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ABSTRACT

Data mining can be a valuable tool, particularly in the acquisition of military intelligence. 
As the second study within a larger Naval Postgraduate School research project using 
Amazon Web Services (AWS), this thesis focuses on data mining on a very large data 
set (32 TB) with the open web crawler data set Common Crawl. Similar to previous 
studies, this research employs MapReduce (MR) for sorting and categorizing output 
value pairs. Our research, however, is the first to implement the basic Reverse Web-Link 
Graph (RWLG) algorithm as a search capability for websites, with validation that it 
works correctly. A second goal is to extend the RWLG algorithm using a full Common 
Crawl archive as input for processing as a single MR job. To mitigate the out-of-
memory error, we relate some environment variables with the Yet Another Resource 
Negotiator (YARN) architecture and provide some sample error tracking methods. As a 
further contribution, this study considers limitations associated with using AWS, which 
inform our recommendations for future work.
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CHAPTER 1:
Introduction

Data mining is an interesting field of study as well as a popular tool for many organizations,
and the military is no exception. The fact that the military values intelligence acquisition as
an extremely important asset heightens the significance of datamining evenmore. Thanks to
the growth of the Internet and the use of smart phones, military activities, for example, can be
easily observed, recorded, or photographed by military personnel, their family and friends,
and others. This information is easily posted on any social media site (e.g., Facebook,
Twitter) and can be handily gathered and analyzed by anyone. As a result, the movement of
troops is almost impossible to hide nowadays. Indeed, the amount of information released
through social media every day is so enormous that no one individual can extract specific
useful information on his own. For example, the average 350 million photos uploaded
to Facebook each day [1] are nearly impossible to analyze and extract useful information
from in a reasonable time. The photos themselves are already a tremendous source of
information, not to mention videos and text posts. This is where data mining comes into
play.

This is the second study within a larger Naval Postgraduate School (NPS) research project
involving data mining with the open web crawler data set Common Crawl. The first study
within theNPS datamining project was published in June 2016 byA. Coudray [2]. The topic
for the present thesis was prompted by the Reverse Web-Link Graph (RWLG) algorithm
in a paper written by Google scientists [3]. As a part of the larger NPS research project,
the study described in this thesis shares the same services and tools, including Amazon
Web Services (AWS), which offers various on-line computing services and management
tools. Like the previous work [2], we use the Common Crawl data set as the input source for
processing. We also useAWSSimple StorageService (S3) for result storage andAWSElastic
MapReduce (EMR) and Elastic Compute Cloud (EC2) for data mining specific software
and hardware. Essential background information to understand the rest of the chapters is
provided within this work. Further details on Big Data, the Hadoop File System (HDFS),
Hadoop MapReduce (HMR), AWS, and the Common Crawl can be found in [2].
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1.1 Research Problem
The focus of this thesis is on processing an extremely large data set using the RWLG
algorithm. In this study, RWLG is used to process the web pages as input, yielding
ordered Uniform Resource Locator (URL) value pairs < targetU RL, sourceU RL > which
constitute a map showing how web pages link to one another. The usage of RWLG can
be exemplified by the scenario that we only have someone’s e-mail address, and we want
to find out additional information about that person. We can use the hypothetical e-mail
address as a key to find the corresponding links from the RWLG output-value pairs, and
we can further look for those corresponding links to determine that person’s job, company,
community, or profession, yielding a description of the person of interest. We can even
find further information about this person using the corresponding links as keys to find even
more links.

As previously described, this research uses the RWLG algorithm, which extracts value
pairs for one-hop links. We not only implement the RWLG algorithm but also extend the
algorithm to extract link pairs for links of two or more hops under the MapReduce (MR)
environment. In addition, this work considers the impact of invalid target URLs along with
dynamic URLs, mitigates some problems encountered in previous works, and results in
software capable of producing RWLGs on the scale of the Internet.

In this work, the emphasis is on dealing with an extremely large data set. As mentioned
in the military activity observation example, various kinds of information can be extracted
from the World Wide Web (WWW). The Common Crawl compiled its latest archive of
all the accessible text portion of the Web pages into 57 TB of compressed files as of the
first quarter of 2017. Certainly, data mining is used almost everywhere nowadays, but only
a few applications are required to process this extreme amount of data. Coudray’s thesis
was a good starting point for this research project, but he encountered many issues while
processing data that did not even approach one percent of the archive. This study tries
different approaches to deal with a larger amount of data.

1.2 Organization
The literature review and background information necessary to understand this research are
presented in Chapter 2. The tools used in the research, a guide to the environment setup, the

2



algorithms developed for this work, and proofs showing the validity of these algorithms are
explained in Chapter 3. The results of this research are exhibited in Chapter 4. Finally, the
work is summarized and possible avenues for future work are recommended in Chapter 5.
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CHAPTER 2:
Background

To work with data mining and tap its efficiency, we need specific hardware and software.
For hardware, a cluster of computers is preferred, and we can either set up our own cluster,
or nowadays, rent one from a cloud services company. For software, we need a tool
appropriate for cluster computing and parallel processing that is suitable for data mining.
HMR, a module MR under the Apache Hadoop framework, is one of the typical tools for
cluster computing and distributed processing. For this research, we used both hardware and
software services provided by AWS, so we did not have to set up or maintain hardware or
install software. The only effort required was to learn how to use their services, which is
relatively straightforward. Besides hardware and software, we also needed a proper data
set for data mining processing. The Common Crawl is a suitable data set on which to do
different kinds of processing.

Since this study is part of a larger project, we share almost the same background with [2].
As the first work in the NPS research project, in the Coudray thesis Big Data and HMR
infrastructure were described in detail from a very basic foundation [2]. This study, the
second work in the research project, provides only background sufficient to understand this
thesis. Although the HMR is described in [2], one of the key elements in MR version 2, Yet
Another Resource Negotiator (YARN) [4], was not and is explained here. As an internal
resource locator in HMR, YARN was very important in this study and is described with
some MR characteristics. Spark, which was not used in this study, is usually compared
with MR and, therefore, is also explained here. AWS, as the platform to execute our code,
is discussed, focusing on its changes from the time when the Coudray thesis was published.
The Common Crawl, as the source data set, is also discussed and compared with its usage
in Coudray’s work [2]. URLs, which play an important role in the RWLG algorithm in this
thesis, are yet another topic discussed in this chapter. Finally, we end this chapter with a
comparison of this study to previous research.
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2.1 MR
As stated in Chapter 1, the research idea stems fromGoogle’sMR paper [3]. MR is amodule
in the Apache Hadoop framework. To work with MR requires thinking about processing
data in a special way: make everything into value pairs that can be easily processed in
parallel. MR gets its name from the symbolic two sequential stages: Map and Reduce.
Mappers are the distinct processes that run the same algorithm in the Map stage, as are
the reducers in the Reduce stage. The source data set is separated into different blocks for
different mappers to process and produces output as < key, value > value pairs. These
value pairs are transferred to reducers by key through a step called shuffle and sort. Each
reducer then handles these pairs of a single key and produces the final value pairs for the
key. MR is a simple tool that is easy to learn, write, and deploy, but which has also proved
to be inefficient for many kinds of applications; hence, the next generation, Spark, was
invented [5].

2.1.1 YARN in MR Version 2
HMR is capable of doing parallel computing on clusters, and YARN is a core element inMR
that manages the resources on all clusters. From the description of the MapReduce official
website [6], we notice the key parts of YARN: ResourceManager, ApplicationMaster, Node
Manager, and Container. YARN architecture is illustrated in Figure 2.1.

2.1.2 YARN Architecture
We can see that one node runs the ResourceManager, and other nodes have a NodeManager
per node. ApplicationMasters and Containers reside in the cluster nodes, and the Applica-
tionMaster is in charge of its Containers. The mappers and reducers we are familiar with
run in these Containers. Understanding the YARN architecture and knowing the relation
between its parts is critical when setting the MR environment variables. The amount of
memory in a Container limits the number of mappers and reducers that can be accommo-
dated. The amount of memory in a node limits the number and size of the Containers that
can be accommodated. Without this fundamental knowledge, one gets lost when setting up
the memory parameters.

6



Figure 2.1. Description of YARN Architecture. Source: [6].

2.1.3 Memory Parameter Setting
Other than introducing the MR infrastructure and mechanisms, [7] provides important
YARN properties and some assumptions regarding memory settings. Since we are using
EMR, we do not need to set up the YARN architecture, but we do need to set up the
memory portion, a discuss [7] does not provide. Fortunately, [8] offers a set of equations for
calculating a "rule of thumb" memory setting depending on the specifications of the cluster,
which builds on top of an understanding of the YARN architecture. These introductory
resources gave us the initial guidelines to adjust the memory setting and served as a good
starting point in our research.

2.2 Spark
As mentioned earlier, Spark, which is similar to MR, is another tool for cluster computing.
Spark is known to be more efficient than MR in many types of applications by introducing
Resilient Distributed Dataset (RDD) [9]; thus, it was an option while starting this research.

As there is no cache mechanism in MR, when an iterative job such as linear regression is

7



required, MR must start again from the very beginning in every cycle, causing poor MR
performance. MR’s performance suffers as it must launch the whole process again in every
task, as shown in Figure 2.2a.

(a) Iterative Job Operation for MR (b) Iterative Job Operation for Spark

Figure 2.2. Iterative Job Operation Figures for MR and Spark

We can think of RDD as a cache that saves the mapper’s output. Once the job requires the
previously computed value pairs, it checks the RDD first before starting the Map stage to
run the whole data set again and, thus, saves a significant amount of execution time. Spark
launches the process only once, and every task uses the same computed values from RDD,
as shown in Figure 2.2b.

Within this study’s analysis, however, the RWLG is not found by an iterative job; it does
not require the computed data to be reused before emitting its output, at least not when the
algorithm is created. It is more likely to have massive sorting, which is the only application
for which MR is superior to Spark [10], [11]. MR was, therefore, chosen to be the tool for
this research.

2.3 AWS
AWS provides various online services in three different types: Infrastructure as a Service
(IaaS), Platform as a Service (PaaS), and Software as a Service (SaaS). For the services
of interest in this work, EC2 and S3 belong to IaaS, and EMR belongs to PaaS. There
are actually two ways to run HMR in AWS: directly use the EMR platform provided or
to use multiple instances from EC2 and build from the infrastructure. In both [2] and this
thesis, EMR is used directly because it is not only cheaper but also enables us to reduce the
complexity of building the infrastructure. Nevertheless, we do not know how Amazon has

8



configured the lower levels, which causes problems when conducting our research. Note
that EMR runs on EC2 instances, while EC2 is transparent to EMR users. These two
services, though, do share the same limitation, and the EMR user still needs to examine the
EC2 documents when errors occur.

The AWS environment changed a lot in nine months, which was the period between the
publication of [2] and this work. There are not many conceptual changes, but a lot of
changes were made to the functions and mechanisms by updates and version changes in a
popular programming environment. General changes about AWS, working environment,
tools, and pricing information are described separately in the following section.

2.3.1 General AWS Changes
Since both works run MR tasks, it makes sense that both works deploy these tasks using
the EMR service from AWS. The EMR release version has changed from 4.0 to 5.0, which
includes several changes in functions and mechanisms. The most important difference in
this study is that the Common Crawl data can no longer be accessed by EMR if we do not
set the appropriate region. In other words, the EMR region has to be set to "US EAST
(Northern Virginia)" now, which is the same region in which the Common Crawl files
reside, for the MapReduce tasks to work correctly.

2.3.2 AWS GovCloud (US)
Because NPS is a government organization, we can, and are required, to use the government
cloud for research unless none exists, which was the case for the Coudray thesis. This
is no longer true (since late 2016); thus, the research was moved to the AWS GovCloud
(US). Because of the security requirements of the GovCloud, it is physically separated from
the normal AWS Cloud. In the current AWS system settings, the separation means the
GovCloud is unable to access Common Crawl files, which reside in the normal AWS Cloud.
To solve these issues, we established a special account that belongs to the government and
has the same functionality as the normal AWS Cloud.

9



2.3.3 Command Line Interface
AWS’s Graphic User Interface (GUI) was utilized in Coudray’s work; however, this work
involved many more experiments than Coudray’s. The GUI would not work for this number
of experiments required since it would take much more time to assign tasks. The Command
Line Interface (CLI) is capable of accomplishing the same thingwith a long, single command
and can be scripted to start many different tasks quickly. This characteristic greatly improved
the speed when executing experiments.

2.3.4 How to Choose Instances from AWS
Instances in AWSmeans machines that run our jobs. Performance is always a concern when
running experiments, and AWS offers different kinds of instances with general guidelines
in [12] for users to execute their tasks. We found publications using AWS, but none of them
did a systematic comparison between these instances. There are studies comparing the
performances between different numbers of instances used [13]–[15], but there are rarely
comparisons between different types of instances used [15], [16]. As a result, it remained
difficult to choose the specific type of instance that suits our research.

There are also works that examine resources and bottlenecks that constrain MR perfor-
mance [17], [18]. In these studies, unexpectedly, we learned that the network capability
is not the bottleneck in most of the MR cases. From these studies, we also learned that
computing-optimized instances should be chosen for serialized/compressed input data pro-
cessing from the Common Crawl, which is exactly our case. This assumption was tested
and verified as discussed in later chapters.

2.3.5 Pricing Information
AWS gain their profit by providing services, and we, as a user, want to get the most out of
the services while spending the least amount of money as well. There are considerations to
think about while estimating the possible cost for a job and before executing the series of
operations that we encountered.
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There are three major sources to be considered while estimating the cost:

1. AWS EMR
When we use EMR to execute our algorithm, we are charged for using it. The EMR
provides a "box" for different types of instances, and the boxes are charged by hour.
The charged amount depends on the types of instances the user is using, which is
given by AWS in [19].

2. AWS EC2
We note that EMR charges only for the box, not the instances. This is because the
instance is being charged in the EC2 part, which the price is given by AWS in [20].

3. AWS S3 and Data Transfer
The input and output for our study are both using S3. The input data set, the Common
Crawl, is saved on the "US EAST (Northern Virginia)" region of S3, as stated in the
previous section. The output of our program is saved on the S3 buckets that we create.
The data saved on the S3 bucket is charged daily based on its size, so we want to
discard the resulting output when it is large (e.g., the result from multiple segments
as input) [21]. Furthermore, data transfer between a different region of S3 buckets is
going to be charged as listed in the bottom part of [21] as well; thus, we want to set
up our bucket and EMR in the same region as the Common Crawl to minimize the
data transfer fee.

2.4 Common Crawl
The Common Crawl is a repository of periodic archives of the Internet. It uses S3 in AWS
as storage space and has used a crawl engine to save copies of the Internet periodically
since 2008. The recent format of the Internet archives is the Web ARChive (WARC) file
format [22]. Every WARC file contains many WARC records, and each WARC record
contains HyperText Markup Language (HTML) code of a single web page and some meta-
data as a record header from the crawl engine.

For the current Common Crawl structure, an archive is a full copy of the Internet, which is
separated into 100 segments, where each segment contains about 578 WARC files. Since
each WARC file is about 1 GB, an archive is at least 57 TB. Such a large data set is an
appropriate source data set for data mining and for this work. A view of the Common Crawl

11



directory using CLI is shown in Figure 2.3.

