), where the signal is coherent and the noise is incoherent. This parame-
ter is simpler to calculate and will normally be a satisfactory measure of the increase
in SNR due to the array” [54]. This parameter is a function of the sonar’s design
frequency and array geometry.

• Source level (SL) of a projector array is a function of its acoustic power, P. If the
array is directional, SL also depends upon the DIt .
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• Pulse duration (T) determines a sonar’s range resolution, with shorter pulses pro-
viding better resolution due to smaller echo separation. A CW “pulse of constant
frequency and duration T seconds” will have a bandwidth, B = 1/T Hz. For FM
pulses, “the frequency of the pulse changes during the T seconds duration of the
pulse [and] the bandwidth, B, is not now the inverse of the pulse length” [54].

• Detection index (d) is used to determine a sonar receiving system’s detection thresh-
old (DT), expressed as the SNR corresponding to preset values for probability of de-
tection (Pd) and probability of false alarm (P f a). Here, Pd is the probability that am-
plitudes measured at the receiver which exceed DT consist of signal plus noise; and
P f a is the probability they consist of noise only. This relationship is typically plotted
as a function of 5 log10 d on a curve of receiver operating characteristics (ROC). The
sonar models derived below assume 5 log10 d = 10 dB, corresponding to Pd = 0.5
and P f a = 10−5 as given by Table 7.8 in [54] and used in the sonar design examples
included in this reference.

• The number of pings (n) contributing to a detection decision effectively reduces a
sonar’s DT as more information is considered. The sonar models derived below as-
sume 5 log10 n = 3 dB, equivalent to processing four pings per decision; this value is
used for all sonar design examples in [54].

• Target strength (TS) is the ratio of the intensity of the sound wave reflected by an
underwater target, relative to the intensity of the incident sound wave from an ac-
tive sonar pulse. This quantity, expressed in dB, is a function of sonar frequency,
target size, geometry, and the angle of incidence between the sonar pulse and tar-
get. The goal of our MCM search problem is to detect small mines on the sea
floor with geometry approximated by finite cylinders of radius 0.1 meter and length
1.0 meter, with hemispherical ends. For incident angles normal to the mine, TS
is computed for a cylinder with radius a, length L, and wavelength λ using the
formula T S = log10

(
aL2

2λ

)
. The worst case TS, however, for incident angles strik-

ing one of the two ends, is computed for a sphere with radius a using the for-
mula T S = log10

(
a2

4

)
= −26 dB. Therefore, we use the conservative value of

T S = −30 dB [54].
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• Noise (N) refers to the intensity level of the background noise that a desired signal
must overcome to be detectable at the sonar receiver. Ambient noise in the ocean is
due to three main sources: 1) noise in the sonar receiving system induced by thermal
agitation of water molecules against the face of the hydrophone; 2) ambient sea noise
from wind and waves, rain, distant shipping, and biological activity; and 3) vessel
self-noise due to machinery, propellers, electrical interference, and fluid flow [54].
All of these sources contribute to the ambient noise level in different frequency bands,
as illustrated by Figure ??. The average spectral level for thermal noise is depicted by
the straight line in the bottom right corner of the plot. This line dominates other noise
sources at the high frequencies used for mine hunting sonar, i.e., above 100 kHz, and
can be computed for a given sonar frequency f Hz by the equation [53]:

Ntherm = −75 + 20 log10 f dB. (2.5)

Even though exact design parameters for Navy sonars are difficult to obtain (and potentially
classified) [84], a figure of merit (FOM) suitable for relative performance analysis can still
be estimated from sonar design reference manuals [54] or commercial sonar specifications
[91]–[93]. Furthermore, once the FOM for a given sonar problem is known, it is easy to
compute the signal excess along a moving vehicle’s trajectory ~x(t), since it depends only on
the propagation loss due to distance between vehicle and target. Consequently, calculating
detection probability based on signal excess is especially attractive for sensor-based motion
planning algorithms.

2.3 Propagation Loss
An acoustic pulse loses intensity as it propagates through the water, as the radiated power
spreads throughout a larger and larger area. This can be modeled as spherical spreading,
in which power is radiated in all directions, or as cylindrical spreading, in which power
spreads outward between two planar boundaries. The pulse is also attenuated by absorption
losses due to fluid viscosity and molecular relaxation of dissolved salts in seawater. Both
spreading and absorption are functions of distance. For our signal excess calculations, we
assume that propagation losses are due only to spherical spreading and absorption, “a use-
ful working rule for initial design and performance comparisons” [54]. In fact, this same
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Figure 2.6. Average ambient noise spectra. Source: [90], from [53].
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assumption is often required “in order to make reverberation models feasible” [56]. Ne-
glecting other loss sources (e.g., scattering and refraction) via the simplifying assumptions
listed in Section 2.1, propagation loss is

PL(~x(t), ~ω) = 20 log10
(~ω − ~x(t)

)
+ a ~ω − ~x(t) , (2.6)

where a is the frequency-dependent attenuation coefficient of seawater. Tabulated values
of a can be found in sonar design references such as [54] and [55]. While a varies with
depth, salinity, and temperature, it depends most strongly on the sound frequency. We
therefore compute this parameter using an equation in [53], which estimates a as a function
of frequency in kHz:

a =
0.11 f 2

1 + f 2 +
44 f 2

4100 + f 2 + 0.0003 f 2 + 0.003 dB/km. (2.7)

2.4 Instantaneous Detection Rate
In search theory, “the detection rate approach to computation of detection probabilities has
proved to be more robust than the geometric models” used by “cookie cutter” sensor mod-
els [51]. Originally developed in [36], this method assumes that a sensor has a detection
rate γ(t) called the “instantaneous probability density (of detection).” This rate may vary
with time due to the motion of searchers and targets, or to reflect changing environmental
conditions, for example. Continuously searching over a small time interval ∆t constitutes a
single glimpse or scan with the sensor. Each glimpse provides a detection opportunity with
the instantaneous probability of detecting a target given by γ(t)∆t. This leads to the well-
known exponential detection model, discussed in Section 3.4, which quantifies detection
probability as a function of time.

In order to use the exponential detection model, we must first compute detection rates for
our sonar models. Detection rates based on our noise-limited signal excess model vary with
distance between a target location ~ω and a search vehicle following the trajectory ~x(t). If
we also assume that the signal excess in Equation (2.3) is a normally-distributed random
variable with mean SE and variance σ2, the instantaneous probability of detection for a

35



single glimpse with a sonar can be written using its cumulative normal distribution Φ [51]:

p(~x(t), ~ω) = Φ

(
SE

(
~x (t) , ~ω

)
σ

)
. (2.8)

Based on our selection of the detection index d in Section 2.2, the instantaneous detection
probability p(t) = 0.5 when SE(t) = 0, meaning the sonar has an equal probability of
detecting or missing a mine. Regarding the selection of σ, Washburn notes that “most
practitioners use a value of σ somewhere between 3 and 9 dB for sonar detection in the
ocean” [51]. A value of σ = 5.6, computed by adding typical variance values for each
term in the sonar equation, is provided in [84]. Moreover, a study which used the Navy’s
CASS/GRAB software to simulate acoustic mine detections under varying environmental
conditions, including seasonal sound speed profiles, unknown wind speeds, and imprecise
bottom types, observed signal excess variations of 3 dB, 6 dB, or 9 dB in most cases [57],
[58]. Figure 2.7 plots the instantaneous probability of detection vs. signal excess for these
three values of σ.
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Figure 2.7. Instantaneous detection probability vs. signal excess and σ.
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To compute a sonar’s detection rate γ(t) from its instantaneous detection probability p(t),
we further assume that detection opportunities (glimpses) can be modeled as a Poisson pro-
cess and occur with mean rate λ. The so-called Poisson Scan model produces the detection
rate γ(~x(t), ~ω) = λp(~x(t), ~ω) [51].

2.5 Detection Performance Modifiers
The sonar detection model developed thus far, based on signal excess remaining after sub-
tracting propagation losses from a given sonar’s figure of merit, is omni-directional. It
depends only on the distance between the sonar and a MLO. This function could be used to
construct a lateral range curve and corresponding sweep width for use in standard coverage
planning algorithms [23]. Most actual sonar systems, however, are designed to transmit
and receive with a specific beam pattern (see, e.g., Figure 2.1 and Figure 2.2) and do not
perform equally well in all directions. Actual detection performance depends not only on
a sonar’s distance from a target, but also whether (and how long) it is pointed in the proper
direction, at the proper place and time, to ensonify the target. The vehicle platform must
maneuver to accomplish this. Conversely, high-resolution imaging sonars which rely on
platform motion to methodically scan the sea floor (e.g., sidescan sonar) or construct long
virtual hydrophone arrays (e.g., synthetic aperture sonar), require precise navigation along
straight line trajectories to generate accurate imagery [13], [94]. Excessive platform motion
can often yield poor performance for these systems. It is clear that sonar performance is
tightly coupled to a vehicle’s motion. In the following sections, we derive simple shaping
functions to model a sonar’s three-dimensional beam geometry as well as its dependence
on platform motion.

2.5.1 Field of View Considerations
To more accurately estimate a sonar’s true detection performance when mounted on a vehi-
cle, we must enforce its actual beam geometry in three dimensions. First, we define angular
limits for the sonar’s horizontal and vertical fields of view (FOV). These FOV boundaries
exist in the sonar reference frame, but we will assume without loss of generality that this
frame is identical to the vehicle’s body-fixed reference frame. Next, we calculate the vec-
tors between the sonar and each potential target, and resolve them in the body-fixed ref-
erence frame to compute the angle to each target relative to the sonar’s FOV. Finally, we
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apply a shaping function to degrade detection performance for targets that fall outside of
the angular FOV limits.

The horizontal plane geometry at an instant in time is shown in Figure 2.8 for a SeaFox
USV and forward-looking sonar with horizontal FOV, αFOV , of 200 degrees. Parameters
defined or resolved in the body-fixed frame are denoted with a superscript b. The positions
of the USV

[
x, y

]T and potential mine target locations
[
ωx ,ωy

]T
are defined in the inertial

reference frame {n}. We compute the lower and upper limits on azimuth angle for a sonar’s
horizontal FOV by the expressions

bαL = −
αFOV

2
, and

bαU = +
αFOV

2
. (2.9)

The vector between the sonar and a target of interest in the inertial frame is then defined
as ∆~x =

[
ωx − x, ωy − y

]T
=

[
dx, dy

]T . To determine the azimuth angle to this target in
the sonar’s FOV, the vector ∆~x must be resolved in the body-fixed reference frame using
the vehicle’s heading angle ψ, producing the body-fixed components:

bdx = ndx cos(ψ) + ndy sin(ψ), and (2.10)
bdy = − ndx sin(ψ) + ndy cos(ψ). (2.11)

Then, using the four-quadrant inverse tangent, we compute

bα = atan2(bdy, bdx). (2.12)

In the same manner, we compute the lower and upper limits on elevation angle for the
sonar’s vertical FOV as:

bεL = εDE −
εFOV

2
, and

bεU = εDE +
εFOV

2
. (2.13)

Here, εDE is a fixed downward elevation angle selected to ensure that the sonar can en-
sonify the sea floor. Some sonar systems are capable of electronically steering their beams
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Figure 2.8. Instantaneous geometry for a forward-looking sonar's horizontal
�eld of view.

to a specified εDE , but this angle is frequently determined by a fixed mechanical mounting
angle. For a vehicle traveling in the horizontal plane at constant altitude h above the bot-
tom, the elevation angle between the sonar and a mine on the sea floor is identical in both
reference frames, computed by

ε = bε = nε = arctan
*..
,

−h√
(ωx − x)2 + (ωy − y)2

+//
-

= arctan *
,

−h√
dx2 + dy2

+
-
. (2.14)

We now define scalar shaping functions which degrade sonar detection performance for
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mines outside the sonar’s horizontal (or vertical) FOV. Each shaping function is con-
structed from two logistic functions [95]. These S-shaped sigmoidal curves [96] are cali-
brated to smoothly transition a scalar value from 1 to 0 at the angular limits of the sonar’s
FOV. This value modifies the probability of detecting a mine at a given location based
on signal excess only, thereby preventing detection if the mine location lies beyond these
angular limits. The azimuth and elevation shaping functions are

FLSFα (~x(t), ~ω) =
1

1 + epα (bαL −
bα)

+
1

1 + epα (bα − bαU )
− 1, and (2.15)

Fε (~x(t), ~ω) =
1

1 + epε (bεL − bε)
+

1

1 + epε (bε − αU )
− 1, respectively. (2.16)

The pα and pε parameters can be tuned to adjust the slope of their respective sigmoidal
curves, as discussed in Section 2.5.3. Figure 2.9 plots the azimuth scale factor vs. target
azimuth angle and several values of pα for an FLS with a 120-degree horizontal FOV.
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Figure 2.9. Fα vs. azimuth angle and pα for a forward-looking sonar with
120-degree horizontal �eld of view.
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Similarly, Figure 2.10 plots the elevation scale factor vs. target elevation angle and several
values of pε for a sonar with a 30-degree vertical FOV mounted at εDE = −15 degrees.
Although the x-axes of Figure 2.9 and Figure 2.10 are labeled in degrees, both functions
are actually computed for azimuth (or elevation) angles given in radians.
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Figure 2.10. Fε vs. elevation angle and pε for a forward-looking sonar with
30-degree vertical �eld of view mounted at -15 degrees.

The plots in Figure 2.11 and Figure 2.12 illustrate how detection probability based on
signal-excess can be shaped using a sonar’s FOV. The color map indicates the probability
of detecting a mine relative to the sonar’s reference frame. Figure 2.11 shows the horizontal
plane geometry. The left plot shows the omni-directional detection probability, based on
signal excess, for a forward-looking sonar with FOM = 72 dB and σ = 9 dB. The right
plot shows the modified detection probability after applying an azimuth scale factor Fα
corresponding to a horizontal FOV of 120 degrees with pα = 10. Similarly, Figure 2.12
shows the vertical plane geometry. The left plot shows the modified detection probability
after applying an elevation scale factor Fε corresponding to a vertical FOV of 30 degrees
with pε = 40. The sonar head is mounted on a surface craft with εDE = −15 degrees. Note
that the different scales used for distance (x-axis) and depth (z-axis) distort the apparent
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Figure 2.11. Omni-directional detection probability before (left) and after
modi�cation by Fα (right) for a 120-degree horizontal �eld of view.

Figure 2.12. Detection probability after modi�cation by Fε for a 30-degree
vertical �eld of view mounted at -15 degrees (left) and close up (right).

beam angle in this plot, but a close up version shown at right, plotted with equal axis
scaling, reflects the expected vertical FOV.

For a sidescan sonar comprised of dedicated port and starboard arrays, it is still possible to
construct a continuous shaping function that describes both fields of view over the entire
range of azimuth angles bα ∈ [−π,π]. In this case, we define the lower and upper azimuth
limits relative to the center of the starboard array’s FOV, αmid = π/2 as

bαL = αmid −
αFOV

2
and bαU = αmid +

αFOV

2
. (2.17)
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The shaping function for the starboard array is calculated as before, i.e., stbdFα (~x(t), ~ω) =

FLSFα (~x(t), ~ω), using Equation (2.15) and these new angular limits. Next, the shaping
function for the port side array is calculated as

port Fα (~x(t), ~ω) =
1

1 + e−pα (bαL + bα)
+

1

1 + epα (bα + bαU )
− 1. (2.18)

Combining these shaping functions yields

SSSFα (~x(t), ~ω) = stbdFα (~x(t), ~ω) − port Fα (~x(t), ~ω). (2.19)

Figure 2.13 plots the azimuth scale factor vs. target azimuth angle and several values of pα
for a SSS with a 10-degree horizontal FOV.
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Figure 2.13. Fα vs. azimuth angle and pα for a sidescan sonar with 10-degree
horizontal �eld of view.

Using the Poisson Scan model, we can now compute the instantaneous detection rate for
a given sonar by combining the effects of signal excess, three-dimensional FOV geometry,
and average scan rate in the expression

γ(~x(t), ~ω) = λp(~x(t), ~ω)Fα (~x(t), ~ω)Fε (~x(t), ~ω). (2.20)
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2.5.2 Turn Rate Considerations
As already mentioned, some types of sonar require stable, straight line motion of a vehicle
platform to produce high-resolution imagery. Sidescan sonar (SSS), for example, stacks the
backscattered signals received from successive pings to produce an image of the sea floor.
The across-track dimension of the resulting image corresponds to the two-way travel time
of each ping, while the along-track dimension is formed by the vehicle’s forward motion.
Turning maneuvers, therefore, have a direct impact on SSS performance [97]. In fact,
“yawing motions . . . are considered to have potentially the most serious degrading effects
on sidescan images, because yaw causes the beam footprint to move along-track a distance
proportional to the distance across-track” [98]. We model this behavior by applying another
scale factor to degrade detection probability as a function of the vehicle turn rate, r (t). We
select the Gaussian-like expression

Fr (~x(t)) = e−
1
2 [r (t)/σr ]2

. (2.21)

This function reaches a maximum value of one for straight line motion, e.g., when r (t) = 0,
but falls off smoothly for non-zero turn rates. The slope of this curve can be adjusted via
the tuning parameter σr , as shown in Figure 2.14. Using this scale factor, we compute the
instantaneous detection rate for a sidescan sonar by the expression

γ(~x(t), ~ω) = λp(~x(t), ~ω)Fα (~x(t), ~ω)Fε (~x(t), ~ω)Fr (~x(t)). (2.22)
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Figure 2.14. Fr vs. turn rate r (t) and σr .

2.5.3 Numeric Considerations
A primary consideration when selecting the shaping functions described in Section 2.5.1
and Section 2.5.2 is their numerical smoothness. We shall see in Chapter 3 how instan-
taneous detection rate can be used to create an objective function for our optimal search
problem. Having a smooth (i.e., differentiable) objective function is extremely helpful
when performing numeric optimization. Another consideration is the ability to derive and
encode analytic expressions for the objective function gradients. The SNOPT software
package used to solve our optimal search problem, for example, “is able to estimate gra-
dients by finite differences . . . for each variable whose partial derivatives need to be esti-
mated. However, this reduces the reliability of the optimization algorithms, and it can be
very [computationally] expensive if there are many such variables” [99].

These shaping functions were also designed to be flexible, as the logistic functions can
be calibrated to reflect most sonar FOV geometries by setting the azimuth and elevation
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angular limits and tuning a single growth rate parameter: pα for azimuth angle, or pε for
elevation angle. Each parameter multiplies the exponents in Equation (2.15) and Equa-
tion (2.16), respectively, to control the slope of its sigmoidal curve. This defines the “crisp-
ness” of a sonar’s FOV boundary between regions of high and low detection probability.
Low parameter values result in a gradual transition. As values increase, however, this tran-
sition tends toward a discontinuous step function, which presents numerical difficulties.
Therefore, we have derived a heuristic to guide the selection of an appropriate growth rate
value based on two qualitative metrics:

• Scale Factor Threshold (SFT): the value the scale factor should attain within the
sonar’s field of view (FOV).

• Fraction Below Threshold (FBT): the portion of the nominal FOV that is below the
desired SFT.

The logistic function, evaluated at a FOV boundary, can be rearranged to calculate growth
rates that satisfy these metrics for the azimuth and elevation shaping functions via the
expressions

pα = −
2 ln (1 − SFT )

FBT · HFOV
, and pε = −

2 ln (1 − SFT )
FBT ·VFOV

, respectively. (2.23)

One can experiment with these metrics to arrive at a growth rate value that achieves a
balance between realistic FOV boundaries and a smooth objective function for numeric
optimization.

Finally, we acknowledge that for distances less than one meter, the spherical spreading
term 20 log10

(~ω − ~x(t)
)

in Equation (2.6) will contribute a negative propagation loss,
since spreading losses are defined relative to an intensity measured one meter away from
the source. Even more concerning is the fact that this term is undefined when the distance
equals zero. However, since our MCM search problem is focused on finding bottom mines,
the distance to any mine target is guaranteed to exceed one meter as long as our search
vehicle travels at an altitude of one meter or greater.

46



2.6 Forward-Looking Sonar Models
This section derives figure of merit (FOM) values for the forward-looking sonar models
used in this dissertation. We consider two different designs:

1. A long-range, low-resolution sonar designed with a cylindrical transducer array to
provide a wide horizontal FOV. This type of sonar is typically used for wide-area
surveys to detect MLOs during the first phase of an MCM operation.

2. High-resolution, blazed array imaging sonar suitable for reacquisition and identifica-
tion of previously detected targets during follow-on MCM missions.

Both FLS designs are examples of “sectorscan sonar,” which generate two-dimensional
images from each pulse [94]. Examples of this imagery are shown in Figure 2.15.

Figure 2.15. Sample images from a cylindrical array (left) and blazed array
(right) FLS. Image at left is courtesy of Thunder Bay 2010 Expedition,
NOAA-OER. Source: [100].

2.6.1 Cylindrical Array Model
A cylindrical array of transducer elements is a common, practical sonar design. Individual
elements are grouped in vertical lines, or staves, to obtain a desired vertical beamwidth, and
multiple staves are arranged in a ring to provide the required azimuth coverage [54]. Arrays
of this type can be found on submarines, as pictured in [58] and [101], and in systems like
the Autonomous Topographic Large Area Sonar (ATLAS), shown mounted on the NPS
SeaFox USV in Figure 2.16. A FOM for a long-range detection sonar similar to ATLAS
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Figure 2.16. An ATLAS forward-looking sonar mounted on the NPS SeaFox
USV.

can be computed using the design example for a mine-hunting sonar described in Chapter
11 of [54].

We specify a 200 kHz sonar with 120-degree horizontal field of view, 5-degree vertical
field of view, and a nominal operating range of 400 meters. We assume this sonar transmits
an FM pulse with bandwidth B = 80 kHz and duration T = 10 ms, which yields better
noise-limited performance than a CW pulse for the values used in [54]. We further assume
that the sonar’s projector array is comprised of multiple transducer elements so it can steer
its beam in the vertical plane. From the expression in Table 2.3 of [54], the number of
elements required for a sonar stave to achieve a beamwidth of 5 degrees is n = 100/BW =

100/5 = 20. Assuming the horizontal transmit beamwidth is 120 degrees, the projector
array requires only m = 1 vertical stave, and the transmit directivity index for this baffled,
cylindrical array can be calculated from Table 2.5 in [54] by the expression

DIt = 3 + 10 log10 mn = 3 + 10 log10(1 · 20) = 16 dB. (2.24)
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If we assume that the total acoustic power radiated by this projector is P = 10 Watts, we
can compute the source level (SL) for the sonar as described in [54] by the expression

SL = 10 log10 P + 170.8 + DIt = 197 dB. (2.25)

Turning attention to the sonar’s receive array, we specify narrow, 2-degree horizontal and
vertical beam widths so the sonar can resolve small MLOs in its field of view. Table
2.5 in [54] provides a formula for calculating the receive directivity index of a baffled,
cylindrical array based on its height h in meters, diameter d in meters, and design frequency
f in kHz. For this sonar, the receive directivity index is

DIr = 10 log10 5hdf 2. (2.26)

Assuming half-wavelength spacing of its transducer elements (a function of the design
frequency), the array’s height is h = 76/(BWv · f ) = 76/(2 · 200) = 0.19 m, while its
diameter is h = 88/(BWh · f ) = 88/(2 · 200) = 0.22 m [54]. Substituting these values into
Equation (2.26), we compute DIr = 39 dB for this receive array.

Next, we compute the attenuation coefficient using Equation (2.7), and the noise back-
ground due to thermal agitation using Equation (2.5), both functions of the sonar’s 200 kHz
design frequency. The attenuation coefficient is a = 52 dB/km and the noise due to thermal
agitation is Ntherm = 31 dB. However, we use a more conservative value of N = 34 dB
to compute figure of merit in Equation (2.4). This 3 dB increase can accommodate addi-
tional self-noise from the vehicle platform at levels comparable to the calculated Ntherm

value [54], e.g., for loud vehicles like the NPS SeaFox USV.

Finally, we estimate the Poisson Scan rate for this sonar model using the concept of “ping-
to-ping overlap” illustrated in Figure 2.17. This capability generates multiple looks, from
different viewpoints, at MLOs on the sea floor, providing better detection and mapping per-
formance [100]. It also makes sectorscan sonar more robust to turning maneuvers than SSS,
provided the vehicle platform has sufficiently accurate navigation. To ensure 95% ping-to-
ping overlap from a sonar with 400-meter swath width, mounted on an AUV traveling 1.5
m/s, the sonar must ping about every 10 seconds. Therefore, To accommodate faster USV
platforms, we assume that our sonar model pings every 5 seconds, which corresponds to a
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Figure 2.17. Ping-to-ping overlap for a wide-sector FLS. Image courtesy of
Thunder Bay 2010 Expedition, NOAA-OER. Source: [100].

Poisson Scan rate λ = 0.2 scans per second.

The parameters used to model this sonar are listed in Table 2.1. All specified (or assumed)
values are italicicized, while calculated values are listed in plain text. The operating fre-
quency, projector source level, cylindrical array geometry, and pulse characteristics chosen
for this design yield a FOM of 72 dB.

2.6.2 Blazed Array Models
A relatively recent sonar design technique, based on “blazed” acoustic arrays, has led to
a class of smaller, lighter, lower power imaging sonars which are well-suited for deploy-
ment from small autonomous underwater vehicles. Leveraging techniques from the fields
of radar and optics, a blazed array can “map angular image information into the frequency
domain” [102]. In principle, these acoustic arrays are analogous to optical diffraction grat-
ings which can separate a broad spectrum signal (white light) into individual, angularly-
separated frequencies (colors) [103]. Blazed sonar arrays separate a broadband acoustic
pulse into a “frequency-dispersed sound field” in which each frequency corresponds to a
separate sonar beam. Unlike traditional sonar designs that use dedicated electronics to
form and steer the beams generated by each stave in the aray, e.g., [104], “this approach
allows multiple independent beams to be simultaneously formed from a single hardware
channel” [102].
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Table 2.1. Sonar design parameters used to calculate noise-limited FOM.

