

NAVAL
POSTGRADUATE

SCHOOL

MONTEREY, CALIFORNIA

THESIS

Approved for public release. Distribution is unlimited.

DEVELOPING SIMULATED CYBER ATTACK
SCENARIOS AGAINST VIRTUALIZED ADVERSARY

NETWORKS

by

Luis E. Aybar

March 2017

Thesis Advisor: Alan Shaffer
Co-Advisor: Gurminder Singh

THIS PAGE INTENTIONALLY LEFT BLANK

i

REPORT DOCUMENTATION PAGE Form Approved OMB
No. 0704–0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing
instruction, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection
of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden, to Washington headquarters Services, Directorate for Information Operations and Reports, 1215
Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork
Reduction Project (0704-0188) Washington, DC 20503.

1. AGENCY USE ONLY
(Leave blank)

2. REPORT DATE
March 2017

3. REPORT TYPE AND DATES COVERED
Master’s thesis

4. TITLE AND SUBTITLE
DEVELOPING SIMULATED CYBER ATTACK SCENARIOS AGAINST
VIRTUALIZED ADVERSARY NETWORKS

5. FUNDING NUMBERS

6. AUTHOR(S) Luis E. Aybar

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING
ORGANIZATION REPORT
NUMBER

9. SPONSORING /MONITORING AGENCY NAME(S) AND
ADDRESS(ES)

Marine Forces Cyber Command
Fort Meade, MD 20755

10. SPONSORING /
MONITORING AGENCY
REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the
official policy or position of the Department of Defense or the U.S. Government. IRB Protocol number ____N/A____.

12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release. Distribution is unlimited.

12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words).

Cyberspace is now recognized as a critical center of gravity for modern military forces. The ability to
maintain operational networks, while degrading the enemy’s network capability, is a key consideration for
military commanders. Conducting effective cyber-attacks against sophisticated adversaries requires the
ability to develop, test, and refine cyber-attack scenarios before they are used operationally, a requirement
that is not as well defined in the cyber domain as it is in the physical domain. This research introduces
several concepts to address this need, and creates a prototype for cyber-attack scenario development and
testing in a virtual test environment. Commercial and custom software tools that provide the ability to
conduct network vulnerability testing are reviewed for their suitability as candidates for the framework of
this project. Leveraging the extensible architecture of the Malicious Activity Simulation Tool (MAST)
custom framework allowed for the implementation of new interaction parameters, and provided temporal
specificity and target discrimination of cyber-attack scenario tests. The prototype successfully integrated a
virtualized test environment used to simulate an adversary network and the enhanced MAST capability to
demonstrate the viability of a cyber-attack scenario development platform to address the needs of modern
offensive cyber operations. Based on these results, we recommend continued development of MAST
with the intent to ultimately deploy to Department of Defense cyber operations teams.

14. SUBJECT TERMS
offensive, malware, cyber, virtualization, attack, simulated, modeling, MAST, MAVNATT

15. NUMBER OF
PAGES

103

16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION
OF ABSTRACT

Unclassified

20. LIMITATION
OF ABSTRACT

UU

NSN 7540–01-280-5500 Standard Form 298 (Rev. 2–89)
Prescribed by ANSI Std. 239–18

 ii

THIS PAGE INTENTIONALLY LEFT BLANK

iii

Approved for public release. Distribution is unlimited.

DEVELOPING SIMULATED CYBER ATTACK SCENARIOS AGAINST
VIRTUALIZED ADVERSARY NETWORKS

Luis E. Aybar
Lieutenant, United States Navy

B.S., University of Houston, 1993

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN CYBER SYSTEMS AND OPERATIONS

from the

NAVAL POSTGRADUATE SCHOOL
March 2017

Approved by: Alan Shaffer
Thesis Advisor

Gurminder Singh
Co-Advisor

Cynthia Irvine
Chair, Cyber Academic Group

 iv

THIS PAGE INTENTIONALLY LEFT BLANK

v

ABSTRACT

Cyberspace is now recognized as a critical center of gravity for modern military

forces. The ability to maintain operational networks, while degrading the enemy’s

network capability, is a key consideration for military commanders. Conducting effective

cyber-attacks against sophisticated adversaries requires the ability to develop, test, and

refine cyber-attack scenarios before they are used operationally, a requirement that is not

as well defined in the cyber domain as it is in the physical domain. This research

introduces several concepts to address this need, and creates a prototype for cyber-attack

scenario development and testing in a virtual test environment. Commercial and custom

software tools that provide the ability to conduct network vulnerability testing are

reviewed for their suitability as candidates for the framework of this project. Leveraging

the extensible architecture of the Malicious Activity Simulation Tool (MAST) custom

framework allowed for the implementation of new interaction parameters, and provided

temporal specificity and target discrimination of cyber-attack scenario tests. The

prototype successfully integrated a virtualized test environment used to simulate an

adversary network and the enhanced MAST capability to demonstrate the viability of a

cyber-attack scenario development platform to address the needs of modern offensive

cyber operations. Based on these results, we recommend continued development

of MAST with the intent to ultimately deploy to Department of Defense cyber operations

teams.