Figure 2.3. A View of the Common Crawl Directory Using CLI

2.5 URL
Understanding URLs is very important to this work since the output from the data mining
in this research is nothing but URL value pairs. The regulations and definitions about these
Internet-related concepts are regulated by documents called Requests For Comments (RFC).
Before detailing the content of a URL, we should identify the difference between URL,
Uniform Resource Name (URN), Uniform Resource Identifier (URI), and Internationalized
Resource Identifier (IRI), documented in RFC1738, RFC3986, and RFC3987, respec-
tively [23]–[25]. These three RFC documents describe the definitions and functionality of
URL, URN, URI, and IRI, which are summarized in the following paragraph.

A URL is a specified resource locator. To access a resource indicated by a URL, one must
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know its host’s name, the directory in which the resource is stored, and the file name of the
specific resource. The URL becomes useless if the corresponding resource is moved, which
is a problem that resulted in the development of the URN. A URN looks like a URL, but the
user only needs to know the resource name. By providing information such as a description
of the resource along with the resource name, we get the most suitable copy of the resource
from the server. URI is the superset of both URL and URN; that is, every URL is a URI,
but a URI can be either a URL or a URN. The resource must be represented using the
American Standard Code for Information Interchange (ASCII) character set, which causes
a problem if the path or name of the resource contains foreign characters. IRI is intended to
replace URI using a much wider character repository to “internationalize” it. In this work,
we only focus on URLs that are already mature and widely used in the World Wide Web as
well as in the Common Crawl.

2.5.1 URL Format
Since the URL is used to locate resources, its format, or scheme, varies depending on the
type of resources. According to RFC1738, which is the document specifying URLs, we
find there is a general format using the Backus–Naur form (BNF) representation:

<scheme>:<scheme-specific-part>.

The scheme is the type of applications used in the Internet, such as HTTP, FTP, etc. Since
HTTP is the most common scheme encountered in this work, its BNF representation is
described further as in the example:

http://<host>:<port>/<path>?<searchpart>

where <host> is the domain name in the Internet layer of the Internet protocol suite, and
<port> is the port number in the Transport layer and is set to 80 by default if not omitted.
The <path>, which is an optional HTTP selector that represents the file directory on the
machine, and the <searchpart>, which is further described in Section 2.5.2 along with its
preceding question mark, are optional as well. If all those optional parts are not used, the
BNF representation can be simplified as follows:
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http://<host>.

Note that characters like "/", ";", and "?" are reserved in the optional parts, and <searchpart>
plays an important role in dynamic URLs.

2.5.2 Dynamic URL
A dynamic URL is a URL that contains the <searchpart> part. It is used to display specific
parts of the content of that specific page, which usually contains a huge amount of data;
however, the Common Crawl crawls these web pages as different pages, which increases the
complexity of the resulting RWLG output. A dynamic URL is identified by the existence
of a "?" in the BNF representation. This study provides the option to simplify the RWLG
output by discarding the <searchpart> part, which removes the dynamic portion of the URL.

2.5.3 User-input-URL in HTML
There are two values in an output pair: source URL and target URL. Since we are using
the Common Crawl data as an input source, the source URL is always extracted from the
WARC record header in the WARC files, which are created by the crawl engine, so it is
less likely to have problems. Nevertheless, the target URL is extracted from the HTML
content created by other users; thus, having an invalid URL as the target URL is possible.
Unfortunately, to validate each URL is very computationally expensive, so we did not try to
validate URLs in this research. Actually, there are two types of invalid URLs: one is invalid
from syntax. These errors occur very rarely and are categorized together by alphabetical
order since they usually share the same set of special characters. The other type of invalid
URL is known as link rot [26]. Link rot results in a "dead end" pair, which means this error
does not propagate in our later tasks. It is not our focus to address either the broken links
or URL validation, so no action was taken with regard to these invalid URLs.

2.6 Previous Research
Many students who are using AWS have also employed MR, but no research on RWLG
has been published. By contrast, as the first step of the NPS research project, Coudray’s
study completes the Inverted Indices approach in the MapReduce paper, which takes the
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web pages as input and emits < word, list(sourceU RL |position) > value pairs as output.
Although the RWLG requires a different approach, this work still benefits from the tool-
choosing process and shares some of the same problems addressed in Coudray’s work, such
as "OutOfMemory Error: Java heap space," and the AWS optimizing problem. Herein, we
develop some solutions to increase our program’s input size capability.
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CHAPTER 3:
Experimental Design

The experimental design—from the choice of tools, environment setup, algorithms to
experiment execution, especially focusing on the portions that are different from the previous
work—is described in this chapter. The intent of this chapter is to give a clear and full
understanding of how these experiments are designed and why they are designed this way,
as well as how these experiments are conducted.

The organization of this chapter follows the research process: we first chose our tools and
set up the environment for both local and cloud testing. Then, we designed our algorithms
and implemented them into computer programs. Finally, we did local testing followed by
cloud testing.

3.1 Tools
The previous chapters mentioned the key tools, such as AWS and the Common Crawl for
cloud execution, but since launching a cloud execution is more expensive, we usually do a
local test first. The local test can be run on almost any personal computer if the environment
is properly configured.

As a single piece of a much larger NPS project, this study shares the same tool set as
Coudray’s [2], which is also part of that same project. Nevertheless, there are still some
differences between our chosen tools and those of Coudray. Some of them are based on
efficiency considerations, but most of them are just personal preferences.

Since we must write and pack our programs on our own machine, a handy Integrated
Development Environment (IDE) like Eclipse is preferred. For local testing, Hadoop must
be installed on the machine. For cloud execution, AWS must be set up properly. Both this
and [2] use Eclipse as the IDE, but the way the Java code is packed into a compressed
Java ARchive (JAR) is different. Both works require Hadoop on the local machine, but the
install actions are different. Both studies use Common Crawl data for input data sets, but
the archive chosen as the input source is distinct. Both efforts use AWS for cloud execution,
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but the interfaces chosen to access AWS are different. These differences are all explained
in the following sections.

3.1.1 Runnable JAR File Instead of Maven Project Packaging
In the HMR environment, our programs always had at least two separate Java files; thus,
packaging them into one JAR file was essential. Maven is a powerful tool; it was used
for packaging JAR files in Coudray’s work [2]. Although it is a good tool, setting it up,
including building the XML file, is complex just to package the JAR file. The current work
used a much simpler way to achieve the same functionality without the need to install any
plug-ins other than the main Eclipse IDE. The steps for using the built-in Eclipse function
is described in later sections.

3.1.2 Native Hadoop Instead of VirtualBox Simulation
In Coudray’s work, local testing was done by VirtualBox simulation [2]. He simplified
his computer system this way while sacrificing execution efficiency. In contrast, this work
gained more benefits by directly installing Hadoop on the host operating system.

First, deploying a virtual system requires system resources, and the execution is not able to
run at full system capability. For the lightweight laptop that was used for this research, this
distinction was important.

Second, VirtualBox uses more disk space than required. To handle the simulation output,
we have to pre-allocate more resources for the virtual system, and the machine used cannot
afford it.

Last, the file exchange is more complicated when using a virtual system. Without using
a virtual system, we can pack the JAR file right at the execution directory and carry out
testing with minimal delay. This is not possible in VirtualBox.

These considerations caused us to install Hadoop directly on the operating system. The
installation of native Hadoop is discussed in later sections.
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3.1.3 Newer Version of Common Crawl Files
The files in the Common Crawl are well organized; the numbers of WARC files in segments
and the numbers of segments in archives are different. To be accurate, there are around
560 WARC files in each segment and 100 segments in an archive in the first 2017 archive.
Coincidentally, Coudray’s work [2] used a smaller-sized segment, but the current research
used newer Common Crawl data sets. Although file size and total number of files should not
be a problem in theory for parallel execution, we actually encountered hardware problems
requiring mitigation. These are addressed in later sections.

3.1.4 Accessing AWS with CLI
GUIs are user friendly in most cases, including the AWS task configuration. The GUI is
convenient and efficient when the number of jobs is small, but it can be time consuming to
set up jobs using the GUI. The CLI is difficult to learn because it requires the user to learn
many commands to carry out different functions, but it is much more efficient once the user
learns these commands. In this research, there are many more jobs to run on different sets
of data and instances than in the previous research; thus, using the CLI is arguably much
more efficient. The environment setup for CLI and its usage on AWS S3/EMR is discussed
in later sections.

3.2 Environment Setup
In this section, two different parts are contained: local machine setup and AWS configura-
tion. Local machine setup includes the installation steps for Hadoop to a clean Mac OS,
which can be used to write and run the MR jobs locally for basic testing and algorithm
verification. AWS configuration describes the steps to set up privileges for CLI usage in
the AWS as well as local setups such as account and region information, allowing direct
execution of the AWS CLI commands from the Terminal application in the Mac OS.

3.2.1 Local Machine Setup
In this section, instructions to install Hadoop into a clean Mac OS, which requires specific
software to be pre-installed, are contained. This instruction, integrating ideas from various
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sources [7], [27], [28] with personal customization, aims to minimize the amount of human
effort.

3.2.2 XCode
XCode is provided by Apple in the Mac App Store. It can be freely retrieved and should be
installed as the very first item as it includes many functions and software that are transparent
to the user and very useful in later steps.

3.2.3 Java
Java is provided by Oracle from its website (Java installation link can be found at
https://www.java.com/) and can be retrieved at no cost. Java should be installed as the
second item, since it is required to run Hadoop.

3.2.4 Eclipse
Eclipse is an IDE for many coding languages (Eclipse can be found at https://eclipse.org).
Although Java code can be written using any text editor, an IDE helps greatly for for-
matting and syntax checking as well as for packaging. We simply download and in-
stall Eclipse through the GUI. There are seven libraries we must include: hadoop-
common and hadoop-mapreduce-client-core are for Java programming involving Hadoop;
jwat-warc, jwat-common, and jwat-archive-common are libraries that help the Java pro-
grammer to access WARC files; warcutils is a library that works with JWAT li-
braries to access Common Crawl WARC files; finally, the jsoup library is a Java
HTML parser. The libraries hadoop-common, and hadoop-mapreduce-client-core are
found at https://mvnrepository.com; the libraries jwat-warc, jwat-common and jwat-
archive-common are found at https://sbforge.org/display/JWAT/JWAT; the library war-
cutils is found at https://github.com/norvigaward/warcutils; the jsoup library is found at
https://jsoup.org/download.

3.2.5 Homebrew
Homebrew is third-party package manager software for theMac OS (Homebrew installation
guild can be found at http://brew.sh). The advantage of using Homebrew to install software
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is that it identifies and installs all the dependencies, which simplifies the task when the user
needs to install software under the Mac OS. Homebrew can be installed through a single
line Terminal command after XCode is installed:

ruby −e " $ ( c u r l −fsSL h t t p s : / / raw . g i t h u b u s e r c o n t e n t . com /
Homebrew / i n s t a l l / ma s t e r / i n s t a l l ) "

3.2.6 Hadoop
After the above software is successfully installed, we install Hadoop using a single Terminal
command:

brew i n s t a l l hadoop

Hadoop configuration is required for correct operation. Seven files under /usr/local/Cel-
lar/hadoop/2.7.2/libexec/etc/hadoop (the path has 2.7.2 since Hadoop 2.7.2 is installed.
Other number might appear if a different version of Hadoop is installed) need modification:

• hadoop-env.sh
• mapred-env.sh
• yarn-env.sh
• core-site.xml
• hdfs-site.xml
• mapred-site.xml
• yarn-site.xml

The suggested source listings for these seven files are listed in Appendix A.

Remote login must be enabled to use Hadoop: check the Remote log-in option under
"System Preferences => Sharing" first and enter the following two commands in Terminal:

ssh−keygen − t r s a
c a t ~ / . s sh / i d _ r s a . pub >> ~ / . s sh / a u t h o r i z e d _ k e y s

Running Hadoop involves the following commands in Terminal:

hadoop namenode − f o rma t
/ u s r / l o c a l / C e l l a r / hadoop / 2 . 7 . 2 / l i b e x e c / s b i n / s t a r t −d f s . sh
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/ u s r / l o c a l / C e l l a r / hadoop / 2 . 7 . 2 / l i b e x e c / s b i n / s t a r t −ya rn .
sh

Note that the first command is required only for the first time after installation. To stop
Hadoop, enter the commands:

/ u s r / l o c a l / C e l l a r / hadoop / 2 . 7 . 2 / l i b e x e c / s b i n / s top −d f s . sh
/ u s r / l o c a l / C e l l a r / hadoop / 2 . 7 . 2 / l i b e x e c / s b i n / s top −ya rn . sh

From personal experience, we can attest that these commands are not required if web
monitoring is not desired. If only MR is needed, Section 3.4 is all that is required after the
steps described above are done once.

3.2.7 AWS Configuration
The AWS configuration includes server side and client side configurations. Although we
already have an AWS account at this time, a user account is required only for CLI access
and should be set up on the server side. The client side setup needs to use the information
acquired during server side setup.

Server Side Configuration
Log into the AWS Console => IAM => Users => Add user. Enter the desired user name
and check the "Programmatic access" option. The user should have privileges to access S3
and EMR, but administrator privilege also work. Remember to save the created access key
for client side configuration.

Client Side Configuration
Follow the AWS CLI installation guide (the AWS CLI installation guide can be found
at http://docs.aws.amazon.com/cli/latest/userguide/installing.html), or enter the following
command in Terminal:

brew i n s t a l l aw s c l i
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Configure the AWS CLI by following AWS CLI configuration tutorial (the AWS CLI
configuration tutorial can be found at http://docs.aws.amazon.com/cli/latest/userguide/cli-
chap-getting-started.html), or enter the following command in Terminal:

aws c o n f i g u r e

Enter the Access Key information retrieved from Section 3.2.7, and enter us-east-1 for
Default region name. Skip the Default output format by pressing enter without entering
anything.

3.3 RWLG
The original idea for RWLG in the MR paper from Google [3] includes the following
operations:

1. For each web page, record its URL as sourceU RL.
2. For the same web page, record its link URL as targetU RL[n], for n different links.
3. Mapper’s output would be < targetU RL, sourceU RL > for each link.
4. Reducer gathers all Mapper’s output and rearranges them by targetU RL as key and

produces the following output value pairs: < targetU RL, list(sourceU RL) >.

3.3.1 Algorithm 3-1: Basic Algorithm
We can easily implement the basic algorithm from the original idea just described to process
WARC files from the Common Crawl with the help of the Jsoup library. The algorithm is
as follows with the detailed Java code source listings in Appendix B:

1. Fact: ∀Warc record, ∃ only 1 sourceU RL in its header.
2. ∀ Warc record = HTML content, the mapper emits value pairs < targetU RL,

sourceU RL > for every targetU RL found in this specific HTML content.
3. Reducers gather the value pairs by key (targetU RL) and generate new value pairs
< targetU RL, list(sourceU RL) > for different keys.
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3.3.2 Algorithm 3-2: Algorithm for Far Links
From the result of the basic algorithm, we created an extended algorithm to find link pairs
that are two hops away or more. For example, link pair (A, C) is a two-hop link to which
page C has a link to an intermediate page B, and page B has a link to page A. The algorithm
follows with the detailed Java code source listing in Appendix C:

1. Reverse the output from the basic algorithm back to < targetU RL, sourceU RL >

value pairs instead of lists.
2. For every < targetU RL, sourceU RL > value pair, the mapper emits < sourceU RL,

< targetU RL, sourceU RL >> and < targetU RL, < targetU RL, sourceU RL >>.
Since self-links cause problems when it comes to far links, we do not generate
pairs for any pair that points to itself; that is, < targetU RL, sourceU RL > where
targetU RL = sourceU RL.