Forward-Looking Sonar Sidescan

Sonar Design Parameters Cylindrical Array Blazed Array Sonar

Sp
ec

if
ie

d
or

A
ss

um
ed

Frequency 200 kHz 450 kHz 900 kHz 900 kHz

NominalRange 400 m 200 m 100 m 40 m

Transmit Beam Widths

Horizontal 120◦ 90◦ 90◦ 0.4◦

V ertical 5◦ 10◦ 20◦ 40◦

Receive Beam Widths

Horizontal 2◦ 1◦ 1◦ 0.4◦

V ertical 2◦ 10◦ 20◦ 40◦

Pulse Length, T

FM 10 ms 10 ms 10 ms —

CW — — — 6.67 µs

Pulse Bandwidth, B

FM 80 kHz 80 kHz 80 kHz —

CW — — — 150 kHz

Detection Index, 5 log10 d 10 dB 10 dB 10 dB 10 dB

Detection Pings, 5 log10 n 3 dB 3 dB 3 dB 3 dB

Poisson Scan Rate, λ 0.2 scan/s 0.5 scan/s 1.0 scan/s 25 scan/s

C
al

cu
la

te
d

Attenuation Coefficient, a 52 dB/km 104 dB/km 287 dB/km 287 dB

Directivity Index, DI

Transmit 16 dB 24 dB 24 dB 27 dB

Receive 39 dB 24 dB 24 dB 27 dB

Source Level, SL 197 dB 207 dB 206 dB 204 dB

Ambient or Self-Noise, N 34 dB 41 dB 45 dB 44 dB

Target Strength, T S -30 dB -30 dB -30 dB -30 dB

Figure of Merit, FOM 72 dB 66 dB 64 dB 49 dB

In this section, we apply the procedure described in Section 2.6.1 to compute FOM values
for two blazed array multibeam imaging sonars. Teledyne BlueView’s P450 Series and
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Figure 2.18. Combined beam pattern for a 50-degree horizontal �eld of view
FLS constructed from two individual blazed arrays. Source: [105].

P900 Series systems are modular designs comprised of multiple blazed arrays that operate
at 450 kHz and 900 kHz center frequencies, respectively. Figure 2.18 illustrates how in-
dividual staves can be combined to form a larger FOV. We will model the P450-90 and
P900-90 sonars which utilize four staves to produce a 90-degree horizontal FOV.

An individual stave produces a 25-degree fan of beams in the image-plane, each with a dis-
tinct frequency and angle relative to the face of the stave. The lowest frequency beam angle
is 45 degrees, and the highest frequency beam angle is 70 degrees, as shown in Figure 2.18
(left). The combined FOV for a two-stave system is depicted as a three-dimensional solid in
Figure 2.18 (right), illustrating how the beam widths vary with frequency in both the image-
and cross-image planes. Although beam pattern geometries for multi-stave systems like
those depicted in [105] are complex, we assume that image processing algorithms allow us
to model these sonars as conventional line arrays operating at the center frequency of their
broadband pulse. Under this assumption, we can use manufacturer specifications for oper-
ating frequency, field of view, beam width (in the image- and cross-image planes), number
of beams, and update rate to calculate a FOM for the P450-90 and P900-90 sonars [91].
We further assume that the these sonars use an FM pulse duration T = 10 ms.
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Note that the manufacturer’s specifications list the total number of beams in a given sonar.
Since these sonars are constructed using modular staves, each with 128 individual beams,
we compute the directivity index for a single stave using the expression for a baffled line
array with n = 128 elements from Table 2.5 in [54]. For this sonar, the directivity index is

DIt = DIr = 3 + 10 log10 n = 3 + 10 log10(128) = 24 dB. (2.27)

The transmit source levels for the P450-130 and P900-45 sonars are given in [106] as
207 dB and 206 dB, respectively. Using Equation (2.25) and the calculated value for
DIt = 24 dB, we can solve for a total acoustic power level P between 13 and 17 Watts,
which is reasonable given that the stated electrical power consumption for these models is
between 15 and 30 Watts.

Next, we use Equation (2.7) to compute attenuation coefficients for the 450 kHz and
900 kHz operating frequencies of a = 104 dB/km and a = 287 dB/km, respectively. From
Equation (2.5) we estimate that the noise due to thermal agitation is Ntherm = 38 dB and
Ntherm = 44 dB, respectively. After accommodating additional self-noise noise due to the
vehicle platform (which has lesser impact at higher frequencies) we use conservative values
of N = 41 dB and N = 45 dB, respectively.

Finally, we estimate the Poisson Scan rate for both sonar models by scaling the maximum
update rate specified by the manufacturer. Assuming that these listed values apply to a
sonar operating at its minimum optimal range, we scale the listed values by the nominal
operating ranges used in our problem. For the P450-90 and P900-90 sonars, we estimate
scan rates of λ = 0.5 and λ = 1.0 scans per second, respectively, based on nominal operat-
ing ranges of 200 and 100 meters. These values agree with practical update rates observed
when deploying these sensors on a REMUS AUV. The parameters used to model the P450-
90 and P900-90 blazed array sonars are listed in Table 2.1 alongside the parameters for the
cylindrical FLS. The resulting FOM values calculated for these models are 66 dB and
64 dB, respectively.

2.7 Sidescan Sonar Model
Next, we estimate a figure of merit for a short-range, side-looking sonar similar to the
sidescan sonar used on the NPS REMUS 100 AUV. This type of sensor is representative
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of high-resolution sonars used to reacquire previously-detected MLOs and identify them
for subsequent neutralization [13]. Following the design example for a SSS in Chapter
10 of [54], we use manufacturer specifications to derive a model for a 900 kHz sidescan
sonar [92]. In contrast with the forward-looking sonars considered in Section 2.6, this sonar
transmits a CW pulse with duration T = 6.67 µs and bandwidth B = 1/T = 150 kHz. It
also has a very narrow horizontal FOV and a wide vertical FOV. As before, we can use
the expression in Table 2.3 of [54] to compute the number of elements in a line array from
its beamwidth n = 100/BW = 100/0.4 = 250. Substituting n into Equation (2.27), we
calculate the directivity indices for the SSS’s transmit/receive arrays: DIt = Dr = 27 dB.

Assuming the sonar radiates 4 Watts of acoustic power, the source level for this sonar
is SL = 204 dB, using Equation (2.25). The attenuation coefficient and thermal agita-
tion noise are computed from the 900 kHz operating frequency as a = 287 dB/km and
Ntherm = N = 44 dB, respectively, since underwater platforms have much lower self-
noise than surface craft. Because the ping rate of sidescan sonar is usually determined by
the vehicle platform’s speed and the sonar’s range setting [107], we estimate a Poisson
Scan rate for this sonar based on the two-way travel time of sound for a nominal operating
range of 30 meters: λ =

1500 m/s
2(30 m) = 25 scans per second. The parameters used to model this

900 kHz SSS are listed in Table 2.1 and yield a FOM of 49 dB.

2.8 Model Verification and Validation
The sonar models developed in Section 2.6 and Section 2.7 were tested in simulation to
verify their detection performance. The primary objective was to confirm whether a given
sensor model’s signal excess, FOV geometry, and Poisson Scan rate are accurately repre-
sented. For example, Figure 2.19 illustrates the sensor coverage obtained by a USV with
200 kHz FLS as it traveled through a square search area along the open loop trajectory
shown. In this plot, the color map represents the probability that the searcher failed to
detect a mine at each map location before the end of the mission. This probability of non-
detection, PN D (T f ), conditioned over the entire search area, is our measure of MCM risk.
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Figure 2.19. Simulated search with USV and forward-looking sonar.

Assuming that we have no prior information and that a mine can be uniformly placed
anywhere within the search area, the maximum PN D (T f ) value (dark red) is a function
of the search area size. In areas covered by the USV’s sonar, PN D (T f ) approaches zero
(blue), indicating a high probability of detecting a mine in those areas. We note the swath
width produced by the sensor model is approximately equal to twice the nominal range, as
expected.

A similar trajectory is shown for an AUV with sidescan sonar in Figure 2.20. To accommo-
date the slower AUV and shorter range sonar, the designated search area is much smaller
than the FLS search area in Figure 2.19.
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Figure 2.20. Simulated search with AUV and sidescan sonar.

As a result, the maximum values for PN D (T f ) are higher in a given area, a function of the
uniform probability being spread over a smaller area. Nevertheless, the relative color scale
indicates that our sidescan detection model is consistent with observed sidescan perfor-
mance, namely it provides little to no coverage in the near-nadir region beneath the vehicle
and performance is severely degraded when the vehicle turns.

In this chapter, we have defined detection models for several different active sonars, based
on noise-limited signal excess. These models provide the instantaneous probability of de-
tecting a target as a function of sonar design parameters, the figure of merit (FOM), and
the range to the target, which determines propagation losses due to acoustic spreading
and absorption. We then defined shaping functions which enforce a sonar’s three dimen-
sional geometry based on its horizontal and vertical FOV. After applying the azimuth and
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elevation angle shaping functions, the Poisson Scan model is used to convert the instan-
taneous detection probability into a detection rate. Chapter 3 will formulate the optimal
search problem as a GenOC problem, and utilize these sonar detection models to generate
sensor-based motion plans to accomplish various MCM missions with different vehicles
and sensors.
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CHAPTER 3:
Optimal Search Problem Formulation

In this chapter, we cast different mine countermeasures (MCM) operations as optimal
search problems whose solutions yield motion plans for a team of autonomous vehicles.
We specifically consider two MCM missions: 1) an initial wide area survey with long-
range, low-resolution sonar to detect and locate MLOs, and 2) a subsequent mission to
revisit these locations with high-resolution sonar for positive target identification. We for-
mulate an objective function which can incorporate different searcher, sensor, and target
distribution models to solve different MCM search problems in the GenOC framework,
demonstrating its flexibility. The benefits of this approach are two-fold: solutions not only
specify trajectories that each vehicle should execute for a given sensor payload, but also es-
tablish performance benchmarks for a given problem. The former can determine the most
effective search pattern for a given vehicle or sensor, as discussed in Chapter 4. The latter
provides a quantitative baseline for comparing different system configurations, which we
explore in Chapter 5.

A number of vehicles and sensors are capable of performing the search tasks described
above, but mission planners must consider which combinations are most effective for a
given MCM operation. Often, the available vehicle platform dictates which sensors can be
utilized, while a sensor may dictate the type of trajectory a vehicle must follow. We assume
in this work that each vehicle deploys only one type of sonar, but acknowledge that some
developmental systems can carry multiple sophisticated sonars at once [13], [108]. An-
other characteristic of search operations is that prior information (or the lack thereof) about
potential target locations influences how the search is planned and executed. The GenOC
framework includes all of these characteristics: multi-vehicle operations, sensor-based mo-
tion planning, and prior information. It can be customized to explore a wide variety of
MCM scenarios simply by swapping different models of vehicle/sensor performance and
initial target distribution.
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The optimal search problem defined in this chapter assumes that:

• Targets are bottom mines with known target strength.
• Sea floor is flat.
• Water depth is constant.
• Search effort is confined to a rectangular area.
• Available mission time is fixed.

The following sections describe the mathematical models and the objective function used
to solve MCM search scenarios within the GenOC framework.

3.1 Searcher Models
The search vehicles selected for a given mission place constraints on the admissible so-
lutions to an optimal control problem. Specifically, we define a mathematical model for
a vehicle’s dynamic equations of motion. This model relates the vehicle’s state variables
~x(t) ∈ RNx and control inputs ~u(t) ∈ RNu through a set of ordinary differential equa-
tions (ODEs) expressed in state-space form: ~̇x(t) = ~f

(
~x(t),~u(t)

)
. This model places

dynamic constraints on how the states may evolve with time. Similarly, there may be
algebraic constraints placed on the control inputs due to physical actuator limitations:
~uMI N ≤ ~u(t) ≤ ~uM AX for all t ∈ [0,T f ]. Additional constraints can be specified in or-
der to bound the region of state space explored during optimization: ~xMI N ≤ ~x(t) ≤ ~xM AX

for all t ∈ [0,T f ]. We note that for multi-vehicle problems with Nv searchers, the state
and control vectors are simply expanded to include the states and controls of each vehicle,
~x(t) ∈ RNvNx and ~u(t) ∈ RNvNu , respectively. The following sections describe models of
two autonomous vehicles which are representative of naval platforms used for MCM.

3.1.1 SeaFox Unmanned Surface Vessel
The NPS SeaFox USVs are small, 5-meter rigid hull inflatable boats (RHIBs) originally
designed for remote-controlled intelligence, surveillance, reconnaissance (ISR), force pro-
tection, and maritime interdiction operations (MIO) conducted by the USN and U.S. Coast
Guard (USCG) [109], [110]. CAVR has converted these vessels into fully autonomous
surface craft in support of various research programs, including sonar-based path plan-
ning for riverine navigation [111], [112] and precise speed control [113]. More recently,
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CAVR modified its SeaFox Mk II USV to deploy an ATLAS minehunting FLS for MCM
research [114].

To develop a model for these vehicles, we assume that USVs conduct MCM search
missions at constant velocity, without aggressive maneuvers, and therefore exhibit sim-
ple planar motion at the sea surface (i.e., pitch, roll, and heave motions are zero). If
we further assume that sway motions are negligible (i.e., sideslip is zero) the equa-
tions of motion can be adequately modeled by kinematics only. Using the state vector
~x(t) ≡

[
x(t), y (t),ψ(t),r (t)

]T , the state-space equations of motion (EOM) are:

ẋ(t) = V cos(ψ(t))

ẏ (t) = V sin(ψ(t))

ψ̇(t) = r (t)

ṙ (t) =
1
T

(Ku(t) − r (t)) . (3.1)

The state variable pair
[
x(t), y (t)

]
defines the vehicle’s position in meters along the north

and east axes of the inertial reference frame; ψ(t) describes the vehicle’s heading angle in
radians measured clockwise from the North axis; and r (t) is the vehicle’s turn rate in ra-
dians per second. The vehicle travels with constant forward velocity V meters per second,
measured along the body-fixed x-axis. Equation (3.1) implements a first-order approxi-
mation to the well-known Nomoto model for ship steering equations, a simple transfer
function between rudder angle u(t) = δr (t) and turn rate r (t) that “is widely used for ship
autopilot design due to its simplicity and accuracy” [115], [116]. The Nomoto gain con-
stant K in inverse seconds, and time constant T in seconds can be identified from sea trial
maneuvers as described in [117]–[119]. Table 3.1 lists the values of V, K, and T used in
our SeaFox USV model.

Table 3.1. Design parameters for unmanned surface vessel model.

Design Parameter SeaFox Value

Nomoto Gain Constant, K 0.5 1/s

Nomoto Time Constant, T 5.0 s

Velocity, V 2.5 m/s
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3.1.2 REMUS 100 Autonomous Underwater Vehicle
The REMUS 100 AUV is a small, rapidly deployable unmanned underwater vehicle for
collecting environmental data in the ocean [120]. Its modular design accommodates a
number of different sensors for hydrographic survey missions, and its SSS system can
make detailed maps of the ocean floor. One of the first AUVs adopted for naval MCM
operations [82], [121], REMUS vehicles were used during Operation Iraqi Freedom in
2003 [122]. The REMUS family of vehicles includes two MCM variants in use by the
Navy today: the MK 18 Mod 1 Swordfish, based on the 7.5-inch diameter REMUS 100,
and the MK 18 Mod 2 Kingfish, based on the 12.75-inch diameter REMUS 600 [123].
CAVR operates three REMUS 100 AUVs in support of its research programs, and has been
developing sensor-based navigation algorithms that utilize blazed array forward-looking
sonar since 2004 [124]–[126].

Autonomous underwater vehicles can move in all three dimensions, and six degrees of
freedom (DOF) are required to describe this motion completely. An example of a full
6-DOF model for simulating the nonlinear dynamics of a REMUS 100 is presented in
[127]. In practice, however, these EOM are usually decoupled into separate, linearized
equations in the horizontal and vertical planes so that designers can develop controllers for
steering and diving, respectively. For our search problem, since AUVs typically conduct
constant-velocity SSS surveys at a fixed altitude above the bottom, we consider only two-
dimensional planar motion. Finally, as a matter of convenience when implementing multi-
vehicle problems in software, we prefer a motion model with the same form as the SeaFox
USV model in Section 3.1.1. This provides easier state vector indexing when AUVs and
USVs operate in a heterogeneous vehicle team.

Under the same assumptions of zero pitch, roll, and heave motion, we can derive a Nomoto
steering model for the REMUS 100 AUV from the linearized, decoupled, lateral steering
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equations in Equation (118) of [127], repeated here:



m − Yv̇ −Yṙ 0
−Nv̇ Izz − Nṙ 0

0 0 1





v̇ (t)
ṙ (t)
ψ̇(t)



+



−Yv mu0 − Yr 0
−Nv −Nr 0

0 −1 0





v (t)
r (t)
ψ(t)



=



Yδr
Nδr

0



δr (t) (3.2)

where u0 = steady-state surge velocity in the x-direction,

v (t) = sway velocity in the y-direction,

m = vehicle’s mass,

IZ Z = vehicle’s yaw moment of inertia about the z-axis,

Y = linear hydrodynamic coefficients producing sway forces, and

N = linear hydrodynamic coefficients producing yaw moments.

In general, control inputs and state variables (and their derivatives) produce nonlinear hy-
drodynamic forces and moments. It is common practice, however, to approximate these
effects by multiplying each contributing variable with a linearized hydrodynamic coeffi-
cient. In Equation (3.2), Y and N denote coefficients that produce sway forces and yaw
moments, respectively, while subscripts denote their corresponding control input or state
variable. Assuming that sway velocity is zero (no sideslip), we rearrange Equation (3.2) as



Izz − Nṙ 0
0 1





ṙ (t)
ψ̇(t)


+



−Nr 0
−1 0





r (t)
ψ(t)


=



Nδr

0


δr (t)



(Izz − Nṙ ) ṙ (t) − Nrr (t)
ψ̇(t) − r (t)


=



Nδr

0


δr (t)



(Izz − Nṙ ) ṙ (t)
ψ̇(t)


=



Nrr (t) + Nδr δr (t)
r (t)


. (3.3)
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Manipulating the ṙ (t) expression from Equation (3.3) into the form of our first order
Nomoto steering model (see Equation (3.1)), we have

(Izz − Nṙ ) ṙ (t) = Nrr (t) + Nδr δr (t)

ṙ (t) =
Nr

(Izz − Nṙ )
r (t) +

Nδr

(Izz − Nṙ )
δr (t) (3.4)

ṙ (t) =
1
T

[Ku(t) − r (t)] ,

where: T =
Nṙ − Izz

Nr
,

K = −
Nδr

Nr
, and

u(t) = δr (t).

Substituting values from [127] for the yaw axis moment of inertia Izz and the hydrody-
namic coefficients Nṙ , Nr , and Nδr (using the SeaFox sign convention), we calculate the
parameters for our REMUS 100 model listed in Table 3.2.

Table 3.2. Design parameters for autonomous underwater vehicle model.

Design Parameter REMUS 100 Value

Nomoto Gain Constant, K 2.0 1/s

Nomoto Time Constant, T 1.0 s

Velocity, V 1.5 m/s

Since our MCM scenario concerns the search for bottom mines, the altitude h must also be
specified for a given vehicle’s mission. For surface craft, altitude h equals the water depth
under our flat bottom, constant depth assumptions.

3.2 Sensor Models
Physics-based models for different types of active sonar used in MCM were developed
in Chapter 2. These models calculate the instantaneous probability p that a given sonar
can detect an echo from a specific target against the expected ambient noise level. This
quantity is a function of the sonar design, parameterized by its FOM, and the two-way
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propagation losses PL between the sonar and target when a scan occurs. At these scan
times, the instantaneous detection probability also depends on whether the target lies within
the sonar’s three dimensional FOV, a function of sonar geometry and vehicle trajectory
~x(t). Three scalar shaping functions were designed to characterize these relationships: Fα,
Fε, and Fr . For a given sonar, this process occurs at an average rate λ, producing the
instantaneous detection rate γ defined in Equation (2.22). Including the terms described
above yields

γ(~x(t), ~ω) = λFα (~x(t), ~ω)Fε (~x(t), ~ω)Fr (~x(t))p(~x(t), ~ω)

= λFα (~x(t), ~ω)Fε (~x(t), ~ω)Fr (~x(t))Φ
(

SE
(
~x (t) , ~ω

)
σ

)
= λFα (~x(t), ~ω)Fε (~x(t), ~ω)Fr (~x(t))Φ

(
FOM − PL

(
~x (t) , ~ω

)
σ

)
. (3.5)

The expressions used to compute each term in Equation (3.5) are listed in Table 3.3.

Table 3.3. Terms used to compute instantaneous detection rate.

Symbol Definition Cross Reference

λ Poisson Scan Rate Section 2.4

SE Signal Excess Equation (2.3)

FOM Figure of Merit Equation (2.4)

PL Propagation Loss Equation (2.6)

p Probability of Detection Equation (2.8)

Fα Azimuth Shaping Function

forward-looking sonar Equation (2.15)

sidescan sonar Equation (2.19)

Fε Elevation Shaping Function Equation (2.16)

Fr Turn Rate Shaping Function Equation (2.21)

3.3 Target Models
The GenOC framework was developed to address optimal control problems with parame-
ter uncertainty [5], [10], [11]. For the MCM search problems considered in this disserta-
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tion, the uncertain parameter is the location of a mine target on the sea floor. We assume,
therefore, that target location is a stochastic parameter ~ω distributed over a search area Ω
according to a known continuous PDF: φ(~ω) : Ω 7→ R. That is, ~ω ∈ Ω ⊂ RNω [5], and
Nω = 2. We can model a number of possible target distributions by specifying a different
PDF, and this directly influences the solution of the optimal search problem.

We can use different target distribution models to simulate various MCM missions. In the
initial phase of an MCM operation, for example, wide-area surveys are conducted to detect
and localize MLOs in a given search area. We formulate this task as an optimal search
problem where no prior target data is available. We therefore model the target distribution
with a joint uniform PDF, bounded by the search area coordinates. This PDF contains
no exploitable information, i.e., there is an equal probability of finding a target anywhere
within the search area.

In subsequent phases of an MCM operation, additional sorties are conducted to reac-
quire previously detected MLOs and identify mines from non-mine/mine-like bottom ob-
jects (NOMBOs) using high-resolution sonar. We can formulate this RID task as another
optimal search problem which not only incorporates different vehicle and sensor models,
but also leverages MLO location data gathered during a prior survey. The accuracy of prior
information is commensurate with the navigational performance of the survey vehicle, so
we model this variation with a PDF. Any continuous PDF can be specified. Walton, how-
ever, suggests the use of joint normalized beta distributions for modeling purposes, due to
their easy algebraic manipulation and customization (via the α, β shape parameters), as
well as their finite radius of effectiveness [79]. The PDF for the beta distribution, defined
for x ∈ [0,1], α > 0, and β > 0 [128] is

φ(x; α, β) =
1

B(α, β)
xα−1(1 − x) β − 1, (3.6)

where B(α, β) =
(α − 1)!(β − 1)!

(α + β − 1)!
.
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3.4 Objective Function
In this section we present the exponential detection model, first described in [36], which is
commonly used to quantify search performance in continuous time. Based on a sensor’s
instantaneous detection rate (see Section 2.4), this model provides a convenient objective
function for optimal search problems, with recent examples provided in [5], [6], [11]. For
our problem, we define residual MCM risk as the probability that a team of autonomous
vehicles fails to detect the mines in a search area by the end of an MCM operation. This
scalar quantity can be readily calculated for a given set of vehicle and sonar capabilities,
and also reflects the time available for search. Therefore, we utilize MCM risk as the
objective function for our optimal search problems; minimizing this quantity maximizes
the mission’s probability of success.

Given an instantaneous detection rate γ(t), derivation of the exponential detection model
proceeds from two key assumptions [36]:

1. The probability of detection in the short time interval [t, t + ∆t] is γ(t)∆t.
2. Detection events in all such non-overlapping time intervals are independent.

Washburn cautions that the independence assumption may not hold in all situations. For
example, consecutive detection failures due to low signal excess could be caused by low tar-
get strength or poor acoustic conditions. Empirically, however, these assumptions “provide
good approximations in a wide variety of circumstances” [51]. Koopman acknowledges
the importance of recognizing when this assumption is legitimate or not, and justifies its
use beyond cases of random search:

The assumption is in fact legitimate—and important—when applied to condi-

tional probabilities of detection: probabilities calculated on the basis of postu-

lated positions and motions of the target. [37]

This is precisely the case described by our objective function for MCM risk in Equa-
tion (3.11), which we now derive using Koopman’s “assumption of independence.”

Let p(t) be the probability of detection at time t. Then, by the complement, the probability
of a detection failure is q(t) = 1 − p(t). Under our stated assumptions, this probability
becomes q(t + ∆t) = q(t)(1 − γ(t)∆t) at the end of the next scan interval, which can be
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rearranged as the difference equation:

q(t + ∆t) − q(t)
∆t

= −q(t)γ(t). (3.7)

In the limit as ∆t → 0, we obtain the differential equation

q̇(t) = −q(t)γ(t), (3.8)

which has the closed form solution

q(t) = e−
∫ t

0 γ(τ)dτ, (3.9)

and leads to the exponential detection model: p(t) = 1 − q(t) = 1 − e−
∫ t

0 γ(τ)dτ.

