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1.0 SUMMARY 

 
This effort is a critical part of an overall program to develop novel and fundamental 

methodologies for data representation using hardware-based spike timing dependent encoding for 
neuromorphic processors, and to build a new class of computationally efficient hardware delay-
based reservoirs that meet the requirements of high dimensionality and finite memory. This project 
resulted in the design of an agile analog integrated circuit implementation of a spike-time encoding 
circuit as a signal conditioner for reservoir computing systems. This multidisciplinary effort 
encompassed high-performance computing, nanotechnology, integrated circuits, and integrated 
systems. The project’s architecture was designed to be the foundation for future capabilities in 
signature analyses and time-series classifications. Additionally, once this design is fabricated and 
tested, it will be applicable to other neuromorphic computing applications. The development of 
neuromorphic computing devices will facilitate increased energy efficient computing.   
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2.0 INTRODUCTION 

 
This project initially focused on the additional testing of the analog reservoir computing 

hardware [1] that had previously been fabricated at nanotechnology dimensions. We had designed 
and fabricated a hardware spike timing dependent encoder for neuromorphic processing that 
included circuit designs, design simulations, fabrication, and initial testing. Based upon that and 
the further testing of that encoder in this project, we have here designed, simulated, and sent to 
fabrication a dynamic-reservoir circuit that utilizes sensory encoding methodologies similar to 
those employed in biological brains. 

 
Inspired by the neural architecture of the human brain, neuromorphic computing [2] has been 

proposed as a mechanism for circumventing the limitations of current generation computing 
systems to accommodate the ever-increasing demand for advanced computing requirements. An 
intrinsic learning capability of neuromorphic computing systems allows them to automatically 
adapt to targeted functionalities without requiring additional hardware resources. To date research 
in this area has been narrowly focused on the enhancement of neural network algorithms, while 
system implementations have primarily been confined to conventional computing units. 

 
The straightforward hardware realization of neural networks will require a large number of 

memory and computing resources, resulting in high design complexities with accompanying high 
hardware costs. As an example, text-recognition software [3] has been designed to run on high-
performance computing (HPC) clusters. In this specific work there were 70,000 processor cores 
that provided a massive peak computing power of 500 trillion floating-point operations per second. 
Algorithm enhancements and conventional hardware implementations can to some degree mitigate 
computation cost issues, but do not fundamentally resolve it. It is essential to design a new class 
of hardware that is optimized for conducting the crucial operations of neuromorphic computing, 
rather than relying on system implementations built upon traditional and nontraditional computer 
structures found in data centers.  

 
Many types of real time neuromorphic computing applications require high-performance 

processing that is based upon von Neumann architecture systems. Size, Weight, and Power (SWAP) 
resource restrictions have ruled out many traditional high performance computing software-based 
approaches to many types of real-time applications, particularly outside of data processing centers. 
However, simulations have shown that future implementations of dedicated real-time hardware-
based neuromorphic systems are ideal for pattern and signature recognitions for mobile platforms 
with severe (SWAP) constraints. This research project holds great promise for these and several 
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other important engineering and scientific applications. Systems which exploit non-traditional 
architectures that encompass evolutionary systems may leverage these behaviors to address 
specific classes of mission-critical problems that have currently not been solved by state-of-the-
art complementary metal–oxide semiconductor (CMOS) digital computing.  

 
Most reservoir computing hardware implementations are analog based. Digital 

implementation-based reservoir computing [4-8] offers higher computational precision, higher 
reliability, and is simpler to program. Synaptic weights can be stored either on or off chip. 
Disadvantages of digital implementations compared to analog implementations [9-13] include the 
necessity of relatively large circuit sizes and the consumption of higher amounts of power.  

 
Analog implementations take advantage of fundamental electronic and physical principles to 

implement base functions. For example, operational amplifiers more simply perform neuron-like 
functions such as sigmoid transfer. Likewise, temporal integration is achieved through capacitive 
integrations and spatial summations based on Kirchhoff’s Law. In analog computationally 
intensive calculations are automatically performed by the summing of currents or charges. 
Furthermore, analog implementations of reservoir computing systems offer significantly higher 
speeds, less design areas, and less energy dissipations than digital implementations.  

 
Here we have encoded neural-type responses using different timescales and with different 

stimulus attributes that generate temporal inter-spike intervals of sensory information. We have 
compared the performances of rate codes and temporal codes, and have demonstrated the 
computational advantages of temporal code with inter-spike intervals. The effort included reducing 
the ambiguity inherent in single-scale codes, and enhancing the robustness of neural 
representations compared to background environmental noise.  

 
This project began with circuit-level designs and bench-level simulations of electronic 

reservoirs, and proceeded to explore the effects of operational parameters. Parameters examined 
included the operational frequencies of the input-spike trains, varying the levels of nonlinear and 
chaotic dynamics, and the effects of various feedback delay and dampening parameters. The 
hardware implementation of nonlinear dynamics and delay feedback reservoirs were examined, 
which will enable networks to mimic transient neuronal responses and to project time-dependent 
inputs into high dimensionalities for categorizations by an outside classifier. 

 
The overall project was organized around these two interconnected research thrusts:  

• Thrust 1: A Review of and further Examination of Analog Spike Time-Dependent 
Encoder based upon a Leaky Integrate-and-Fire (LIF) Neuron Model.  
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• Thrust 2: Single Delayed-Feedback Reservoir Design with Nonlinear Node and Delay 
Lines. 

 
In Thrust 1, which was nearly completed before this effort began, the following research tasks 

were conducted in the pursuit of a spike time dependent encoder design with the LIF Neuron Model: 
Task 1.1: Comprehensive investigation of neural encoding schemes, 
Task 1.2: Creating a spike time dependent encoder design with LIF model, and 
Task 1.3: Encoder circuit fabrication with advanced CMOS nano-technology. 

 
While Trust 1 was mostly completed before this effort began [1, 10], some additional testing 

of the fabricated encoder occurred during the early part of this effort, which established a more 
solid baseline for Thrust 2. Thrust 1 had produced deliverables that included an encoder circuit 
design, Simulation Program with the accompanying Integrated Circuit Emphasis (SPICE) circuit 
models, and prototypes of the circuit. As its final outcome, the Thrust 1 project provided an agile 
hardware implementation of spike time encoding as a signal conditioner for dynamical neural 
processor designs.  Some of the results that were previously published are included in this report 
for completeness. 

 
In Thrust 2, which is what this effort primarily focused on,  the following tasks were completed 

as part of the research plan to design, simulate and fabricate a bench-level dynamic reservoir to 
serve as a computational building block within a scalable architecture: 

 Task 2.1:   Nonlinear node design with chaotic circuits,  
 Task 2.2:   Delay line design with CMOS transistors, and 

   Task 2.3:      Fabrication of the designed nonlinear reservoir. 
 
Thrust 2 produced deliverables including a dynamic reservoir circuit design, SPICE circuit 

models, and circuit prototypes. These designs and models were simulated, and the resultant circuit 
design was sent to fabrication.   

 
The overall goal of Thrust 2 was to provide a nonlinear processor designed to exploit recent 

advancements in nano-technology and interconnects for a new class of computational systems 
based on dynamically driven architectures. This effort started in February 2016, and was planned 
to end in December 2018. However, due to the transfer of the Principal Investigator from the 
University of Kansas to the Virginia Polytechnic Institute and State University, this effort ended 
earlier than expected. By the end of this effort, most of the originally planned tasks were completed.  
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The two remaining tasks that were not completed were: 
1) Testing the fabricated designed nonlinear dynamic reservoir circuit, and  
2) The further optimization of the nonlinear dynamic reservoir circuitry. 
 
In the following sections the Methods, Assumptions, Procedures, Results and Discussions for 

each of the aforementioned contributions are presented. 
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3.0 METHODS, ASSUMPTIONS, AND PROCEDURES 

 
The overall project is summarized into two interconnected research thrusts: 1) Thrust 1: 

Additional Review/Comments of the Analog Spike Time-Dependent Encoder with the LIF Model, 
and 2) Thrust 2: Single Delayed-Feedback Reservoir Design and Simulations of a Nonlinear Node 
and Delay Lines. This effort utilized the previous results from Trust 1, which have been 
summarized here, as a basis for Trust 2. 

 
Thrust 1: Analog Spike Time-Dependent Encoder 
The following Thrust 1 tasks are summarized from a recent report [1], and include even more 

recent updates and summaries of the development and evaluation of a spike time dependent 
encoder based on the LIF model: 

 
Task 1.1: Comprehensive investigation of neural encoding schemes 
There are three general types of neural encoding schemes: rate encoding, temporal encoding 

by a latency code, and temporal encoding by inter-spike intervals [14]. In rate encoding the 
stimulus is encoded as the number of spikes within an encoding window, and the exact timings of 
individual spikes are not relevant [15-18]. In temporal encoding the stimulus is effected by latency, 
and together are encoded by the time difference of the first spike with respect to the stimulus onset. 
In temporal encoding by inter-spike intervals, the stimulus is encoded by the relative timing of the 
spikes within the encoding window, which is the time differences of successive spikes. There are 
lively discussions in the literature [12, 15, 18-19] concerning the benefits of temporal encoding vs. 
rate encoding. 

 
These three types of neural encoding schemes are comprehensively investigated, neural 

activity that is patterned on multiple timescales is examined and discussed, and ways to evaluate 
these types of patterns are presented.  The code performances for each of the encoding schemes 
are reviewed. The advantages afforded by temporal Inter-Spike Intervals (ISI) code for 
representing sensory information is shown.  

      
Task 1.2: Spike time dependent encoder design using the LIF model 
The LIF model afforded both simple structures and higher accuracy compared to other neuron 

models, which included the Integrate-and-Fire (IF) [20], the Hodgkin-Huxley (HH) [21], and the 
FitzHugh-Nagumo (FN) [22] models. Circuits designed using the LIF model have a balance 
between scalability and accuracy. In a LIF circuit the membrane capacitor generates the membrane 
current. The LIF system fires when the membrane current has charged up the membrane voltage 
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such that it exceeds a specific threshold voltage [23], and a reset signal resets the membrane 
voltage and the refractory period. The shape of the action potential is not considered. We compared 
the analog and digital implementations of neurons using the LIF model, and have shown how the 
signal-processing tasks can be modularly decomposed into elementary operators.  

