
NAVAL
POSTGRADUATE

SCHOOL
MONTEREY, CALIFORNIA

THESIS
MULTI-FRAME CONVOLUTIONAL NEURAL

NETWORKS FOR OBJECT DETECTION IN TEMPORAL
DATA

by

Justin Downs

March 2017

Thesis Advisor: Mathias Kölsch
Second Reader: Lyn Whitaker

Approved for public release. Distribution is unlimited.

THIS PAGE INTENTIONALLY LEFT BLANK

REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704–0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction,
searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments
regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden to Washington
headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202–4302, and
to the Office of Management and Budget, Paperwork Reduction Project (0704-0188) Washington DC 20503.

1. AGENCY USE ONLY (Leave Blank) 2. REPORT DATE
March 2017

3. REPORT TYPE AND DATES COVERED
Master’s Thesis 07-06-2015 to 03-31-2017

4. TITLE AND SUBTITLE

MULTI-FRAME CONVOLUTIONAL NEURAL NETWORKS FOR OBJECT DETEC-
TION IN TEMPORAL DATA

5. FUNDING NUMBERS

6. AUTHOR(S)

Justin Downs

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Naval Postgraduate School
Monterey, CA 93943

8. PERFORMING ORGANIZATION REPORT
NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)

N/A
10. SPONSORING / MONITORING

AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

The views expressed in this document are those of the author and do not reflect the official policy or position of the Department of
Defense or the U.S. Government. IRB Protocol Number: N/A.

12a. DISTRIBUTION / AVAILABILITY STATEMENT

Approved for public release. Distribution is unlimited.
12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)

Given the problem of detecting objects in video, existing neural-network solutions rely on a post-processing step to combine information
across frames and strengthen conclusions. This technique has been successful for videos with simple, dominant objects but it cannot
detect objects if a single frame does not contain enough information to distinguish the object from its background. This problem is
especially relevant in the maritime environment, where a whitecap and a human survivor may look identical except for their movement
through the scene. In order to evaluate a neural network’s ability to combine information across multiple frames of information, we
developed two versions of a convolutional neural network: one version was given multiple frames as input while the other version
was only provided a single frame. We measured the performance of both versions on the benchmark 3DPeS Dataset and observed a
significant increase in both recall and precision when the network was given 10 frames instead of just one. We also developed our own
“noisy” dataset consisting of small birds flying across the Monterey Bay. This dataset contained many instances where, in a single
frame, the objects to be detected were indistinguishable from the surrounding waves and debris. For this dataset, multiple frames were
essential for reliable detections. We also observed a greater improvement in the false negative rate compared to the false positive rate
in this “noisier” dataset, suggesting that the additional frames were especially useful for improving the detection of hard-to-detect
objects.

14. SUBJECT TERMS

Convolutional neural networks, machine learning, object detection, computer vision
15. NUMBER OF

PAGES 73
16. PRICE CODE

17. SECURITY CLASSIFICATION
OF REPORT

Unclassified

18. SECURITY CLASSIFICATION
OF THIS PAGE

Unclassified

19. SECURITY CLASSIFICATION
OF ABSTRACT

Unclassified

20. LIMITATION OF
ABSTRACT

UU
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2–89)

Prescribed by ANSI Std. 239–18

i

THIS PAGE INTENTIONALLY LEFT BLANK

ii

Approved for public release. Distribution is unlimited.

MULTI-FRAME CONVOLUTIONAL NEURAL NETWORKS FOR OBJECT
DETECTION IN TEMPORAL DATA

Justin Downs
Lieutenant, United States Navy

B.S., United States Naval Academy, 2009

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
March 2017

Approved by: Mathias Kölsch
Thesis Advisor

Lyn Whitaker
Second Reader

Peter Denning
Chair, Department of Computer Science

iii

THIS PAGE INTENTIONALLY LEFT BLANK

iv

ABSTRACT

Given the problem of detecting objects in video, existing neural-network solutions rely on a
post-processing step to combine information across frames and strengthen conclusions. This
technique has been successful for videos with simple, dominant objects but it cannot detect
objects if a single frame does not contain enough information to distinguish the object
from its background. This problem is especially relevant in the maritime environment,
where a whitecap and a human survivor may look identical except for their movement
through the scene. In order to evaluate a neural network’s ability to combine information
across multiple frames of information, we developed two versions of a convolutional neural
network: one version was given multiple frames as input while the other version was only
provided a single frame. We measured the performance of both versions on the benchmark
3DPeS Dataset and observed a significant increase in both recall and precision when the
network was given 10 frames instead of just one. We also developed our own “noisy”
dataset consisting of small birds flying across the Monterey Bay. This dataset contained
many instances where, in a single frame, the objects to be detected were indistinguishable
from the surrounding waves and debris. For this dataset, multiple frames were essential
for reliable detections. We also observed a greater improvement in the false negative rate
compared to the false positive rate in this “noisier” dataset, suggesting that the additional
frames were especially useful for improving the detection of hard-to-detect objects.

v

THIS PAGE INTENTIONALLY LEFT BLANK

vi

Table of Contents

1 Introduction 1
1.1 Problem Statement. 1
1.2 Research Questions . 2
1.3 Thesis Organization . 3

2 Background 5
2.1 Traditional Object Detection . 5
2.2 Object Detection in Neural Networks 8
2.3 Object Detection in Video Using Neural Networks 11
2.4 Using Multiple Frames in a Region Proposal Network. 14

3 Methodology 15
3.1 Data Augmentation and Pre-processing 15
3.2 Network Architecture . 16
3.3 Training . 19

4 Results and Analysis 21
4.1 Implementing the Network . 21
4.2 Measuring Performance. 21
4.3 Identifying Pedestrians in the 3DPeS Dataset 22
4.4 Finding Birds in the Monterey Bay Webcam Dataset 32
4.5 Comparing Dataset Results . 42

5 Conclusion 45

List of References 49

Initial Distribution List 53

vii

THIS PAGE INTENTIONALLY LEFT BLANK

viii

List of Figures

Figure 1.1 Typical Imagenet sample. Source: [2]. 3

Figure 2.1 Background Subtraction. Adapted from [8]. 6

Figure 2.2 Background Subtraction with a 20 pixel shift of the background.
Adapted from [8]. 7

Figure 2.3 Template matching with HaarWavelets (left) and a Hierarchical Part-
Based Approach (right). Source: [10], [11]. 7

Figure 2.4 Learnedweights from a convolutional layer in AlexNet. Source: [14]. 9

Figure 2.5 The LeNet-5 convolutional neural network was developed to classify
handwritten characters. Source: [15]. 9

Figure 2.6 Sliding window algorithm developed for the Overfeat network.
Source: [16]. 10

Figure 2.7 Detecting human actions in video; face-detection pre-processing step.
Source: [20]. 12

Figure 2.8 Different approaches for combining information from multiple
frames in a neural network. Source: [22]. 12

Figure 3.1 Convolutional neural network architecture developed for this project. 17

Figure 4.1 Classification metric. Adapted from [8]. 22

Figure 4.2 Typical 3DPeS frames. Source: [8]. 23

Figure 4.3 ROC curve comparison of a 10-frame model and a single-frame
model trained on the 3DPeS Dataset. Cross-validation across all
camera angles. 24

Figure 4.4 Groups of people were more easily identified than individuals. 10-
frame model. Adapted from [8]. 26

ix

Figure 4.5 Pedestrians were more easily identified when they appeared together.
10-frame model. Adapted from [8]. 26

Figure 4.6 Sometimes pedestrians were not recognized when they appeared out-
side a group. 10-frame model. Adapted from [8]. 26

Figure 4.7 False positive example: The network sometimes overfit to a scene.
Adapted from [8]. 27

Figure 4.8 False positive examples: The network sometimes confused reflec-
tions (left) or suspicious objects (right) with pedestrians. 10-frame
model. Adapted from [8]. 28

Figure 4.9 False positive examples: When the ground truth bounding boxes fall
near the edge of a grid-square, the network often classifies surround-
ing regions as containing pedestrians. 10-frame model. Adapted
from [8]. 29

Figure 4.10 ROC curve comparison of a 10-frame model and a single-frame
model trained on the 3DPeS Dataset, by scene. Solid line series
correspond to the 10-frame model for specific camera angles while
dashed line series correspond to the single-frame model for each
camera angle. 30

Figure 4.11 The 10-frame model had trouble finding pedestrians who did not
move. Adapted from [8]. 31

Figure 4.12 The single-framemodel did learn to find pedestrians, although poorly.
Adapted from [8]. 31

Figure 4.13 The single-frame model failed to generalize to some novel scenes in
the 3DPeS Dataset. Adapted from [8]. 32

Figure 4.14 Still frames from the Monterey Bay Dataset. Each frame has a
positive object in it. Source: [30]. 32

Figure 4.15 Sequence of frames from the synthetic “Large Object” Dataset. The
object was only rendered 50% of the time, and can be seen missing
in the middle image. Adapted from [30]. 34

Figure 4.16 Sequence of frames from the synthetic “Small Object” Dataset. The
network was trained to find the small white “dot” in the lower left of
the left and right images. The center image is an instance where the
object was not rendered. Adapted from [30]. 34

x

Figure 4.17 ROC curve comparison of a 10-frame model, and a single-frame
model trained on the Monterey Bay Dataset. Also included is a
“no finetuning” model, for which the “weight initialization” step
described in Section 4.4.2 was omitted. 35

Figure 4.18 Examples of the single-frame model’s false negative classifications.
Adapted from [30]. 36

Figure 4.19 False positive example where the network misidentified a wave as a
bird. 10-frame model. Adapted from [30]. 37