Equation (3.9) represents the probability that a target was not detected by time t, so the
residual MCM risk after completing an operation of mission duration TF is:

q(TF ) = e−
∫ TF

0 γ(τ)dτ . (3.10)

The objective of our optimal search problem is to minimize this risk. However, the in-
stantaneous detection rate in Equation (3.5) depends on the vehicle trajectory ~x(t) and the
uncertain target location ~ω, a random variable defined in Section 3.3. Consequently, Equa-
tion (3.10) is itself a random variable, which we cannot minimize explicitly. Instead, we
must minimize its expected value, conditioned on the PDF of the target distribution. Hence,
the objective function for a single vehicle becomes

J = E {q(TF )} =

∫
Ω

e−
∫ TF

0 γ(~x(τ), ~ω)dτφ(~ω)d ~ω. (3.11)

For missions with multiple searchers, we assume that instantaneous detection rates are
additive, but vehicle- and sensor-specific. For example, the combined detection rate for a
team comprised of Nv vehicles is

Γ(~x(t), ~ω) =

Nv∑
k=1

λk Fk
α (~x(t), ~ω)Fk

ε (~x(t), ~ω)Fk
r (~x(t))Φ

(
FOM k − PL

(
~x (t) , ~ω

)
σk

)
. (3.12)
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The additive rate in Equation (3.12) makes the implicit assumption that multiple sonars
do not acoustically interfere with one another. This assumption is rarely realistic, except
when sonar systems have widely-separated design frequencies or when they are deployed
in different locations, but this can be addressed during mission planning by imposing min-
imum separation distances. Interestingly, the exponential detection model often produces
multi-vehicle motion plans which resemble manually-separated vehicle trajectories. Since
this model yields diminishing returns when multiple vehicles search the same location [51],
it tends to encourage multi-vehicle solutions which distribute search effort to explore new
regions of the search space. Under our assumptions, the expected residual MCM risk after
a multi-vehicle operation is

JNv =

∫
Ω

e−
∫ TF

0 Γ(~x(τ), ~ω)dτφ(~ω)d ~ω. (3.13)

The objective functions in Equations (3.11) and (3.13) are differentiable, analytic expres-
sions. Although somewhat tedious, it is possible to derive formulas for their gradients
with respect to the state and control variables. This has benefits when using gradient-based
numerical optimization algorithms. Encoding these formulas as user-defined functions sup-
plied to the SNOPT optimization package, for example, significantly reduces the run time
required to compute an optimal solution [99]. The objective function gradients for a single
vehicle are derived in Appendix A.

We observe that our objective functional J, representing the expected residual MCM risk,
has the same form as the running cost in Equation (1.2), the objective functional of the
GenOC problem discussed in Chapter 1. This objective functional is repeated here for
comparison with Equations (3.11) and (3.13):

J =

∫
Ω

E
(
~x(T f ), ~ω

)
+ G

(∫ Tf

0
R

(
~x(τ),~u(τ), τ, ~ω

)
dτ

)
φ(~ω)d ~ω. (3.14)

The end-point cost E
(
~x(T f ), ~ω

)
in Equation (3.14) has been omitted from our objective

functions. Meanwhile, the function G(·) of the running cost derives from the exponential
detection model, i.e., G(·) = e−(·), and R(·) = γ(·). The objective functional in Equa-
tion (3.14) has been used to solve optimal search problems with multiple searchers and
moving targets in cases where target motion can be conditionally-determined by uncertain
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initial conditions [5], [7], [81]. Using similar objective functions in Equations (3.11) and
(3.13) allows us to leverage the mathematical and computational framework previously de-
veloped to handle this class of parameter-distributed, nonlinear optimal control problems.
A contribution of this dissertation, therefore, is the development of new physics-based
sonar models which allow the GenOC solution framework to address real-world MCM
mission planning and analysis problems.

3.5 Problem Scaling
We need to solve these optimal search problems numerically, but the domains of our state
variables x(t), control inputs u(t), uncertain parameters ~ω, and objective function J all
have different orders of magnitude. The search area, for example, may cover several square
kilometers, while the objective function evaluates to a probability in the range [0,1]. It
is important, therefore, to properly scale the problem before unleashing a numeric solver.
This can be achieved by defining canonical units for distance, time, etc. and transforming
the original problem’s variables into non-dimensional versions with similar domains [2].
Several examples which use variable scaling to numerically balance the equations of an
optimal control problem are provided in [74].

For our search problems, the vehicle models from Section 3.1 can be scaled by canonical
units of distance DU, time TU , and velocity VU = DU/TU to produce dimensionless
variables designated by overbar notation:

x =
x

DU
y =

y

DU
ψ = ψ

r =
r

1/TU
= (TU)r (3.15)

t =
t

TU
u = u.

Note that angular variables for heading ψ and control input u (rudder angle) are already
expressed in dimensionless units of radians. The chosen scaling must also be applied to
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constant model parameters such as velocity V , as well as the gain K and time T constants
of the Nomoto steering model:

V =
V

VU

K =
K

1/TU
= (TU)K (3.16)

T =
T

TU
.

Substituting these expressions into our original expressions for x and y yields their state
space equations in nondimensional units:

ẋ =
dx
dt

=
d(DU x)
d(TUt)

=
DU
TU

dx
dt

= VU ẋ

ẋ =
1

VU
ẋ =

1
VU

V cos(ψ) = V cos(ψ). (3.17)

Similarly, we have

ẏ = V sin(ψ). (3.18)

Likewise, scaling by canonical units for ψ and r yields the non-dimensional expressions

ψ̇ =
dψ
dt

=
dψ

d(TUt)
=

1
TU

dψ
dt

=
1

TU
ψ̇

ψ̇ = TUψ̇ = (TU)r = r , and (3.19)

ṙ =
dr
dt

=
d(1/TU)r

d(TUt)
=

1
TU2

dr
dt

=
1

TU2 ṙ

ṙ = (TU2)ṙ = (TU2)
1
T

(Ku − r)

= (TU2)
1

TUT
*
,

K
TU

u −
r

TU
+
-

=
1

T

(
Ku − r

)
. (3.20)

Equations (3.17) through (3.19) confirm that our scaling has not changed the underlying
dynamics of the problem. To ensure the objective function J is calculated properly, physical
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units in the detection rate equation must also be scaled by the appropriate canonical units.
The Poisson Scan rate λ is scaled using TU to yield the non-dimensional form

λ =
λ

1/TU
= (TU)λ. (3.21)

Recall from Equation (2.6) that our range-dependent propagation loss includes a spherical
spreading term, 20 log10

(~ω − ~x(t)
)
, and an acoustic absorption term a ~ω − ~x(t). At

each time t we can compute the distance D between a vehicle and target. Scaling this
distance yields:

D = ~ω − ~x

D =

√
(ωx − x)2 + (ωy − y)2 + (ωz − z)2

D =

√
(dx)2 + (dy)2 + (dz)2 (3.22)

D =

√
(DUdx)2 + (DUdy)2 + (DUdz)2

D = DU
√

dx
2

+ dy
2

+ dz
2

D = DUD. (3.23)

So D = D/DU, as expected. The attenuation coefficient a has units of dB/m and must be
scaled by canonical distance DU (dB represents a ratio and is dimensionless already) as

a =
a

1/DU
= (DU)a. (3.24)

Finally, the propagation loss calculated using these dimensionless quantities becomes

PL = 20 log10 (D) + a(D) (3.25)

PL = 20 log10

(
DUD

)
+

a
DU

(
DUD

)
PL = 20 log10 (DU) + 20 log10

(
D

)
+ a

(
D

)
, (3.26)

which has an additional term due to the distance scale factor. The level curves in Figure 3.1
verify that propagation loss calculated for non-dimensional ranges with Equation (3.26)
and DU = 100 meters (shown at right) are equivalent to propagation loss calculated for

72



0 100 200 300 400 500
−20

−10

0

10

20

30

40

50

60

70

80
Level Curves vs. Range

Range [m]

L
e

v
e

l 
[d

B
]

 

 

SE

PL

0 1 2 3 4 5
−20

−10

0

10

20

30

40

50

60

70

80
Level Curves vs. Range

Range [DU]

L
e

v
e

l 
[d

B
]

 

 

SE

PL

Figure 3.1. Propagation loss vs. physical range (left) and non-dimensional
range (right) for 200 kHz FLS with �gure of merit of 72 dB.

physical ranges with Equation (3.25) (shown at left). These curves also show the signal ex-
cess vs. range for the 200 kHz FLS with FOM = 72 dB, derived in Section 2.6.1. Note that
signal excess is zero at a range of 400 meters. As an example, suppose we want to solve an
MCM search problem for the SeaFox USV (see Section 3.1.1) conducting a mine detection
survey with the 200 kHz FLS above. Typical bounds on the states, controls, search area,
and constant parameters are defined in Table 3.4. This table includes their physical val-
ues (before scaling), and their non-dimensional values after scaling by the canonical units
DU = 100 meters, TU = 100 seconds, and VU = DU

TU = 1 m/s.

3.6 Feasibility
Most optimal control problems cannot be solved analytically. Often, numerical methods
are required to generate “optimal” trajectories of the state variables and control inputs that
minimize a desired objective function, subject to constraints defined by the user. We must
remember, however, that numeric solutions are calculated for a discretized version of the
original problem. They meet the mathematical definition of feasibility as long as all of
the problem constraints are satisfied at a finite number of nodes comprising the discrete
problem [129]–[131].
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Table 3.4. Example of physical and non-dimensional parameter domains.

Parameter Physical Domain Canonical Domain

Time 0 ≤ t ≤ 1800 s 0 ≤ t ≤ 18

Search Area North Coordinate 500 ≤ ωx ≤ 2500 m 5 ≤ ωx ≤ 25

Search Area East Coordinate 500 ≤ ωy ≤ 2500 m 5 ≤ ω y ≤ 25

North Coordinate 0 ≤ x ≤ 3000 m 0 ≤ x ≤ 30

East Coordinate 0 ≤ y ≤ 3000 m 0 ≤ y ≤ 30

Heading −∞ ≤ ψ ≤ ∞ rad −∞ ≤ ψ ≤ ∞

Turn Rate −0.3 ≤ r ≤ 0.3 rad/s −30 ≤ r ≤ 30

Rudder Angle Input −0.5 ≤ u ≤ 0.5 rad −0.5 ≤ u ≤ 0.5

Velocity V = 2.5 m/s V = 2.5

Nomoto Gain Constant K = 0.5 1/s K = 50

Nomoto Time Constant T = 5.0 s T = 0.05

Poisson Scan Rate λ = 0.2 1/s λ = 20

Attenuation Coefficient a = 0.052 dB/m a = 5.2

It is important to verify that these constraints are, in fact, satisfied in the continuous domain
as well. Moreover, we require optimal trajectories that can be implemented on autonomous
vehicles. Therefore, as a practical consideration, we adopt the definition of feasibility used
by Hurni:

Showing the feasibility of the generated solution can be done by control trajec-
tory interpolation and state propagation using a Runge-Kutta algorithm. If the
initial conditions and system dynamics can be propagated using the optimal
control solution and it matches the [solver’s] generated trajectories, then the
control solution is deemed feasible. [74]

In other words, solutions with discrete trajectories
{
~x(k), ~u(k)

}
are feasible if a vehicle can

execute a smooth control trajectory ~u(t), interpolated through the solution’s ~u(k) nodes,
and produce a state trajectory ~x(t) sufficiently close to the solution’s ~x(k) nodes. Planning
algorithms can verify feasibility automatically, but the word “close” must be quantified
first. Possible metrics for the similarity between two curves include the Frechet [132] or
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Hausdorff [133] distance measures. The trajectory-planning algorithm proposed in [74],
for example, performs automatic feasibility checks using a norm based on summing the
Euclidean distances between the solution nodes and points along the propagated trajectory,
evaluated at the solution nodes. In the following chapters, we will consider a solution to
be feasible when its state-propagated trajectory a) does not violate problem constraints,
and b) matches the solution trajectory when overlaid on a graphical plot. These criteria
will verify that solutions obtained from a numeric solver are feasible, and also ensure that
only feasible guesses are used to initialize the optimization. When necessary, e.g., for
the automated analysis of inverse problems conducted in Chapter 5, we employ a numeric
feasibility criteria similar to [74].

3.7 Initial Guess
Most numeric optimization routines are initialized with an initial guess. For an optimal
control problem, the guess is a candidate solution, complete with state and control tra-
jectories

{
~x(k), ~u(k)

}
at discrete time nodes. The solver evaluates the objective function

using these trajectories. From there, it iteratively generates new candidate solutions that
decrease the objective value, finally stopping its search when it reaches a local minimum.
A good initial guess can influence the optimization by focusing the solver’s effort in smaller
regions of the search space. As a result, initial guesses can dramatically reduce solution
times [74]. In some cases, e.g., when a problem has several local minima, the initial guess
can determine whether a solver succeeds or fails at finding the correct solution.

The initial guess must be a valid candidate solution to the optimization problem, which
implies that the initial guess should:

• have the same initial condition ~x(0) = ~x0 as the problem of interest,
• have the same time node discretization as the problem of interest, and
• be feasible, i.e., obey state variable constraints and control limits.

The first two requirements are easy to address while encoding the problem of interest into
the GenOC framework. Satisfying the feasibility requirement depends on the sophistica-
tion of the initial guess trajectory, which corresponds to the amount of prior information
we wish to incorporate. Ideally, we would like to find an optimal solution without know-
ing beforehand what a “good” initial guess looks like. A trivial guess which satisfies the
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Figure 3.2. Initial guess trajectories for open loop rudder step.

first two requirements, for example, would be a zero velocity trajectory that remains at ~x0

for all time. Unfortunately, the constant velocity vehicle models defined in Section 3.1 do
not permit acceleration, and the solver would be unable to find another solution trajectory.
Similarly, a guess which specifies a trivial control trajectory u(t) = 0 for all time is infeasi-
ble under our definition, because the vehicle would travel at constant velocity and heading
until it left the domain of its North or East coordinate.

A naive open-loop control trajectory is a good compromise between a trivial (no infor-
mation provided) guess, and an expert (full information provided) guess. For example,
a rudder angle step function, executed at the proper time, will cause a search vehicle to
turn in a circle until the end of the simulation. This has the benefit of keeping the vehicle
in the search area and ensures that state variable limits are not exceeded. In practice, we
approximate a discrete step function with a smooth sigmoidal curve centered at the step
time [96]. This simple control trajectory is then propagated through the motion model, us-
ing a Runge-Kutta algorithm (e.g., the Matlab ode45 solver) to calculate the corresponding
state variable trajectories, thereby guaranteeing feasibility (see Figure 3.2).

If there is sufficient time to exhaustively search an area, an expert initial guess can be
provided that completely covers the area with a deterministic search pattern. A num-
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ber of algorithms for “coverage path planning” exist [63], based on sensor sweep width.
Deterministic search patterns include spirals for searching circular areas [72]; and box-
spirals, lawnmower, or zamboni patterns for searching rectangular areas [134]. While these
strategies may waste effort when the search area contains sub-regions with near-zero tar-
get probability distribution [135], it is usually possible to decompose the search area into
smaller regions and avoid this situation. Moreover, for rectangular search areas, line sweeps
conducted parallel to boundary edges are optimal for minimizing the number of turns re-
quired [66]. This fact, plus the ease of implementing these patterns with vehicle autopilots,
likely explain the widespread use of lawnmower patterns for underwater search operations.

These rectangular coverage patterns require path-following controllers to execute them.
Coverage path planners often take this for granted, assuming that the search area can be
decomposed into smaller, “easy to cover” cells; the vehicle need only visit all such cells to
achieve complete coverage [63]. Another approach is to extend the line sweep track length
by a vehicle-specific distance, assuming all 180-degree turns occur outside the search area
and the vehicle re-establishes straight-line motion before reentry on an adjacent track [136].
While these approaches determine the geometric length, spacing, and number of track lines
for a given sweep width, they do not represent feasible trajectories, per se.

Before we can specify this type of coverage pattern as an initial guess for an optimal control
problem, we need to convert a waypoint-based specification into a feasible trajectory. Hau-
gen suggests an approach for constructing a feasible lawnmower path which uses clothoids
as transition curves between waypoint segments. The clothoids are scaled such that a ve-
hicle following this trajectory obeys feasibility constraints on its angular velocity and ac-
celeration [137]. Depending on the track spacing and vehicle turning radius, one of three
different U-turn paths are constructed to connect adjacent line sweep tracks. For our search
problems, we assume that the lawnmower track spacing permits a piecewise U-turn com-
prised of two 90-degree clothoids and a straight line segment (Case A) [137]. This produces
a feasible path in the horizontal plane, which we can convert to a control trajectory u(k) by
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inverting the searcher model of Section 3.1 as follows:

∆x(k) = x(k + 1) − x(k)

∆y (k) = y (k + 1) − y (k)

ψ(k) = atan2 (∆y (k), ∆x(k))

∆t(k) =

√
∆x2(k) + ∆y2(k)

V
(3.27)

r (k) =
dψ
dt

(k) ≈
ψ(k + 1) − ψ(k)

∆t(k)

ṙ (k) =
dr
dt

(k) ≈
r (k + 1) − r (k)
∆t(k)

u(k) =
1
K

(r (k) + Tṙ (k)) .

Figure 3.3 and Figure 3.4 illustrate lawnmower and box-spiral initial guesses, respectively,
constructed using this clothoid method. Note that the inverse kinematic equations of Equa-
tion (3.27) differentiate state trajectories using the forward Euler method, which requires
small, equally-spaced time steps to ensure accuracy and feasibility of the derivatives. Small
step size translates into a large number of nodes, which can drastically increase solver run
time. The latter makes a compelling argument against supplying a deterministic search
pattern for the initial guess.
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Figure 3.3. Initial guess trajectories for open loop lawnmower pattern.
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Figure 3.4. Initial guess trajectories for open loop box-spiral pattern.
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CHAPTER 4:
Application: Time-Limited Optimal Search

As we have seen in Chapter 3, computational optimal search can be tailored to model
and solve many different MCM problems of interest. Optimal solutions, obtained through
simulation, provide performance benchmarks that can inform mission planning under real-
world resource limitations. These resources include the number and type of autonomous
vehicles at the MCM commander’s disposal, as well as the sensors these platforms can
carry. Typically, however, the most important resource is time. As Washburn notes in [23]:

The great questions in search all involve time. We ask, “How long will detec-
tion take?” or “What is the probability of detection in a fixed time?” Detection
is inevitable, given sufficient time. The object of search planning is to speed
things up. [23]

Indeed, while a number of planning algorithms have been developed to achieve complete
coverage of a search area (see, e.g., [63], [138]), most do not explicitly consider the ram-
ifications of time. Instead, time is a byproduct of the search vehicle’s velocity and spatial
trajectory. A common metric is the area coverage rate, computed by multiplying a sen-
sor’s nominal sweep width by platform velocity. One example described in [139] derives a
lower bound for the time required by an aerial vehicle to follow a flight plan that achieves
complete sensor coverage. This type of bound can be informative when there is sufficient
time to execute a given motion plan, but provides no guidance for adjusting the plan if the
bound exceeds the allowable mission duration.

When time is limited and complete coverage is impossible, deterministic search patterns
(e.g., lawnmower or box-spiral trajectories) are faced with two choices: 1) execute the
original motion plan as long as possible to achieve 100% sensor coverage in a subset of
the entire search area; or 2) adjust the track spacing to survey the entire search area, but
with incomplete coverage. For a perfect “cookie cutter” sensor and uniform target PDF,
both choices are equivalent and the probability of non-detection equals the fraction of un-
searched area. Time-limited MCM operations can only reduce this risk by leveraging prior
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information about the target distribution. If it is known, for example, that mines have
been deployed in an “evenly-spaced mine line,” [140] proposes a track-spacing method
that yields a probability of missed mines below the un-searched area ratio.

Mission time is a hard constraint in most MCM operations, motivating the fixed-time prob-
lem formulation described in Chapter 3. We seek time-limited optimal search trajectories
that minimize MCM risk for a given vehicle, sensor, and mission duration—whether or not
prior information is available. In this chapter, we demonstrate the flexibility of the GenOC
framework by solving MCM search problems for both cases. First, we implement an RID
mission in which a vehicle with high-resolution sonar must revisit a previously detected
mine target whose location is given by a joint, normalized, beta distribution. Next, we
implement a wide area survey to detect and localize MLOs, using the conservative assump-
tion of a uniform target PDF to represent no prior information. Such missions are typically
conducted during the initial phase of an MCM operation. For this mission, we compare
time-limited search performance, i.e., the MCM risk vs. allotted mission time, for optimal
trajectories and well-known deterministic search patterns. Finally, we discuss the impact
of time discretization on numerical solutions.

4.1 Search with Prior Information—Mine Reacquisition
During the initial phase of an MCM operation, wide area surveys are conducted to detect
mine-like objects (MLOs) in the environment that pose a threat to naval forces. These
surveys can produce datasets with dozens of potential target locations, so it is critical to
distinguish actual mines from harmless clutter before launching time-intensive neutraliza-
tion missions. Successful target identification requires high-resolution sensors not typically
carried on the initial survey vehicles, and these sensors are more effective at close range. As
a result, follow-on missions are conducted to revisit the MLOs with AUVs carrying imag-
ing sonars or video cameras. This type of reacquire-identify (RID) mission incorporates
prior information about MLO locations provided by the survey, but this data is uncertain;
its accuracy depends upon the sensing and navigational performance of the survey vehicle
itself. The searcher should expect to search for the target once it arrives in the vicinity of
the surveyed location. We therefore cast the motion planning problem for an RID mission
as an optimal search for a target whose probability density is more informative than the
uniform density assumed for the initial MCM search.
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In this section, we apply the GenOC framework to solve problems of this type. We assume
that a prior survey has detected and localized a MLO with probability density described
by a joint normalized beta distribution in two dimensions (see Section 3.3). For a search
area of 20 DU × 20 DU in size, we select (α, β) parameter values of [8 DU, 16 DU] in
the north direction and [16 DU, 8 DU] in the east direction. Substituting these values into
Equation (3.6) produces the two dimensional PDF shown in Figure 4.1, pictured prior to
commencement of the RID mission. Our objective value, the residual risk of non detection,
is plotted on a color scale in which high probabilities are shown in dark red, and low
probabilities are shown in blue. This β distribution corresponds to a previously-detected
target located at [ωx , ωy] = [12 DU, 19 DU].

We wish to compute the time-limited optimal trajectory for a 40-minute RID mission by
a REMUS 100 AUV equipped with high-resolution imaging sonar. For this problem, we
assume that the search area shown in Figure 4.1 has a flat bottom and the AUV oper-
ates with constant velocity V = 1.5 m/s at altitude h = 3 meters above the sea floor.
The AUV is programmed to launch from a start location at [x, y] = [1 DU, 7 DU] on
an initial heading of 45 degrees, utilizing prior information about the expected target lo-
cation [12 DU, 19 DU]. The search vehicle’s initial state vector is therefore given by
~x(0) = [1 DU, 7 DU, π/4 rad, 0 rad/TU]T . A naive, yet feasible initial guess trajectory
is provided to the solver using an open loop rudder step function to generate a wide right
turn.

The search performance of the 450 kHz and 900 kHz blazed array FLS models from Ta-
ble 2.1 are compared in Figure 4.2 and Figure 4.3, respectively, for different numbers of
discrete time nodes. To compare optimal trajectories generated with different discretization
grids (in the time and/or spatial domains), we re-compute objective values using a common
baseline of 500 time nodes and 25 × 25 grid of spatial nodes.
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Figure 4.1. Normalized beta distribution for a previously detected target
located at [12 DU, 19 DU].

We accomplish this by:

1. Interpolating the solver’s control input trajectory onto a fine grid of 500 time nodes.
2. Propagating this finely-gridded control input through the vehicle’s EOM, using

MATLAB’s ode45 solver to generate finely gridded state trajectories.
3. Re-calculating the objective function for the resulting 500-node, dynamically feasi-

ble state trajectories.
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Figure 4.2. Optimal RID trajectories for a REMUS AUV with P450 FLS.
Left: PN D = 0.012 (20 time nodes). Right: PN D = 0.001 (35 time nodes).

Figure 4.3. Optimal RID trajectories for a REMUS AUV with P900 FLS.
Left: PN D = 0.333 (30 time nodes). Right: PN D = 0.305 (40 time nodes).

The 20-node trajectory in Figure 4.2 (at left) makes two parallel passes over the search area
and then loiters over the expected target location for the remainder of the mission. The 35-
node trajectory shown at right is more dynamic, approaching the search area from several
different headings and almost encircling the expected target location. The 450 kHz blazed
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array FLS has a nominal operating range of 200 meters, and an AUV using this sensor for
RID missions can reduce the residual risk of non-detection to roughly 1% or less.

If a given mission requires a higher-resolution sonar to achieve positive target identification,
the same AUV can deploy a 900 kHz blazed array FLS instead. Example trajectories are
provided in Figure 4.3. The 30-node trajectory shown at left executes three symmetric loops
over the expected target location, while the 40-node trajectory shown at right sweeps the
target area with parallel tracks oriented on two distinct headings. Both solutions achieve a
probability of non-detection around 30%, indicating that the 900 kHz sonar is hampered (in
coverage) by its 100-meter nominal range. Nevertheless, the GenOC framework produces
trajectories that revisit the target area repeatedly until the mission time expires. These
solutions have similarities with traditional RID search patterns, which implement partial
lawnmower swaths, aligned on different headings, to cover a target from multiple aspect
angles for improved classification performance [30]. Results from these simulations are
summarized in Table 4.1.

Table 4.1. Optimal time-limited RID trajectories for a REMUS 100 AUV
with FLS and T f = 2400 s.

Imaging Time PN D Figure

Sonar Nodes 500 × 25 × 25 Reference

P450 FLS
20 0.012 Figure 4.2 (left)

35 0.001 Figure 4.2 (right)

P900 FLS
30 0.333 Figure 4.3 (left)

40 0.305 Figure 4.3 (right)

4.2 Search with No Prior Information—Mine Survey
In this section, we consider the common MCM problem of planning survey missions to de-
tect MLOs in the absence of prior information about the target distribution. Typically, this
involves a labor-intensive process to divide the search area into separate homogeneous re-
gions, and tasking individual MCM assets to cover each region with a deterministic search
pattern based on nominal area coverage rates. Various TDAs have been developed to au-
tomate aspects of this process, and these information products can be “used by the force
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commanders to optimize the employment of naval assets in any particular tactical environ-
ment at sea” [56].