 
A robust and compact analog neuron [10] was designed and modelled using CMOS technology. 

Design aspects such as integration time, threshold voltage, refractory period, and encoding 
resolution were examined to optimize the adaptability and reconfigurability of the neuron 
operational parameters. Other characteristics including power consumption, the die areas required 
for chip fabrications, and the robustness to process variability were also reported. 

 
Task 1.3: Encoder circuit fabrication and testing with advanced CMOS nano-technology 
We had previously created an optimized circuit schematic [1], and then used the Cadence 

Virtuoso Analog Design Environment to generate the layout of our designed encoding circuit. This 
design tool was used for all aspects of designing the fully customized Integrated Circuits, including 
the schematic entry, the behavioral modeling (Verilog-AMS), the circuit simulation, the custom 
layout, the physical verification, the extraction and the back-annotation. It was also used for the 
analog, mixed-signal, radio frequency (RF), and standard-cell designs, and for the memory and 
FPGA designs. The flowchart for a layout generation is shown in Fig. 1. 

  

 
Figure 1.  Flow Chart of the Layout Generation 
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We had previously fabricated this encoder chip [1] using the Global Foundries 180nm CMOS 

technology. The fabricated chip was tested at Kansas University’s Information and 
Telecommunications Technology Center using their state-of-the-art electronic design automation 
(EDA) tools for circuit designs, modeling, and simulations. The Center also has specialized lab 
facilities for integrated circuit testing. The next step was bonding the package to the printed circuit 
board (PCB) board that was developed for testing. Fig. 2 shows a microscope images of a 
fabricated chip and its testing board, respectively. 

 
 

 
Figure 2. Optical Microscope Imagery of Encoder Chip and Testing PCB 

 
 
This preliminary data provided a solid foundation for this effort. This was described in detail 

in our previous collaborative work with Air Force Research Laboratory (AFRL) in “Spike-Time-
Dependent Encoding for Neuromorphic Processors” that was published in the ACM Journal on 
Emerging Technologies in Computing Systems [10]. This neuron circuit was the first chip to be 
fabricated that represented sensory data using inter-spike interval temporal encoding, in which 
information was encoded according to the timing of spikes with respect to each other.  

 
The circuit that was designed and simulated for this effort was based on these previous findings. 

In Fig. 3a are presented high level depictions of the analog neuron design for both the rate and the 
temporal encoding. Depictions of simulated spike chains are presented in an enlarged view in Fig. 
3b. 



Approved for Public Release; Distribution Unlimited. 
9 

 
(a) Rate and Temporal Encoding Design 

 

 
 

(b) Simulated Temporal and Rate Generated Spike Chains [10] 
 

Figure 3. Analog Neuron 
 
 
As shown in Fig. 3b, the spike time dependent encoder circuit will output two different inter-

spike intervals within the generated spike trains. Research also focused on further reductions in 
the encoder circuit design area and lower power consumption. We also analyzed the relationship 
between the number of neurons and the number of inter-spike intervals. 

 
  

Time
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Thrust 2: Nonlinear Node and Delay Lines 
 
In Fig. 4 is shown our high level analog reservoir computing scheme with nonlinear nodes that 

included a delayed feedback loop. In this system the input sensory signals are encoded by a 
temporal encoder that is based on our previous work described in part in Thrust 1. The chaos-based 
nonlinear nodes were designed using chaotic circuits, while the delay feedback loop was designed 
with CMOS buffers, resistance circuits, and capacitance circuits. Appeltant [25] has shown that a 
recurrent network can be replaced by a single nonlinear node with delay by means of time-
multiplexing. 

 
 

 
Figure 4. Delay-based Reservoir Computing System 

 
Task 2.1: Nonlinear node design with chaotic circuits 
 
Implementing a nonlinear node within a reservoir computing system presented a significant 

challenge. The chaotic system property of short period prediction was used to develop this novel 
reservoir structure. Both sigmoid and Mackey-Glass (MG) function circuits were investigated, and 
their respective performances were evaluated. A mathematical model was then developed that 
characterized this novel reservoir computing system design.  
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Task 2.2: Delay line design with CMOS transistors 
 
Analog delay is an essential component that is required for processor-based dynamic reservoirs. 

Charge-coupled devices and switched-capacitor circuits are the classical methods for achieving 
this type of delay. Drawback to these discrete-time circuits are the necessity for clocking and 
aliasing effects. A continuous-time approach was attractive, particularly if the delay per section is 
to be controlled electronically.  

 
Because of the temperature dependences of the timing constants in continuous-time circuits 

and the process-dependent values of monolithic components such as capacitors and transistors, it 
was necessary to develop additional circuitry to control the delay time. The designed delay-line 
section required that the modulus of the transfer function to be equal to unity over a broad 
frequency range. Also, to provide a frequency-independent group delay, the phase shift needed to 
be linearly dependent on the frequency.  

 
Task 2.3:      Fabrication of the designed nonlinear reservoir 
 
The initial design was then fabricated in standard CMOS nano-technology. 
 
Task 2.4:       Initial testing of the fabricated nonlinear reservoir 
 
Initial testing of the fabricated nonlinear reservoir was scheduled to begin in Month 22. This 

effort ended earlier than originally expected at Month 181, and so the fabricated circuits were not 
evaluated here. This research produced deliverables that included quarterly technical status reports 
for program reviews, this final technical report, as well as the following items: 

 
1) Circuit design, fabrication, and measurement materials including SPICE (Simulation 

Program with Integrated Circuit Emphasis) models, circuit schematics, layout, prototypes, 
pre-layout and post layout simulation results, as well as testing data for both the time-
dependent encoder and dynamic reservoir 

2) An initial baseline study and a design trade-off report 
3) Correlations of initial test results with the design report  
4) Publications in archival international journals and refereed professional conferences 
5) Fabricated chips that were delivered after the effort ended 

                                                 
 

1 It should be noted that the fabricated prototype chip was delivered in October 2017 after this effort was completed, and will be subsequently 
tested and evaluated. 
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3.1 Temporal Encoders 

The two types of temporal encoding are latency and Inter-Spike Interval (ISI) [10] coding are 
shown in Fig. 5. In latency encoding, the stimulus is encoded by the time difference of the first 
spike with respect to stimulus onset. In ISI encoding, the stimulus is encoded by the relative timing 
of spikes within an encoding window, i.e. time differences of successive spikes, as shown in the 
figure. ISI encoding responds to the relative time between spikes rather than the absolute time with 
respect to the stimulus onset. The benefits of an ISI encoding approach include the ability to rely 
on internal reference frames and the ability to make use of the correlations between spike times 
that cannot be modelled by rate modulations. 

 

 
 

Figure 5. Latency and Inter-Spike Interval Temporal Codes 
 
Temporal encoding implementations [15-17] have been introduced in software, and these 

implementations used Time-to-First-Spike (TTFS) latency encoding. We have previously 
developed the first temporal encoding scheme that is based upon an ISI hardware implementation 
[10]. Parallel structures were designed for the neural encoders, where the number of spikes was 
equal to the number of neurons. Here in this effort, due to an exponential correlation between the 
number of spikes and neurons, a larger number of intervals were utilized, which also allowed more 
information to be transmitted with the same number of neurons.  When transforming sensory 
information by temporal encoding, parallel encoders process at higher speeds [14]. However, 
iteration encoders do provide more accurate results, which we have determined here a verification 
mechanism. 

Latency code

Inter-spike interval code
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3.1.1 Analog vs. Digital Neurons 

Since the neuron is the fundamental component in a neuromorphic system, power consumption 
and die size play significant roles in a neuron system design. In general, there are two 
implementations available: digital and analog. We compared analog and digital implementations 
of neurons using the LIF model and showed how signal-processing tasks can be modularly 
decomposed into elementary operators.  

 
Digital implementation offers high computational precision, high reliability, and higher level 

programmability. Synaptic weights can be stored on or off chip. However, digital approaches also 
have disadvantages, since they require relatively larger circuit sized and require higher power 
consumptions compared to analog. Analog implementations exploit the physical characteristics of 
the hardware, which more closely mimics biological neurons. For example, operational amplifiers 
perform neuron-like functions, such as sigmoid transfer. Additionally, analog implementations 
afford greater flexibility for controlling the leakage current, thereby improving the model accuracy. 
With analog, computationally intensive calculations are performed automatically by physical 
processes, such as the summing of currents or charges. Finally, analog electronics are much more 
compact and offer high speed at low energy dissipation. However, analog implementations are 
more susceptible to noise, and exhibit higher sensitivity to process variables, which makes analog 
implementations more challenging to design.  

 
Digital implementations and analog implementations [10] have been compared. Additional 

comparisons were made of power consumption, die areas, and transistor size. The results of these 
comparisons are summarized in Table 1, in which we normalized the data and summarized the 
comparison of power consumption between the analog and digital implementation. 

 
Table 1. Normalized Analog and Digital Implementations 

 Analog 
Implementation 

Digital 
Implementation 

Power consumption (µW)  1.15 - 52 14.3 - 100 
Die area (µm2) 74.2 1119.7 
Transistor number 19.5 225 

 
As shown in Table 1, an analog implementation requires lower power consumption, smaller 

die area, and less transistors when compared to a digital implementation.  
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3.1.2 Analog Neurons 

We modeled and designed a robust and compact analog neuron that was fabricated with CMOS 
technology. The detailed neuron circuit schematic is shown in Fig. 6. Design aspects including 
integration time, threshold voltage, refractory period, and encoding resolution were examined to 
optimize the adaptability and reconfigurability of the neurons operational parameters.  There were 
11 functional modules in this circuit. The current reference module served as the current source, 
which provided constant current to the leak current module. The leak current module design was 
a current mirror with two transistors. Different leak currents were generated by adjusting the ratio 
of transistors M30 and M1 in the leak current module.  
 