Figure 4.20 True negative example where the network correctly ignored several
waves. 10-frame model. Adapted from [30]. 38

Figure 4.21 False positive example where the object of interest fell on the bound-
ary of grid-squares. 10-frame model. Adapted from [30]. 38

Figure 4.22 False positive example where the network highlighted where a bird
would exist in the future. 10-frame model. Adapted from [30]. . . 39

Figure 4.23 False positive examples where the network highlighted a region
where objects will be in the future. In both images the birds are
flying from right to left. 10-frame model. Adapted from [30]. . . 39

Figure 4.24 False positive examples where the network made silly mistakes. 10-
frame model. Adapted from [30]. 40

Figure 4.25 False negative examples. The network is sometimes able to identify
an object. 10-frame model. Adapted from [30]. 40

Figure 4.26 False negative examples. 10-frame model. Adapted from [30]. . . 41

Figure 4.27 The birds (blue) cover a larger area than was detected (green). Only
one other sequence contained a similar flock of birds. 10-frame
model. Adapted from [30]. 42

xi

THIS PAGE INTENTIONALLY LEFT BLANK

xii

List of Tables

Table 3.1 Constant mean subtracted from each image in both the training set
and the test set, by dataset. 16

Table 4.1 Performance comparison, familiar scenes in the 3DPeS Dataset.
Cross-validation across all camera angles. 25

Table 4.2 Performance comparison, novel scenes in the 3DPeS Dataset. (Com-
bined results across all categories.) 29

Table 4.3 Network performance during pretraining. 35

Table 4.4 False positive and false negative rate comparison, Monterey Bay We-
bcam Dataset. 35

xiii

THIS PAGE INTENTIONALLY LEFT BLANK

xiv

List of Acronyms and Abbreviations

3DPeS 3D People Surveillance

ILSVRC Imagenet Large Scale Visual Recognition Challenge

ROC Receiver Operating Characteristic

SAR Search and Rescue

VATIC Video Annotation Tool from Irvine, California

xv

THIS PAGE INTENTIONALLY LEFT BLANK

xvi

Acknowledgments

Nobody believed in this project like Dr. Mathias Kölsch, and nobody could have provided
the guidance it needed as well as he did. Thank you for all your time, which was always
extremely precious.

Dr. Lyn Whitaker, thank you for saying yes after so many nos.

Tom Batcha never knew how to be unhelpful. Even after 2 hours spent compiling depen-
dencies in userspace he never gave up, and I’m pretty sure he missed lunch doing it.

All of this would have been impossible without the generous support provided by Dr.
Kozdon and Dr. Wilcox and their wonderful beards collective.

And Marie gave up more than she planned for, but with a patience and understanding that I
would not have survived without.

xvii

THIS PAGE INTENTIONALLY LEFT BLANK

xviii

CHAPTER 1:
Introduction

Detecting interesting and suspicious objects in a maritime environment is both extremely
important to the United States Navy and very difficult to accomplish well without human
involvement. Relying on human experts to detect maritime objects, however, is expensive
and often unfeasible. The problem of finding a human survivor in the water is a perfect
example where relying on humans for object detection becomes problematic: the rotary
and fixed wing platforms employed in typical search and rescue (SAR) have high operating
costs and put additional human life at risk. Humans are also notoriously susceptible to
fatigue and must limit on-station time to account for human limitations [1].

While computer vision algorithms have historically been inferior to human vision capabil-
ities for object detection, the past several years have seen huge leaps in computer vision
performance [2]. Many computer vision algorithms have even surpassed human capabili-
ties for some tasks [3], [4]. If this trend continues (and there is no sign of it slowing) it is
reasonable to expect computer vision to become a viable replacement (or a crucial tool) for
humans in many jobs requiring visual analysis.

The inherent advantages of replacing humans with computers for detection tasks are huge.
The high-risk and high-cost human-piloted platforms can be replaced by a larger swarm
of low-cost autonomous drones. The on-station time will no longer be dictated by human
factors, but instead by the platforms’ capabilities. A computer’s performance can be much
more predictable than a human crew’s and will not depend on training differences and
personality.

1.1 Problem Statement
Imagine the task of detecting only moving cars but ignoring stationary cars. An object
detector could probably do very well by looking for clues in a single frame of video: cars
in parking spots are usually stationary, moving cars may have a motion blur, and if it had
an infrared sensor it could even detect hot engines. But such approaches can only be so
helpful: some cars stop in the middle of the road, some are moving slow enough that there

1

is no blur, and cars that have parked recently have warm engines. While algorithms can
be designed to overcome these obstacles they will not generalize to other tasks, such as
detecting pedestrians or butterflies.

The usefulness of multiple frames does not stop at detecting moving objects, either. Videos
are often collected at lower quality than still images, and are often plagued by sensor noise
and compression artifacts. Differentiating between a dog and a fox may involve collecting
different clues from different video frames. (Perhaps the ears are more visible in one frame
and the tail is more visible in a different one.) Multiple frames, then, can conceivably
improve classification performance.

Detecting objects at sea requires overcoming all of these problems. Instead of distinguishing
between a dog and fox, a common maritime detection task is to differentiate between
a human survivor and a whitecap. This task combines both problems from before: A
human survivor and a whitecap look identical, except that a survivor “remains the same
while the whitecaps blink on and off” [5]. Furthermore, typical surveillance systems have
wide angles of view and potential survivors occupy only a small fraction of the entire
image (sometimes only a few pixels). The noise and artifacts present in the image make
detecting any distinguishing details often impossible with just a single frame. It is clear
that if a computer vision algorithm is to satisfactorily detect a human survivor, it must fuse
information from multiple video frames.

Even as researchers develop better algorithms for classification and detection of simple
objects, there has not been very much research into the problem of detecting objects in the
maritime environment, a problem with unique challenges that must be addressed directly.
Most current computer vision benchmarks focus on images with “dominant objects,” or
objects that occupy a significant fraction of the image [2], [6]. (A typical image is shown
in Firgure 1.1.) Solving the problem of object detection at sea must include developing a
dataset that better models the problem.

1.2 Research Questions
Our contribution to the field of object detection is to advance object detection at sea
by developing a benchmark that simulates the task of detecting a survivor at sea. This

2

Figure 1.1. Typical Imagenet sample. Source: [2].

benchmark will encapsulate the problems of Since actual SAR sensor footage has not been
approved for public release,

We introduce a method of combining multiple frames of information to improve the per-
formance of a neural network for the task of maritime object detection. Specifically, we
attempt to answer:

1. Can providing information from multiple frames of video improve the detection
performance of a convolutional neural network compared to an identical network
given only a single frame of information? How much of an improvement does adding
temporal information provide?

2. Can a neural network network be designed to reliably detect objects in a maritime
environment?

1.3 Thesis Organization
Chapter 2 describes the current landscape of computer vision, with particular attention paid
to object detection and neural networks. It explains historical and contemporary approaches
to relevant problems and explores the advantages each approach introduced, as well as the
pitfalls.

Chapter 3 describes our experimental setup. The frameworks, architectures, and parameters
used during our experiments are explained in depth.

3

Chapter 4 lists the results of our exploration in adding multiple frames to convolutional
neural networks. We describe the improvements made by adding the multiple frames
during training for both an existing benchmark and our new maritime dataset. We pay
particular attention to the ways in which the networks fail and how the network is able to
leverage the additional frames of information.

Chapter 5 discusses the possible implications of our results and suggests directions for future
research, with an emphasis on the importance and uniqueness of maritime object detection.
We also provide some insight and suggestions for driving interest in the problem.

4

CHAPTER 2:
Background

The problem of object detection is central to computer vision and is the foundation upon
which other computer vision problems rely. Before a system can classify an object, it must
first know that an object exists at all. Detecting an object in a single image is often easy;
photographs are usually taken so that a single “dominant object” is present and obvious.
Many of the techniques described in this chapter are designed to operate on a single image.
Video sequences, however, provide additional information that can improve detections.
How an algorithm processes this additional temporal information can be categorized as
either detect-first or track-first.

A detect-first approach tries to detect objects in each frame individually and then combine
the detections to strengthen the predictions. A spurious false-positive in one frame can be
thrown out if adjacent frames do not find an object nearby. The advantage of detect-first
algorithms is that they can utilize algorithms designed for single images which are often
more mature and reliable than algorithms designed for video.

A track-first approach analyzes the differences between adjacent frames and extracts tempo-
ral information first (such as optical flow), then makes detections based on that information.
A dark shape may not look like an object in a single frame, but if over several frames it
moves in a different direction than the rest of the scene it can be separated from the back-
ground and classified as an object. While more work has to go in to developing algorithms
designed specially for video sequences, track-first approaches can better utilize the temporal
information present in video.

2.1 Traditional Object Detection
Background Subtraction [7] is a very simple example of a track-first algorithm. As its name
implies, a “background image” is subtracted from an image under investigation in order
to find a difference. If the background image is sufficiently representative of the scene
being analyzed, the difference between the two images will be any objects not part of the

5

Figure 2.1. Background Subtraction. Adapted from [8].

The left image is the background image, while the center image is under inves-
tigation. Subtracting the pixel values of each image results in the image on the
right.

background, or put another way, the foreground. Figure 2.1 illustrates a simple version of
this concept.

While this technique has the advantage of being simple, it requires that a background model
be defined. The most basic solution is to provide the algorithm with an image of the scene
with no foreground objects. But this solution is rarely effective: a slight movement of the
camera will misalign the background model and result in the wrong pixels being subtracted
from each other (see Figure 2.2). This solution does not account for lighting changes or
object movement: if a person moves a book a few inches and leaves, the book will be
highlighted until a new background model is chosen. Furthermore, this technique assumes
that an image with no foreground objects is available. This might not be the case for a busy
scene.

