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ABSTRACT 

In this thesis, we examine techniques used to predict future ship movement using 

historical Automatic Identification System (AIS) data in the Gulf of Mexico from April 

2014. We process the data to remove outliers and identify “subtracks,” which are 

associated with trips made by a vessel between two points. A cluster analysis is then used 

to determine the extent to which subtrack routes segregate into groups in an area without 

well-defined shipping lanes. Although clustering structure does exist, it is not strong 

enough to support prediction modeling in line with other published work. We also 

examine the effects of weather and sea-state on deviations of a vessel’s traveled route 

from the shortest (great-circle) route. Vessels vary substantially in how closely they 

adhere to a great-circle route. Head winds also contribute positively to these deviations. 

This result suggests that algorithms designed to predict the motion of vessels should take 

weather and sea-state into account. 
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EXECUTIVE SUMMARY 

Over the past few decades the number of sea-going vessels has increased 

substantially which poses a challenge to maintain situational awareness of the global 

maritime picture. In 2002 the International Maritime Organization (IMO) implemented 

the Automatic Identification System (AIS) which allows a vessel to broadcast its 

position, movement, and static information about the vessel. Since its debut, AIS uses 

have expanded to include the monitoring of fishing vessels, search and rescue, 

meteorological data, and maritime security. Information provided by AIS includes speed, 

heading, latitude and longitude, ship type, ship dimensions, and destination as well as 

other attributes. Although voluminous, AIS data is archived and made available to the 

public. Because of its accessibility, there is an increasing body of research devoted to the 

use of historical AIS data to identify patterns of navigation. Much of this research is 

focused on the detection of anomalous patterns of movement, which is of interest to the 

U.S. Department of Defense and other organizations with an interest in maritime security.   

The purpose of our thesis is to identify patterns of movement, and factors that 

affect movement, for vessels in the Gulf of Mexico near Port Fourchon, Louisiana. 

Located approximately 100 miles south of New Orleans, Port Fourchon has a high 

volume of maritime traffic that is represented in archived AIS data. Although Port 

Fourchon is strongly associated with the offshore oil and gas industry, it also sees activity 

from fishing vessels and pleasure craft. During the month of April 2014, the time period 

of our study, vessels in or near Port Fourchon transmitted about 200,000 AIS records 

per day.   

An analysis of vessel movements over an extended period of time using AIS data 

requires substantial preparatory work. Measurements of longitude, latitude, speed, course, 

and time are subject to errors that often are identified only in the context of movement of 

a specific vessel. We develop an outlier-detection algorithm to identify and remove gross 

errors (“outliers”) from our analysis. Having an automated approach to outlier detection 

is important given the high volume of data and the larger objective to have algorithms 

that can operate with minimal human intervention. 
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We refer to a collection of time-ordered positional measurements from a single 

vessel as a track. Over the period of a month a vessel may leave and return to Port 

Fourchon several times. We segment each track into a series of subtracks consisting of a 

trip from Port Fourchon to a stop point or vice-versa, and classify a subtrack as either 

outgoing or incoming, respectively. Stop points are identified as locations at which the 

movement of a vessel is below a threshold for an extended period of time. For vessels 

that either depart from or return to Port Fourchon, many of the associated stop points are 

identified as offshore oil or gas platforms, which number in the hundreds in the Gulf of 

Mexico near Port Fourchon. We consider subtracks for which Port Fourchon is either a 

start point or an end point and the other stop point is at least 20,000 meters from Port 

Fourchon. 

Our first objective is to examine the effectiveness of statistical clustering 

techniques for finding patterns of movement in the 2,712 outgoing subtracks for the 

month of April 2014. In much of the research literature on prediction of vessel 

movements, clustering plays an important role in reducing subtracks to nearly 

homogeneous groups based on similar motion profiles. Port Fourchon, however, does not 

have well-defined shipping lanes. In order to apply clustering, a matrix of distances or 

dissimilarities between subtracks is required, which poses several challenges. Subtracks 

are not synchronized; vessels maintain different velocities; and, subtracks have unequal 

numbers of AIS measurements. Initially, we consider only the positional attributes of the 

subtracks, which we convert to vectors of equal length through the use of interpolation. 

For interpolation we choose a set of odometer distances (5,000 meters to 30,000 meters in 

5,000-meter increments) from Port Fourchon, giving us six different longitude-latitude 

pairs. We then calculate the distance between two tracks as the averaged Haversine 

distances at the interpolation points. Doing this for each pair of outgoing subtracks results 

in a distance matrix that has 2,712 rows and 2,712 columns, which we use for cluster 

analysis. 

We use Partitioning Around Medoids (PAM) as a clustering method, and specify 

a number of clusters ranging from 2 to 10 to find the best solution. Several variations are 

considered, including the use of 
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• Positional data only; 

• Positional data with weighted averaging; 

• Positional data for slower vessels only; 

• Positional data for faster vessels only; 

• Positional data with ship type. 

The combination of non-quantitative information such as ship type together with 

positional data requires the use of a dissimilarity measure that is appropriate for mixed-

type data. We find that using positional data only with four clusters gives the best 

clustering solution according to a metric that is commonly used with the PAM technique. 

The quality of the solution is considered “reasonable” but not “strong” according to 

guidelines that are recommended in literature for interpretation of the metric. Graphically 

representing the subtracks shows that the clusters are not well separated as one would 

anticipate if shipping lanes were present. This finding suggests that clustering is not a 

reliable technique for stratifying vessel movements in and out of Port Fourchon. 

Our second objective is to examine the effects of meteorological and 

oceanographic data on vessel movements using regression analysis. To support this 

analysis we combine two other data sets with the AIS data. The first is a dataset from the 

Bureau of Ocean Energy Management (BOEM) of the U.S. Department of the Interior 

which provides latitude-longitude locations of all oil and gas platforms in the Gulf of 

Mexico. Use of the BOEM dataset allows us to correlate stop points in the Port Fourchon 

area with these platforms, and to identify those that are frequently visited by single 

vessels. We identify fourteen vessel-platform pairs that together comprise 517 subtracks, 

with each pair having at least 20 subtracks. For each of the fourteen routes we derive the 

great-circle route, which has the shortest distance for travel between Port Fourchon and 

an offshore platform. For a given subtrack, its deviation from the shortest route is taken 

to be the average distance of its AIS positions to the great-circle route, a variable to 

which we refer as DISTANCE. Our aim is to assess the effects of weather and sea-state 

on DISTANCE. 
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Hourly data on weather and sea-state data is obtained from a buoy located in the 

Gulf of Mexico approximately 39,000 meters south of Port Fourchon, which is archived 

by the National Data Buoy Center of the U.S. Department of Commerce. The buoy data 

measurements include wind direction, wind speed, and wave height, which we use as 

explanatory variables with the logarithm of DISTANCE as the outcome variable. Using 

wind direction and the course of a vessel, we resolve wind speed into downwind (aligned 

with the course) and crosswind components. We also use a categorical variable that 

identifies the fourteen vessels as a predictor. 

Linear regression of DISTANCE on the predictor variables reveals that the vessel 

and the downwind component are significant predictors. There is substantial variability 

among vessels in how closely they adhere to a great-circle route. Of the fourteen vessels 

considered in our analysis, their average distance from a great-circle route ranged from a 

few meters to nearly 3800 meters. The effect of downwind is that it is negatively 

associated with DISTANCE. Stated another way, the stronger the headwind (which is 

minus the downwind), the greater the distance. For every increase of 1 meter per second 

(approximately 2.24 miles per hour) of headwind, DISTANCE increases on average by 

approximately one percent. When strong headwind is present this effect can be 

substantial. This finding underscores the importance of including weather and sea-state in 

algorithms that are designed to predict the motion of vessels. 
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I. INTRODUCTION 

The U.S. Navy maritime mission is to increase national security through 

maintaining a presence at sea and deterring dangerous opponents and adversaries. In 

2007, the U.S. Navy developed the “Maritime Domain Awareness” (Department of the 

Navy [DON], 2007) directive charging the Surface Navy to develop better situational 

awareness of the global surface picture and to identify anything that could threaten the 

safety of the U.S. homeland (DON, 2007). One of the challenges is that the “Navy is 

increasingly faced with irregular opponents who employ asymmetric methods and 

capabilities against U.S. interests” (DON, 2007). In the maritime world this threat is 

heightened as the number of sea-going vessels is increasing rapidly which makes 

surveillance of vessels in an area of interest increasingly difficult.   