Current Reference Excitation

Leak Current

INa Feedback Buffer

Spike Width
Controller

Refractory 
ControllerMembrane IK Threshold

 
Figure 6. Neuron Circuit Schematic 

 
The excitation module transformed the excitation voltage into current. The membrane module 

adopted one capacitor 𝐶𝐶𝑚𝑚, which modeled real biological membranes. The 𝐼𝐼𝑁𝑁𝑁𝑁  and 𝐼𝐼𝐾𝐾  modules 
were applied to model charge-carrying ions 𝑁𝑁𝑁𝑁+ and 𝐾𝐾+, 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟.  A threshold module 
controlled the membrane threshold voltage. The feedback buffer module generated 𝐼𝐼𝑁𝑁𝑁𝑁,  𝐼𝐼𝐾𝐾, and 
spikes. The refractory period was controlled by the refractory controller module. The spike width 
was tuned by adjusting capacitor 𝐶𝐶𝐾𝐾  in the spike width controller module. Finally, the spike 
module generated the corresponding spike train. 

 
The membrane capacitor 𝐶𝐶𝑚𝑚 was charged when the excitation module was in operation. The 

membrane began to fire when the voltage on 𝐶𝐶𝑚𝑚  reached the threshold voltage, which was 
controlled by the threshold module. The feedback buffer module, 𝐼𝐼𝑁𝑁𝑁𝑁  module, and 𝐼𝐼𝐾𝐾  module 



Approved for Public Release; Distribution Unlimited. 
15 

become operational after Cm reached the threshold voltage. Charge-carrying ion currents 𝐼𝐼𝑁𝑁𝑁𝑁 and 
𝐼𝐼𝐾𝐾 were generated, and at the same time, a spike train was generated and sent out through the spike 
module.  

 
When the membrane voltage was lower than the threshold voltage, the output of the first 

inverter of the feedback module became high. This high voltage signal switched M10 off, which 
caused 𝐼𝐼𝑁𝑁𝑁𝑁 to drop to zero. At the same time, transistor M34 switched into the off region because 
of the low voltage output of second inverter, which caused 𝐼𝐼𝐾𝐾 drop to zero since M11 was in an 
off region. At last, the leak current discharged the membrane capacitor 𝐶𝐶𝑚𝑚,which maintained the 
membrane voltage at the rest condition. 

 

3.1.3 Temporal Encoder Structure 

 

 
Figure 7. Structure of the Temporal Encoder 

 
We developed an energy efficient temporal encoder which provided a general encoding 

scheme which could be implemented with different technologies. Low power consumption, small 
die area, and low cost are the three advantages of its design. In this project, the iteration encoder 
was designed, simulated and fabricated in standard CMOS process. The structure of the temporal 
encoder is shown in Fig. 7 
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The encoder adapted an iteration architecture in which each neuron worked on a separate clock 
period. The input layer served as the pre-processing unit. The iterative characteristic was achieved 
by the neuron pool and the output layer. As shown in the Fig. 7, there were 8 modules in this 
encoder, and these modules were divided into two categories. The core temporal encoder included 
the “input layer”, the “neuron pool”, and “output layer”. The second category was the function, 
which contained the “signal generator”, the “clock (CLK)”, the “voltage reference”, the “current 
reference”, and the “bandgap reference”..  

 
When selecting the appropriate methodology to implement the input layer, we needed to 

consider the trade-off between area, power consumption, and accuracy. The resistor scheme 
possesses the simplest structure which is easy to implement, but, consumes the largest area which 
is not desirable. Although the operational amplifier scheme offers the highest accuracy, it 
possesses the highest power consumption. The single transistor scheme was chosen because of its 
adequate accuracy and moderate power consumption. A diode-structure NMOS transistor, which 
works in the triode region, was implemented to achieve the desired performance as the current 
tuner. The simplified circuit of the input layer is illustrated in Fig. 8. As shown in Fig. 8, the upper 
part of the input layer is a current mirror cluster. The output excitation currents, in1 to in4, would 
be sent to neuron pool directly. The bottom part is an input buffer for the input analog signal. 
Transistors, N1 to N4, serve as the buffer which allow large value voltage signal.  

 
 
 

 
Figure 8. Simplified Input Layer Circuit 
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3.1.4 Neuron Pool 

 

 
Figure 9. Neuron Pool Signal Flow Diagram 

 
The second layer is the neuron pool, in which each neuron has its own priorities with different 

clock signals. In our spike time dependent temporal encoder, we assumed that every clock signal 
will generate only one spike with each neuron. A pool of neurons is required based upon our 
previously fabricated encoder to produce a burst of spikes. A general signal flow of a neuron pool 
is illustrated in Fig. 9. There are three kinds of signals existing in the neuron pool. 𝐼𝐼𝐼𝐼𝑖𝑖 is the input 
signal that is constructed with excitation currents, and 𝐼𝐼𝐼𝐼𝑖𝑖 is determined by 𝑉𝑉𝑖𝑖.  𝑆𝑆𝑖𝑖 is the output 
signal of each neuron, and 𝑆𝑆𝑖𝑖,𝑖𝑖+1 is the iteration signal which is generated by the output layer. The 
number of spikes of the temporal encoder [8] is directly proportional to the number of neurons.  

 
The global clock CLK only controls the first neuron in the neuron cluster. When one CLK 

signal arrives, the first neuron will generate one spike to be sent to the second neuron and the first 
combiner, respectively. The output spike generated by the first neuron serves as the clock signal 
for the second neuron, and the output spike of the second neuron is sent to the first combiner. The 
output of the first combiner will be two spike signals, which are sent to the third neuron as its clock 
signal, and the second combiner.  
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An exponential relationship would greatly increase the number of spikes, which would increase 
the capability of containing more information with the same number of neurons than that of a linear 
proportional correlation. In this paper, an encoder was successfully designed to achieve the 
exponential relationship between the neuron number and spike number.  

 

3.2 Encoder Scheme Analysis 

Here we developed an energy efficient temporal encoder that provided a more general 
encoding scheme. Low power consumption, small die area, and low cost are the three advantages 
of its design. In this project, the iteration encoder was designed, simulated and fabricated in 
standard CMOS process. The temporal process is expressed as: 

 

 
 
 
In this process, “<=” represented “sent to”, and Si represented the spike train. Thus, N neurons 

can generate 2𝑁𝑁−1 spikes. Since the iterative structure was used, this encoder was able to produce 
more spikes than that of a temporal encoder which had the same number of neurons. Hence, this 
encoder design could carry more information. The exponential growth of the number of spikes 
greatly reduced the power consumptions since fewer neurons were needed. 

 

Neuron_1 generates S1 
for (i=2; i<N+1; i++) 
{ 
Neuron_i<= Si-1 
Neuron_i generates Si 
Combiner_i<=[Si-1 Si] 
Output<=Combiner_i 
} 
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Figure 10. Simplified Neuron Pool of the Temporal Encoder 

 
As shown in the Fig. 10, Vleak generates a leakage current. CLK represents the sampling clocks. 

A is the analog signal that is being sampled and Si is the output signal. CLK1 is the global sampling 
clock. CLK2 to CLK4 represents S12 to S34, respectively. The excitation currents I1 to I4 are 
generated by the input layer. In this particular neuron pool, four neurons are being combined. The 
tags on each of the four neurons are Ni, Bi, Di, and Pi, respectively. The membrane capacitors are 
marked C1 to C4, the leakage transistors are labeled as Q1 to Q4, and the feedback transistors are 
labelled Q5 to Q8. The numbering of these components corresponds to that of a complementary 
neuron. 

 
When I1 charges C1, Vleak forces Q1 to the subthreshold region, which results in a constant 

leakage discharging current Iin. The voltage increases as the charging process continues, and 
NMOS transistor N1 increases to the saturation region when the voltage on C1 reaches the 
threshold voltage. After N1 has transferred into the saturation region, the current between N1 and 
N2 increases. Taking the channel length effect into consideration, the current equation is expressed 
as Equation (1). 

 

𝐼𝐼𝑑𝑑𝑑𝑑 = 𝐾𝐾�𝑉𝑉𝑔𝑔𝑑𝑑2 − 𝑉𝑉𝑡𝑡ℎ𝑛𝑛�
2

(1 + 𝜆𝜆𝑉𝑉𝑑𝑑𝑑𝑑2) (1) 
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K is determined by physical parameters and the transistor dimensions, 𝑉𝑉𝑔𝑔𝑑𝑑2 is determined by 
the input signal 𝑟𝑟𝐼𝐼1, 𝑉𝑉𝑡𝑡ℎ𝑛𝑛 is the threshold voltage of NMOS transistor, 𝜆𝜆 is channel length effect 
coefficient, which is determined by physical process, and 𝑉𝑉𝑑𝑑𝑑𝑑2  is the drain-source voltage of 
transistor N2. Since 𝑉𝑉𝑔𝑔𝑑𝑑2 is considered a constant in a short period of time, Equation (1) can be 
simplified to Equation (2). 

 
𝐼𝐼𝑑𝑑𝑑𝑑 = 𝑈𝑈(1 + 𝜆𝜆𝑉𝑉𝑑𝑑𝑑𝑑2) (2) 

 
U is a constant value.  
 
As shown in the Equation (2), Vds2 increase correspondingly when Ids increases, and Ids is 

controlled by the voltage on C1. Transistors N3 and N4 transform the high-level voltage Vds2 into 
low-level voltage. Then CLK1 turns into an ON region. This behavior controls the gate voltage of 
transistor N8, which generates a discharge current for membrane capacitor C1. Such a discharging 
process results in N1 becoming unsaturated, resulting in the voltage Vds2 dropping to a low level. 
Transistor N8 has been designed as a wide NMOS transistor, which insures that the discharging 
process is rapid. After membrane capacitor C1 is discharged, transistor Q5, I1 and the leakage 
current force the membrane potential into the rest level. A spike will not be fire during the 
refractory period, which is controlled by the CLK1 signal. A membrane potential charging and 
discharging process is illustrated in Fig. 11. 