Most implementations are more sophisticated and continuously update a background model
by keeping a recent history of images. While there are many ways of creating this model [9],
they suffer from the limitation of only “seeing” moving objects. After a stationary object is
introduced to the scene it will initially be detected but slowly fade into the background as
long as it remains stationary.

Template matching was another early (and still commonly used) technique to detect objects
in a scene. Template matching algorithms seek to develop a model for the object they
are designed to detect, and then search for regions in an image that match the template.
One simple template-matching technique involves simply developing image kernels that

6

Figure 2.2. Background Subtraction with a 20 pixel shift of the background.
Adapted from [8].

If the background image is shifted only slightly, the difference between the two
images includes more than just foreground objects and becomes less useful for
object detection tasks.

Figure 2.3. Template matching with Haar Wavelets (left) and a Hierarchical
Part-Based Approach (right). Source: [10], [11].

look similar to objects of interest. Convolving these kernels with an image results in high
responses in regions that look similar to the kernel. This method involves developing
kernels for many aspects of each object the detector must operate on. While this method
completes both object detection and classification in one step, it is very sensitive to lighting
changes, visual obscurations, and unexpected transformations. Furthermore, a template
must be developed in advance for every object that the algorithm is designed to detect; a
template matching algorithm must either be extremely generic (such as Haar Wavelets [10])
or extremely composable (such as part-based hierarchical template matching [11]) to be
useful in practice (see Figure 2.3).

Another template-matching approach is Histogram of Oriented Gradients (HOG) feature
matching (with SVM classification) [12]. Instead of relying on convolutional kernels

7

to detect and classify objects, HOG feature matching creates a “histograms of gradients
feature vector.” Histograms of gradients are intended to be more general than strict pixel
comparisons by representing a template not in pixels but by the relationships between
object edges. (Scale-invariant feature transform, or SIFT, is another way of generating
a feature vector from a subimage [13].) This feature vector achieves rotational, lighting,
and size invariance, solving many problems faced by other template-matching approaches.
Still, these feature vectors cannot handle occlusions or generalize to recognize shapes that
haven’t been explicitly introduced to the algorithm. Furthermore, they only operate on a
single image; these algorithms by themselves cannot fuse information from multiple frames
to improve their performance.

2.2 Object Detection in Neural Networks
Until recently, the best general image classification and detection algorithms relied on
various forms of the previous techniques. However, in 2012 a team of researchers from
the University of Toronto won the Imagenet Large Scale Visual Recognition Challenge
(ILSVRC) by utilizing a concept known as “convolutional neural networks” [14], [2].
Convolutional neural networks had long been enlisted for simple tasks like processing checks
and reading envelopes [15], but improvements in datasets and computational resources
have allowed researchers to apply them to more complex problems such as general image
classification and object localization. Put simply, a neural network is a series of linear
classifiers, where the output vector of one classifier is fed into the input of the next. By
representing data points as a mathematical vector of features, neural networks optimize a
set of “weights” that can be multiplied with the data to derive in a vector of predictions. In
computer vision, the feature vector is usually just the image pixel values. While applying
a simple linear classifier to pixel values would seem to be a naive approach to image
classification, chaining multiple classifiers together allows each “layer” to learn different
concepts about images.

One special-purpose layer used commonly in computer vision is known as a “convolutional”
layer. Instead of deriving optimal weights to multiply with each data point in the input
vector, a convolutional layer derives an image kernel that it convolves with the input vector.
By stacking these layers together a convolution neural network effectively implements a
template-matching approach to recognize objects in an image, except that it creates hundreds

8

Figure 2.4. Learned weights from a convolutional layer in AlexNet. Source:
[14].

Figure 2.5. The LeNet-5 convolutional neural network was developed to
classify handwritten characters. Source: [15].

of general templates and usually stacks multiple convolutional layers together. Early layers
usually learn to recognize simple edges and shapes (such as those pictured in Figure 2.4)
while later layers synthesize these results to recognize more complex concepts, such as car
tires or faces. An early successful convolutional neural network, called LeNet-5, is shown
in Figure 2.5.

At first, these convolutional neural networks simply provided image classification. The
LeNet-5 network, for example, classified input images as one of ten digits. Localization is a
different task closely linked to object detection. The localization task requires an algorithm
to identify the subset of an image inwhich an object can be found. Put anotherway, it requires
that the location of objects within an image are determined. One of the first successful
methods developed for localizing objects with neural networks is known as the “sliding
window” technique, used most effectively by the Overfeat network to win the 2013 Large
Scale Visual Recognition Challenge [16]. Instead of simply outputting a classification
of the dominant object in an image, the network was equipped to output bounding-box

9

Figure 2.6. Sliding window algorithm developed for the Overfeat network.
Source: [16].

In order to localize the bear in the image, the Overfeat network classified thousands
of subimages and built a model of what was in the image. A post-processing step
combined the classifications and returned a bounding box. This approach to object
detection is conceptually simple but time-intensive.

coordinates through regression. Overfeat improved the technique by applying the bounding-
box regression and classification to many “windows” in an image and aggregating the results
(pictured in Figure .) While this technique was successful it was also inefficient: a single
image typically required hundreds of passes through the network.

The idea of “region proposal”was introduced in 2013 as “selective search,” [17] an extension
of existing bottom-up segmentation techniques. What made selective search novel was that
it passed image segments to a classifier “after” splitting an image into discrete sections. (The
sliding-window technique, as previously explained, classifies every part of an image and
localizes objects by finding the classifications with the highest scores.) The selective search
algorithm first segments an image using a graph-based approach described by Felzenszwalb
and Huttenlocher [18], and passes the segments to a neural network for classification.
This method reduces many of the extraneous classifications made by the sliding-window
technique but cannot adapt its segmentation algorithm to best fit different datasets. If its
segmentation algorithmperforms poorly over a dataset, it cannot be improvedwith additional
training. In other words, machine learning starts and stops with the classification.

In 2015 Microsoft introduced a neural network capable of proposing regions of interest
in its “Faster R-CNN” paper [19]. This advance allowed the network to not only more
accurately and quickly detect objects in an image (since the network did not require a
long pre-precessing stage), it gave the network the capability to “learn how to better detect

10

objects.” Instead of relying on a general object-detection or segmentation algorithm to
find object-like things, Faster R-CNN learned what “objects” in the training dataset looked
like. Furthermore, since the network is trained end-to-end, gradients from the classification
section of the network flow up through the region-proposal section. When the network gets
a classification wrong, not only does the classifier adjust its weights; the region-proposal
network also adjusts its weights so that it can propose better regions (regions that will result
in better classifications, that is) in the future. This architecture still beats out most others
for object detection [2].

2.3 Object Detection in Video Using Neural Networks
The idea of feedingmultiple frames of data to a neural network is not unprecedented: in 2013
a team of researchers developed a convolutional neural network to classify similar human
actions such as jogging, running, handwaving and hand-clapping [20]. These activities
are usually impossible to classify without multiple frames of data. The team utilized
3-dimensional convolution layers to learn temporal features and applied the algorithm to
busy scenes of people moving. While they were successful in classifying human actions
that could not easily be classified in a single frame, their solution was strictly a classifier.
They relied on a face-detector to first detect all the humans in a video, then inferred their
positions. (See Figure 2.7.) After determining the regions of the video that contained
humans they passed cropped video sequences to their neural network for classification.
Since their 3D convolutional neural network was part of the region proposal process, their
algorithm depended on the strength of the face detector; if the face detector failed to detect
a human, their 3D convolutional neural network would never have the opportunity to make
a classification.

There have been several projects since that extend the idea of temporal features, introduc-
ing techniques such as a peripheral-fovea concept, external visual flow information, and
Long-Short Term Memory (LSTM) layers to improve performance. [21], [22] These pa-
pers describe several methods, illustrated in Figure 2.8, for combining information across
frames for video classification. The first method, called Early Fusion, introduces a higher-
dimensional convolutional layer to collect and process information. While a normal CNN
employs 3-dimensional kernels (2 dimensions to cover the image height and width and a
third to cover each color channel), these algorithms extend the kernels into a fourth di-

11

Figure 2.7. Detecting human actions in video; face-detection pre-processing
step. Source: [20].

Shuiwang Ji et al. used 3D convolutions in their neural network to detect human
actions through time. They did not incorporate a region proposal network into
their solution, though; a face detector extracted humans from the videos and
passed those subimages to the 3D convolutional neural network.

Figure 2.8. Different approaches for combining information from multiple
frames in a neural network. Source: [22].

While these methods are sufficiently general to inform any neural network archi-
tecture that combines multiple frames, both papers describing these approaches
tested them on whole-frame classification.

mension which was covered multiple frames. Late Fusion combines information from two
frames spaced several frames apart. Slow Fusion employs several locally connected layers
to allow the network to slowly combine frame data. All of these projects tackled the problem
of classification, not region proposal. While it is tempting to apply their results to all neural
network video tasks, classification and region proposal are complementary tasks and the
interaction between them is not yet sufficiently understood.

12

Recurrent networks [23] are a promising alternative to these “fusion” approaches. Recurrent
networks receive the same information as a traditional network (in the case of imagery, a
vector of pixels usually) but keep track of their state between iterations. A specialized neuron
called a Long Short-Term Memory neuron [24] allow recurrent networks to selectively
“remember” details that they deem important, and recall those details in later iterations.
Common state information carried forward includes words in a sentence (to predict the next
word), the last location analyzed (in the case of the cited work), and the location in a previous
frame that an object was found. These networks have the advantage that they do not depend
on their architecture to determine how far back their memory goes. If it turns out that it is
important to remember a small detail seen 50 frames ago, the Long Short-Term Memory
neurons are capable of keeping that information available. The “fusion” techniques, on
the other hand, require that the number of frames fused together be defined as part of the
network’s architecture. As exciting as recurrent networks are, however, they have not yet
been employed for region-proposal and classification tasks.

