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ABSTRACT 

There is no process or system capable of detecting obfuscated network traffic on 

Department of Defense (DOD) networks, and the quantity of obfuscated traffic on DOD 

networks is unknown. The presence of this traffic on a DOD network creates significant 

risk from both insider-threat and network-defense perspectives. This study used 

quantitative correlation and simple network-traffic analysis to identify common 

characteristics, relationships, and sources of obfuscated traffic. Each characteristic was 

evaluated individually for its ability to detect obfuscated traffic and in combination in a 

set of Naive Bayes multi-attribute prediction models. The best performing evaluations 

used multi-attribute analysis and proved capable of detecting approximately 80 percent of 

obfuscated traffic in a mixed dataset. By applying the methods and observations of this 

study, the threat to DOD networks from obfuscation technologies can be greatly reduced.  
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I. INTRODUCTION 

Obfuscation of network traffic is a process designed to circumvent censorship and 

specific user identification on the Internet [1]. Most obfuscation techniques in use today 

are based on the research by well-known cryptographer David Chaum, who created the 

first high-latency anonymous routing model [2]. In Chaum’s model, commonly referred 

to as MixNet, a series of proxies were used to ensure that nodes along the transmission 

path could not identify the sender or recipient of the information [3], [4]. Since 1996, 

popular low-latency obfuscation providers, such as Tor, have attempted to hide the source 

of network traffic by routing traffic through a network of voluntary anonymous nodes 

before delivering the traffic to its requested destination [5]. Extensive research has been 

conducted to identify innovative methods for detecting obfuscated traffic, and researchers 

have had reasonable success using traffic analysis [1], [2], [4], [6]–[10] and packet 

entropy [1] as well as heuristic [4], semantic [1], [6], [11], deep packet inspection (DPI) 

[12], and machine learning–based techniques [1], [4]. 

Research by Wang et al. [1] combined these approaches and detected obfuscated 

traffic with a false positive rate (FPR) ranging from 0.002–0.00003 and a true positive 

rate (TPR) of 0.98–1.0. However, as new methods are discovered to identify obfuscated 

traffic, changes are made to each obfuscation technique in an attempt to circumvent 

detection. To counter this, a dynamic model incorporating a combination of identification 

techniques, blacklisting, and evaluation can be specified in a multi-attribute evaluation 

model. Using a multi-attribute approach, obfuscation indicators from disparate databases 

can be aggregated and evaluated to determine the likeliness of obfuscation.  

A. RESEARCH MOTIVATION 

Presently, there is no system or process deployed on the Department of Defense’s 

(DOD) networks capable of detecting obfuscated network traffic, and it is not known 

what quantity of traffic on DOD networks is obfuscated. This poses a significant security 

risk from both insider threat and network defense perspectives. However, by using 

advanced traffic analysis [1] and blacklisting [13], it is possible to identify many popular 
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types of obfuscation. Additionally, by aggregating each indication, or signature, into a 

multi-attribute detection model, it may be possible to identify obfuscated traffic on DOD 

networks both forensically and in real time [6]. Once indicators are identified, system 

administrators can establish policies for response to obfuscated traffic; this technique 

could reduce network activity to only that which is attributable and provides means to 

hold persons accountable. 

B. PURPOSE AND SCOPE 

The purpose of this research is to identify obfuscation indicators, or Key Cyber 

Concepts (KCC), from the current body of research that can be used on a test network to 

evaluate whether low-latency Transmission Control Protocol/Internet Protocol (TCP/IP), 

specifically HyperText Transfer Protocol Secure (HTTPS) traffic, is employing 

obfuscation techniques. The KCCs will be statistically evaluated using R-script, then a 

multi-attribute analysis model will attempt to detect whether traffic is obfuscated. This 

thesis attempts to answer the following research questions: 

1. Can low-latency obfuscated network traffic be identified in real time? 

2. What IP traffic indications can be used to identify obfuscated low-latency 
network traffic? 

3. Can multiple indications be incorporated into a multi-attribute analysis 
model to accurately identify obfuscated traffic? 

4. Can a multi-attribute analysis model be used in a tool to provide a real-
time processing capability to analyze obfuscated traffic data for automated 
response?  

C. THESIS ORGANIZATION 

The remainder of this thesis is organized as follows: 

Chapter II focuses the background and previous work to define network traffic 

obfuscation with an emphasis on The Onion Routing (Tor). An emphasis will be placed 

on Tor’s history, purpose, common uses, vulnerabilities, and identifiable characteristics. 

Chapter III explains the methodology to be used, data generation, construction of 

the virtual lab, KCCs, as well as the multi-attribute analysis model.  
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Chapter IV examines the captured data for each KCC, their inter-attribute 

correlation, and the effectiveness of both single attribute and multi-attribute decision 

models. 

Chapter V reviews the final results of the research and provides suggestions into 

its real-world application on DOD networks. Recommendations for future research 

opportunities will be also be presented. 
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II. BACKGROUND AND PREVIOUS WORK 

A. BACKGROUND 

The World Wide Web has become the modern venue for expression and 

censorship due to its widespread assimilation into everyday life. As a result, multiple 

technologies have been developed both to facilitate a user’s access to the Web, and to 

prevent it. The tools created to facilitate uncensored or anonymous browsing fall into the 

category of obfuscation technologies. The current body of research into obfuscation 

technologies has focused both on how to better obfuscate a user’s activity and on how to 

detect or “de-anonymize” it. Research from [4] and [14] contend that the most widely 

used obfuscation technology today is Tor. As a result, a significant amount of research 

has been focused on Tor’s design, operating characteristics, and vulnerabilities.  

Early in the Naval Research Lab’s (NRL) development of what is now known as 

Tor, Goldschlag, Syverson, and Reed contended it was not their intention to create an 

anonymous routing system. Instead, as stated by Syverson, the intent was to “separate 

identification from routing” [5], [15]. In doing so, Tor was created to connect to a series 

of nodes to obfuscate the association between user and activity [15]. A large factor in 

Tor’s ability to obscure activity comes from its release as open-source software. Best put 

by Syverson, “A basic dilemma arises from the difficulty of trying to be anonymous by 

yourself” [5]. To that end, the earliest version of Tor was released to the public in 1996 

with the intention that its wide-spread adoption would add an additional layer of security 

to the anonymous routing network by increasing its anonymity set [16].1  

1. Early Onion Routing 

The first generation of onion routing (OR) sought to lower the vulnerability traffic 

analysis created for network traffic and subsequent user association. The term onion, as 

defined by Goldschlag et al., refers to the data structure composed of the layers of 

encryption constructed around the payload between initiator and responder. Specifically, 

                                                 
1 Dingledine, et al. define the anonymity set as the group of users employing a single point for traffic 

flow for the purpose of obfuscating their browsing activity [16]. 
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the initiator’s proxy node created the path, or virtual circuit, to the responder and 

encapsulated each encryption layer like the layers of an onion. To complete the creation 

of the virtual circuit, the initiator’s proxy node sent the onion along the route. By design, 

each node “knew” only the identity of adjacent nodes, and the responder knew only the 

identity of the last node in the path. As a result, the initiator and responder were protected 

from simple traffic-analysis correlation [15].  

According to [5] and [15], to create the onion, the initiator’s proxy identified the 

entire virtual circuit and formed the onion in reverse order with the responder’s layer at 

the core. Specifically, the encryption for the responder’s proxy was constructed around 

the payload, and then each preceding node’s encryption layer was wrapped back to the 

first node. The encryption layer included the required encryption keysets and expiration 

time, enabling bidirectional communication and replay attack protection.2 As a result, 

each node knew the preceding node and where it should forward the onion to but nothing 

else. The only exception was the last node, which knew the responder’s identity [15]. 

Syverson acknowledged the inherent vulnerabilities in sending the symmetric key within 

the onion in the first two generations of Tor, but the NRL incorporated a symmetric key 

instead of Diffie-Hellman (DH)–based circuit building to achieve a greater computational 

efficiency over forward secrecy of Tor [5].3  

Figure 1 depicts a forward encryption onion from a notional initiator proxy that 

flows through nodes X and Y to node Z [15].  

                                                 
2 A replay attack occurs when an attacker intercepts a message stream between sender and receiver and 

then resends, or replays, a duplicate message to either party [17].  

3 Forward secrecy provides protection against unauthorized viewing or collection. To ensure forward 
secrecy, DH key exchange and ephemeral keys are used to protect the confidentiality of a message even if 
the DH-based encryption is compromised. In the event of a compromise, the message would remain 
protected since the ephemeral key used would have expired when the original session was terminated [18]. 
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Figure 1.  Complete forward onion. Source: [15]. 

As described by [15], each layer was constructed as follows: 

 , where: 

 exp_time was the time the onion expired, where expiration protects 
against replay attacks;  

 next_hop was the next hop in the onion route; 

 Symmetric key applied to data flowing forward; 

 Symmetric key  applied to data flowing backward; and 

 The padding concatenated to the end of the payload was constructed from 
random sized bit strings from each layer and appended before forwarding. 
This was done to minimize the possibility of a compromised node 
systematically stripping off the layers of encrypted routing information to 
find out where it is in the routing chain. Padding was added to all onions to 
fix the size and hide the length of the chain from initiator to responder.  

2. Generational Evolution 

In total, there have been three generations of OR designed by NRL with the third 

being the iteration in use today. Although the functionality has remained largely 

unchanged through each generation, there were distinct characteristics and configurations 

used to disassociate users from activity in each one [5].  

(1) First generation OR  

 Fixed five-node (instead of three-node) routing circuits were used because 
they allowed communication between two enclave firewalls with a fixed 

exp _ time,  next _ hop,  Ff ,  K f ,  Fb ,  Kb ,  payload PKx

Ff ,  K f 
Fb ,  Kb 
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three-hop route between them to disassociate the origin and destination of 
the traffic. If only three hops had been used in this configuration, the 
middle node would have known both origin and destination of the traffic 
[5]. Figure 2 depicts the general topology of a first-generation onion route. 

 
The proxy node W is the source of the communication, nodes X and Y are routing nodes, 
and nodes U and Z act as routing/proxy nodes. 

Figure 2.  First generation OR topology depicting a five hop OR circuit. 
Source: [15]. 

 Client and router were fully combined and all communication was done in 
a peer-to-peer (P2P) configuration. Syverson explains that this meant a 
client would have to use an application to proxy its traffic to an onion 
router if it did not actively participate in the Tor network as a node. If a 
client chose this option, its traffic would be sent to the first routing node 
before the actual circuit was built [5]. 

 Dynamic network updates and topology changes were not supported. It 
was thought that Tor communication had been between stable networks 
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that did not have inherent trust relationships and that all network 
configuration changes were handled offline [5]. 

 Because the Socket Secure (SOCKS) protocol was not widely adopted in 
the mid-1990s,4 multiple application-specific protocol proxies were 
required to route the various types of information on the Tor network [5]. 
Further, each application-specific request required its own Transmission 
Control Protocol (TCP) stream which increased the volume of traffic and 
posed a possible security threat based on how many TCP streams were 
present [16]. 

(2) Second generation OR 

 The client and router were separated, which allowed a client to learn about 
available nodes and build its own circuits without having to route traffic 
for others or blindly trust a remote node to build a P2P circuit as was 
required in first generation OR [5]. 

 Circuit lengths were no longer fixed; variable-length circuits up to 11 hops 
were supported within a single onion [5].5  

 The SOCKS protocol was adopted for applications able to support it[5]. 

 A redirector feature was included. It forced all TCP traffic over the Tor 
network. By design, the redirector only worked on Windows NT and was 
not intended for public release [5].6  

 OR entry and exit policies were enabled to allow organizations the ability 
to tailor the traffic for users who had access to their onion routers [5]. For 
example, an organization could set an exit policy to only allow forward 
web traffic on ports 80 or 443 or choose to whitelist trusted IPs and ports 
to minimize possible abuse. When implemented properly, entry and exit 
policies could prevent an onion router from appearing to be the source of 
malicious activity [16], [20].7  

                                                 
4 The SOCKS protocol provides a standardized method for applications to communicate without the 

need for multiple application-specific proxies by uniformly encapsulating packets for both TCP and UDP 
(in version 5 only) applications. Conceptually, the SOCKS protocol operates between the application and 
transport layers [19]. 

5 In the second generation of OR, a single onion could be constructed with encryption layers for up to 
11 hops with an even greater length possible if tunneling techniques were used [5]. 

6 According to Syverson, with the exception of the TCP redirector, “all other onion routing code of all 
generations” was intended for public release [5]. 

7 Goldschlag et al. state, “Most onion routers in the current network function as restricted exits that 
permit connections to the world at large, but prevent access to certain abuse-prone addresses and services 
such as SMTP” [16]. 
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 Two security features, cell mixing and traffic shaping, were implemented 
to lower the likelihood that someone would be able to associate user and 
activity through simple traffic analysis. Experimentation into cell mixing 
focused on blending TCP streams from separate onion routes to mitigate 
the threat of a man-in-the-middle (MITM) attack. Traffic shaping used an 
average of previous packet lengths to pad new traffic in an attempt to 
protect it from identification by simple traffic analysis. Neither cell mixing 
nor traffic shaping were included in follow-on generations [5]. 

3. Third Generation OR 

The third generation of OR is commonly known as Tor. Tor provides the same 

basic protections as its predecessors; however, it affords much more protection. The 

increased protection can be attributed to how the virtual circuit was created and 

subsequently encrypted [5]. Tor’s basic design uses three nodes to route obfuscated 

traffic between initiator and responder (see Figure 3). 

 

Figure 3.  Basic Tor configuration. Source: [21]. 