 

 
Figure 11. Membrane Potential Variation Diagram 
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Figure 12. Simplified Output Layer Circuit 

 
The simplified circuit of the corresponding output layer is illustrated in Fig. 12. The circuit is 

comprised of 4-neuron based temporal encoders and three combiners. The first combiner will be 
explained as to how it functions. The input spike signals are S1 and S2. Only one spike can be 
accepted by the combiner at a time. When a spike pass through S1, Q1 is in the cutoff region, and 
Q6 is in the saturation region. Therefore, the voltage on the gates of transistor Q2 and Q5 is equal 
to the drain voltage of Q6, which is low voltage. In this situation, Q5 is in the cutoff region, and 
Q2 is in the saturation region. The final output from Q2 will be at a high voltage level. In other 
words, this combiner accurately duplicates the input spike. The delay of each combiner is less than 
10 ps, which ensures that a significant error would not be introduced in the combiner. 

 
The encoding scheme was analyzed and demonstrated through a mathematic derivation. In the 

encoder, each neuron is affected by not only the input signal, but also the previous neuron’s output 
signals, as shown in Equation (3). 

 
𝑆𝑆𝑛𝑛 = 𝑓𝑓(𝑆𝑆1,𝑆𝑆2, … , 𝑆𝑆𝑛𝑛−1;  𝑆𝑆𝑛𝑛−2,𝑛𝑛−1; 𝐼𝐼𝐼𝐼𝑛𝑛) (3) 

  
f( ) represents the integrated scheme of these three types of signals, and the input signal is 

combined with both 𝑉𝑉𝑡𝑡ℎ𝑖𝑖 and 𝐼𝐼𝑒𝑒𝑒𝑒𝑖𝑖. For a temporal encoding scheme, it is important to derive out 
the relationship between the inter-spike intervals and the original signal. In our design, the encoder 
samples the original signal without any additional systems, and encodes the input signal 
information of the inter-spike intervals, whereby each sampling cycle is accomplished by the 
neurons. Without generality, we define the relationship of the excitation current as Equation (4). 
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𝐴𝐴𝑁𝑁 = 𝛽𝛽𝐴𝐴𝑁𝑁−1 = 𝛽𝛽2𝐴𝐴𝑁𝑁−2 = ⋯ = 𝛽𝛽𝑁𝑁−1𝐴𝐴1 (4) 
 
𝛽𝛽 is determined by the design parameters, and N is neuron amount. In our design, each neuron 

has the same parameters. Therefore, the firing behaviors of each neuron are determined by the 
excitation currents. As we have mentioned, each neuron is affected by not only the input signal, 
but also the previous neurons output signals. When the neuron number is determined, we can 
determine the relationships of each spike and the inter-spike intervals values. An output spike train 
with N=n, where n is the neuron number, is illustrated in Fig. 13. 

 

 
Figure 13. Output Spike Train 

 
The inter-spike intervals in Fig. 5 is expressed in Equations (5) to (9), govern the behavior of 

the inter-spike intervals in a single temporal encoding train. 
 

𝐷𝐷2𝑖𝑖−1 = 𝐷𝐷2𝑛𝑛−1−1 

=
𝑁𝑁
𝐴𝐴1

∙
1

𝛽𝛽𝑛𝑛−1
 

(5) 

𝐷𝐷2(2𝑖𝑖−1) = 𝐷𝐷2𝑛𝑛−1−2 

=
𝑁𝑁
𝐴𝐴1

(
1

𝛽𝛽𝑛𝑛−2
−

1
𝛽𝛽𝑛𝑛−1

) 
(6) 

𝐷𝐷4(2𝑖𝑖−1) = 𝐷𝐷2𝑛𝑛−1−4 

=
𝑁𝑁
𝐴𝐴1

(
1

𝛽𝛽𝑛𝑛−3
−

1
𝛽𝛽𝑛𝑛−2

−
1

𝛽𝛽𝑛𝑛−1
) 

(7) 

𝐷𝐷8(2𝑖𝑖−1) = 𝐷𝐷2𝑛𝑛−1−8 

=
𝑁𝑁
𝐴𝐴1

(
1

𝛽𝛽𝑛𝑛−4
−

1
𝛽𝛽𝑛𝑛−3

−
1

𝛽𝛽𝑛𝑛−2
−

1
𝛽𝛽𝑛𝑛−1

) 
(8) 

⋮  

𝐷𝐷2n−2 =
𝑁𝑁
𝐴𝐴1
�

1
𝛽𝛽1

−
1
𝛽𝛽2

−
1
𝛽𝛽3

− ⋯−
1

𝛽𝛽𝑛𝑛−2
−

1
𝛽𝛽𝑛𝑛−1

� (9) 
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Figure 14. Verification Scheme Flow Chart 

 
We developed verification (Fig. 14) and recovery (Fig. 15) schemes to improve the designed 

temporal encoder’s error tolerance. When considering internal verification, the verification value 
serves as the criteria to inspect the working conditions of each neuron. In our design, each neuron 
generates a spike train that will be transferred to the neuron in the next stage, and to a verification 
combiner [32, 33].  

 

 
Figure 15. Temporal Spike Train Recovery Scheme 
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For correct temporal encode outputs, an algorithm was adopted to evaluate the spike trains, 

which is shown in Equation (10). 
 

∀ 𝑟𝑟, 𝑗𝑗 ∈ [1,𝑁𝑁],

⎩
⎨

⎧
𝐼𝐼𝑁𝑁𝑆𝑆𝑖𝑖 = 𝐼𝐼𝑁𝑁𝑆𝑆𝑗𝑗

𝑟𝑟𝑖𝑖 = |𝐼𝐼𝑁𝑁𝑆𝑆𝑖𝑖 −
∑ 𝐼𝐼𝑁𝑁𝑆𝑆𝑖𝑖𝑁𝑁
𝑖𝑖=1

𝑁𝑁
|

𝑆𝑆𝑖𝑖 = 𝐷𝐷𝑖𝑖 ± 2𝑟𝑟𝑖𝑖

 (10) 

 
 
N is the total account of intervals, ei is the error of the ith interval, and Si is the final temporal 

encode at position i.  
 
The flowchart of the proposed recovery scheme is presented in Fig. 15. T is defined as the 

minimum time slot. After the first spike is detected, the read system holds for time T. Then the 
recovery scheme will detect the time of the next spike. A maximum time slot Tm is defined. If a 
spike has been detected during Tm, the time t1 would be recorded together with minimum time slot 
T. If a spike was not detected after maximum time Tm, a new read cycle would start.  Additional 
information on this scheme is available [32]. 

 

3.3 Analog Implementation of the Delayed Feedback Reservoir 

Applications of reservoir computing include chaotic dynamics predictions [34], character 
recognition [35, 36], speech recognition [37, 38], and the generation and prediction of chaotic time 
series [39]. Delay is ubiquitous to most systems, especially biological systems. Examples include 
the diffusion and transport of substances such as cellular metabolites, hormones, oxygen and 
carbon dioxide in blood, the conduction time of nerves, and the intrinsic times for synthesis, growth, 
and reproduction [40]. With delay embedded in these systems, they can exhibit rich dynamical 
behavior. 

 
 To more closely mimic mammalian brains, delay was implemented in our Delayed Feedback 

Reservoir (DFR) computing model. In this context reservoirs function as time-delayed recursive 
networks that use feedback as a short-term dynamic memory for the processing of time-series input 
signals. Delay systems exhibit the two prerequisites that are required for reservoir computing, high 
dimensionality and short-term memory. An electronic analog circuit [41] which simulated the 
Mackey-Glass mathematical equation and exhibited highly complex hyper-chaotic behavior was 
strongly dependent on the delay time. 
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Photonic implementations of delayed feedback systems [42-44] introduced the phenomenon 
of optical chaos. Complex dynamics [45] is beneficial for describing some applications, including 
some chronic and acute diseases.  However, there is no known analog integrated circuit (IC) design 
in the literature for a spike time-dependent delayed feedback reservoir computing system. 

 
One of the simplest delay systems consists of a single nonlinear node whose dynamics is 

influenced by its own output at time 𝜏𝜏 in the past. Such a system is simple to implement, since it 
is comprised of only two elements, a nonlinear node and a delay line loop. The delay line loop 
transverses through a number of virtual nodes. Each virtual node is separated by an equidistant 
delay 𝜃𝜃. Each virtual node holds the delayed version of the previous node’s output in time 𝜃𝜃 = 𝜏𝜏

𝑁𝑁
 , 

where 𝑁𝑁 represents the number of virtual nodes.  
 
The dynamic characteristics of this system can be influenced by simply changing the feedback 

strength or the delay interval 𝜃𝜃 and 𝜏𝜏. A delay feedback reservoir has an approximately identical 
performance to a traditional reservoir computer. The output nodes are linear weighted sums of the 
tapped states in the delay line [25], given by Equation (11). 

 

𝑟𝑟�(𝑟𝑟) =  �𝑤𝑤𝑖𝑖. 𝑥𝑥 �𝑟𝑟 −
𝜏𝜏
𝑁𝑁

(𝑁𝑁 − 𝑟𝑟)�
𝑁𝑁

𝑖𝑖=1

 (11) 

 
In our design for the delayed feedback reservoir computing architecture, the input sensory 

information will be inputted into a temporal encoder, and then transformed to the temporal spike 
trains. To compensate for the loss of parallelism, signals proceed through a masking procedure 
before being injected into a nonlinear neural node and delay loop. We have adapted Mackey-Glass 
functions to design the nonlinear neural node and delay loop. Fig. 16 illustrates the architecture of 
our delayed feedback reservoir computing system design, which is described in additional detail 
in Li [46]. 
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Figure 16. Design of the Delay Feedback Reservoir Computing System 

 
The input and output relationships are mathematically described by transfer functions [47]. 

Step functions were one of the earliest transfer functions that expressed input-output correlations. 
However, for reservoir computing, nonlinear mapping of the input is required. Hence, in order to 
achieve such functionality, nonlinear transfer functions are employed.  