 vi

THIS PAGE INTENTIONALLY LEFT BLANK

vii

TABLE OF CONTENTS

I. INTRODUCTION..1
A. PROBLEM STATEMENT ...1

1. Primary Question ...2
2. Secondary Questions ..2

B. SCOPE ..2
C. OBJECTIVES ..3
D. APPROACH ...3
E. BENEFITS OF STUDY ...3
F. ORGANIZATION ...4

II. BACKGROUND ..5
A. OVERVIEW ...5
B. DEFINITIONS ...6

1. Exploit ...6
2. Payload ..6
3. Penetration Testing ..6
4. Red Teams ..6
5. Network Sandbox ...6
6. Black Hat ..7
7. White Hat ..7

C. MAVNATT ...7
1. Mapping Module ..8
2. Awareness Module ...9
3. Virtualization Module ...9

D. MAST ..9
1. Scenario Generation Server ..10
2. Scenario Execution Server ..10
3. Scenarios ...11
4. Clients..11
5. Simulation Malware Modules...11
6. Graphical User Interface ...12
7. Evolutionary Progress ...13

E. SURVEY OF EXISTING TOOLS AND METHODS14
1. Metasploit Framework ..15
2. SafeBreach ..18
3. Core Impact ..20
4. Simulation Modeling ..21

viii

5. STEPfwd ...23
6. Summary of Existing Tools and Methods26

F. SUMMARY ..27

III. DESIGN AND METHODOLOGY ..29
A. OVERVIEW ...29
B. VIRTUALIZED ATTACK SCENARIO NEEDS29

1. Network Knowledge...29
2. Virtualization Platform ...31
3. Scale Factor ..33
4. Accounting for the Unknown ..34

C. INTERACTION PARAMETERS ..36
1. Propagation ..36
2. Specificity ..36
3. Timing ...37
4. Stealth..37
5. Efficiency ..37
6. Skill ..38
7. Summary ...38

D. SIMULATED ATTACK REHEARSAL ESSENTIALS38
1. Reset and Reconfigure ...39
2. Menu of SimWare ..39
3. Timelines ...39
4. Vulnerability Intelligence ..40
5. Automated Testing ...41