Many planning tools, e.g., PATHA, can incorporate sonar performance models and time-
based constraints to help mission planners determine the number of assets needed for a
given mission [59]. However, these systems do not explicitly consider search vehicle dy-
namics and their attendant impact on detection performance. The GenOC framework takes
this into account, providing a unique capability for planning MCM survey operations. It not
only produces time-limited optimal search trajectories that minimize risk for a given vehi-
cle and sensor configuration, but it can also serve as a pre-mission analysis tool to compare
the expected performance of different sonar designs or autonomous vehicle teams. The lat-
ter refers to the solution of so-called “inverse problems,” which is discussed in Chapter 5.
The rest of this chapter is focused on the former, and applies the GenOC framework to plan
a time-limited MCM survey for the following benchmark problem.

We wish to plan 30-minute MCM survey that achieves 90% probability of detecting a
bottom mine hidden anywhere in the 20 DU × 20 DU search area shown in Figure 4.4,
with uniform probability distribution. This corresponds to a risk threshold PN D ≤ 10%.
For this problem, we assume that the search area has a flat bottom, water depth is 20 meters
(e.g., 0.2 DU), and two SeaFox USVs equipped with 200 kHz FLS are available for this
operation. We first consider whether a single vehicle can meet the desired risk threshold,
and solve an optimal search problem for a SeaFox USV launched from the initial state
vector ~x(0) = [1 DU, 7 DU, 0 rad, 0 rad/TU]T and programmed to operate at constant
velocity V = 2.5 m/s = 2.5 VU. A naive, yet feasible initial guess trajectory is provided to
the solver using an open loop rudder step function to generate a right turn in the center of
the search area.
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Figure 4.4. Search area with uniform probability distribution, representing
no prior target location data.

The optimal time-limited search trajectory is shown in Figure 4.5, which achieves an
objective value of PN D = 0.362, computed on our 500 × 25 × 25 discretization base-
line. This trajectory resembles a box-spiral search pattern, although the limited mission
duration does not permit full coverage. Nevertheless, this trajectory represents the best
search performance that can be achieved by a single USV launched from the given ini-
tial condition. As such, it represents a local minimum, since different initial conditions
may yield lower PN D results. Monte Carlo simulation can be employed to determine the
most favorable initial condition(s) for exploring a given search area. Due to the sym-
metry of this problem, however, such solutions are not unique. An initial condition of
~x(0) = [23 DU, 1 DU, π/2 rad, 0 rad/TU]T will yield the same result.
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Figure 4.5. Optimal survey trajectory to detect MLOs with a SeaFox USV
and 200 kHz FLS in T f = 30 minutes: PN D = 0.362 (30 time nodes).

Since the MCM survey failed to meet the desired risk threshold, the force commander must
either increase the mission duration, or deploy additional search assets. Adding a second,
identical searcher launched from the initial condition ~x(0) = [1 DU, 9 DU, 0 rad, 0 rad/TU]T

produces the optimal trajectories shown in Figure 4.6, reducing the risk to PN D = 0.022 in
the same 30-minute mission. This result suggests that two vehicles can meet the desired
risk threshold of PN D = 0.1 with a shorter mission duration.
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Figure 4.6. Optimal survey trajectories to detect MLOs with two SeaFox
USVs and 200 kHz FLS in T f = 30 minutes: PN D = 0.022 (30 time nodes).

Additional simulations were conducted to determine whether two vehicles could achieve
the survey objective in less time. Figure 4.7 shows the optimal trajectories computed for
a 20-minute (at left) and 25-minute (at right) mission. The 20-minute mission has time-
limited performance PN D = 0.224 and fails to meet our objective, while the 25-minute
mission achieves PN D = 0.087, equivalent to a detection probability PD > 91%. Results
from these simulations are summarized in Table 4.2.
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Figure 4.7. Optimal mine detection survey trajectories for two SeaFox USVs
with 200 kHz FLS. Left: PN D = 0.224 (20 time nodes) in 20 minutes.
Right: PN D = 0.087 (30 time nodes) in 25 minutes.

Table 4.2. Optimal time-limited trajectories for mine detection using SeaFox
USVs and 200 kHz FLS.

Number Mission Time PN D Figure

of USVs Duration Nodes 500 × 25 × 25 Reference

1 1800 s 30 0.362 Figure 4.5

2
1200 s 20 0.224 Figure 4.7 (left)

1500 s 30 0.087 Figure 4.7 (right)

1800 s 30 0.022 Figure 4.6

4.3 Search Performance vs. Mission Duration
There is an inherent time-dependency of the exponential detection model incorporated into
the objective function of Equation (3.11). This model produces diminishing returns on
search effort applied to previously visited regions of the operating area. Optimal search can
leverage this property to produce motion plans which accomplish both exploration, when
we wish to acquire information about the environment (Section 4.2); and exploitation of
all relevant prior information (Section 4.1). We have already seen how mission duration
impacts the optimal vehicle trajectories and achievable search performance for a given
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mission. While it is intuitively obvious that searching for longer periods of time can lower
MCM risk, the ability to rapidly solve optimal search problems allows MCM commanders
to quantitatively address questions such as:

• What is the residual risk after searching for a fixed duration with a given vehicle and
sensor combination?

• How long will it take a search vehicle to reach a desired risk threshold with a given
sensor payload?

• How much time savings can be achieved by employing multiple search assets?

Using the GenOC framework, we can conduct several simulated experiments to solve a
given optimal search problem for different values of our fixed mission duration. Subsequent
Monte Carlo analysis can identify trends in the solution results to help characterize the
optimal performance of a given system configuration as a function of time. Note that our
current computational framework was written to solve GenOC problems with fixed final
time; at present, we rely on Monte Carlo simulations to answer questions regarding the
minimum time to reach a given risk threshold, for example. Future work will investigate the
use of optimal control software packages like DIDO [141], which can address minimum-
time problems directly, for solving this class of GenOC problems.

Meanwhile, we must address two minor complications arising from this approach. First,
the numeric solution to a given optimal control problem is repeatable over multiple runs; we
must therefore inject random variation into our simulations before we can conduct a mean-
ingful statistical analysis. This is achieved by varying the initial condition; the position and
heading angle of each search vehicle at t = 0 is randomized prior to each simulation, influ-
encing the initial guess trajectories as well. Second, we must impose a feasibility check on
the solver’s output so that infeasible solutions can be excluded from the analysis.

It is instructive to compare the search performance vs. mission duration of our optimal
search trajectories against well-known deterministic search patterns. For the single-USV
survey mission described in Section 4.2, the following sections describe the feasible lawn-
mower and box-spiral trajectories which provide benchmarks for comparison.
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4.3.1 Manually-Specified Lawnmower Pattern
Computing the shortest path for a lawnmower coverage pattern to completely cover a
polygonal area has been found to be NP-hard; as a result, approximate algorithms are pro-
posed to plan efficient lawnmower trajectories in [142]. Additional examples are proposed
in [66], which minimizes the number of turns along the path, and [143] which suggests that
these patterns are time-optimal for a robotic lawnmower.

We wish to generate a benchmark lawnmower trajectory that completely covers the
20 DU × 20 DU search area shown in Figure 4.4. We do so in the manner that an MCM
operator programs a waypoint-based mission for a given sensor sweep width. The 200 kHz
FLS used in our example has a nominal range of 400 meters, so we select waypoints that
place north/south-aligned track lines with 400 meters track spacing, offset by 200 meters
from the search area’s east/west boundaries. Whereas a sidescan sonar survey would per-
form the necessary U-turns outside the search area, we assume that the FLS does not incur
a performance penalty for turning motions (i.e., Fr = 1). Therefore, the long track lines are
connected by short legs offset 200 meters from the search area’s north/south boundaries to
avoid wasted effort. This waypoint pattern is denoted by green circles in Figure 4.8.

Similarly, we specify an initial condition of ~x(0) = [1 DU, 7 DU, 0 rad, 0 rad/TU]T , so the
USV begins its mission pre-aligned with the first track line, thereby minimizing unneces-
sary path length. Finally, we ensure feasibility of this lawnmower pattern by constructing
each 90-degree turn with clothoid curves (see Section 3.7) and propagating a control input
through the EOM to produce the magenta state trajectory shown in Figure 4.8. This trajec-
tory was used to recalculate PN D on our 500 × 25 × 25 discretization baseline for different
values of T f . These results are plotted as blue crosses in Figure 4.9, where each data point
represents an entire mission that completes as much of the lawnmower pattern as possible
in the time allotted.
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Figure 4.8. Partially completed lawnmower survey for T f = 2000 s.

Figure 4.9 reveals a linear relationship. We note that PN D falls at a constant rate for mission
durations up to roughly 3500 seconds, then slows down just before vanishing altogether
for missions around 4000 seconds long. The best linear fit to this data is obtained by
eliminating data points when T f > 3500 seconds, producing the formula

PN D = −0.000253(T f ) + 0.950. (4.1)

Equation (4.1) confirms what we would expect: PN D ≈ 1 for T f = 0 seconds, a trivial
mission with no search effort; and PN D = 0 for T f > 3750 seconds, which is sufficient time
to completely cover the search area.
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mission duration.

4.3.2 Manually-Specified Box-Spiral Pattern
Spirals are another popular deterministic search pattern, and box-spirals are very similar
to the lawnmower trajectories discussed previously. While both patterns achieve complete
coverage, [143] suggests box-spirals as a minimal-energy alternative to time-optimal lawn-
mower patterns, since box-spirals require less turning effort. Using the same assumptions,
waypoint spacing, and initial condition as Section 4.3.1, we generate a benchmark box-
spiral trajectory that completely covers the 20 DU × 20 DU search area of Figure 4.4.
The feasible state trajectory for this pattern is the magenta line in Figure 4.10, while the
waypoint pattern is denoted by green circles.
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Figure 4.10. Partially completed box-spiral survey pattern for T f = 2800 s.

PN D values, recalculated on our 500 × 25 × 25 discretization baseline, are plotted as red
boxes in Figure 4.9 for different values of T f . As before, each data point represents an entire
mission that completes as much of the box-spiral pattern as possible in the time allotted.
This data reveals a linear relationship nearly identical to the lawnmower pattern. The best
linear fit yields the formula:

PN D = −0.000254(T f ) + 0.947. (4.2)

The mean of the lawnmower and box-spiral linear fits is depicted by a black line with
constant slope in Figure 4.9. A constant slope is expected, since lawnmower and box-spiral
trajectories implement “exhaustive search.” Recall that exhaustive search with a definite
range sensor yields a detection probability PD equal to the coverage ratio, the fraction of
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search area covered by the sensor. Therefore, a “cookie cutter” sensor with sweep width
W , mounted on a vehicle moving at constant velocity V , in a search area A, produces a
probability of detection PD = WVt/A that is linear with time [51]. We have simply plotted
the complement, PN D = 1 − PD, in Figure 4.9.

4.3.3 Optimal Solution from Solver
Monte Carlo simulations were conducted for the mine survey problem of Section 4.2 to
analyze the optimal search performance for a range of mission durations between fifteen
minutes and one hour, spaced at two-minute intervals. Ten simulations were conducted
for each value of T f , with initial states drawn from a uniform U (lower, upper) or normal
N (mean, std. dev.) probability distribution as follows:

x(0) ∼ U (0,10)/DU,

y (0) ∼ U (500,2500)/DU, and (4.3)

ψ(0) ∼ N (0, π/12).

Initial turn rate r (0) = 0. The initial guess is computed from an open loop rudder step
input that commands a right turn when y (0) is in the western half of the search area, and
commands a left turn when y (0) is in the eastern half of the search area.

The mean objective values of PN D from the ten simulations conducted for each value of T f

are plotted as the blue line in Figure 4.11, while a quadratic curve fit to this data is shown
as the dashed magenta line. The mean of the two deterministic search patterns derived
previously is shown as a black line for comparison purposes. The plots intersect at roughly
T f = 3280 seconds, at an objective value of PN D = 10%. This plot clearly indicates that
an optimal search strategy outperforms deterministic, exhaustive search patterns for time-
limited missions less than about 55 minutes in duration. However, it also suggests that
operators would be better off selecting a deterministic search pattern if there is sufficient
time to execute it to completion.
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Figure 4.11. Search performance comparison between optimal trajectories
and exhaustive search patterns.

The cross-over point may indicate a local minimum that is difficult to overcome with tra-
jectories based on a low number of discrete time nodes. Simulations with excess mission
duration are capable of bringing PN D to zero (see RID trajectories in Figure 4.2), albeit
with some wasted search effort. In addition, previous simulations conducted using an Euler
discretization with hundreds or thousands of time nodes have generated trajectories that
more closely resemble lawnmower patterns, but this kind of overkill is computationally
prohibitive and not useful for optimal trajectory planning. Futher work is required to inves-
tigate optimal search performance when mission duration is roughly equivalent to the time
required for exhaustive search.

98



4.4 Search Performance vs. Time Discretization
One of the most important aspects of motion planning in a computational optimal control
framework is the choice of discretization scheme, as this directly impacts accuracy and
computational run time. In general, numeric trajectory approximations converge to their
continuous counterparts as the number of computational nodes increase [144], [145]. While
increasing the number of nodes can improve solution accuracy, designers must balance
this accuracy against the computational demands required by high-node discretizations.
Moreover, higher-node control trajectory solutions may be infeasible for implementation
on an actual vehicle system. A detailed theoretical discussion on this topic is beyond the
scope of this dissertation, but an excellent overview on pseudospectral optimal control
theory is provided in [4], with convergence and consistency proofs given in [77].

Hurni recommends using “the lowest possible number of nodes for feasible and safe tra-
jectories,” and proposes a novel criteria for selecting the number of nodes based on the
distance a ground vehicle must travel, and the size of the obstacles it must avoid along
the way [74]. We have assumed an obstacle-free environment for MCM search planning.
Moreover, we do not require real-time algorithms for dynamic re-planning. Instead, we
generate an optimal search strategy for the entire MCM mission, subject to any prior infor-
mation we possess. The lack of a real-time constraint grants us the luxury of computing
multiple solutions with increasingly fine discretization schemes in our search for an opti-
mal, feasible search trajectory. Solutions whose feasibility cannot be verified by control
trajectory propagation are rejected.

We will demonstrate this concept using the time-limited survey mission described in Sec-
tion 4.2. Figure 4.12 plots the objective values for ten different optimal solutions, each
computed using a different time discretization with Nt time nodes. We observe that as
the number of time nodes increase, the numeric solution’s objective value converges to
PN D ≈ 0.320. Note, however, that the objective values plotted in Figure 4.12 are the raw
solver outputs, calculated directly from the Nt solution trajectory nodes. We denote such
objective values by Jout .

To support performance comparisons between different numeric solutions, the solution tra-
jectories must first be transferred onto a common discretization scheme. This is achieved by
interpolating control trajectories, propagating state variables through the system’s ODEs,
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and recalculating objective values on our 500 × 25 × 25 discretization baseline. Objective
values corresponding to these ODE-propagated state trajectories are designated by Jode.
Finally, the propagated trajectories are compared against the solution nodes to assess each
solution’s feasibility. In this example, all of the numeric solutions with greater than 50
nodes are deemed infeasible. Feasible search trajectories are illustrated in Figure 4.13.
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Figure 4.12. Solver-provided objective values vs. the number of discrete
time nodes for a single-vehicle, 30-minute survey mission.
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Figure 4.13. Single-vehicle, 30-minute survey trajectories computed for dif-
ferent time discretizations.

Note that higher-node solutions incorporate periodic turning motions in their trajectories.
This has the benefit of aiming the vehicle’s FLS to cover a larger portion of the search area,
reducing the accumulated probability of non-detection. Recall that we have not penalized
the detection rate of this FLS for turning motion as we would for a SSS, i.e., the shaping
function Fr (~x) = 1 for this problem. This increased complexity yields diminishing returns,
however; the optimal trajectories computed using 30 or more time nodes are remarkably

101



similar, and all of them achieve a PN D within 3% of the 50-node best performer.

Figure 4.14 illustrates the run times required to compute each solution in Figure 4.12 and
Figure 4.13 using a 2.30 GHz Xeon CPU (complete processor specifications are listed
in [146]). We note that there is a large increase in run time required to compute solutions
with more than 40 time nodes, and the 50-node solution takes nearly twice as long as the
30-node solution. Moreover, the 40-node solution takes nearly 5 seconds longer to compute
than the 30-node solution, but only decreases PN D by 0.003.
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Figure 4.14. Run times vs. the number of discrete time nodes required to
compute trajectories for a single-vehicle, 30-minute survey mission.

For this reason, 30-node solutions were selected as an acceptable compromise for the plots
presented in Section 4.2. Table 4.3 summarizes the search performance for several one- and
two-vehicle mine detection surveys, computed for different mission durations with different
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numbers of discrete time nodes. The corresponding two-vehicle trajectories are shown in
Figure 4.15 through Figure 4.17.

Table 4.3. Optimal time-limited search performance vs. the number of
discrete time nodes for mine detection survey missions.

No. of Mission Time Jout = PN D Jode = PN D CPU Figure

USVs Duration Nodes N × 25 × 25 500 × 25 × 25 Run Time Reference

1 1800 s

10 0.676 0.431 14.1 s

Figure 4.13
20 0.443 0.353 28.0 s

30 0.358 0.337 31.4 s

40 0.342 0.334 36.0 s

50 0.328 0.328 63.1 s

2

1200 s
10 0.453 0.303 47.8 s

Figure 4.15
20 0.218 0.188 104.7 s

1500 s

10 0.428 0.251 47.1 s

Figure 4.16
20 0.160 0.133 77.5 s

30 0.076 0.067 124.5 s

40 0.058 0.056 141.5 s

1800 s
10 0.459 0.273 46.3 s

Figure 4.1720 0.117 0.065 83.7 s

30 0.021 0.011 119.5 s
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Figure 4.15. Two-vehicle, 20-minute survey trajectories computed for di�er-
ent time discretizations.
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Figure 4.16. Two-vehicle, 25-minute survey trajectories computed for di�er-
ent time discretizations.
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Figure 4.17. Two-vehicle, 30-minute survey trajectories computed for di�er-
ent time discretizations.
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CHAPTER 5:
Application: Inverse Problems

The ability to rapidly solve optimal search problems provides a new tool for investigating
so-called “inverse” problems related to optimal vehicle and sensor configurations for mine
countermeasures (MCM). In Chapter 4, we used the GenOC framework to answer “direct”
questions related to sensor-based motion planning for MCM. Typical direct applications
involve calculating a feasible trajectory that minimizes the risk of non-detection at the
conclusion a wide area survey using a specific sonar; or determining the time required
for an autonomous vehicle team to achieve a given performance threshold. Conversely,
inverse problems provide engineering insights about the search assets themselves. Such
questions include: What is the most effective sonar mounting angle for an optimal search
conducted by USVs? Which sonar design parameters have the biggest impact on search
performance? How do multiple low-cost systems perform in a given mission, compared
against the performance of a single expensive asset?

Over the years, acoustic modeling and simulation have played an increasingly valuable role
in the design and evaluation of sonar systems for naval operations. Etter observes:

Modeling has become the chief mechanism by which researchers and analysts
can simulate sonar performance under laboratory conditions. Modeling pro-
vides an efficient means to parametrically investigate the performance of hy-
pothetical sonar designs . . . and to estimate the performance of existing sonars
in different ocean areas and seasons. [56]

Indeed, the Generic Sonar Model, a predecessor to the USN’s current CASS system, was
originally “designed to provide sonar system developers with a comprehensive modeling
capability for evaluating the performance of sonar systems and . . . permit cost/accuracy
trade-offs for specific applications” [147].

This chapter describes a novel approach to solving these kinds of inverse problems, one
which recognizes the fact that sonar effectiveness often depends on the vehicles that deploy
them. The physics-based sonar models derived in Chapter 2 provide a link between search
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Figure 5.1. Analysis of multi-vehicle search performance with di�erent
sonars. Each data point represents several optimal vehicle trajectories.

performance and sonar design parameters, while computational optimal search facilitates
the rapid solution of multiple problems required for Monte Carlo analysis. In this way,
sonar designers and operational planners can numerically determine the sensitivity of a
given optimal search scenario to individual vehicle and/or sonar design parameters. Of
course, a beneficial by-product of this analysis is a set of optimal vehicle trajectories linked
to a given scenario. This is depicted in Figure 5.1, which emphasizes that each data point
in a Monte Carlo analysis is comprised of several optimal trajectories that produced that
result.
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The Hamming supercomputer, a “hybrid cluster” of computing cores available via the NPS
High Performance Computing (HPC) Center [148] was used extensively during the course
of this dissertation. Although our computational framework utilizes a sequential optimiza-
tion algorithm that doesn’t lend itself to massive parallelization, several simulations can be
launched via the network to run on multiple computing cores simultaneously. This capabil-
ity was a key enabler for conducting numerous trade studies at once, greatly accelerating
the analysis process. Copies of the batch files used to generate the Monte Carlo simulation
results for this chapter are provided in Appendix B.

5.1 Sensitivity Analysis
Sensitivity is used to describe the manner in which a desired output variable changes in re-
lation to a change in some other system parameter. Sensitivity analysis provides a measure
of robustness in control system design. For our optimal search problem, the desired output
is our objective value, the residual MCM risk upon completion of a search operation. To
address so-called inverse problems, it is helpful to calculate the sensitivity of MCM risk as
a function of sonar/vehicle design parameters or operating characteristics. While our objec-
tive function can be expressed analytically, deriving an analytic expression for sensitivity
is difficult; it is easier to compute this metric numerically, especially after multiple Monte
Carlo simulations have produced ample numerical data to work with. This is the approach
taken in this chapter. We note, however, that optimal control offers an elegant method for
computing sensitivity via parameter value-function analysis. The Lagrange multiplier for
a parameter of interest in an optimal control problem serves as a “sensitivity multiplier.”
Therefore, it accurately describes the relative impact of this parameter on the objective
function [149]. The DIDO software package computes these costates during the solution
of an optimal control problem and provides them as outputs, greatly facilitating this type
of sensitivity analysis.

5.2 Objective Function Value vs. Time Discretization
As we observed in Section 4.4, the final objective value for optimal solutions computed
for an increasing number of time nodes eventually converges, but higher-node solutions are
more likely to fail our feasibility criteria. Therefore, it is important to determine the number
of time nodes which provides an accurate value for PN D (T f ) yet still produces feasible
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trajectories. We accomplish this through a Monte Carlo analysis of several simulations
conducted for an array of different time nodes. Once the acceptable number of time nodes
has been identified for a given problem, subsequent simulations used to investigate other
inverse problems can utilize the same discretization scheme.

The parameter values used for this analysis are listed in Table 5.1, where the bold array no-
tation indicates the range of the independent variable under investigation, i.e., simulations
are performed for Nt = 20,25,30, . . . ,60. A separate analysis was conducted for each of

Table 5.1. Simulation parameters for Nt analysis (free parameters in bold).

Symbol Definition Value

T f Mission duration [min] 30

Nsims Number of simulation runs 10

Nv Number of vehicles 1

Nt Number of time nodes [20:5:60]
Nω Number of parameter nodes 25 × 25

DU Canonical distance [m] 100

TU Canonical time [s] 100

U xV Vehicle dynamics file user-selected

FLS Sonar parameters file user-selected

the three FLS models derived in Chapter 2. We adopt feasibility criteria similar to the one
proposed in [74] to reject infeasible solutions:

F =

√√√ Nt∑
i=1

[
(xi − xi)2 +

(
yi − y i

)2
]
, (5.1)

where [xi, yi] is the location of solution node i, and [xi, y i] is the location along the prop-
agated trajectory, interpolated at time ti. We declare feasibility if F < Fmax , where
Fmax ∈ [2,3] provides good rejection criteria for this problem. For each of the Nt val-
ues listed in Table 5.1, Figure 5.2 plots the mean and standard deviation (depicted by solid
lines and error bars, respectively) for the objective values from ten simulations. Figure 5.3
shows the fraction of these search trajectories which meet our feasibility criteria. Search
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performance for the solver output Jout and the ODE-propagated solution Jode (recalculated
on our 500 × 25 × 25 discretization baseline) are both provided for comparison purposes.
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Figure 5.2. Average single-vehicle search performance vs. number of nodes
(Nt).
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These plots illustrate the trade-off between accuracy and feasibility of higher-node solu-
tions. In this problem, all of the 30-node solutions produced feasible search trajectories for
all three sonar models, but their objective values have not yet converged to the objective
values of their ODE-propagated trajectories. Alternatively, while the 55- and 60-node solu-
tions yield objective values similar to their ODE-propagated trajectories, these higher-node
solutions produce fewer feasible trajectories. On the basis of these results, therefore, we
have elected to use 50 time nodes for the remaining Monte Carlo analyses presented in this
chapter.

5.3 Single-Vehicle Search Performance vs. Sonar Design
Criteria

We now consider several inverse problems which investigate how individual sonar design
parameters influence optimal search performance for a given MCM search asset. This
type of analysis can help sonar developers identify promising equipment modifications that
could yield large performance benefits. It can also inform system operators about which
configurable settings are most effective in a given scenario. Recall from the sonar design
discussion in Chapter 2 that several different parameters influence a sonar’s detection rate.
The operating frequency directly impacts the attenuation coefficient, which determines the
propagation losses due to absorption. Frequency also plays a role in computing a sonar
array’s directivity index and the ambient noise level the sonar must contend with. All of
these influences enter the signal excess equations and impact a sonar’s instantaneous detec-
tion probability. Other parameters, such as the Poisson Scan rate λ contribute directly to
the sonar’s instantaneous detection rate, the main driver of our objective function. Finally,
geometric dependencies based on FOV or sonar mounting angle can make all the difference
between an effective search operation, and one in which the residual risk of non detection
is too great.