A widely-used source of information on the global movement of sea-going 

vessels is the Automatic Identification System (AIS). AIS was launched in the year 2000 

and required for use by the International Maritime Organization (IMO) for certain classes 

of vessels in 2002 (IMO, 2016). U.S. federal law mandates the use of AIS for vessels 

above a specified size and for foreign vessels operating in U.S. national waters 

(AIS, 2017). U.S. Department of Homeland Security requires that AIS be used for the 

following types of vessels (AIS, 2017):  

• Self-propelled vessel 65 feet or more in length engaging in commercial 
services; 

• Towing vessel of 26 feet or more in length with more than 600 
horsepower engaged in commercial services; 

• Self-propelled vessel certified to carry more than 150 passengers; 

• Self-propelled vessel engaged in dredging operations that restrict the 
passage of other vessel traffic; 

• Self-propelled vessel carrying dangerous cargo; 

• Self-propelled vessel carrying flammable liquid in bulk; 

• Fishing industry vessels. 
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AIS provides a wealth of information on nearby vessels that can aid a pilot in 

navigation. It includes ship name, speed, course, destination, and latitude and longitude 

as well as weather reports. The AIS systems used by many vessels are able to display this 

information graphically, an example of which is shown in Figure 1.    

 

Figure 1.  Graphical Output of AIS Device. Source: Burch (2016). 

This display has the same layout as a paper chart on which nearby vessels are 

positioned. Land areas are shown in brown and coastal waters are shown in blue. The 

dark purple stripe is a shipping lane. Water depths in fathoms are shown as numbers. One 

fathom is equal to six feet. The vessels being tracked on the electronic display are the 

triangles in yellow and green. Dark purple lines connected to the triangles indicate the 

trajectories of vessels, and yellow and green lines on a triangle indicate the direction to 

which the vessel is traveling. A useful feature of some AIS displays is that the user may 

select a contact and instantly gain knowledge of the vessel. For example, in Figure 1, the 
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pilot selected the green vessel marked with a green triangle and the display in the gray 

box shows information regarding that vessel. The vessel is a U.S. passenger ship 

traveling at 16.5 knots in the direction of 050 which is to the northeast (50 degrees 

clockwise from due north). AIS also allows a pilot to broadcast information about the 

activity of the vessel and its destination. For example, a fishing vessel can change its 

status to read “engaged in fishing operations,” warning others of its limited ability to 

abide by rules of navigation due to restricted movement caused by fishing lines and nets 

hanging from the vessel.     

Because AIS is publicly available information, a number of parties archive its 

data to support analytical projects of which pattern recognition, prediction of future 

vessel movement, and anomaly detection are major topics. Our thesis belongs to this 

class of research. We examine AIS data for the month of April 2014 with the objective of 

describing characteristics of vessel navigation in an area of interest. Due to the world-

wide use of AIS the data are voluminous. The AIS data for one day in April 2014 

comprises nearly 2.5 million observations and requires approximately a half-gigabyte of 

storage. We limit our focus to AIS data for ships in the Gulf of Mexico to examine 

shipping movements. Shipping in the Gulf of Mexico produces a large amount of AIS 

data from cargo vessels, oil tankers, fishing and trolling vessels, and recreational vessels. 

In April 2014 nearly one-tenth of the AIS data for the entire world was concentrated in 

this region. More narrowly, we focus our research on vessel traffic in the area of Port 

Fourchon, Louisiana, which is situated on the Gulf of Mexico about 100 miles south of 

New Orleans which has about a quarter of all AIS data in the Gulf of Mexico region. 

Figure 2 shows a plot of 500 randomly selected tracks (a track is a series of AIS data for 

a specific vessel) near Port Fourchon.   
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Created using RgoogleMaps by RStudio. 

Figure 2.  Plot of 500 Tracks in the Gulf of Mexico near Port Fourchon from 
March 2014 

Much of the maritime activity at Port Fourchon is related to servicing the 

hundreds of oil and gas platforms located offshore near the port. According to the Greater 

Lafourche Port Commission (n.d.), Port Fourchon services nearly 90 percent of domestic 

deepwater oil production in the United States, with nearly 600 offshore oil platforms 

located within 40 miles of the port. These platforms provide between 16 and 18 percent 

of U.S. oil production. More than 400 large supply vessels traverse Port Fourchon daily. 

The Louisiana Offshore Oil Platform (LOOP), located in the Gulf of Mexico about 18 

miles south of Port Fourchon, is one of few deepwater ports in the Gulf of Mexico region 

that can accommodate Very Large Crude Carriers (VLCCs) and Ultra Large Crude 

Carriers (ULCCs). The LOOP supplies the United States with about 13 percent of its 

imported foreign oil, and is connected to about 50 percent of U.S. oil refining capacity. 

Figure 3 shows the locations of oil and gas platforms in the Gulf of Mexico near Port 

Fourchon. 
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Created using RgoogleMaps by RStudio. 

Figure 3.  Oil Platforms Located within 30 Miles of Port Fourchon 

A. RESEARCH OBJECTIVES 

Our research is focused on two objectives related to characterizing the movement 

of marine vessels in and out of Port Fourchon as measured by AIS data for the month of 

April 2014. The ultimate goal of analyzing data on ship movements is to develop a model 

or process for predicting future ship movements based on AIS information up to a given 

point in time about the vessel. This is a continuing research topic in the vessel tracking 

community, which to date has focused on areas where traffic segregates into well-defined 

“clusters” as one might find coming into or out of a major commercial port such as New 

York or Los Angeles-Long Beach. Our first objective is to determine the extent to which 

clustering is present in the Port Fourchon area that would allow its maritime traffic to be 

treated in a manner similar to that of other ports. 

Our second objective is to examine the effects of weather and sea-state on the 

movements of a small number of vessels that make repeated trips between Port Fourchon 

and a common destination during the month of April 2014. We identify fourteen vessels 



 6 

that meet these criteria which make a total of 517 trips to and from their destination 

points, and for each we calculate an average distance from the Great Circle route, which 

is the shortest route between two points on the surface of the earth. Treating average 

distance as an outcome variable, we develop a prediction model with wind speed, wind 

direction, and wave height obtained from hourly offshore buoy readings. Research to date 

has not addressed the effects of these variables on predicting ship movements.   

B. ORGANIZATION OF THE THESIS 

The remainder of this thesis is organized as follows. In Chapter II we review 

literature on research related to maritime navigation, particularly with respect to the use 

of AIS data. In Chapter III we explain in detail the data used in our analysis, the data 

processing steps used to render the data into usable form, and the analytical techniques 

that we use to address our study objectives. In Chapter IV we present the results of 

applying our approach to the Port Fourchon AIS data for the month of April 2014. We 

state our conclusions and identify topics for additional research in Chapter V. 
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II. BACKGROUND AND LITERATURE REVIEW 

This chapter discusses AIS and its use in analyzing maritime navigation. This 

chapter also discusses other research in support of unsupervised learning of traffic 

patterns using historical AIS data. 

A. BACKGROUND 

All AIS information is unclassified and available to the public. Originally 

designed as a tool for collision avoidance, the uses of AIS have evolved to include fishing 

fleet monitoring and control, vessel traffic services, maritime security, aids to navigation, 

search and rescue, accident investigation, ocean current estimation, infrastructure 

protection, and fleet and cargo tracking (United States Coast Guard [USCG], 2016). As 

of 2017 there are more than 20,000 vessels and 475 shore-based stations that use AIS 

(AIS, 2017). AIS is both broadcasted from a vessel and received from other vessels 

automatically using a VHF transceiver. The information transmitted includes ship 

position, speed, and navigational status (USCG, 2016). The AIS transceiver updates the 

information in Table 1 every 2 to 10 seconds while the vessel is underway and every 

3 minutes while the vessel is at anchor (USCG, 2016). Because the AIS transmittal is 

automated this information cannot be changed by the user.  
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Table 1.   AIS Data Transmitted Every 2 to 10 Seconds or Every 3 Minutes. 
Adapted from Raymond (2016). 

MMSI Maritime Mobile Service Identity 
Navigation status At anchor, not under command, or underway using engines 
Rate of turn • 0 = not turning 

• 1…126/1…-126 = turning right/left at up to 708 
degrees per minute or higher, respectively 

• 128 = no turn information available (default) 

Speed over ground 0.1-knot resolution from 0 to 102 knots 
Course over ground Relative to true north 
Latitude -90° to 90° 
Longitude -180° to 180° 
True heading 0 to 359° 
Time stamp Hour:Min:Sec in UTC format 
 

The Maritime Mobile Service Identity (MMSI) uniquely identifies an AIS 

transceiver, which usually is synonymous with the vessel. Navigation status describes the 

current mobilization ability of a ship. The three possible values of navigational status are 

“at anchor,” “underway using engines,” and “not under command.” Not under command 

implies that the ship has run aground or has experienced some other type of casualty. 