In 2015 and 2016 the ILSVRC included an “object detection from video” competition
alongside its traditional object detection challenge. The competition involved localizing
“dominant objects” from 30 categories in short video sequences. Most entries followed
the same technique: run an object detection algorithm on each frame individually (such as
Faster R-CNN [19] or ResNet101 [25]) and aggregate the results across frames. The most
successful teams have been those with the most sophisticated post-processing steps. The
most recent winning team described a way of aggregating the detections in an algorithm they
dubbed “Tubelets” [26]. This technique allowed high confidence in one frame to influence
the next (since if an object is present in one frame it will probably be present in the next
frame) and relied on an external motion model to propagate predictions through time. Still,
this technique only provides its region proposal network a single frame of information.
These detect-and-aggregate approaches work well for the ILSVRC Dataset where there is
a dominant object that can easily be detected in a single frame. If their region-proposal
networks cannot find the object by looking at a single frame (such as the scenario presented
in Section 1.1), their post-processing aggregation step will not be able to compare any
information across frames.

13

2.4 Using Multiple Frames in a Region Proposal Network
Instead of following the detect-then-track techniques employed by the latest ILSVRC win-
ners, we designed a region proposal network that accepts multiple video frames as input.
By giving the neural network direct access to several frames, it has the opportunity to learn
temporal features, such as motion and changes in shape. Access to multiple frames also
gives it the information necessary to strengthen its detection confidence during especially
noisy moments, as described in Section 1.1. We did not conduct any pre-processing except
for data normalization and augmentation, nor did we rely on a post-processing step to fuse
predictions. We are introducing a completely end-to-end region proposal network that is
capable of utilizing temporal information to make object detections. To ensure that the
network is in fact using the multiple frames provided to it, we test its performance against
an identical network given only a single frame of information. We then test both networks
on a new maritime dataset meant to simulate the problems outlined in Section 1.1.

14

CHAPTER 3:
Methodology

We designed a convolutional neural network to test and measure the performance gains
of object detection when using multiple frames from a video versus a single frame. We
designed a data layer that provided any number of frames of information at an arbitrary
frame rate. By changing only the data provided to the network and keeping the rest of
the architecture constant we were able to observe how varying the number of input frames
affected the performance of the network.

3.1 Data Augmentation and Pre-processing
In order to prevent the network from overfitting and learning common paths of motion (for
example, a commonly used corridor in the 3DPeS dataset) we implemented several data
augmentation techniques that are now standard practice in neural network training [27].

Every series of video frames, before being processed by the network for training, was
randomly flipped horizontally or vertically, and/or transposed. Every frame in a 10-frame
clip was transformed thew same way. This pre-processing step avoided orientation bias by
ensuring an equal chance of orienting the image any of the 8 possible ways to flip and/or
rotate an image. Images were not transformed during testing.

In both the training and the testing steps, a constant was subtracted from each pixel value
before providing the image sequence to the network. This constant was derived from the
mean value of all the pixel values in the training set and was different for every corpus.
While we derived our mean pixel values by analyzing every image in each training corpus
(listed in Table 3.1), we discovered that the pixel means of our datasets had very low
variance. The pixel means for every frame in any given camera angle in the 3D People
Surveillance (3DPeS) Dataset had a standard deviation of less than 1.8; the frame means in
theMonterey BayWebcamDataset had a standard deviation of 4.0. This observation allows
future implementations to analyze much fewer training frames to derive a representative
mean value. If you can assume that the mean of the frames in a “surveillance-style” video
corpus (where the videos are captured at a fixed camera angle in consistent lighting) has a

15

standard deviation of 4.0, the mean of a single frame has a 99% chance of being within 10
of the entire corpus’s mean.

Dataset Constant Mean Value

3DPeS [8] 160
Monterey Bay Webcam 125

Table 3.1. Constant mean subtracted from each image in both the training
set and the test set, by dataset.

Since our Monterey Bay Webcam Dataset contained many frames with no object present,
we added logic to our data layer to ensure that at least 50% of the sequences introduced
to the network during training contained an object. While this ensured that whole-image
classifications would be be split between positive and negative examples, it did not ensure
an even split for each region of an image. Section 4.4.1 goes into more detail about the data
imbalance for the Monterey Bay Webcam Dataset.

3.2 Network Architecture
In order to measure the effects of additional temporal data, we designed two networks and
compared their results. The two networks are identical except for the number of frames
they accept. Figure 3.1 provides an illustration of the general acrchitecture, where f is the
number of frames provided to the network.

3.2.1 Data Input
Our network was loosely based on the well-known LeNet CNN [15]. Due to memory
constraints, we limited batch size to 1 during training. Since such a small batch size can
result in inaccurate estimates of the gradient, we reduced the learning rate to α = 0.0001 as
described in Section 3.3.

The network received image sequences at a dimensionality of f × 300 × 300, where f is
the number of frames in the sequence. Each frame, then, contained 300 × 300 pixels and a
single grayscale channel.

16

Figure 3.1. Convolutional neural network architecture developed for this
project.

We tested the network with different numbers of frames as input. In every case,
f is the number of frames provided as input.

3.2.2 Single-frame architecture
To provide a baseline performance level, we trained the network to identify objects given
only a single frame of input. This was achieved by setting our custom data layer to provide
a single frame of input, depicted in Figure 3.1 where f = 1.

3.2.3 Multiple-frame architecture
To test the network’s ability to utilize multiple frames of information, we set the data layer
to provide 10 frames to the network in chronological order. Empirically, we found the most
success when providing the network with 10 frames at a frame rate of 4.8 frames per second.
(This is the result of dropping 4 out of every 5 frames in a 24 fps video clip.) The data layer
provided the frame data to the network as a 10 × 300 × 300 array, depicted in Figure 3.1
when f = 10.

When training with multiple frames, the network was trained to detect objects located in
the 6th frame provided to it. This allowed the network to look 5 frames (0.75 seconds) into
the past and 3 frames (0.45 seconds) into the future to assist with detection. While this
“look-ahead” does introduced a 3-frame “lag” into the system, this network architecture can
still operate on a “live” video feed; albeit with a 0.45 second minimum detection delay.

17

3.2.4 Ground truth labels
The labels were provided at the input layer as an array with a length of N2. The image was
divided into a grid with dimensions N × N ; if a bounding box was present in a specific
grid-box, the corresponding label array element was set to 1. If no object bounding box
was present in a grid-box, the corresponding label array element was set to 0. (See Figure
4.1 for an illustration of how images were divided into grids.) Since bounding boxes
did not perfectly segment objects (box corners almost never actually contain the object
being annotated), grid-boxes were only labeled as containing a bounding box if a certain
percentage of the grid-box overlapped a bounding box. We achieved the best results if
we only counted a grid-box as containing a bounding box if at least 3% of the grid-box’s
total area was overlapped. We found the best balance of network performance and region-
proposal resolution when N = 6, resulting in a a 36-element label array.

3.2.5 Convolutional Layers

Description
Similar to the LeNet model, we followed the data layer with a 20-filter convolutional layer
using 5 × 5 pixel filters and a stride of 1.

We departed from LeNet on the next layer, replacing the max-pooling layer with another
convolutional layer. This layer was also 20 filters deep and employed 5 × 5 filters, but
compressed the data with a stride of 2.

The next convolutional layer was identical to the LeNet model: 5 × 5 pixel filters and a
depth of 50.

The colvolutional layers were followed by a pooling layer with a spacial extent of 20 × 20
and a stride of 2. While this is an unusually large pooling extent, this setting achieved a
better result than smaller kernel sizes.

Motivation
While grayscale images have an input depth of 1 and color images have an input depth of
3, our multi-frame network has an input depth of 10. This means that instead of learning
normal visual features like those pictured in Figure 2.4, the first convolutional layer will be

18

learning features with 10 channels, where each channel corresponds to a different slice of
time (instead of different colors like a typical image). The features learned in this layer will
be temporal features, since the convolutions will be performed over several frames. While
a convolutional neural network operating on normal 3-channel single color images is able
to distinguish when a green area is to the left of a red area, this 10-channel “temporal”
convolutional layer will be able to learn when an shape in one frame moves to the left in
the next frame. This first layer might also learn about how an object changes through time,
such as a bird flapping its wings.

After this first layer learns temporal features, the following convolutional layers operate
on these features in more complex ways. The same way that typical convolutional neural
networks combine edge detectors features to detect truck wheels and cat ears, a temporal
convolutional neural network can combine relative motion (movement through the scene)
with shape transformation (a bird flapping its wings) to distinguish a bird flying through the
air and a bird flapping its wings stationary in the water.

3.2.6 Fully Connected Layers
The result of the max-pooling was fed into a 500-element fully-connected layer using
Rectified Linear Units (ReLU) [14] as the activation function. DropOut [28] was applied to
this layer with a ratio of 0.3 (70% of the activations were kept). A final fully-connected layer
was connected, providing a 36-element output. This layer utilized the sigmoid function for
its activations.

3.3 Training
Since the output of the network was simply an array in which 0 indicated “no object
detected” and 1 indicated “object detected,” we treated the region-proposal problem as a
multi-label classification problem and used the cross-entropy loss as our cost function.

For optimization we used stochastic gradient descent with momentum µ = 0.9. We found
the best base learning rate to be α = 0.0001. Since our datasets were relatively small we set
weight decay to a fairly high setting of 0.05 to avoid over-fitting and promote generalization.
We found that this higher-than-normal setting resulted in the best testing performance. We

19

tested the network after 300,000 iterations of training. This resulted in 7 epochs of training
for the Monterey Bay Webcam Dataset and 23 epochs of training for the 3DPeS dataset.