 
Sigmoid and hyperbolic tangent functions are commonly used as transfer functions. The slope 

of a sigmoid function is tunable by varying its coefficients. As the slope becomes steeper, the shape 
of sigmoid function becomes more like a step function. However, different from a step function, a 
sigmoid function is a continuous function that ranges from 0 to 1, and is composed of a mixture of 
linear and nonlinear behaviors. Another nonlinear function that can be used is a hyperbolic tangent 
function tanh. Hyperbolic tangent functions are antisymmetric with respect to the origin, and 
converge more rapidly than the sigmoid activation functions in the neuron model. 

 
 Sigmoid and hyperbolic tangent functions are not the only nonlinear functions that are utilized 

as transfer functions, and other nonlinear functions that could serve as transfer functions for 
reservoir computing were explored. Systems were evaluated that had looped structures in which 
the output is fed back after a time delay 𝜏𝜏 such that the feedback influenced subsequent outputs. 
Such systems are described with Delay Differential Equations (DDEs). These equations are also 
model such things as the control of pupil light reflexes, gene regulation and population growth. 
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For example, in the pupil light reflex, only 20 ms of the 300 ms delay can be accounted for by the 
axonal conduction times [40]. A DDE equation is expressed in Equation (12). 

 
𝑑𝑑𝑟𝑟
𝑑𝑑𝑟𝑟

= 𝑓𝑓[𝑟𝑟(𝑟𝑟), 𝑟𝑟(𝑟𝑟 − 𝜏𝜏)] (12) 

 
f is arbitrary function, and can be either a linear or a nonlinear function depending on the 

application, and τ is the time delay.  
 
The Mackey-Glass (MG) function, a type of DDE, was initially developed to describe diseases 

that exhibit symptom with oscillatory instabilities [45]. The dynamics of a MG function depends 
on both the current and the previous time, which is expressed in the following form (Equation 
(13)). 

 
𝑑𝑑𝑑𝑑
𝑑𝑑𝑟𝑟

=
𝛼𝛼𝑑𝑑𝜏𝜏

1 + 𝛽𝛽𝑑𝑑𝜏𝜏𝑛𝑛
− 𝑑𝑑 (13) 

 
α and β are arbitrary design parameters, n is the nonlinearity exponent, and Pτ = P(t-τ). By 

varying the nonlinearity exponent, the nonlinearity can be tuned.  Fig. 17 illustrates the functional 
block diagram of a MG function. 

 
 
 
 

 
Figure 17. Functional Block Diagram of a MG Function 
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(a) vs. Nonlinearity Exponents 

 
(b) vs. Hyperbolic Tangent Function 

 
Figure 18. Mackey-Glass Function 
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The introduction of time delay enables MG functions to respond as time-delayed feedback 
structures in a way that mimics the biophysical processes in the biological neuron. In biological 
terms, delays between two brain neurons can arise from feedback mechanisms. This introduced 
delay can either stabilize or destabilize a dynamical system, which may transform dynamical 
behavior from stable to chaotic, or vice versa. The best computational performance occurs at the 
transition region between stable and chaotic regimes, which is called the "edge of chaos" [47, 48]. 

 
Neither of the two most commonly used transfer functions, the sigmoid and the hyperbolic 

tangent, operate at the edge of chaos. The MG function includes embedded delay in its equation, 
which enables it to operate at the edge. This function not only allows the nonlinear mapping that 
is required in reservoir computing, but it also provides a delay loop. As shown in Fig. 18 (a), the 
shape of Mackey-Glass function changes with the value of the nonlinearity exponent. This 
property of Mackey-Glass function enables the determination of an optimal regime [47]. A 
hyperbolic tangent and a MG function are plotted in Fig. 18 (b). Compared to the hyperbolic 
tangent function, the MG function exhibits higher nonlinearity.  

 
Several research activities on the implementation of the MG model by electronic circuits were 

discovered in the literature [25, 41, 42, 45]. These results showed its capability of generating high-
dimensional data and the potential for tuning its dynamical behavior by varying the time delay. 
However, all of these works focused on the time-continuous waveform of the input signals. There 
has been no known previous research regarding the use of analog neuron spike trains as the input 
signals. 

 
A nonlinear function was modeled [50] with three fabricated analog multipliers (AD633) [51] 

and multiple operational amplifiers (op-amp) (AD712) [52] from Analog Devices. Moreover, as 
demonstrated by Namajunas [41] and Soriano [42], nonlinear functions were formed by n-type 
and p-type junction gate field-effect transistors (JFETs). Due to its simple structure, this electronic 
circuit design has been widely used to model nonlinear functions. However, the output signals 
from this nonlinear device are relatively small, and operational amplifiers are generally required 
to further increase the outgoing signals to a desired level.  

 
Although this demonstrates the capability of nonlinear mapping with the low power CMOS 

technology, the output signals of these electronic circuit are usually limited to several hundred 
nanovolts.  An op-amp with a finite gain of 109 is normally required to obtain sufficient output 
levels. 
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A combination of analog and digital implementation has been used to implement the MG 
function with electronic circuits [25]. These components have high power and large die area 
requirements. In our design both the spike-based nonlinear neural node and the delay loop are 
capable of directly processing signals in forms of spikes. We adopted neuron spike trains as the 
input signal, and were able to process the spike signal directly with an analog spike-based nonlinear 
processor.   

 
Our nonlinear node design is comprised of input triggers (𝑀𝑀1 and 𝑀𝑀2), a first order passive 

low-pass filter (𝑅𝑅1  and 𝐶𝐶1), a nonlinear mapping transformer (𝑅𝑅2  and 𝐶𝐶2), a feedback current 
mirror (𝑀𝑀3~𝑀𝑀5), and an output current mirror (𝑀𝑀6~𝑀𝑀8), as illustrated in Fig. 19. 

 
 

 
Figure 19.  Simplified Schematic of the Designed Spike-based Nonlinear Node 

 
In the reset operation, the input is charged to 𝑉𝑉𝐷𝐷𝐷𝐷, which deactivates the input trigger of the 

nonlinear device, resulting in the discharge the nonlinear mapping transformer. Thus, the output 
current 𝐼𝐼𝑜𝑜𝑜𝑜𝑡𝑡 is reset to 0 A. In the decision-making operation, the inverted spike-based input signal 
is first filtered by a passive low-pass filter. Once the input trigger is enabled, the input current 𝐼𝐼𝑅𝑅𝐶𝐶 
charges the nonlinear mapping transformer to regulate the biasing voltage 𝑉𝑉𝑅𝑅𝐶𝐶  of 𝑀𝑀7 . 
Consequently, the drain-to-source voltage 𝑉𝑉𝐷𝐷𝐷𝐷  of 𝑀𝑀7  quickly increases until it reaches its 
saturation level potential. While 𝑀𝑀7 is in its sub-threshold region (𝑉𝑉𝑅𝑅𝐶𝐶 < 𝑉𝑉𝑡𝑡ℎ7, where 𝑉𝑉𝑡𝑡ℎ7 is the 
threshold voltage of 𝑀𝑀7), the 𝑉𝑉𝐷𝐷𝐷𝐷 of 𝑀𝑀7 is 0 V. The diode-connected structure of 𝑀𝑀6 fully enables 
the output current mirror to achieve the maximum output current. Contrarily, as 𝑉𝑉𝐷𝐷𝐷𝐷 of 𝑀𝑀7 reaches 
its saturation level potential, the transistor 𝑀𝑀6 drops into the sub-threshold region, resulting in a 
decrease in the output current. Meanwhile, the feedback current mirror generates a high voltage at 
𝑉𝑉𝐹𝐹𝐹𝐹 to disenable the input trigger. The positive feedback loop quickly reduces the output current 
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to 0 A, where it remains until the next process takes place. The nonlinear transformation of one 
input spike is completed. 

 
The nonlinear transformation is achieved by the charging and discharging processes of the 

nonlinear mapping transformer. In other words, the nonlinearity of the transfer function is 
proportional to the time constant 𝜏𝜏𝑁𝑁𝐷𝐷  of 𝑅𝑅2 and 𝐶𝐶2. To facilitate high-dimensional mapping, a 
large 𝜏𝜏𝑁𝑁𝐷𝐷 is required to maintain the nonlinearity of the transfer function. However, a large 𝜏𝜏𝑁𝑁𝐷𝐷 
will results in longer charging and discharging times, which would ultimately reduce future 
computational efficiencies. Considering the tradeoff between accuracy and operating speed, a 
larger 𝜏𝜏𝑁𝑁𝐷𝐷 was implemented to maintain the accuracy of the system.  

 
Moreover, the 𝐼𝐼𝑉𝑉 characteristics of the output current mirror were utilized for nonlinear 

transformation in the nonlinear node design. The output current mirror was optimized such that it 
operated between the sub-threshold and the saturation regions, resulting in the maximum 
nonlinearity of the circuit. 

 
In the delay feedback reservoir design, not only the nonlinear node but also the delay loop was 

designed such that it was capable of processing spike-based neuron signals. The IF-based delay 
unit utilized capacitor-sensing methodology based on a traditional IF neuron model, as depicted in 
Fig. 20.  However, this is different from an IF neuron model, in that the input (excitation) current 
(𝐼𝐼𝑒𝑒𝑒𝑒) in the IF-based delay unit was a controllable current source that regulated the delay time of 
the circuit. During its operation the membrane capacitor 𝐶𝐶𝑚𝑚  senses the excitation current and 
continues to increase its voltage potential.  

 

 
Figure 20. Simplified Schematic of the IF-based Delay Unit 
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When the voltage potential across the membrane capacitor Cm exceeds the threshold level of 
the input transistors (𝑀𝑀3 and 𝑀𝑀4) in the Designed Spike-based Nonlinear Node, two cascading 
inverters (𝑀𝑀5~𝑀𝑀6  & 𝑀𝑀11~𝑀𝑀12 ) fire an output spike. Once the firing process takes place, a 
feedback loop (𝑀𝑀7~𝑀𝑀10) generates a high voltage at 𝑉𝑉𝑟𝑟𝑒𝑒𝑑𝑑𝑒𝑒𝑡𝑡 to trigger the reset transistor (𝑀𝑀2) to 
discharge the membrane capacitor. As such, the firing process for one output spike is completed. 