Departing from the computationally expensive onion built using Public Key 

Infrastructure (PKI) encryption,8 Tor uses DH key exchange-based circuit building and 

                                                 
8 According to Syverson, PKI was used to encrypt the communication circuit in order to share 

symmetric keys from initiator to responder with an unpredictable route. The idea of using DH key 
exchange-based circuit building with RSA encryption was considered but abandoned during the first two 
generations of OR [5]. 
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RSA encryption to construct the onion from hop to hop (see Figure 4) [5].9 Further, since 

public ephemeral keys were used during the encryption process, the initiator could derive 

the session key by combining the ephemeral key with the private key of the responder 

(and vice-versa) to provide replay protection and forward secrecy [5], [18]. 

 
Routers A, B, and C represent the entry, middle, and exit nodes, respectively. 

Figure 4.  Diffie-Hellman based routing onion. Source: [23]. 

According to Dingledine et al., the SOCKS protocol is used in Tor to provide 

compatibility for most TCP-based applications with no additional modifications. 

Consequently, Tor relies on outside application-level proxies to provide application level 

services not compatible with SOCKS [16]. Additionally, Tor relies on a small set of 

trusted directory servers to distribute network status and information to routing nodes and 

clients.10 Each server is owned and operated by independent parties and functions as a 

HTTP server. The HTTP server functionality allows available onion routers to upload 

their statuses and clients to download network state and listings of available routers. Each 

                                                 
9 RSA is an asymmetric public key algorithm that facilitates encryption and digital signatures by using 

public and private keys, which are produced by generating large numbers from their prime factors. It is 
named after its creators Ron Rivest, Adi Shamir, and Leonard Adleman [22]. 

10 In the current distribution of Tor, nine directory servers are hard coded into the browser package. 
The full listing is available from https://atlas.torproject.org/#search/flag:authority. Accessed 18 October 
2016. 
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trusted directory server controls which nodes are allowed to join the routing network in 

an effort to reduce the risk of malicious routers entering the network [16]. Syverson 

acknowledges there are distinct gains and losses with the use of directory servers. Tor 

clients are allowed to obtain a listing of known onion routers that may be used to 

construct a circuit. However, Syverson contends that a limited number of trusted 

directory servers creates a network bottleneck [5].  

B. TOR VULNERABILITIES  

Due to Tor’s widespread adoption and routing configuration, numerous 

vulnerabilities, or attack vectors, are inherently present in its design. Dingledine et al. 

gave significant consideration into how to mitigate the threat caused by existence of 

malicious actors who can monitor sizeable portions of the Internet. Though Tor was not 

specifically designed to withstand an Internet-scale attack, it was designed to prevent 

attacks using traditional traffic analysis [16]. Elahi et al. contend significant 

vulnerabilities exist because the network is comprised of volunteer nodes;11 this is 

especially true if a malicious actor is able to control both the entry and exit node in a Tor 

circuit [14]. 

1. Malicious Guards 

Elahi et al. revealed that each node can be bandwidth-weighted to increase the 

likelihood of selection. As a result, it is possible for a malicious actor to volunteer 

multiple, high bandwidth, entry and exit nodes in order to conduct end-to-end correlation 

of user activity. To break the malicious node “kill-chain,” various fixes can be employed 

to lower the persistence of malicious entry nodes [14], [24]. The Tor Project 

(torproject.org) proposes multiple solutions including increasing the size of the Tor 

network and using fewer entry guards [24].  

Although not fully resolved, the Tor Project admits there are flaws in the way the 

guards are selected [24]. It is difficult to establish a set of available guards without 

                                                 
11The Tor network is comprised volunteer routing nodes; each additional routing node increases the 

bandwidth and availability of the Tor network. Additional Tor FAQ are available at 
https://www.torproject.org/docs/faq.html.en, accessed 24 October 2016. 
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inclusion of malicious nodes. However, by scaling the network faster than the adversary 

can, the adversary’s foothold will decrease, making attribution more difficult. Of note, 

the Tor Project contends that merely increasing the number of relays may not always 

decrease the risk of attribution; however, increasing the amount of entry nodes also 

increases the amount of nodes an adversary can monitor [24]. Further, torproject.org 

contends that the set of entry guards selected by a client can serve as a fingerprint, as 

another client is not likely to have the same set. This fingerprint could be used by an 

adversary to identify a specific client’s obfuscated traffic. However, reducing the quantity 

of the guard set to two, increases the chance of collision between the two fingerprints, 

making attribution will be more challenging [24].  

2. Directory Server Control 

Tor uses a limited set of nine redundant trusted nodes that serve as directory 

servers.12 Dingledine et al. emphasize that it is the responsibility of the directory servers 

to reach a network consensus and distribute it to all Tor clients.13 Dingledine et al. define 

the four-step process used by the directory servers to reach a consensus. First, each 

directory server broadcasts its signed opinion of the network state to the pool of directory 

servers. Then, each directory server subsequently broadcasts all signed network states it 

has received. The second step ensures no directory server has signed more than one 

network state. In step three, each directory server combines the received network states 

with its own and broadcasts its signed version of the full network state. In step four, the 

directory servers rebroadcast the complete network consensus with signatures from all 

participating directory servers. To facilitate this level of information flow, each directory 

server also acts an HTTP server. This allows clients to request a listing of all available 

                                                 
12 The full listing of directory servers is available from https://atlas.torproject.org/#search/

flag:authority, accessed 24 October 2016. 

13 Biryokuv et al. define the network consensus as, “The list of all Tor relays is distributed by the Tor 
authorities in the [network] consensus document. The consensus is updated once an hour by the directory 
authorities and remains valid for three hours. Every consensus document has a ‘valid-after’ (VA) time, a 
‘fresh-until’ (FU) time and a ‘valid-until’ (VU) time. The ‘valid-after’ timestamp denotes the time at which 
the Tor authorities published the consensus document. The consensus is considered fresh for one hour 
(until ‘fresh-until’ has passed) and valid for two hours more (until ‘valid-until’ has passed).”[10] 



 14

routers and their states, as well as other onion routers to upload their statuses. However, 

the limited number of servers also presents multiple vectors for attack [16]. 

Dingledine et al. argue that if an adversary were to control a directory server, they 

could use the server to distribute a listing of malicious nodes under adversary control. 

The impact is much greater if an adversary can subvert control of a majority of directory 

servers because the adversary would have the ability to sign the network consensus with 

as many malicious nodes as it pleases. Additionally, if an adversary was able to either 

physically destroy a directory server or use other computer-based attacks they could 

render it useless, but simply taking down one directory server would not have a severe 

impact on routing [16]. However, if over half of the available directory servers can be 

taken offline, there will not be enough servers to sign the network consensus for 

distribution to clients. To mitigate these attacks, Dingledine et al. maintain it is necessary 

that each directory server is independently operated and hardened against computer-based 

attacks [16]. 

3. Leaking DNS Requests 

According to research conducted by Greschbach et al., almost 40 percent of DNS 

requests by Tor users are observed by Google’s DNS resolver; this poses a significant 

risk of attribution to Tor clients [20]. There are two ways DNS queries make Tor users 

vulnerable to attribution. First, as described by Dingledine et al., the SOCKS protocol, 

which is used heavily by Tor, can pose a risk to users. This is because some applications 

send the fully qualified domain name (FQDN) to the Tor client while others resolve the 

FQDN to an IP address before sending the request. The resulting threat is two-fold. First, 

an adversary monitoring DNS traffic from users could monitor what sites users are 

attempting to visit. Second, if an adversary has the ability to monitor or has control of a 

malicious exit node or group of nodes, the adversary may be able to correlate entire Tor 

sessions to a single user [16]. 

In a similar DNS-based attack, Greschbach et al. contend that if an adversary is 

able to monitor traffic before it enters the Tor network and DNS queries from the exit 

node, it may possible to correlate user and activity. This type of attack is called a “DNS-



 15

enhanced fingerprinting and egress correlation on Tor,” or a DefecTor attack (see Figure 

5) [20].  

 
In a DefecTor attack, the adversary must monitor DNS traffic entering and exiting the 
Tor network and is much more accurate if either or both of the entry guard and DNS 
Server are maliciously controlled. 

Figure 5.  Basic DefecTor DNS traffic attack. Source: [20]. 

As described by Greschbach et al., the DefecTor attack seeks to exploit the 

vulnerability posed by exit nodes resolving DNS queries outside the Tor network. The 

effectiveness of the DefecTor attack relies on two factors. First, on the adversary’s ability 

to observe traffic entering the Tor network, and second, on how an exit node is 

configured to resolve and cache DNS queries.14 Commonly, exit nodes are configured to 

resolve DNS queries by running either a local or third party (e.g., local ISP or Google) 

DNS resolver. Research by Greschbach et al. found that using a local resolver proved the 

most dangerous option leading to an increase in both the number of compromised Tor 

streams and days until first compromise. However, Greschbach et al. propose a different 

solution. In their study, Greschbach et al. observed that when only the ISP is used to 

resolve DNS queries, the probability of stream compromise is decreased while the 

                                                 
14 In their research, Greschbach et al. discovered a bug in Tor’s source code, referred to as TTL 

Clipping, which affects the way exit relays cache DNS lookups. By default, exit relays are capable of 
caching DNS queries between 60 seconds and 30 minutes, however, the bug discovered by Greschbach et 
al. resulted in all exit nodes caching DNS queries for 60 seconds. This increases the overhead on the 
network as well as opens a client up to an attack where the adversary needs to only wait 60 seconds 
between DNS queries [20]. 
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number of days until first compromise is increased [20]. Other long-term solutions are 

configuring exit nodes to use Transport Layer Security (TLS) and TCP for DNS queries 

and,15 for websites to offer Tor-based sites that do not require communication outside of 

the Tor network [20].16  

C. IDENTIFICATION OF TOR TRAFFIC  

Since 1996, researchers have focused on isolating identifiable characteristics of 

obfuscated low-latency network traffic such as Tor. Recent research has focused on 

identifying Tor traffic via traffic analysis [1], [2], [4], [6]–[10] HTTP flow analysis [4] 

entropy-based characteristics [1], [20] and semantics [1], [6], [11].  

1. Traffic Analysis 

Traffic analysis approaches have focused on examining the TCP/IP header 

information in each packet entering the network to infer specific information [25]. To do 

this, some method is needed to capture the packets as they enter the network; this can be 

done in multiple ways. First, by using a mirror port or switched port analyzer (SPAN), all 

data sent through a network switch can be captured. As described by Odom, while a 

SPAN or mirror port is traditionally used to monitor traffic within an internal network, it 

is possible to configure remote a SPAN (RSPAN) to monitor network traffic over a 

virtual LAN (VLAN) between layer-two switches and encapsulated RSPAN (ERSPAN) 

between switches operating at layer-three to capture network data between logically 

separated networks [26].17 A second approach is to use network intrusion detection 

software (NIDS) such as Snort (www.snort.org), or Bro (www.bro.org). A NIDS is 

traditionally placed before network firewall and used to monitor all traffic entering a 

network [27]. To aid in traffic analysis, NIDS can be used notify system administrators of 

                                                 
15 UDP stands for User Datagram Protocol. UDP is a connectionless protocol that is susceptible to 

higher loss than TCP. UDP is used heavily in applications able to tolerate packet loss (e.g., video 
streaming).  

16 “facebookcorewwi.onion” is an example of a website that does not require communication outside 
of the Tor network [20]. Accessed 18 October 2016 via TorBrowser.  

17 A layer 3 switch, also known as a multilayer switch, is a network device capable of operating at 
layer 2 for LAN switching and layer 3 for IP routing [25]. 
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anomalous or suspicious activity and can be configured to produce packet captures 

(PCAP) containing a record of all data entering a network [26], [27].  

Using a PCAP created by a NIDS, specific TCP/IP header data can be extracted 

and analyzed [25]. Based on research from [4], [6], [7], [9], [28], and [29], common 

obfuscated IP header fields of interest include time-to-live (TTL), total length, and source 

and destination addresses. Common TCP header fields of interest include sequence 

number, acknowledgement number, and the options block, which affect the overall size 

of the TCP header. The default IP and TCP header fields are depicted in Figure 6. 

 

Figure 6.  Default IP and TCP header fields. Source: [30]. 

a. Low TTL Count 

Research by [13], [6], and [8] has observed a correlation between time-to-live 

(TTL), or hop-count, and the likelihood network traffic is spoofed or obfuscated. Further, 

as Kelly contends, by using the default operating system (OS) hop-counts and the average 

number of hops to traverse the Internet, it may be possible to determine probability of 

obfuscated traffic based on a lower TTL count [6].18 Default TTLs are 128 for Windows, 

                                                 
18 The TTL count of an IP packet is decremented by one by each routing device it passes through as it 

is routed to the destination. If the TTL count reaches zero, the packet will be dropped to prevent packets in 
an infinite loop.  
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64 for Linux, and 254 for Solaris-based operating systems.19 Additionally, testing by 

Wang et al. showed the average hop-count on the Internet varies by the top level domain 

(TLD) visited [8]. Using traceroute, Wang et al. observed the following average hop-

counts to TLDs:  

 .com: 11 hops 

 .edu: 4 hops 

 .org: 2 hops 

 .net: 12 hops 

From the TLD down to actual websites, the average hop-count on the Internet was 

observed between 14 and 19 hops with 16 and 17 being the most commonly observed 

hop-counts [8]. 

b. High RTT Time 

According to Syverson, users sacrifice some performance (increased overhead 

and bandwidth) for greater security due to Tor’s architecture and routing schema [5]. This 

is somewhat offset by way of high-bandwidth nodes, but the multiple layers of encryption 

used by Tor inevitably results in higher latency and round trip times (RTT) [6], [14]. 