20

CHAPTER 4:
Results and Analysis

4.1 Implementing the Network
We implemented our network using the Caffe Deep Learning Framework, designed primar-
ily by the Berkeley Vision and Learning Center [29]. Our network followed the architecture
described in Section 3.2 and we relied on the built-in layer implementations whenever pos-
sible. The one exception to this was the custom data layer we designed in Python to load
video sequences into the network. We designed the data layer to combine multiple frames
from a video sequence into a single training (or testing) example that the network processed
in a single pass. The custom data layer also supported the data augmentation techniques
described in Section 3.1. Every other layer of the network was implemented by the Caffe
project.

4.2 Measuring Performance
The network’s output is a 36-element array in which values close to 0 indicate “no object
detected” and values close to 1 indicate “object detected” for the region of the input corre-
sponding to each element of the array. One pass through the network produces 36 of these
classifications. These classifications were separated into true positives, false positives, true
negatives, or false negatives (see Figure 4.1). We then plotted the performance at differ-
ent confidence thresholds and measure the area under the receiver operating characteristic
(ROC) curve.

We also produced a graphical representation of the network output, shown in Figure 4.1a.
In this representation, the blue bounding boxes represent the human-annotated ground truth.
Each cell of the grid laid over the image corresponds to a single element of the output vector.
The intensity of the green border of each cell indicates the value of its corresponding element
in the output array; a value close to 0 is represented by a black border while a value close to
1 is represented by a bright green border. This representation is used throughout this thesis.

21

(a) (b)

Figure 4.1. Classification metric. Adapted from [8].

A grid box counts as a positive example if it intersects a ground truth bounding box
by at leat 3%. Using this metric, the network essentially provides 36 predictions
for every image; each prediction counts as either a true positive, false positive,
true negative, or false negative.

4.3 Identifying Pedestrians in the 3DPeS Dataset

4.3.1 Dataset Description
The 3DPeS Dataset is a collection of video sequences provided by the ImageLab at the
University of Modena and Reggio Emilia [8]. Each sequence is taken by one of eight
fixed-position cameras (pictured in Figure 4.2) and depicts various pedestrians walking,
sitting, and standing. The sequences include diverse lighting and shadowing conditions and
a range of pedestrian activities. Every frame contains at least part of one person; frames
with no pedestrians were trimmed from the sequences. Although the dataset is designed to
measure person re-identification (the same pedestrians appear in different scenes) and 3D
scene reconstruction, it can easily be repurposed as a benchmark for simple object detection.
The fixed camera angles and large pedestrians make this particular dataset a rather easy
object detection task. We used this dataset to establish a baseline performance measurement
for our network, expecting a maritime object detection task to be much harder.

22

(a) Angle a (b) Angle b (c) Angle c (d) Angle d

(e) Angle e (f) Angle f (g) Angle g (h) Angle h

Figure 4.2. Typical 3DPeS frames. Source: [8].

Since the 3DPeS Dataset was not intended for object detection, it did not include ground
truth bounding boxes. We used the Video Annotation Tool from Irvine, California (VATIC)
to annotate the 3DPeS Dataset, labeling each pedestrian with a bounding box. Although our
annotations include a unique label for each pedestrian, for the purposes of object detection
we treated each pedestrian simply as “an object.” We labeled a total of 45 sequences that
included all 8 camera positions. Each sequence included, on average, 250 frames. Since
camera positions “d” and “e” are so similar, we grouped those sequences together, resulting
in 7 discrete camera angles for our experiments.

4.3.2 Experimental Setup
We conducted two experiments using our network and the 3DPeS Dataset.

In the first experiment we trained a version of our network given 10 frames of information
(described in Section 3.2.3) and a version given only a single frame of information (described
in Section 3.2.2). We implemented cross-validation by training the network 45 different
times, each time leaving out a single sequence. The network was tested on the sequence
that was left out of training.

23

The in second experiment we trained the same two versions of the network 7 separate times.
Each time we left out all the sequences captured by a specific camera angle. We tested
the networks on the sequences left out of each training session. While the objects being
detected were similar across camera angles (they were are pedestrians), the camera angles
were different enough that they could be called different “scenes.” This experiment was
designed to measure the networks’ ability to detect objects in “novel” scenes never seen
before. Success in this experiment is evidence that the networks are not simply memorizing
the background scenes and comparing them with the test data.

4.3.3 3DPeS Experiment 1: Training the Network on All Scenes

Results

Figure 4.3. ROC curve comparison of a 10-frame model and a single-frame
model trained on the 3DPeS Dataset. Cross-validation across all camera
angles.

Figure 4.3 and Table 4.1 show the results of the first experiment, where the networks were
exposed to every camera angle through cross-validation. The 10-frame model performed
much better than a network given only a single frame. The additional frames improved
both the false positive rate and the false negative rate for the network. Furthermore, these

24

results indicate that providing 10 frames to the network reduced both error rates by about
two-thirds.

Model Best F1-Score False Positive Rate False Negative Rate

Single-frame model 0.34 0.10 0.66
10-frame model 0.82 0.03 0.20
Table 4.1. Performance comparison, familiar scenes in the 3DPeS Dataset.
Cross-validation across all camera angles.

3DPeS Studying the Failures
While our 10-frame model worked fairly well identifying pedestrians in the 3DPeS Dataset,
it certainly wasn’t perfect. That said, we noticed that most of its mistakes could be fit into
the following categories:

1. Groups were easier to identify than individual pedestrians
2. Overfitting to scenes
3. Distractors
4. Objects falling between grid-squares

One of the most conspicuous category of errors was the tendency for the network to fail
to identify individual pedestrians but localize groups of people. A fairly common scenario
would be for several pedestrians to enter the scene independantly and rendevous. Often the
network would fail to identify the pedestrians as they entered but as soon as a group formed,
it would highlight them. Figure 4.4 shows this happening.

Figure 4.5 and Figure 4.6 show a similar phenomenon, where certain pedestrians were not
detected until another pedestrian approached. In this situation, a person or group of people
standing still were not identified until a pedestrian walked past them. The network usually
had no problem identifying the moving pedestrian. Once the moving pedestrian got close
enough to the previously ignored group of people, the network expanded its detections to
include the group standing still. Once the moving pedestrian continued past the group, the
network stopped detecting the people standing still.

While this seems strange, it also seems fairly easy to explain. The 3DPeS Dataset contained
many examples of groups of people. It also contained many objects that could make

25

Figure 4.4. Groups of people were more easily identified than individuals.
10-frame model. Adapted from [8].

Figure 4.5. Pedestrians were more easily identified when they appeared
together. 10-frame model. Adapted from [8].

Figure 4.6. Sometimes pedestrians were not recognized when they appeared
outside a group. 10-frame model. Adapted from [8].

detecting an individual person difficult: parked bikes, an open truck bed, and parked cars
for example. While these things might be mistaken for an individual person, a group of
people contain a lot more information to aid in classification. Furthermore, the idea that a

26

Figure 4.7. False positive example: The network sometimes overfit to a
scene. Adapted from [8].

“moving” person is easier to identify than a small group of people standing still should be
apparent: the network was given multiple frames to analyze; the ability to detect moving
objects is an obvious implication.

What this observation means for neural networks overall is that an end-to-end network
trained for object detection will utilize non-local information to make detections. A pedes-
trian is easier to recognize in a group: that means pixels from elsewhere in the image are
being used to classify the region with that person. Even more exciting is the fact that a
person standing still is easier to identify when a moving person walks by. In that case
the network is pulling information from elsewhere in the image, and from “elsewhere in
time.” A convolutional neural network given temporal information is able to fuse non-local
information both spatially and temporally to make its classifications.

Sometimes relying on non-local information to make classifications worked against the
network. Figure 4.7 shows an example of a sequence where the network returned many false
positives in a region where people often assemble. It could be the case that a combination
of unexpected light effects cause the network to make an inaccurate prediction, but we
observed that for several scenes it was much more common for the network to incorrectly
detect the existence of a pedestrian in areas where people commonly gather. Of course,
biasing toward a prior probability is expected, given that neural networks are statistical
models. While we did observe this error in a few of our tests, it did not dominate our results
so we decided that additional regularization was not necessary.

27

Figure 4.8. False positive examples: The network sometimes confused reflec-
tions (left) or suspicious objects (right) with pedestrians. 10-frame model.
Adapted from [8].

The 3DPeSDataset contained some sequences that caused confusion for our network. Figure
4.8 shows two examples. In the first, the reflection of a pedestrian can be seen walking past
a window; the network classified the reflection as a pedestrian. While this counted against
the network it is important to note that this is actually a good result! This is a case where the
human annotator failed to find a person in an image that the computer was able to identify.
While the human may have dismissed the reflection as “not a real person,” it is likely that
in a real-life application, finding a reflection of a person is just as important as finding the
actual person. A human searching for a pedestrian might be looking for something specific
(scanning the walkway, for example, since that’s where a person is likely to be) and miss
evidence where it is not expected.

By far the most common reasons for a false positive classification was a shortcoming
of the experiment rather than the network’s inability to learn. Two factors interacted to
cause these errors: First, the network is designed to output an array of classifications
corresponding to non-overlapping regions of an image. As objects move between regions
there are consecutive frames with minute changes in pixel values that result in different
classification arrays. It is understandable that a network would have trouble classifying the
frames on either side of that transition. Second, the ground truth bounding boxes do not
perfectly model the objects. Even if the human annotations were perfect, the pedestrians
being tracked are not rectangles and so there must be regions of the bounding box that
contain pixels not belonging to any object of interest. These factors work together to create
“regions of uncertainty” near the edges of each grid-square. Since the network must make

28

Figure 4.9. False positive examples: When the ground truth bounding boxes
fall near the edge of a grid-square, the network often classifies surrounding
regions as containing pedestrians. 10-frame model. Adapted from [8].

a classification for every region (assigning a low score is akin to classifying a region as
empty) it tended to overshoot its prediction and highlight the regions adjacent to the object
(see Figure 4.9).