Other ships in the vicinity are informed that the vessel “not under command” is unable to 

abide by rules of navigation.   

In additional to automated reports a vessel is required to broadcast a non-

automated static report every six minutes. Because these reports require user input the 

quality of information in them cannot be assured. Table 2 lists the data fields in the static 

AIS reports.     
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Table 2.   AIS Information Transmitted Every 6 Minutes 

Data Field Name Description 
IMO number International Maritime Organization ship identification 

number 
Radio call sign Name given to communicate with vessel over VHF 

radio 
Ship name Owner-given name 
Type of ship Cargo, oiler, fishing, tug, passenger vessel, etc. 
Dimensions of ship  Length from bow to stern and length from port to 

starboard, in meters 
Location of positioning system  either aft or forward 
Type of positioning system Satellite-based or transceiver only 
True heading 0-359 degrees, relative to true north. 
Draught of ship Draft below waterline, in meters 
Destination As stated by operator; not always available 
ETA  Estimated time of arrival 

 

The IMO number is a permanent vessel identification label that does not change 

when a ship is sold to another owner. Radio call sign is the identification used by a vessel 

when communicating with other vessels over a common radio frequency, and is often the 

same as the ship name. Using the call sign to contact a ship by VHF radio is a safe way to 

quickly understand the intentions of that vessel so that action may be taken such as 

altering course to avoid a collision. Unfortunately, this information is not always 

provided and can also be inaccurate. Harati-Mokhtari, Wall, Brooks, and Wang (2007) 

examine the accuracy of AIS static data inputs from a human factors perspective. The 

authors find that 6 percent of vessels reported no vessel type and 3 percent report “other” 

as the vessel type when one of the available choices (cargo, passenger vessel, etc.) would 

have been correct. In addition, 47 percent of vessels reported incorrect ship dimensions 

and 18 percent reported incorrect draught. Almost half of vessels (49 percent) of vessels 

did not report a destination. 
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B. LITERATURE REVIEW 

There are several methods analysts have used to predict future ship movement or 

detect anomalies using either AIS or surveillance data from a camera. These techniques 

largely use different clustering methods to identify similarities in traffic patterns as a 

means for creating a threshold for anomaly detection.    

In a Naval Postgraduate School (NPS) master’s thesis, Tester (2013) explores the 

use of spatiotemporal clustering of vessels in a maritime domain using AIS data based on 

attributes such as location, speed, and time. The objective of his thesis was to determine 

if vessels of interest (e.g., vessels transporting illicit cargo) interacted with any other 

vessels over the period of observation. Tester used K-means clustering to group vessels 

based on proximity to one another, course, and speed. The ultimate purpose of his 

research was to support maritime domain awareness (MDA) efforts by developing an 

algorithm capable of identifying vessels exhibiting illicit behaviors, and to identify how 

other vessels involved in the operation interact with them.   

The NPS master’s thesis by McAbee (2013) investigates the use of the Hough 

transformation, a technique in image analysis used to identify imperfect shapes, to 

describe popular shipping routes in coastal waterways and the open ocean using historical 

AIS data. McAbee adopts a three-stage approach to this analysis in support of enhancing 

MDA. The first stage is to identify high density traffic areas. The second stage is to use 

the Hough Transformation to identify linear patterns within these high-density areas. The 

third stage is to define the width of the given highway. Once these highways are 

established, anomaly detection is performed by determining whether or not a given vessel 

is traveling within these highways. McAbee also explores the effects of annual seasonal 

patterns on maritime vessel.    

Ristic, Scala, Morelande, and Gordon (2008) examine a method for anomaly 

detection using kernel density estimation (KDE). Anomaly detection is based on a 

predefined probability of false alarm, determined from historical AIS data. Using patterns 

developed from historical AIS data, real-time AIS data are then classified as exhibiting 

normal behavior or anomalous behavior based on where they were in the traffic patterns 
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identified. The authors then use a Gaussian sum tracking filter to aid in the prediction of 

future ship movement. Gaussian sum tracking uses weighted sums related to the 

historical movement of a vessel as a means of predicting future movement.  

Morris and Trivedi (2008) investigate the detection of in-motion trajectories, not 

limited to the maritime domain but applicable to it, by studying motion patterns from 

video surveillance. They relate the problem to video surveillance in a parking garage and 

demonstrate how a constant collection of tracks can be used to predict future movement. 

The first stage of their approach consists of defining points of interest where interesting 

events occur and the second stage is to define activity paths that characterize how objects 

move between points of interest. The authors conclude that a vocabulary for analyzing a 

scene can be developed in an unsupervised fashion using historical data on the 

movements of objects. This vocabulary would allow for classification of past and current 

activity, detection of abnormal activities, prediction of future activities, and 

characterization of interactions between objects.  

In a subsequent paper, Morris and Trivedi (2011) continue discussion on the use 

of video surveillance to develop a data-based method for predicting future movements 

and detecting anomalies. Their second paper addresses the use of Gaussian mixture 

modeling to connect routes through trajectory clustering and spatio-temporal dynamics of 

activities encoded using hidden Markov models. Similar to their earlier work, the authors 

build a vocabulary by identifying recurrent patterns in data. They adopt a three-stage 

hierarchical learning process for creating the vocabulary and predicting behavior. The 

first stage uses Gaussian mixture modeling to discover nodes and points of interest. The 

second stage uses trajectory clustering and spatio-temporal dynamics to determine 

number of activities in a scene and learn similarities in routes. The third stage uses a 

Hidden Markov Model to make future route predictions and to estimate probabilities of 

anomalies. 

In his doctoral dissertation, Laxhammar (2014) discusses several approaches to 

anomaly detection in the maritime domain using historical AIS data. The output of these 

approaches all use a predetermined threshold for identifying anomalies, where if the 

value of the given AIS contact is above the threshold then the contact is labeled an 
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anomaly. Laxhammar provides the reader with the advantages and disadvantage of each 

approach by discussing computational efficiency of each algorithm and which algorithms 

work better with small versus large datasets.   
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III. METHODOLOGY 

In this chapter, we explain the process that we use to prepare the AIS data for 

analysis, and the techniques that we use to address the study questions posed in Chapter I. 

A. DATA INGESTION AND INITIAL PROCESSING 

The AIS data is received in AIVDM/AIVDO format, which is a method of 

collecting and integrating information from publicly available sources (Raymond, 2016). 

Initially, the AIS transmitters broadcast their positions from vessels, navigation markers, 

and shore positions. When the data is received, it is in the form of a text packet composed 

of bit character strings that require conversion to a useable format. Figure 4 is an example 

of what an AIVDM/AIVDO data packet looks like.   

 

Figure 4.  Visual of an AIVDM/AIVDO Data Packet. Source: Raymond (2016). 

In this example, there are a total of 7 fields, each separated by commas, that 

provide information to the interpreter on the contents of the packet payload 

(Raymond, 2016). We will focus on field 6 (“177KQJ5000G?tO`K>RA1wUbN0TKH”), 

which is the actual AIS information we want. All characters are converted to a bit format 

and concatenated, forming the binary payload of the sentence. The bit strings are 

segmented and then converted back to alphanumeric data.  

The first section of interpreting the message payload is the message type, which is 

the first 6 bits in the character string. Table 3 shows the most popular message types.   
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Table 3.   Popular Message Types. Adapted from Raymond (2016). 

 
 

In accordance with IMO standards, message types 1, 2, or 3 are 168 bits long and 

are updated every 2 to 10 seconds while a vessel is underway and every 3 minutes when a 

vessel is at anchor (IMO, 2016). This is the automated information that is transmitted 

without intervention by the vessel crew or other persons. Figure 5 shows how each six-bit 

segment is converted for message types 1, 2, and 3. 

 

Figure 5.  Example of Information in Message Types 1, 2, or 3. Adapted from 
Raymond (2016). 
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Message type 5 is the static information transmitted by a ship and is done so every 

6 to 10 minutes. This report is 424 bits and an example of this report is in Figure 6. 

 

Figure 6.  Example of Message Type 5. Adapted from Raymond (2016). 

The parsed AIS data are separated into positional and static reports and stored in a 

convenient format for retrieval. To support our research, the Center for Multi-Int Studies 

(CMIS) at NPS provided us all the AIS reports world-wide for the calendar year 2014. 