Kelly argues that based on the increased time it takes a packet to traverse the Tor network 

and the routing required outside of the network, higher RTTs may be indicative of 

obfuscated traffic [6]. 

Kelly contends the RTT difference can be measured by calculating the disparity 

between the timestamps of two packets. Related packets can be identified by their 

reversed socket-pair and TCP sequence and acknowledgement numbers [6].20 This data 

can be extracted from a PCAP file produced by a NIDS. Shoukat et al. build on this idea 

observing a high correlation between TTL (hop-count) and RTT as shown in Figure 7 

                                                 
19 Default TTL values for most modern operating systems are available from https://subinsb.com/

default-device-ttl-values, accessed 13 October 2016. 

20 A TCP/IP socket is the combination of an IP address and TCP or UDP port. A socket pair is the 
unique combination of the sender and recipient sockets. 
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[28]. In a similar study, Claffy et al. observed a direct correlation between geographic 

separation and RTT (see Figure 8) [31].  

 

Figure 7.  Linear relationship between hop-count (TTL) and RTT. Source: [28]. 

 
The scale on the left signifies the density of observed RTTs 

Figure 8.  Linear relationship between geographical distance and RTT. 
Source: [31]. 
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c. Common Tor Packet Length 

Using a Bayesian network fingerprinting technique, Herrmann et al. observed that 

87.6 percent of Tor traffic exhibited a common packet size. In descending order of 

frequency, the most common Tor packet sizes are 1500, -52, -638, 52, 638, and 1150 

bytes. Within the common Tor packet sizes, positive values indicate server to client 

communication and negative values indicate communication from client to server. Figure 

9 shows the distribution of common Tor packet sizes. Herrmann et al. also contend that 

the remaining variations in observed packet sizes are caused by OS-specific 

fragmentation and that Tor’s variation in packet size provides an additional level of 

protection as the false positive rate (FPR) using packet length alone for identification of 

Tor traffic would be prohibitively high [7].  

 
Positive values indicate server to client communication and negative values indicate 
communication from client to server. 

Figure 9.  Common Tor packet size distribution. Source: [7]. 

d. High TCP Offset 

Kelly contends that obfuscated traffic is suspected to have a higher TCP offset 

value due to Tor communication stream identification [9]. In addition to the required 

blocks in the TCP header, [16] emphasizes Tor uses the options field to include 
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additional routing information not usually observed in standard network traffic. As a 

result, the value in the offset field is higher than typical to account for the additional 

routing information [9].21 To differentiate between obfuscated and normal network 

traffic, TCP payload offset values can be compared to determine offset deviation [9]. 

Figure 10 depicts a fully encapsulated packet portraying the locations of the TCP header 

and payload. If the additional TCP communication stream information is included in the 

TCP header, the payload will be physically shifted to the left to account for the extra 

header length. 

 

Figure 10.  Fully encapsulated packet depicting TCP header and payload location. 
Source: [33]. 

2. HTTP Flow Analysis 

Barker et al. observed a trend in HTTP and HTTPS flow sizes over the Tor 

network. By examining each TCP stream heuristically, packets three and five were shown 

to have a distinct size following the TCP three-way handshake.22 Specifically, HTTP and 

HTTPS flow packets three and five fell between 131 and 152 bytes and 914 and 936 

                                                 
21 The TCP offset field of the TCP header is called the data offset or header length (HL) as depicted in 

Figure 6. The TCP offset is the size of the TCP header in 32 bit words [32]. 

22 Forouzan defines a three-way handshake as, “A sequence of events for connection establishment or 
termination consisting of the request, then the acknowledgment of the request, and then confirmation of the 
acknowledgment.” The TCP three-way handshake follows the sequence defined by Forouzan using an 
exchange of packets between sender and destination with the following flags set: SYN, SYN-ACK, ACK 
[33]. 
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bytes, respectively [4]. Table 1 specifies the packet sizes for the HTTP and HTTPS flow 

through the Tor network as observed by Barker et al. 

Table 1.   Observed HTTP, HTTP over Tor, and HTTPS over Tor flow packet 
size. Source: [4] 

 
 

3. Entropy Based 

Due to Tor’s routing architecture, the receiving webserver sees the IP address of 

the exit node as the source IP for all packets [9], [16]. While research by Dingledine et al. 

focused on mitigating the third-party liability associated with running a Tor exit node by 
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way of exit policies [5],23 Kelly argues exit node characteristics can be used to identify 

obfuscated traffic [9]. Specifically, the relationship between the source IP and associated 

session identifier may be indicative of an active Tor session.24 Kelly’s proposed 

correlation is dependent on a static session ID with a varying source IP address, both of 

which are affected by the maximum duration for a Tor circuit, which [5] defines as 

maxcircuitdirtiness time. According to Syverson, by default, each Tor circuit is used for a 

maximum of 10 minutes; however, users have the option of creating a new circuit when 

desired [5].25 Another factor to consider is one from Greschbach et al. which shows that a 

Tor circuit remains open when at least one TCP stream is active, and the 

maxcircuitdirtiness timer resets each time a new stream is added [20]. 

4. Semantic Based 

Syverson states the distributed exit node list provides Tor clients the necessary 

information to build OR circuits and can also serve as a blacklist if someone wants to 

block access from the Tor network [5]. While the list of active Tor exit nodes is updated 

every hour, Kelly’s research found that of all detected Tor exit nodes (over 2,000), only 

half were listed on the distributed exit node list [6].26 Kelly’s finding affirms blacklisting 

Tor exit nodes is a necessary coarse filter but not sufficient for comprehensive detection 

of Tor traffic.  

D. OTHER OBFUSCATION TECHNOLOGIES 

Other obfuscation technologies similar to Tor make use of traditional Chaum 

mixes and the subsequent onion routing technologies based on its design. However, other 

technologies, such as protocol obfuscation, browser-based proxy websites, and decoy 

routing, use different methods to subvert censorship and gain access to the Tor network.  

                                                 
23 OR Entry and exit policies are used to allow organizations the ability to tailor traffic for users who 

have access to their onion routers [5]. 

24 The session identifier (sessionID) is used to identify and track all interactions between a browser 
and a webserver. Source: https://msdn.microsoft.com/en-us/library/
system.web.sessionstate.httpsessionstate.sessionid(v=vs.110).aspx, accessed 14 October 2016. 

25 The maxcircuitdirtiness time can be modified in torrc, the configuration file [12]. 

26 The hourly list of Tor exit nodes is available at https://collector.torproject.org/recent/exit-lists, 
accessed 13 Oct 2016.  
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1. Protocol Obfuscation  

When combined, protocol obfuscation and traffic morphing allows a user to 

choose a source process by selecting a target process or set of processes. Researchers 

Wright et al. contend target processes can emulate a variety of common network traffic 

such as VOIP calls, HTTP traffic, and different types of applications [34]. In their study, 

Wright et al. showed traffic morphing could be used to change the packet sizes of an 

entire HTTP session to that of a target session from a different site. Specifically, they 

showed a download from www.webmd.com could be altered or morphed to appear as a 

download from www.espn.com by altering packet sizes in real time with minimal 

overhead [34].  

SkypeMorph is an additional example of protocol obfuscation through traffic 

morphing. SkypeMorph obfuscates the communication between the client and the Tor 

network by using an established Skype call to conceal communication with an unlisted 

directory server or Tor bridge [35]. Tor bridges allow a client, who may be in an area that 

restricts access to the listing of known directory servers, to request the necessary 

information to create a Tor session without contacting a directory server [13]. Research 

by Moghaddam et al. has established that by using SkypeMorph, communication can be 

hidden in an established Skype video call with plausible deniability. This allows a client 

to subvert attempts to block access to the Tor network while appearing to communicate 

via Skype [35]. There are, however, some drawbacks to this method. Since high-speed 

communication is needed for video streaming, SkypeMorph uses UDP vice TCP to send 

information. As stated by Syverson et al., Tor traffic over UDP suffers from potential 

packet loss [5]. Further, [35] argues that since SkypeMorph uses only established video 

calls for communication, it is susceptible to constraints placed on bandwidth. The 

following obfuscation suites are offered, without detailed comparison, as other possible 

protocol obfuscation options: ScrambleSuite [36], Marionette [37], CensorSpoofer [38], 

and StegoTorus [39].  
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2. Browser-Based Proxy websites 

Similar to the attempts made to block Tor directory servers and bridges, 

organizational or regional entities often block access to proxies that allow users to 

circumvent attempts at censorship.27 Research by Fifield et al. offers a solution by way of 

browser-based proxy websites. To enable access, low bandwidth rendezvous protocols 

are used to provide a user with a list of available proxies. The proxies themselves are, 

ideally, innocuous volunteer websites outside the censored area. Each site agrees to place 

a small “Internet freedom” badge on its webpage (see Figure 11) [40]. 

 

Figure 11.  Internet Freedom badge enabling access to browser-based proxy 
services. Source: [40]. 

The flash proxies created by [40] are fairly short lived, surviving only as long as 

the user is visiting the volunteer site. The ultimate goal is for all communications to 

appear as normal web traffic with authorized sites. Figure 12 illustrates the client-to-Tor 

relay process using a browser-based flash proxy [40].  

                                                 
27 In 2009–2010 testing in Asia by the OpenNet Initiative found Burma, China and Vietnam had the 

most pervasive filtering of all tested Asian countries. The majority of the filtered content was independent 
media, politically sensitive or human rights information, and political reform sites [41].  
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Figure 12.  Simplified sequence of events from client to Tor relay using a 
browser-based flash proxy. Source: [40]. 

3. Decoy Routing 

Decoy routing is another method that can be used to subvert attempts to block a 

client’s access to the unauthorized content. Decoy routing differs from protocol 

obfuscation, traffic shaping, and browser-based flash proxies in that it is not designed to 

subvert attempts to block the Tor network. Instead, Karlin et al. contend that decoy 

routing is capable of avoiding traditional blacklisting techniques and can be used to allow 

client access to certain websites by way of decoy proxies [42]. To successfully 

circumvent traditional blacklisting, decoy routing leverages three foundational 

characteristics of the Internet. First, blacklisting routers is not feasible since their specific 

IP addresses are not included in the IP header information. Second, routing of packets on 

the Internet is federated, which leaves little routing control unless loose or strict source 
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routing is used.28 Lastly, a decoy router can be placed in the virtual path between the 

client and numerous destinations, allowing it to serve a larger number of clients [42].  

Karlin et al. describe the decoy routing process as follows. First, a client attempts 

to access an allowed website. Then, once the TCP handshake is complete, the client 

covertly signals to the decoy router to reroute the TCP flow to a decoy proxy. The decoy 

router communicates with the decoy proxy via the covert tunnel, which then accesses the 

blocked content (see Figure 13) [42]. 

 

Figure 13.  Decoy routing process from client to covert destination via a covert 
tunnel from the decoy router. Source: [42]. 

E. CONCLUSION 

Obfuscation technologies offer users the unique ability to disassociate themselves 

from their online activity. While some may innocently use this technology, others could 

choose to use it in a malicious or unauthorized manner. To that end, multiple studies have 

investigated vulnerabilities and the identifiable characteristics associated with obfuscated 

traffic. The data processing requirements used to detect and exploit these characteristics 

has varied from study to study, but all required some level of advanced analysis and 

computation.  

  

                                                 
28 When a circuit path is specified before any data is sent it is referred to as source routing. Source 

routing can either be strict or loose. In strict source routing, the path to the destination is explicitly defined 
and deviations are not allowed. Loose source routing is similar to strict source routing in that a path is 
specified, but differs because it allows deviations as long as every specified node is reached during 
transmission. 
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III. METHODOLOGY AND TESTING 

This research used a quantitative correlation approach to examine analysis 

techniques that could be used to identify low-latency obfuscated network traffic. To do 

this, real-world data was examined as it entered the network and analyzed using 

traditional network traffic analysis. This research approach and traffic analysis method 

systematically gathered data and allowed the examination of the relationships between 

characteristics associated with obfuscated traffic. Observing and defining each 

characteristic individually allowed for independent statistical analysis to determine its 

ability to function both as a single discriminator, and in a larger multi-attribute analysis 

model. During the multi-attribute testing, a Naive Bayes prediction model was used 

because of its ability to evaluate the data under the assumption that all variables are 

independent. As a result, the detection model tolerated individual characteristics with 

higher false-positive rates (FPRs) when attempting to detect obfuscated traffic. 

A. DATA GENERATION 

There are two ways to generate the necessary obfuscated traffic. The first is to use 

the Firefox-based Tor browser for all testing, and the second is to use a standard Firefox 

browser tunneled over an active Tor circuit.29 The latter is possible by configuring 

Firefox to use the Tor circuit created by the Tor browser as a proxy; this configuration 

was verified but was not used during testing.30 To generate non-obfuscated network 

traffic, a standard Firefox browser was used.31 To standardize the obfuscated and non-

obfuscated datasets, Selenium IDE, a Web browsing automation tool, was used to script 

browsing activity on the webserver.32 Selenium was configured to execute a series of 

HTML commands to simulate normal browsing activity.  

                                                 
29 http://www.wikihow.com/Use-Tor-With-Firefox provided step by step directions to manually 

configure Firefox to use an active Tor circuit. Accessed 15 November 2016. 

30 Manual proxy configuration is detailed in Appendix A. 

31 Baseline testing used Firefox browser version 50.0.1. 

32 Selenium IDE is a Firefox extension that is also compatible with the Tor Browser. A full description 
of Selenium IDE capabilities is available at http://www.seleniumhq.org/projects/ide/. 
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1. Baseline Data 

Baseline data were required to evaluate and determine the performance of each 

indicator prior to constructing the multi-attribute detection model. Based on the assumed 

data requirements, only one iteration of baseline testing was required and conducted in 

two phases: obfuscated and non-obfuscated. The first phase generated and collected Tor-

specific data, and phase two focused on non-Tor data. To collect the necessary amount of 

data, a combination of physical and virtual machines was used to gather 24 hours of Tor 

and non-Tor traffic, respectively. All data was written to Microsoft SQL database, and R-

Studio was used to conduct statistical analysis after both phases were complete. Data 

analysis with R-Studio sought to determine each indicator’s probability of detection. 