We propose using the GenOC framework to asses the impact of sonar design parameters on
search performance. The general approach used for the Monte Carlo analyses in each of the
following sections is to hold all parameters constant except the parameter of interest, and
conduct multiple optimal search simulations for each set of parameter values. We utilize
50 time nodes for all simulations, based on the analysis in Section 5.2. The proposed
approach requires certain choices to be made regarding which values to use for parameters
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being held constant in a given simulation. In most cases (e.g., for FOM, Poisson Scan
rate λ, and horizontal FOV), we choose the median parameter value from among the three
FLS systems. Moreover, we ensure a fair comparison among the different sonar designs by
setting the horizontal field of view to 90 degrees for all systems. Lastly, for analyses not
directly concerned with a given sonar parameter (e.g., optimal number of search assets),
we utilize the actual sonar models listed in Table 2.1.

An exception to this policy is made for the case of a sonar’s vertical mounting angle VDE ,
since initial simulation results that held VDE to a median value for all three sonars un-
fairly penalized detection performance of the 200 kHz and 900 kHz sonars. In fact, vertical
mounting angle VDE plays a critical role in a sonar’s effectiveness, particularly when search-
ing for bottom mines with a USV. It is worth identifying other parameters which might be
tightly-coupled through either problem geometry or sonar frequency. The FOM, for exam-
ple, reflects a sonar design’s achievable range based on positive signal excess. We expect
that this parameter would couple with the sonar’s vertical mounting angle, since these two
parameters define a trigonometric relationship between the sonar and a bottom target.

Fortunately, we have determined that using the median value of 66 dB for the FOM in
certain simulations had only a minor impact on the problem’s geometry. Specifically, the
noise-limited range for a 200 kHz FLS with nominal FOM = 72 dB decreases by about
81 meters for a FOM of 66 dB. This only changes the optimal VDE from -5.4 to -6.1 degrees,
a difference of only -0.7 degrees. Similarly, increasing the nominal FOM for the 900 kHz
FLS from 64 dB to 66 dB increases noise-limited detection range by about 5 meters. This
changes the optimal VDE for this sensor from -13.1 degrees to -12.4 degrees, a difference
of only +0.7 degrees. Therefore, we justify the decision to analyze vertical mounting angle
first, and use the optimal VDE values determined from these simulations in all subsequent
analyses.

5.3.1 Vertical Mounting Angle
Vertical mounting angle is an important consideration for detecting bottom mines, as this
parameter determines the ability of a sonar’s beams to cover the sea floor from a vehicle
platform’s operating altitude. While sophisticated sonar like the ATLAS can electronically
steer their beams in the vertical plane, lower-cost systems typically transmit at a fixed
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angle. Therefore, these sonars are usually hard-mounted onto a vehicle at a vertical angle
that optimizes the sonar imagery collected from the vehicle’s customary operating altitude.
A custom BlueView P450 FLS system designed for use on the NPS REMUS 100 AUV,
for example, was designed with multiple blazed arrays mounted at a permanent tilt angle
of VDE = −10 degrees (see Figure 5.4).

Figure 5.4. Custom BlueView P450 blazed array FLS mounted at -10 de-
grees.

The parameter values used for this analysis are listed in Table 5.2, where the bold array
notation indicates the range of the independent variable under investigation, i.e., simula-
tions are performed for VDE = −25,−20,−15, . . . ,−5 degrees. For each of the VDE values
listed in Table 5.2, Figure 5.5 plots the mean and standard deviation (depicted by solid
lines and error bars, respectively) for the objective values from ten simulations. Figure 5.6
shows the fraction of these search trajectories which meet our feasibility criteria. Search
performance for the solver output Jout and the ODE-propagated solution Jode (recalculated
on our 500 × 25 × 25 discretization baseline) are both provided for comparison purposes.

Not surprisingly, longer-range sonars (i.e., with higher FOM) perform better at small
mounting angles, while shorter-range, high-resolution sonars require steeper angles to ef-
fectively reach the bottom. From this analysis, we can determine that the optimal mounting
angles for detecting bottom mines in 20 meters of water with 200 kHz, 450 kHz, or 900 kHz
FLS from on a USV are -6 degrees, -7 degrees, and -11 degrees, respectively. Even so, the
900 kHz FLS is poorly suited for detecting bottom mines from a USV in this benchmark
problem’s 20-meter water depth.
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Table 5.2. Simulation parameters for VDE analysis (free parameters in bold).

Symbol Definition Value

T f Mission duration [min] 30

Nsims Number of simulation runs 10

Nv Number of vehicles 1

Nt Number of time nodes 50

Nω Number of parameter nodes 25 × 25

DU Canonical distance [m] 100

TU Canonical time [s] 100

U xV Vehicle dynamics file user-selected

f Sonar operating frequency [kHz] {200, 450, 900}

FOM Figure of Merit [dB] 66 (median value)

λ Poisson Scan rate [scans/s] 0.5 (median value)

σ Signal excess PD uncertainty [dB] 9 dB

HFOV Horizontal field of view [deg] 90 (minimum value)

VFOV Vertical field of view [deg] 10 (median value)

VDE Vertical mounting angle [deg] [-25:5:-5]

Additional simulations were conducted to determine the best mounting angles for different
FLS deployed from a REMUS 100 AUV operating at 3 meters above the sea floor. An
analysis of these results determined that the optimal mounting angles for detecting bottom
mines from a survey altitude of 3 meters with the 450 kHz and 900 kHz FLS are -3 degrees
and -5 degrees, respectively. The 200 kHz FLS was exempted from this analysis since the
REMUS 100 AUV is unable to deploy a sensor of this size. The RID missions presented in
Section 4.1 utilized these values for VDE .

Figure 5.6 reveals that simulated survey missions with the 200 kHz FLS at down-tilt angles
less than nine degrees produced only a handful of feasible trajectories. Although this may
explain the relatively large standard deviation in PN D with these mounting angles (see, e.g.,
the error bars for VDE = −6 and VDE = −8), more analysis is needed, perhaps using fewer
time nodes, to verify this result. This is especially important since VDE has such a large
impact on search performance.
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Figure 5.5. Average single-vehicle search performance vs. mounting angle
VDE.
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Figure 5.6. Fraction of single-vehicle VDE simulations with feasible trajecto-
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5.3.2 Figure of Merit
For each of the three FLS considered in this analysis, VDE was set to the optimal value
determined in Section 5.3.1. The other parameter values are listed in Table 5.3, where the
bold array notation indicates the range of the independent variable under investigation, i.e.,
simulations are performed for FOM = 48,51,54, . . . ,75 dB. For each of the FOM values
listed in Table 5.3, Figure 5.7 plots the mean and standard deviation (depicted by solid
lines and error bars, respectively) for the objective values from ten simulations. Figure 5.8
shows the fraction of these search trajectories which meet our feasibility criteria. Search
performance for the solver output Jout and the ODE-propagated solution Jode (recalculated
on our 500 × 25 × 25 discretization baseline) are both provided for comparison purposes.

Table 5.3. Simulation parameters for FOM analysis (free parameters in bold).

Symbol Definition Value

T f Mission duration [min] 30

Nsims Number of simulation runs 10

Nv Number of vehicles 1

Nt Number of time nodes 50

Nω Number of parameter nodes 25 × 25

DU Canonical distance [m] 100

TU Canonical time [s] 100

U xV Vehicle dynamics file user-selected

f Sonar operating frequency [kHz] {200, 450, 900}

FOM Figure of Merit [dB] [48:3:75]
λ Poisson Scan rate [scans/s] 0.5 (median value)

σ Signal excess PD uncertainty [dB] 9 dB

HFOV Horizontal field of view [deg] 90 (minimum value)

VFOV Vertical field of view [deg] 10 (median value)

VDE Vertical mounting angle [deg] {-6, -7, -11}
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Figure 5.7. Average single-vehicle search performance vs. �gure of merit
(FOM).
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Figure 5.8. Fraction of single-vehicle FOM simulations with feasible trajec-
tories.

As expected, analysis of the FOM parameter for each sonar did not reveal a single optimal
value; bigger is better. Since FOM represents the maximum (noise-limited) range at which
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echoes are detectable, it makes sense that search performance improves linearly with in-
creasing FOM, especially since propagation losses expressed in dB become linear at long
ranges (see Figure 3.1). We observe, however, that the slope of these curves are steeper
for the longer-range sonars. This is due to their small mounting angles, which allow the
sonar beam to cover more ground before reaching the sea floor. Sonar beams emitted at
larger mounting angles reach the sea floor before the sonar can utilize all of the additional
detection range produced by the higher FOM .

5.3.3 Poisson Scan Rate
For each of the three FLS considered in this analysis, VDE was set to the optimal value
determined in Section 5.3.1. The other parameter values are listed in Table 5.4, where the
bold array notation indicates the range of the independent variable under investigation, i.e.,
simulations are performed for λ = 0.1,0.2,0.3, . . . ,1.0 scans/second. For each of the λ val-
ues listed in Table 5.4, Figure 5.9 plots the mean and standard deviation (depicted by solid
lines and error bars, respectively) for the objective values from ten simulations. Figure 5.10
shows the fraction of these search trajectories which meet our feasibility criteria. Search
performance for the solver output Jout and the ODE-propagated solution Jode (recalculated
on our 500 × 25 × 25 discretization baseline) are both provided for comparison purposes.
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Table 5.4. Simulation parameters for λ analysis (free parameters in bold).

Symbol Definition Value

T f Mission duration [min] 30

Nsims Number of simulation runs 10

Nv Number of vehicles 1

Nt Number of time nodes 50

Nω Number of parameter nodes 25 × 25

DU Canonical distance [m] 100

TU Canonical time [s] 100

U xV Vehicle dynamics file user-selected

f Sonar operating frequency [kHz] {200, 450, 900}

FOM Figure of Merit [dB] 66 (median value)

λ Poisson Scan rate [scans/s] [0.1:0.1:1.0]
σ Signal excess PD uncertainty [dB] 9 dB

HFOV Horizontal field of view [deg] 90 (minimum value)

VFOV Vertical field of view [deg] 10 (median value)

VDE Vertical mounting angle [deg] {-6, -7, -11}

Figure 5.9 reveals the benefit of increasing the number of scans per unit time, but this im-
pact is not as large as expected. Search performance increases rapidly (i.e., PN D decreases)
as the Poisson Scan rate λ is increased from its lowest value of 0.1 scans/second to a value
of 0.5 scans/second; beyond this value, the benefits of increasing λ begin to diminish. Note
that these benefits are greater for the 200 kHz sonar than the higher-frequency models.
Figure 5.10 is concerning, however, as more than half of the trajectories produced by this
sonar (using 50 time nodes) are infeasible. Additional simulations with fewer time nodes
are needed to ascertain the relationship, if any, between higher λ values and infeasible
search trajectories for the 200 kHz sonar model.
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Figure 5.9. Average single-vehicle search performance vs. Poission rate λ.
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5.3.4 Horizontal Field of View
For each of the three FLS considered in this analysis, VDE was set to the optimal value
determined in Section 5.3.1. The other parameter values are listed in Table 5.5, where the
bold array notation indicates the range of the independent variable under investigation, i.e.,
simulations are performed for HFOV = 30,45,60, . . . ,165 degrees. For each of the HFOV

values listed, Figure 5.11 plots the mean and standard deviation (depicted by solid lines
and error bars, respectively) for the objective values from ten simulations. Figure 5.12
shows the fraction of these search trajectories which meet our feasibility criteria. Search
performance for the solver output Jout and the ODE-propagated solution Jode (recalculated
on our 500 × 25 × 25 discretization baseline) are both provided for comparison purposes.

Table 5.5. Simulation parameters for HFOV analysis (free parameters in
bold).

Symbol Definition Value

T f Mission duration [min] 30

Nsims Number of simulation runs 10

Nv Number of vehicles 1

Nt Number of time nodes 50

Nω Number of parameter nodes 25 × 25

DU Canonical distance [m] 100

TU Canonical time [s] 100

U xV Vehicle dynamics file user-selected

f Sonar operating frequency [kHz] {200, 450, 900}

FOM Figure of Merit [dB] 66 (median value)

λ Poisson Scan rate [scans/s] 0.5 (median value)

σ Signal excess PD uncertainty [dB] 9 dB

HFOV Horizontal field of view [deg] [30:15:165]
VFOV Vertical field of view [deg] 10 (median value)

VDE Vertical mounting angle [deg] {-6, -7, -11}

Increasing HFOV has a dramatic impact on search performance, effectively increasing the
sonar’s sweep width and producing faster area coverage rates during a constant velocity
survey operation. These benefits can justify the cost of additional staves to increase the
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horizontal FOV of a blazed array system. Not coincidentally, maximizing horizontal FOV
was a major driver in the design of the ATLAS sonar, which has HFOV > 180 degrees.
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Figure 5.11. Average single-vehicle search performance vs. horizontal �eld
of view (HFOV ).
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Figure 5.12. Fraction of single-vehicle HFOV simulations with feasible tra-
jectories.
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5.4 Multi-Vehicle Search Performance vs. Team Compo-
sition

As we have already seen in Section 4.2 it may not be possible to achieve a desired risk
threshold with a single search vehicle. If the assets are available, a force commander can
simply increase the number of searchers operating in an area. While this solution is straight-
forward, it may be sub-optimal. Worse yet, this approach can pull needed assets out of
another area, slowing the overall MCM operation. Pre-mission analysis can help identify
the vehicle and sensor characteristics that produce the best system configuration for a given
MCM scenario. The GenOC framework can serve as a pre-mission analysis tool to support
these kinds of trade studies. Moreover, the ability to incorporate realistic vehicle and sonar
models to optimize mission-specific search objectives can produce more information than
planning tools based solely on coverage rates. In this section, we demonstrate our frame-
work’s ability to analyze the mission effectiveness of different autonomous vehicle teams
conducting the mine detection survey described in Section 4.2. We begin with the simple
case of a team comprised of one or more identical search assets, each equipped with the
same forward-looking sonar.

5.4.1 Number of Searchers
This analysis compares the search performance for a team of identical SeaFox USVs, all of
which are equipped with one of the three different FLS models listed in Table 2.1, where
VDE has been set to the optimal value determined in Section 5.3.1. The other parameter
values are listed in Table 5.6, where the bold array notation indicates the range of the inde-
pendent variable under investigation, i.e., simulations are performed for Nv = 1,2,3, . . . ,5
search vehicles. For each team configuration listed in Table 5.6, Figure 5.13 depicts the
average search performance, while Figure 5.14 shows the number of feasible trajectories
produced after ten simulations.

Based on this analysis, me can make the following observations:

• A team of two USVs equipped with the same 450 kHz blazed array FLS outperform
a single USV equipped with a 200 kHz cylindrical array FLS. This could realize
substantial cost savings, when a commercial off-the-shelf sonar (e.g., a BlueView
P450-90) is compared against a developmental sonar like the ATLAS.
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Table 5.6. Simulation parameters for multi-USV analysis (free parameters in
bold).

Symbol Definition Value

T f Mission duration [min] 30

Nsims Number of simulation runs 10

Nv Number of vehicles [1:1:5]
Nt Number of time nodes 50

Nω Number of parameter nodes 25 × 25

DU Canonical distance [m] 100

TU Canonical time [s] 100

U xV Vehicle dynamics file user-selected

FLS Sonar parameters file user-selected

• Two 200 kHz FLS-equipped searchers are required for complete coverage in the
time available, but three 450 kHz FLS-equipped searchers achieve the same search
performance. Again, a three-vehicle team using commercial P450-90 sonar may be
less expensive to operate than a two-vehicle team using ATLAS-like sonar.

• The 900 kHz sonar performs poorly when mounted on a USV operating in waters
this deep. This high-resolution sonar should only be employed by AUVs conducting
RID missions, e.g., in Section 4.1.

• Figure 5.14 indicates that optimal solutions for all of the configurations tested pro-
duce at least one infeasible trajectory, and the problem is exacerbated as the number
of vehicles increase.

• It is important to remember that each data point in a plot like this corresponds to a
number of optimal trajectories which can be quickly exploited when needed. This
feature of our proposed methodology is emphasized in Figure 5.1.
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Figure 5.13. Average search performance vs. the number of vehicles on a
team.
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CHAPTER 6:
Conclusions and Future Work

6.1 Conclusions
Autonomous vehicles will play an increasingly important role in military operations for
the foreseeable future, particularly when danger to personnel is greatest. Mine counter-
measures (MCM) is one critical mission area in which these systems have already proven
themselves. Driven by the need to detect, identify, and neutralize the threat of underwater
mines—in a variety of challenging environments—the U.S. Navy has invested heavily in
vehicle and sensor technologies for different MCM missions. This has produced a spectrum
of complementary capabilities, most of which have (necessarily) been built around dedi-
cated vehicle platforms or sonar systems. One thrust of current naval research is focused
on combining these capabilities via collaborative teams of autonomous vehicles. The goal
of this approach is to maximize overall mission effectiveness while overcoming individual
system limitations.

Motion planning algorithms for these heterogeneous vehicle teams must consider the capa-
bilities and limitations of each team member. Since many MCM missions involve searching
for mines with a specific sonar payload, the current practice is to 1) partition the search area
into separate zones according to sensor capabilities, and 2) assign specific vehicle/sonar
assets to methodically search each zone using traditional geometric, e.g., lawnmower, cov-
erage patterns. Planning multi-vehicle missions in this manner resembles a scheduling
problem in which individual vehicle plans are sequenced and executed according to estab-
lished area coverage rates. Given sufficient time to conduct a search, these methods do
guarantee complete coverage. They are overly conservative, however, and do not exploit
the full potential of highly-mobile vehicles to shorten operational timelines or maximize
sensor performance. Motivated by new numerical techniques for solving optimal control
problems with parameter uncertainty, this dissertation applies these techniques to address
sensor-based motion planning for MCM search missions by autonomous vehicle teams.

Optimal control provides a mathematical framework for solving motion planning problems
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with dynamic constraints and different performance criteria. Recent advances in numeri-
cal solution techniques have made it possible to address parameterized uncertainty in the
objective function of an optimal control problem, permitting the direct optimization of
search objectives using GenOC. This approach can generate feasible vehicle- and sensor-
specific motion trajectories that maximize mine detection probabilities under operational
constraints. However, realistic vehicle and sensor models are essential to producing opera-
tionally relevant results.

Chapter 2 of this dissertation develops physics-based probabilistic detection models for
various mine hunting sonars currently employed for MCM missions. In these models, de-
tection performance is not only a function of the sonar’s design criteria but also the three-
dimensional trajectory executed by the search vehicle. Although simplifying assumptions
are made to facilitate rapid calculations during trajectory optimization, the simulated de-
tection performance of these models agrees with expectations from actual sonar systems.
Therefore, they represent a good compromise between the traditional detection models used
in search theory, and full-scale acoustic simulators used for sonar design and performance
prediction.

In Chapter 3, we describe how various MCM missions can be formulated as optimal search
problems in the GenOC framework. Chapter 4 highlights the flexibility of our modular
approach by generating motion plans for MCM wide area survey and target reacquisition
missions via different combinations of searcher, sensor, and target distribution models. Op-
timal search techniques are particularly useful for creating sensor-based trajectories which
outperform conventional coverage patterns under resource or time constraints. Examples
are provided in Chapter 4 that illustrate how optimal solutions can be used to establish new
performance benchmarks for a given scenario. This makes GenOC an attractive tool for
pre-mission analysis as well.

A novel contribution of this dissertation applies GenOC to investigate inverse problems re-
lating MCM mission performance to specific sonar designs or employment methods. Chap-
ter 5 describes an approach for rapidly solving a range of optimal search problems in this
framework to support Monte Carlo analysis of alternative configurations. This approach
is used to determine the best discretization level for accurate, yet feasible solutions in a
given scenario. Based on this result, additional Monte Carlo experiments are conducted to
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analyze search performance relative to various sonar design parameters, highlighting the
utility of this approach.

6.2 Recommendations for Future Work
This dissertation represents the first application of GenOC to operationally relevant motion
planning problems in mine countermeasures. The derivation of physics-based models that
incorporate design characteristics and three-dimensional detection performance of actual
sonar systems has opened the door to a wide array of important analysis questions, and
this dissertation only scratches the surface. We have demonstrated the utility of the GenOC
framework for analyzing several questions of immediate interest to the MCM community,
but a number of avenues remain open for future work.

First, additional analysis is needed to investigate test cases from Chapter 5 that produced
relatively low fractions of feasible solutions. This was more prevalent in simulations which
utilized the 200 kHz FLS model. Repeating these experiments with fewer time nodes may
produce more feasible trajectories. Whereas variation was added to these simulations via
the initial condition, additional experiments could inject random variation into the “shape”
of an initial guess trajectory. This approach may produce more globally optimal solutions
by exploring more of the state space during a given Monte Carlo simulation. Another
technique worth investigating is a two-step process whereby an optimal trajectory from
one simulation is used as the initial guess for a second simulation. We regard all of these
suggestions as low-hanging fruit. At a minimum, however, increasing the total number
of simulations is recommended in order to produce more statistically-significant analytic
results.

As mentioned in Section 4.3, the computational framework used for this dissertation is
designed around solving fixed-time optimal control problems. While this problem formu-
lation can address time-limited missions directly, it requires additional effort to analyze
explicit questions about time, e.g., how long would it take a team of vehicles to achieve a
risk threshold of 5%? Currently, this requires a Monte Carlo analysis of simulations with
an array of T f values to provide an approximate solution. Future work will assess the abil-
ity of other optimal control software packages like DIDO to solve minimum-time versions
of optimal search problems for MCM. This software can also facilitate a more detailed

129



sensitivity analysis of inverse problems using the approach referenced in Section 5.1.

This dissertation has presented results highlighting some of the trade-offs associated with
selecting a discretization scheme to numerically solve optimal search problems defined in
continuous time and space. This has proved especially challenging for the sidescan sonar
models developed in Chapter 2, which are characterized by a very high Poisson Scan rate
(λ) and a very narrow horizontal field of view (HFOV ). Initial simulation results with these
sensor models require an exceedingly large number of time nodes to produce accurate area
coverage, and this can make numerical solutions intractable for complex motion planning
problems. Since SSS is so widely used in underwater search applications, future work will
continue to address this modeling challenge.

An interesting avenue for future work is investigating ways to exploit the capabilities of
AUVs and FLS to execute three-dimensional trajectories for mine detection. The solution
framework readily supports vehicle dynamics with arbitrary degrees of freedom, and the
sensor models developed in this dissertation already operate in three-dimensional space.
Thus far, however, we have only considered search trajectories in a two-dimensional plane,
in keeping with current MCM practices. For this reason, we consider the exploration of
three-dimensional search trajectories to be high-risk, high reward, since a rigorous analysis
of this approach could potentially improve MCM CONOPS—especially against moored or
in-volume mines.

The preceding recommendations can all be addressed with minimal changes by the current
GenOC framework. The following suggestions would require significantly more effort,
but would make important contributions. Perhaps most egregious to sonar practitioners,
our current implementation does not address environmental impacts (beyond propagation
losses) on sonar performance. Operational relevance can be greatly improved by incorpo-
rating reverberation effects, sea floor characteristics, and sound speed profiles into the sonar
detection models. A significant challenge, however, is the computational effort required by
this additional complexity, since sonar detection calculations occur in the inner loop of the
optimization algorithm. Again, we seek a balance between over-simplified “cookie cutter”
detection models, and sonar performance simulations that take hours (or days!) to execute.

Even with the simplified detection models used in this dissertation, current algorithms are
not yet practical for real-time trajectory generation by vehicle autopilots. The current ap-
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proach is better suited to pre-mission analysis in order to establish performance benchmarks
and facilitate CONOPS development. Optimal motion plans generated by the solver are es-
sentially open loop mission profiles that must be implemented separately by each vehicle.
Future work to enable real-time computation and periodic re-planning of optimal search
trajectories are key to transitioning this technology for use on actual MCM vehicles.

Periodic re-planning would also allow vehicles to perform Bayesian updates on the un-
derlying target distribution model, in response to detection events, and reallocate search
effort more efficiently. This capability could be enhanced via wireless radio or acoustic
communications between vehicles, allowing MCM teams to conduct survey missions and
RID missions concurrently. This could realize significant time savings over current prac-
tice, which conducts these MCM operations in sequential phases. It could also pave the
way for mission plans which incorporate more complex vehicle interactions, e.g., the rapid
transport of AUVs to and from an operating area by USV or helicopter to minimize the
time wasted during slow-speed transits.
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APPENDIX A:
Objective Function Gradients

A.1 Objective Function Gradients
The SNOPT numeric optimization package can solve an optimal search problem more
quickly and reliably when it is supplied with analytic expressions for the objective func-
tion’s gradients [99]. For our problem, we must derive gradients with respect to the
state variables ∂J/∂~x and control inputs ∂J/∂~u for the objective function given by Equa-
tion (3.11). We encode optimal search problems for SNOPT using a MATLAB interface
developed by Claire Walton. This interface, Software for Parameter-uncertainty Optimal
Control (SPOC), conveniently allows users to specify separate gradients for the inner,
R(t) = γ(~x(t), ~ω), and outer, G(z) = e−z, components of a GenOC problem’s running
cost in Equation (1.2) [79]. Since ∂G/∂z has the trivial expression −e−z, and ∂γ/∂~u = 0
for this problem, the following section derives ∂R/∂~x only. These gradients are based on
components defined in Chapter 2 for the instantaneous detection rate of Equation (2.22).
Note that all variables are assumed to be in canonical, non-dimensional form, but the over-
line notation used in Section 3.5 is not used here. Likewise, the searcher states’ dependence
on time is omitted to simplify the notation.