 
In the IF-based delay unit (Fig. 20) the delay time is regulated by the integrating time of 𝐶𝐶𝑚𝑚. 

The delay time constant 𝜏𝜏𝑑𝑑𝑒𝑒𝑑𝑑𝑁𝑁𝑑𝑑 can be expressed as Equation (14). 
 

𝜏𝜏𝑑𝑑𝑒𝑒𝑑𝑑𝑁𝑁𝑑𝑑 = 𝐶𝐶𝑚𝑚 ∙
𝑉𝑉𝑡𝑡ℎ(𝑖𝑖𝑛𝑛)

𝐼𝐼𝑒𝑒𝑒𝑒
 (14) 

 
𝑉𝑉𝑡𝑡ℎ(𝑖𝑖𝑛𝑛) is the threshold voltage of the input stage and 𝐼𝐼𝑒𝑒𝑒𝑒 is the controllable excitation current. 

The mathematical analysis of the IF-based delay unit is similar to a traditional 𝑅𝑅𝐶𝐶-based delay unit, 

since the input impedance (𝑅𝑅𝑖𝑖𝑛𝑛) of the input stage is equivalent to 𝑉𝑉𝑡𝑡ℎ(𝑖𝑖𝑛𝑛)

𝐼𝐼𝑒𝑒𝑒𝑒
. Thus, the delay time 

constant can be rewritten as Equation (15). 
 

𝜏𝜏𝑑𝑑𝑒𝑒𝑑𝑑𝑁𝑁𝑑𝑑 = 𝐶𝐶𝑚𝑚 ∙ 𝑅𝑅𝑖𝑖𝑛𝑛 (15) 
 
However, unlike a traditional 𝑅𝑅𝐶𝐶-based delay unit that is formed by a large capacitor, the delay 

time of our IF-based delay unit is regulated by the input impedance. Consequently, a larger delay 
time is achieved by increasing the equivalent input impedance of the delay unit, which is achieved 
by reducing the controllable excitation current. 

 
The DFR for this effort was designed using a temporal encoder, nonlinear nodes and IF-based 

delay units. In this operation, the analog input signal is first encoded into a spike-based temporal 
signal by the temporal encoder, which had previously been fabricated [21], followed by the 
mapping process with the nonlinear node. The transformed nonlinear signal is then injected into 
the delay loop. Within the delay loop, the total delay time T is separated by 𝑁𝑁 equidistant IF-based 
delay units, which can be expressed as Equation (16). 

 
𝑇𝑇 = 𝑁𝑁 ∙ 𝜏𝜏𝑑𝑑𝑒𝑒𝑑𝑑𝑁𝑁𝑑𝑑 (16) 

 
To enable the dynamic delay loop, the transformed nonlinear signal is first converted into a 

spike-based signal by the LIF neuron. The information of the nonlinear signal is presented as a 
spike train. The delay loop is constructed by connecting the output of the IF-based delay unit as a 
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clock trigging signal for the following stage. When a spike is generated from the LIF neuron, it 
resets the following delay unit. Meanwhile, the membrane capacitor of the corresponding delay 
unit begins to charge. Over the period of the time delay 𝜏𝜏𝑑𝑑𝑒𝑒𝑑𝑑𝑁𝑁𝑑𝑑 the delay unit fires an output spike, 
which results in a nonlinear signal at the given delay time. The spike-based signal travels along 
the delay line until it reaches the last delay unit. 

 
To maintain the accuracy of the signal combination, the delayed spike signal in the last stage 

of the delay loop is transferred into a nonlinear current, followed by a current gain adjuster to 
reduce the amplitude of the delayed nonlinear signal, such that the input signal will be dominant. 
The amplified-and-delayed nonlinear signal will then be merged with the input signal by the 
combiner. 

 

3.4 Fabrication of the Reservoir Node Design 

 
The spike-based DFR design was submitted for fabrication through the MOSIS Integrated 

Circuit Fabrication Service using the standard Global Foundries 130 nm CMOS technology on 
May-22, 2017. The chip design contained 13 DFR modules, and was separated into two sections. 
Each section can be biased and measured with 2 separated groups of I/O pins. Moreover, since 
device mismatch can occur as a result of the fabrication process, 4 different DFR design floor plans 
were implemented in the chip. To reduce the number of the output testing pins within the limited 
chip area, the outputs from all of the DFRs within the same section are shared on 1 output pin. To 
prevent interference between each of the output signals, a 6-to-1 multiplex was implemented, 
which allowed the selection of a specific DFR module. In addition to the DFR modules, an 
individual MG nonlinear node, and a temporal encoder are also included in this chip for individual 
performance testing. 

 
Fig. 21-23 show the layouts of our spike-based DFR, our reservoir neuron node, and our delay 

neuron, respectively. This effort ended before the design was completely fabricated. 
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Figure 21. Layout of Our Spike-based DFR 
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Figure 22. Layout of Our Reservoir Neuron Node 
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Figure 23. Layout of Our Delay Neuron 
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4.0 RESULTS AND DISCUSSION 

In Section 4.0 is presented the results and a discussion of this effort.  These results are from 
simulations of our circuit designs. The chip design of the temporal encoder was tested at Kentucky 
University’s Information and Telecommunications Technology Center using their state-of-the-art 
electronic design automation (EDA) tools for circuit design, modeling, and simulation, as well as 
their specialized lab facilities for integrated circuit testing. 

 

4.1 Simulation Results for the Temporal Encoder Design 

 
We developed an optimized circuit schematic for our Temporal Encoder, and then used the 

Cadence Virtuoso Analog Design tools to generate the layout of the encoding circuit. In our circuit 
the leak current is generated by a current reference. While most neuron circuits simply use one 
transistor to provide the leak current, under these conditions the current can become unstable when 
the temperature changes [53]. 

   
To test the encoding capability of our design, the post layout simulation for the encoder has 

been carried out. The simulation result is illustrated in Fig. 24. 
 

 
Figure 24. Simulation of the Temporal Encoder for Three Samples 

 
 
The red lines in Fig. 24 represent temporal spike codes, and the blue line represents analog 

input signal. There are three sets of spike trains which contain 8 spikes in each sampling window. 
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In our encoder, 4 neurons were used to construct the encoder. The number of spikes is 8, which 
satisfies the design requirement. 

 
 
In our designed circuit, the leak current was generated relative to a current reference. A current 

mirror is a circuit designed to copy or mirror the current flowing in one active device that controls 
the current in another active device in the same overall device circuit, keeping the output current 
constant regardless of the loading.  Different leak current values were generated by adjusting the 
ratio of the current mirror in the leak current module.  

 
Changes in leak currents were generated by changes in the ratio of the current mirror in the 

leak current module. The current source that was designed for our spike-time dependent encoding 
is an absolute temperature current source that is stable vs. temperature. For our fabrication 
specifications the temperature coefficient determined by modelling is the slope of the output 
current vs. the temperature, and is shown in Fig. 25. From the slope, the current source will have 
a temperature coefficient of 742ppm/℃ ͤ.  Comparing with [54], our current source’s temperature 
coefficient performance fully satisfied the requirements for leak current stability. 

 
 
 
 
 
 
 
 
 



Approved for Public Release; Distribution Unlimited. 
39 

 
Figure 25. Modelled Temperature Coefficient of Our Design 

 

 
Figure 26. Power Supply Output Current vs. Voltage 

 
As shown in Fig. 26, our power supply was determined by design simulations to have an output 

current of 14.0±0.3µA.  
 
The fabricated encoder was further tested and analyzed here. As shown in Figure 27, some 

inspection spikes, illustrated with red dashed lines, are missing from the measured output. 
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Figure 27. Output Temporal Code  
 

 
Figure 28. Measurement for Two Samples 

 
A two-sample output temporal encodes is shown in Fig. 28. By adopting an internal 

verification scheme, we further tested our designed encoder’s error tolerance ability. Without a 
loss of generality, 10 of the sampling points were chosen from the 100 sampling points, and the 
results showed that the difference between the maximum and minimum value was 0.057, which 
indicated that all of the verification values were distributed within this extremely small range. The 
maximum error was less than 0.034, which represents 8.16×10-4 µs.  Compared to the magnitude 
of our sampling time of 1 µs, such an error is not detectable. Also, the difference between the 
maximum value and the minimum value was 0.022 µs, which was much smaller than the resolution 
of each single temporal encode, which was 0.1 µs. 
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External verification is another important aspect of the proposed encoder. In order to evaluate 
its performance, one segment of output temporal encode extracted from the measurement data, 
which is shown in Fig. 29, has been taken into account to illustrate how such kind of error-tolerance 
mechanism works. 

 

 
Figure 29. Measurement of Temporal Encode 

 
 

 
Figure 30. Temporal Spike Train with Jitter Spikes 

 
Jitter is the deviation from true periodicity of a periodic signal. Jitter spikes were sometimes 

present within a sampling window. As shown in Fig. 30, there were several jitter spikes that 
appeared within this sampling window. Threshold voltage values were marked by the red dotted 
line. Spikes with amplitudes that were lower than the threshold voltage were considered noise. 
According to the recovery scheme, there was a minimum holding time. 
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4.2 Design Error 

In our design, the minimum time T was defined as 2/3 of the smallest inter-spike interval. The 
distance between these spikes and the previous valid spike was much smaller than T. Therefore, 
these jitter spikes are not counted in the recovery scheme. By using this rule, the error rate is 
illustrated in Fig. 31. 

 

 
Figure 31. Inspection Error 

 

 
Figure 32. Spike Train Verification Spikes  

 
With respect to the analog design of the neural encoder, a crucial component is its error 

tolerance. In our encoder design, internal and external verification schemes have been introduced 
to improve its error tolerance. The verification value Veri serves as the criteria to inspect the 
working conditions of each neuron. A spike train illustrates the verification scheme, and is shown 
in Fig. 32. 
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 In our design, each neuron can generate a spike train that will be transferred to the neuron in 
next stage and to a verification combiner. Since our temporal encoder adopted an iteration structure, 
all of the neurons work together asynchronously with delays between verification code and the 
output code. In other words, except for the first neuron, the rest of the neurons are driven according 
to their order. Exception spikes can appear as soon as one neuron fails to work correctly.  

