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Pressure Scalings and Influence Region Research 

James H. Miller1  

Air Force Research Laboratory, Wright-Patterson AFB 45433  

Nomenclature 
Cp   =     pressure coefficient, 𝐶𝐶𝑝𝑝 = 𝑝𝑝−𝑝𝑝∞

1
2�  𝜌𝜌∞ 𝑉𝑉∞2

 

l =     length of elliptic region, m 

L = reference length, m  

𝑙𝑙𝑢𝑢
𝛿𝛿𝐿𝐿

 = ratio of upstream influence length to undisturbed (flat plate) boundary layer thickness 

𝑙𝑙
𝛿𝛿𝐿𝐿

 = ratio of elliptic region length to undisturbed (flat plate) boundary layer thickness 

lu  =     upstream influence length, m 

ld =    downstream influence length, m 

M = Mach number, ratio of velocity to speed of sound, 𝑀𝑀 =  𝑉𝑉

�𝛾𝛾 𝑝𝑝
𝜌𝜌�
 

p = pressure, N/m2  

Re  = Reynolds number, ratio of inertia forces to viscous forces, 𝑅𝑅𝑅𝑅 = 𝜌𝜌∞𝑉𝑉∞ 𝐿𝐿
𝜇𝜇∞

 

t = time, s 

u,v,w = Cartesian velocity components in the x,y,z directions respectively, m/s  

V∞ = reference or freestream velocity, m/s 

x,y,z = Cartesian coordinates, m  

∆p =    reference change in pressure (assumed positive) relative to freestream (e.g., pc - p∞, where pc is the 

          inviscid pressure downstream of a shock interaction with a flat surface or compression ramp), N/m2 

𝛿𝛿𝐿𝐿   =  boundary layer thickness at location L, m  

γ = ratio of specific heats, 1.4 for air.  

𝜃𝜃 = compression ramp angle, degrees 

                                                           
1 Principal Advisor, High Speed Systems Division, AFRL/RQH, B18A, Rm A005, 1950 5th Street, Wright-Patterson 
AFB OH, 45433.  
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τ = shear stress, N/m2 

µ = viscosity, kg / (m s)  

Superscripts: 

∼ =  nondimensional quantity normalized by freestream conditions or reference change in pressure 

Subscripts: 

d = downstream boundary of elliptic region 

L  = x location of compression ramp leading edge or shock impingement point 

∆ = Reference change in pressure (usually post-shock pressure – freestream pressure) 

u = upstream boundary of elliptic region 

xx,xy =   Cartesian components of shear stress 

∞ = freestream conditions 

 

I. Introduction 
In a recent technical note [1], there was an assertion that a new similarity variable was developed for the Navier-

Stokes equations. This new variable was used to define correlation functions for supersonic flows with upstream and 

downstream influence, where the influence lengths are defined in terms of a-priori quantities (freestream conditions 

and undisturbed boundary layer thicknesses) for adiabatic walls. In the present work, an updated non-dimensional 

approach for pressure is used to normalize the governing equations and the result is briefly discussed. Additionally, 

updated experimental results are presented along with discussion of collaborative research efforts in asymptotic 

theory and application of CFD methods to utilize influence regions to improve computational efficiency when 

changes in geometry become a significant driver to computational analysis timelines.   

II. Alternate Pressure Scaling 
 

 

In the present discussion we focus on the 2D compressible momentum equation in the Cartesian x direction [2]:    

𝜕𝜕𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

 +  
𝜕𝜕
𝜕𝜕𝜕𝜕

[𝜌𝜌𝑢𝑢2 + 𝑝𝑝 −  𝜏𝜏𝑥𝑥𝑥𝑥]  +  
𝜕𝜕
𝜕𝜕𝜕𝜕

�𝜌𝜌𝜌𝜌𝜌𝜌 −   𝜏𝜏𝑥𝑥𝑥𝑥� = 0  

with 
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𝜏𝜏𝑥𝑥𝑥𝑥  =   
2
3

 𝜇𝜇 � 2 
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

 −   
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

 � ;  𝜏𝜏𝑥𝑥𝑥𝑥  =   𝜇𝜇 � 
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

  +   
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

 � 

 