Additionally, data for January through April 2014 were parsed into comma-separated 

value (CSV) files by SPAWAR (U.S. Navy) and provided to us by CMIS. We focus our 

effort on data from the parsed files, comprising the first four calendar months of 2014. 

Daily positional report files are converted to SpatialPointsDataFrame format using 

R package sp (Bivand, Pebesma, & Gomez-Rubio, 2005). This format is particularly 
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useful for the analysis and graphical display of geographical data. Daily static reports are 

converted to R data frame format. Both positional and static data are sorted in 

chronological order and duplicate records are removed. For the thirty-day period 

comprising the month of April 2014, the AIS positional data set contains 7,414,423 

records limited to the range (25.0, 31.0) latitude and (-93.0, -87.0) longitude. This 

rectangular region is in the U.S. coastal region of the Gulf of Mexico including the entire 

Louisiana coastline. The same region and time period has 88,474 static AIS records. 

B. CONVERTING DATA TO USEABLE FORM 

An individual AIS positional report provides information about the location and 

movement of a vessel, identified by its transceiver (MMSI) handle, at a particular point in 

time. When these reports are linked together, they provide a historical record of where the 

vessel has been, the routes that it followed to its various ports of visit, and its motion 

characteristics (e.g., velocity). Thus, over a given period of time, the AIS data are 

properly considered to be a collection of tens of thousands of vector-valued time series 

that are observed asynchronously. A typical time series, that we call a track, is 

represented as a collection of measurements ( , , , ), 1, ,i i i ix y t i n=z   where it  is the time 

stamp of the thi observation;  and i ix y are the longitude and latitude reported at time it ; 

and iz is a vector of other variables observed at time it  

Variables in iz include not only time-stamped attributes such as speed and course 

that are obtained from the positional reports, but also items such as call sign, ship name, 

ship type (e.g., cargo ship), ship dimensions, and the destination, all of which are 

information from the static AIS report. Unlike the positional reports, AIS static reports 

are manually reported, and as such their accuracy cannot be assured. For simplicity, we 

drop reference to iz  and let the position and time measurements ( , , ), 1, ,i i ix y t i n= 

denote a track. 
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C. OUTLIER DETECTION 

The AIS data are subject to measurement errors in positions, motion 

characteristics, and time stamps. Of concern are gross errors of a magnitude that can 

distort a statistical analysis. Some of these errors are obvious, such as a longitude or 

latitude that falls outside of an allowable range (−180 to 180 degrees of longitude and 

−90 to 90 degrees for latitude); but more typically, gross errors are discovered in the 

context of a track. A position-time measurement ( , , )i i ix y t  is unusual relative to the 

preceding track measurement 1 1 1( , , )i i ix y t− − −  if the distance traveled over the time interval 

1[ , ]i it t−  is inconceivable for the vessel given its speed limitations. A displacement that 

would require an average speed of 80 knots sustained for a ten-minute period, for 

example, would not be possible for an oil tanker. The question is which of the two 

measurements is the potential outlier? We answer this question by calculating the average 

speed of the vessel between two measured locations by dividing the distance by the time 

increment. An outlier typically is unusual relative to all or nearly all other measurements 

using the average velocity criterion with an appropriate threshold. 

We mention that distance between two positions in longitude-latitude coordinates 

is calculated using Haversine distance which is the great circle arc length based on a 

spherical Earth model, as implemented in the function distHaversine provided in the R 

package geosphere (Hijmans, 2015). The formula for the Haversine distance is given by 

the following formula: 

2 22 1 2 1
1 1 2 2 0 1 2(( , ),( , )) 2 sin cos( )cos( )sin

2 2
y y x xd x y x y r y y− −  = +   

  
, 

where 0 6,378,137r =  is the approximate radius of the Earth, in meters. A more accurate 

calculation may be obtained using an ellipsoidal Earth model but the computational time 

is substantially increased while the improvement in accuracy is small for the geographical 

range that we consider in this thesis. 

To detect potential outliers in a track we calculate the speeds (distances divided 

by the absolute values of time differences) for all pairs of observations for which the 
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absolute time difference exceeds a threshold (e.g., one minute). For each observation, the 

number of exceedances of a speed threshold (e.g., 2,000 meters per minute, which is 

equivalent to about 75 miles per hour) is calculated. The observation with the largest 

nonzero count is flagged as a potential outlier and set aside. The total number of 

exceedances is then recalculated and the process is repeated until none of the remaining 

observations have any exceedances. Setting a minimum time threshold is necessary to 

rule out designating outliers in observations with extremely large speed ratios which arise 

due to small time differences combined with measurement error in both AIS position and 

time reports. 

D. TRACK SEGMENTATION 

Over the course of time a vessel makes multiple trips to and from ports of call or 

other locations that we define as stop points where the measured speed of the vessel 

remains small (essentially zero) for a period of time. Learning the stop points of a vessel 

is essential to understanding its movement patterns. For example, we can learn from a 

cargo vessel that makes frequent stops to only two different Shell oil platforms? Also, it 

is a first step in a process of segmentation of tracks into subtracks, which are movements 

between pairs of stop points. In this thesis, we focus on subtracks for which Port 

Fourchon is either a start point or an end point. We first identify tracks that have AIS 

observations that are within 5000 meters of Haversine distances of Port Fourchon 

(longitude = −90.19444, latitude = 29.10556) and use this criterion to imply being at that 

location. For these tracks we then locate periods of travel between periods of being 

stopped at Port Fourchon. The first stop point either coming into or leaving the port is 

found and the subtrack is ended at that point. For stopping, we calculate a smoothed 

vessel speed by measuring total distance traveled in a time window around a given AIS-

observed time, and divide by the time difference. Although AIS reports include vessel 

speed we have found it less reliable to use these measurements than to use smoothing. 

Our criterion for stopping is that a vessel moved less than 500 m over a period of at least 

20 minutes. There are several possibilities for identifying the endpoints of a subtrack: 

1. The origination point of the incoming subtrack is unknown since it 
truncated from the left side of the end point. 
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2. On the contrary, the destination of the outgoing track is unknown since it 
is truncated from the right side of the end point. 

3. Outgoing subtracks reach a point where the speed of the vessel becomes 
very slow (e.g., stopped). This point is the destination. 

4. Working backwards from Port Fourchon, an incoming subtack reaches a 
point of low speed which is considered the origination point. 

5. Between two consecutive time periods in which a vessel is at Port 
Fourchon, the vessel goes out and then returns, but there is no detectable 
low-speed point. In this case, two subtracks are defined. The point of 
maximum distance from Port Fourchon is taken to be the destination for 
an outgoing subtrack, and also the point of origin for an incoming subtack. 

For our analysis we consider subtracks that have Port Fourchon either as an 

origination or destination point, and for which the maximum distance from Port Fourchon 

is at least 20,000 meters. This reduces the positional AIS data to 1,775,071 records and 

the static report file to 23,177 records, comprising 730 tracks (distinct MMSI values) that 

have some association with either going to or from Port Fourchon. These tracks are 

compressed into 8,906 subtracks of which 4,469 are outgoing and 4,439 are incoming. 

Associated with these subtracks are 8,765 stop points, many of which are redundant. 

Figure 7 depicts a randomly selected track corresponding to one of the 730 

vessels in the April 2014 data. The MMSI of the vessel is shown as the title. The vertical 

axis is distance from Port Fourchon in kilometers. There are five subtracks in this plot. 

The blue subtracks represent the vessel moving towards Port Fourchon and the pink 

subtracks represent the vessel moving away from Port Fourchon. The green horizontal 

line is the 5,000-meter threshold below which a vessel is regarded as being at Port 

Fourchon. Of the five stop points, four are within 650 m of each other, and the other is 

about 2,200 m away from these four. It is likely that the four are the same stop point, and 

it is possible that the other is as well. 
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Figure 7.  Sample Monthly Voyage from a Randomly Selected MMSI 

Applying the outlier detection methodology outlined above to the Port Fourchon 

subtracks, we identify 1,008 observations as potential outliers out of a total of 178,546 

records, which is less than 0.6 percent of the total. These cases arise due to errors in 

positional measurements or in time stamps. We examine these observations by 

considering their maximum distance from other observations in the same track that are 

time-stamped to within an hour of the potential outlier in question. Of the 1,008 potential 

outliers, over half (564) have maximum distances less than 46,300 m, which correspond 

to speeds less than 25 knots. Because a speed of 25 knots is not unusual for sea-going 

vessels, it implies that the problem in these cases may be with the time stamps. Only 

eleven potential outliers have maximum distances that exceed 92,600 m (50 knots) and 

only one case exceeds 185,200 m (100 knots), which plausibly arise from positional 

errors. 
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E. SUBTRACK ALIGNMENT 

A primary objective of an analysis of AIS data is to identify subtracks that are 

similar to each other. Groups of subtracks that have similar characteristics are used to 

develop predictions of movement that apply to those groups separately. Subtracks, 

however, are offset from each other with respect to time and do not contain the same 

number of measurements. Familiar vector-based metrics (e.g., Euclidean) therefore 

cannot be used to measure the distance of one subtrack from another. 