3. By the nature of MR, (key, value) pairs with the same key are gathered by the
same reducer; thus, if two web pages have the same middle URL, the received
< key, < targetU RL, sourceU RL >> has the form: < middleU RL, < targetU RL,

middleU RL >> and < middleU RL, < middleU RL, sourceU RL >>. We create
two sets named srcRequester and srcProvider , which stand for source requester
and source provider, respectively. We then extract targetU RL into the srcRequester

set from value pairs whose key is the same as sourceU RL and extract sourceU RL

into the srcProvider set from value pairs whose key is the same as targetU RL.
4. When the set is complete, the reducer generates its output value pairs < targetU RL,

sourceU RL > by iterating through every single element from both the srcRequester

and srcProvider sets. The output represents links that are two hops away (or more
if srcRequester is collected from links that are more than one hop away). We want
to exclude the links that point to themselves from the output in this step as well; that
is, exclude < targetU RL, sourceU RL > pairs that have targetU RL = sourceU RL.

5. Since middleU RL is the key, these output values are not ordered by targetU RL and
they may be repeated in other reducers. To reorder the key and reduce redundant data,
we concatenate the result with another MR job, generating value pairs < targetU RL,

list(sourceU RL) > as final output.

The illustration in Figure 3.1 helps us understand the mechanism in the first part of this
algorithm. We see that a two-hop link between the target and the source is connected by the
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middle. It is natural to use the middle as the key in the MR job since it participates in both
sides. The mapper takes the previous link pairs as input and emits the output value pairs of
form < key, < target, source >>. A reducer handling key=mid collects the corresponding
value pairs, and the reducer easily extracts values from these pairs into either srcRequester

or srcProvider sets. Once we complete the srcRequester and srcProvider , we can
generate the two-hop-link value pairs and sort them with the target as the key through
another MR job.

Figure 3.1. Illustrated Internal Process for Algorithm 3-2

This illustration implies that if we use n-hop link pairs on the left side and one-hop link
pairs on the right side, we get srcRequester and srcProvider that are n+1 hops away; thus,
any far links can be generated by one-hop links through this algorithm.

3.3.3 Proof and Validation for Algorithm 3-2
The algorithm for far links described in the previous section claims both that for every
resulting pair < a, c >, the target a is always two-hops away from the source c, and for any
pair < a, c > that does not belong to the resulting pair, target a is never two-hops away
from the source c. To prove the algorithm is working, both the analytical and experimental
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approaches are provided in this section. For the analytical proof, the algorithm is proved
through a direct proof for the "if" part and a proof by contradiction for the "only if" part;
for the experimental validation, a record of 66 value pairs was created for testing.

Analytical Proof
Define: b→ a =⇒ b has a link to a.

Define: b→→ a =⇒ b is two-hops away sourceU RL to a.

Define: I1 = all < a, b > value pairs from Step 2 of Algorithm 3-1.

Define: I2 = all < a, b > value pairs from Step 4 of Algorithm 3-2.

Proof: c →→ a i f f ∃b s.t. b→ a and c → b and a, b, c are all distinct.

Fact: a , b and b , c from Step 2 of Algorithm 3-2; a , c from Step 4 of Algorithm 3-2.

1. direct proof. ∀ < a, c >∈ I2 =⇒ c →→ a:
< a, c >∈ I2 =⇒ < a, c >∈ Step 4 of Algorithm 3-2.
=⇒ < a, c > is generated from Step 2 of Algorithm 3-2.
=⇒ ∃b which is a middleU RL s.t. c → b and b → a and a, b, c are all distinct
(from Fact).
=⇒ c →→ a.

2. proof by contradiction. ∀ < a, c >< I2 =⇒ c →→ a is not true.
(a) Assume @b s.t. b→ a and c → b.
=⇒ c →→ a is not true since there is no middleU RL between a and c.

(b) Assume ∃b s.t. b → a, c → b, and < a, c >< I2. Then < a, b >∈ I1 and
< b, c >∈ I1 since I1 has all one-hop links.

=⇒ Step 2 of Algorithm 3-2 generates < b, < a, b >> and < b, < b, c >> as output.
=⇒ Step 3 of Algorithm 3-2 gathers these value pairs and emits < a, c > in Step 4;
this means < a, c >∈ I2, which is a contradiction.
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Experimental Validation
A file with 66 value pair records was manually created. These records include 1-to-1
pairs, 1-to-2 pairs, 2-to-1 pairs, 1-to-3 pairs, 3-to-1 pairs, and extra 1-to-1 pairs that cause
duplicate paths. This test file was processed by a MR job utilizing Algorithm 3-2, and the
resulting output showed the algorithm to be correct. The algorithm caught all valid pairs
and discarded the replicated value pairs. The samples of the previous description are shown
in Figure 3.2. Both the test input and output files are listed in Appendix D.

(a) Result for 1-Source-Many-
Targets Pairs

(b) Result for 1-to-1 Pairs (c) Result for Many-Sources-1-
Target Pairs

Figure 3.2. Results for the Experimental Validation

3.4 Experiment Execution
How the testing and execution were done in both the local machine and AWS are described
in this section. Note that these instructions work only after the steps described in Section 3.2
are correctly carried out.

3.4.1 Local Machine Execution
The steps for JAR file packaging and MR execution from a local machine are described in
this section.

JAR File Packaging in Eclipse
After selecting the working project in Eclipse, navigate "File" => "Export."

Choose "Runnable JAR file" and click "Next >."
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Choose the MR driver class file for "Launch configuration" and enter the desired directory
for "Export destination." Select "Extract required libraries into generated JAR" for "Library
handling" and click "Finish."

There usually are many driver class files in a JAR file, and setting "Launch configuration"
means we cannot use other drivers. To solve this problem, open a Terminal window and
navigate to the directory containing the JAR file, then enter:

vim [ JAR f i l e name ]
: 1

Move the cursor to the line indicating META-INF/MANIFEST.MF and press enter. Press
"a" to enter insert mode, and remove the line starting with Main-Class. Press Esc and enter:

: wq
: q

The change is now saved, and we can freely choose the driver in the Hadoop command line.

MR Execution
Enter the following command under the same directory with the packaged JAR file in
Terminal:

hadoop j a r [ JAR f i l e n ame ] [ D r i v e r c l a s s name ] [ i n p u t
p a t h ] [ o u t p u t p a t h ]

For example, assume the JAR file is under /Users/Tao/MapReduce, the input file is un-
der /Users/Tao/MapReduce/input, and the expected output directory is /Users/Tao/MapRe-
duce/output. Move first to the same directory by

cd / Use r s / Tao / MapReduce

Assume the JAR filename is WebLink.jar and the Driver class name is LinkDriver and enter
the following command to carry out the MR job:

hadoop j a r WebLink . j a r L i nkDr i v e r i n p u t o u t p u t
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3.4.2 AWS CLI Execution
The detailed document for the AWS CLI can always be found on the AWS website (full
CLI documentation can be found in https://aws.amazon.com/cli/). The instruction here only
describes commands that are used in this study.

Upload JAR File to AWS S3
To upload the JAR file, we first create a bucket using the following command:

aws s 3 a p i c r e a t e −bucke t −−bucke t [ Bucket name ]

Use the following command to upload the JAR file:

aws s3 cp [ JAR f i l e n ame ] s3 : / / [ Bucket name ] /

Assume the unused desired bucket name is "mapreducejob" and the JAR file name is
"WebLink.jar." The command required is:

aws s 3 a p i c r e a t e −bucke t −−bucke t mapreduce job
aws s3 cp WebLink . j a r s3 : / / mapreduce job /

Delete Resulting Output Files from AWS S3
We mentioned previously that we are charged daily for the output file based on the file size;
therefore, we prefer to delete any unneeded output files. The S3 GUI gets stuck when trying
to remove a significant number of files, so we use the CLI to carry out the remove operation
instead. The command to delete a folder and all its content in a S3 bucket is the following:

aws s3 rm −− r e c u r s i v e s3 : / / [ Bucket name ] / [ Fo l d e r Pa th ] /

Assume the bucket name is "mapreducejob" and the folder is named "output" under the
mapreducejob bucket. Then, the command becomes

aws s3 rm −− r e c u r s i v e s3 : / / mapreduce job / o u t p u t /
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Execute MR job using AWS EMR
There are many options in the AWS CLI for EMR, but for this research we only need to
create a cluster and add steps. The most general command used is

aws emr c r e a t e − c l u s t e r −− s t e p s [ S t ep o p t i o n s ] −− r e l e a s e − l a b e l
[EMR v e r s i o n ] −− i n s t a n c e −g roups [ I n s t a n c e o p t i o n s ] −−au to
− t e rm i n a t e −− en ab l e debugg ing −− log− u r i [ Log pa t h ] −−name
[ C l u s t e r name ]

Step options are

Type=CUSTOM_JAR,NAME=[ S tep name ] , Ac t i o nOnFa i l u r e =
TERMINATE_CLUSTER, J a r =[JAR f i l e p a t h ] , Args =[ Arguments ]

where the arguments in our research are [Driver class name],[Input path],[Output path]; the
up-to-date EMR version is emr-5.2.0; the instance options are:

I n s t anceGroupType=MASTER, I n s t a n c eCoun t =1 , I n s t a n c eType =[ Mas te r
i n s t a n c e t ype ] , I n s t anceGroupType=CORE, I n s t a n c eCoun t =[ Core
i n s t a n c e coun t ] , I n s t a n c eType =[ Core i n s t a n c e t ype ]

where the master and core instance types are listed in AWS listing (available AWS EMR
instance types can be found at https://aws.amazon.com/emr/pricing/). The core instance
count is the number of cores wanted in this cluster.

One typical, often used command is:

aws emr c r e a t e − c l u s t e r −− s t e p s Type=CUSTOM_JAR, Name=
examples t ep , Ac t i o nOnFa i l u r e =TERMINATE_CLUSTER, J a r =s3 : / /
mapreduce job / WebLink . j a r , Args=L inkDr ive r , s3 : / / Common Crawl
/ c rawl −d a t a /CC−MAIN−2016−07/ segmen t s / 1454701145519 .33 / warc
/ , s3 : / / mapreduce / o u t p u t / ex amp l eou tpu t / −− r e l e a s e − l a b e l
emr −5 . 2 . 0 −− i n s t a n c e −g roups In s t anceGroupType=MASTER,
I n s t a n c eCoun t =1 , I n s t a n c eType =c3 . x l a r g e In s t anceGroupType=
CORE, I n s t a n c eCoun t =19 , I n s t a n c eType =c3 . x l a r g e −−au to −
t e rm i n a t e −−enab l e −debugg ing −− log− u r i ’ s3n : / / aws− l ogs
−270560560283−us−e a s t −1/ e l a s t i cm a p r e d u c e / ’ −−name ’
e x amp l e c l u s t e r ’
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CHAPTER 4:
Performance Results

We conducted the executions with our implemented algorithms using the methodology
described in the previous chapter, and the results are presented in this chapter in two parts.
The execution results from local execution for a single WARC file to AWS execution on
the cloud for one of the latest segments in 2017 are contained in the first part. The results
of a series of attempts to finish one full archive in one AWS execution are included in the
second.

4.1 Experimenting with a Single Segment
In the Coudray thesis [2], success was defined based upon cloud processing of a single
Common Crawl segment. We followed the same path to claim success on RWLG and
delved into a larger data set from that point. We began mining a single WARC file with
local execution and built towards mining a full Common Crawl segment.

4.1.1 Local Execution with One WARC File
As described in Chapter 3, the algorithms were shown to be correct through both math-
ematical analysis and a test case. We wanted to know how the algorithms worked when
dealing with real-world data sets. Constrained by the computing power of the local ma-
chine, we used only one WARC file (CC-MAIN-20170116095119-00000-ip-10-171-10-
70.ec2.internal.warc.gz) from the Common Crawl’s most recent archive (CC-MAIN-2017-
04) as the input.

The local executions ran on an early-2015 13-inch MacBook Air with OSX El Capitan
version 10.11.16 and Hadoop version 2.7.2. The laptop was equipped with a 2.2-GHz
Intel Core i7 Processor, 8-GB 1600-MHz DDR3 memory, and an Intel HD Graphics 6000
1536-MB graphic card. The results were separated by first-hop links and second-hop links,
with the no-dynamic option combined and compared.
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First-Hop Links
We ran the execution using the basic algorithm to obtain the first-hop links. The runs were
done five times for each option and finished without error. The average resulting metrics
are listed in Table 4.1. The result for the no-dynamic option finished faster and was smaller
in size, which was expected.

Table 4.1. Local Execution Result Metrics for First-Hop Links
Option Execution Time Input Size Output Size
Normal 6 min 4 sec 1.02 GB 831.8 MB

No-dynamic 5 min 54 sec 1.02 GB 637 MB

Second-Hop Links
We ran the execution using the algorithm for far links to obtain the second-hop links. We
noted that there was no "no-dynamic" option in this algorithm. Since we used the first-hop
links as input, we had no-dynamic second-hop links if the no-dynamic first-hop links were
given. The runs were also done five times each and finished without error. The average
resulting metrics are listed in Table 4.2.

Table 4.2. Local Execution Result Metrics for Second-Hop Links
Input Execution Time Input Size Output Size
Normal 2 min 17 sec 832.2 MB 8.7 MB

No-dynamic 1 min 46 sec 637.4 MB 41.9 MB

The result with no-dynamic input finished faster because the input size was smaller. Since
many dynamic URLs were treated as no-dynamic ones, more links became more relevant;
thus, the output size for the no-dynamic option became larger as expected.

4.1.2 AWS Execution with One WARC File
The algorithms were shown to be working with a mathematical analysis, test case, and local
testing. Because it is very expensive to own and maintain a cluster capable of processing
tens of terabytes of input data, we employed AWS EMR. We wanted to know how the
algorithms worked in the cloud environment using AWS EMR and compared the result
with the previous local testing before we launched our job with large data sets. To see
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how the same task could be carried out in AWS, we executed the algorithms on the same
WARC file (CC-MAIN-20170116095119-00000-ip-10-171-10-70.ec2.internal.warc.gz) as
the local execution using only one EC2 instance.

The EC2 instance used here was of the type c3.4xlarge, and the reason we chose this type of
instance is described in Section 4.2.2. The c3.4xlarge instance has 16 virtual CPUs using
Intel Xeon E5-2680 v2 (Ivy Bridge) Processors and was equipped with 30-GB memory and
two 160-GB SSDs.

First-Hop Links
We repeated mining a single WARC file for first-hop links, but this time used cloud com-
puting. The runs finished without error, and the average resulting metrics are listed in
Table 4.3.

Table 4.3. AWS Execution Result Metrics on One WARC File for First-Hop
Links with One Instance

Option Execution Time Input Size Output Size
Normal 6 min 1.02 GB 825.3 MB

No-dynamic 5 min 1.02 GB 632.1 MB

The result with the no-dynamic option appeared to be 6.5 MB smaller in size than the
result in local execution. Since the default number of reducers in the AWS for this run was
seven, we were not able to directly compare the output files. To do so, we downloaded the
first-hop-link result from AWS and ran a sorting MR job on the results both from AWS and
local execution. We used the diff command to compare the two output files, and found
only two key values in millions of records that had differences in a few bytes. We could
not understand what caused the difference since we were using the same JAR to run from
the identical input, but the difference should be around 10 bytes instead of 6.5 MB. We
concluded the output of the AWS execution was consistent with the local execution, and the
difference in size might be due to the various sizing mechanisms of different file systems.
The source listing for the sorting MR job is listed in Appendix E. We also noticed that the
execution time for a single c3.4xlarge instance and our local execution were similar.
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Second-Hop Links
We repeated mining the first-hop results to produce the second-hop results, but this time
using cloud computing. The runs finished without error, and the average resulting metrics
are listed in Table 4.4.