In the following nondimensionalization approach, nondimensional quantities are annotated with a tilde:  

𝑥𝑥,�  𝑦𝑦 � =  
𝑥𝑥
𝐿𝐿

,
𝑦𝑦
𝐿𝐿

 ;   𝑡̃𝑡 =  
𝑡𝑡

𝐿𝐿
𝑉𝑉∞�

 ;  𝜌𝜌�  =   
𝜌𝜌
𝜌𝜌∞

  ;  𝑢𝑢�  , 𝑣𝑣�  =  
𝑢𝑢
𝑉𝑉∞

 ,
𝑣𝑣
𝑉𝑉∞

  ;  𝑝𝑝� =  
𝑝𝑝

𝜇𝜇∞  𝑉𝑉∞𝐿𝐿
;  𝜇𝜇� =  

𝜇𝜇
𝜇𝜇∞

 

As in the previous work, the pressure is nondimensionalized differently than traditional methods, but in the present 

case, the pressure is nondimensionalized by a representative shear force defined by freestream conditions. This could 

be viewed as the ratio of pressure forces to shear forces.  Substituting for the dimensional quantities in the momentum 

equation, and then rearranging terms and simplifying leads to the following equation in nondimensional form:  

𝜕𝜕𝜌𝜌�𝑢𝑢�
𝜕𝜕𝑡̃𝑡

 +  
𝜕𝜕
𝜕𝜕𝑥𝑥�

[𝜌𝜌�𝑢𝑢�2 +
1
𝑅𝑅𝑅𝑅

[ 𝑝𝑝�  −  𝜏̃𝜏𝑥𝑥𝑥𝑥  ]]  +  
𝜕𝜕
𝜕𝜕𝑦𝑦�

�𝜌𝜌�𝑢𝑢�𝑣𝑣�  −  
1
𝑅𝑅𝑒𝑒

 𝜏̃𝜏𝑥𝑥𝑥𝑥� = 0 

 

It’s useful to recognize that the product   𝑝𝑝�
𝑅𝑅𝑅𝑅

  is equal to the conventional approach to non-dimensionalizing pressure, 

namely, 𝑝𝑝�
𝑅𝑅𝑅𝑅

= 𝑝𝑝
𝜌𝜌∞𝑉𝑉∞2

, which is independent of Reynolds number. It is also important to note that as Reynolds number 

becomes large due to reduced viscosity, 𝑝̌𝑝 also becomes large. Also, it now becomes more straightforward to compare 

pressure forces to shear forces since they would be nondimensionalized using the same approach. These types of 

comparisons may be discussed in future work.  

 The impact of choosing the above nondimensionalization can be better seen after imposing assumptions as is 

traditionally done in boundary layer theory [3]. Let the streamwise shear stress be much smaller than the pressure; the 

normal velocity gradient with respect to x is much smaller than the axial velocity gradient with respect to y; and the 

viscous layer is confined to a small distance from the body (𝛿𝛿). Mathematically, this can be represented by:  

 𝑝𝑝� ≫  𝜏̃𝜏𝑥𝑥𝑥𝑥 ;       
𝜕𝜕𝑢𝑢�
𝜕𝜕𝑦𝑦�

≫  
𝜕𝜕𝑣𝑣�
𝜕𝜕𝑥𝑥�

;     𝐿𝐿 ≫  𝛿𝛿 

assuming steady flow, the x-momentum equation becomes:  

 