E. ATTACK TYPES ..42
1. Reconnaissance ...42
2. Access ..43
3. Denial of Service ...44
4. Data Manipulation...44

F. SUMMARY ..45

IV. IMPLEMENTATION ...47
A. OVERVIEW ...47
B. TEST ENVIRONMENT ...47

1. Virtual Network Infrastructure..47
2. Software Tools ..48
3. Virtual Hosts...48

C. SCENARIO FILE ..50
1. Scenario ...50

ix

2. Module List ...51
3. Group List...52
4. Infected List ..52
5. Command List ..52
6. Events ..53

D. MODULES ...54
1. Detect Idle Host ..55
2. Logic Bomb ...56
3. Target Specific Host ...58

E. SUMMARY ..59

V. CONCLUSIONS AND FUTURE RESEARCH ..61
A. SUMMARY ..61
B. CONCLUSIONS ..61

1. Research Questions ..61
C. RECOMMENDATIONS FOR FUTURE RESEARCH63

1. Advanced Parameters ..63
2. Integration with MAVNATT ..64
3. MAST Framework ...64

APPENDIX A. ATTACK WHEN IDLE SOURCE CODE ...67

APPENDIX B. LOGIC BOMB SOURCE CODE ..71

APPENDIX C. TARGET SPECIFIC SOURCE CODE ..73

LIST OF REFERENCES ..77

INITIAL DISTRIBUTION LIST ...83

x

THIS PAGE INTENTIONALLY LEFT BLANK

xi

LIST OF FIGURES

Figure 1. MAVNATT Conceptual Model. Source: [7]. ..8

Figure 2. MAST Three-Tier Client Server Architecture. Source: [11].10

Figure 3. MAST Graphical User Interface. Source: [10]. ...12

Figure 4. Example of Metasploit Armitage GUI Interface.17

Figure 5. SafeBreach GUI Identifies Route of Attack. Source: [20].19

Figure 6. Core Impact Pro User Interface ...21

Figure 7. Sample Network Model with Arena Interface. Source: [24].23

Figure 8. Design implementation for STEPfwd and XNET. Source: [26].25

Figure 9. Illustration of Different Hypervisor Implementations. Source [34].32

Figure 10. Visually Scripting the Timing of Various Cyber Events. Source [42].40

Figure 11. An Overview of a Cyber-Attack Scenario. Source: [24].40

Figure 12. Virtualized Test Network ...49

Figure 13. The “Attack When Idle” Scenario File ..51

Figure 14. The Idle Test Classes Used for “AttackWhenIdle”56

Figure 15. Logic Bomb Project Hierarchy ..58

Figure 16. The Classes and Methods Used for the “TargetSpecificHost”59

 xii

THIS PAGE INTENTIONALLY LEFT BLANK

 xiii

LIST OF TABLES

Table 1. Commercial Tool Summary ...27

 xiv

THIS PAGE INTENTIONALLY LEFT BLANK

xv

LIST OF ACRONYMS AND ABBREVIATIONS

API Advanced Programming Interface

CD compact disk

CEH Certified Ethical Hacker

CERT Computer Emergency Response Team

CG Change Group

CLI Command Line Interface

COMPOSE Common PC Operating System Environment

CYBL Cyber Battle Lab

DARPA Defense Advanced Research Projects Agency

DOD Department of Defense

DoS Denial of Service

DDoS Distributed Denial of Service

GUI Graphical User Interface

HBSS Host Based Security System

IBM International Business Machines

IDE Integrated Development Environment

IDS Intrusion Detection System

IP Internet Protocol

ISO International Organization for Standards

ISR Intelligence, Surveillance, Reconnaissance

JDK Java Development Kit

LAN Local Area Network

MAC Media Access Control

MAST Malicious Activity Simulation Tool

MAVNATT Mapping, Awareness, and Virtualization Network Administrator
Training Tool

MCP MAST Communication Protocol

MSF Metasploit Framework

NCOR Navy Cyber Operating Range

NPS Naval Postgraduate School

 xvi

OCO Offensive Cyber Operations

PTES Penetration Testing Execution Standard

RC Return Code

ROC Rehearsal of Concept

SCADA Supervisory Control and Data Acquisition

SCC Send Client Command

SEI Software Engineering Institute

SES Scenario Execution Server

SGC Send Group Command

SGS Scenario Generation Server

SQL Standard Query Language

USD United States dollar

VM virtual machine

VMDK virtual machine disk

xvii

ACKNOWLEDGMENTS

First and foremost, I would like to thank my wife, Adrienne, for her support in

this endeavor. No other person has had to make more of a sacrifice for to me achieve this

goal. Over the past two years, you persevered through all the long days, weekends, and

holidays I spent working nearly non-stop, yet you remained steadfast with your support

and encouragement. You kept the house running smoothly and took care of our new son

so I could concentrate on my studies. The sacrifices you make as a Navy spouse largely

go unrecognized, but I want to publicly thank you for your support and love during this

difficult but rewarding journey.

I would also like to thank the other faculty with whom I’ve had the pleasure of

sharing a class. The depth of your knowledge and passion for your subjects has been

especially refreshing for me. I’m glad I had the opportunity to get to know you all and

hope that I can reach back for guidance in the future.

I would like to recognize my cohort and NPS friends who helped keep me sane as

the deadlines and assignments would pile ever higher. Your can-do attitude and kind

words helped me keep everything in perspective. It’s been a pleasure serving with you all

during this time.

I would like to express my greatest appreciation and gratitude to my advisors, Dr.

Alan Shaffer and Dr. Gurminder Singh. I appreciate your quick response to any request,

steady hand on the rudder, and general belief in the project. It has been a pleasure to

work with you both.

 Lastly, I would like to thank Big Navy for providing me the opportunity to

pursue a master’s degree in residence. Having the ability to direct all my time to the

pursuit of this academic goal, and the accompanying academic enrichment, has been

especially rewarding. This degree will forever be part of my portfolio, and I look

forward to leveraging the knowledge gained during the last two years here for the rest of

my career.

xviii

THIS PAGE INTENTIONALLY LEFT BLANK

 1

I. INTRODUCTION

In today’s military, a computer network is an essential element of combat power

with uses extending from command and control, communications, logistics, computer

network attack, to computer network exploitation. Given the reliance of armed forces on

digital networks to carry out an array of warfare functions, these strategic centers of

gravity have become high priority targets in modern military conflicts. From the

uppermost echelons of command to the most remote deployed units, the exploitation of

enemy networks is key to military engagements now and in the future.