2. Assumptions 

To reduce the number of variables within the experiment, this research made the 

following assumptions. 

1. Users will not adjust default Tor browser settings in the torrc.config 
configuration file, specifically the default 10 minute maxcircuitdirtiness 
timer setting. 

2. Each hypothesized indicator will be observable in a dataset containing 24 
hours of Tor and non-Tor network traffic. 

3. Snort will log in real-time to Microsoft SQL database. 

B. VIRTUAL LAB CONFIGURATION 

The virtual lab environment was created on a Dell Power Edge R610 rack server 

running VMware ESXi 6.0.0. The server was configured with dual quad-core Xeon® 

E5620 2.4Ghz processors, 36GB of RAM, a RAID controller, and six 500GB hard drives, 

in a RAID 5 configuration. A Microsoft Windows 2012 R2 server was installed on one 

virtual machine and configured with the following software and services: 

 SharePoint 2010 

 Snort 2.9.2.2  

 Wireshark 2.2.2 

 Microsoft Internet Information Services (IIS) 8.5 
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 MSSQL 2014 

 LogParser 2.2 

 Active Directory  

The virtual lab was configured with an Internet-facing SharePoint page, which 

enabled testing and evaluation of obfuscated and non-obfuscated network traffic for a 

variety of popular operating systems. Snort, Wireshark, and IIS logs were used to analyze 

the data generated by the SharePoint page. Specifically, Snort and Wireshark conducted 

network traffic analysis in real-time, and IIS logged server-dependent variables such as 

authenticated usernames. Snort was configured to log directly in MSSQL; however, 

Microsoft LogParser 2.2 was required to transfer the text-based IIS logs into MSSQL.33 

Wireshark was used to capture and save all testing data into packet capture–next 

generation (pcap-ng) files for further forensic analysis. Active Directory was used to 

create individual accounts for testing. Figure 14 provides an overview of the virtual lab. 

 

Figure 14.  DarkNet virtual lab configuration. 

                                                 
33 Snort and LogParser configuration settings are provided in Appendix B.  
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C. OBFUSCATION INDICATORS 

This study used key attributes of four separate obfuscation indicators to determine 

whether network traffic was obfuscated. At an abstract level, the obfuscation indicators 

were referred to as a key cyber concepts (KCCs). Each KCC used either a pre-defined set 

of characteristics or an R-script to identify unique Tor and non-Tor attributes.34 After 

analysis, unique attributes were labeled as obfuscated threshold values (OTVs) and used 

during testing to filter network traffic before processing to increase the probability of 

detection. Although each KCC is capable of independent analysis, KCCs One through 

Three were used concurrently to determine whether Tor traffic was discernable from non-

Tor traffic within the multi-attribute prediction model. 

1. KCC One: Low TTL Count 

Using research by [6], [8], and [13], this research examined the time-to-live 

(TTL) field of the IP header to determine whether incoming traffic originated from Tor or 

routine network traffic. Further, since [43] observed that most Internet hosts are separated 

by no more than 30 hops, KCC One was tailored to examine the default TTL values for 

Linux (64) and Windows (128), which allowed sufficient separation between the initial 

hop counts during testing.  

a. Required Data  

All data required for KCC One was extracted from two separate Snort log tables 

located in MSSQL (see Table 2).35 

                                                 
34 Each pre-defined set of characteristics derived from the current body of research described in 

Chapter 2. 

35 Required data descriptions for KCCs One through Three derived from [32]. 
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Table 2.   Required low TTL count data fields and source databases. 

 
 

2. KCC Two: Common Tor Packet Sizes 

This research attempted to detect common Tor packet sizes during testing to 

validate the observations by [7] that 87 percent of Tor traffic exhibited a common packet 

size of 1500, -52, -638, 52, 638, and 1150.36 Additional Unique Tor and non-Tor packet 

sizes were also studied as both could be used as good discriminators in a multi-attribute 

decision model.  

a. Required Data  

Required data for KCC Two was extracted from two separate Snort log tables 

located in MSSQL (see Table 3).  

Table 3.   Required common Tor packet size data fields and source databases. 

 
 

                                                 
36 As described by [7], positive values indicate server to client communication and negative values 

indicate client to server. 

Data Field Source Table Description

timestamp Event (event) Specifies the time a packet was sent or received.

ip_src IP Header (iphdr) Specifies the IP address of the sending system.

ip_ttl IP Header (iphdr)
Counter that is decrimented everytime the datagram passes
through a network hop.

Data Field Source Table Description

timestamp Event (event) Specifies the time a packet was sent or received.

ip_src IP Header (iphdr) Specifies the IP address of the sending system.

ip_len IP Header (iphdr)
Specifies the total length of the entire packet in 32-bit
words.
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3. KCC Three: High TCP Offset 

Based on [9] and [16], this research assumed Tor traffic uses more TCP header 

options, which result in an observably higher TCP offset value than in non-Tor traffic. To 

verify the results of [9] and [16], this study analyzed the average TCP offset of Tor and 

non-Tor Web traffic to test whether it was possible to categorize each new instance of 

traffic into the webserver as either obfuscated or non-obfuscated. 

a. Required Data  

Data required for KCC Three was extracted from two separate Snort log tables 

located in MSSQL (see Table 4).  

Table 4.   Required TCP offset data fields and source databases. 

 
 

4. KCC Four: Known Tor Exit Node 

Torproject.org publishes its list of exit nodes hourly for node identification and 

blacklisting. Incorporating a coarse blacklist of Tor exit nodes can be a computationally 

efficient first step for identifying Tor traffic; this information is also useful for identifying 

exit nodes not on the published list. As a result, KCC Four was used as a blacklist to 

verify whether any network traffic originated from a known Tor exit node, which would 

indicate it was obfuscated.  

Data Field Source Table Description

timestamp Event (event) Specifies the time a packet was sent or received.

ip_src IP Header (iphdr) Specifies the IP address of the sending system.

tcp_off TCP Header (tcphdr)
The size of the TCP header in 32-bit words which indicates 
the starting point of the payload data.
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a. Required Data 

Data required for KCC Four was extracted from two separate Snort log tables 

located in MSSQL (see Table 5). Although not used, the data required was also logged 

and available in the Microsoft IIS logs. 

Table 5.   Required Tor blacklisting data fields and source databases. 

 
 

D. MULTI-ATTRIBUTE DECISION MODEL 

Each KCC is capable of predicting the conditional probability that network traffic 

is obfuscated alone or in any combination to reduce both the FNR for Tor and FPR for 

non-Tor traffic. The multi-attribute model was used in an attempt to decrease the FPR by 

flagging packets which exhibit more than one of the possible attributes. To do this, the 

multi-attribute decision model uses a Naive Bayes classifier to accurately measure the 

cumulative conditional probability between each KCC. Figure 15 provides an overview 

of a simple Naive Bayes analysis two indicators and Figure 16 illustrates the multi-

attribute decision model as a Venn diagram. 

Data Field Source Table Description

timestamp Event (event) Specifies the time a packet was sent or received.

ip_src IP Header (iphdr) Specifies the IP address of the sending system.
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Figure 15.  Notional multi-attribute decision model using Naive Bayes analysis. 

 

 
Packets present in the lower hemisphere have a higher probability of obfuscation. The 
probability of obfuscation increases if packets exhibit more than one attribute. 

Figure 16.  Simplified Venn diagram illustrating the probability of obfuscation 
based on two attributes. Source: [44]. 

E. CONCLUSION  

Using traffic analysis is a simple approach capable of identifying unique 

characteristics present in a TCP/IP network traffic dataset. Those characteristics can then 

be used as a queue for advanced analysis or any other administrator-defined process. This 
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study also sought to increase compatibility across different networks by using 

commercial off-the-shelf (COTS) hardware and software suites throughout the testing 

and analysis. Further, examining and testing each indicator with R-script and Naive 

Bayes prediction models allows maximum flexibility when replicating this research or 

applying it to real-world networks and applications. 
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IV. DATA ANALYSIS AND RESULTS 

A. DATA ANALYSIS 

Analysis of 702,376 unique packets of Tor and non-Tor data showed distinct 

attributes for all indicators, or key cyber concepts (KCCs), which were viable 

discriminators in a multi-attribute analysis model.37 Before using the observations in a 

multi-attribute analysis model, each KCC was individually tested both with and without 

filtering for packets exhibiting the observed attributes to determine its ability to discern 

Tor traffic. The testing was conducted in two ways. First, using the list of attributes as a 

pre-filter, the datasets were filtered to include only those rows that exhibited the observed 

attribute, and second, the datasets were evaluated in their unfiltered states. After 

individual testing, each KCC’s attributes were applied in a multi-attribute analysis model 

in an effort to increase the probability of detecting Tor traffic. Similar to the individual 

testing, the model evaluated filtered and unfiltered datasets. The R-script used for 

evaluation and testing appears in Appendix D.  

1. KCC One: Low TTL Count  

Analysis showed 56 unique IP time-to-live (TTL) values present in Tor traffic and 

77 unique TTL values present in non-Tor traffic. Interestingly, most Tor TTL values 

were concentrated between 30 and 60 with very few observations above 100. In contrast, 

non-Tor TTL values were also observed between 30 and 60, but many exhibited a value 

above 60, albeit in lower quantities (see Figure 17).  

                                                 
37 Both the Tor and non-Tor dataset were comprised of 351,188 unique rows of data. 
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Figure 17.  Density of Tor and non-Tor TTL values 0–250. 

The observed Tor TTL characteristic is consistent with the default operating 

system TTL count of 64, which is normally attributed to Linux-based systems. According 

to Tor exit node data from January 2017, Linux-based operating systems accounted for 

91.3 percent of all Tor exit nodes.38 Figure 18 illustrates the observed concentration of 

Tor TTL values under 60 compared to non-Tor traffic. Notable concentrations were 

observed in Tor traffic at 44, 45, 46, 47, 48, 49, 50, 52, 53, and 54 while non-Tor IP TTL 

values were concentrated at 51, 57, 116 and 128. Confirming these unique TTL values 

enables their use as discriminators in both single and multi-attribute analyses. 

                                                 
38 Tor exit node OS data is available from http://torstatus.blutmagie.de/index.php, accessed 18 January 

2017. 
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Figure 18.  Concentration of Tor and non-Tor TTL values 30–60.  

Further analysis examined the mean and standard deviation of both datasets. 

While the mean and standard deviation may not solely detect obfuscated activity, they 

can be used to quantify the overall heuristics of Tor and non-Tor traffic. The calculated 

mean and standard deviation of Tor traffic and non-Tor support are provided in Table 6. 

Of note, Tor’s calculated mean and standard deviation support the assertion that most exit 

nodes are using Linux-based operating systems with a default initial TTL value of 64.  

Table 6.   Observed IP TTL mean and standard deviation. 

 
 

2. KCC Two: Common Tor Packet Size 

Analysis of Tor and non-Tor packet sizes began by examining the data to test the 

results of [7], who observed common Tor traffic IP packet sizes of 52, 638, 1150, and 

1500. However, after analysis, Tor packets were observed only at sizes 52 and 1500 and 

accounted for 54.5 percent of all Tor packet sizes. However, additional analysis observed 

a low number of Tor and non-Tor packets with a size of 1500 and a very high number of 

IP Time-To-Live Tor Non-Tor

Mean 50.68 74.34

Standard Deviation 16.95 32.09



 42

both exhibiting a packet size of 52. Specifically, packet size 52 accounted for 52.1 

percent of all combined Tor and non-Tor traffic, and packet size 1500 accounted for only 

0.4 percent of the same dataset. Thus, solely using packet sizes of 52 and 1500 will not 

serve as a good discriminator in either single attribute or multi-attribute analysis. 

Additional examination of the entire range of packet sizes 40–1500 showed 

approximately 77.3 percent of all Tor and non-Tor traffic exhibited packet sizes of 40 and 

52. Specifically, 81.4 percent of Tor traffic and 73.2 percent of non-Tor packets exhibited 

either a packet size of 40 or 52. As a result, identifying Tor and non-Tor traffic using 

packet sizes 42 and 50 was a statistical coin flip. In the remaining traffic, additional 

packet sizes were manually reviewed to discern which ones could be used as effective 

discriminators. Unique Tor packet sizes were observed at 638, 1150, and 1500, and 

unique non-Tor packet sizes were observed at 41, 64, 127, 254, and 713 (see Figure 19). 

Since the unique TCP offset values were only observed in a small number of packets, 

multi-attribute analysis would likely be more effective than single attribute analysis at 

detecting Tor traffic. 

 
Packets with a size of 52 were included to illustrate the small number of unique packet 
sizes observed. Of note, packet lengths 127 and 254 were not observed in the set of 
known Tor IP packets. 

Figure 19.  Unique Tor and non-Tor IP packet sizes. 
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Similar to the observations for IP TTL, Tor IP packet sizes exhibited a lower 

mean and less deviation than non-Tor packets. This may suggest the Tor network 

fragments the packets into a lower number of small packets sizes; however, based on the 

size of the dataset and the small disparity between the observed mean and standard 

deviations, additional analysis is recommended (see Table 7). 

Table 7.   Observed IP packet size mean and standard deviation. 