To calculate positional distance between two subtracks with possibly different 

speeds we first convert the subtracks to sequences of equal length using interpolation. For 

outgoing subtracks we approximate the positions of the subtracks when they have logged 

a set of prescribed distances after having left Port Fourchon. This also removes the time 

element from consideration. For example, a set of distances starting at 5,000 m and 

ending at 30,000 m with increments of 5,000 m has six interpolation points. We find 

bracketing AIS observations and use simple linear interpolation to approximate the 

positions of a vessel at these distances. If bracketing AIS observations cannot be found at 

a particular distance, missing values are recorded for the interpolated position. For 

incoming subtracks the procedure is used in a similar manner. The distance between two 

subtracks is taken to be the averaged Haversine distances at the interpolation points. 

Although we use non-weighted averaging in our analysis, a weighted average may be 

used if desired; i.e., to give more influence to subtrack differences when the vessels are 

close to Port Fourchon.  

F. STOP POINT SMOOTHING 

The same stop point visited by two different subtracks will not have identical 

positions due to measurement error and inaccurate stop point estimation using the 

segmentation algorithm. To reduce redundancy we process the stop points so that those 

which are close to each other have their coordinates replaced by averaged values. Using a 

distance of 1,000 meters as a threshold for closeness, smoothing in the described manner 

reduces the number of stop points from 8,765 to 1,459. Increasing the distance threshold 

to 2,000 m reduces the number of stop points further to 1,051. This is not surprising, 
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considering that many of these stop points are oil and gas rigs, hundreds of which are 

densely situated offshore in close proximity to Port Fourchon. Other stop points may 

consist of fishing grounds or other service locations (e.g., pipelines) associated with the 

oil and gas industry. 

G. OTHER DATA SETS USED 

We use two other data sets to aid in our analysis of the AIS data from the Port 

Fourchon area. 

1. Oil and Gas Platforms in the Gulf of Mexico 

The Bureau of Ocean Energy Management (BOEM) of the U.S. Department of 

the Interior makes publicly available extensive data on 6,364 oil and gas platforms in the 

Gulf of Mexico through its website at https://www.data.boem.gov/homepg/data_center/ 

platform/platform.asp. This website provides the coordinates of the platforms and 

detailed information about ownership, size of operation, and other platform attributes. We 

use the BOEM data to identify subtrack stop points that are associated with oil and gas 

platforms. 

2. Meteorology and Oceanography Data 

The National Buoy Data Center (NBDC) of the U.S. Department of Commerce 

maintains extensive archives of weather and sea-state data collected at buoys in U.S. 

coastal waters. We use data from buoy SPLL1 at South Timbalier Block 52, which is 

owned and maintained by Louisiana State University. SPLL1 is located at −90.483 

degrees longitude and 28.867 degrees latitude, approximately 39 km south of Port 

Fourchon. Hourly data from SPLL1 are available for all of the year 2014, which include 

wind direction, wind speed, gust speed, and wave height. By associating the time stamp 

from the SPLL1 data with the AIS data, we can gauge what the weather and sea-state 

conditions were to support our regression modeling effort that we describe as follows. 

https://www.data.boem.gov/homepg/data_center/platform/platform.asp
https://www.data.boem.gov/homepg/data_center/platform/platform.asp
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H. CLUSTER ANALYSIS 

The analysis in this thesis largely focuses on the Partitioning Around Medoids 

(PAM) clustering technique, for which a set of multivariate objects are partitioned into k 

clusters centered on medoids which have properties similar to medians (Kaufman and 

Rousseeuw, 1990). The goal of PAM is to define the medoids to be distinct observations 

with subscripts 1 2, , , km m m2  that minimize the following objective function: 

1 2 1, ,1

( , , , ) min ( , )
n

k tt ki
g m m m d i m

=
=
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where ( , )d i j is a distance or dissimilarity measure for comparing observations  and i j

across attributes (variables) that may be quantitative, non-quantitative, or a mix of both 

types. The number of clusters, k, must be specified. Dissimilarities are non-negative 

numbers that are small when i and j are near each other and large when they are far apart. 

For our analysis, we deal with quantitative variables such as speed, course, and positional 

coordinates; and qualitative variables such as ship type.   

The strength of association of an object with its assigned cluster is measured 

using the silhouette value, which is defined in Kaufman and Rousseeuw (1990). The 

silhouette value is a number between ‒1 and +1 where ‒1 signifies poor association and 

+1 signifies strong association. When clusters are perfectly separated by linear surfaces 

the silhouette values tend to the upper end of the scale. Likewise, when clusters are not 

present the silhouette values tend to average near zero, with both positive and negative 

values.   Silhouette values averaged by cluster give a measure of separation of the 

individual clusters. The silhouette coefficient, which is the average of silhouette values 

over the entire set of observations, measures the overall quality of the cluster solution. 

Values of the silhouette coefficient that are greater than 0.5 indicate a “reasonable 

structure” in the taxonomy of Struyf, Hubert, and Rousseeuw (1997), shown in Table 4. 
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Table 4.   Silhouette Coefficient Indicator. Adapted from Struyf et al. (1997). 

Silhouette Coefficient Interpretation 
0.71 – 1.00 Indicates a strong structure 
0.51 – 0.70 A reasonable structure 
0.26 – 0.50 Structure is weak 

≤ 0.25 No substantial structure found 

 

In R, the package cluster implements PAM clustering and provides useful 

graphics based on the silhouette values (Maechler, Rousseeuw, Struyf, Hubert, & 

Hornik, 2016). A silhouette plot shows the observations, ordered by their assigned 

clusters on the vertical axis, with silhouette values on the horizontal axis. When strong 

clustering is present the silhouette plot for each cluster exhibits a rectangular shape, with 

large gaps between clusters, and few or no negative values. Figure 8 shows silhouette 

plots for subtracks going out of Port Fourchon during a one-week period in 2014. The 

plot on the left uses 4k =  clusters for which a silhouette coefficient of 0.54 is achieved, 

indicating reasonable structure. The plot on the right uses 8k = clusters with a silhouette 

coefficient of 0.43, which indicates weak structure. Clusters in the 4k = solution are 

better separated visually than in the 8k =  solution.   
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Figure 8.  Example of Silhouette Plot 

A shortcoming of the silhouette coefficient is that it can mask information about 

the strengths of the individual clusters. In the 4k =  solution clusters 1 and 4 fare the best 

at finding the right cluster for observations assigned to them with average silhouette 

values of 0.57 and 0.69 respectively. Clusters 2 and 3 do not fare as well with a number 

of observations exhibiting negative silhouette values.   

One strategy for using PAM as a clustering technique is to choose the value of k  

that maximizes the silhouette coefficient, which can be done by examining the silhouette 

coefficients obtained for k over a range of values. We apply this strategy in the present 

example using values of  k  that range from 2 to 10. The best solution obtained is with 

4k = clusters as shown in Figure 9. In this example PAM is applied to Port Fourchon 

outgoing subtracks using latitude and longitude as the only variables for clustering. 