 
By checking the verification values, it can be determined whether the temporal encoder is 

operating faultlessly. In our design, there are eight spikes that are generated for each sampling 
point, which then acquires eight verification distances Verij for each cycle. In this case, the 
normalized value for evaluating each neurons’ working conditions is expressed as Equation (16). 

 

𝛿𝛿𝑖𝑖𝑗𝑗 =
8𝑁𝑁𝑉𝑉𝑟𝑟𝑟𝑟𝑖𝑖𝑗𝑗

∑ ∑ 𝑉𝑉𝑟𝑟𝑟𝑟𝑖𝑖𝑗𝑗8
𝑗𝑗=1

𝑁𝑁
𝑖𝑖=1

 (16) 

 
N is the sampling point. Excepting the internal verification technique, the final temporal encode 

output also possesses a high error-tolerance mechanism. This type of mechanism is achieved by 
adding additional inspection spikes, which can be used to acquire inspection intervals. This scheme 
is called the external verification scheme. The inspection intervals should have the same values to 
guarantee the output temporal code carries only the correct information. 

 
 
 

 
 

Figure 33. Inspection Scheme Overview 
 
In Figure 33 is shown an overview of the inspection scheme. The vertical blue lines represent 

the inspection spikes, the inspection intervals are INSi, and Di represents the original temporal 
encoding interval and dynamic temporal encoding intervals. 
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4.3 Encoding Rates 

4.3.1 Neural Encoding 

The efficiency of neural encoding is evaluated by Information Theory. The encoding time 
window Tencode was partitioned into small time bins (Δt), and the presence or absence of spikes in 
each bin was represented by a binary sequence that is called the ‘spike-word’. The resulting 
entropy, also called “self-information”, characterized the encoding rate of the coding strategy. In 
this project we extended this concept to a more general setup to evaluate the encoding rates for the 
three encoding strategies.  

 
To be specific, let Δt' be the resolution of the corresponding encoder. The encoding time 

window was partitioned into L= Tencode /Δt' bins. Let [x_1,x_2,…,x_L ] be a vector of random 
variables where x_i is a random variable representing the number of spikes in the ith bin. It is 
important to note that the temporal information was encoded in the corresponding vector.  

 
Accordingly, the encoding rate (entropy) of the introduced temporal rate became 

H(x_1,…,x_L ) bits, where H(⋅) was the defined entropy function b. For rate encoding, the exact 
value of x_i does not matter. Rather what matters is the sum of x_i, which is the total number of 
spikes in Tencode. Therefore, the encoding rate of rate encoding is expressed as H(x_1+⋯+x_L ). 
From the chain rule of entropy, we have Equation (18). 

 
𝐻𝐻�(𝑥𝑥1, … , 𝑥𝑥𝐿𝐿), (𝑥𝑥1 + ⋯+ 𝑥𝑥𝐿𝐿)�        

= 𝐻𝐻(𝑥𝑥1, … , 𝑥𝑥𝐿𝐿) + 𝐻𝐻�(𝑥𝑥1 + ⋯+ 𝑥𝑥𝐿𝐿)|(𝑥𝑥1, … , 𝑥𝑥𝐿𝐿)� 
= 𝐻𝐻(𝑥𝑥1 + ⋯+ 𝑥𝑥𝐿𝐿) + 𝐻𝐻�(𝑥𝑥1, … , 𝑥𝑥𝐿𝐿)|(𝑥𝑥1 + ⋯+ 𝑥𝑥𝐿𝐿)� 

(18) 

 
It is clear that 𝐻𝐻�(𝑥𝑥1 + ⋯+ 𝑥𝑥𝐿𝐿)|(𝑥𝑥1, … , 𝑥𝑥𝐿𝐿)� = 0, since (𝑥𝑥1 + ⋯+ 𝑥𝑥𝐿𝐿) was deterministically 

conditioned on knowing (𝑥𝑥1, … , 𝑥𝑥𝐿𝐿), and 𝐻𝐻�(𝑥𝑥1, … , 𝑥𝑥𝐿𝐿)|(𝑥𝑥1 + ⋯+ 𝑥𝑥𝐿𝐿)� > 0. Therefore, from the 
above equation, we have 𝐻𝐻(𝑥𝑥1, … , 𝑥𝑥𝐿𝐿) > 𝐻𝐻(𝑥𝑥1 + ⋯+ 𝑥𝑥𝐿𝐿).  

 
This means that the encoding rate of temporal coding was faster than that of the rate coding. 

Based on the information theoretical framework, we can evaluate the encoding rate for rate coding, 
parallel temporal coding, and iteration temporal coding. For the case where 𝑇𝑇𝑒𝑒𝑛𝑛𝑒𝑒𝑜𝑜𝑑𝑑𝑒𝑒 = 1.12 and 
Δ𝑟𝑟′ = 0.14, which is the case when at most 8 spikes were generated for all three of the encoders, 
we computed that 𝐻𝐻𝑟𝑟𝑁𝑁𝑡𝑡𝑒𝑒 = 3.17 bits , 𝐻𝐻𝑝𝑝𝑁𝑁𝑟𝑟𝑁𝑁𝑑𝑑𝑑𝑑𝑒𝑒𝑑𝑑 = 4.25 bits , and 𝐻𝐻𝑖𝑖𝑡𝑡𝑒𝑒𝑟𝑟𝑁𝑁𝑡𝑡𝑖𝑖𝑜𝑜𝑛𝑛 = 5.29 bits . These 
results clearly indicated that the benefits of temporal coding over rate coding, and showed the 
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iteration based temporal coding achieved the best encoding rate across all three of the coding 
strategies. 

 

4.3.2 Parallel Encoding 

Encoding speed is one of the key performance parameters for neural encoder design. For the 
parallel encoder, the encoding time 𝑇𝑇𝑝𝑝was determined by the neuron with the largest capacitor. 
The encoding time 𝑇𝑇𝑖𝑖𝑡𝑡  of the iteration encoder was mainly determined by the iteration times 
expressed as Equation (19). 

 

𝑇𝑇𝑖𝑖𝑡𝑡 = �𝑟𝑟𝑖𝑖

𝑁𝑁

𝑖𝑖=1

 (19) 

 
N was the total neuron number and 𝑟𝑟𝑖𝑖 was a single neuron operation time. In order to make 

sure that the parallel encoder generated robust temporal spike trains, the capacitances ratio between 
each neuron needed to be larger than 1.2. Since the operation time of one neuron was mainly 
determined by the integrating time of the membrane capacitor, which was directly proportional to 
membrane capacitor, the encoding time is shown in Equation (20). 

 
𝑇𝑇𝑝𝑝 = 1.2𝑁𝑁𝑟𝑟1 (20) 

 
𝑟𝑟1 was the shortest neuron’s operation time. Comparing Equations (19) and (20), the parallel 

encoder had the faster encoding speed when the number of neurons was small, and the iteration 
encoder had a much faster encoding speed when the number of neurons became larger. 

 

4.4 Feedback Reservoir Design Die Area 

 
In traditional encoder designs, operational amplifiers and comparators are required to make a 

complete encoder system. The rate and temporal encoders that we have designed here were LIF 
neurons. This approach avoided the requirements for power consuming Analog to Digital 
Converters (ADC) and operational amplifiers, and resulted in a significant savings in power 
requirements and design area. Rate encoders required the smallest design areas, while a three-
neuron based parallel encoder required the same area as that of a four-neuron iteration encoder. 
The membrane capacitor in the parallel encoder was different, which made the scalability of the 
parallel encoder very challenging. The iteration encoder adopted the same-sized neuron with the 
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same number of membrane capacitors, which resulted in less scaling of the neuromorphic 
computing network as it incorporated larger numbers of neurons and synapses to more closely 
emulate a brain’s information-processing infrastructure. 

 

4.5 Delay Feedback Reservoir Design Performance 

 
Fig. 34 shows the output spike trains for the delay times of 1.27 µs, 2.03 µs, and 3.69 µs. The 

time delays between each spike train were determined from these output spike train plots. These 
delay times were determined to be identical. In Fig. 35 are shown the phase portraits for the three 
different delay times. By tuning these delays, the dynamics of the system can be varied from order 
to the “edge of chaos”. This confirms that the desired nonlinear mapping is successfully 
implemented with our designed spike-based nonlinear neural node.  

 
A traditional analog delay unit is purely based on the capacitor size. In order to acquire 1 us 

delay, such a system requires at least a 100 KΩ resistor and a 10 pF capacitor to achieve the goal. 
Since the delay time is designed to be identical, the delay time can be determined by evaluating 
the output signals. 

 
Fig. 35 showed a four-stage delay loop whereby the output spike trains are illustrated. The Vth 

is in the 1V level, and the Iex – Ileak is in 0.1 uA level, which is equivalent to a 10 MΩ resistance. 
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(a) 1.27 µs 

 

 
(b) 2.03 µs 

 

 
(c) 3.69 µs 

Figure 34. Output Spike Trains as a Function of Delay Times 
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(a) 1.27 µs 

 

 
(b) 2.03 µs 

 

 
(c) 3.69 µs 

Figure 35. Phase Portraits as a Function of Delay Times 
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Therefore, the designed delay unit d can achieve large delay timed with very small capacitors. 
Hence, the dynamics of the system can be varied from order to the “edge of chaos” by tuning the 
delay constant with very small capacitance and resistance values. 

 
We applied our designed dynamic MG function based neuron to serve as a class of dynamic 

reservoir nodes that met the requirements of high dimensionality and finite memory in reservoir 
computing systems. In an endeavor to reduce the complexity of RNNs, reservoir computing 
architectures have been proposed in the field of machine learning.  For the reservoir computing, 
there exists three layers, input layer, reservoir, and output layer, in which the architecture of the 
reservoir is based on the recurrent neural network (RNN).  