Recall that γ(~x, ~ω) = λp(~x, ~ω)Fα (~x, ~ω)Fε (~x, ~ω)Fr (~x). Each term in this equation except
the constant Poisson Scan rate λ depends on the state vector

[
x, y,ψ,r

]T . Therefore, the
gradient is

∂R
∂~x

=
∂γ

∂~x
=

[
∂γ

∂x
∂γ

∂ y

∂γ

∂ψ

∂γ

∂r

]
. (A.1)
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We can apply the product rule to calculate each element of the objective function gradient:

∂γ

∂x
= λ

(
∂p
∂x

FαFεFr + p
∂Fα
∂x

FεFr + pFα
∂Fε
∂x

Fr + pFαFε
∂Fr

∂x

)
∂γ

∂ y
= λ

(
∂p
∂ y

FαFεFr + p
∂Fα
∂ y

FεFr + pFα
∂Fε
∂ y

Fr + pFαFε
∂Fr

∂ y

)
∂γ

∂ψ
= λ

(
∂p
∂ψ

FαFεFr + p
∂Fα
∂ψ

FεFr + pFα
∂Fε
∂ψ

Fr + pFαFε
∂Fr

∂ψ

)
∂γ

∂r
= λ

(
∂p
∂r

FαFεFr + p
∂Fα
∂r

FεFr + pFα
∂Fε
∂r

Fr + pFαFε
∂Fr

∂r

)
. (A.2)

The following sections derive the expressions for ∂p/∂~x, ∂Fα/∂~x, ∂Fε/∂~x, and ∂Fr/∂~x.

A.2 Gradients for Instantaneous Probability of Detection(
∂p/∂~x

)
Recall from Equation (2.3) that SE(~x, ~ω) = FOM − PL

(
D(~x, ~ω)

)
, where PL

(
D(~x, ~ω)

)
is the propagation loss as a function of the distance between searcher and target, D(~x, ~ω).
Substituting into Equation (2.8) yields

p(~x, ~ω) = Φ

(
SE

(
~x, ~ω

)
σ

)
= Φ

(
FOM − PL

(
D(~x, ~ω)

)
σ

)
= Φ (ξ) . (A.3)

Letting ξ = (FOM − PL)/σ, we can rewrite the cumulative normal distribution function
Φ(ξ) in terms of the erf function, which yields

Φ (ξ) =
1
2

[
1 + erf

(
ξ
√

2

)]
. (A.4)

We can now use the chain rule to derive ∂p/∂x as

∂p
∂x

=
∂p
∂ξ

∂ξ

∂PL
∂PL
∂D

∂D
∂x

. (A.5)

Using the analytic expression for the derivative of the erf function, we compute ∂p/∂ξ as

∂p
∂ξ

=
1
√

2π
e−

1
2 ξ

2
=

1
√

2π
e−

1
2

(
FOM−PL

σ

)2

. (A.6)
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Meanwhile, using our definition for ξ, we compute:

∂ξ

∂PL
= −

1
σ
. (A.7)

Using D = ~ω − ~x =

√
(ωx − x)2 + (ωy − y)2 + (ωz − z)2 =

√
dx2 + dy2 + dz2 from

Equation (3.22), and PL = 20 log10 (DU) + 20 log10 (D) + aD from Equation (3.26), we
compute ∂PL/∂D and ∂D/∂x as follows:

∂PL
∂D

=
∂

∂D

[

��
���

���:0
20 log10 (DU) + 20 log10 (D) + aD

]

=
∂

∂D

[
20

ln(D)
ln(10)

+ aD
]

=
∂

∂D

[
20

ln(10)
ln(D) + aD

]

=
20

ln(10)

(
1
D

)
+ a, and (A.8)

∂D
∂x

=
∂

∂x

( √
(ωx − x)2 + (ωy − y)2 + (ωz − z)2

)
=

1
2

2(ωx − x)(−1)√
(ωx − x)2 + (ωy − y)2 + (ωz − z)2

= −
dx
D
. (A.9)

Finally, we substitute Equations (A.6) through (A.9) into Equation (A.5) to obtain

∂p
∂x

=
dx

σD
√

2π

[
20

ln(10)

(
1
D

)
+ a

]
e−

1
2 ( F−PL

σ )2

=
dx

σ
√

2π

[
20 + aD ln(10)

D2 ln(10)

]
e−

1
2 ( F−PL

σ )2

. (A.10)

In a similar manner, using ∂D/∂ y = −dy/D, we can compute ∂p/∂ y as

∂p
∂ y

=
∂p
∂ξ

∂ξ

∂PL
∂PL
∂D

∂D
∂ y

=
dy

σ
√

2π

[
20 + aD ln(10)

D2 ln(10)

]
e−

1
2 ( F−PL

σ )2

. (A.11)

Moreover, ∂p/∂ψ = ∂p/∂r = 0 since p(~x, ~ω) is a function of distance only.
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A.3 Gradients for Azimuth Angle Shaping Function(
∂Fα/∂~x

)
Recall from Equation (2.15) that Fα (~x, ~ω) is based on the body-fixed azimuth angle bα,
which depends upon the states x, y , and ψ as shown in Equations (2.10) through (2.12),
but is independent of turn rate r , i.e., ∂Fα/∂r = 0. We can rewrite Equation (2.15) as

Fα = FαL + FαU − 1, (A.12)

where:

FαL =
1

1 + epα (αL − α) =
1

AL
, and (A.13)

FαU =
1

1 + epα (α − αU ) =
1

AU
. (A.14)

Note that the body-fixed superscript b has been omitted from the azimuth angle α to sim-
plify notation. We can now use the chain rule to derive ∂Fα/∂x as

∂Fα
∂x

=
∂Fα
∂AL

∂AL

∂α

∂α

∂x
+
∂Fα
∂AU

∂AU

∂α

∂α

∂x
=

(
∂Fα
∂AL

∂AL

∂α
+
∂Fα
∂AU

∂AU

∂α

)
∂α

∂x
, (A.15)

where:
∂Fα
∂AL

= −
1

A2
L

= −
1[

1 + epα (αL − α)]2 , (A.16)

∂Fα
∂AU

= −
1

A2
U

= −
1[

1 + epα (α − αU )]2 , (A.17)

∂AL

∂α
=

∂

∂α

[
1 + epα (αL − α)

]
= −pαepα (αL−α), (A.18)

∂AU

∂α
=

∂

∂α

[
1 + epα (α − αU )

]
= pαepα (α−αU ), (A.19)

and:

∂α

∂x
=

∂

∂x
atan2(bdy, bdx) =

∂

∂x
atan2(ndy, ndx) =

∂

∂x
arctan

(
dy
dx

)
. (A.20)
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Letting ϕ = dy/dx, we can compute the derivative of the inverse tangent function with
respect to x as

∂

∂x
arctan(ϕ) =

(
1

1 + ϕ2

)
∂ϕ

∂x
=

(
dx2

dx2 + dy2

)
∂ϕ

∂x
. (A.21)

Meanwhile, since dx = ωx − x, the derivative of ϕ with respect to x is

∂ϕ

∂x
=

∂

∂x

(
dy
dx

)
= −

dy
dx2 (−1) =

dy
dx2 . (A.22)

Substituting Equations (A.21) and (A.22) into Equation (A.20) yields

∂α

∂x
=

(
dx2

dx2 + dy2

)
dy
dx2 =

dy
dx2 + dy2 . (A.23)

Letting EαL = epα (αL−α) and EαU = epα (α−αU ), we substitute Equations (A.16) through
(A.19), with Equation (A.23), into Equation (A.15) and obtain

∂Fα
∂x

=
pαdy

dx2 + dy2



EαL(
1 + EαL

)2 −
EαU(

1 + EαU
)2


. (A.24)

In a similar manner:

∂Fα
∂ y

=
∂Fα
∂AL

∂AL

∂α

∂α

∂ y
+
∂Fα
∂AU

∂AU

∂α

∂α

∂ y
=

(
∂Fα
∂AL

∂AL

∂α
+
∂Fα
∂AU

∂AU

∂α

)
∂α

∂ y
, and (A.25)

∂α

∂ y
=

∂

∂ y
atan2(bdy, bdx) =

∂

∂ y
atan2(ndy, ndx) =

∂

∂ y
arctan

(
dy
dx

)
. (A.26)

Once again, we let ϕ = dy/dx and compute the derivative of the inverse tangent function
with respect to y as

∂

∂ y
arctan(ϕ) =

(
1

1 + ϕ2

)
∂ϕ

∂ y
=

(
dx2

dx2 + dy2

)
∂ϕ

∂ y
. (A.27)
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Meanwhile, since dy = ωy − y , the derivative of ϕ with respect to y is

∂ϕ

∂ y
=

∂

∂ y

(
dy
dx

)
=

1
dx

(−1) = −
1

dx
. (A.28)

Substituting Equations (A.27) and (A.28) into Equation (A.26) yields

∂α

∂ y
=

(
dx2

dx2 + dy2

) (
−

1
dx

)
= −

dx
dx2 + dy2 . (A.29)

Using the same definitions for EαL and EαU , we substitute Equations (A.16) through
(A.19), with Equation (A.29), into Equation (A.25) and obtain

∂Fα
∂ y

= −
pαdx

dx2 + dy2



EαL(
1 + EαL

)2 −
EαU(

1 + EαU
)2


. (A.30)

The derivation of ∂Fα/∂ψ proceeds similarly, as follows:

∂Fα
∂ψ

=
∂Fα
∂AL

∂AL

∂α

∂α

∂ψ
+
∂Fα
∂AU

∂AU

∂α

∂α

∂ψ
=

(
∂Fα
∂AL

∂AL

∂α
+
∂Fα
∂AU

∂AU

∂α

)
∂α

∂ψ
. (A.31)

However, note that ∂bα/∂ψ , ∂nα/∂ψ, and we must use the azimuth angle resolved in
body-fixed coordinates, which is given by

∂bα

∂ψ
=

∂

∂ψ
atan2(bdy, bdx) =

∂

∂ψ
arctan

( bdy
bdx

)
. (A.32)

Referencing Figure 2.8, we can expose this function’s dependence on ψ by letting

β(ψ) =
bdy
bdx

=
ndy cos(ψ) − ndx sin(ψ)
ndx cos(ψ) + ndy sin(ψ)

. (A.33)

Using the chain rule, Equation (A.32) becomes

∂bα

∂ψ
=

∂

∂ψ
arctan (β(ψ)) =

∂

∂ β
arctan(β)

∂ β

∂ψ
. (A.34)
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The derivative of the inverse tangent function is

∂

∂ β
arctan(β) =

1
1 + β2 =

[ndx cos(ψ) + ndy sin(ψ)
]2

ndx2 + ndy2 , (A.35)

while the derivative of its argument β is

∂ β

∂ψ
=

∂

∂ψ

[ ndy cos(ψ) − ndx sin(ψ)
ndx cos(ψ) + ndy sin(ψ)

]

=

[ndy cos(ψ) − ndx sin(ψ)
] [
− ndx sin(ψ) + ndy cos(ψ)

][ ndx cos(ψ) + ndy sin(ψ)
]2

+

[
− ndy sin(ψ) − ndx cos(ψ)

] [ ndx cos(ψ) + ndy sin(ψ)
][ndx cos(ψ) + ndy sin(ψ)

]2

= −

[ ndy cos(ψ) − ndx sin(ψ)
]2

+
[ ndx cos(ψ) + ndy sin(ψ)

]2[ndx cos(ψ) + ndy sin(ψ)
]2

= −
ndy2 cos2(ψ) + ndx2 sin2(ψ) + ndx2 cos2(ψ) + ndy2 sin2(ψ)[ndx cos(ψ) + ndy sin(ψ)

]2

= −

ndx2
[
cos2(ψ) + sin2(ψ)

]
+ ndy2

[
cos2(ψ) + sin2(ψ)

]

[ndx cos(ψ) + ndy sin(ψ)
]2

= −
ndx2 + ndy2[ndx cos(ψ) + ndy sin(ψ)

]2 . (A.36)

When we combine Equation (A.35) and Equation (A.36) under the chain rule in Equa-
tion (A.34), the partial derivative of azimuth angle with respect to heading angle ψ simpli-
fies to

∂bα

∂ψ
= −

[ndx cos(ψ) + ndy sin(ψ)
]2

ndx2 + ndy2 ·
ndx2 + ndy2[ndx cos(ψ) + ndy sin(ψ)

]2 = −1. (A.37)

Since the z-axes of the inertial and body-fixed reference frames are parallel, azimuth angles
in both coordinate systems can be related by bα = nα − ψ, as shown in Figure 2.8.
From this relation, ∂bα/∂ψ = −1, which is consistent with Equation (A.37). The gradient
∂Fα/∂ψ in Equation (A.31) therefore simplifies to

∂Fα
∂ψ

= −pα


EαL(
1 + EαL

)2 −
EαU(

1 + EαU
)2


. (A.38)
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A.4 Gradients for Elevation Angle Shaping Function(
∂Fε/∂~x

)
Recall from equation Equation (2.16) that Fε (~x, ~ω) is based on the elevation angle ε, which
depends upon the states x and y as shown in Equation (2.14), but is independent of heading
ψ and turn rate r , i.e., ∂Fε/∂ψ = ∂Fε/∂r = 0. We can rewrite Equation (2.16) as

Fε = FεL + FεU − 1, (A.39)

where:

FεL =
1

1 + epε (εL−ε) =
1

EL
, and (A.40)

FεU =
1

1 + epε (ε−εU ) =
1

EU
. (A.41)

Note that elevation angle ε is identical in both the inertial and body-fixed reference frames,
so superscripts are omitted to simplify notation. We can now use the chain rule to derive
∂Fε/∂x as follows:

∂Fε
∂x

=
∂Fε
∂EL

∂EL

∂ε

∂ε

∂x
+
∂Fε
∂EU

∂EU

∂ε

∂ε

∂x
=

(
∂Fε
∂EL

∂EL

∂ε
+
∂Fε
∂EU

∂EU

∂ε

)
∂ε

∂x
, (A.42)

where:
∂Fε
∂EL

= −
1

E2
L

= −
1[

1 + epε (εL−ε)]2 , (A.43)

∂Fε
∂EU

= −
1

E2
U

= −
1[

1 + epε (ε−εU )]2 , (A.44)

∂EL

∂ε
=

∂

∂ε

[
1 + epε (εL−ε)

]
= −pεepε (εL−ε), (A.45)

∂EU

∂ε
=

∂

∂ε

[
1 + epε (ε−εU )

]
= pεepε (ε−εU ), and (A.46)

∂ε

∂x
=

∂

∂x
arctan *

,

−dz√
dx2 + dy2

+
-
. (A.47)
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Letting ζ = −dz/
√

dx2 + dy2, we can compute the derivative of the inverse tangent func-
tion with respect to x as

∂

∂x
arctan(ζ ) =

(
1

1 + ζ2

)
∂ζ

∂x
=

(
dx2 + dy2

dx2 + dy2 + dz2

)
∂ζ

∂x
=

(
dx2 + dy2

D2

)
∂ζ

∂x
. (A.48)

Meanwhile, since dx = ωx − x, the derivative of ζ with respect to x is

∂ζ

∂x
=

∂

∂x
*
,

−dz√
dx2 + dy2

+
-

=
1
2

2dxdz(
dx2 + dy2)3/2 (−1) = −

dxdz(
dx2 + dy2)3/2 . (A.49)

Substituting Equations (A.48) and (A.49) into Equation (A.47) yields

∂ε

∂x
= −

(
dx2 + dy2

D2

)
dxdz(

dx2 + dy2)3/2 = −
dxdz

D2
√

dx2 + dy2
. (A.50)

Letting EεL = epε (εL−ε) and EεU = epε (ε−εU ), we substitute Equations (A.43) through
(A.46), with Equation (A.50), into Equation (A.42) and obtain

∂Fε
∂x

= −
pεdxdz(

D2) √
dx2 + dy2



EεL(
1 + EεL

)2 −
EεU(

1 + EεU
)2


. (A.51)

In a similar manner:

∂Fε
∂ y

=
∂Fε
∂EL

∂EL

∂ε

∂ε

∂ y
+
∂Fε
∂EU

∂EU

∂ε

∂ε

∂ y
=

(
∂Fε
∂EL

∂EL

∂ε
+
∂Fε
∂EU

∂EU

∂ε

)
∂ε

∂ y
, and (A.52)

∂ε

∂ y
=

∂

∂ y
arctan *

,

−dz√
dx2 + dy2

+
-
. (A.53)

Once again,we let ζ = −dz/
√

dx2 + dy2 and compute the derivative of the inverse tangent
function with respect to y as

∂

∂ y
arctan(ζ ) =

(
1

1 + ζ2

)
∂ζ

∂ y
=

(
dx2 + dy2

dx2 + dy2 + dz2

)
∂ζ

∂ y
=

(
dx2 + dy2

D2

)
∂ζ

∂ y
. (A.54)
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Meanwhile, since dy = ωy − y , the derivative of ζ with respect to y is

∂ζ

∂ y
=

∂

∂ y
*
,

−dz√
dx2 + dy2

+
-

=
1
2

2dydz(
dx2 + dy2)3/2 (−1) = −

dydz(
dx2 + dy2)3/2 . (A.55)

Substituting Equations (A.54) and (A.55) into Equation (A.53) yields

∂ε

∂ y
= −

(
dx2 + dy2

D2

)
dydz(

dx2 + dy2)3/2 = −
dydz(

D2) √
dx2 + dy2

. (A.56)

Using the same definitions for EεL and EεL , we substitute Equations (A.43) through (A.46),
with Equation (A.56), into Equation (A.52) and obtain

∂Fε
∂ y

= −
pεdydz(

D2) √
dx2 + dy2



EεL(
1 + EεL

)2 −
EεU(

1 + EεU
)2


. (A.57)

A.5 Gradients for Turn Rate Shaping Function
(
∂Fr/∂~x

)
Recall from Equation (2.20) that Fr (~x) depends only on the searcher vehicle’s turn
rate r . Therefore, the gradients with respect to all other state variables are zero, i.e.,
∂Fr/∂x = ∂Fr/∂ y = Fr/∂ψ = 0. The derivative of Fr with respect to r is simply

∂Fr

∂r
=

∂

∂r
e−

1
2 [r/σr ]2

= −
r
σr

2 e−
1
2 [r/σr ]2

. (A.58)

142



A.6 Gradients for Instantaneous Detection Rate
(
∂γ/∂~x

)
We can now substitute the gradients derived in Sections A.2 through A.5 into the objective
function gradients of Equation (A.2):

∂γ

∂x
= λ

*...
,

∂p
∂x

FαFεFr + p
∂Fα
∂x

FεFr + pFα
∂Fε
∂x

Fr + pFαFε
�
�
��7

0
∂Fr

∂x

+///
-

,

∂γ

∂ y
= λ

*...
,

∂p
∂ y

FαFεFr + p
∂Fα
∂ y

FεFr + pFα
∂Fε
∂ y

Fr + pFαFε
�
�
��7

0
∂Fr

∂ y

+///
-

,

∂γ

∂ψ
= λ

*...
,
�
�
���
0

∂p
∂ψ

FαFεFr + p
∂Fα
∂ψ

FεFr + pFα
�
�
��7

0
∂Fε
∂ψ

Fr + pFαFε
�
�
��7

0
∂Fr

∂ψ

+///
-

, and

∂γ

∂r
= λ

*...
,
�
�
���
0

∂p
∂r

FαFεFr + p
�
�
���

0
∂Fα
∂r

FεFr + pFα
�
�
��7

0
∂Fε
∂r

Fr + pFαFε
∂Fr

∂r

+///
-

.

Thus, the gradients of the inner component of the objective function’s running cost are

∂γ

∂x
= λ

(
∂p
∂x

FαFεFr + p
∂Fα
∂x

FεFr + pFα
∂Fε
∂x

Fr

)
, (A.59)

∂γ

∂ y
= λ

(
∂p
∂ y

FαFεFr + p
∂Fα
∂ y

FεFr + pFα
∂Fε
∂ y

Fr

)
, (A.60)

∂γ

∂ψ
= λ

(
p
∂Fα
∂ψ

FεFr

)
, and (A.61)

∂γ

∂r
= λ

(
pFαFε

∂Fr

∂r

)
. (A.62)
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APPENDIX B:
Hamming Cluster Batch Scripts

The Hamming supercomputer, a “hybrid cluster” of computing cores available via the NPS
HPC Center [148] was used extensively during the course of this dissertation. Although
our optimal control framework utilizes a sequential optimization algorithm that doesn’t
lend itself to massive parallelization, several simulations can be launched via the network
to run on multiple computing cores simultaneously. This capability was a key enabler for
conducting numerous trade studies at once, greatly accelerating the analysis process.

Hamming jobs are managed by Simple Linux Utility for Resource Management (SLURM),
an open source “cluster management and job scheduling system” [150]. In order to use this
resource effectively, a generalized MATLAB routine was developed to accept pertinent
simulation parameters via SLURM environment variables. Next, batch scripts were cre-
ated to execute this MATLAB routine on multiple computing nodes. These scripts leverage
SLURM’s job array mechanism, whereby each job consists of multiple computing tasks,
each indexed by a taskID value. The batch scripts specify a range of values for the param-
eter of interest in a Monte Carlo simulation run, and convert these values into environment
variables via the taskID. These environment variables are accessible by the MATLAB rou-
tine, regardless of the computing node it has been assigned to run on. A separate input
argument determines the number of simulations to run for a given parameter configuration.
Upon completion, SLURM sends an email notification with a listing of all generated output
files. These files are then downloaded from Hamming via the network and subsequently
analyzed in MATLAB.
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B.1 SLURM Batch Files

B.1.1 Launch file-based simulations
# ! / b i n / bash

#

# C a l l i n g s y n t a x i s

#

# s b a t c h −−a r r a y=< i ndVar range>

# −o $ OUTFILE_PREFIX . o%A_%a −J

# <8−char j o b name> m u l t i U x V s o n a r F i l e . s b a t c h

#

# R e q u e s t hamming r e s o u r c e s . . .

#

#SBATCH −−n t a s k s=1

#SBATCH −−cpu− f r e q=h igh

#SBATCH −− c o n s t r a i n t= i n t e l

#SBATCH −− t i m e =72:00:00

#SBATCH −−mail−u s e r=spkrage l@nps . edu

#SBATCH −−mail− t y p e=END

export OMP_NUM_THREADS=1

echo " Args . . . "
echo o u t f i l e P r e f i x : ${OUTFILE_PREFIX}
echo Nv : ${SPOC_ARG_NV}
echo Tf : ${SPOC_ARG_TF}
echo Nt : ${SPOC_ARG_NT}
echo Nw: ${SPOC_ARG_NW}
echo Method : ${SPOC_ARG_METHOD}
echo DU: ${SPOC_ARG_DU}
echo TU: ${SPOC_ARG_TU}
echo UxVparams : ${SPOC_ARG_PARAMS}
echo S o n a r F i l e : ${SPOC_ARG_SONAR}
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echo numSims : ${SPOC_ARG_N_SIMS}

i f [ [ −z " ${SPOC_ARG_NV} " ] ] ; then
SPOC_ARG_NV=${SLURM_ARRAY_TASK_ID}
echo "Nv from t a s k : " ${SPOC_ARG_NV}

e l i f [ [ −z " ${SPOC_ARG_NT} " ] ] ; then
SPOC_ARG_NT=${SLURM_ARRAY_TASK_ID}
echo " Nt from t a s k : " ${SPOC_ARG_NT}

e l i f [ [ −z " ${SPOC_ARG_TF} " ] ] ; then
SPOC_ARG_TF=

$ ( echo " s c a l e =0; ${SLURM_ARRAY_TASK_ID}∗10 " | bc )
echo " Tf from t a s k : " ${SPOC_ARG_TF}

e l s e
echo " A l l v a r i a b l e s p r o v i d e d by u s e r . "

f i

i f [ [ −z " ${SPOC_ARG_N_SIMS} " ] ] ; then
SPOC_SPOC_ARG_TFARG_N_SIMS=1

f i
echo " Running " ${SPOC_ARG_N_SIMS} "MATLAB sims p e r t a s k . "

echo " S u b m i t t e d as : " ${SLURM_JOB_NAME} " wi th ID : "
${SLURM_ARRAY_JOB_ID} " _ " ${SLURM_ARRAY_TASK_ID}

# Load MATLAB module

source / e t c / p r o f i l e
module l o a d app / ma t l ab
#

# cd t o d i r e c t o r y where j o b was s u b m i t t e d from

cd $SLURM_SUBMIT_DIR

# Run MATLAB

i f [ [ −n " ${SPOC_ARG_TF} " ] ] ; then
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echo " Mat lab s c r i p t s t a r t e d on "
d a t e
ma t l ab −s ing leCompThread −n o d e s k t o p −n o s p l a s h −nojvm
" cd . . / GoodMul t iRobo tCons tVe lSca ledMul t iFLS ; pwd ;

− r r u n H e a d l e s s ( ${SPOC_ARG_NV} , ${SPOC_ARG_TF} ,
${SPOC_ARG_NT} , ${SPOC_ARG_NW} ,
’ ${SPOC_ARG_METHOD} ’ , ${SPOC_ARG_DU} ,
${SPOC_ARG_TU} , ’ ${SPOC_ARG_PARAMS} ’ ,
’ ${SPOC_ARG_SONAR} ’ , ${SPOC_ARG_N_SIMS} ,
’ ${OUTFILE_PREFIX } ’ , ${SLURM_ARRAY_JOB_ID} ,
${SLURM_ARRAY_TASK_ID } ) ; q u i t "

echo " Mat lab s c r i p t comple t ed on "
d a t e

e l s e
echo "ERROR! r u n H e a d l e s s has m i s s i n g argument ( s ) ! "

f i
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B.1.2 Launch parameter-based simulations
# ! / b i n / bash