Distances between subtracks are Haversine distances averaged over interpolated 

coordinates at distances ranging from 5,000 m to 30,000 m in increments of 5,000 m.   
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Figure 9.  Example of PAM Clustering with Identified Clusters and Associated 
Silhouette Coefficient 

I. REGRESSION ANALYSIS 

A second analytical technique we use for our analysis is the use of linear 

regression. The purpose of regression is to explain how a response variable Y can be 

predicted by the values of predictor variables 1 1, , pX X − , where 1p − is the number of 

predictor variables (Faraway, 2015). There are two main objectives of regression 

analysis: to predict future outcomes based on given values of the predictor variables; and, 

to examine the interactions between the response variable and the predictor variables 

(Faraway, 2015). The model for predicting the value of the response variable from the 

predictor variables is shown below. Here, Y is the response variable, 𝛽𝛽0 is the intercept 

term, 1 1, , pβ β −  are slope parameters, and 𝜀𝜀 is a random error term (Faraway, 2015). 
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𝑌𝑌 =  𝛽𝛽0 + 𝛽𝛽1𝑋𝑋1 +  ⋯+ 𝛽𝛽𝑝𝑝−1𝑋𝑋𝑝𝑝−1 + 𝜀𝜀 

An important aspect of regression analysis is to select a subset of the predictor 

variables that is useful for explaining Y without overfitting the noise in the model. This is 

often done by minimizing the sum of squared residuals or by maximizing the likelihood, 

together with a penalty for including an additional predictor variable. Two critical 

methods that we use in our analysis are the Akaike Information Criterion (AIC) and the 

Bayes Information Criterion (BIC), (Faraway, 2015). These two criterion based 

procedures are used in our analysis to indicate which predictor variables should be 

included in the model using stepwise-selection procedure. For both AIC and BIC, the 

lower AIC and BIC output number is associated with the best number of predictor 

variables to use for the regression model (Faraway, 2015).   

It is important to conduct a diagnostic analysis of any regression model that is fit 

to data. The assumptions of the regression model can be violated in a number of ways 

such as 

• Nonlinear relationships between the outcome variable and its predictors; 

• Inclusion of improper predictors and exclusion of important predictors; 

• Non-normality of the random error term; 

• Unequal variance of the error terms. 

In Chapter IV we present the results of a diagnostic analysis applied to a 

regression model that we develop to predict subtrack deviations from shortest paths using 

weather and sea-state variables as predictors. 
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IV. ANALYSIS 

The analysis consists of two parts. Both parts evaluate historical AIS data for the 

Port Fourchon area from April 1–30, 2014. The first part of the analysis covers clustering 

using the PAM technique to examine how clustering works using the following factors: 

• Positional data 

• Positional data with weighted measures 

• Positional data with slow vessels 

• Positional data with fast vessels 

• Positional data with ship type  

We also conduct a cluster analysis of frequently encountered stop points for 

vessels outgoing from Port Fourchon to further explore how these subtracks may be 

grouped into clusters. In the second part of the analysis we conduct a regression analysis 

to examine how variables related to weather and sea state influence the movement of 

vessels that frequently travel to and from a small set of stop points that we identify as 

offshore oil or gas platforms.  

A. PREPARATION OF DATA FOR CLUSTER ANALYSIS 

As explained in Chapter III, AIS data are obtained from two sources. AIS 

positional data are automatically transmitted by a vessel to report its time, position, 

speed, heading, and other motion-related attributes. We format the April 2014 positional 

data as a spatial points data frame in R with 1,775,071 observations. AIS static data are 

manually transmitted data that report attributes of the vessel, which we format as a data 

frame in R with 23,177 observations. AIS positional data contain only tracks for vessels 

that come within 5,000 meters of Port Fourchon at some point during the month. We 

segment the AIS data into subtracks that are either coming into or going out of Port 

Fourchon. We also remove outliers that we identify as discussed in Chapter III. There are 

8,906 subtracks of which 4,467 are incoming and 4,439 are outgoing. 
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For clustering we focus on the subset of 4,439 outgoing subtracks, which are 

separate time series with lengths that are unequal. We resolve the subtracks into vectors 

of equal length by interpolating their longitude and latitude coordinates to a common set 

of six odometer distances ranging from 5,000 to 30,000 meters in increments of 5,000 

meters from Port Fourchon. We then match this information to the static data set to obtain 

the reported ship type and the ship dimensions (distance from bow to stern and from port 

to starboard, in meters). We take the product of the bow-to-stern and the port-to-starboard 

lengths as a proxy for the size of the vessel: 

𝑆𝑆ℎ𝑖𝑖𝑖𝑖 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = (𝑏𝑏𝑏𝑏𝑏𝑏 + 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠) × (𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 + 𝑠𝑠𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡) 

In the outgoing subtracks there are 617 missing values for ship size due to the 

required dimensions either not being reported or having an invalid entry in the static data 

for that vessel. We again emphasize that the AIS static reports are not quality controlled, 

and we have encountered instances in which the ship dimensions are clearly intended to 

be measured in units of feet although the instructions call for the use of meters. Our final 

data set consists of the following variables: MMSI, ship type, ship area, subtrack, 

latitude, longitude, speed, and heading interpolated at odometer distances of 5,000 to 

30,000 meters in increments of 5,000 meters. 

A breakdown of ship type is shown in Table 5. The most frequent category is 

cargo ship with 1,459 outgoing subtracks. The category “Other” captures all ship types 

not otherwise indicated, include those cases in which ship type is missing or invalid in the 

static reports.   

Table 5.   Ship Types for April 2014 AIS Data 

Ship Type 
Number of 
Subtracks 

Cargo ship 1459 
Other 1057 
Passenger ship   780 
Vessel   355 
WIG   343 
Tug   260 
HSC   112 
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B. CLUSTER ANALYSIS USING POSITIONAL DATA 

We initially apply cluster analysis using PAM with positional data only. When we 

interpolate subtrack positional data at distances from 5,000 to 30,000 meters in 

increments of 5,000 meters, missing values occur when a subtrack does not achieve an 

odometer distance of at least 30,000 m. Eliminating these cases leaves 2,712 subtracks 

for use in a cluster analysis. We examine how well the PAM solutions perform for the 

number of clusters ranging from 2 to 10. For this analysis we calculate a dissimilarity 

measure D between a pair of subtracks by averaging the Haversine distances of their 

coordinates at the interpolation points: 
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Here, we use 6r = and the index i indicates the interpolation point. Taken over all 

pairs of subtracks the resulting inter-subtrack dissimilarity matrix D has 2,712 rows and 

2,712 columns. Figure 10 shows the results of varying the number of clusters, and 

indicates that the solution with 4k =  clusters maximizes the silhouette coefficient, which 

is classified as “reasonable structure” according to Struyf (1997). None of the other 

choices of k  meet this criterion. The silhouette plot for the 4k = indicates that the second 

cluster tends to be somewhat weaker than the others. 
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Figure 10.  Clustering Results Using Positional Data Only 

Figure 11 is a silhouette plot displaying how each cluster performed using four clusters as 

indicated in Figure 10.  To the right of each cluster there are two numbers.  The first is 

the number of subtracks in the given cluster and the second is the silhouette coefficient, 

explaining how well the model did at grouping subtracks into the given cluster.  The 

silhouette coefficients in Figure 11 range from 0.48 to 0.57.  The blue cluster has a 

silhouette coefficient of 0.48, indicating a weak structure, which is most likely due to the 

fact that some of this cluster produces negative results.  This means that some of the 

clusters were improperly placed into the blue cluster.  The other three clusters meet the 

threshold of being considered a reasonable structure. 
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Figure 11.  Clustering Results Using Positional Data Only 

Figure 12 shows a plot of the outgoing subtracks with different colors indicating 

cluster memberships for the 4k =  solution. The red-coded cluster contains tracks that 

move to the southwest of Port Fourchon, the blue-coded cluster moves south, the small 

green-coded cluster moves north, and the yellow-coded cluster moves east. Figure 13 

shows a plot of the cluster medoids which are “central” subtracks for each of the clusters. 

Although separation is present the boundaries of the clusters are not sharply defined. 

Because the intended use of clustering is to segregate the subtracks into a small number 

of relatively homogeneous navigation routes to support further analyses such as 

prediction and anomaly detection, it is doubtful that clustering of subtracks with Port 

Fourchon as a point of origination or destination will benefit for the use of this technique. 
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Created using RgoogleMaps by RStudio. 

Figure 12.  Plot of 2,712 Outgoing Subtracks 

 
Created using RgoogleMaps by RStudio. 

Figure 13.  Medoids of 4 Clusters for Port Fourchon Outgoing Subtracks 
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Two vessels that leave Port Fourchon are inherently close when their odometer 

distances are small, such as 10,000 m. In fact their positional distance cannot exceed two 

times the larger of the two odometer distances. Thus, a straight average of their 

interpolation-point distances tends to give less influence to subtrack deviations at the 

earlier stages. For this reason we examine clustering using a weighted distance measure 

for our positional data that gives more weight to the subtracks closer in and less weight 

further out, where 
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We first consider weights that are proportional to the reciprocals of the 

interpolation distances, but as Figure 14 indicates this has little effect on the quality of the 

clustering solution. Similarly, choosing the weights to be proportional to the reciprocals 

of the square roots of the interpolation distances does not change the quality of the 

solution to a noticeable extent, as shown in Figure 15. 

 

 
Weights are proportional to the reciprocals of the interpolation distances. 