𝜕𝜕
𝜕𝜕𝑥𝑥�

[𝜌𝜌�𝑢𝑢�2 +
1
𝑅𝑅𝑅𝑅

 𝑝𝑝� ]  +  
𝜕𝜕
𝜕𝜕𝑦𝑦�

�𝜌𝜌�𝑢𝑢�𝑣𝑣�  −  
1
𝑅𝑅𝑅𝑅

 𝜇𝜇�
𝜕𝜕𝑢𝑢�
𝜕𝜕𝑦𝑦�
� = 0 

or 
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𝜕𝜕
𝜕𝜕𝑥𝑥�

[𝜌𝜌�𝑢𝑢�2]  +  
𝜕𝜕
𝜕𝜕𝑦𝑦�

[𝜌𝜌�𝑢𝑢�𝑣𝑣�] +  
1
𝑅𝑅𝑅𝑅

 �
𝜕𝜕𝑝𝑝�
𝜕𝜕𝑥𝑥�

−
𝜕𝜕
𝜕𝜕𝑦𝑦�

𝜇𝜇�
𝜕𝜕𝑢𝑢�
𝜕𝜕𝑦𝑦�
� = 0 

and taking the Reynolds number terms to the right hand side:  

 

𝜕𝜕
𝜕𝜕𝑥𝑥�

[𝜌𝜌�𝑢𝑢�2]  +  
𝜕𝜕
𝜕𝜕𝑦𝑦�

[𝜌𝜌�𝑢𝑢�𝑣𝑣�] =  
1
𝑅𝑅𝑅𝑅

 [
𝜕𝜕
𝜕𝜕𝑦𝑦�

𝜇𝜇�
𝜕𝜕𝑢𝑢�
𝜕𝜕𝑦𝑦�

−
𝜕𝜕𝑝𝑝�
𝜕𝜕𝑥𝑥�

] 

 

 

Now it is hopefully clear from the above equation that the difference between the nondimensional shear stress and 

streamwise pressure gradient must be of the order of 𝑅𝑅𝑅𝑅 to keep the equation balanced, or:  

  𝑅𝑅𝑅𝑅 ~  �
𝜕𝜕
𝜕𝜕𝑦𝑦�

𝜇𝜇�
𝜕𝜕𝑢𝑢�
𝜕𝜕𝑦𝑦�

−  
𝜕𝜕𝑝𝑝�
𝜕𝜕𝑥𝑥�
� 

and 

 𝑅𝑅𝑅𝑅 ~  �
1
𝛿𝛿
𝐿𝐿

𝜇𝜇�
1
𝛿𝛿
𝐿𝐿

−  
𝜕𝜕𝑝𝑝�
𝜕𝜕𝑥𝑥�

 � 

 

If the nondimensional viscosity has order 1 magnitude (which may be an oversimplification, but for argument sake 

we adopt it here), then the result is that  

𝑅𝑅𝑅𝑅 ~  �
1
𝛿𝛿
𝐿𝐿

1
𝛿𝛿
𝐿𝐿

−  
𝜕𝜕𝑝𝑝�
𝜕𝜕𝑥𝑥�

 � 

solving for the boundary layer thickness yields:  

𝛿𝛿
𝐿𝐿

 ~  
1

��𝑅𝑅𝑅𝑅 − 𝜕𝜕𝑝𝑝�
𝜕𝜕𝑥𝑥� �

 

 

 

Or in words, the nondimensional boundary layer thickness is inversely proportional to the square root of the difference 

between the Reynolds number and the nondimensional streamwise pressure gradient. This differs from conventional 

boundary layer theory results but appear to be consistent. The present result implies a growth of the boundary layer 
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for adverse pressure gradients and a reduction of the boundary layer thickness for favorable pressure gradients.  Further 

investigation into the implications of these results may be addressed in future work. 

 

III. Compression Ramp Correlations as Functions of Interaction Parameter  
 

Previously in [1], correlations of upstream and downstream influence were shown for laminar compressive flows 

(compression ramps and shock impingements) in terms of the similarity parameter 𝑅𝑅𝑅𝑅 𝐶𝐶𝐶𝐶 
2

, or interaction parameter. In 

the present work, we show the results obtained for upstream influence of compression ramps for both laminar and 

turbulent flows in Fig. 1.  

  

Figure 1: Correlation Results for Upstream Influence to 2D Compression Ramps and Shock Impingement 
Flowfields  

 

In this figure, it is clear that the interaction parameter generally increases with upstream influence, but the slope of the 

upstream influence appears to be a function of Reynolds number for turbulent flows, while for laminar flows the 
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upstream influence varies as the interaction parameter raised to the 2/5 power. This result is similar in character to 

that of incompressible pipe flow and the Moody diagram [4] where the friction factor varies at constant slope with 

Reynolds number independent of pipe roughness, while for turbulent flow, the slope does depend on pipe roughness. 