#

# C a l l i n g s y n t a x i s

# s b a t c h −−a r r a y=< i ndVar range>

# −o $ OUTFILE_PREFIX . o%A_%a −J

# <8−char j o b name> mul t iUxVsonar . s b a t c h

#

# R e q u e s t hamming r e s o u r c e s . . .

#

#SBATCH −−n t a s k s=1

#SBATCH −−cpu− f r e q=h igh

#SBATCH −− c o n s t r a i n t= i n t e l

#SBATCH −− t i m e =12:00:00

#SBATCH −−mail−u s e r=spkrage l@nps . edu

#SBATCH −−mail− t y p e=END

export OMP_NUM_THREADS=1

echo " Args . . . "
echo o u t f i l e P r e f i x : ${OUTFILE_PREFIX}
echo Nv : ${SPOC_ARG_NV}
echo Tf : ${SPOC_ARG_TF}
echo Nt : ${SPOC_ARG_NT}
echo Nw: ${SPOC_ARG_NW}
echo Method : ${SPOC_ARG_METHOD}
echo DU: ${SPOC_ARG_DU}
echo TU: ${SPOC_ARG_TU}
echo UxVparams : ${SPOC_ARG_PARAMS}
echo f : ${SPOC_ARG_FREQ}
echo FOM: ${SPOC_ARG_FOM}
echo Lamda : ${SPOC_ARG_LAMDA}
echo Sigma : ${SPOC_ARG_SIGMA}
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echo Hfov : ${SPOC_ARG_HFOV}
echo Vfov : ${SPOC_ARG_VFOV}
echo Vde : ${SPOC_ARG_VDE}
echo numSims : ${SPOC_ARG_N_SIMS}

i f [ [ −z " ${SPOC_ARG_FOM} " ] ] ; then
SPOC_ARG_FOM=${SLURM_ARRAY_TASK_ID}
echo "FOM from t a s k : " ${SPOC_ARG_FOM}

e l i f [ [ −z " ${SPOC_ARG_LAMDA} " ] ] ; then
SPOC_ARG_LAMDA=

$ ( echo " s c a l e =0; ${SLURM_ARRAY_TASK_ID}∗10 " | bc )
echo "LAMDA from t a s k : " ${SPOC_ARG_LAMDA}

e l i f [ [ −z " ${SPOC_ARG_HFOV} " ] ] ; then
SPOC_ARG_HFOV=${SLURM_ARRAY_TASK_ID}
echo " Hfov from t a s k : " ${SPOC_ARG_HFOV}

e l i f [ [ −z " ${SPOC_ARG_VDE} " ] ] ; then
SPOC_ARG_VDE=−${SLURM_ARRAY_TASK_ID}
echo " Vde from t a s k : " ${SPOC_ARG_VDE}

e l s e
echo " A l l v a r i a b l e s p r o v i d e d by u s e r . "

f i

i f [ [ −z " ${SPOC_ARG_N_SIMS} " ] ] ; then
SPOC_ARG_N_SIMS=1

f i
echo " Running " ${SPOC_ARG_N_SIMS} "MATLAB sims p e r t a s k . "

echo " S u b m i t t e d as : " ${SLURM_JOB_NAME} " wi th ID : "
${SLURM_ARRAY_JOB_ID} " _ " ${SLURM_ARRAY_TASK_ID}

# Load MATLAB module

source / e t c / p r o f i l e
module l o a d app / ma t l ab
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#

# cd t o d i r e c t o r y where j o b was s u b m i t t e d from

cd $SLURM_SUBMIT_DIR

# Run MATLAB

i f [ [ −n " ${SPOC_ARG_TF} " ] ] ; then
echo " Mat lab s c r i p t s t a r t e d on "
d a t e
ma t l ab −s ing leCompThread −n o d e s k t o p −n o s p l a s h −nojvm
" cd . . / GoodMul t iRobo tCons tVe lSca ledMul t iFLS ; pwd ;

− r r u n H e a d l e s s ( ${SPOC_ARG_NV} , ${SPOC_ARG_TF} ,
${SPOC_ARG_NT} , ${SPOC_ARG_NW} ,
’ ${SPOC_ARG_METHOD} ’ , ${SPOC_ARG_DU} ,
${SPOC_ARG_TU} , ’ ${SPOC_ARG_PARAMS} ’ ,
${SPOC_ARG_FREQ} , ${SPOC_ARG_FOM} ,
${SPOC_ARG_LAMDA} , ${SPOC_ARG_SIGMA} ,
${SPOC_ARG_HFOV} , ${SPOC_ARG_VFOV} ,
${SPOC_ARG_VDE} , ${SPOC_ARG_N_SIMS} ,
’ ${OUTFILE_PREFIX } ’ , ${SLURM_ARRAY_JOB_ID} ,
${SLURM_ARRAY_TASK_ID } ) ; q u i t "

echo " Mat lab s c r i p t comple t ed on "
d a t e

e l s e
echo "ERROR! r u n H e a d l e s s has m i s s i n g argument ( s ) ! "

f i
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B.2 SLURM Job Arrays

B.2.1 Mission Duration
# ! / b i n / bash

#

# Master s c r i p t f o r p a s s i n g v a r i a b l e s i n t o s lurm

# b a t c h s c r i p t a s e n v i r o n m e n t v a r i a b l e s

#

# C a l l i n g s y n t a x i s

# l a u n c h _ P v s T f . s lu rm <OUTFILE_PREFIX> <S o n a r F i l e > <N_SIMS>

#

#

export OUTFILE_PREFIX=$1

export SPOC_ARG_NV=1 # number o f UxVs

export SPOC_ARG_TF= # f i n a l t i m e [ s ]

export SPOC_ARG_NT=50 # t i m e nodes

export SPOC_ARG_NW=25 # s p a t i a l nodes

export SPOC_ARG_METHOD="PEE" # P ) s e u d o s p e c t r a l or E ) u l e r

export SPOC_ARG_DU=100 # d i s t c a n o n i c a l u n i t [m]

export SPOC_ARG_TU=100 # t i m e c a n o n i c a l u n i t [ s ]

export SPOC_ARG_PARAMS=" SeaFox " # f i l e o f dynamic params

export SPOC_ARG_SONAR=$2 # sonar params f i l e

export SPOC_ARG_N_SIMS=$3 # number o f s ims t o run

s b a t c h −− a r r a y =90−366:12 −−o u t p u t=$OUTFILE_PREFIX . o%A_%a
−− job−name=TF$2 m u l t i U x V s o n a r F i l e . s b a t c h
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B.2.2 Time Discretization
# ! / b i n / bash

#

# Master s c r i p t f o r p a s s i n g v a r i a b l e s i n t o s lurm

# b a t c h s c r i p t as e n v i r o n m e n t v a r i a b l e s

#

# C a l l i n g s y n t a x i s

# launch_PvsNT . s lurm <OUTFILE_PREFIX> <S o n a r F i l e > <N_SIMS>

#

#

export OUTFILE_PREFIX=$1

export SPOC_ARG_NV=1 # number o f UxVs

export SPOC_ARG_TF=1800 # f i n a l t i m e [ s ]

export SPOC_ARG_NT= # t i m e nodes

export SPOC_ARG_NW=25 # s p a t i a l nodes

export SPOC_ARG_METHOD="PEE" # P ) s e u d o s p e c t r a l or E ) u l e r

export SPOC_ARG_DU=100 # d i s t c a n o n i c a l u n i t [m]

export SPOC_ARG_TU=100 # t i m e c a n o n i c a l u n i t [ s ]

export SPOC_ARG_PARAMS="REMUS" # f i l e o f dynamic params

export SPOC_ARG_SONAR=$2 # sonar params f i l e

export SPOC_ARG_N_SIMS=$3 # number o f s ims t o run

s b a t c h −− a r r a y =20−60:5 −−o u t p u t=$OUTFILE_PREFIX . o%A_%a
−− job−name=NT$2 m u l t i U x V s o n a r F i l e . s b a t c h
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B.2.3 Vertical Mounting Angle
# ! / b i n / bash

#

# Master s c r i p t f o r p a s s i n g v a r i a b l e s i n t o s lurm

# b a t c h s c r i p t as e n v i r o n m e n t v a r i a b l e s

#

# C a l l i n g s y n t a x i s

# launch_PvsVDE . s lurm <OUTFILE_PREFIX> <F_KHZ> <N_SIMS>

#

#

export OUTFILE_PREFIX=$1

export SPOC_ARG_NV=1 # number o f UxVs

export SPOC_ARG_TF=1800 # f i n a l t i m e [ s ]

export SPOC_ARG_NT=50 # t i m e nodes

export SPOC_ARG_NW=25 # s p a t i a l nodes

export SPOC_ARG_METHOD="PEE" # P ) s e u d o s p e c t r a l or E ) u l e r

export SPOC_ARG_DU=100 # d i s t c a n o n i c a l u n i t [m]

export SPOC_ARG_TU=100 # t i m e c a n o n i c a l u n i t [ s ]

export SPOC_ARG_PARAMS="REMUS" # f i l e o f dynamic params

export SPOC_ARG_FREQ=$2 # sonar f r e q u e n c y [ kHz ]

export SPOC_ARG_FOM=66 # f i g u r e o f m e r i t [ dB ]

export SPOC_ARG_LAMDA=0.5 # P o i s s o n r a t e [ 1 / s ]

export SPOC_ARG_SIGMA=9 # u n c e r t a i n t y [ dB ]

export SPOC_ARG_HFOV=90 # h o r i z o n t a l FOV [ deg ]

export SPOC_ARG_VFOV=10 # v e r t i c a l FOV [ deg ]

export SPOC_ARG_VDE= # sonar mount a n g l e [ deg ]

export SPOC_ARG_N_SIMS=$3 # number o f s ims t o run

s b a t c h −− a r r a y =5−25:5 −−o u t p u t=$OUTFILE_PREFIX . o%A_%a
−− job−name=PvVDE$2 mul t iUxVsonar . s b a t c h
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B.2.4 Figure of Merit
# ! / b i n / bash

#

# Master s c r i p t f o r p a s s i n g v a r i a b l e s i n t o s lurm

# b a t c h s c r i p t as e n v i r o n m e n t v a r i a b l e s

#

# C a l l i n g s y n t a x i s

# launch_PvsFOM . s lurm <OUTFILE_PREFIX> <F_KHZ> <N_SIMS>

#

#

export OUTFILE_PREFIX=$1

export SPOC_ARG_NV=1 # number o f UxVs

export SPOC_ARG_TF=1800 # f i n a l t i m e [ s ]

export SPOC_ARG_NT=50 # t i m e nodes

export SPOC_ARG_NW=25 # s p a t i a l nodes

export SPOC_ARG_METHOD="PEE" # P ) s e u d o s p e c t r a l or E ) u l e r

export SPOC_ARG_DU=100 # d i s t c a n o n i c a l u n i t [m]

export SPOC_ARG_TU=100 # t i m e c a n o n i c a l u n i t [ s ]

export SPOC_ARG_PARAMS=" SeaFox " # f i l e o f dynamic params

export SPOC_ARG_FREQ=$2 # sonar f r e q u e n c y [ kHz ]

export SPOC_ARG_FOM # f i g u r e o f m e r i t [ dB ]

export SPOC_ARG_LAMDA=0.5 # P o i s s o n r a t e [ 1 / s ]

export SPOC_ARG_SIGMA=9 # u n c e r t a i n t y [ dB ]

export SPOC_ARG_HFOV=90 # h o r i z o n t a l FOV [ deg ]

export SPOC_ARG_VFOV=10 # v e r t i c a l FOV [ deg ]

export SPOC_ARG_VDE=−11 # sonar mount a n g l e [ deg ]

export SPOC_ARG_N_SIMS=$3 # number o f s ims t o run

s b a t c h −− a r r a y =48−75:3 −−o u t p u t=$OUTFILE_PREFIX . o%A_%a
−− job−name=PvFOM$2 mul t iUxVsonar . s b a t c h
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B.2.5 Poisson Scan Rate
# ! / b i n / bash

#

# Master s c r i p t f o r p a s s i n g v a r i a b l e s i n t o s lurm

# b a t c h s c r i p t as e n v i r o n m e n t v a r i a b l e s

#

# C a l l i n g s y n t a x i s

# launch_PvsLAM . s lurm <OUTFILE_PREFIX> <F_KHZ> <N_SIMS>

#

#

export OUTFILE_PREFIX=$1

export SPOC_ARG_NV=1 # number o f UxVs

export SPOC_ARG_TF=1800 # f i n a l t i m e [ s ]

export SPOC_ARG_NT=50 # t i m e nodes

export SPOC_ARG_NW=25 # s p a t i a l nodes

export SPOC_ARG_METHOD="PEE" # P ) s e u d o s p e c t r a l or E ) u l e r

export SPOC_ARG_DU=100 # d i s t c a n o n i c a l u n i t [m]

export SPOC_ARG_TU=100 # t i m e c a n o n i c a l u n i t [ s ]

export SPOC_ARG_PARAMS=" SeaFox " # f i l e o f dynamic params

export SPOC_ARG_FREQ=$2 # sonar f r e q u e n c y [ kHz ]

export SPOC_ARG_FOM=66 # f i g u r e o f m e r i t [ dB ]

export SPOC_ARG_LAMDA # P o i s s o n r a t e [ 1 / s ]

export SPOC_ARG_SIGMA=9 # u n c e r t a i n t y [ dB ]

export SPOC_ARG_HFOV=90 # h o r i z o n t a l FOV [ deg ]

export SPOC_ARG_VFOV=10 # v e r t i c a l FOV [ deg ]

export SPOC_ARG_VDE=−11 # sonar mount a n g l e [ deg ]

export SPOC_ARG_N_SIMS=$3 # number o f s ims t o run

s b a t c h −− a r r a y =1−10 −−o u t p u t=$OUTFILE_PREFIX . o%A_%a
−− job−name=PvLAM$2 mul t iUxVsonar . s b a t c h
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B.2.6 Horizontal Field of View
# ! / b i n / bash

#

# Master s c r i p t f o r p a s s i n g v a r i a b l e s i n t o s lurm

# b a t c h s c r i p t as e n v i r o n m e n t v a r i a b l e s

#

# C a l l i n g s y n t a x i s

# launch_PvsHFOV . s lurm <OUTFILE_PREFIX> <F_KHZ> <N_SIMS>

#

#

export OUTFILE_PREFIX=$1

export SPOC_ARG_NV=1 # number o f UxVs

export SPOC_ARG_TF=1800 # f i n a l t i m e [ s ]

export SPOC_ARG_NT=50 # t i m e nodes

export SPOC_ARG_NW=25 # s p a t i a l nodes

export SPOC_ARG_METHOD="PEE" # P ) s e u d o s p e c t r a l or E ) u l e r

export SPOC_ARG_DU=100 # d i s t c a n o n i c a l u n i t [m]

export SPOC_ARG_TU=100 # t i m e c a n o n i c a l u n i t [ s ]

export SPOC_ARG_PARAMS=" SeaFox " # f i l e o f dynamic params

export SPOC_ARG_FREQ=$2 # sonar f r e q u e n c y [ kHz ]

export SPOC_ARG_FOM=66 # f i g u r e o f m e r i t [ dB ]

export SPOC_ARG_LAMDA=0.5 # P o i s s o n r a t e [ 1 / s ]

export SPOC_ARG_SIGMA=9 # u n c e r t a i n t y [ dB ]

export SPOC_ARG_HFOV # h o r i z o n t a l FOV [ deg ]

export SPOC_ARG_VFOV=10 # v e r t i c a l FOV [ deg ]

export SPOC_ARG_VDE=−6 # sonar mount a n g l e [ deg ]

export SPOC_ARG_N_SIMS=$3 # number o f s ims t o run

s b a t c h −− a r r a y =30−165:15 −−o u t p u t=$OUTFILE_PREFIX . o%A_%a
−− job−name=PvHFOV$2 mul t iUxVsonar . s b a t c h
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B.2.7 Number of Searchers
# ! / b i n / bash

#

# Master s c r i p t f o r p a s s i n g v a r i a b l e s i n t o s lurm

# b a t c h s c r i p t as e n v i r o n m e n t v a r i a b l e s

#

# C a l l i n g s y n t a x i s

# launch_PvsNV . s lurm <OUTFILE_PREFIX> <S o n a r F i l e > <N_SIMS>

#

#

export OUTFILE_PREFIX=$1

export SPOC_ARG_NV # number o f UxVs

export SPOC_ARG_TF=1800 # f i n a l t i m e [ s ]

export SPOC_ARG_NT=50 # t i m e nodes

export SPOC_ARG_NW=25 # s p a t i a l nodes

export SPOC_ARG_METHOD=" PPP " # P ) s e u d o s p e c t r a l or E ) u l e r

export SPOC_ARG_DU=100 # d i s t c a n o n i c a l u n i t [m]

export SPOC_ARG_TU=100 # t i m e c a n o n i c a l u n i t [ s ]

export SPOC_ARG_PARAMS=" SeaFox " # f i l e o f dynamic params

export SPOC_ARG_SONAR=$2 # sonar params f i l e

export SPOC_ARG_N_SIMS=$3 # number o f s ims t o run

s b a t c h −− a r r a y =1−5 −−o u t p u t=$OUTFILE_PREFIX . o%A_%a
−− job−name=NV$2 m u l t i U x V s o n a r F i l e . s b a t c h
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B.2.8 Type of Searchers
# ! / b i n / bash

#

# Master s c r i p t f o r p a s s i n g v a r i a b l e s i n t o s lurm

# b a t c h s c r i p t as e n v i r o n m e n t v a r i a b l e s

#

# C a l l i n g s y n t a x i s

# launch_PvsNV . s lurm <NV> <UxvTeamStr> <SonarTeamStr>

# <N_SIMS> <O u t F i l e P r e f i x >

#

#

export OUTFILE_PREFIX=$5

export SPOC_ARG_NV=$1 # number o f UxVs

export SPOC_ARG_TF=1800 # f i n a l t i m e [ s ]

export SPOC_ARG_NT= # t i m e nodes

export SPOC_ARG_NW=25 # s p a t i a l nodes

export SPOC_ARG_METHOD="PEE" # P ) s e u d o s p e c t r a l or E ) u l e r

export SPOC_ARG_DU=100 # d i s t c a n o n i c a l u n i t [m]

export SPOC_ARG_TU=100 # t i m e c a n o n i c a l u n i t [ s ]

export SPOC_ARG_PARAMS=$2 # f i l e o f dynamic params

export SPOC_ARG_SONAR=$3 # sonar params f i l e

export SPOC_ARG_N_SIMS=$4 # number o f s ims t o run

s b a t c h −− a r r a y =10−45:5 −−o u t p u t=$OUTFILE_PREFIX . o%A_%a
−− job−name=$2$3 m u l t i U x V s o n a r F i l e . s b a t c h
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B.3 MATLAB Run Script
f u n c t i o n R e s u l t s = r u n H e a d l e s s ( v a r a r g i n )

%% New 1 1 / 1 8 / 1 6 f o r He te rogeneous Teams

% 7 mandatory i n p u t s :

% Nv : number o f UxVs

% ( ex : ’SRR ’ f o r 3− v e h i c l e team w i t h 1 SeaFox and 2 REMUS)

% Tf : f i n a l m i s s i o n t i m e [ s e c o n d s ]

% Nt : number o f t i m e nodes

% Nw: number o f parame te r nodes

% M e t h o d S t r i n g : 3 c h a r s f o r TSS ,

% e i t h e r P f o r PS , E f o r E u l e r ( ex : PEE)

% DU: d i s t a n c e c a n o n i c a l u n i t [ i n m e t e r s ]

% TU: t i m e c a n o n i c a l u n i t [ i n s e c o n d s ]

%

% v e h i c l e params

% EITHER :

% Veh : c h a r a c t e r s d e n o t i n g team c o m p o s i t i o n ,

% S f o r SeaFox , R f o r Remus

% OR: ( need a l l 3 ; t h e s e are a p p l i e d t o a l l Nv v e h i c l e s )

% V : c o n s t a n t v e l o c i t y [m / s ]

% T : Nomoto T [ s ]

% K: Nomoto K [ 1 / s ]

%

% sonar params

% EITHER :

% Son : c h a r a c t e r s d e n o t i n g sonar model

% ( ex : ’249 ’ f o r 200 kHz on UxV#1 ,

% 450 kHz on UxV#2 , 900 kHz on UxV#3)

% OR: ( need a l l 7 ; t h e s e are a p p l i e d t o a l l Nv v e h i c l e s )

% f : d e s i g n f r e q u e n c y [ kHz ]

% FOM: f i g u r e o f m e r i t [ dB ]

% LAMDA: P o i s s o n r a t e [ 1 / s ]

% SIGMA : cum . d e t e c t i o n u n c e r t a i n t y [ dB ]
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% HFOV: h o r i z o n t a l f i e l d o f v iew [ d e g r e e s ]

% VFOV: v e r t i c a l f i e l d o f v iew [ d e g r e e s ]

% VDE: v e r t i c a l mount ing a n g l e [ d e g r e e s ]

% ( n e g a t i v e i s down )

%

% Nsims : number o f s i m u l a t i o n s

% < o u t f i l e p r e f i x >: p r e p e n d s r e s u l t s f i l e name

% jobID : t h e s lurm a r r a y j o b ID

% t a s k I D : t h e s lurm a r r a y e l e m e n t ID

%

%

% T h i s l a u n c h e s m u l t i p l e SPOC s i m u l a t i o n s .

% SPOC , by CLAIRE WALTON ( 2 0 1 3 ) . Some R i g h t s R e s e r v e d .

%========================================================

· · ·

f o r s =1: Nsims

di sp ( [ ’ ∗∗∗ Running S i m u l a t i o n ’ , num2str ( s ) , ’ / ’ , . . .
num2str ( numSims ) , ’ ∗∗∗ ’ ] ) ;

CONSTANTS . c p u I n f o = c p u i n f o ;
CONSTANTS . S t a r t . Time = now ;
CONSTANTS . S t a r t . Date = d a t e s t r (CONSTANTS . S t a r t . Time ) ;

R e s u l t s = SPOC( gMul t iCvSca ledMul t iFLS , . . .
D i s c r e t i z a t i o n , Methods )

CONSTANTS . Stop . Time = now ;
CONSTANTS . Stop . Date = d a t e s t r (CONSTANTS . Stop . Time ) ;

· · ·

save ( f i l e n a m e , ’ R e s u l t s ’ ) ;
di sp ( [ ’ R e s u l t s f i l e i s : ’ f i l e n a m e ] ) ;

end ;
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looking sonar simulator based on continuous surfaces approach,” Turkish Journal
of Electrical Engineering & Computer Sciences, vol. 23, no. Sup.1, pp. 2289–2303,
2015. Available: http://journals.tubitak.gov.tr/elektrik/issues/elk-15-23-sup.1/elk-
23-sup.1-21-1305-188.pdf

[63] H. Choset, “Coverage for robotics – A survey of recent results,” Annals of Mathe-
matics and Artificial Intelligence, vol. 31, no. 1, pp. 113–126, Oct. 2001.

[64] H. Choset and P. Pignon, “Coverage path planning: The boustrophedon decomposi-
tion,” in International Conference on Field and Service Robotics, 1997.

[65] D. T. Latimer, S. Srinivasa, V. L. Shue, S. Sonne, H. Choset, and A. Hurst, “To-
wards sensor based coverage with robot teams,” in Proceedings 2002 IEEE Inter-
national Conference on Robotics and Automation (ICRA), 2002, vol. 1, pp. 961–
967.

[66] W. H. Huang, “Optimal line-sweep-based decompositions for coverage algo-
rithms,” in Proceedings 2001 IEEE International Conference on Robotics and Au-
tomation (ICRA), 2001, vol. 1, pp. 27–32.

168

http://www.dtic.mil/cgi-bin/GetTRDoc?Location=U2&doc=GetTRDoc.pdf&AD=ADA478751
http://www.dtic.mil/cgi-bin/GetTRDoc?Location=U2&doc=GetTRDoc.pdf&AD=ADA478751
http://www.dtic.mil/cgi-bin/GetTRDoc?Location=U2&doc=GetTRDoc.pdf&AD=ADA482282
http://www.dtic.mil/cgi-bin/GetTRDoc?Location=U2&doc=GetTRDoc.pdf&AD=ADA482282
http://journals.tubitak.gov.tr/elektrik/issues/elk-15-23-sup.1/elk-23-sup.1-21-1305-188.pdf
http://journals.tubitak.gov.tr/elektrik/issues/elk-15-23-sup.1/elk-23-sup.1-21-1305-188.pdf


[67] E. Galceran, R. Campos, N. Palomeras, D. Ribas, M. Carreras, and P. Ridao, “Cov-
erage path planning with real-time replanning and surface reconstruction for in-
spection of three-dimensional underwater structures using autonomous underwater
vehicles,” Journal of Field Robotics, vol. 32, no. 7, pp. 952–983, Nov. 2015.

[68] E. Galceran and M. Carreras, “Planning coverage paths on bathymetric maps for
in-detail inspection of the ocean floor,” in Proceedings 2013 IEEE International
Conference on Robotics and Automation (ICRA), 2013, pp. 4159–4164.

[69] D. P. Williams, “On optimal AUV track-spacing for underwater mine detection,”
in Proceedings 2010 IEEE International Conference on Robotics and Automation
(ICRA), 2010, pp. 4755–4762.

[70] H. Yetkin, C. Lutz, and D. Stilwell, “Utility-based adaptive path planning for sub-
sea search,” in OCEANS 2015 - MTS/IEEE Washington, 2015.

[71] E. U. Acar, H. Choset, Y. Zhang, and M. Schervish, “Path planning for robotic
demining: Robust sensor-based coverage of unstructured environments and proba-
bilistic methods,” The International Journal of Robotics Research, vol. 22, no. 7-8,
pp. 441–466, July 2003.