Figure 14.  Clustering Using Positional Data Using Weighted Distance Averages  
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Weights are proportional to the reciprocals of the square roots of the interpolation 
distances. 

Figure 15.  Clustering Using Positional Data with a Weighted Scheme.  

We next consider the possibility that a strong clustering solution may emerge 

when non-positional information is considered as well.  

1. Clustering Controlling for Speed of Vessels 

Another aspect of identifying the way ships move in the Port Fourchon area is to 

examine how speed impacts the ship movement. Figure 16 shows a histogram of the 

median speeds of outgoing subtracks, grouped by the 669 vessels that produce them. It is 

apparent that the distribution is bimodal, with “slower” vessels traveling at speeds 

centered near 8 knots, and “faster” vessels traveling at speeds centered near 18 knots. If 

vessel speed is used as a clustering variable strong clustering is detected, but the insight 

gained from this is not of much value unless speed is informative of vessel movement in 

other respects. We therefore consider separate clustering solutions for vessels moving 

slower than 12 knots and those moving faster than 12 knots. 
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Figure 16.  Median Vessel Speeds for Outgoing Subtracks from the April 2014 
AIS Data 

Figure 17 shows the results of applying PAM to the subtrack data from slower 

vessels over a range of cluster values. Again, the clustering variables are averaged 

positional distances taken at six interpolation points. The solution produced is not very 

different from what was obtained with all subtracks used together with regard to the 

silhouette coefficient. The same is true for the faster vessels, shown in Figure 18.   
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Figure 17.  Clustering Using Positional Data and Slow Vessels 

 

Figure 18.  Clustering Using Positional Data and Fast Vessels 
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Clustering using the faster vessels performs nearly the same as using the slower 

vessels, which in neither case is an improvement over not using speed in the clustering 

analysis. 

2. Clustering with Positional Data and Ship Type 

We next consider clustering with the positional data and ship type, which requires 

the construction of a dissimilarity measure that combines quantitative and qualitative 

data. Although there are several possible techniques for doing this, we examine the use of 

the Gower distance (Gower, 1971) that is implemented by the daisy command in the R 

package cluster. An unfortunate aspect of this approach is that the longitude-latitude 

positions are treated as generic quantitative variables without geospatial properties in 

order to combine them with the categorical ship type variable. Figure 19 suggests that the 

inclusion of ship type actually degrades the quality of the clustering solution. The 

maximum silhouette coefficient of 0.40, obtained with three clusters, does not meet the 

threshold of reasonable structure. 

 

Figure 19.  Clustering Using Positional Data and Ship Type Using Daisy 
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3. Summary of Results on Clustering 

Clustering the outgoing subtracks using only positional information does separate 

the subtracks into groups but it does not do so in a manner that indicates strong 

separation. We regard this finding as unsurprising given that Port Fourchon is a service 

port for hundreds of offshore oil and gas platforms that are situated in the Gulf of Mexico 

not far from the port. These platforms are scattered in the Gulf of Mexico near Port 

Fourchon without any apparent pattern that would suggest clustering. Still, it is an 

informative finding because it shows that the approach followed by most research to date 

needs to be modified when dealing with ports for which vessel traffic does not separate 

into a relatively small number of clusters. Port Fourchon may not be typical but it is not 

unique as other locations in the world (e.g., the Persian Gulf and the North Sea) also have 

concentrations of offshore oil and gas platforms.  

C. REGRESSION ANALYSIS OF NAVIGATIONAL DEVIATIONS 

For regression analysis, our goal is to examine the effects of meteorological and 

oceanographic data on vessel movements. For example, are strong winds or high waves 

related to the ability of a vessel to maintain an efficient course from Port Fourchon to its 

final destination?  For our analysis, we define an efficient course to be the shortest path, 

also known as the great circle route, which entails the least cost in fuel and time. We use 

the average distance of a track from the shortest path between the points of origination 

and destination as an outcome variable. Because it is possible that vessels have attributes 

that vary, we focus on a small subset of vessels that have large numbers of subtracks to 

and from Port Fourchon and a common point of origin or destination during the month of 

April 2014, which allows us to control for vessel-specific behavior. Other variables that 

we consider as predictor variables are wind speed, wind direction, and wave height. 

We begin by identifying a subset of stop points that are frequently associated with 

both the incoming and outgoing subtracks relative to Port Fourchon, collapsing those that 

are within 1000 m to common points. Of the 1,459 reduced stop points, 30 stop points 

occur with a frequency of more than 40, and of these 16 stop points are located at least 

30,000 m from Port Fourchon. Using the locations of oil and gas platforms in the Gulf of 
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Mexico obtained from the Bureau of Ocean Energy Management, we find that 14 of the 

16 stop points are within 1,000 m of a platform, which we use as a criterion for 

association. These stop points are characterized by being visited frequently by a single 

vessel, identified by its MMSI in the AIS data, during the month of April 2014. We take 

all subtracks from the most frequently occurring vessels corresponding to each of the 14 

stop points as the preliminary data for our analysis. This data set has 517 subtracks, with 

each vessel contributing between 20 and 67 subtracks. 

Next, we merge the subtrack data with hourly weather and sea-state data obtained 

from the SPLL1 buoy located in the Gulf of Mexico approximately 39,000 m south of 

Port Fourchon. Wave height is reported in meters, wind speed in units of meters per 

second, and wind direction in degrees (0 to 360) relative to due north. We resolve the 

action of wind speed on a vessel into two orthogonal components, downwind and 

crosswind, using the following: 

 heading (relative to point of origin)
 wind direction
 wind speed

( , )  wind velocity (downwind, crosswind)
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We note that Dv  and Cv  can take either positive or negative values. Negative 

values of Dv imply headwinds; positive values tailwinds. Negative values of Cv  imply 

wind blowing left to right; positive values right to left. 

The last step of data preparation is to reduce the subtrack data to one observation 

per subtrack by averaging the weather and sea-state variables, and averaging the 

distances of AIS measured positions from the shortest (great circle) path between Port 

Fourchon and the corresponding stop point. These distances are calculated using the 

function dist2gc provided in the R package geosphere. The data set used in regression 

analysis has the following variables: 

• DISTANCE—average distance of subtrack AIS positions from their 
closest points on the shortest path between Port Fourchon and the stop 
point of the subtrack, in meters 
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• MMSI—converted to a categorical variable 

• INCOM—a binary variable with TRUE for incoming and FALSE for 
outgoing 

• DOWN—downwind component of wind speed in m/sec, averaged over 
the subtracks 

• CROSS—crosswind component of wind speed, m/sec, averaged over the 
subtracks 

• WVHT—wave height in meters 

We begin our analysis with an ordinary least squares (OLS) linear regression 

model that takes DISTANCE as the response variable and all of other variables as 

predictors. Figure 20 gives a summary of the fitted model.  

 

Figure 20.  Summary Report of Regression Analysis with Distance as 
Predictor Variable 
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The R-squared value for the regression is .78 suggesting that 78 percent of the 

variance in distance is explained by the predictor variables. The first thirteen predictors 

are indicators for levels of the categorical variable MMSI, several of which exhibit 

statistically significant effects. One value of the categorical variable is not coded (the first 

in alphanumerical sorting order) and is absorbed into the intercept coefficient. These 

results suggest that not all vessels follow a great circle route closely on average although 

some of them do (e.g., MMSI = 338144000). Of particular interest are the coefficients on 

DOWN and CROSS, which are statistically significant at the .05 level, suggesting that 

wind does have an influence on the magnitude of deviations from the shortest path. The 

negative slope on DOWN suggests that DISTANCE tends to increase as the magnitude of 

head winds increases. 

Figure 21 shows diagnostic plots for the regression. Although nonlinearity is not 

indicated (upper left subplot) the residuals have a markedly heavy tailed distribution 

(upper right subplot) and unequal error variances also are indicated (lower left subplot). 
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Figure 21.  Plot of Regression Analysis Residuals 

1. Regression Using Box-Cox Transformations 

We next consider the use of a Box-Cox family transformation of DISTANCE to 

address the non-normality and heteroscedasticity that is indicated in Figure 21 

(Faraway, 2015). This is a family of power transformations that also includes the natural 

logarithm in the case where the exponent is equal to zero. Figure 22 shows a plot of the 

profile likelihood function that is used to identify the best choice of the exponent (i.e., the 

maximizing value). 
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Figure 22.  Result of Applying Box-Cox Transformations to the 
DISTANCE Regression 

Figure 22 shows the result of applying Box-Cox transformations to the 

DISTANCE regression. The value of the exponent (λ ) that maximizes the likelihood is 

.22, which is a weak power transformation. Although the value 0λ = does not fall inside 

the 95 percent confidence interval where the dotted lines intersect the horizontal axis, it 

may nonetheless be a preferred choice due to the common usage of the logarithm 

transformation and the ease of interpretation it affords (Faraway, 2015).   