Table 4.4. AWS Execution Result Metrics on One WARC File for Second-
Hop Links with One Instance

Input Execution Time Input Size Output Size
Normal 1 min 825.3 MB 8.6 MB

No-dynamic 1 min 632.1 MB 41.6 MB

We did the same comparison for the second-hop-link results as described previously, and
we got a similar result after sorting. The time needed to run these AWS executions was
shorter than for local execution because the c3.4xlarge instance had 16 virtual CPUs and
30-GB memory. Since we had six output files from the first-hop-link result, the c3.4xlarge
instance ran more mappers at a time, achieving a faster average execution time than the
local machine.

4.1.3 Execution on a Segment
We now knew that our code worked on a local machine as well as in the cloud environment.
In the following sections, we explore how to process one entire archive at once, which
consists of hundreds of segments and thousands of WARC files. We started executing on
a segment (s3://commoncrawl/crawl-data/CC-MAIN-2017-04/) from the latest Common
Crawl archive using 20 EC2 instances. We originally used m2.xlarge instances but later
switched to c3.4xlarge for ourwork since the latter had better cost-performance. We describe
the steps to determine the cost-performance between different instances in Section 4.2.2.
The results are presented in the following discussion.

First-Hop Links
We executed algorithm 3-1 for first hop links on AWS with 20 c3.4xlarge instances. We
only ran it once for each option. The runs finished without error, and the resulting metrics
are listed in Table 4.5.
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Table 4.5. AWS Execution Result Metrics on One Segment for First-Hop
Links with 20 Instances

Option Execution Time Input Size Output Size
Normal 31 min 593.9 GB 363.3 GB

No-dynamic 31 min 593.9 GB 258.3 GB

The execution time for both the normal and the no-dynamic option was similar to that for
previous executions and remained the same for the one-segment execution. The resulting
output size for the normal execution was 61.2% of the original input size, down from 79%
from the result for a single WARC file. This was also found in the resulting size for the
no-dynamic execution: down to 32.5% from 60.5% output size. Since different web pages
could have links to the ones already processed, the ratio change in output size was expected.

Second-Hop Links
We then successfully mined the first-hop results for a full Common Crawl segment to
produce the second-hop results using cloud computing; however, we were not able to
finish the two-hop-link execution with the no-dynamic option after 14 tries with different
configurations. The results are shown in Table 4.6.

Table 4.6. AWS Execution Result Metrics on One Segment for Second-Hop
Links with 20 Instances

Input Execution Time Input Size Output Size
Normal 2 hr 54 min 363.3 GB 368.8 GB

No-dynamic failed between 2~3 hrs 258.3 GB –

The apparently longer execution time is not investigated until Section 4.2.3. To further
explore the failure issue, we reduced the input from a segment to multiple WARC files and
compared the resulting size between different numbers ofWARCfiles as shown in Table 4.7.

We could clearly see that the size of the one-hop-link output grew almost linearly as the
input size increased. In comparison, the two-hop-link output grew much faster. Since we
had about 560 WARC files in one segment, it was reasonable to expect more than 500 GB
for the output of a segment. We know the total memory used for processing this data is
600 GB distributed among 20 c3.4xlarge instances, which also must allocate memory to the
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Table 4.7. AWS Execution Output Size Comparison between Different Num-
bers of WARC Files with 20 Instances

Input File First-hop-link Execution Second-hop-link Execution
Execution Time Output Size Execution Time Output Size

5 WARCs 6 min 2.8 GB 2 min 392.5 MB
10 WARCs 6 min 5.4 GB 2 min 1.1 GB
20 WARCs 7 min 10.2 GB 3 min 3.2 GB
40 WARCs 10 min 19.6 GB 6 min 9.4 GB
80 WARCs 15 min 38.1 GB 14 min 29.1 GB

operating system and background programs. On the other hand, the output size for a second-
hop-link execution on one segment was already twice the size as a first-hop-link output.
Since far-distanced pairs could always be generated by first-hop links, we recommend only
computing it on specified pages when requested in order to save storage space.

4.2 Scaling AWS Configurations for Many Segments
From the executions in the previous sections, we established that our code worked and
was capable of distributed processing and parallel computing in the cloud environment;
however, as pointed out in the Coudray thesis, this type of work would encounter the "out of
memory" error at some point [2]. We do not want our work to be limited by the size of the
data set, as the ultimate goal is to process one entire archive at once. Herein, we describe
our effort to achieve this goal, step by step.

4.2.1 Challenges
If we need to process a large data set, we do not want to manually assign the separated data
sets and aggregate their results on demand. An archive in the Common Crawl is an image
of the Internet at a specific time, and we desire to automatically process one full archive at
once. We expected to achieve this goal by parallel computing, but we encountered an "out
of memory" error.

The AWS provided various types of instances to implement our jobs, but it seemed that
AWS did not provide any auto-scaling ability that could adapt to the different jobs assigned.
Using the default environment setting for 20 m2.xlarge instances, we succeeded in the
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execution of three 2016 Common Crawl segments with a total of about 1 TB as input at a
time without error, but we could not achieve any more segments beyond that point.

We thought the AWS would provide almost infinite hardware resources (e.g., CPU, disks,
and memory) upon our request, which should have been enough to run as many segments as
we wanted. The truth was that, depending on the algorithm we used in MR, we encountered
the "out of memory" error when processing a very large data set. We encountered the
"out of memory" error until we ran the execution from four segments using 20 m2.xlarge
instances. The error might also have been related to inefficient resource usage that led to
poor execution efficiency, so we needed both to find a way to eliminate this error, as well as
to run the execution more efficiency at the same time.

4.2.2 Initial Approach: Ad Hoc
The first approach was ad hoc. We adjusted the type and number of EC2 instances and
increased the number of reducers to execute the job. This was a trial and error method.
We only executed Algorithm 3-1 for this approach, and the starting point was from a failed
execution on four 2016 Common Crawl segments at a 95.24% progression rate (1520/1596
tasks completed) using 20 m2.xlarge instances, with six hours and 54 minutes of execution
time.

Number of Reducers
In our previous executions using m2.xlarge instances, we found that the output size was
proportional to the input size, as shown in Table 4.8.

Table 4.8. Output and Input Size vs. Number of Segments
Number of
Segments

Single Output
File Size

Number of
Output Files Total Output Size

1 1.5 GB 130 195 GB
2 3 GB 130 390 GB
3 4.5 GB 130 585 GB

The number of output files was equal to the default number of reducers, which was closely
related to the number and type of instances we were using. Since the "out of memory"

37



error usually occurred in reducer jobs because of Java heap space, we guessed that some
variations on the number of reducers might have a good effect.

First, we tried lowering the number of the reducers from 130 to 60, but the "out of memory"
error came earlier, in three hours. We then tried to increase the number of the reducers
from 130 to 200, but we got the "out of memory" error again because of Java heap space
after ten hours and five minutes at a 98.25% progression rate (1568/1596 tasks completed).
We also got another error message: "Too [M]any fetch failures." This new error message
appeared because the reducers took too much time to swap, which is known as a memory
paging problem. Combinedwith the apparently longer execution time, we thought enlarging
the number of the reducers would improve the execution progression, but if we used too
many reducers, the memory paging problem caused execution failure. Considering the 3%
extended progression required three more hours in execution time, the swapping takes a
significant amount of time and results in fetch failure because of timeouts. Considering that
we had 100 segments in an archive, increasing the number of the reducers does not solve
our problem.

Types of Instances
We could always use more instances to process our work, but we wanted to use them wisely.
We knew different types of instances would be suitable for different jobs, as discussed in
Chapter 2. To determine the right type, we ran the basic algorithm five times on the same
single segment using different types of 20 instances, and the result is shown in Table 4.9.

Table 4.9. Execution Time vs. Different Types of Instances (Same Segment)
Type 1st run 2nd run 3rd run 4th run 5th run Avg (min)

m3.xlarge 69 66 68 60 63 65.2
r3.xlarge 62 58 61 58 59 59.6
c3.xlarge 83 73 68 68 68 72
d2.xlarge 57 57 55 57 57 56.6
i2.xlarge 61 64 60 64 66 63
g2.2xlarge 41 41 40 41 41 40.8

We could see that g2.2xlarge is the fastest of the different types of basic instances; however,
we had to take the price per hour (hr) for instances into consideration. We could also
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calculate the price per segment (seg) from the pricing information and the execution time,
as listed in Table 4.10.

Table 4.10. Advanced Comparison between Instance Types
Type Avg (min) Avg (hr) price/hr price/seg

m3.xlarge 65.2 1.087 0.07 0.0761
r3.xlarge 59.6 0.993 0.09 0.0894
c3.xlarge 72 1.2 0.053 0.0636
d2.xlarge 56.6 0.943 0.173 0.1632
i2.xlarge 63 1.05 0.213 0.2237
g2.2xlarge 40.8 0.68 0.2 0.136

We could see that although the price/hr for g2.2xlarge was relatively high, its price/seg
was quite low when the processing speed is taken into account. There are still two points
to be noticed here: we considered in Chapter 2 that computation-optimized instances
outperformed other types, and the price/hr for the basic m3.xlarge, r3.xlarge and c3.xlarge
instances were much lower than the other three different types of basic instances. We did
the runs again using the advanced instances, c3.4xlarge (four times more CPUs, memory,
and disk size than c3.xlarge) and r3.2xlarge (twice the resources than r3.xlarge), which had
similar price/hr to g2.2xlarge (type m3 did not have one with similar pricing), and the result
is shown in Table 4.11.

Table 4.11. Advanced Comparison between Instance Types in the Same
Price Range

Type Avg (min) Avg (hr) price/hr price/seg
r3.2xlarge 41.4 0.69 0.18 0.1242
c3.4xlarge 21 0.35 0.21 0.0735
d2.xlarge 56.6 0.943 0.173 0.1632
i2.xlarge 63 1.05 0.213 0.2237
g2.2xlarge 40.8 0.68 0.2 0.136

We found c3.4xlarge to be the best cost-performance instance type when doing our algo-
rithm, and it required the least amount of time, as expected. We note that these results
were only for AWS EMR pricing. The instances (ins.), which are charged by AWS EC2
pricing, should also be considered in the actual cost. The final cost results in an even greater
difference as the number of instances increases, as shown in Table 4.12. Nonetheless, this
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result was much better than the m2.xlarge instance we used previously, in which it took
almost two hours to finish the execution from a single segment and encountered the "out
of memory" error because of Java heap space after almost seven hours of execution time
on four segments. We executed the algorithm again on four segments, using 20 c3.4xlarge
instances, and it finished in 71 minutes without error. We decided to use c3.4xlarge as the
instance type to execute our jobs since it had the fastest execution time for our job, and
its price per segment was almost the lowest one, about three times faster than c3.xlarge in
execution time and only 15% higher in price/seg for EMR.

Table 4.12. Combined Cost Comparison between Instance Types

Type Avg
(hr)

EMR
pr/hr

EC2
pr/hr

20 ins.
pr/seg

40 ins.
pr/seg

60 ins.
pr/seg

80 ins.
pr/seg

100 ins.
pr/seg

r3.2xlarge 0.69 0.18 0.665 9.3 18.48 27.66 36.83 46.01
c3.4xlarge 0.35 0.21 0.84 5.95 11.83 17.71 23.59 29.47
d2.xlarge 0.943 0.173 0.69 13.18 26.19 39.20 52.22 65.23
i2.xlarge 1.05 0.213 0.853 18.14 36.05 53.96 71.88 89.79
g2.2xlarge 0.68 0.2 0.65 8.98 17.82 26.66 35.5 44.34

Number of Instances
As soon as we succeeded on four segments using 20 c3.4xlarge instances, we tried the full
archive using 100 c3.4xlarge instances, and we failed. After 12 hours, we received the "out
of memory" error because of both "Java heap space" and "GC overhead limit exceeded."
We then reduced the number of segments to 18, a number close to 20 and easily assigned
because of the naming convention in the Common Crawl, to try again since we already knew
that 20 instances could finish four segments at once. If we were doing parallel computing,
then 100 instances should have been more than enough for a fluent execution from 18
segments. After 82 minutes of execution, the "out of memory" error appeared again with
a 98.77% progression rate (6979/7066 task completed), and we realized that we were not
able to solve this error by simply increasing the number of instances.

Conclusion for Ad Hoc Approach
The most beneficial information we learned from the ad hoc approach was that c3.4xlarge
is the best choice over different instance types for both cost-performance and speed in this
study. We also learned that slightly increasing the number of the reducers can possibly
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overcome the "out of memory" error if the task progression is high enough before the error
occurs. Furthermore, we discovered that increasing the number of instances was not likely
to solve the "out of memory" problem caused by "Java heap space." We realized the need
to dive deeper into the environment settings in HMR in order to achieve the goal.

4.2.3 Systematic Approach
After the ad hoc approach, we realized that the AWS does not provide auto-scaling when
we use more instances, and we adjusted the environment variables, especially for the
memory. We then revisited the YARN architecture and tried to understand how to adjust
the environmental variables. Fortunately, we discovered a rule of thumb with which to
begin [8]. We also looked into the previous error message and sorted out a list of possible
variables related to various types of errors. The different types of errors, the corresponding
variables that might remove the errors, and the related files in which each variable resided
are listed in Table 4.13. In this approach, we adjusted each variable in order to understand
how they affect the results.

Table 4.13. Types of Error and Possible Corresponding Environmental Vari-
ables

Error Type Corresponding Variable Related File

Java heap space

yarn.nodemanager.resource.memory-mb (1)
yarn.scheduler.minimum-allocation-mb (2)
yarn.scheduler.maximum-allocation-mb (3)

mapreduce.task.io.sort.mb
mapreduce.map.memory.mb (4)
mapreduce.reduce.memory.mb (5)

mapreduce.map.java.opts (6)
mapreduce.reduce.java.opts (7)

yarn.app.mapreduce.am.resource.mb (8)
yarn.app.mapreduce.am.command-opts (9)

yarn-site.xml

mapred-site.xml

Too many
fetch failures

mapreduce.job.reduce.slowstart.completedmaps
mapreduce.shuffle.max.threads

mapreduce.reduce.shuffle.parallelcopies
mapred-site.xml

GC overhead
limit exceeded

HADOOP_DATANODE_OPTS
HADOOP_CLIENT_OPTS hadoop-env.sh

To change the environment variable through AWS CLI, we created a configuration file and
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referred to the file named "configurations.json" when creating the cluster with the following
argument:

−− c o n f i g u r a t i o n s f i l e : / / c o n f i g u r a t i o n s . j s o n

The configuration file had a certain format, which is described in Appendix F.

Stage 1: 18 Segments
We failed while executing from the input of 18 segments, so we used 18 segments as the
starting point for this approach. Since the "out of memory" error was our major concern, we
focused on thememory-related parameter adjustments. We concluded four different settings
toward successful execution, and the variable set used is shown in Table 4.14. Because of
the long variable name, we indicated the variable using the number assigned in Table 4.13.