 
 

3. KCC Three: High TCP Offset 

Analysis showed that 92 percent of Tor packets and 92.6 percent of non-Tor 

packets exhibited a TCP offset value of either 5 or 8 (see Figure 20). Based on this 

observation, only TCP offset values greater than 9 could be viable discriminators 

between Tor and non-Tor traffic. 

 
In both Tor and non-Tor traffic, an offset value of 8 was the most common value between 
5 and 15. 

Figure 20.  Tor and non-Tor TCP offset density values 5–15. 

IP Packet Length Tor Non-Tor

Mean 103.5 122.7

Standard Deviation 202.26 215.79
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In examining only the data with TCP offset values greater than 9, offset values of 

10, 12, 13, 14, and 15 were observed in approximately 5.6 percent of Tor packets while 

the same values were observed in only 2.7 percent of non-Tor packets. Further analysis 

showed that a TCP offset value of 11 was present in 4.6 percent of non-Tor packets as 

compared to only 2.2 percent of Tor packets. Combined, TCP offset values greater than 9 

represented 7.4 percent of all Tor and non-Tor packets (see Figure 21). Similar to the 

assumptions made after examining IP packet length, using unique TCP offset values 

represents such a small amount of the overall dataset that they may be more effective 

when used in multi-attribute analysis. 

 

Figure 21.  Tor and non-Tor TCP offset values 9–15. 

Unlike the characteristics observed with the IP TTL and packet length, there was 

very little difference between the mean and standard deviation of Tor and non-Tor 

packets. Both exhibited a nearly identical mean of 7.4 and only showed minimal 

separation between their standard deviations (see Table 8). This suggests the additional 

TCP header data required by Tor has a negligible effect on the overall TCP offset. 
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Table 8.   Observed TCP offset mean and standard deviation. 

 
 

4. KCC Four: Known Tor Exit Node 

To verify the accurate coverage of the distributed Tor exit node list, this research 

used R-script to identify unique IP addresses in both Tor and non-Tor datasets separately. 

The unique rows were then compared to a listing of known Tor exit nodes active during 

the testing period. Results showed 1,218 unique Tor IP addresses, 2,091 unique non-Tor 

IP addresses, and 1,106 unique Tor exit node IP addresses. Each set of unique addresses 

was compared to identify intersections, or collisions, with the other datasets. 

Interestingly, there were only 178 intersections between the known Tor IP address dataset 

and the known Tor exit node dataset. This number accounted for only 14.6 percent of the 

source IP addresses in the known Tor dataset. Based on these results, this study has 

replicated the observations by [9] that a majority of known Tor traffic did not originate 

from a published exit node during the testing period. Further comparisons showed zero 

intersections between the known Tor exit node dataset and known non-Tor dataset. Based 

on these two data points, when packets originate from a known Tor exit node, they are 

obfuscated.39 

5. Inter-Attribute Correlation 

Analysis of KCCs One through Three resulted in the identification of common 

characteristics shared by Tor traffic. However, this study also observed that each packet 

is not likely to exhibit all traits at the same time. To measure the inter-attribute 

correlation, three filters were used.  

                                                 
39 Of note, there were 96 intersections between the Tor and non-Tor IP address datasets and accounted 

for 2.9 percent of the total unique IP addresses; this was likely due to non-Tor addresses accessing the 
Internet-facing website during Tor testing. 

TCP Offset Tor Non-Tor

Mean 7.43 7.41

Standard Deviation 2.09 1.89
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1. Filter one selected only packets that exhibited a TTL between 43 and 60, 
with the exception of packet sizes 52, 56, or 57. 

2. Filter two selected only packets that exhibited a TCP offset value of 10, 
11, 12, 14, or 15. 

3. Filter three selected only packet sizes 41, 52, 64, 127, 254, 713, or 1500.  

Figure 22 illustrates the negligible inter-attribute correlation among the first three 

KCCs after the filters were applied. The correlation among attributes is indicated using 

decimal values in the upper right and the red lines contained in the boxes on the lower 

left corner of the plot. The extremely low decimal values and horizontal red lines indicate 

very little to no correlation among the attributes examined. However, based on the 

limited size of the dataset, correlation among the studied variables cannot be entirely 

discounted. 

 

Figure 22.  Filtered inter-attribute correlation of KCCs One through Three. 
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B. SINGLE ATTRIBUTE ANALYSIS 

Each KCC was assessed to determine its ability to discern Tor from non-Tor 

traffic. For single attribute analysis, Tor and non-Tor datasets were differentiated with a 1 

or 0, respectively, in an additional column. After the datasets were marked, they were 

combined and analyzed using R-script to determine the probability of correctly 

identifying Tor traffic. 

1. KCC One  

The known Tor dataset was evaluated with and without filtering for common Tor 

IP TTL characteristics. After filtering and analysis, an empirical misclassification rate of 

39.1 percent was observed when filtering for TTL values between 43 and 60, with the 

exception of packet sizes of 52, 56, or 57; the unfiltered dataset returned a 

misclassification rate of 20.4. The unfiltered misclassification rate was lower likely due 

to the inclusion of TTL values above 64, which are not likely to originate from a known 

Tor exit node. Based on the results observed, KCC One could be an effective coarse 

indicator of Tor traffic. Figure 23 illustrates the probability of evaluated packets being 

Tor based on IP TTL. 

 
The left plot is filtered to examine only packets with a TTL value between 43 and 60, 
with the exception of packets sizes 52, 56, or 57; the right plot is unfiltered. 

Figure 23.  Classification probability of Tor traffic based on IP TTL.  

Classification Probability with TTL Filter Classification Probability without TTL Filter
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2. KCC Two 

The known Tor dataset was evaluated with and without filtering for common Tor 

IP packet size characteristics. Both the unfiltered dataset and the filtered dataset 

containing only packet sizes of 41, 52, 64, 127, 254, 713, or 1500 both resulted in an 

empirical misclassification rate of 47 percent. Based on the observed results, KCC Two 

would likely be an ineffective detector of Tor traffic when used alone. The results suggest 

that discerning Tor from non-Tor traffic would be a statistical coin flip. While Tor traffic 

did exhibit some unique packet sizes, the number of common Tor and non-Tor packet 

sizes far exceeds the number of unique sizes. Figure 24 illustrates the probability of 

evaluated packets being Tor based on IP packet size.  

 
The left plot is filtered to examine only packet sizes size of 41, 52, 64, 127, 254, 713, or 
1500; the right plot is unfiltered. The shaded area in the plot indicates the 95 percent 
confidence range of probability for any given value on the x-axis. 

Figure 24.  Classification probability of Tor Traffic based on IP packet size. 

3. KCC Three 

The known Tor dataset was evaluated with and without filtering for common Tor 

TCP offset values. An empirical misclassification rate of 37.9 percent was observed when 

filtering for TCP offset values between 10 and 15, with the exception of 13; the unfiltered 

dataset returned a misclassification rate of 50.8 percent. Based on the observed results, 

KCC Three could be used a coarse indicator of Tor traffic. Figure 25 illustrates the 

probability of evaluated packets being Tor based on TCP offset. 

Classification Probability with Packet Size Filter Classification Probability without Packet Size Filter
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The left plot is filtered to examine only packets exhibiting a TCP offset greater than 9; 
the right plot is unfiltered. The shaded area in the plot indicates the 95 percent confidence 
range of probability for any given value on the x-axis. 

Figure 25.  Classification probability of Tor traffic based on TCP offset 
characteristics. 

C. MULTI-ATTRIBUTE ANALYSIS 

Ten tests were conducted to test the effectives of the multi-attribute analysis using 

the observed characters of KCC One through Three.40 First, a Naive Bayes prediction 

model was trained with a combined dataset in two different ways: filtered by the 

observed characteristics and entirely unfiltered. The filtering was conducted in three 

configurations: first, by IP TTL, IP Packet Size, and TCP offset; second, by IP TTL and 

IP packet size; and third, by IP TTL only. Each filter used the observed threshold values 

(OTVs) detailed in the previous section of this chapter. After filtering, each Naive Bayes 

model used all three variables to analyze filtered and unfiltered test datasets.41  

1. Baseline Testing 

To establish a performance baseline, Naive Bayes analysis was conducted using 

an entirely unfiltered training and test set. The test resulted in a false-negative rate (FNR) 

of 6.2 percent for Tor traffic and non-Tor false-positive rate (FPR) of 60.4 percent (see 

Table 9). While the observed FPR was prohibitively high, the data were not filtered 

                                                 
40 KCC Four was excluded from the multi-attribute analysis because of the observations during 

analysis that when traffic originates from a Tor exit node it is most likely Tor. 

41 The test dataset was filtered with the same filter used to train the Naive Bayes classifier. 

Classification Probability with TCP Offset Filter Classification Probability without TCP Offset Filter
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before analysis. As a result, Tor and non-Tor packets not exhibiting the observed 

common Tor characteristics were included in the analysis.  

Table 9.   Naive Bayes unfiltered training and unfiltered test results. 

 
 

2. Filtered Training  

With baseline testing complete, each follow-on test used identical datasets to 

standardize the results. Using three pre-filter variations, the observed FPR for non-Tor 

ranged from 94.4 percent to 7.2 percent, and the observed FNR for Tor ranged from 61.3 

percent to 1.6 percent. Interestingly, the tests that used more filters performed poorly.42 

The best performing test used only the IP TTL to filter the datasets and reduced 

their overall size by approximately 55.6 percent. Specifically, 36 percent of Tor packets 

and 53.3 percent of non-Tor packets were removed by the filters.43 The training set’s 

initial a priori probability was 72.4 percent for Tor and 27.6 percent for non-Tor traffic. 

After analysis, the IP TTL–filtered test resulted in an FPR of 7.2 percent for non-Tor and 

an FNR of 8.7 percent for Tor (see Table 10). However, by manually accounting for the 

31,558 known Tor packets excluded by the filter the overall FNR for Tor increased to 

roughly 41.5 percent. The FNR could be reduced by examining the data by source IP 

rather than by packet-by-packet analysis. 

                                                 
42 Results of all Naive Bayes multi-attribute tests is provided in Appendix C. 

43 Before filtering, there were 87,796 Tor packets and 83,795 non-Tor Packets present in the test 
dataset. The filter removed 31,558 known Tor and 44,646 non-Tor packets from the original test dataset. 

Unfiltered Training and 
Unfiltered Test

Tor Non-Tor

Packets Classified Correctly 82376 33162

Packets Misclassified 5420 50634

False Positive Rate 60.4%

False Negative Rate 6.2%
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Table 10.   Naive Bayes IP TTL filtered training and test results. 

 
 
 

The next best overall results were observed using the same IP TTL filter on the 

training set but evaluating an entirely unfiltered test set. This test observed an FPR of 21 

percent for non-Tor and an FNR of 20 percent for Tor traffic (see Table 11). While these 

results were significantly higher than in the preceding test, no Tor packets were filtered 

before analysis resulting in an 80 percent probability of detection.  

Table 11.   Naive Bayes IP TTL filtered training and unfiltered test results. 

 
 

D. CONCLUSION 

The study of each KCC did result in either the confirmation of previously 

observed indicators or in new identifiable characteristics. Furthermore, because this study 

focused on identifying Tor traffic, defined filters were capable of removing packets that 

Filtered Training and Filtered 
Test

Tor Non-Tor

Packets Classified Correctly 51353 36343

Packets Misclassified 4885 2807

False Positive Rate 7.2%

False Negative Rate 8.7%

Filtered Training and 
Unfiltered Test

Tor Non-Tor

Packets Classified Correctly 70218 66211

Packets Misclassified 17578 17585

False Positive Rate 21.0%

False Negative Rate 20.0%
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did not exhibit the observed common characteristics of Tor traffic. While this did filter 

out over half of the known non-Tor packets, it also removed almost 36 percent of the 

known Tor packets which resulted in an adjusted FNR on the first test. In the second best 

performing test, error rates were roughly 20 percent for both Tor and non-Tor traffic. 

Although the observed FNR and FPR were high, use of this type of analysis on a network 

in real-time could result in a reduction of Tor traffic by approximately 80 percent—

significantly reducing the overall threat level. 

 

 

 

  



 53

V. CONCLUSION 

Obfuscation technologies have evolved into a vast network capable of providing 

on-demand obfuscation services world-wide. Further, the anonymity provided by 

obfuscation technologies, such as Tor, allows users to disassociate themselves from their 

online activity. While this can be used for legitimate purposes, it can also be used to mask 

the origin of malicious activity. As a result, the amount of obfuscated traffic, malicious or 

otherwise, on private and DOD networks is unknown. While there have been numerous 

studies conducted to identify new ways to detect obfuscated traffic, this study focused on 

detecting the popular obfuscation service Tor using a simple approach. Using simple 

network traffic analysis techniques to detect and discern Tor from non-Tor traffic extends 

the compatibility of this study’s approach with any network or server capable of 

monitoring incoming traffic. By implementing the observations in this study, the threat to 

DOD networks from Tor traffic can be reduced by at least 80 percent.44 

A. RESULTS 

This study used multiple clients with different operating systems to generate two 

sets of network traffic—Tor and non-Tor. Each set of traffic was analyzed using R-script 

to identify unique traits or characteristics. After analysis, each trait was tested to 

determine its ability to detect Tor traffic in a mixed dataset; this resulted in a 53 to 62.1 

percent probability of correctly classifying Tor traffic. To improve the single-attribute 

probability, this study used a Naive Bayes multi-attribute prediction model on the same 

mixed dataset. To test the ability of each unique characteristic to pre-filter the mixed 

dataset, three separate filters were created. The filters were used to reduce the number of 

IP packets that did not exhibit the typical Tor characteristics observed in the experiment’s 

dataset. The best results were observed using only IP TTL characteristics to filter the 

dataset. After filtering and analysis, IP TTL filtering resulted in a true-positive rate (TPR) 

                                                 
44 Naive Bayes analysis of an IP TTL filtered training set and an unfiltered test set resulted in a TPR of 

approximately 80 percent for Tor traffic. Because the analysis was run on an unfiltered test set, no known 
Tor packets were filtered before analysis. 
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of 91.3 percent for Tor traffic and a false-positive rate (FPR) of 7.2 percent for non-Tor 

traffic.  