 
Unlike RNNs the connections within the reservoir would not be trained by the assignments of 

randomly chosen synaptic weights. The input connections serve as the scaling of the input signal, 
and transfer the scaled signal to the reservoir. Within the reservoir nodes are connected in a random 
manner whereby nonlinear mapping takes place. The outputs from the reservoir are then 
transferred to the output layer through the output weights. The only weight connections that are 
trained are the output weights for reservoir computing. Hence, the computational cost of such a 
computing architecture is drastically reduced when compared to RNNs.  

 
To demonstrate the nonlinear behavior of the DFR, the nonlinear node was designed to model 

the nonlinear regime of MG function, as depicted in Fig. 36. Similar as the nonlinear characteristics 
of the MG function, it was observed that the nonlinearity of the transfer function in the nonlinear 
node was regulated by the time constant 𝜏𝜏𝑁𝑁𝐷𝐷.  

 

 
Figure 36. Nonlinear Regime of MG Function and Circuit Implementation 
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(a) Output of the Nonlinear Node 

 
(b) Output of the MG Function 

 
Figure 37. Transfer Function 

 
To demonstrate this nonlinearity, the value of 𝜏𝜏𝑁𝑁𝐷𝐷 was changed from 5 ns, 10 ns, 20 ns and 30 

ns, and the output voltage was measured. These results are shown in Fig. 37 (a).  In Fig. 37 (b) is 
presented the output of the MG function with four different nonlinearity exponents, 𝐼𝐼. As the 
exponent increased, the nonlinearity also increased. This same characteristic was observed for the 
circuit’s nonlinear function.  

 
In the DFR the dynamic of the system was varied from order to the “edge of chaos” by 

controlling the total delay time of the delay loop. To demonstrate the delay behavior of the system, 
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the delay time 𝜏𝜏𝑑𝑑𝑒𝑒𝑑𝑑𝑁𝑁𝑑𝑑 of the IF-based delay unit was changed to achieve a large dynamic range of 
controllable delay time. The delay time of the IF-based delay unit was measured at various 
excitation currents. As plotted in Fig. 38, the delay time was regulated from 180 ns to 1.5 µs by 
changing the excitation current from 50 nA to 300 nA. 

 
 
 
 
 
 

 
Figure 38. Controllable Delay Time 

 
 
 
To acquire a 1.5 µs delay via a traditional 𝑅𝑅𝐶𝐶-based delay unit, such a system required a 100 

kΩ resistor and a 15-pF capacitor, which required a large chip area to implement. Our IF-based 
delay unit design overcame this drawback by regulating the equivalent input impedance of the 
circuit. By injecting 50 nA excitation current into the delay unit, the equivalent input impedance 
reached 25 MΩ. Thus, a large delay time was achieved with an extremely small capacitor. More 
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importantly, such a system is capable for handling spike-based signals, as presented in Fig. 39. 
This figure also demonstrated the output spike trains along the dynamic delay loop. The results 
also indicated that the time delays between each neuron were approximately identical. 

 
 

 
 

Figure 39. Output Spike Trains along the Delay Loop 
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Figure 40. System Precision 
 
The system performance and precision were determined through Monte-Carlo simulations, 

where both the temperatures and the processes were varied. To demonstrate the precision of the 
system, the designed DFR was simulated by introducing process variations via the output current 
mirror of the nonlinear node. Five random samples of output current were selected to demonstrate 
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the precision of the system, as depicted in Fig. 40. The results indicated that our system had a 
precision of  <1%, which was within the experimental temperature variation.  

 
However, the output current mirror of the nonlinear node was optimized such that it operated 

between the sub-threshold and saturation region to achieve the maximum nonlinearity of the circuit. 
Thus, the output of the nonlinear node was sensitive to device mismatch. In the circuit 
implementation, the size of output current mirror of the nonlinear node was augmented to 
overcome this drawback. 

 
To closely examine the dynamic behavior, solutions to the DDE equation were carried out. 

The dynamic behavior of the nonlinear function was modeled by the DDE with varied delay times, 
as demonstrated in Fig. 41. The solutions converged to an equilibrium state when the delay was 
small. The dynamic behavior varied accordingly as the delay increased. With increasing time delay, 
the dynamics changed from periodic to chaotic. 
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Figure 41. Dynamic Behavior of Nonlinear Functions 

(a)𝝉𝝉 = 𝟑𝟑; (b) 𝝉𝝉 = 𝟏𝟏𝟏𝟏; (c) 𝝉𝝉 = 𝟏𝟏𝟏𝟏; (d) 𝝉𝝉 = 𝟏𝟏𝟐𝟐. 
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The phase portrait is a representation of the solutions tracing the path of each solution. It is a 
graphical tool to visualize how the solutions of a given system of differential equations would 
behave in the long run. In other words, a phase portrait tracks the dynamic behavior of a system 
solution. By varying the time delay of dynamic systems, the phase portraits are illustrated as Fig. 
44. 

 

 
Figure 42. Phase Portraits of Dynamic Systems 

(a) 𝝉𝝉 = 𝟏𝟏𝟏𝟏; (b) 𝝉𝝉 = 𝟏𝟏𝟏𝟏; (6) 𝝉𝝉 = 𝟏𝟏𝟏𝟏; (d) 𝝉𝝉 = 𝟏𝟏𝟏𝟏; (e) 𝝉𝝉 = 𝟏𝟏𝟐𝟐; (f) 𝝉𝝉 = 𝟏𝟏𝟏𝟏.  
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4.6 Delay Feedback Reservoir Design Summary 

Table 2 provides a summary of the design of the Delay Feedback Reservoir system chip that 
is being fabricated. 

 
 

Table 2. Delay Feedback Reservoir System Summary 
Technology 130 nm 
Implementation Integrated Circuit 
Supply Voltage 1.2 V 
Delay Structure IF (spike)-based Delay 
Power 175 µW 
Design Area 0.0098 mm2 
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5.0 CONCLUSIONS 

We have encoded neural responses using different timescales with different stimulus attributes 
to generate temporal inter-spike intervals of sensory information. The performances of rate codes 
and temporal codes were compared, and the computational advantages of temporal code with inter-
spike intervals was demonstrated. This reduced the ambiguity inherent in single-scale codes and 
enhanced the robustness of neural representations compared to environmental noise. 

 
While most implementations of reservoir computing are embodied in software, efficient 

hardware implementations of these concepts provided numerous advantages. Hardware 
implementations are capable of exploiting the full potential of the intrinsic parallelism of neural 
networks. Dedicated hardware implementations for specific tasks also offer advantages over 
software implementations whenever either low power consumption or high processing speeds are 
a priority.  

 
More specifically, we have designed and tested an analog delay-based reservoir node. This 

advanced neuron circuit design for a delay feedback MG function bears a much closer resemblance 
to the behavior of neural networks than that of the tanh and sigmoid functions. In order to ensure 
the real-time operation, the digital signals are required to interface with the analog world, which 
leads to the addition of digital-to-analog and analog-to-digital converters. Our analog 
implementation has the advantage of implicit real-time operation, resulting in a small design area 
and lower power. Furthermore, our dynamic delay based neuron could perform nonlinear 
transformation and map input signals to higher dimensional state, which makes it a potential suit 
for reservoir computing. 

 
Our design has made three main contributions: 
• An analog spike-based nonlinear processor directly processes spike signals. 
• Our delay loop for the reservoir node is the first type of spike-based delay loop.  
• The power consumption is greatly reduced since components including analog-to-digital 

converters (ADCs) and operational amplifiers (Op-AMPs) are not necessary.  
 
This project resulted in the design of an agile analog integrated circuit implementation of a 

spike-time encoding circuit as a signal conditioner and electronic reservoir as a dynamic processor 
for the reservoir computing systems. This effort bridged high-performance computing, 
nanotechnology, and integrated circuits & systems.  
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We completed the optimized circuit schematic and then use the Cadence Virtuoso platform to 
generate the layout of our designed reservoir circuit. This research produced deliverables including 
a dynamic reservoir circuit design, SPICE circuit models, and circuit prototypes. We provided a 
nonlinear processor designed to exploit recent advancements in nano-technology and interconnects 
for a new class of computational systems based on dynamically driven architectures. This effort 
started in February 2016, and was planned to end in December 2018. However, due to the transfer 
from KU to Virginia Polytechnic Institute and State University, this effort is ended earlier than 
expectation. By the end of this effort, we have accomplished most of the originally planned tasks. 
The remaining tasks that need to be completed in future effort included testing the fabricated 
dynamic reservoir circuit, and incorporating these results into an additional iteration of the circuit. 

 
In summary, we have completed: 
• Comprehensive investigation of sensory information mapping in the neocortex 
• Spiking time dependent encoder design and analysis with multiple inter-spike intervals 
• Chaotic circuit (serving as a pseudorandom time series generator) design and optimization 

for the sampling clock input of an encoder circuit 
• Encoder circuit fabrication with advanced CMOS nano-technology was in-process when 

the effort was completed. 
 
A delayed feedback reservoir was designed, and that design was optimized. The reservoir was 

designed to have rich dynamics, and a wide range of tasks should result from using linear readout 
neurons to extract relevant information from the reservoir.  
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ADCs  Analog-to-Digital Converters 
AFRL    Air Force Research Lab  
CLK  Clock 
CMOS  Complementary Metal-Oxide-Semiconductor 
DACs  Digital-to-Analog Converters 
DDE  Delay Differential Equation 
DFR  Delayed Feedback Reservoir 
EDA  Electronic Design Automation 
FN   Fitzhugh-Nagumo 
FPGA  Field-programmable Gate Array 
HH   Hodgkin-Huxley 
HPC  High-performance Computing 
IC   Integrated Circuit 
IF   Integrate-and-Fire 
ISI   Inter-Spike Intervals 
KU   University of Kansas 
LIF  Leaky Integrate-and-Fire 
MG  Mackey-Glass 
Op-AMPs  Operational Amplifiers 
PCB  Printed Circuit Board 
PTSG         Pseudorandom Time Series Generator 
RF    Radio Frequency 
RNN  Recurrent Neural Network 
SNR  Signal-to-Noise Ratio 
SPICE   Simulation Program with Integrated Circuit Emphasis 
SWAP  Size, Weight, and Power 
TTFS  Time-to-First-Spike 
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