In the traditional warfare domains of air, land, and sea, the ability to ascertain the

capabilities and orders-of-battle (OOB) of adversary forces is well understood. This

knowledge of enemy forces allows for the rigorous testing and refinement of warfare

capabilities, which facilitates effective operational planning. Different parameters and

scenarios can be set against an adversary’s capabilities, allowing for a variety of courses

of action to be wargamed effectively. This ability to test warfare capabilities, from the

operational to the tactical level, is a key element that ensures the military readiness of

today’s combat forces.

In the cyber domain, the ability to know an adversary’s capabilities,

vulnerabilities, and OOB is less well defined. Furthermore, the need to be able to develop

and test offensive cyber capabilities and scenarios against an accurate instantiation of

enemy networks to ensure operational success is not as mature or robust as in the

physical domain(s). To address that need, this research examined various tools,

techniques, and existing software frameworks that could be used or modified to develop

simulated attack scenarios for effective testing against virtualized adversary networks.

A. PROBLEM STATEMENT

Offensive cyber operations (OCO) are often executed without the ability to first

simulate and test their effectiveness against a realistic model of an adversary’s network.

Having such an environment could help cyber operators to better understand the effects

 2

of specific cyber-attacks, their impact on an adversary’s systems and operations, and the

collateral and secondary effects that could result.

1. Primary Question

How can offensive cyber tools and exploits be developed and tested effectively in

a controlled environment against virtualized models of adversary networks?

2. Secondary Questions

What control mechanisms or methods would allow malware to focus on a user-

defined target set or grouping (e.g., a single host or single subnet)?

What methods can be used to perform the temporal sequencing of malware?

What methods would allow for the simulation of malware within a virtualized

network?

B. SCOPE

The primary scope of this thesis was to design a methodology and lay the

foundation for a process that can be used to design, develop, and test simulated cyber-

attack scenarios in a virtualized environment. The resulting methodology facilitates

follow-on research and the creation of enhanced software capabilities for use in offensive

cyber scenarios. The systems developed in this thesis are not intended to supplant

existing DOD and service cyber test ranges, but are intended to serve a specialized need

for the DOD cyber warrior in the early stages of scenario development

Cyber mission planning, which precedes the development of cyber-attack

scenarios, defines the mission objectives and desired end-state of any offensive cyber

operation. Achieving those goals via cyber means requires distinct knowledge of the

target network in order to create effects on different aspects of an adversary’s computer

systems, which was a focus of this thesis. The mission planning aspects of offensive

cyber-attacks, although they are a necessary first step to focus the simulation

development, is beyond the scope of this thesis.

 3

C. OBJECTIVES

The main objective of this work was to provide a proof-of-concept via an

established custom software framework that enables the development of software

modules for use in simulated offensive cyber scenarios. An additional objective was to

develop the capability for both temporal and target specificity in cyber-attacks. Finally, a

virtualized test environment was needed to simulate an adversary network on which to

demonstrate new offensive cyber capabilities developed and implemented in this

research.

D. APPROACH

A survey of several existing technologies and customized solutions that attempt to

develop and test cyber-attack schemas was performed to evaluate each of their suitability

as a candidate for the foundational platform. Then, after identifying the advanced

interaction parameters needed to enhance the simulated malware’s usability, software

modules were designed to support the integration of new capabilities into the customized

framework selected as the foundation. Finally, a prototype was implemented to

demonstrate scenarios to test the interaction behaviors, and set the conditions for follow-

on research.

E. BENEFITS OF STUDY

This work has devised, designed, and implemented advanced simulated malware

interaction methods to provide the U.S. cyber warrior with more accurate methods for the

design and testing of advanced cyber-attack simulations. These new capabilities will also

allow DOD and U.S. cyber forces to model adversary capabilities and responses with a

higher degree of precision in order to more effectively conduct wargames and test various

strategies and courses of action prior to an actual conflict. As a result, cyber-attack

developers will have greater confidence that their cyber-attack scenario will perform as

planned. This will enable the cyber simulation designers to provide a high level of

assurance to their senior leaders that the virtually-derived cyber-attack scenario will

perform as planned in the physical world.

 4

F. ORGANIZATION

The rest of the thesis is organized in the following manner:

Chapter II: Background. This chapter examines basic concepts and definitions

commonly used within the cyber lexicon. Additionally, this chapter surveys existing

software tools and frameworks to determine their viability as the foundational platform

for the development of simulated cyber-attack scenarios.