While filtering the dataset improved the TPR and FPR, it also inadvertently 

removed known Tor packets from the multi-attribute analysis. Adjusting for the known 

Tor packets removed by the IP TTL filter decreased the TPR from 91.3 to 58.5 percent. 

Though the adjusted TPR may appear prohibitively low, it could be improved by 

examining the network traffic by source IP rather than packet by packet. This approach 

could examine entire groups of packets and increase the probability of detection, as the 

overall group of activity from a single IP would be less affected by filtering.  

B. FUTURE RESEARCH 

Based on the observations in this study, Tor traffic likely exhibits additional 

unique characteristics that could be identified using network traffic analysis. The study 

focused on data and traits that could be derived with little to no additional calculations 

other than the packet information logged in Snort. However, by examining the data for 

characteristics exhibited over multiple packets or an entire session, additional indicators 

should be identified for use in a multi-attribute analysis model. This study proposes three 

additional indicators of Tor traffic as well as a way to process and detect that activity in 

real-time.  

1. High RTT  

Based on Tor’s geographically dispersed architecture and routing schema, this 

research hypothesized that the same linear correlation between geographic distance and 

round-trip time (RTT), as observed by Claffy et al. [31], would be present in Tor traffic. 

While this study observed that a majority of known Tor exit nodes use Linux-based 

operating systems, it is also possible the IP TTL values of Tor traffic are lower overall 

because of the additional hops required by the active Tor circuit. However, leveraging the 

IP TTL observations of this study, the high RTT could be used as an additional 

discriminator in multi-attribute analysis. 
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2. HTTP Flow Analysis 

Based on observations by Barker et al. [4], it is possible to identify Tor traffic 

streams using the packet length of HTTP flow packets three and five. However, this 

research proposes there is a sufficient separation between the sizes for flow packet three; 

this separation could be used as an additional discriminator in multi-attribute analysis. To 

verify the results of [4], Tor and non-Tor HTTP flow packet sizes could be compared to 

determine whether such a separation exists. 

3. Varied Source IP 

Building on work by Kelly [9], it may be possible to identify Tor traffic by 

monitoring for a IP address change from an authenticated user during a session. 

According to Syverson [5], an active Tor session constructs a new circuit when the 10-

minute maxcircuitdirtiness time expires.45 This construction should result in a different 

exit node, which the server views as a change to the client’s IP address. If a client has an 

exit node that continually shifts every 10 minutes, that may indicate the use of an active 

Tor circuit. If proven, varying source IP could be used in as a discriminator in multi-

attribute analysis. 

4. Vector Relational Data Modeling 

To facilitate real-time detection, this study proposes use of a vector relational data 

model (VRDM) approach. Proof-of-concept experiments by Kelly [6] and Seng [45] were 

successful at detecting malicious activity from users by examining their overall behavior 

rather than through packet-by-packet analysis. Both of these studies used a VRDM multi-

criteria decision model with pre-defined sets of indicators, or metarules, to detect 

malicious activity.46 To ensure non-malicious traffic was not incorrectly marked because 

it met the requirement of a metarule, both studies used an accumulator as a central 
                                                 

45 By default, each Tor circuit is used for a maximum of 10 minutes; however, users have the option of 
creating a new circuit when desired [5]. 

46 According to Seng, metarules are not dependent on data patterns but use relationships among 
conceptual components to deduce meaning. For example, BBNM metarules are: “If an Actor is bad, then 
all its Sessions are bad,” “If a Session is bad, then all its Behaviors are highly threatening,” and “If a 
Session is bad, then the Actor is bad.” In short, metarules are used to infer intent similarly in the way a 
human analyst would think [45]. 
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decision engine capable of taking inputs from each metarule. The proposed accumulator 

model is provided in Appendix E.  

5. Real-Time Detection Axioms  

Detecting Tor traffic using network traffic analysis in real-time will require a 

different evaluation and detection approach. This study proposes the use of detection 

axioms to simplify information flow and programming in a real-time detection model. 

Each axiom should be capable of breaking down the basic input/output requirements and 

decision points during each step. Proposed axioms for the common Tor characteristics 

examined during this study as well as future work recommendations are provided in 

Appendix E.  

C. FINAL THOUGHTS 

From start to finish, this study was intellectually stimulating and required 

continual, in-depth research into multiple disciplines. Construction of the testing 

infrastructure proved more complex due to interoperability and communication 

requirements within the system. Integrating multiple software suites from different 

manufactures required additional considerations. After the final datasets were generated, 

analysis with R-script seemed a logical next step. While R provided a robust data analysis 

toolset, it required countless hours of research and testing to achieve a beginner level of 

proficiency. Developing a functioning R-script capable of accurate and efficient 

evaluation required multiple iterations of testing, tuning, and retesting. In the end, the 

virtual lab, and analysis with R-script provided a concrete foundation to test the theories 

put forward by this body of research. 
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APPENDIX A. MANUAL FIREFOX PROXY CONFIGURATION 

There are two main steps required to configure Firefox to use an active Tor 

circuit. First you must have the Tor browser open to establish the circuit, and second you 

must manually enter the required manual proxy data into Firefox. To access the required 

proxy settings, open Firefox, go to Open Menu, next select “Options,” then “Advanced,” 

select the “Network” tab, click on “Settings,” and select “Manual proxy configuration” 

radio button. Next, enter “127.0.0.1” into the SOCKS Host field, and “9150” into the port 

field. Lastly, select the “Remote DNS” radio button if it has not already been selected. 

Figure 26 illustrates the manual configuration.  

 

Figure 26.  Required Firefox manual proxy configuration settings to proxy over an 
active Tor circuit.  
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Once completed the manual proxy settings have been completed, navigate to 

check.torproject.org to verify whether Firefox is using an active Tor circuit (see Figure 

27).47 While this configuration works, a drawback is that the Tor browser must be kept 

open to maintain the connection to the Tor network; otherwise, “no proxy” must be 

selected in the Firefox advanced settings to access the Internet.  

 

Figure 27.  Successful Firefox manual proxy over Tor. 

 

                                                 
47 http://www.wikihow.com/Use-Tor-With-Firefox provided step by step directions to manually 

configure Firefox to use an active Tor circuit. Accessed 15 November 2016. 
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APPENDIX B. SNORT AND LOGPARSER 2.2 CONFIGURATION 

A. SNORT  

Following configuration steps by [6], Snort 2.9.2.2 was installed and configured 

to operate in IDS mode on the DarkNet web server. We used a windows batch script to 

run Snort as a packet sniffer and modified the snort.conf file to log all information into 

the local MSSQL server for storage and analysis. To successfully log all packet 

information to MSSQL, Snort natively provides the necessary SQL code to build the 

required tables; this code is located in c:\snort\schemas\create_mssql.sql.  

1. MSSQL Logging 

Eight steps are required to configure Snort to log all information in MSSQL. As 

detailed by [6], the eight steps are as follows: 

1. Open a “new query” window in MSSQL Sever Management Studio and 
enter the following lines: 

2. Create database snort_db 

3. Go 

4. Use snort_db 

5. Go 

6. Copy and paste the contents of the create_mssql.sql file into the query 
window.  

7. Execute 

8. Grant all database permissions to the snort user.  

2. snort.conf Configuration 

After the script successfully generates the required tables in MSSQL, enable 

logging by entering the following into the snort.conf: 

output log_tcpdump: /Snort/log/tcpdump.log 
output database: log, mssql, user=snort password=snort 
dbname=SNORT host=DARKNETGINA\DARKNETSQL encoding=ascii 
log IP any any -> any any 
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3. Windows Batch File Configuration 

Once the snort.conf file is updated, create a windows batch file to run Snort in 

IDS mode in the background while executing the custom snort.conf file. Once manually 

executed, the batch file opens a windows command shell and prints the verbose details of 

all packets observed. The batch file we created, snort.bat, contains the following line and 

needs to be manually started: 

c:\Snort\bin\snort -i 1 -vd -c c:\snort\etc\snort.conf 

B. LOGPARSER 2.2 

On the DarkNet web server, W3C logging was used to capture client-specific 

information not logged by Snort. The problem, however, is that W3C records all logs in 

text format, but IIS is not configured to automatically write these logs to MSSQL. 

Microsoft LogParser 2.2 was used to bridge the gap between the W3C logs and MSSQL. 

LogParser is capable of moving the logs from their native text format into MSSQL (or 

many other formats). However, it does have limitations. It must be manually executed 

each time the logs are parsed, and it will only parse data that is both defined in the script 

and present in the logs. The latter is problematic since Microsoft IIS and W3C logging do 

not write a globally unique identification (GUID) field to the logs. It is possible, 

however, to write in a placeholder that allows the LogParser to write the data from the 

logs and permit MSSQL to assign a searchable identity to each row. Two scripts are 

required to properly use LogParser in our configuration. The first is designed to create the 

database and executed only once. The second is used to periodically run the parser.  

1. LogParser 2.2 MSSQL Database Creation 

The first script is designed to create a database in MSSQL called “ParsedIISLogs” 

and subsequently parse any log data at the same time. Specifically, the script parses the 

time, server IP addresses, server ports, client IP addresses, authenticated usernames, 

client user-agent strings, and the time taken by the web server to complete a request. The 

following script only needs to be run once to create the table:  
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logparser -i:IISW3C -o:SQL -server:DARKNETGINA\DARKNETSQL -
database:DARKNETIIS -driver:”SQL Server” -username:<username> -
password:<password> -createTable:ON “SELECT date AS Date, time AS 
Time, s-ip AS ServerIP, s-port AS ServerPort, cs-username AS Username, 
c-ip AS Client, cs(User-Agent) AS UserAgent, time-taken as TimeTaken 
INTO ParsedIISLog FROM C:\inetpub\logs\LogFiles\W3SVC1001830619\
u_ex*.log”  

2. LogParser 2.2 On-Demand Parsing 

After the first LogParser script successfully executes, the second script pulls new 

data from the defined log(s) and writes them to the “ParsedIISLogs” database. To ensure 

only new data is written to MSSQL when executed, the following script creates a 

checkpoint where the last data was imported from; the script is run manually, as needed. 

logparser -i:IISW3C -o:SQL -server:DARKNETGINA\DARKNETSQL -
database:DARKNETIIS -driver:”SQL Server” -username:<username> -
password:<password> -ignoreIdCols:on -icheckpoint:MyCheckpoint.lpc 
“SELECT date AS Date, time AS Time, s-ip AS ServerIP, s-port AS 
ServerPort, cs-username AS Username, c-ip AS Client, cs(User-Agent) 
AS UserAgent, time-taken AS TimeTaken INTO ParsedIISLog FROM 
C:\inetpub\logs\LogFiles\W3SVC1001830619\u_ex*.log”  

Although not visible in the on-demand parsing script, the table created by the first 

script has to be modified to allow MSSQL to add a GUID field after the data has been 

parsed into the database. What is included in the on-demand parsing script is the “-

ignoreIdCols:on” option. This tells the log parser to write to the defined columns and 

ignore any other columns as long as they are configured as identity elements. To 

configure the identity element and add the GUID field without errors, the identity 

element must be manually added to the MSSQL table.48 The identity element allows data 

from the IIS logs to be parsed while ignoring the additional unique identification data 

field not present in the on-demand parsing script. The identity field requires two defined 

characteristics to run properly. First, it must be configured with “int” as the datatype, and 

second, it needs to be defined as an identity element (see Figure 28). 

                                                 
48 Information used to configure LogParser 2.2 and identity rows can be accessed at 

https://www.simple-talk.com/sql/sql-tools/microsofts-log-parser-utility-swell-etl/. Accessed 18 November 
2016. 
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Figure 28.  Table configuration required to allow MSSQL GUID assignment after 
data is Parsed by LogParser 2.2. 
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APPENDIX C. NAIVE BAYES MULTI-ATTRIBUTE TESTING 
RESULTS 

A total of nine Naive Bayes multi-attribute tests were conducted on both filtered 

and unfiltered datasets. Each dataset was filtered using the same criteria as the test set 

during each test. Testing consisted of three main tests focused on evaluating the dataset 

based on a set of pre-filters. The first test, examined Naive Bayes performance filtering 

the dataset using common Tor IP TTL, packet size, and TCP offset values. The second 

test analyzed a dataset filtered to include only packets exhibiting common Tor IP TTL 

and TCP offset, and the third test examined only packets exhibiting common Tor IP TTL 

values. The three main tests examined the performance of their respective filters on three 

separate sub-tests. First, on a filtered training and test set, next on a filtered training and 

unfiltered test set, and finally on an unfiltered training and filtered test set. Of note, the 

calculated FNR for Tor is a result of the Naive Bayes classification only and is not 

adjusted for the amount of Tor packets removed from the dataset by filtering.  

A. MULTI-ATTRIBUTE TEST ONE 

Multi-attribute test one examined the performance of the Naive Bayes classifier 

using three filters. Filter one selected only packets which exhibited a TTL between 43 

and 60, with the exception of packet sizes 52, 56, or 57; filter two selected only packets 

that exhibited a TCP offset value of 10, 11, 12, 14, 15; and filter three selected only 

packet sizes 41, 52, 64, 127, 254, 713, or 1500. Tables 12–14 provide a summary of the 

results. 
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Table 12.   Naive Bayes test 1A filtered training and test results. 