[72] A. J. Healey and J. Kim, “Bugs: Robot control, UXO and minefield clearance,”
Mechanical Engineering Department, Naval Postgraduate School, Monterey,
CA, Tech. Rep. NPS-ME-96-005, Dec. 1996. Available: http://calhoun.nps.edu/

bitstream/handle/10945/24446/NPS-ME-96-005.pdf?sequence=1&isAllowed=y

[73] S. M. LaValle, Planning Algorithms. New York, NY: Cambridge University Press,
2006.

[74] M. A. Hurni, “An information-centric approach to autonomous trajectory planning
utilizing optimal control techniques,” Ph.D. dissertation, Dept. of Mech. and Aero.
Eng., Naval Postgraduate School, Monterey, CA, 2009.

[75] I. M. Ross and F. Fahroo, Legendre pseudospectral approximations of optimal con-
trol problems (Lecture Notes in Control and Information Sciences 295). Berlin,
Germany: Springer, 2003, pp. 327–342.

[76] I. M. Ross, “A roadmap for optimal control: The right way to commute,” Annals of
the New York Academy of Sciences, vol. 1065, no. 1, pp. 210–231, Dec. 2005.

[77] Q. Gong, I. M. Ross, W. Kang, and F. Fahroo, “Connections between the covector
mapping theorem and convergence of pseudospectral methods for optimal control,”
Computational Optimization and Applications, vol. 41, no. 3, pp. 307–335, Dec.
2008.

169

http://calhoun.nps.edu/bitstream/handle/10945/24446/NPS-ME-96-005.pdf?sequence=1&isAllowed=y
http://calhoun.nps.edu/bitstream/handle/10945/24446/NPS-ME-96-005.pdf?sequence=1&isAllowed=y


[78] J. C. Foraker, “Optimal search for moving targets in continuous time and space
using consistent approximations,” Ph.D. dissertation, Dept. Ops. Research, Naval
Postgraduate School, Monterey, CA, 2011.

[79] C. L. Walton, “The design and implementation of motion planning problems given
parameter uncertainty,” Ph.D. dissertation, Dept. Appl. Math. & Stat., University of
California, Santa Cruz, CA, 2015.

[80] I. M. Ross, R. J. Proulx, M. Karpenko, and Q. Gong, “Riemann–Stieltjes optimal
control problems for uncertain dynamic systems,” Journal of Guidance, Control,
and Dynamics, vol. 38, no. 7, pp. 1251–1263, 2015.

[81] C. Phelps, Q. Gong, J. Royset, and I. Kaminer, “Consistent approximation of an
optimal search problem,” in Proceedings 2012 IEEE Conference on Decision and
Control (CDC), 2012, pp. 630–637.

[82] R. Stokey, T. Austin, B. Allen, N. Forrester, E. Gifford, R. Goldsborough,
G. Packard, M. Purcell, and C. von Alt, “Very shallow water mine countermea-
sures using the REMUS AUV: A practical approach yielding accurate results,” in
OCEANS 2001 MTS/IEEE Conference and Exhibition, 2001, vol. 1, pp. 149–156.

[83] B. O. Koopman, “The theory of search – II. Target detection,” Operations Re-
search, vol. 4, no. 5, pp. 503–531, Oct. 1956.

[84] D. H. Wagner, W. C. Mylander, and T. J. Sanders, Eds., Naval Operations Analysis,
3rd ed. Annapolis, MD: Naval Institute Press, 1999.

[85] REMUS 100 for defense applications. (n.d.). [Online]. Available: http://www.
hydroid.com/remus-100-defense. Accessed Nov. 29, 2016.

[86] K. M. Kim, S. H. Lee, and J. N. Eagle, “Approximating the poisson scan and
(λ − σ) acoustic detection model with a random search formula,” in Proceedings
40th International Conference on Computers and Industrial Engineering (CIE),
2010, pp. 1–7.

[87] R. E. Keenan, “An introduction to GRAB eigenrays and CASS reverberation and
signal excess,” in OCEANS 2000 MTS/IEEE Conference and Exhibition, 2000,
vol. 2, pp. 1065–1070.

[88] H. Weinberg, R. Deavenport, E. McCarthy, and C. Anderson, “Comprehen-
sive Acoustic System Simulation (CASS) reference guide,” NUWC, Tech. Rep.
NUWC-NPT TM 01-016, Mar. 2001.

170

http://www.hydroid.com/remus-100-defense
http://www.hydroid.com/remus-100-defense


[89] S. B. Dasinger, B. I. Incze, and T. A. Holz, “A concept for efficient signal excess
calculation for multistatic operations analysis,” in OCEANS 2006 – Asia Pacific,
2006, pp. 1–6.

[90] E. Tucholski. Underwater acoustics and sonar. Dept. of Physics, United States
Naval Academy. Annapolis, MD. handouts for SP411. Available: https://www.
usna.edu/Users/physics/ejtuchol/teaching/SP411.php. Accessed Nov. 29, 2016.

[91] PSeries 2D imaging sonar. (n.d.). [Online]. Available: http://www.blueview.com/

products/2d-imaging-sonar/pseries-archives/. Accessed Nov. 29, 2016.

[92] Sea Scan SSPC AUV system. (n.d.). [Online]. Available: http://www.marinesonic.
com/products/seascanSSPCAUV.html. Accessed Nov. 29, 2016.

[93] EdgeTech Customer & Technical Support Resource Center. (n.d.). [Online]. Avail-
able: http://www.edgetech.com/underwater-technology-support/#resource-center.
Accessed Nov. 29, 2016.

[94] Hansen, Roy Edgar, “Introduction to synthetic aperture sonar,” in Sonar Systems,
N. Kolev, Ed. Rijeka, Croatia: InTech, 2011. Available: http://www.intechopen.
com/books/sonar-systems/introduction-to-synthetic-aperture-sonar

[95] Logistic function. (n.d.). Wikipedia. [Online]. Available: https://en.wikipedia.org/

w/index.php?title=Logistic_function&oldid=744524090. Accessed Nov. 29, 2016.

[96] E. W. Weisstein. Sigmoid Function. From MathWorld–A Wolfram Web Resource.
[Online]. Available: http://mathworld.wolfram.com/SigmoidFunction.html. Ac-
cessed Nov. 29, 2016.

[97] P. Blondel, The Handbook of Sidescan Sonar. Berlin, Germany: Springer, 2009.

[98] S. D. Anstee, “The effects of towfish motion on sidescan sonar images,” DSTO
Materials Research Laboratory, Victoria, Australia, Tech. Rep. MRL-RR-1-94,
1994. Available: http://digext6.defence.gov.au/dspace/handle/1947/9915

[99] P. E. Gill, W. Murray, and M. A. Saunders, User’s guide for SNOPT version 6: A
Fortran package for large-scale nonlinear programming, University of California,
San Diego and Stanford University, 2002. Available: http://www.cam.ucsd.edu/

~peg/papers/sndoc6.pdf

[100] C. Loeffler. (n.d.). Sonar and AUV technology. Office of Ocean Exploration and
Research, National Oceanic and Atmospheric Administration. [Online]. Available:
http://oceanexplorer.noaa.gov/explorations/10thunderbay/background/sonar/sonar.
html. Accessed Nov. 29, 2016.

171

https://www.usna.edu/Users/physics/ejtuchol/teaching/SP411.php
https://www.usna.edu/Users/physics/ejtuchol/teaching/SP411.php
http://www.blueview.com/products/2d-imaging-sonar/pseries-archives/
http://www.blueview.com/products/2d-imaging-sonar/pseries-archives/
http://www.marinesonic.com/products/seascanSSPCAUV.html
http://www.marinesonic.com/products/seascanSSPCAUV.html
http://www.edgetech.com/underwater-technology-support/#resource-center
http://www.intechopen.com/books/sonar-systems/introduction-to-synthetic-aperture-sonar
http://www.intechopen.com/books/sonar-systems/introduction-to-synthetic-aperture-sonar
https://en.wikipedia.org/w/index.php?title=Logistic_function&oldid=744524090
https://en.wikipedia.org/w/index.php?title=Logistic_function&oldid=744524090
http://mathworld.wolfram.com/SigmoidFunction.html
http://digext6.defence.gov.au/dspace/handle/1947/9915
http://www.cam.ucsd.edu/~peg/papers/sndoc6.pdf
http://www.cam.ucsd.edu/~peg/papers/sndoc6.pdf
http://oceanexplorer.noaa.gov/explorations/10thunderbay/background/sonar/sonar.html
http://oceanexplorer.noaa.gov/explorations/10thunderbay/background/sonar/sonar.html


[101] L. Moreavek and T. Brudner, “USS Asheville leads the way in high frequency
sonar,” Undersea Warfare, vol. 1, no. 3, 1999. Available: http://www.public.navy.
mil/subfor/underseawarfaremagazine/Issues/Archives/issue_03/uss_asheville.htm

[102] R. L. Thompson, J. Seawall, and T. Josserand, “Two dimensional and three dimen-
sional imaging results using blazed arrays,” in OCEANS 2001 MTS/IEEE Confer-
ence and Exhibition, 2001, vol. 2, pp. 985–988.

[103] N. A. McChesney, “Three-dimensional feature reconstruction with dual forward
looking sonars for unmanned underwater vehicle navigation,” Master’s thesis,
Dept. of Elect. Eng., Naval Postgraduate School, Monterey, CA, 2009.

[104] Multibeam Sonar Theory of Operation, L3 Communications SeaBeam Instruments,
East Walpole, MA, 2000. Available: https://www.ldeo.columbia.edu/res/pi/MB-
System/sonarfunction/SeaBeamMultibeamTheoryOperation.pdf

[105] S. T. Bachelor, R. L. Thompson, and J. Seawall, “Systems and methods implement-
ing frequency-steered acoustic arrays for 2D and 3D imaging,” U.S. Patent 7 606
114, Oct. 20, 2009. Available: http://patft.uspto.gov/netacgi/nph-Parser?Sect1=

PTO2&Sect2=HITOFF&p=1&u=%2Fnetahtml%2FPTO%2Fsearch-bool.html&r=
5&f=G&l=50&co1=AND&d=PTXT&s1=7606114&OS=7606114&RS=7606114

[106] C. Jones, “Teledyne blueview p-series sonar maximum source level analysis -
white paper,” Teledyne BlueView, Tech. Rep., Nov. 2012. Available: http://www.
blueview.com/assets/Uploads/Support-Document-Library/P-Series-Max-Source-
Level-Analysis-White-Paper-Teledyne-BlueView.pdf

[107] T. E. Wilcox and B. Fletcher, “High frequency side scan sonar for target reacquisi-
tion and identification,” in OCEANS 2003 MTS/IEEE Conference and Exhibition,
2003, vol. 4, pp. 1882–1887.

[108] D. Sternlicht, J. Fernandez, J. Prater, J. Weaver, J. Isaccs, T. Montgomery, C. Lo-
effler, and M. Purcell, “Advanced sonar technologies for high clearance rate mine
countermeasures,” in OCEANS 2016 - MTS/IEEE Monterey, 2016, pp. 1–5.

[109] Little USV, big applications. (2004, Apr.). MarineLink. [Online]. Available: http:
//www.marinelink.com/news/applications-little-big323082

[110] D. Richman. (2008, Nov. 12). Seattle firm builds boats with a mission: Navy and
Coast Guard use remote-controlled Sea Fox. Seattle Post-Intelligencer. Seat-
tle, WA. [Online]. Available: http://www.seattlepi.com/business/article/Seattle-
company-builds-boats-with-a-mission-1291322.php

172

http://www.public.navy.mil/subfor/underseawarfaremagazine/Issues/Archives/issue_03/uss_asheville.htm
http://www.public.navy.mil/subfor/underseawarfaremagazine/Issues/Archives/issue_03/uss_asheville.htm
https://www.ldeo.columbia.edu/res/pi/MB-System/sonarfunction/SeaBeamMultibeamTheoryOperation.pdf
https://www.ldeo.columbia.edu/res/pi/MB-System/sonarfunction/SeaBeamMultibeamTheoryOperation.pdf
http://patft.uspto.gov/netacgi/nph-Parser?Sect1=PTO2&Sect2=HITOFF&p=1&u=%2Fnetahtml%2FPTO%2Fsearch-bool.html&r=5&f=G&l=50&co1=AND&d=PTXT&s1=7606114&OS=7606114&RS=7606114
http://patft.uspto.gov/netacgi/nph-Parser?Sect1=PTO2&Sect2=HITOFF&p=1&u=%2Fnetahtml%2FPTO%2Fsearch-bool.html&r=5&f=G&l=50&co1=AND&d=PTXT&s1=7606114&OS=7606114&RS=7606114
http://patft.uspto.gov/netacgi/nph-Parser?Sect1=PTO2&Sect2=HITOFF&p=1&u=%2Fnetahtml%2FPTO%2Fsearch-bool.html&r=5&f=G&l=50&co1=AND&d=PTXT&s1=7606114&OS=7606114&RS=7606114
http://www.blueview.com/assets/Uploads/Support-Document-Library/P-Series-Max-Source-Level-Analysis-White-Paper-Teledyne-BlueView.pdf
http://www.blueview.com/assets/Uploads/Support-Document-Library/P-Series-Max-Source-Level-Analysis-White-Paper-Teledyne-BlueView.pdf
http://www.blueview.com/assets/Uploads/Support-Document-Library/P-Series-Max-Source-Level-Analysis-White-Paper-Teledyne-BlueView.pdf
http://www.marinelink.com/news/applications-little-big323082
http://www.marinelink.com/news/applications-little-big323082
http://www.seattlepi.com/business/article/Seattle-company-builds-boats-with-a-mission-1291322.php
http://www.seattlepi.com/business/article/Seattle-company-builds-boats-with-a-mission-1291322.php


[111] A. Gadre, S. Kragelund, T. Masek, D. Stilwell, C. Woolsey, and D. Horner, “Sub-
surface and surface sensing for autonomous navigation in a riverine environment,”
in Proceedings Association of Unmanned Vehicle Systems International (AUVSI)
Unmanned Systems North America Convention, 2009, vol. 2, pp. 1192–1208.

[112] O. A. Yakimenko and S. P. Kragelund, “Real-time optimal guidance and obsta-
cle avoidance for UMVs,” in Autonomous Underwater Vehicles, N. A. Cruz, Ed.
Rijeka, Croatia: InTech, 2011. Available: http://www.intechopen.com/books/
autonomous-underwater-vehicles/real-time-optimal-guidance-and-obstacle-
avoidance-for-umvs

[113] S. Kragelund, V. Dobrokhodov, A. Monarrez, M. Hurban, and C. Khol, “Adaptive
speed control for autonomous surface vessels,” in OCEANS 2013 - MTS/IEEE San
Diego, 2013, pp. 1–10.

[114] S. Terjesen, “Navigation system design and state estimation for a small rigid hull
inflatable boat (RHIB),” Master’s thesis, Dept. of Mech. and Aero. Eng., Naval
Postgraduate School, Monterey, CA, 2014.

[115] T. I. Fossen, Marine Control Systems Guidance, Navigation, and Control of Ships,
Rigs and Underwater Vehicles. Trondheim, Norway: Marine Cybernetics, 2002.

[116] L. Moreira, T. I. Fossen, and C. G. Soares, “Modeling, Guidance and Control of
Esso Osaka Model,” IFAC Proceedings Volumes, vol. 38, no. 1, pp. 85–90, 2005.

[117] J. Journee, “A Simple Method for Determining the Manoeuvring Indices K and T
from Zigzag Trial Data,” Delft University of Technology, Ship Hydromechanics
Laboratory, Delft, Tech. Rep. 267, June 1970. Available: http://shipmotions.nl/
DUT/PapersReports/

[118] D. Clarke, “The foundations of steering and maneuvering,” in Proceedings of Sixth
Conference on Maneuvering and Control of Marine Crafts (MCMC 2003), Girona,
Spain, 2003, pp. 2–16.

[119] C. Sonnenburg, A. Gadre, D. Horner, S. Kragelund, A. Marcus, D. J. Stilwell, and
C. A. Woolsey, “Control-oriented planar motion modeling of unmanned surface
vehicles,” Virginia Center for Autonomous Systems, Tech. Rep. VACAS-2010-01,
2010. Available: http://www.unmanned.vt.edu/discovery/reports/VaCAS_2010_01.
pdf

[120] C. von Alt, B. Allen, T. Austin, and R. Stokey, “Remote environmental measuring
units,” in Proceedings of the 1994 Symposium on Autonomous Underwater Vehicle
Technology, 1994, pp. 13–19.

173

http://www.intechopen.com/books/autonomous-underwater-vehicles/real-time-optimal-guidance-and-obstacle-avoidance-for-umvs
http://www.intechopen.com/books/autonomous-underwater-vehicles/real-time-optimal-guidance-and-obstacle-avoidance-for-umvs
http://www.intechopen.com/books/autonomous-underwater-vehicles/real-time-optimal-guidance-and-obstacle-avoidance-for-umvs
http://shipmotions.nl/DUT/PapersReports/
http://shipmotions.nl/DUT/PapersReports/
http://www.unmanned.vt.edu/discovery/reports/VaCAS_2010_01.pdf
http://www.unmanned.vt.edu/discovery/reports/VaCAS_2010_01.pdf


[121] C. von Alt, B. Allen, T. Austin, N. Forrester, R. Goldsborough, M. Purcell, and
R. Stokey, “Hunting for mines with REMUS: a high performance, affordable, free
swimming underwater robot,” in OCEANS 2001 MTS/IEEE Conference and Exhi-
bition, 2001, vol. 1, pp. 117–122.

[122] REMUS. (n.d.). Oceanographic Systems Lab, Woods Hole Oceanographic Insti-
tution. [Online]. Available: http://www.whoi.edu/main/remus. Accessed Nov. 29,
2016.

[123] Mine Countermeasure Applications. (n.d.). [Online]. Available: http://www.
hydroid.com/product-applications/12/mine-countermeasures. Accessed Nov. 29,
2016.

[124] D. Horner, A. Healey, and S. Kragelund, “AUV experiments in obstacle avoid-
ance,” in OCEANS 2005 MTS/IEEE Conference and Exhibition, 2005, vol. 2, pp.
1464–1470.

[125] D. Horner and O. Yakimenko, “Recent developments for an obstacle avoidance
system for a small AUV,” IFAC Proceedings Volumes, vol. 40, no. 17, pp. 19–25,
2007.

[126] D. Horner, N. McChesney, T. Masek, and S. Kragelund, “3D reconstruction with an
AUV mounted forward-looking sonar,” in Proceedings of the International Sympo-
sium on Unmanned Untethered Submersible Technology (UUST09), Durham, NH,
2009.

[127] D. Sgarioto, “Control system design and development for the REMUS autonomous
underwater vehicle,” Defence Technology Agency, Auckland, New Zealand, Tech.
Rep. DTA Report 240, May 2007.

[128] Beta distribution. (n.d.). MathWorks. [Online]. Available: https://www.mathworks.
com/help/stats/beta-distribution.html. Accessed Nov. 29, 2016.

[129] A. E. Bryson, Applied Optimal Control: Optimization, Estimation and Control.
Washington, DC: Hemisphere Pub. Corp., 1975.

[130] T. L. Vincent and W. J. Grantham, Nonlinear and Optimal Control Systems, 1st ed.
New York, NY: John Wiley & Sons, Inc., 1999.

[131] A. L. Peressini, F. E. Sullivan, and J. J. J. Uhl, The Mathematics of Nonlinear Pro-
gramming. New York, NY: Springer, June 1993.

[132] T. Eiter and H. Mannila, “Computing discrete Fréchet distance,” Technische Uni-
versität Wien, Vienna, Austria, Tech. Rep. CD-TR 94/64, 1994, accessed Nov. 29,
2016. Available: http://www.kr.tuwien.ac.at/staff/eiter/et-archive/cdtr9464.pdf

174

http://www.whoi.edu/main/remus
http://www.hydroid.com/product-applications/12/mine-countermeasures
http://www.hydroid.com/product-applications/12/mine-countermeasures
https://www.mathworks.com/help/stats/beta-distribution.html
https://www.mathworks.com/help/stats/beta-distribution.html
http://www.kr.tuwien.ac.at/staff/eiter/et-archive/cdtr9464.pdf


[133] H. Alt and L. Scharf, “Computing the Hausdorff distance between curved objects,”
International Journal of Computational Geometry & Applications, vol. 18, no. 4,
pp. 307–320, 2008.

[134] V. Ablavsky and M. Snorrason, “Optimal search for a moving target - A geometric
approach,” in AIAA Guidance, Navigation, and Control (GNC) Conference, 2000.

[135] M. Dille and S. Singh, “Efficient aerial coverage search in road networks,” in AIAA
Guidance, Navigation, and Control (GNC) Conference, 2013.

[136] A. Sriraman and M. Bays, “Efficient reacquire and identify path planning over
large areas,” in Oceans 2014 - St. John’s, 2014, pp. 1–7.

[137] J. Haugen, “Guidance algorithms for planar path-based motion control scenarios,”
Masters, Dept. of. Eng. Cybern., Norwegian University of Science and Technology,
Trondheim, Norway, 2010.

[138] E. Galceran and M. Carreras, “A survey on coverage path planning for robotics,”
Robotics and Autonomous Systems, vol. 61, no. 12, pp. 1258–1276, 2013.

[139] P. Cheng, J. Keller, and V. Kumar, “Time-optimal UAV trajectory planning for 3D
urban structure coverage,” in 2008 IEEE/RSJ International Conference on Intelli-
gent Robots and Systems (IROS), 2008, pp. 2750–2757.

[140] J. R. Stack and C. M. Smith, “Combining random and data-driven coverage plan-
ning for underwater mine detection,” in OCEANS 2003 MTS/IEEE Conference and
Exhibition, 2003, vol. 5, pp. 2463–2468.

[141] I. M. Ross, “A beginner’s guide to DIDO: A MATLAB application package for
solving optimal control problems,” Elissar (www.elissarglobal.com), Carmel, CA,
Tech. Rep. TR-711, 2007.

[142] E. M. Arkin, S. P. Fekete, and J. S. B. Mitchell, “Approximation algorithms for
lawn mowing and milling,” Computational Geometry, vol. 17, no. 1, pp. 25–50,
Oct. 2000.

[143] P.-M. Hsu and C.-L. Lin, “Optimal planner for lawn mowers,” in IEEE 9th Interna-
tional Conference on Cybernetic Intelligent Systems (CIS), 2010, pp. 1–7.

[144] G. T. Huntington, D. Benson, A. V. Rao, and others, “A comparison of accuracy
and computational efficiency of three pseudospectral methods,” in AIAA Guidance,
Navigation, and Control (GNC) Conference, 2007.

[145] L. Trefethen, Spectral Methods in MATLAB (Software, Environments and Tools).
Philadelphia, PA: Society for Industrial and Applied Mathematics, 2000.

175



[146] Intel R© Xeon R© processor specifications. (n.d.). Intel. Santa Clara, CA. [Online].
Available: http://ark.intel.com/products/81060/Intel-Xeon-Processor-E5-2698-v3-
40M-Cache-2_30-GHz. Accessed Nov. 29, 2016.

[147] H. Weinberg, “Generic Sonar Model,” in OCEANS 1982 - MTS/IEEE Washington,
1982, pp. 201–205.

[148] Home - High Performance Computing - NPS Wiki. [Online]. Available: https://
wiki.nps.edu/pages/viewpage.action?title=Home&spaceKey=HPC. Accessed Nov.
29, 2016.

[149] S. B. Josselyn and I. M. Ross, “Sensitivity analysis for rapid prototyping of entry
vehicles,” Journal of Spacecraft and Rockets, vol. 43, no. 4, pp. 836–841, 2006.

[150] Slurm workload manager. (n.d.). SchedMD. California. [Online]. Available: http:
//slurm.schedmd.com/overview.html. Accessed Nov. 29, 2016.

176

http://ark.intel.com/products/81060/Intel-Xeon-Processor-E5-2698-v3-40M-Cache-2_30-GHz
http://ark.intel.com/products/81060/Intel-Xeon-Processor-E5-2698-v3-40M-Cache-2_30-GHz
https://wiki.nps.edu/pages/viewpage.action?title=Home&spaceKey=HPC
https://wiki.nps.edu/pages/viewpage.action?title=Home&spaceKey=HPC
http://slurm.schedmd.com/overview.html
http://slurm.schedmd.com/overview.html


Initial Distribution List

1. Defense Technical Information Center
Ft. Belvoir, Virginia

2. Dudley Knox Library
Naval Postgraduate School
Monterey, California

177


	Introduction
	Motivation
	Background
	Contributions

	Sonar Detection Models
	Signal Excess
	Figure of Merit
	Propagation Loss
	Instantaneous Detection Rate
	Detection Performance Modifiers
	Forward-Looking Sonar Models
	Sidescan Sonar Model
	Model Verification and Validation

	Optimal Search Problem Formulation
	Searcher Models
	Sensor Models
	Target Models
	Objective Function
	Problem Scaling
	Feasibility
	Initial Guess

	Application: Time-Limited Optimal Search
	Search with Prior Information—Mine Reacquisition
	Search with No Prior Information—Mine Survey
	Search Performance vs. Mission Duration
	Search Performance vs. Time Discretization

	Application: Inverse Problems
	Sensitivity Analysis
	Objective Function Value vs. Time Discretization
	Single-Vehicle Search Performance vs. Sonar Design Criteria
	Multi-Vehicle Search Performance vs. Team Composition

	Conclusions and Future Work
	Conclusions
	Recommendations for Future Work 

	Objective Function Gradients
	Objective Function Gradients
	Gradients for Instantaneous Probability of Detection  ( p/ ) 
	Gradients for Azimuth Angle Shaping Function  ( F/ ) 
	Gradients for Elevation Angle Shaping Function  ( F/ ) 
	Gradients for Turn Rate Shaping Function  ( Fr/ ) 
	Gradients for Instantaneous Detection Rate  ( / ) 

	Hamming Cluster Batch Scripts
	SLURM Batch Files
	SLURM Job Arrays
	MATLAB Run Script

	List of References
	Initial Distribution List