Table 4.14. Variable Sets and Results for 18 Segments
Item 1 2 3 4

# of instances 20 20 21 21
var (1) 20480 614400 614400 35840
var (2) 4096 8500 8500 7168
var (3) 20480 614400 614400 35480
var (4) 4096 8500 8500 7168
var (5) 8192 17000 17000 14336
var (6) -Xmx3276m -Xmx6800m -Xmx6800m -Xmx5734m
var (7) -Xmx6553m -Xmx14600m -Xmx14600m -Xmx11469m
var (8) 8192 17000 17000 14336
var (9) -Xmx6553m -Xmx14600m -Xmx14600m -Xmx11469m

execution time 11hr29min 9 min 5 min 11hr5min
progression 99.67% 0% 0% 100%
error code 143 137 137 –

We found a post on the Internet that also ran a comparably large MR job and got the "out of
memory" error [29]. The originator of the post finally succeeded using a set of environment
variables and shared this information freely. We used this setting with only 20 instances
to run the first execution, which took about 11.5 hours before the "out of memory" error
occurred and reached a 99.67% progression rate, which is almost 1 percent better than
the previous execution using 100 instances with the default setting. This proved adjusting
memory-related parameters helped to improve the outcome of the execution.
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Unfortunately, there is only a little information as to how to set these numbers. Most
guidance found in AWS manuals and on the Internet, which were reasonable but useless,
indicated that these variables were important and needed to be adjusted depending on the
job we were running. The only reference we found described a general rule to calculate
the recommended memory setting depending on system capacities [8]. We followed the
instruction to set the environment variables for the second execution. It failed because the
system could not allocate the assigned size of memory, which we thought was because of a
feature provided by AWS EMR. As stated in Chapter 2, EMR is a PaaS, which hides many
system details from the user. In the second execution, one of our 20 instances was assigned
as a "master" instance. It only ran the ResouceManager application but neither map nor
reduce jobs. For the third execution, we increased the requested number of instances to 21,
so that we would have 20 instances running mappers and reducers.

The third execution also failed due to memory allocation. We realized that there were some
inconsistencies between [8] and EMR. We did not investigate this issue at this stage, but
we thought the unrealistic memory variables var (1) and var (3) might be the problem. We
tried to lower these numbers and finally succeeded using the fourth setting, with about 11
hours of execution time.

At this stage, we established the starting point to properly set up the AWS EMR environment
for the jobs to successfully execute a much larger job than the previous executions. We
learned that error code 143 was for the "out of memory" issue, and error code 137 was
related to the memory configuration error. We achieved executing 18 segments as input.
This was six times larger than three segments as input, which was our original capability
using 20 m2.xlarge instances.

Stage 2: 34 Segments
After our success with 18 segments, we used the same setting to run the full archive
and failed. We knew that we did not fully understand the memory settings, such as the
inconsistencies between [8] and EMR, and we needed more adjustments to gain a better
understanding of the memory settings. We reduced the input size to 34 segments and
executed with 41 instances, where one of them was assigned as the "master" using the
successful setting in 18 segments and again got the "out of memory" error. We ran different
executions, which yielded the eight results captured in Table 4.15 and Table 4.16. As on
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the previous stage, the variables are indicated by the number assigned in Table 4.13.

Table 4.15. Variable Sets and Results for 34 Segments (part 1)
Item 1 2 3 4

# of instances 41 41 41 41
var (1) 70656 35328 70656 25500
var (2) 7065 7065 7065 7065
var (3) 35328 35328 70656 25500
var (4) 7065 7065 7065 –
var (5) 14131 14131 21504 14500
var (6) -Xmx5652m -Xmx5652m -Xmx5652m –
var (7) -Xmx11305m -Xmx11305m -Xmx17203m -Xmx11500m
var (8) 14131 14131 21504 14500
var (9) -Xmx11305m -Xmx11305m -Xmx17203m -Xmx11500m

execution time 4hr24min 12hrs 6hr17min 6hr33min
progression 70.34% 99.95% 97.23% 99.95%

encountered error 137 143 137 143

Table 4.16. Variable Sets and Results for 34 Segments (part 2)
Item 5 6 7 8

# of instances 41 41 45 41
var (1) 25500 25500 25500 23000
var (2) 250 250 250 250
var (3) 25500 25500 25500 23000
var (5) 22500 14000 14131 16500
var (7) -Xmx18000m -Xmx11000m -Xmx11305m -Xmx13500m
var (8) 22500 14000 14131 16500
var (9) -Xmx18000m -Xmx11000m -Xmx11305m -Xmx13500m

execution time 7hr56min 6hr31min 6hr7min 6hr23min
progression 70.34% 97.23% 99.95% 100%

encountered error 143 143 143 –

We started by determining the proper setting for variables var (1) and var (3) with different
settings between set 1 and 3. We also compared the relations between the element com-
ponents of YARN, the results from AWS EMR, and the reason why variables were set as
in [8].
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After a series of executions, it became clear that the settings in [8] are for a cluster of a
single instance. This explains why variables var (1) and var (3) add up to the total memory
in a single instance in [8]. In EMR, every core instance was a single computer running
both the DataNode and NodeManager daemons. Since we used c3.4xlarge instances as
core instances with the default setting information given in [30], [31], the maximum total
memory was around 27 GB per instance and should be the number for variables (1) and
(3). We also assumed that the size of each container was decided by variables (2) and (3),
which was first set by variable (2) and was increased upon request by multiples of variable
(2) until it reached the number indicated in variable (3).

Reference [8] indicates that the reducer memory allocation, var (5), should be twice the
mapper memory allocation, var (4). Furthermore, var (2) is the minimum container memory
allocation and should be the greater common divisor of var (4) and var (5). We also found
that we did not have to set a larger number for variable (4) because the default value for
the mapper is always larger than needed, and we never encountered errors in mapper tasks.
Actually, we removed variables (4) and (6) and achieved a much faster execution time,
which saved more than five hours for the same progression rate. This was because we can
have many more mappers running at the same time. Tracking the causes of errors became
easier once we knew what to adjust by the given error code.

Since it increased the execution time, we removed the modification on mapper memory
parameters in sets 5 through 7. We slightly adjusted the reducer memory in sets 5 and
6 using set 4 as a template and tried increasing the number of instances in set 7, but all
executions for variable sets 5, 6, and 7 failed.

We noted that the progression for set 5 was surprisingly low, so we looked into the error
message in each failing task. The general error message output from the cluster console did
not give any useful information, so we had to track down the error to each assigned task and
each container. We found that they failed not because of the "out of memory" error as given
in the cluster console. Instead, they failed because the reducer task had issues connecting
to S3 when emitting the result, which happened rarely when many users were accessing S3
at the same time. We decided to use a larger reducer memory setting to execute, as listed in
set 8, for which the amount was decided by observing the trends of progression and reducer
memory. We finally succeed after about 6.5 hours.
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At this stage, we learned the meaning of most of these memory-related variables and the
roles they played in the YARN model. We also learned how to track down the source of an
error to find the actual reason for the problem, instead of blindly believing the given error
message. Hints for tracking an error message are shown in Appendix G. We also realized
that as a PaaS, AWS EMR had some downsides. EMR depended on S3 to save the output
and did not keep the cluster once the job was terminated. This meant our effort was lost
once there was a connection inconsistency between EMR and S3.

Stage 3: Full Archive
From the previous stages, we thought we learned enough about YARN, and we started the
execution using one full 2016 Common Crawl archive (CC-MAIN-2016-07) as the input on
100 c3.4xlarge instances. The results are shown in Table 4.17.

Table 4.17. Variable Sets and Results for the Full Archive
Item 1 2 3

# of instances 100 100 100
yarn.nodemanager.resource.memory-mb 27468 27468 27468
yarn.scheduler.minimum-allocation-mb 1024 160 32
yarn.scheduler.maximum-allocation-mb 27468 27468 27468

mapreduce.map.memory.mb 1024 – –
mapreduce.reduce.memory.mb 20480 20480 22528

mapreduce.map.java.opts -Xmx864m – –
mapreduce.reduce.java.opts -Xmx16384m -Xmx16384m -Xmx18022m

yarn.app.mapreduce.am.resource.mb 20480 20480 22528
yarn.app.mapreduce.am.command-opts -Xmx16384m -Xmx16384m -Xmx18022m

execution time 7hr8min 7hr37min 7hr51min
progression 99.99% 99.99% 99.99%

encountered error 143 143 143

From previous executions, we thought the mapper would suffice with just 1-GB memory,
whichwas the default form2.xlarge for faster execution speed. We set themappermemory to
be lower than the default setting because if the job finished earlier, the price would be much
lower. We increased the reducer memory because the ratio between number of instances
and number of segments had been decreased to one. The resulting set 1 failed at a 99.99%
progress rate since the assigned 1-GB memory limitation caused two out of 35684 assigned
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tasks to fail, with one task cancelled because of the failed tasks. We fixed the problem by
removing the map memory settings as in the variable set 2, but we again encountered the
"out of memory" error from the reducers. We increased the reducer memory settings as
in the variable set 3. We still had the "out of memory" error, which indicated that we still
did not allocate enough memory. We knew that we could succeed at the price of a longer
execution time if we assigned more memory to the reducer because the number of mappers
running at the same time would be reduced. Because we had some administration issues to
run more executions on the AWS and the 99.99% complete MR job had generated usable
output with 18.3 TB in size, we did not continue with further executions.

Conclusion for Systematic Approach
We learned a lot with the systematic approach. We now clearly understood the YARN
architecture and how it was affected by the environment variables. We learned how to track
down the error message to the source of the problem in either a mapper/reducer task or a
container. We also learned the limits of EMR as a PaaS. Most importantly, we essentially
achieved our original goal: to complete a full archive in a single execution.
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CHAPTER 5:
Conclusions and Recommendations

Two goals of the study described in this thesis support the larger NPS research project: the
first goal is to implement RWLG, a search capability for web sites, and the second goal
is to take a full Common Crawl archive as the input to be processed in one MR job. We
essentially achieved both goals successfully in this study, as we had an almost successful
execution, we had generated 99.9% of usable result in the second goal, and we know exactly
how to adjust the settings to complete the execution; however, there are still possible avenues
to be explored, such as implementing other algorithms or making use of the output from
this work. We summarize our contributions and provide recommendations for future work
in this chapter.

5.1 Conclusions
The implementation of RWLG was accomplished successfully, and the algorithm was
almost successfully executed on a full 2016 Common Crawl archive. We also extended the
RWLG algorithm to be capable of generating link pairs that are more than one hop away,
with both analytical proof and experimental validation provided. Using [2] as a building
block, we shared most of the same tools in this study. Other than providing the powerful
RWLG as a search capability, MR programs that can categorize, sort, and compare the
stored value pairs to utilize the resulting output were also discussed. By working with
low-level, relatively stable CLI commands in this study, we were able to run these programs
on AWS independently from its GUI interface, which may change from time to time.

The existing YARN has been successfully leveraged to better support the extremely large
data sets processed for this thesis research. Through the systematic approach, we achieved
the goal of taking a full Common Crawl archive as input to be processed in a single MR
job by identifying and setting the suitable environment variables for HMR components.
Providing the insight of how to track down an error to the original cause, we can use this
thesis to serve as a guide to adjust the corresponding variables to achieve a faster execution
time while successfully finishing different MR jobs.
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5.2 Recommendations
Although we essentially achieved both goals, there are still many possibilities for further
research. The possible areas to explore are listed below.

1. Design and implement new search capabilities
Previous work provided the inverted index, and this work provides RWLG. There
are still different search capabilities to be designed and implemented to help find the
desired information efficiently. Other than designing a new search capability, another
path for future work can combine the results of the inverted index and RWLG to offer
more precise information for any preferred application.

2. Move to IaaS instead of PaaS
As stated in Chapter 4, there are downsides for PaaS. Not only did we lose data once
an error occurred, we noted that low level system details are hidden from the user. If
we switch to EC2 to use a set of instances that are fully under our control, we would
be able to eliminate this problem. Further, we are only allowed to use the same type
of instances for deploying mappers and reducers. This is no longer true if we switch
to EC2, in which we can freely choose different types of instances that fit our needs
and there are more kinds of instances from which to choose. In IaaS, we assume
the primary responsibility is in configuring the operating system, Hadoop, and the
associated labor.

3. Make use of the result of this study
We now have the RWLG output of a full archive and want to make use of it. One way
to use these value pairs is to write a search program that takes an operator’s input and
uses the RWLG data produced in this work to return a list of source URLs that link to
the input URL(s) in either text or graphic form. The program can also take a number
n as a parameter to produce the 1-to-n-hop link graph centered on the input URL.

4. Process, analyze and compare the output of this study
We are now capable of processing a full archive at a time, so we can analyze the
different outputs using different archives. We can observe the numbers of the inward
and outward links of some popular websites and compare our result with other
companies’ such as Alexa or Wayback Machine (Alexa, which can be found at
http://www.alexa.com/, is a company from amazon.com and keeps track of traffics,
statistics and analyses of different websites; Wayback Machine, which can be found
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at http://archive.org/web/, is a service from Internet Archive that has saved different
versions of web pages for 20 years [32]). Although these websites do not generate
RWLGs as was done in this thesis, we can still determine if these companies’ results
are related to ours by observing the deviation in links from and to different well-known
websites over the past decades.
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APPENDIX A:
Hadoop Configuration Files

The suggested source listings for the seven files that are required for Hadoop configu-
ration are provided in this appendix. These seven files should be under /usr/local/Cel-
lar/hadoop/[Version #]/libexec/etc/hadoop if they exist. Create one if needed.