We first examine the regression where the optimal value .22λ =  is used and take 

DISTANCE raised to that power as the response variable. Figure 23 shows the results of 

this regression. The R-squared value is .749, which is not comparable to the original 

model due to the change in the response variable used. Of note is that DOWN emerges as 

a stronger predictor, while CROSS becomes weaker. Figure 24 shows that the model 

diagnostics have improved but non-normality (heavy tails) of the residuals remains. 
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Figure 23.  Regression Analysis Coefficients after Box-Cox Transformation 
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Figure 24.  Diagnostic Plot after Box-Cox Transformation 

Finally, we take the natural logarithm of DISTANCE as the response variable. 

The fitted model is described in Figure 25. Again, DOWN is a strong predictor and its 

negative sign suggests that deviation from the shortest path increases as headwinds 

increase. 
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Figure 25.  Summary of Regression with log(DISTANCE) as the 
Response Variable 

Our summary of the regression does not change too much compared to the 

summary using a Box-Cox transformation. Both MMSI and DOWN remain significant 

predictor variables.  Figure 26 is the diagnostic plot of the new regression model using 

(log)DISTANCE. 
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Figure 26.  Diagnostic Plots for DISTANCE with log(DISTANCE) as the 
Response Variable 

Taking the logarithm transformation does not change the diagnostic plots to a 

significant extent relative to using the optimal choice of a power transformation. 

Moreover, the logarithm transformation allows a more intuitive interpretation of the 

regression coefficients. The coefficient of .0109− on DOWN implies that there is, on 

average an increase of .0109 in log(DISTANCE) for every 1.0 m/sec increase in the 

headwind. It equates approximately to a multiplier of exp(.0109) 1.01=  applied to 

DISTANCE or about a one-percent increase in DISTANCE for every increase of 1.0 

m/sec in the headwind. 
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2. Exploring Regression Further 

Next we explore whether the residuals have equal variances using the Levene Test 

(Faraway, 2015). We apply the test to the standardized residuals from the regression with 

log(DISTANCE) as the response variable, and group them by the fourteen MMSI values. 

The Levene Test does not require that the data be normally distributed. Applying this test 

produces a p-value of .00026, suggesting that the variances are not equal across vessels. 

We take the reciprocals of the estimated variances as weights and use weighted least 

squares (WLS) in a modified regression, the results of which are shown in Figure 27. 

 

Figure 27.  Results of Weighted Least Squares Regression with log(DISTANCE) 
as the Response Variable 
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It is of interest to note that DOWN emerges as a stronger predictor of 

log(DISTANCE) when WLS regression is used. Finally, we consider whether DOWN 

would remain a significant predictor in a stepwise variable-selection exercise. We apply 

the stepAIC function from the MASS package in R (Venables & Ripley, 2000) to the 

WLS regression described above. Only DOWN and MMSI emerge as significant 

predictors. The final model is described in Figure 28. 

 

Figure 28.  Results of Regression Using MMSI and DOWN 

We conclude that DOWN has a significant impact on deviations of a vessel from 

the shortest route between Port Fourchon and its stop point, with head wind producing 

larger deviations. Figure 29 shows a plot of the residuals versus DOWN, which suggests 

that the relationship is reasonably linear.   
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Figure 29.  Residual Plot of the Predictor Variable DOWN 
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V. CONCLUSION 

A. CONCLUSIONS 

Large volumes of Automated Information System (AIS) data are collected from 

maritime vessels throughout the world on a continual basis, and its use is projected to 

grow substantially. This data provides an attractive target of opportunity to characterize 

the movement of these vessels to achieve objectives of importance to our national 

defense and homeland security. The primary goal of this research is to predict the 

movement of vessels based on information up to a given point in time, to support in 

particular the development of anomaly detection algorithms. This is a fertile area of both 

defense-sponsored and academic research of which cluster analysis and motion modeling 

are important aspects. Our thesis examines the viability of these techniques in an area of 

interest that has a high volume of maritime traffic related to servicing offshore oil and gas 

platforms in the vicinity of Port Fourchon, Louisiana, located on the Gulf of Mexico, 

during the month of April 2014. We state our conclusions in the following two sections. 

In the last section we discuss directions for future research related to our work. 

B. EFFECTIVENESS OF CLUSTER ANALYSIS 

Unlike most large commercial ports, maritime traffic in and out of Port Fourchon 

does not segregate into a relatively small number of well-defined routes which often are 

aligned with shipping lanes set forth by port authorities. Instead, most of the traffic is to 

and from nearby offshore oil and gas platforms that number in the hundreds. This 

explains our finding that applying cluster analysis to tracks formed by vessels that call on 

Port Fourchon does not yield a useful segregation of these tracks. As a result, leveraging 

on clusters to predict the movement of vessels, as is often done in approaches suggested 

in the research literature, is not likely to be productive. 
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C. EFFECTS OF WEATHER AND SEA-STATE ON VESSEL MOTION 

An advantage of studying maritime traffic in the vicinity of Port Fourchon is that 

it affords the opportunity to isolate for study a small number of vessels that make 

frequent trips on fixed routes between Port Fourchon and a stop point that we identify as 

an offshore oil or gas platform. During the month of April 2014 we identify fourteen such 

vessels that in total make 517 trips, each to and from a common stop point. Upon 

merging the AIS data of these trips with hourly weather and sea-state data obtained from 

a buoy located in the Gulf of Mexico near Port Fourchon, we examine the effects of the 

latter information on vessel movements using regression analysis. The outcome variable 

that we consider is the average distance of a ship from the shortest path (great circle 

route) between Port Fourchon and the other stop point.   

We find that individual vessels vary in how closely they adhere to their shortest 

paths, and that wind speed resolved into its downwind component is a significant 

predictor of the magnitude of deviation from the shortest path. In particular, an increase 

of headwind of one meter per second is associated with approximately a one-percent 

increase in the shortest-path deviation. (One meter per second is equivalent to 

approximately 2.24 miles per hour.) Although apparently small, this effect can be 

substantial when headwinds are strong. This finding suggests that motion-prediction 

algorithms that do not account for the effect of wind may exhibit larger errors than 

expected. 

D. AREAS FOR FUTURE RESEARCH 

Although the pattern of maritime vessel traffic seen in the vicinity of Port 

Fourchon is not the usual scenario considered in maritime tracking research, it is 

nonetheless important. Port Fourchon is strategically connected both to U.S. domestic oil 

production and to the import of foreign oil. Although the Gulf of Mexico has the highest 

concentration of offshore oil and gas platforms in the world, other significant 

concentrations can be found in the Persian Gulf, the North Sea, and Southeast Asia. It 

would be worthwhile to conduct studies of maritime traffic in these regions particularly 

where vessels that service offshore platforms is comingled with long-haul shipping. 
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It also would be of interest to study the prediction of destination points for traffic 

that leaves a port such as Port Fourchon, which has hundreds of such locations. This may 

be done as an alternative to clustering to associate traffic with common destinations. 

Finally, a longer-term study of vessel movements, taking into account the effects of 

weather and sea state, would be beneficial to the development or refinement of 

algorithms for motion prediction. 

This thesis is the first to incorporate operation research techniques for the use of 

predicting future ship movement in the Port Fourchon area. Fortunately, the diversity and 

size of shipping activity that exist around Port Fourchon allows for ample opportunity to 

study various aspects relating to discovering shipping patterns. Here are a few ideas for 

follow-on research:  

• Study the shipping traffic in Port Fourchon during hurricane season and 
see how this affects movement. 

• Compare the shipping patterns during hurricane season and the off-season. 

• Choose a few oil or gas platforms and intricately study the type of 
shipping traffic traveling to and from these platforms. 

• Consider dividing Port Fourchon into a quadrants and study how the 
shipping traffic varies in these areas. Is there a higher volume of fishing 
activity in one quadrant vice another? Are there specific cargo vessels that 
frequent one of these quadrants and not the other?, etc. 

• Study the traffic patterns of only fishing vessels. 

• Study the traffic patterns of only tug boats. 

• Choose a few MMSIs that are passenger craft. Study their movements and 
possible routine routes over the course of a few months to a year. 

• Study the shipping traffic that goes to and from the LOOP. 
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