The experimental and numerical data for laminar adiabatic wall conditions was taken for ramps [5] from previous 

work. The numerical data for turbulent flow was taken from the work of Ramesh et al. [6].  

 

Figure 2: Results for downstream influence length vs. Interaction Parameter 

 

Figure 2 has the results for the downstream influence length vs. the interaction parameter in both laminar and 

turbulent flows. These numerical results indicate that the downstream influence length increases with increasing 

interaction parameter for laminar flows, while it slightly decreases for turbulent flows (with larger scatter).   
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IV. Experimental Results 

 
From Oct. 2015 to Feb. 2016, testing was performed on the copper flat plate model of the Mach 6 Influence 

Boundaries program. This testing was completed in the Mach 6 High Reynolds Number Facility at Wright-Patterson 

AFB [7]. The model was a flat plate and an earlier version of the CAD geometry is shown in Figure 3.  

 

Figure 3 Flat Plate model geometry with support strut. 

Over 60 runs were completed with the flat plate model. Conditions and results will be documented in a future report. 

A key capability for this program was to establish the capability to determine the boundary layer thickness near the 

X=7” station, where the models to be used in future tests will have a compression ramp juncture.  Sample results are 

shown in Figure 4. On the graph in the upper left there are peak intensities showing the growth of the boundary layer 

as the axial station increases.  In addition, the two graphs in the lower right show numerical predictions of the boundary 

layer thickness for the X=7” station. The approximate height from these results is about 0.1’ which is consistent with 

the measured experimental results.  
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Figure 4 Sample results with boundary layer measurements. 
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Figure 5 Sample Schlieren results with effects from wall temperatures. 

In Figure 5, preliminary results show the approximate boundary layer transition location based on the observation 

of acoustic wave structures in the boundary layer corresponding to the onset of turbulence [8]. An important goal of 

the testing was to establish data at conditions for an adiabatic wall so that previous data could be used in verifying 

correlations [5,6]. Adiabatic conditions were achieved through pre-heating of the model before starting the tunnel. 

More details on this approach will be discussed in a future report.  
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Figure 6 Beginning of transition location as a function of stagnation pressure and leading edge radius. 

 

In Figure 6, preliminary results show the approximate boundary layer transition location based on the measured 

heat transfer for cold wall conditions. Attempts were made to match the conditions used by Frew et al. [7] in the same 

tunnel over 20 years prior to the present testing. The present results are in good overall agreement with the past results. 

In addition, it is important to note that the leading edge radius of the plate affects the transition location with a larger 

radius producing a more laminar flowfield.  

V. Collaborative Research Activities 
 

At the time of this writing, two collaborative research efforts have begun. At Iowa State University, an asymptotic 

theoretical approach is to be applied to high Reynolds number shock layer analysis to a compression ramp. Direct 

comparisons of the asymptotic theory to CFD calculations and scaling parameters described in Ref. 1 are also planned. 
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At the Air Force Academy, the premise of reducing computational times by a CFD building block approach is being 

explored for hypersonic configurations. More details on those two efforts will be presented in later reports.   

VI. Conclusions 

A new nondimensional approach for the pressure in the Navier-Stokes equations has been developed. This 

approach allows the boundary layer thickness to be written as a function of Reynolds number and streamwise pressure 

gradient. Both numerical and experimental data have been re-formulated in terms of the interaction parameter for 

compression ramp flows under laminar and turbulent conditions with adiabatic walls. A distinctive change in the 

upstream influence slope magnitude occurs when transitioning from laminar to turbulent. For the downstream 

influence, the slope changes magnitude and sign when transitioning from laminar to turbulent. The preliminary 

experimental results for a flat plate in a Mach 6 flowfield were also discussed. Boundary layer thicknesses were 

determined and laminar-turbulent transition was found to be consistent with previous results taken in the same tunnel 

two decades prior to the present test.   
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