 

Table 13.   Naive Bayes test 1B filtered training and unfiltered test results. 

 

Table 14.   Naive Bayes test 1C unfiltered training and filtered test results. 

 

Filtered Training and Filtered 
Test

Tor Non-Tor

Packets Classified Correctly 29954 41991

Packets Misclassified 47347 15205

False Positive Rate 26.6%

False Negative Rate 61.3%

Filtered Training and 
Unfiltered Test

Tor Non-Tor

Packets Classified Correctly 39384 42500

Packets Misclassified 48412 41296

False Positive Rate 49.3%

False Negative Rate 55.1%

Unfiltered Training and 
Filtered Test

Tor Non-Tor

Packets Classified Correctly 74645 7728

Packets Misclassified 2656 49468

False Positive Rate 86.5%

False Negative Rate 3.4%
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B. MULTI-ATTRIBUTE TEST TWO 

Multi-attribute test two examined the performance of the Naive Bayes classifier 

using two filters. Filter one selected only packets which exhibited a TTL between 43 and 

60, with the exception of packet sizes 52, 56, or 57; filter two selected only packets 

which exhibited a TCP offset value of 10, 11, 12, 14, 15. Tables 15–17 provide a 

summary of the results. 

Table 15.   Naive Bayes test 2A filtered training and test results. 

 

Table 16.   Naive Bayes test 2B filtered training and unfiltered test results. 

 
 

Filtered Training and Filtered 
Test

Tor Non-Tor

Packets Classified Correctly 3595 58090

Packets Misclassified 39313 1437

False Positive Rate 2.4%

False Negative Rate 91.6%

Filtered Training and 
Unfiltered Test

Tor Non-Tor

Packets Classified Correctly 43664 77314

Packets Misclassified 40132 10482

False Positive Rate 11.9%

False Negative Rate 47.9%
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Table 17.   Naive Bayes test 2C unfiltered training and filtered test results. 

 
 

C. MULTI-ATTRIBUTE TEST THREE 

Multi-attribute test three examined the performance of the Naive Bayes classifier 

using one filters. Filter one selected only packets which exhibited a TTL between 43 and 

60, with the exception of packet sizes 52, 56, or 57. Tables 18–20 provide a summary of 

the results. 

Table 18.   Naive Bayes test 3A filtered training and test results. 

 
 

Unfiltered Training and 
Filtered Test

Tor Non-Tor

Packets Classified Correctly 4449 57188

Packets Misclassified 38459 2339

False Positive Rate 3.9%

False Negative Rate 89.6%

Filtered Training and Filtered 
Test

Tor Non-Tor

Packets Classified Correctly 51,353 36,343

Packets Misclassified 4,885 2,807

False Positive Rate 7.2%

False Negative Rate 8.7%
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Table 19.   Naive Bayes test 3B filtered training and unfiltered test results. 

 
 

Table 20.   Naive Bayes test 3C unfiltered training and filtered test results. 

 
 
 
 
 
 

 

Filtered Training and 
Unfiltered Test

Tor Non-Tor

Packets Classified Correctly 70218 66211

Packets Misclassified 17578 17585

False Positive Rate 21.0%

False Negative Rate 20.0%

Unfiltered Training and 
Filtered Test

Tor Non-Tor

Packets Classified Correctly 2339 2211

Packets Misclassified 53899 36939

False Positive Rate 94.4%

False Negative Rate 95.8%
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APPENDIX D. DATA ANALYSIS R-SCRIPT 

R was used to analyze each key cyber indicator to identify distinct characteristics 

and to examine the data for correlations between attributes. The goal of analysis was to 

calculate the probability of misclassification when each trait was used by itself to identify 

Tor traffic in the larger, combined, dataset. A total of six single attribute tests, ten multi-

attribute tests were conducted using the following R-script: 

 
#Load Required Libraries 
library(class)  
library(e1071)  
library(dplyr) 
library(ggplot2) 
library(visreg) 
library(boot) 
library(psych) 
 
########Load Required Data 
known_tor <- read.csv(“C:/Users/trac/Desktop/DarkNet Testing/Log Data/DarkNet 

Testing Logs/tor_mixset.csv,” header = TRUE, as.is = 
TRUE) 

 
known_non_tor <- read.csv(“C:/Users/trac/Desktop/DarkNet Testing/Log Data/DarkNet 

Testing Logs/nontor_mixset.csv,” header = TRUE, as.is = 
TRUE) 

 
train_mixset <- read.csv(“C:/Users/trac/Desktop/DarkNet Testing/Log Data/DarkNet 

Testing Logs/comb_snort_mixset_lean2_75train.csv,” 
header = TRUE, as.is = TRUE) 

 
test_mixset <- read.csv(“C:/Users/trac/Desktop/DarkNet Testing/Log Data/DarkNet 

Testing Logs/comb_snort_mixset_lean2_25test.csv,” 
header = TRUE, as.is = TRUE) 

 
exit_node <- read.csv(“C:/Users/trac/Desktop/DarkNet Testing/Log Data/DarkNet 

Testing Logs/Exit Nodes/Known_exit_node.csv,” header = 
TRUE, as.is = TRUE) 

 
########Create the mixed dataset with Tor column 
known_non_tor$tor <- 0 
known_tor$tor <- 1 
mixset <- rbind(known_non_tor, known_tor) 
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########Generate Data Histograms based on relationships between the attributes 
 
#Full mixed correlation dataset trimmed to include only TTL, IP Length, TCP 

offset, and tor columns. 
full_correlation <- mixset[,c(12,16,24,30)] 
 
#Tor only correlation dataset trimmed to include only TTL, IP Length, TCP offset, 

and tor columns 
tor_correlation <- known_tor 
tor_correlation$tor <- 1 
tor_correlation <- tor_correlation[,c(12,16,24,30)] 
 
#Attribute correlation on full unfiltered dataset 
pairs.panels(full_correlation) 
 
pairs(full_correlation[1:4], main = “Mixset Trait Correlation—No Filter,” 
pch = 21, bg = c(‘red’,’blue’, ‘green’)[unclass(tor_correlation$tor)]) 
 
#Unfiltered known Tor dataset 
pairs.panels(tor_correlation[1:3]) 
 
pairs(tor_correlation[1:4], main = “Known Tor Packet Trait Correlation—No Filter,” 
pch = 21, bg = c(‘red’,’blue’, ‘green’)[unclass(tor_correlation$tor)]) 
 
#full dataset with only packets exhibiting Tor TTL, TCP offset and Packet size 

attributes 
tor_correlation_all_obv_trait <- tor_correlation %>% filter(ip_ttl > 43 & ip_ttl < 59 & 

ip_ttl != 52 & ip_ttl != 56 & ip_ttl != 57 | _off == 10 | 
tcp_off == 11 | tcp_off == 12 | tcp_off == 14 | tcp_off == 
15 | ip_len == 52 | ip_len == 1500| ip_len == 41 | ip_len == 
64 | ip_len == 127 | ip_len == 254 | ip_len == 713) 

 
pairs.panels(tor_correlation_all_obv_trait[1:3]) 
 
pairs(tor_correlation_all_obv_trait[1:4], main = “Known Tor Packet Trait Correlation—

All Filters,” pch = 21, bg = c(‘red’,’blue’, 
‘green’)[unclass(tor_correlation_all_obv_trait$tor)]) 

 
#full dataset with only packets exhibiting Tor TTL and TCP offset attributes 
tor_correlation_ttl_tcp <- tor_correlation %>% filter(ip_ttl > 43 & ip_ttl < 59 & ip_ttl != 

52 & ip_ttl != 56 & ip_ttl != 57 | tcp_off == 10 | tcp_off == 
11 | tcp_off == 12 | tcp_off == 14 | tcp_off == 15) 

 
pairs.panels(tor_correlation_ttl_tcp[1:3]) 
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pairs(tor_correlation_ttl_tcp[1:4], main = “Known Tor Packet Trait Correlation—TTL/

OFF Filter,”pch = 21, bg = c(‘red’,’blue’, 
‘green’)[unclass(tor_correlation_ttl_tcp$tor)]) 

 
#Histograms for full dataset with only packets exhibiting Tor ttl attribute 
tor_correlation_ttl <- tor_correlation %>% filter(ip_ttl > 43 & ip_ttl < 59 & ip_ttl != 52 

& ip_ttl != 56 & ip_ttl != 57) 
 
pairs.panels(tor_correlation_ttl[1:3]) 
 
pairs(tor_correlation_ttl[1:4], main = “Known Tor Packet Trait Correlation—TTL Filter,” 

pch = 21, bg = c(‘red’,’blue’, 
‘green’)[unclass(tor_correlation_ttl$tor)]) 

 
########Start Single-Attribute Testing  
 
####KCC One: Low TTL Count 
 
##Filtered—Measure the linear regression of Tor TTL count. Results will provide 

probability traffic is tor based on TTL value 
mixset2 <- mixset %>% filter(ip_ttl > 43 & ip_ttl < 59 & ip_ttl != 52 & ip_ttl != 56 & 

ip_ttl != 57) 
 
model1 <- glm(tor ~ ip_ttl, data = mixset2, family=‘binomial’) 
summary(model1) 
visreg(model1, ‘ip_ttl’, scale=‘response’, xlab = ‘TTL Value’, ylab = ‘Probability’, main 

= ‘Tor Classification Probability based on Filtered TTL’) 
 
#Calculate misclassification rate for TTL filtered dataset 
test <- glm(tor ~ ip_ttl, mixset2, family = “binomial”) 
pi.hat <- round(predict(test,type=“response”),3) 
y <- mixset2$tor 
table(y,pi.hat>5)  
mean(y != (pi.hat>.5))  
 
#Cross Validation of misclassification rate for TTL filtered dataset 
cost <- function(y,pi.hat){mean(y!=(pi.hat>.5))} 
cv.glm(mixset2,test,cost(y,pi.hat),K=10)$delta 
 
##Unfiltered—Measure the linear regression of Tor TTL count. Results will provide 

probability traffic is tor based on TTL value 
model1 <- glm(tor ~ ip_ttl, data = mixset, family=‘binomial’) 
summary(model1) 
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visreg(model1, ‘ip_ttl’, scale=‘response’, xlab = ‘TTL Value’, ylab = ‘Probability’, main 
= ‘Tor Classification Probability based on Unfiltered TTL’) 

 
#Calculate misclassification rate for TTL unfiltered dataset 
test <- glm(tor ~ ip_ttl, mixset, family = “binomial”) 
pi.hat <- round(predict(test,type=“response”),3) 
y <- mixset$tor 
table(y,pi.hat>5)  
mean(y != (pi.hat>.5))  
 
#Cross Validation of misclassification rate for TTL unfiltered dataset 
cost <- function(y,pi.hat){mean(y!=(pi.hat>.5))} 
cv.glm(mixset,test,cost(y,pi.hat),K=10)$delta 
 
####KCC Two: Common IP Packet Size 
 
##Filtered—Measure the linear regression of common Tor packet size. Results will 

provide probability traffic is tor based on filtered IP 
packet size 

mixset2 <- mixset %>% filter(ip_len == 52 | ip_len == 1500 | ip_len == 41 | ip_len == 64 
| ip_len == 127 | ip_len == 254 | ip_len == 713) 

 
model1 <- glm(tor ~ ip_len, data = mixset2, family=‘binomial’) 
summary(model1) 
visreg(model1, ‘ip_len’, scale=‘response’, xlab = ‘IP Packet Length’, ylab = 

‘Probability’, main = ‘Tor Classification Probability based 
on Filtered IP Packet Length’) 

 
#Calculate misclassification rate for filtered common IP packet dataset 
test <- glm(tor ~ ip_len, mixset2, family = “binomial”) 
pi.hat <- round(predict(test,type=“response”),3) 
y <- mixset2$tor 
table(y,pi.hat>5)  
mean(y != (pi.hat>.5))  
 
#Cross validation of misclassification rate for filtered common IP packet dataset 
cost <- function(y,pi.hat){mean(y!=(pi.hat>.5))} 
cv.glm(mixset2,test,cost(y,pi.hat),K=10)$delta 
 
##Unfiltered—Measure the linear regression of common Tor packet size. Results 

will provide probability traffic is Tor based on 
unfiltered IP packet size 

model1 <- glm(tor ~ ip_len, data = mixset, family=‘binomial’) 
summary(model1) 
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visreg(model1, ‘ip_len’, scale=‘response’, xlab = ‘IP Packet Length’, ylab = 
‘Probability’, main = ‘Tor Classification Probability based 
on IP Packet Length’) 

 
#Calculate misclassification rate for unfiltered Common IP packet dataset 
test <- glm(tor ~ ip_len, mixset, family = “binomial”) 
pi.hat <- round(predict(test,type=“response”),3) 
y <- mixset$tor 
table(y,pi.hat>5)  
mean(y != (pi.hat>.5))  
 
#Cross Validation of misclassification rate for unfiltered Common IP packet dataset 
cost <- function(y,pi.hat){mean(y!=(pi.hat>.5))} 
cv.glm(mixset,test,cost(y,pi.hat),K=10)$delta 
 
####KCC Three: Common TCP Offset 
 
##Filtered—Measure the linear regression of Tor TCP Offset. Results will provide 

probability traffic is tor based on filtered TCP Offset 
mixset2 <- mixset %>% filter(tcp_off == 10 | tcp_off == 11 | tcp_off == 12 | tcp_off == 

14 | tcp_off == 15)  
model1 <- glm(tor ~ tcp_off, data = mixset2, family=‘binomial’) 
summary(model1) 
visreg(model1, ‘tcp_off’, scale=‘response’, xlab = ‘TCP Offset’, ylab = ‘Probability’, 

main = ‘Tor Classification based on Filtered TCP Offset’) 
 