A.1 hadoop-env.sh
Append the following three lines to the end of the file:

e x p o r t JAVA_HOME="$ ( / u s r / l i b e x e c / java_home ) "
e x p o r t HADOOP_OPTS="${HADOOP_OPTS} −Djava . s e c u r i t y . k rb5 .

r ea lm= −Djava . s e c u r i t y . k rb5 . kdc ="
e x p o r t HADOOP_OPTS="${HADOOP_OPTS} −Djava . s e c u r i t y . k rb5 .

con f = / dev / n u l l "

A.2 mapred-env.sh
Append the following line to the end of the file:

e x p o r t JAVA_HOME="$ ( / u s r / l i b e x e c / java_home ) "

A.3 yarn-env.sh
Append the following line to the end of the file:

ARN_OPTS="$YARN_OPTS −Djava . s e c u r i t y . k rb5 . r ea lm=OX.AC.UK −
Djava . s e c u r i t y . k rb5 . kdc=kdc0 . ox . ac . uk : kdc1 . ox . ac . uk "

A.4 core-site.xml
Rewrite the file content as the following code:
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< c o n f i g u r a t i o n >
< p r o p e r t y >
<name>hadoop . tmp . d i r < / name>
<va l u e > / tmp / hadoop −${ u s e r . name}< / v a l u e >
< d e s c r i p t i o n >Temporary base d i r e c t o r i e s . < / d e s c r i p t i o n >

< / p r o p e r t y >
< p r o p e r t y >
<name> f s . d e f a u l t . name< / name>
<va l u e > h d f s : / / l o c a l h o s t : 9 0 0 0 < / v a l u e >

< / p r o p e r t y >
< / c o n f i g u r a t i o n >

A.5 hdfs-site.xml
Rewrite the file content as the following code:

< c o n f i g u r a t i o n >
< p r o p e r t y >
<name>d f s . r e p l i c a t i o n < / name>
<va l u e >1 < / v a l u e >
< / p r o p e r t y >

< / c o n f i g u r a t i o n >

A.6 mapred-site.xml
Rewrite the file content as the following code:

< c o n f i g u r a t i o n >
< p r o p e r t y >
<name>mapred . j ob . t r a c k e r < / name>
<va l u e > l o c a l h o s t : 9 0 0 1 < / v a l u e >

< / p r o p e r t y >
< / c o n f i g u r a t i o n >
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A.7 yarn-site.xml
Rewrite the file content as the following code:

< c o n f i g u r a t i o n >
< p r o p e r t y >
<name>ya rn . r e s ou r c emanage r . r e s o u r c e t r a c k e r . a d d r e s s < / name>
<va l u e >$ r e sou r c emanage r . f u l l . hos tname :8025< / v a l u e >
< d e s c r i p t i o n >En t e r your ResourceManager hos tname . < /

d e s c r i p t i o n >
< / p r o p e r t y >
< p r o p e r t y >
<name>ya rn . r e s ou r c emanage r . s c h e d u l e r . a d d r e s s < / name>
<va l u e >$ r e sou r c emanage r . f u l l . hos tname :8030< / v a l u e >
< d e s c r i p t i o n >En t e r your ResourceManager hos tname . < /

d e s c r i p t i o n >
< / p r o p e r t y >
< p r o p e r t y >
<name>ya rn . r e s ou r c emanage r . a d d r e s s < / name>
<va l u e >$ r e sou r c emanage r . f u l l . hos tname :8050< / v a l u e >
< d e s c r i p t i o n >En t e r your ResourceManager hos tname . < /

d e s c r i p t i o n >
< / p r o p e r t y >
< p r o p e r t y >
<name>ya rn . r e s ou r c emanage r . admin . a d d r e s s < / name>
<va l u e >$ r e sou r c emanage r . f u l l . hos tname :8041< / v a l u e >
< d e s c r i p t i o n >En t e r your ResourceManager hos tname . < /

d e s c r i p t i o n >
< / p r o p e r t y >
< p r o p e r t y >
<name>ya rn . nodemanager . l o c a l − d i r s < / name>
<va l u e > / g r i d / hadoop / hd f s / yarn , / g r i d 1 / hadoop / hd f s / ya rn< /

v a l u e >
< d e s c r i p t i o n >Comma s e p a r a t e d l i s t o f p a t h s . Use t h e l i s t

o f d i r e c t o r i e s from $YARN_LOCAL_DIR .
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For example , / g r i d / hadoop / hd f s / yarn , / g r i d 1 / hadoop / hd f s /
ya rn . < / d e s c r i p t i o n >

< / p r o p e r t y >
< p r o p e r t y >
<name>ya rn . nodemanager . log − d i r s < / name>
<va l u e > / va r / l og / hadoop / ya rn< / v a l u e >
< d e s c r i p t i o n >Use t h e l i s t o f d i r e c t o r i e s from $

YARN_LOG_DIR .
For example , / v a r / l og / hadoop / ya rn . < / d e s c r i p t i o n >

< / p r o p e r t y >
< / c o n f i g u r a t i o n >
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APPENDIX B:
Basic Algorithm Source Listings

Two sections are contained in this appendix. In the first section, the basic algorithm
source listings described in Chapter 3 are provided, and the MR job source listings used to
categorize the output value pairs are given in the second. Normally, the output is ordered
by the keys in alphabetical order throughout all output files. When we want to look for a
specific record, we have no idea where it is. The "categorizer" MR job first extracts the
target’s domain name and then uses the Java built-in hashCode() function to get the hash
code corresponding to the domain name. The reducer gathers these value pairs by their
hash codes and writes these value pairs into corresponding files for which we can easily
find the record by providing the target’s domain name.

B.1 Basic Algorithm Source Listings
TheMR code always has three parts: driver, mapper and reducer. Coudray’s thesis grouped
them into two separated files, but I prefer to put each of them into different files. These
three files are listed in the following sections.

B.1.1 Driver (RWLGHTMLDriver.java)
impo r t o rg . apache . hadoop . con f . C o n f i g u r a t i o n ;
impo r t o rg . apache . hadoop . con f . Con f i gu r ed ;
impo r t o rg . apache . hadoop . f s . Pa th ;
impo r t o rg . apache . hadoop . i o . Text ;
impo r t o rg . apache . hadoop . mapreduce . Job ;
impo r t o rg . apache . hadoop . mapreduce . l i b . i n p u t . F i l e I n p u t F o rma t ;
impo r t o rg . apache . hadoop . mapreduce . l i b . o u t p u t . F i l eOu t pu t Fo rma t ;
impo r t o rg . apache . hadoop . u t i l . Tool ;
impo r t o rg . apache . hadoop . u t i l . ToolRunner ;
impo r t n l . s u r f s a r a . w a r c u t i l s . ∗ ;

p u b l i c c l a s s RWLGHTMLDriver e x t e n d s Con f i gu r ed implemen t s Tool {
p u b l i c s t a t i c vo id main ( S t r i n g [ ] a r g s ) t h rows Excep t i on {
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Con f i g u r a t i o n con f = new Con f i g u r a t i o n ( ) ;
System . e x i t ( ToolRunner . run ( conf , new RWLGHTMLDriver ( ) ,

a r g s ) ) ;
}

@Override
p u b l i c i n t run ( S t r i n g [ ] a rg0 ) t h rows Excep t i on {

Co n f i g u r a t i o n con f = t h i s . ge tConf ( ) ;

Job job = Job . g e t I n s t a n c e ( conf , "RIGHTMLDriver " ) ;

/ / s e t u p a l l c l a s s e s
j ob . s e t J a r B yC l a s s (RWLGHTMLDriver . c l a s s ) ;
i f ( a rg0 . l e ng t h >2 && arg0 [ 2 ] . e q u a l s ( " no−dynamic " ) ) {

j ob . s e tMappe rC l a s s (RWLGHTMLMapperND. c l a s s ) ;
}
e l s e {

j ob . s e tMappe rC l a s s (RWLGHTMLMapper . c l a s s ) ;
}
j ob . s e tR e d u c e rC l a s s (RWLGHTMLReducer . c l a s s ) ;

/ / i n p u t / o u t p u t s e t u p
job . s e t I n p u t F o rm a tC l a s s ( WarcInpu tFormat . c l a s s ) ;
j ob . s e tOu t pu tKeyC l a s s ( Text . c l a s s ) ;
j ob . s e tOu t p u tVa l u eC l a s s ( Text . c l a s s ) ;
j ob . s e tMapOu tpu tVa lueC la s s ( Text . c l a s s ) ;

/ / p a t h s e t u p
S t r i n g i n p u t P a t h = a rg0 [ 0 ] ;
S t r i n g o u t p u t P a t h = a rg0 [ 1 ] ;

F i l e I n p u t F o rma t . a d d I n p u t P a t h s ( job , i n p u t P a t h ) ;
F i l eOu t pu t Fo rma t . s e tOu t p u t P a t h ( job , new Pa th ( o u t p u t P a t h ) ) ;
r e t u r n j ob . wa i tFo rComp l e t i on ( t r u e ) ? 0 : 1 ;

}
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}

B.1.2 Mapper (RWLGHTMLMapper.java)
impo r t j a v a . i o . By t eAr rayOu tpu tS t r eam ;
impo r t j a v a . i o . IOExcep t i on ;
impo r t j a v a . i o . I n pu tS t r e am ;
impo r t j a v a . u t i l . HashSet ;
impo r t j a v a . u t i l . S e t ;

impo r t o rg . apache . hadoop . i o . LongWr i t ab l e ;
impo r t o rg . apache . hadoop . i o . Text ;
impo r t o rg . apache . hadoop . mapreduce . Mapper ;

impo r t o rg . jwa t . warc . WarcRecord ;
impo r t o rg . jwa t . common . Pay load ;

impo r t o rg . j s o up . J soup ;
impo r t o rg . j s o up . nodes . Document ;
impo r t o rg . j s o up . nodes . Element ;

p u b l i c c l a s s RWLGHTMLMapper e x t e nd s Mapper<LongWri tab le ,
WarcRecord , Text , Text >{

/ / Read from WARC f i l e
/ / o u t p u t v a l u e p a i r s < t a r g e t , sou rce1 > , < t a r g e t , sou rce2 > , . . .
/ / # S t ep 2 , Algo r i t hm 3−1
@Override
p u b l i c vo id map ( LongWr i t ab l e key , WarcRecord va lue , Con t ex t

c o n t e x t ) t h rows IOExcep t ion , I n t e r r u p t e d E x c e p t i o n {
/ / on ly check t h e h t t p r e s p on s e
i f ( v a l u e . h e ade r . warcTypeS t r . e q u a l s ( " r e s p on s e " ) ) {

Pay load pay load= va l u e . g e t P ay l o ad ( ) ;
i f ( p ay load != n u l l ) {

/ / g e t t h e HTML page i n t o con tS t r e am => warcCon ten t
I npu tS t r e am inS t r e am = pay load . g e t I n p u t S t r e am ( ) ;
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ByteAr r ayOu tpu tS t r eam con tS t r e am = new
ByteAr r ayOu tpu tS t r eam ( ) ;

/ / a t r i c k t o p a r s e t h e warc r e c o r d i n t o S t r i n g
by t e [ ] buf = new by t e [ 1 0 2 4 ] ;
i n t l e n ;
wh i l e ( ( l e n = inS t r e am . r e ad ( buf ) ) != −1)

con tS t r e am . w r i t e ( buf , 0 , l e n ) ;
S t r i n g warcCon ten t = con tS t r e am . t o S t r i n g ( "UTF−8" ) . t r im ( ) ;

i f ( wa rcCon ten t != n u l l && ! warcCon ten t . i sEmpty ( ) ) {
/ / p a r s e t h e HTML i n t o o b j e c t s
Document doc = Jsoup . p a r s e ( warcConten t ,

v a l u e . h e ade r . w a r cT a r g e tU r i S t r ) ;
Text s ou r c e = new

Text ( v a l u e . h e ade r . w a r cT a r g e tU r i S t r . t r im ( ) ) ;
/ / check a l l l i n k s and combine wi th t h e URL of c u r r e n t

page
Set <Text > l i n k S e t = new HashSet <Text > ( ) ;
f o r ( Element e : doc . s e l e c t ( " a [ h r e f ] " ) ) {

/ / c l e a r ou t c h a r a c t e r s t h a t s hou l d no t appea r i n
t h e URL f i e l d

S t r i n g h r e f =
e . a t t r ( " abs : h r e f " ) . r e p l a c eA l l ( " [ \ \ t \ \ n \ \ r \ \ s ]∗ " ,
" " ) ;

i f ( ! h r e f . i sEmpty ( ) ) {
Text t a r g e t = new Text ( h r e f ) ;
/ / o u t p u t s t h e non− r e p e a t e d v a l u e p a i r s
i f ( l i n k S e t . add ( t a r g e t ) ) c o n t e x t . w r i t e ( t a r g e t ,

s o u r c e ) ;
}

}
}

}
}
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}
}

B.1.3 Mapper forNon-DynamicURLs (RWLGHTMLMapperND.java)
impo r t j a v a . i o . By t eAr rayOu tpu tS t r eam ;
impo r t j a v a . i o . IOExcep t i on ;
impo r t j a v a . i o . I n pu tS t r e am ;
impo r t j a v a . u t i l . HashSet ;
impo r t j a v a . u t i l . S e t ;

impo r t o rg . apache . hadoop . i o . LongWr i t ab l e ;
impo r t o rg . apache . hadoop . i o . Text ;
impo r t o rg . apache . hadoop . mapreduce . Mapper ;

impo r t o rg . jwa t . warc . WarcRecord ;
impo r t o rg . jwa t . common . Pay load ;

impo r t o rg . j s o up . J soup ;
impo r t o rg . j s o up . nodes . Document ;
impo r t o rg . j s o up . nodes . Element ;

/ / Th i s mapper d i s c a r d s t h e dynamic p a r t o f URLs
p u b l i c c l a s s RWLGHTMLMapperND ex t e nd s Mapper<LongWri tab le ,

WarcRecord , Text , Text >{

/ / Read from WARC f i l e
/ / o u t p u t v a l u e p a i r s < t a r g e t , sou rce1 > , < t a r g e t , sou rce2 > , . . .
/ / # S t ep 2 , Algo r i t hm 3−1
@Override
p u b l i c vo id map ( LongWr i t ab l e key , WarcRecord va lue , Con t ex t

c o n t e x t ) t h rows IOExcep t ion , I n t e r r u p t e d E x c e p t i o n {
i f ( v a l u e . h e ade r . warcTypeS t r . e q u a l s ( " r e s p on s e " ) ) {

Pay load pay load= va l u e . g e t P ay l o ad ( ) ;
i f ( p ay load != n u l l ) {

I npu tS t r e am inS t r e am = pay load . g e t I n p u t S t r e am ( ) ;
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ByteAr r ayOu tpu tS t r eam con tS t r e am = new
ByteAr r ayOu tpu tS t r eam ( ) ;

by t e [ ] buf = new by t e [ 1 0 2 4 ] ;
i n t l e n ;
wh i l e ( ( l e n = inS t r e am . r e ad ( buf ) ) != −1)

con tS t r e am . w r i t e ( buf , 0 , l e n ) ;
S t r i n g warcCon ten t = con tS t r e am . t o S t r i n g ( "UTF−8" ) . t r im ( ) ;

i f ( wa rcCon ten t != n u l l && ! warcCon ten t . i sEmpty ( ) ) {
S t r i n g s = va l u e . h e ade r . w a r cT a r g e tU r i S t r . t r im ( ) ;
Document doc = Jsoup . p a r s e ( warcConten t , s ) ;

/ / remove dynamic p a r t i n s ou r c e
i f ( s . c o n t a i n s ( " ? " ) ) {

S t r i n g p a r t s [ ] = s . s p l i t ( " \ \ ? " ) ;
s = p a r t s [ 0 ] ;

}

Text s ou r c e = new Text ( s ) ;
Set <Text > l i n k S e t = new HashSet <Text > ( ) ;

f o r ( Element e : doc . s e l e c t ( " a [ h r e f ] " ) ) {
S t r i n g h r e f =

e . a t t r ( " abs : h r e f " ) . r e p l a c eA l l ( " [ \ \ t \ \ n \ \ r \ \ s ]∗ " ,
" " ) ;

i f ( ! h r e f . i sEmpty ( ) ) {
/ / remove dynamic p a r t i n t a r g e t
i f ( h r e f . c o n t a i n s ( " ? " ) ) {

S t r i n g p a r t s [ ] = h r e f . s p l i t ( " \ \ ? " ) ;
h r e f = p a r t s [ 0 ] ;

}
Text t a r g e t = new Text ( h r e f ) ;
i f ( l i n k S e t . add ( t a r g e t ) ) c o n t e x t . w r i t e ( t a r g e t ,

s o u r c e ) ;
}
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}
}

}
}

}
}

B.1.4 Reducer (RWLGHTMLReducer)
impo r t j a v a . i o . IOExcep t i on ;
impo r t j a v a . u t i l . A r r ays ;
impo r t j a v a . u t i l . HashSet ;
impo r t j a v a . u t i l . I t e r a t o r ;
impo r t j a v a . u t i l . S e t ;

impo r t o rg . apache . hadoop . i o . Text ;
impo r t o rg . apache . hadoop . mapreduce . Reducer ;

p u b l i c c l a s s RWLGHTMLReducer e x t e n d s Reducer <Text , Text , Text ,
Text >{

/ / Read va l u e p a i r s < t a r g e t , sou rce1 > , < t a r g e t , sou rce2 > , . . .
/ / o u t p u t v a l u e p a i r s < t a r g e t , l i s t ( s ou r c e1 ) , ( t a r g e t ,

s ou r c e2 ) , . . .
/ / S t ep 3 , A lgo r i t hm 3−1
/ / a l s o s e r v e as s t e p 5 r e d u c e r f o r Algo r i t hm 3−2
@Override
p u b l i c vo id r educe ( Text key , I t e r a b l e <Text > va l ue s , Con t ex t

c o n t e x t ) t h rows IOExcep t ion , I n t e r r u p t e d E x c e p t i o n {
I t e r a t o r <Text > i t = v a l u e s . i t e r a t o r ( ) ;
Set < S t r i n g > s o u r c e s = new HashSet < S t r i n g > ( ) ;

/ / c l e a n up r e p e a t e d and n u l l / emp t i e s
wh i l e ( i t . hasNext ( ) ) s o u r c e s . add ( i t . n ex t ( ) . t o S t r i n g ( ) ) ;
s o u r c e s . remove ( Ar rays . a s L i s t ( " " , n u l l ) ) ;
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I t e r a t o r < S t r i n g > i t 2 = s o u r c e s . i t e r a t o r ( ) ;
S t r i n g B u i l d e r s t r B d r = new S t r i n gB u i l d e r ( ) ;

/ / append t h e f i r s t v a l u e
s t r B d r . append ( i t 2 . n ex t ( ) ) ;
/ / append eve ry o t h e r " | v a l u e " i f t h e r e ’ s any
wh i l e ( i t 2 . hasNext ( ) ) s t r B d r . append ( " | " ) . append ( i t 2 . n ex t ( ) ) ;

/ / o u t p u t s t h e v a l u e p a i r
c o n t e x t . w r i t e ( key , new Text ( s t r B d r . t o S t r i n g ( ) ) ) ;

}
}

B.2 Categorizer Source Listings
These MR codes categorize the output files into different file names by the hashed value of
their keys. As described before, these codes are separated in three different files as well.