4.3.4 3DPeS Experiment 2: Testing Novel Scenes

Results
Figure 4.10 and Table 4.2 show the results of the second experiment, where the 10-frame
model and the single-frame model were each tested on images captured by a camera angle
not included in the training set.

Model Best F1-Score False Positive Rate False Negative Rate

Single-frame model 0.29 0.101 0.701
10-frame model 0.78 0.036 0.218
Table 4.2. Performance comparison, novel scenes in the 3DPeS Dataset.
(Combined results across all categories.)

Both models performed worse when tested on novel scenes than when tested on scenes
previously introduced, although the 10-frame model still performed reasonably well with
an F1-score of 0.78 (Table 4.2). The single-frame model suffered slightly more, achieving
an F1-score of only 0.29. This slightly poorer performance of the single-frame model
suggests that the network was learning scene-specific information; i.e., a fixed background

29

Figure 4.10. ROC curve comparison of a 10-frame model and a single-frame
model trained on the 3DPeS Dataset, by scene. Solid line series correspond
to the 10-frame model for specific camera angles while dashed line series
correspond to the single-frame model for each camera angle.

model. When given multiple frames of information, the network learned to detect moving
objects. This additional information allows the network to generalize its detection to novel
scenes.

Studying the Failures
The 10-frame model made similar mistakes when tested on novel scenes as it did when
tested on familiar scenes (outlined in Section 4.3.3) with one addition: it had more trouble
identifying pedestrians that did not move. Figure 4.11 shows a common example of the 10-
frame network missing a pedestrian who did not move in the 10 frames given to the network.
The crowd of walking people in Figure 4.12, however, was classified with relatively high
confidence. The 10-frame network was clearly relying on motion as a clue for detecting the
pedestrians, and it was most useful when evaluating scenes never seen before.

The single-frame model could obviously not analyze motion to aid in detection, and this
handicap showed clearly in the results. A survey of the detection errors showed several

30

scenes where the network completely failed to generalize to the novel perspectives and
produced seemigly random results. (Figure 4.13 shows two such instances.) Even in scenes
where the network performed reasonably well, its mistakes were not in the “objects falling
between grid-squares” category from Section 4.3.3; they were a failure to even detect the
pedestrians. Often the single-frame model would detect the legs of a pedestrian but not the
torso or head.

Figure 4.11. The 10-frame model had trouble finding pedestrians who did
not move. Adapted from [8].

Note the person sitting and reading a book in the top-left corner of the image.

Figure 4.12. The single-frame model did learn to find pedestrians, although
poorly. Adapted from [8].

The results of the two 3DPeS experiments were clear: a neural network is better able to
detect pedestrians in the 3DPeS Dataset when given multiple frames instead of a single
image. This suggests that the network is able to utilize information across frames to make
classifications. While these are conclusive and exciting results, we wanted to apply these
findings to a more difficult problem: identifying small objects at sea.

31

Figure 4.13. The single-frame model failed to generalize to some novel
scenes in the 3DPeS Dataset. Adapted from [8].

4.4 Finding Birds in the Monterey Bay Webcam Dataset

4.4.1 Dataset Description
We chose webcam footage of theMonterey Bay as a “noisy” dataset, and trained the network
to detect birds flying across the frame [30]. While the camera position was static in these
sequences, the background was continuously changing due to sea state and surface debris.
These video sequences often contain objects that are not annotated; we trained the network
only to find birds in flight. We left out otters and buoys, as well as birds swimming but
not flying. This was due to an uncertainty about what should constitute an “object” in
the dataset: the human annotators usually had trouble distinguishing between sea life and
general debris. To eliminated “annotation false positives” we only annotated the category
of objects that humans can recognized without error: flying birds. While the target objects
were moving in every sequence, a single frame rarely had enough information to make an
accurate detection. Each frame had an original resolution of 640 × 360 pixels and was
down-sampled to the network resolution of 300 × 300 for training and testing. Figure 4.14
shows three frames from the dataset; each frame has a positive object in it.

Figure 4.14. Still frames from the Monterey Bay Dataset. Each frame has
a positive object in it. Source: [30].

32

The Monterey Bay Webcam Dataset is very unbalanced; only 14% of the frames have any
objects at all. Section 3.1 describes our attempt to balance the dataset by ensuring a 50%
split between frames containing an object and frames with no object. This attempt does
not completely balance the data, however. Since the network makes 36 predictions for
every frame, and most frames that contain any object only contain a single object; frames
considered “positive” examples during pre-processing usually resulted in a single positive
classification and 35 negative classifications when split into grid-boxes. The implication
is that even when pre-processing ensures a 50% split between “positive” and “negative”
frames, only 2% of the grid-box classifications were positive. (Section 4.4.3 describes our
observation of the effect this skew had on network performance.)

4.4.2 Weight Initialization
Training the network on this dataset directly resulted in poor results (covered in section
4.4.3). While the network was able to overfit to the data and successfully identify objects in
sequences previously seen, it was unable to generalize to new sets, even with a high weight
decay. Since the objects being detected are so small and are often completely masked
by sensor noise, the early layers of the network never learn the typical edge-detector and
simple convolution concepts that are useful to most visual problems [31]. To overcome
this obstacle we trained the network on two “easier” synthetic datasets and initialized the
training for the Monterey Bay Webcam Dataset with the resulting weights. Starting with
weights trained on larger, more visible objects allowed the early layers of the network to
learn the basic convolutional filters before learning the more complex features specific to
the Monterey Bay Webcam Dataset.

Detecting Large Moving Objects
In the first pretraining step we trained the network to detect a large object moving against a
background of ocean waves, as seen in Figure 4.15. The object was colored either black or
white and moved at a random constant speed following a linear path in a random direction.
Throughout each sequence the object was only rendered 50% of the time; the network had
to learn to collect information across multiple frames to determine the location of the object.
This dataset was generated synthetically and included 400 sequences, averaging 100 frames
each.

33

Figure 4.15. Sequence of frames from the synthetic “Large Object” Dataset.
The object was only rendered 50% of the time, and can be seen missing in
the middle image. Adapted from [30].

Detecting Small Moving Objects
The weights trained on the “Large Object” Dataset were used as a initial weights when
training the network on a synthetic “Small Object” Dataset (Figure 4.16). This dataset
was generated identically to the “Large Object” Dataset expect that the shapes were much
smaller. A small point of either black or white, only a few pixels across, was rendered
moving in a random direction at a constant speed against a background of ocean waves.
Like the “Large Object” Dataset, the “Small Object” shapes were only rendered in 50%
of the frames; the network had to utilize multiple frames to determine the precise location
of the object. Table 4.3 shows that the single-frame network had trouble even on this
pretraining task. While the 10-frame model achieved a respectable F1 score of 0.76, the
single-frame model only scored 0.07.

Figure 4.16. Sequence of frames from the synthetic “Small Object” Dataset.
The network was trained to find the small white “dot” in the lower left of
the left and right images. The center image is an instance where the object
was not rendered. Adapted from [30].

4.4.3 Results
The Monterey Bay Webcam Dataset is a very challenging dataset, and it is clear that
providing temporal information to the network improves performance significantly. Figure
4.17 andTable 4.4 show that a single-framemodel performs only slightly better than random.

34

Model Pretraining Dataset Best F1-Score

Single-frame model “Large Objects” 0.85
10-frame model “Large Objects” 0.96
Single-frame model “Small Objects” 0.07
10-frame model “Small Objects” 0.76

Table 4.3. Network performance during pretraining.

Figure 4.17. ROC curve comparison of a 10-frame model, and a single-
frame model trained on the Monterey Bay Dataset. Also included is a “no
finetuning” model, for which the “weight initialization” step described in
Section 4.4.2 was omitted.

The multiple-frame models, on the other hand, successfully learned to detect objects in the
videos.

Model Best F1-Score False Positive Rate False Negative Rate

Single-frame model 0.04 0.0019 0.97
10-frame model, no pretraining 0.01 0.01 0.993
10-frame model 0.38 0.0011 0.70

Table 4.4. False positive and false negative rate comparison, Monterey Bay
Webcam Dataset.

35

We expected that making additional frames available to the network would result in improv-
ing both the false positive rate (the network would better filter out background clutter) and
improve the false negative rate (the network would be able to identify objects previously not
identified.) We found, however, that while additional frames did significantly decrease the
false negative rate, the additional information had a lesser effect on the false positive rate.

Figure 4.18 is a typical example of where the 10-frame model outperformed the single-
frame model. These examples are of objects clearly visible but easily mistaken for waves
and background clutter. The 10-frame model, however, has the advantage of knowing how
the object moves. The pictured examples are of birds with a very recognizable “wing-
flapping” pattern.

Figure 4.18. Examples of the single-frame model’s false negative classifica-
tions. Adapted from [30].

Since the single-frame model had so much less information, it was unable to be certain
about many objects. We observed that, as a result, it developed a bias toward “no object,”
or classifying a grid-square as empty. This bias resulted in a significant increase in false
negatives but only a modest increase in false positives compared to the 10-frame model (see
Table 4.4). The bias toward “no object” is almost certainly a result of the skewed dataset
described in Section 4.4.1. This is an interesting result and an important implication of
skewed data: if classification uncertainty is high, a classifier will usually “default” toward
the skew. This is not necessarily a bad thing if the classifier is meant to maximize its
F1 Score. Since only 2% of all regions contained objects, in the absence of compelling
evidence it is most sensible to classify a region as “no object.”