#Calculate misclassification rate for filtered TCP Offset dataset 
test <- glm(tor ~ tcp_off, mixset2, family = “binomial”) 
pi.hat <- round(predict(test,type=“response”),3) 
y <- mixset2$tor 
table(y,pi.hat>5)  
mean(y != (pi.hat>.5))  
 
#Cross validation of misclassification rate for filtered TCP Offset dataset 
cost <- function(y,pi.hat){mean(y!=(pi.hat>.5))} 
cv.glm(mixset2,test,cost(y,pi.hat),K=10)$delta 
 
##Unfiltered—Measure the linear regression of Tor TCP Offset. Results will 

provide probability traffic is tor based on unfiltered 
TCP Offset 

model1 <- glm(tor ~ tcp_off, data = mixset, family=‘binomial’) 
summary(model1) 
visreg(model1, ‘tcp_off’, scale=‘response’, xlab = ‘TCP Offset’, ylab = ‘Probability’, 

main = ‘Tor Classification based on Unfiltered TCP 
Offset’) 
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#Calculate misclassification rate for unfiltered TCP Offset dataset 
test <- glm(tor ~ tcp_off, mixset, family = “binomial”) 
pi.hat <- round(predict(test,type=“response”),3) 
y <- mixset$tor 
table(y,pi.hat>5)  
mean(y != (pi.hat>.5))  
#Cross Validation of misclassification rate for unfiltered TCP Offset dataset 
cost <- function(y,pi.hat){mean(y!=(pi.hat>.5))} 
cv.glm(mixset,test,cost(y,pi.hat),K=10)$delta 
 
########Start Multi-Attribute Naive Bayes Testing 
 
####Baseline Performance Test—Unfiltered training and unfiltered testing 
 
#Naive Bayes analysis and prediction model based on unfiltered dataset 
classifier_full <- naiveBayes(train_mixset[,2:4], factor(train_mixset[,5]) ) 
 
#Test Classifier against itself 
table(predict(classifier_full, train_mixset[,-5]), factor(train_mixset[,5]) ) 
 
#Test classifier against unfiltered test dataset 
table(predict(classifier_full, test_mixset[,-5]), factor(test_mixset[,5]) ) 
 
#########Test 1—Multi-Attribute Naive Testing using TTL, TCP offset, and IP 

packet size 
 
####Filters for all three observed Tor characteristics 
sample_data <- train_mixset %>% filter(ip_ttl > 43 & ip_ttl < 59 & ip_ttl != 52 & ip_ttl 

!= 56 & ip_ttl != 57 | tcp_off == 10 | tcp_off == 11 | tcp_off 
== 12 | tcp_off == 14 | tcp_off == 15 | ip_len == 52 | ip_len 
== 1500 | ip_len == 41 | ip_len == 64 | ip_len == 127 | 
ip_len == 254 | ip_len == 713) 

 
sample_data1 <- test_mixset %>% filter(ip_ttl > 43 & ip_ttl < 59 & ip_ttl != 52 & ip_ttl 

!= 56 & ip_ttl != 57 | tcp_off == 10 | tcp_off == 11 | tcp_off 
== 12 | tcp_off == 14 | tcp_off == 15 | ip_len == 52 | ip_len 
== 1500 | ip_len == 41 | ip_len == 64 | ip_len == 127 | 
ip_len == 254 | ip_len == 713) 

 
 
####Test 1A—Filtered training set and filtered test set 
 
#Naive Bayes analysis and prediction model based on filtered dataset 
classifier_filtered <- naiveBayes(sample_data[,2:4], factor(sample_data[,5]) ) 
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#Test the training set against itself 
table(predict(classifier_filtered, sample_data[,-5]), factor(sample_data[,5]) ) 
 
#tests the test set against the training set 
table(predict(classifier_filtered, sample_data1[,-5]), factor(sample_data1[,5]) ) 
 
####Test 1B—Filtered training set and unfiltered test set 
 
#Test classifier against unfiltered test dataset 
table(predict(classifier_filtered, test_mixset[,-5]), factor(test_mixset[,5]) ) 
 
####Test 1C—Unfiltered training set and filtered test set 
 
#Test classifier against filtered test dataset 
table(predict(classifier_full, sample_data1[,-5]), factor(sample_data1[,5]) ) 
 
#########Test 2—Multi-Attribute Testing using only IP TTL and TCP offset 
 
####Filters for two observed Tor characteristics  
sample_data <- train_mixset %>% filter(ip_ttl > 43 & ip_ttl < 59 & ip_ttl != 52 & ip_ttl 

!= 56 & ip_ttl != 57 | tcp_off == 10 | tcp_off == 11 | tcp_off 
== 12 | tcp_off == 14 | tcp_off == 15) 

 
sample_data1 <- test_mixset %>% filter(ip_ttl > 43 & ip_ttl < 59 & ip_ttl != 52 & ip_ttl 

!= 56 & ip_ttl != 57 | tcp_off == 10 | tcp_off == 11 | tcp_off 
== 12 | tcp_off == 14 | tcp_off == 15) 

 
####Test 2A—Filtered training set and filtered test set 
 
#Naive Bayes analysis and prediction model based on filtered dataset  
classifier_filtered <- naiveBayes(sample_data[,2:4], factor(sample_data[,5]) ) 
 
#Test the training set against itself 
table(predict(classifier_filtered, sample_data[,-5]), factor(sample_data[,5]) ) 
 
#tests the test set against the training set 
table(predict(classifier_filtered, sample_data1[,-5]), factor(sample_data1[,5]) ) 
 
####Test 2B—Filtered training set and unfiltered test set 
 
#Test classifier against unfiltered test dataset 
table(predict(classifier_filtered, test_mixset[,-5]), factor(test_mixset[,5]) ) 
 
####Test 2C—Unfiltered training set and filtered test set 
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#Test classifier against filtered test dataset 
table(predict(classifier_full, sample_data1[,-5]), factor(sample_data1[,5]) ) 
 
#########Test 3—Multi-Attribute Naive Bayes Testing using only TTL Filter 
 
####Filter for observed Tor TTL characteristics 
sample_data <- train_mixset %>% filter(ip_ttl > 43 & ip_ttl < 59 & ip_ttl != 52 & ip_ttl 

!= 56 & ip_ttl != 57)  
 
sample_data1 <- test_mixset %>% filter(ip_ttl > 43 & ip_ttl < 59 & ip_ttl != 52 & ip_ttl 

!= 56 & ip_ttl != 57)  
 
####Test 3A—Filtered training set and filtered test set 
 
#Naive Bayes model based on filtered dataset 
classifier_filtered <- naiveBayes(sample_data[,2:4], factor(sample_data[,5]) ) 
 
#Test the training set against itself 
table(predict(classifier_filtered, sample_data[,-5]), factor(sample_data[,5]) ) 
 
#tests the test set against the training set 
table(predict(classifier_filtered, sample_data1[,-5]), factor(sample_data1[,5]) ) 
 
#Verify amount of known tor exit nodes present in the filtered dataset 
tor_exit_node <- exit_node$ip_src 
tor_source_IP <- sample_data$ip_src 
 
#Number of unique rows in the known Tor and exit node list 
exit_row <- nrow(table(tor_exit_node)) #1106 unique entries  
tor_row <- nrow(table(tor_source_IP)) #344 unique entires—There were 
tor_row 
tor_exit_intersect <- length(intersect(tor_exit_node,tor_source_IP))  
tor_exit_intersect 
tor_exit_intersect/tor_row 
 
####Test 3B—Filtered training set and unfiltered test set 
 
#Test classifier against unfiltered test dataset 
table(predict(classifier_filtered, test_mixset[,-5]), factor(test_mixset[,5]) ) 
 
####Test 3C—Unfiltered training set and filtered test set#### 
 
#Test classifier against filtered test dataset 
table(predict(classifier_full, sample_data1[,-5]), factor(sample_data1[,5]) ) 
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APPENDIX E. PROPOSED AXIOMS AND ACCUMULATOR 
MODEL 

A. DETECTION AXIOMS  

The proposed axioms are written to detect both the characteristics observed 

during this study and the characteristics which may be observed in the proposed future 

research. Each axiom is explained as a step-by-step process from evaluation to detection 

and is illustrated using a simple input-output diagram. Within each axiom, the 

obfuscation threshold value (OTV) indicates a pre-defined rule which indicates a Tor 

characteristic has been observed, and the weighted obfuscation value (WOV) which 

signifies the weighted value that would be added to an accumulator. 

1. IP TTL  

Proposed three-step axiom to identify Tor traffic using IP time-to-live (TTL). 

(1) Examine source port(tcp_sport); if greater than 1023,49 examine source IP 
(ip_src) address. 

(2) If ip_src is not a trusted IP address, examine TTL (ip_ttl) value in the IP 
header.  

(3) If ip_ttl exceeds the OTV, mark as obfuscated and add the WOV to the 
accumulator. 

Figure 29 provides a simplified illustration of the three-step process. 

                                                 
49 As described by [33], ports 0–1023 are well-known ports and are normally assigned to specific 

applications or services. Registered and dynamic ports, 1024–49151 and 49152–65535 respectively, are 
unassigned and used by clients for communication. 
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Figure 29.  Proposed IP TTL three-step detection process. 

2. IP Packet Length  

Proposed five-step process to identify Tor traffic using IP packet length. 

(1) k = (1500, 52, 638, 1150) 

(2) Examine the IP length (ip_len) field in the IP header; if ip_len is an 
element of k, correlate the associated socket-pair using CID.  

(3) Search back through the last 30 seconds for related packets using socket-
pair and reverse socket-pair.  

(4) Examine all packets’ ip_len field, in aggregate, to check whether they 
exhibit common Tor packet sizes.  

(5) If over 50 percent of the related packets exhibit common Tor packet sizes, 
mark as obfuscated and add the WOV to the accumulator. 

Figure 30 provides a simplified illustration of the five-step process. 
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Figure 30.  Proposed IP packet length five-step detection process. 

3. TCP Offset  

Proposed two-step process to identify Tor traffic using TCP offset value.  

(1) Examine the TCP offset (tcp_off) field in the TCP header. 

(2) If the tcp_off value exceeds the Tor TCP offset OTV, mark as obfuscated 
and add the WOV to the accumulator. 

Figure 31 provides a simplified illustration of the two-step process. 

 

Figure 31.  Proposed TCP offset two-step detection process. 
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4. Known Tor Exit Node 

Proposed three-step process to identify obfuscated traffic using a blacklist of 

known Tor exit nodes. 

(1) Examine the source IP field. 

(2) If source IP is present on the Tor exit-node list, mark as obfuscated and 
add the max WOV to the accumulator. 

(3) If source IP is not on Tor exit-node list after traffic has been marked as 
obfuscated by the decision model, add source IP to local bad actor list. 

Figure 32 provides a simplified illustration of the three-step process. 

 

Figure 32.  Proposed known Tor exit node three-step detection process. 

5. High RTT 

Proposed five-step process to identify Tor traffic using high RTT. 

(1) To define a dynamic starting point, the TCP syn-ack handshake flag (18) 
is used to locate to defines a dynamic starting point from which to work.  

(2) Once identified, the row CID (event ID) is used to locate the predictive 
acknowledgement number, and the socket-pair for the packet with the syn-
ack flag set. 

(3) Next, look back five seconds to locate the related syn packet by searching 
for the reversed socket-pair and the sequence number. The correct 
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sequence number is derived by subtracting one from the predictive 
acknowledgement number from the original syn-ack flagged packet.  

(4) If an associated syn flagged packet is found, the CIDs are used to collect 
the timestamps for each packet, which measures the time difference or 
RTT for the two packets. 

(5) Last, the observed RTT is compared to KCC Two’s OTV to determine 
whether it is obfuscated. If the RTT exceeds the OTV, mark as obfuscated 
and add the WOV to the accumulator. 

Figure 33 provides a simplified illustration of the five-step process. 

 

Figure 33.  Proposed high RTT five-step detection process. 

6. HTTP Flow Analysis  

Proposed three-step process to identify Tor traffic using HTTP flow analysis. 

(1) To define a dynamic starting point, the TCP syn-ack handshake flag (18) 
is used to locate to defines a dynamic starting point from which to work. 

(2) Correlate the associated socket-pair for HTTP flow identification and 
monitor incoming traffic for five seconds to detect HTTP flow packet 3 
using associated socket-pair. 

 

(3) Examine IP length field. If ip_len field is between 131–152 bytes, mark as 
obfuscated and add the WOV to the accumulator. 

Figure 34 provides a simplified illustration of the three-step process. 
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Figure 34.  Proposed HTTP flow analysis three-step detection process. 

7. Varied Source IP  

Proposed three-step process to monitor for and identify Tor traffic using varying 

source IP after authentication. 

(1) After HTTPS user authentication, correlate authenticated username and 
client IP (c-ip) pair. 

(2) Every 60 seconds, look back 60 seconds of network traffic, and continue 
lookbacks for 15 60-second iterations.  

(3) If a change in c-ip is detected, mark as obfuscated and add the WOV to the 
accumulator. 

Figure 35 provides a simplified illustration of the proposed three-step process. 
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Figure 35.  Proposed varied source IP three-step detection process. 

B. ACCUMULATOR 

Each indicator that is met during evaluation will provide input the accumulator. 

Specifically, the accumulator will iteratively take input from each indicator to determine 

whether users are attempting to obfuscate their activity. Then, after receiving input from 

all indicators, the accumulator can make an overall determination on whether the user is 

attempting to obfuscate their activity. Figure 36 provides an overview of the location and 

configuration for the proposed accumulator. 

 
The accumulator appears within the dotted blue line. 

Figure 36.  Proposed multi-criteria accumulator model. 
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