B.2.1 Driver (CategorizerDriver.java)
impo r t o rg . apache . hadoop . con f . C o n f i g u r a t i o n ;
impo r t o rg . apache . hadoop . con f . Con f i gu r ed ;
impo r t o rg . apache . hadoop . f s . Pa th ;
impo r t o rg . apache . hadoop . i o . Text ;
impo r t o rg . apache . hadoop . mapreduce . Job ;
impo r t o rg . apache . hadoop . mapreduce . l i b . i n p u t . F i l e I n p u t F o rma t ;
impo r t o rg . apache . hadoop . mapreduce . l i b . o u t p u t . F i l eOu t pu t Fo rma t ;
impo r t o rg . apache . hadoop . u t i l . Tool ;
impo r t o rg . apache . hadoop . u t i l . ToolRunner ;

p u b l i c c l a s s C a t e g o r i z e rD r i v e r e x t e n d s Con f i gu r ed implemen t s
Tool {

p u b l i c s t a t i c vo id main ( S t r i n g [ ] a r g s ) t h rows Excep t i on {
Co n f i g u r a t i o n con f = new Con f i g u r a t i o n ( ) ;
System . e x i t ( ToolRunner . run ( conf , new C a t e g o r i z e rD r i v e r ( ) ,

a r g s ) ) ;
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}

@Override
p u b l i c i n t run ( S t r i n g [ ] a rg0 ) t h rows Excep t i on {

Co n f i g u r a t i o n con f = t h i s . ge tConf ( ) ;

Job job = Job . g e t I n s t a n c e ( conf , " C a t e g o r i z e rD r i v e r " ) ;

/ / s e t u p a l l c l a s s e s
j ob . s e t J a r B yC l a s s ( C a t e g o r i z e rD r i v e r . c l a s s ) ;
j ob . s e tMappe rC l a s s ( Ca t ego r i z e rMappe r . c l a s s ) ;
j ob . s e tR e d u c e rC l a s s ( C a t e g o r i z e rR e du c e r . c l a s s ) ;

/ / i n p u t / o u t p u t s e t u p
job . s e tOu t pu tKeyC l a s s ( Text . c l a s s ) ;
j ob . s e tOu t p u tVa l u eC l a s s ( Text . c l a s s ) ;
j ob . s e tMapOu tpu tVa lueC la s s ( Text . c l a s s ) ;

/ / p a t h s e t u p
S t r i n g i n p u t P a t h = a rg0 [ 0 ] ;
S t r i n g o u t p u t P a t h = a rg0 [ 1 ] ;

F i l e I n p u t F o rma t . a d d I n p u t P a t h s ( job , i n p u t P a t h ) ;
F i l eOu t pu tFo rma t . s e tOu t p u t P a t h ( job , new Pa th ( o u t p u t P a t h ) ) ;

r e t u r n j ob . wa i tFo rComp l e t i on ( t r u e ) ? 0 : 1 ;
}

}

B.2.2 Mapper (CategorizerMapper.java)
import java.io.IOException;

import java.net.MalformedURLException;

import java.net.URL;
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import org.apache.hadoop.io.LongWritable;

import org.apache.hadoop.io.Text;

import org.apache.hadoop.mapreduce.Mapper;

public class CategorizerMapper extends Mapper<LongWritable ,

Text, Text, Text>{

// adjust the number of divisor (x) to get corresponding

number of files (2x) per reducer

private int space = (int) (((long) Integer.MAX_VALUE -

(long) Integer.MIN_VALUE)/10);

// Read from format: target <tab> list(source)

// to (hashCode(target domain), target <tab>

list(source)), ...

public void map(LongWritable key, Text value, Context

context) throws IOException , InterruptedException{

String[] token = value.toString().split("\t");

try{

context.write(new Text(Integer.toString(new

URL(token[0].toString()).getHost().hashCode()/space)),

value);

} catch(MalformedURLException ex){

context.write(new

Text(Integer.toString("MalformedURL".hashCode()/space)),

value);

}

}

}

B.2.3 Reducer (CategorizerReducer.java)
import java.io.IOException;

import java.util.Iterator;

66



import org.apache.hadoop.io.Text;

import org.apache.hadoop.mapreduce.Reducer;

import

org.apache.hadoop.mapreduce.lib.output.MultipleOutputs;

public class CategorizerReducer extends Reducer<Text, Text,

Text, Text>{

private MultipleOutputs <Text, Text> mos;

public void setup(Context context) throws IOException ,

InterruptedException{

mos = new MultipleOutputs <Text, Text>(context);

}

// input: <HashCode(target domain), <target <tab>

list(sources)>>

// output: <target, list(sources)> into files named by

the hash code

@Override

public void reduce(Text key, Iterable<Text> values,

Context context) throws IOException ,

InterruptedException {

Iterator <Text> it = values.iterator();

while(it.hasNext()){

String[] token = it.next().toString().split("\t");

mos.write(new Text(token[0]), new Text(token[1]),

key.toString());

}

}

public void cleanup(Context context) throws IOException ,

InterruptedException{

mos.close();
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}

}
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APPENDIX C:
Algorithm for Far Links Source Listings

The algorithm for far links source listings is provided in this appendix. As described
in Chapter 3, this algorithm concatenates two MR jobs, so this source file contains two
mappers, two reducers, and a driver that defines two concatenatedMR jobs. Since the result
of the first MR job is temporarily saved in the cluster’s disk space, this program requires
a lot of disk space to execute. We suggest that one only find the far link pairs for a fixed
number of pairs. If the overall far link pairs are required, consider writing another driver to
separate this program into two different ones and execute them separately.

C.1 Driver (L2Driver.java)
impo r t o rg . apache . hadoop . con f . C o n f i g u r a t i o n ;
impo r t o rg . apache . hadoop . con f . Con f i gu r ed ;
impo r t o rg . apache . hadoop . f s . F i l eSy s t em ;
impo r t o rg . apache . hadoop . f s . Pa th ;
impo r t o rg . apache . hadoop . i o . Text ;
impo r t o rg . apache . hadoop . mapreduce . Job ;
impo r t o rg . apache . hadoop . mapreduce . l i b . i n p u t . F i l e I n p u t F o rma t ;
impo r t o rg . apache . hadoop . mapreduce . l i b . o u t p u t . F i l eOu t pu t Fo rma t ;
impo r t o rg . apache . hadoop . u t i l . Tool ;
impo r t o rg . apache . hadoop . u t i l . ToolRunner ;

p u b l i c c l a s s L2Dr ive r e x t e n d s Con f i gu r ed implemen t s Tool {
p u b l i c s t a t i c vo id main ( S t r i n g [ ] a r g s ) t h rows Excep t i on {

Co n f i g u r a t i o n con f = new Con f i g u r a t i o n ( ) ;
System . e x i t ( ToolRunner . run ( conf , new L2Dr ive r ( ) , a r g s ) ) ;

}

@Override
p u b l i c i n t run ( S t r i n g [ ] a rg0 ) t h rows Excep t i on {

Co n f i g u r a t i o n con f = t h i s . ge tConf ( ) ;
F i l eSy s t em f s = F i l eSy s t em . g e t ( con f ) ;
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/ / j ob1
Job job = Job . g e t I n s t a n c e ( conf , " L2Dr ive r " ) ;

/ / s e t u p a l l c l a s s e s
j ob . s e t J a r B yC l a s s ( L2Dr ive r . c l a s s ) ;
j ob . s e tMappe rC l a s s ( L2Mapper . c l a s s ) ;
j ob . s e tR e d u c e rC l a s s ( L2Reducer . c l a s s ) ;

/ / i n p u t / o u t p u t s e t u p
job . s e tOu t pu tKeyC l a s s ( Text . c l a s s ) ;

/ / p a t h s e t u p
S t r i n g i n p u t P a t h = a rg0 [ 0 ] ;
S t r i n g o u t p u t P a t h = a rg0 [ 1 ] ;
S t r i n g tempPath = " tempComp" ;

i f ( f s . e x i s t s ( new Pa th ( tempPath ) ) )
f s . d e l e t e ( new Pa th ( tempPath ) , t r u e ) ;

F i l e I n p u t F o rma t . a d d I n p u t P a t h s ( job , i n p u t P a t h ) ;
F i l eOu t pu tFo rma t . s e tOu t p u t P a t h ( job , new Pa th ( tempPath ) ) ;

j ob . wa i tFo rComp l e t i on ( t r u e ) ;

/ / j ob2
Job job2 = Job . g e t I n s t a n c e ( conf , " L2Compact " ) ;

/ / s e t u p a l l c l a s s e s
job2 . s e t J a r B yC l a s s ( L2Dr ive r . c l a s s ) ;
j ob2 . s e tMappe rC l a s s ( L2CompactMapper . c l a s s ) ;
j ob2 . s e tR e d u c e rC l a s s (RWLGHTMLReducer . c l a s s ) ;

j ob2 . se tMapOutpu tKeyClass ( Text . c l a s s ) ;

F i l e I n p u t F o rma t . a d d I n pu t P a t h ( job2 , new Pa th ( tempPath ) ) ;
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F i l eOu t pu t Fo rma t . s e tOu t p u t P a t h ( job2 , new Pa th ( o u t p u t P a t h ) ) ;

r e t u r n job2 . wa i tFo rComp l e t i on ( t r u e ) ? 0 : 1 ;
}

}

C.2 First Mapper (L2Mapper.java)
impo r t j a v a . i o . IOExcep t i on ;

impo r t o rg . apache . hadoop . i o . LongWr i t ab l e ;
impo r t o rg . apache . hadoop . i o . Text ;
impo r t o rg . apache . hadoop . mapreduce . Mapper ;

p u b l i c c l a s s L2Mapper e x t e nd s Mapper<LongWri tab le , Text , Text ,
Text >{

/ / i n p u t : t a r g e t < tab > sou r c e1 | s ou r c e2 | s ou r c e3 . . .
/ / o u t p u t : ( t a r g e t , ( t a r g e t , s ou r c e1 ) ) , ( sou rce1 , ( t a r g e t ,

s ou r c e1 ) ) , . . .
p u b l i c vo id map ( LongWr i t ab l e key , Text va lue , Con t ex t c o n t e x t )

t h rows IOExcep t ion , I n t e r r u p t e d E x c e p t i o n {
S t r i n g [ ] t oken = va l u e . t o S t r i n g ( ) . s p l i t ( " \ t " ) ;
S t r i n g [ ] s r c = token [ 1 ] . s p l i t ( " \ \ | " ) ;
/ / S t ep 1 , Algo r i t hm 3−2
f o r ( S t r i n g s : s r c ) {

/ / S t ep 2 , Algo r i t hm 3−2
i f ( s . e q u a l s ( t oken [ 0 ] ) ) ;
e l s e {

/ / s r cR e q u e s t e r
c o n t e x t . w r i t e ( new Text ( s ) , new Text ( t oken [0 ]+ " \ t "+s ) ) ;
/ / s r c P r o v i d e r
c o n t e x t . w r i t e ( new Text ( t oken [ 0 ] ) , new

Text ( t oken [0 ]+ " \ t "+s ) ) ;
}
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}
}

}

C.3 First Reducer (L2Reducer.java)
impo r t j a v a . i o . IOExcep t i on ;
impo r t j a v a . u t i l . HashSet ;
impo r t j a v a . u t i l . I t e r a t o r ;
impo r t j a v a . u t i l . S e t ;

impo r t o rg . apache . hadoop . i o . Text ;
impo r t o rg . apache . hadoop . mapreduce . Reducer ;

/ / i n p u t : s r cR e q u e s t e r & s r c P r o v i d e r
/ / o u t p u t : uno rd e r ed < t a r g e t , sou rce > p a i r s t h a t a r e 2−hops away
/ / S t ep 3 , Algo r i t hm 3−2
p u b l i c c l a s s L2Reducer e x t e n d s Reducer <Text , Text , Text , Text >{

@Override
p u b l i c vo id r educe ( Text key , I t e r a b l e <Text > va l ue s , Con t ex t

c o n t e x t ) t h rows IOExcep t ion , I n t e r r u p t e d E x c e p t i o n {
I t e r a t o r <Text > i t = v a l u e s . i t e r a t o r ( ) ;

Set < S t r i n g > s r c P r o v i d e r = new HashSet < S t r i n g > ( ) ;
Set < S t r i n g > s r cR e q u e s t e r = new HashSet < S t r i n g > ( ) ;
wh i l e ( i t . hasNext ( ) ) {

S t r i n g [ ] t a r s r c = i t . n ex t ( ) . t o S t r i n g ( ) . s p l i t ( " \ t " ) ;
/ / check i f s r c P r o v i d e r
i f ( t a r s r c [ 0 ] . e q u a l s ( key . t o S t r i n g ( ) ) ) / / s hou l d add t h e s e

s r c t o l o c a l l i s t
/ / add i n t o l i s t o f s o u r c e s
s r c P r o v i d e r . add ( t a r s r c [ 1 ] ) ;

e l s e / / t h e s e a r e t h e ones r e q u e s t t h e l i s t
s r cR e q u e s t e r . add ( t a r s r c [ 0 ] ) ;

}

72



/ / S t ep 4 , A lgo r i t hm 3−2
/ / o u t p u t t h e uno rde r ed r e s u l t s
f o r ( S t r i n g s : s r c P r o v i d e r )

f o r ( S t r i n g t : s r cR e q u e s t e r )
i f ( ! s . e q u a l s ( t ) ) c o n t e x t . w r i t e ( new Text ( t ) , new Text ( s ) ) ;

}
}

C.4 Second Mapper (L2CompactMapper.java)
impo r t j a v a . i o . IOExcep t i on ;

impo r t o rg . apache . hadoop . i o . LongWr i t ab l e ;
impo r t o rg . apache . hadoop . i o . Text ;
impo r t o rg . apache . hadoop . mapreduce . Mapper ;

p u b l i c c l a s s L2CompactMapper e x t e nd s Mapper<LongWri tab le , Text ,
Text , Text >{