36

Figure 4.19. False positive example where the network misidentified a wave
as a bird. 10-frame model. Adapted from [30].

Studying the Failures: False Positives
We collected the test images on which the network performed the worst. To collect these
images, we analyzed the false positives in which the network assigned a score of greater than
0.9, and false negatives where the network assigned a score less than 0.05. We empirically
found that these thresholds worked well to filter the results to a few hundred images in
each error category. By studying these images we were able to categorize the errors into
“common mistakes” that the network made on the test set.

False positives fell into one of four categories:

1. Misidentification of waves
2. Objects falling between grid-squares
3. Detecting an object “too early”
4. Other errors

A major motivation for adding multiple frames to a neural network was to give the network
enough information to distinguish between interesting objects and background clutter in a
maritime environment. Even if a wave looks like a bird in one frame, observing it through
several frames is usually enough for a human to correctly identify it. While our 10-frame
network was successfully able to ignore most of the background clutter (see Figure 4.20)
it still sometimes misclassified waves as birds (as in Figure 4.19). Interestingly, there were
other sea creatures present in some sequences (sea otters were common, for example) but
the 10-frame network never falsely classified them as birds.

37

Figure 4.20. True negative example where the network correctly ignored
several waves. 10-frame model. Adapted from [30].

Figure 4.21. False positive example where the object of interest fell on the
boundary of grid-squares. 10-frame model. Adapted from [30].

The “regions of uncertainty” described in Section 4.3.3 are even more present in the
Monterey Bay Webcam Dataset. Since objects usually appear by themselves and occupy
only a small fraction of a grid-square, and since the network often has to fuse information
across frames to localize the objects, the uncertainty surrounding these small objects is even
greater (see Figure 4.21).

A surprising source of false positive errors is shown in Figure 4.22, where the network
identified an object in a region that, while empty in the frame with the error, would be
occupied by an object in the next few frames. Figure 4.23 shows two examples where a
bird is correctly identified, but the adjacent region is incorrectly identifies as containing an
object of interest. What makes this error interesting is that the network has made a temporal
mistake. It did not misidentify an object (the object would indeed exist), it simply classified
the region as containing an object too early. While it is exciting to imagine that the network

38

Figure 4.22. False positive example where the network highlighted where a
bird would exist in the future. 10-frame model. Adapted from [30].

Figure 4.23. False positive examples where the network highlighted a region
where objects will be in the future. In both images the birds are flying from
right to left. 10-frame model. Adapted from [30].

is “predicting” where an object will be in the future, it is important to remember that our
10-frame model was able to look 0.45 seconds into the future, and thus had the information
necessary to know that the object would eventually be in that region.

One possible explanation for these errors is that they are extreme cases of the previous
class of error: where the object falls on the boundary of grid-squares. As a ground truth
bounding box passes from one grid-square to the next, there is usually a moment when two
adjacent grid-squares are classified as containing the object. The network seems to be using
its knowledge of the “future” to make that determination.

With the complexity of neural networks comes a certain level of opacity in regards to their
operation, and so we categorized some of our network’s mistakes as simply “other.”

39

Figure 4.24. False positive examples where the network made silly mistakes.
10-frame model. Adapted from [30].

Figure 4.25. False negative examples. The network is sometimes able to
identify an object. 10-frame model. Adapted from [30].

In these instances the networkmisclassified a region for no obvious reason; they aremistakes
unrelated to nearby objects or similar-looking objects. As an example, Figure 4.24 shows
two instances where the network classified a region as containing an object even though
there clearly (to a human) is no object present.

Studying the Failures: False Negatives
Many of the network’s false negative classifications were intermittent for a specific object;
as an object passed through the frame the network would sometimes identify it, and then
fail to identify it a few frames later as seen in Figure 4.25. There are two likely explanations
for this category of error.

First, as has been stated before, the objects of interest in the Monterey BayWebcam Dataset
are often very tiny and there is often simply very little information available to identify

40

an object. The little information that is available is usually difficult to separate from the
background clutter. All of this is to say that it is a hard problem. We attempted to mitigate
this difficulty by providing the network with several frames of information; if one of the
frames is especially poor there is a good chance that there is a better one available. Of
course, relying on past and future frames for classification adds some uncertainty: if an
object can be identified in a frame 0.25 seconds earlier, it is not always clear what that says
about that object’s current location. In the end, those 10 frames are not always sufficient to
make a correct classification.

Second, the network performs best when the objects of interest are in the middle of a
grid-square. As an object moves toward the edge of a grid-square, the network often
lowers the score for that region. This is almost certainly a result of the experimental setup
covered in Section 4.3.3. These errors might simply be the “false negative” counterpoints
to the network’s otherwise overly-optimistic classification of objects falling on grid-square
boundaries. The fact that the network will sometimes classify the surrounding regions as
containing an object and other times classify the regions as empty reinforces the idea of
“regions of uncertainty.”

Sometimes an object is simply too difficult to identify. Figure 4.26 shows two examples of
objects that would be challenging for a human to locate, assuming the task is even possible!
Since the images provided to the network were down-sampled from 640× 360 to 300× 300
pixels, it may be the case that the objects were completely undetectable in the images given
to the network even if multiple frames were available.

Figure 4.26. False negative examples. 10-frame model. Adapted from [30].

Note that both examples are correctly annotated; there is a bird inside each blue
rectangle, and the small white object in the right image is not a flying bird.

41

Figure 4.27 shows an example of a “novel” object that the 10-frame version of the network
was able to partially identify. While there is one other instance of a flock of birds in the
training corpus, flocks appear so infrequently and look so different from every other object
that the network has trouble identifying the entire flock when it does appear.

Figure 4.27. The birds (blue) cover a larger area than was detected (green).
Only one other sequence contained a similar flock of birds. 10-frame model.
Adapted from [30].

If an object is difficult to detect in one frame, it is likely to be difficult to detect in the
other frames in the sequence. This means that if the network was unable to detect an object
at all, and the object appeared in 100 video frames (about 4 seconds), the network would
generate 100 false negatives. The difficulty of many objects in the dataset combined with
the challenges described above resulted in a relatively high 70% false negative rate for the
10-frame model (seen in Figure 4.4).

4.5 Comparing Dataset Results
Every model performed much better on the 3DPeS Dataset than the Monterey BayWebcam
Dataset, although that result was expected. The 3DPeS Dataset provides a problem that is
normally solved without mistakes by a human, while the Monterey Bay Webcam Dataset
provides a problem that many humans find difficult. One of the key differences in the
results was found in the nature of the errors made by the network. The 3DPeS Dataset
contained larger objects that often formed groups. These objects were also relatively
homogeneous in shape and contrast. The 10-frame network leveraged these characteristics
by using information from surrounding regions to inform classifications (see Section 4.3.3).
The Monterey Bay Webcam Dataset, on the other hand, did not contain groups of objects

42

spanning multiple grid-boxes. We also did not observe the same cross-region information
processing that we observed in the 3DPeS Dataset. Instead, we found that the network
sometimes mispredicted where an object was located by predicting a location where the
object would be in the future. We suspect that these errors occurred because the data in a
single frame is often insufficient to locate an object; the network must combine information
from several frames to localize an object in the “present.” The network simply made some
mistakes when combining that information. The ac3DPeS Dataset, on the other hand,
usually had enough information in a single frame to localize every pedestrian. The network
could depend more on information from the “present” frame to make its classifications and
did not need to project object positions across frames.

The 10-frame model significantly outperformed the single-frame model in both datasets.
These results show that additional frames of information can improve neural network
detection performance. We chose datasets containing sequences of moving objects from
fixed vantage points, i.e., surveillance video, but it is easy to imagine that providing a network
with additional frames can improve performance in other classification and localization
tasks. We showed that given the data, neural networks will combine information across
both space and time to improve their performance.

43

THIS PAGE INTENTIONALLY LEFT BLANK

44

CHAPTER 5:
Conclusion

While several of the approaches to object detection described in Chapter 2 performed
extremely well for many applications, none employed neural networks capable of learning
temporal features across frames. In Chapter 4 we observed and measured performance
gains when providing a simple neural network with multiple video frames. We found that
providing a convolutional neural network with multiple frames from a video sequence can
significantly improve detection performance for the problem domains we tested.

We have been careful to separate our usage of the terms “temporal features” and “multiple
frames of information.” While these two terms might seem analogous to a human, it is only
because extracting temporal features (such as movement and its direction) from multiple
frames is nearly automatic for us. This was not guaranteed to be true for neural networks!
Many of the algorithms introduced in Section 2.3 provided temporal features directly: the
“Tubelets” approach, for example, calculated optical flow before training and provided that
processed information to the network [26]. Our experiment provided only the raw pixel
data to the network; the network had to learn its own motion model.

Of course, developing an operational-grade computer vision algorithm for maritime object
detection cannot happen before the proper dataset becomes available. This project simulated
the task with a webcam video feed of the Monterey Bay; the resulting network can only
be considered a proof of concept. We used the webcam footage because actual maritime
SAR footage was unavailable. While the results of the project strongly suggest that neural
networks are up to the task of maritime object detection, such an algorithm will not exist
until a corpus of maritime SAR footage is made available. The pace of computer vision
research today and its seemingly insatiable appetite for novel problems means that once
such a corpus is made publicly available, it will not be long before computer algorithms are
developed that outperform their human counterparts.