/ / Read from fo rma t : t a r g e t < tab > sou r c e
/ / t o ( t a r g e t , s o u r c e ) , . . .
/ / S t ep 6 mapper , A lgo r i t hm 3−2
p u b l i c vo id map ( LongWr i t ab l e key , Text va lue , Con t ex t c o n t e x t )

t h rows IOExcep t ion , I n t e r r u p t e d E x c e p t i o n {
S t r i n g [ ] t oken = va l u e . t o S t r i n g ( ) . s p l i t ( " \ t " ) ;
c o n t e x t . w r i t e ( new Text ( t oken [ 0 ] ) , new Text ( t oken [ 1 ] ) ) ;

}
}

C.5 Second Reducer (RWLGHTMLReducer.java)
impo r t j a v a . i o . IOExcep t i on ;
impo r t j a v a . u t i l . A r r ays ;
impo r t j a v a . u t i l . HashSet ;
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impo r t j a v a . u t i l . I t e r a t o r ;
impo r t j a v a . u t i l . S e t ;

impo r t o rg . apache . hadoop . i o . Text ;
impo r t o rg . apache . hadoop . mapreduce . Reducer ;

p u b l i c c l a s s RWLGHTMLReducer e x t e n d s Reducer <Text , Text , Text ,
Text >{

/ / Read va l u e p a i r s < t a r g e t , sou rce1 > , < t a r g e t , sou rce2 > , . . .
/ / o u t p u t v a l u e p a i r s < t a r g e t , l i s t ( s ou r c e1 ) , ( t a r g e t ,

s ou r c e2 ) , . . .
/ / S t ep 3 , A lgo r i t hm 3−1
/ / a l s o s e r v e as s t e p 5 r e d u c e r f o r Algo r i t hm 3−2
@Override
p u b l i c vo id r educe ( Text key , I t e r a b l e <Text > va l ue s , Con t ex t

c o n t e x t ) t h rows IOExcep t ion , I n t e r r u p t e d E x c e p t i o n {
I t e r a t o r <Text > i t = v a l u e s . i t e r a t o r ( ) ;
Set < S t r i n g > s o u r c e s = new HashSet < S t r i n g > ( ) ;

/ / c l e a n up r e p e a t e d and n u l l / emp t i e s
wh i l e ( i t . hasNext ( ) ) s o u r c e s . add ( i t . n ex t ( ) . t o S t r i n g ( ) ) ;
s o u r c e s . remove ( Ar rays . a s L i s t ( " " , n u l l ) ) ;

I t e r a t o r < S t r i n g > i t 2 = s o u r c e s . i t e r a t o r ( ) ;
S t r i n g B u i l d e r s t r B d r = new S t r i n gB u i l d e r ( ) ;

/ / append t h e f i r s t v a l u e
s t r B d r . append ( i t 2 . n ex t ( ) ) ;
/ / append eve ry o t h e r " | v a l u e " i f t h e r e ’ s any
wh i l e ( i t 2 . hasNext ( ) ) s t r B d r . append ( " | " ) . append ( i t 2 . n ex t ( ) ) ;

/ / o u t p u t s t h e v a l u e p a i r
c o n t e x t . w r i t e ( key , new Text ( s t r B d r . t o S t r i n g ( ) ) ) ;

}
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APPENDIX D:
Test and Result Files Listings

The input file used in Section 3.3.3 and the resulting output are listed in this appendix. The
reader may want to know that a value pair < key, value > in the input/output files for HMR
is represented as "key <tab> value," and each pair occupies a line. We also represent the
value of list < sourceU RL > by "URL1|URL2|URL3|...". Each URL is concatenated with
the "|" character if more than one URL is in the list.

D.1 Test Input
a b

b c

c d

d e

e f

f g

g h

h i

i j

j k

k l

l m

m n

n o

o p

p q

q r

r s

s t

t u

u v
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v w

w x

x y

y z

z a

aa b

bb c

cc d

dd e

ee f

ff g

gg h

hh i

ii j

jj k

kk l

ab b

bc c

cd d

de e

ef f

ab bb

bc cc

cd dd

de ee

ef ff

a zz

z yy

y xx

x ww

w vv

v uu

u tt
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t ss

s rr

r qq

a zy

z yx

y xw

x wv

w vu

zy c

yx b

yy b

xw a

D.2 Test Result
a c

aa c

ab c

b d

bb d

bc d

c e

cc e

cd e

d f

dd f

de f

e g

ee g

ef g

f h

ff h

g i
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gg i

h j

hh j

i k

ii k

j l

jj l

k m

kk m

l n

m o

n p

o q

p r

q qq|s

r rr|t

s ss|u

t tt|v

u uu|w

v vv|x|vu

w ww|y|wv

x xx|z|xw

xw zz|b|zy

y yy|a|yx

yx c

yy c

z zz|b|zy

zy d
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APPENDIX E:
Sorting MR Source Listings

The sorting MR job source listings are contained in this appendix. The mapper returns the
list of sources into separate value pairs, and the reducer sorts all the sources in alphabetical
order.

E.1 Driver (SortDriver.java)
impo r t o rg . apache . hadoop . con f . C o n f i g u r a t i o n ;
impo r t o rg . apache . hadoop . con f . Con f i gu r ed ;
impo r t o rg . apache . hadoop . f s . Pa th ;
impo r t o rg . apache . hadoop . i o . Text ;
impo r t o rg . apache . hadoop . mapreduce . Job ;
impo r t o rg . apache . hadoop . mapreduce . l i b . i n p u t . F i l e I n p u t F o rma t ;
impo r t o rg . apache . hadoop . mapreduce . l i b . o u t p u t . F i l eOu t pu t Fo rma t ;
impo r t o rg . apache . hadoop . u t i l . Tool ;
impo r t o rg . apache . hadoop . u t i l . ToolRunner ;

p u b l i c c l a s s S o r tD r i v e r e x t e n d s Con f i gu r ed implemen t s Tool {
p u b l i c s t a t i c vo id main ( S t r i n g [ ] a r g s ) t h rows Excep t i on {

Co n f i g u r a t i o n con f = new Con f i g u r a t i o n ( ) ;
System . e x i t ( ToolRunner . run ( conf , new So r tD r i v e r ( ) , a r g s ) ) ;

}

@Override
p u b l i c i n t run ( S t r i n g [ ] a rg0 ) t h rows Excep t i on {

/ / j ob1
Co n f i g u r a t i o n con f = t h i s . ge tConf ( ) ;

Job job = Job . g e t I n s t a n c e ( conf , " S o r tD r i v e r " ) ;
/ / s e t u p a l l c l a s s e s

j ob . s e t J a r B yC l a s s ( S o r tD r i v e r . c l a s s ) ;
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j ob . s e tMappe rC l a s s ( Sor tMapper . c l a s s ) ;
j ob . s e tR e d u c e rC l a s s ( So r tReduce r . c l a s s ) ;

/ / i n p u t / o u t p u t s e t u p
job . s e tOu t pu tKeyC l a s s ( Text . c l a s s ) ;
j ob . s e tOu t p u tVa l u eC l a s s ( Text . c l a s s ) ;
j ob . s e tMapOu tpu tVa lueC la s s ( Text . c l a s s ) ;

/ / p a t h s e t u p
S t r i n g i n p u t P a t h = a rg0 [ 0 ] ;
S t r i n g o u t p u t P a t h = a rg0 [ 1 ] ;

F i l e I n p u t F o rma t . a d d I n p u t P a t h s ( job , i n p u t P a t h ) ;
F i l eOu t pu t Fo rma t . s e tOu t p u t P a t h ( job , new Pa th ( o u t p u t P a t h ) ) ;

r e t u r n j ob . wa i tFo rComp l e t i on ( t r u e ) ? 0 : 1 ;
}

}

E.2 Mapper (SortMapper.java)
impo r t j a v a . i o . IOExcep t i on ;

impo r t o rg . apache . hadoop . i o . LongWr i t ab l e ;
impo r t o rg . apache . hadoop . i o . Text ;
impo r t o rg . apache . hadoop . mapreduce . Mapper ;

p u b l i c c l a s s Sor tMapper e x t e nd s Mapper<LongWri tab le , Text , Text ,
Text >{

/ / Read from fo rma t : t a r g e t < tab > sou r c e1 | s ou r c e2 | s ou r c e3 . . .
/ / t o ( t a r g e t , s ou r c e1 ) , ( t a r g e t , s ou r c e2 ) , . . .
p u b l i c vo id map ( LongWr i t ab l e key , Text va lue , Con t ex t c o n t e x t )

t h rows IOExcep t ion , I n t e r r u p t e d E x c e p t i o n {
S t r i n g [ ] t oken = va l u e . t o S t r i n g ( ) . s p l i t ( " \ t " ) ;
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S t r i n g [ ] s o u r c e = token [ 1 ] . t o S t r i n g ( ) . s p l i t ( " \ \ | " ) ;
f o r ( S t r i n g s : s o u r c e )

c o n t e x t . w r i t e ( new Text ( t oken [ 0 ] ) , new Text ( s ) ) ;
}

}

E.3 Reducer (SortReducer.java)
impo r t j a v a . i o . IOExcep t i on ;
impo r t j a v a . u t i l . A r r a yL i s t ;
impo r t j a v a . u t i l . A r r ays ;
impo r t j a v a . u t i l . C o l l e c t i o n s ;
impo r t j a v a . u t i l . HashSet ;
impo r t j a v a . u t i l . I t e r a t o r ;
impo r t j a v a . u t i l . L i s t ;
impo r t j a v a . u t i l . S e t ;

impo r t o rg . apache . hadoop . i o . Text ;
impo r t o rg . apache . hadoop . mapreduce . Reducer ;

p u b l i c c l a s s So r tReduce r e x t e n d s Reducer <Text , Text , Text , Text >{

/ / Read va l u e p a i r s < t a r g e t , sou rce1 > , < t a r g e t , sou rce2 > , . . .
/ / o u t p u t v a l u e p a i r s < t a r g e t , l i s t ( s o u r c e ) where t h e l i s t i s

i n a l p h a b e t i c a l o r d e r
@Override
p u b l i c vo id r educe ( Text key , I t e r a b l e <Text > va l ue s , Con t ex t

c o n t e x t ) t h rows IOExcep t ion , I n t e r r u p t e d E x c e p t i o n {
I t e r a t o r <Text > i t = v a l u e s . i t e r a t o r ( ) ;
Set < S t r i n g > s o u r c e s = new HashSet < S t r i n g > ( ) ;

/ / c l e a n up r e p e a t e d and n u l l / emp t i e s
wh i l e ( i t . hasNext ( ) ) s o u r c e s . add ( i t . n ex t ( ) . t o S t r i n g ( ) ) ;
s o u r c e s . remove ( Ar rays . a s L i s t ( " " , n u l l ) ) ;
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L i s t < S t r i n g > o r d e r e dS r c = new Ar r ayL i s t < S t r i n g >( s o u r c e s ) ;
C o l l e c t i o n s . s o r t ( o r d e r e dS r c ) ; / / s o r t t h e l i s t h e r e
I t e r a t o r < S t r i n g > i t 2 = o r d e r e dS r c . i t e r a t o r ( ) ;
S t r i n g B u i l d e r s t r B d r = new S t r i n gB u i l d e r ( ) ;

/ / append t h e f i r s t v a l u e
s t r B d r . append ( i t 2 . n ex t ( ) ) ;
/ / append eve ry o t h e r " | v a l u e " i f t h e r e ’ s any
wh i l e ( i t 2 . hasNext ( ) ) s t r B d r . append ( " | " ) . append ( i t 2 . n ex t ( ) ) ;

/ / o u t p u t s t h e v a l u e p a i r
c o n t e x t . w r i t e ( key , new Text ( s t r B d r . t o S t r i n g ( ) ) ) ;

}
}
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APPENDIX F:
JavaScript Object Notation (JSON) File Format

JSON [33] is a lightweight file format that is easy for humans to read and write and is being
used in AWS. We used JSON files to save the environment variables in this study. As stated
in Chapter 3 and Appendix A, there are seven files for Hadoop configuration, and we can
rewrite part of each configuration file on EMR through a single JSON configuration file. A
template of the JSON file for Hadoop configuration on EMR is provided here:

[

{

"Classification": "[XML File]",

"Properties": {

"[Variable Name1]": "[Value1]",

"[Variable Name2]": "[Value2]"

}

},

{

"Classification": "[SH File]",

"Properties": {},

"Configurations": [

{

"Classification": "export",

"Properties": {

"[Variable Name3]": "[Value3]"

}

}

]

}

]

The JSON file always starts and ends with a pair of square brackets, and the configuration
for different files is in a pair of curly brackets, separated by commas. There are two kinds of
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files in those seven configuration files: XML and SH files. Each type of file must be used
as shown in the template; only values in square brackets should be changed to the desired
content. Misplaced commas are a common mistake. Make sure that commas are contained
within the same brackets and that the last item in brackets is not followed by a comma.
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APPENDIX G:
AWS EMR Error Message Track Down

In AWS, there are three different levels in which we can find an error message: cluster level,
task level and container level. An example to illustrate the location of these error messages
and how to track the container-level error message is used in this appendix.

G.1 Cluster-Level Error Message
The cluster-level error message is the most obvious one. It can be found in the AWS GUI
as shown below:

1. First Method
The first method to find a cluster-level error message is shown in Figure G.1 and
Figure G.2.

Figure G.1. First Method for Finding the Cluster-Level Error Message (1)
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Figure G.2. First Method for Finding the Cluster-Level Error Message (2)

2. Second Method
The second method to find a cluster-level error message is shown in Figure G.3 and
Figure G.4.

Figure G.3. Second Method for Finding the Cluster-Level Error Message (1)

Figure G.4. Second Method for Finding the Cluster-Level Error Message (2)
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3. Third Method
The Third method to find a cluster-level error message is shown in Figure G.5,
Figure G.6, and Figure G.7.

Figure G.5. Third Method for Finding the Cluster-Level Error Message (1)

Figure G.6. Third Method for Finding the Cluster-Level Error Message (2)
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Figure G.7. Third Method for Finding the Cluster-Level Error Message (3)

G.2 Task-Level Error Message
1. First Method

Continuing from the last step of the First Method to find the cluster-level error
message, the first method to find a task-level error message is shown in Figure G.8,
Figure G.9, and G.10.

90



Figure G.8. First Method for Finding the Task-Level Error Message (1)

Figure G.9. First Method for Finding the Task-Level Error Message (2)
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Figure G.10. First Method for Finding the Task-Level Error Message (3)

2. Second Method
The second method also continues from the last step of the Second Method to find
the cluster-level error message. It is shown in Figure G.11.

Figure G.11. Second Method for Finding the Task-Level Error Message

The rest of the Second Method is the same as the First Method.

G.3 Container-Level Log
It is rare to need to look in the container-level log for an error; however, when either
a cluster-level or a task-level error message indicates the container number (as shown in
Figure G.12), it is the time to look for the container log to trace the cause of the error.

Figure G.12. Information about the Container-Level Log
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The log files are all located in S3. We must go to the folder of the specified container, as
shown in Figure G.13.

Figure G.13. How to Find the Specified Container Folder

After we get to the specified container, we are able to access the container-level log to sort
out the problem in the failed execution, as shown in Figure G.14.

Figure G.14. Content of the Desired Container Folder
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