One key difference between actual SAR footage and the Monterey Bay Webcam Dataset
that deserves more research is the problem of a “moving camera perspective.” The results
from our 3DPeS “novel scene” experiment suggest that multi-frame neural networks are

45

able to learn about movement and generalize to different backgrounds. Our Monterey
Bay Webcam experiment results showed that multi-frame neural networks can adapt to
dynamic backgrounds. However even in these “novel” and “dynamic” scenes the camera
angle remained static. An obvious next step would be to test a network’s ability to detect
an object when the camera angle changes. In this scenario there would be a difference
between an object moving relative to the video frame and an object moving relative to the
environment. This is a vision task that must be addressed before autonomous SAR drones
can be reasonably effective.

Once computer vision is better studied in the maritime environment, new possibilities will
open up: cheap SAR drone swarms, surface mine detection, force protection, and satellite
surveillance are some obvious examples. Computer vision analysis of satellite imagery
might even be improved by capturing several frames of information over a short period of
time, possibly improving detection and classification. The idea that temporal information
can improve the detection performance of a neural network can be extended beyond the
realm of video data and change the way we collect data in the first place. While we attempt
to improve detection capabilities by increasing the spectrum coverage and image fidelity of
our sensors, we may be able to achieve similar gains simply by analyzing short sequences
of images in applications where we were previously looking at single images on their own.

While our research focused on “object detection,” maritime object classification is an ob-
vious next step. For objects in the water, does providing multiple frames of information
to a neural network improve classification performance? Is there even enough information
available to classify a bird separate from a human survivor? The fact that our network
successfully distinguished birds from otters and ocean waves suggests that such classifica-
tions are possible. The improvements in recall and precision hint that additional frames
can strengthen classification performance as well. A network with more capacity than the
one designed for this project could almost certainly perform the task of maritime object
classification.

Our overall conclusion is that neural network object detection performance can be improved
by providing the network with multiple frames from a video sequence. The 3DPeS exper-
iments in Section 4.3 showed a performance increase when detecting pedestrians from a
fixed-angle overhead camera. In this case the network was able to collect and connect

46

information across frames (and from different locations within a frame) to localize objects.
When the network was tested on new scenes, the information from the additional frames
became invaluable. The temporal information became especially important when detecting
objects in the Monterey BayWebcam Dataset; a single-frame model did only slightly better
than guessing. Given multiple frames, however, the network was able to synthesize infor-
mation across frames to locate objects even when they were partially obscured or missing.
When detecting objects in a noisy environment, such as at sea, a multi-frame neural network
has the ability to overcome some of the obstacles that make such a problem difficult.

47

THIS PAGE INTENTIONALLY LEFT BLANK

48

List of References

[1] Office of the Chief of Naval Operations, “Navy search and rescue tactical informa-
tion document,” Department of the Navy, Washington, D.C., Tech. Rep. NWP 3-
22.5-SAR-TAC, Sep 1997.

[2] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpa-
thy, A. Khosla, M. Bernstein, A. C. Berg, and L. Fei-Fei, “ImageNet large scale vi-
sual recognition challenge,” International Journal of Computer Vision (IJCV), vol.
115, no. 3, pp. 211–252, 2015.

[3] A. Linn. (2015, December). Microsoft researchers win ImageNet computer vi-
sion challenge. [Online]. Available: https://blogs.microsoft.com/next/2015/12/10/
microsoft-researchers-win-ImageNet-computer-vision-challenge

[4] A. Esteva, B. Kuprel, R. A. Novoa, J. Ko, S. M. Swetter, H. M. Blau, and S. Thrun,
“Dermatologist-level classification of skin cancer with deep neural networks,”
Nature, 2017. [Online]. Available: http://www.nature.com/nature/journal/vaop/
ncurrent/full/nature21056.html

[5] National Search and Rescue Committee, “National search and rescue supplement to
the international aeronautical and maritime search and rescue manual,” United States
Coast Guard, Washington, D.C., Tech. Rep. NSS, May 2000.

[6] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollár, and
C. L. Zitnick, “Microsoft COCO: common objects in context,” in European Con-
ference on Computer Vision. Springer, 2014, pp. 740–755.

[7] K. Toyama, J. Krumm, B. Brumitt, and B. Meyers, “Wallflower: principles and prac-
tice of background maintenance,” in The Proceedings of the Seventh IEEE Interna-
tional Conference on Computer Vision, vol. 1. IEEE, 1999, pp. 255–261.

[8] D. Baltieri, R. Vezzani, and R. Cucchiara, “3DPeS: 3D people dataset for surveil-
lance and forensics,” in Proceedings of the 2011 Joint ACM Workshop on Human
Gesture and Behavior Understanding. ACM, 2011, pp. 59–64.

[9] M. Piccardi, “Background subtraction techniques: A review,” in IEEE International
Conference on Systems, Man and Cybernetics, vol. 4. IEEE, 2004, pp. 3099–3104.

[10] C. Papageorgiou and T. Poggio, “A trainable system for object detection,” Interna-
tional Journal of Computer Vision, vol. 38, no. 1, pp. 15–33, 2000.

49

[11] Z. Lin, L. S. Davis, D. Doermann, and D. DeMenthon, “Hierarchical part-template
matching for human detection and segmentation,” in 2007 IEEE 11th International
Conference on Computer Vision. IEEE, 2007, pp. 1–8.

[12] N. Dalal and B. Triggs, “Histograms of oriented gradients for human detection,” in
2005 IEEE Computer Society Conference on Computer Vision and Pattern Recogni-
tion (CVPR’05), vol. 1. IEEE, 2005, pp. 886–893.

[13] D. G. Lowe, “Object recognition from local scale-invariant features,” in The Pro-
ceedings of the Seventh IEEE International Conference on Computer Vision, vol. 2.
IEEE, 1999, pp. 1150–1157.

[14] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classification with deep
convolutional neural networks,” in Advances in Neural Information Processing Sys-
tems, 2012, pp. 1097–1105.

[15] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based Learning Applied
to Document Recognition,” Proceedings of the IEEE, vol. 86, no. 11, pp. 2278–
2324, 1998.

[16] P. Sermanet, D. Eigen, X. Zhang, M. Mathieu, R. Fergus, and Y. LeCun, “Overfeat:
Integrated recognition, localization and detection using convolutional networks,”
CoRR, vol. abs/1312.6229, 2013. [Online]. Available: http://arxiv.org/abs/1312.6229

[17] J. R. Uijlings, K. E. van de Sande, T. Gevers, and A. W. Smeulders, “Selective
search for object recognition,” International Journal of Computer Vision, vol. 104,
no. 2, pp. 154–171, 2013.

[18] P. F. Felzenszwalb and D. P. Huttenlocher, “Efficient graph-based image segmenta-
tion,” International Journal of Computer Vision, vol. 59, no. 2, pp. 167–181, 2004.

[19] S. Ren, K. He, R. Girshick, and J. Sun, “Faster R-CNN: Towards real-time object
detection with region proposal networks,” in Advances in neural information pro-
cessing systems, 2015, pp. 91–99.

[20] S. Ji, W. Xu, M. Yang, and K. Yu, “3D convolutional neural networks for human
action recognition,” Ieee Transactions on Pattern Analysis and Machine Intelligence,
vol. 35, no. 1, pp. 221–231, 2013.

[21] J. Yue-Hei Ng, M. Hausknecht, S. Vijayanarasimhan, O. Vinyals, R. Monga, and
G. Toderici, “Beyond short snippets: Deep networks for video classification,” in
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
2015, pp. 4694–4702.

50

[22] A. Karpathy, G. Toderici, S. Shetty, T. Leung, R. Sukthankar, and L. Fei-Fei, “Large-
scale video classification with convolutional neural networks,” in Proceedings of
the IEEE conference on Computer Vision and Pattern Recognition, 2014, pp. 1725–
1732.

[23] V. Mnih, N. Heess, A. Graves et al., “Recurrent models of visual attention,” in Ad-
vances in Neural Information Processing Systems, 2014, pp. 2204–2212.

[24] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural Computation,
vol. 9, no. 8, pp. 1735–1780, 1997.

[25] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,”
in Proceedings of the IEEE Conference on Computer Vision and Pattern Recogni-
tion, 2016, pp. 770–778.

[26] K. Kang, W. Ouyang, H. Li, and X. Wang, “T-CNN: Tubelets with convolutional
neural networks for object detection from videos,” in Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition, 2016, pp. 817–825.

[27] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet Classification with Deep
Convolutional Neural Networks,” in Advances in neural information processing sys-
tems, 2012, pp. 1097–1105.

[28] G. E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, and R. R. Salakhutdinov,
“Improving Neural Networks by Preventing Co-adaptation of Feature Detectors,”
arXiv preprint arXiv:1207.0580, 2012.

[29] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick, S. Guadarrama,
and T. Darrell, “Caffe: Convolutional architecture for fast feature embedding,” in
Proceedings of the 22nd ACM International Conference on Multimedia. ACM, 2014,
pp. 675–678.

[30] Monterey Bay Aquarium. (2016). Monterey Bay live web cam at the Monterey Bay
Aquarium. [Online]. Available: http://www.montereybayaquarium.org/animals-and-
experiences/live-web-cams/monterey-bay-cam

[31] J. Donahue, Y. Jia, O. Vinyals, J. Hoffman, N. Zhang, E. Tzeng, and T. Darrell, “De-
CAF: A Deep Convolutional Activation Feature for Generic Visual Recognition,” in
Icml, vol. 32, 2014, pp. 647–655.

51

THIS PAGE INTENTIONALLY LEFT BLANK

52

Initial Distribution List

1. Defense Technical Information Center
Ft. Belvoir, Virginia

2. Dudley Knox Library
Naval Postgraduate School
Monterey, California

53