Chapter III: Design and Methodology. This chapter puts forth key design

requirements for the creation of a virtual environment in which to conduct simulated

cyber-attacks against a virtualized adversary network. It also reviews different

approaches to realize the virtualized test environment, and different interaction

methodologies for the simulated malware to provide results that translate into real-world

solutions. Finally, it defines factors essential to the optimization of the virtualized

environment for testing offensive cyber operations.

Chapter IV: System Implementation. This chapter details the test environment,

the creation of the new software modules, and the testing process. It also reviews the

design, use, and capabilities of the test environment utilized to model an adversary

network. Additionally, the chapter examines the functions of the new software modules

and demonstrates the derived interaction behaviors and their applicability in offensive

cyber scenarios.

Chapter V: Conclusions and Future Work. This chapter examines the results of

the implemented software modules and their effectiveness within the test environment. It

also reviews the software framework for its efficacy as an execution platform.

Additionally, areas that can be enhanced further to provide more robust interactions with

even greater capabilities for the offensive oriented cyber scenario author are identified.

Finally, suggestions are provided for follow-on research.

 5

II. BACKGROUND

A. OVERVIEW

The extensive use of cyberspace to conduct worldwide communications,

commerce, and banking, as well as to provide the control of critical national

infrastructure, has made the connectivity that cyberspace provides indispensable for

operations in modern societies. In a military context, the use of cyberspace has become

intricately woven into most military operations—creating greater efficiencies, but also

providing a new attack surface an adversary might exploit to wage war. The ability to

conduct successful attacks in the physical domain(s) requires detailed planning, robust

intelligence, surveillance, and reconnaissance (ISR), as well as methods to rehearse and

simulate the attack. Although the cyber domain has many differences from the traditional

physical domains, such as the speed of execution, they share common elements for the

execution of a successful attack—detailed planning, good intelligence, and repeated

rehearsals to ensure every detail of the plan is correct. In the cyber domain, the ability to

be able “rehearse” attacks via offensive cyber operations continues to be a pressing need

within the U.S. military. However, the requirement to find software or network

vulnerabilities and then develop exploits as either an attacker or a defender of computer

networks has existed for many years. It is through this nexus of common needs that we

examine the following software frameworks.

In this chapter, we survey existing software products and methods that could

provide a framework within which these exploits and simulated attack scenarios could be

developed. Our review examines both custom-designed and commercial-off-the-shelf

(COTS) products to determine the range of existing capability available, and how well

each could meet the DOD’s needs as a lightweight, tactical based system that could be

used in offensive cyber operations.

 6

B. DEFINITIONS

This section defines common terms used in the cyber operations lexicon that are

necessary for an understanding of the development of simulated attack scenarios.

1. Exploit

An exploit is the means by which a pen-tester or malicious actor uses a flaw or

vulnerability in some software, system or service to penetrate a system or network of

interest. Common examples of cyber-attack exploits are buffer overflows and

manipulation of security misconfigurations (i.e., default passwords) [1].

2. Payload

A payload is the code that will create the desired effect that is delivered by

the exploit. An exploit is, metaphorically speaking, a delivery vehicle for the cyber

payload. Software such as a Trojan horse or a reverse shell are common examples of

a payload [1], [2].

3. Penetration Testing

Penetration testing is the process of testing a network or system by “simulating

real attacks to assess the risk associated with potential security breaches” [1]. Using

various software tools, the pen-tester will attempt to uncover vulnerabilities in a system,

and exploit them in an attempt to simulate how a real threat might attack the system [1].

4. Red Teams

Red teams are groups whose task is to “to emulate the adaptive character of an

enemy” [3]. In effect, they can challenge the network defenders utilizing similar tactics

and procedures that a particular adversary might utilize. Their true strength lies in their

ability to portray properly the thinking and methods of a real-world adversary [3].

5. Network Sandbox

A network sandbox is a metaphorical reference in computer security to a separate

and isolated network space that can be used for testing or developing malware, or any

 7

software that could potentially damage the system outside the prescribed environment.

Common techniques to create this network isolation include physically air-gapping the

network, utilizing hardware/software virtualization, or leveraging other features of the

operating system that keep a process confined to a subset of the system [4].

6. Black Hat

Black hat is a term used for individuals with extraordinary computing knowledge

who use their skills and abilities for malicious activities, such as illegally breaking into

computer networks or creating viruses. The term is a reference to a commonly held

cultural association of the fictional evil character wearing a black hat [5], [6].

7. White Hat

White hat is a term used for individuals with extraordinary computing knowledge

who use their skills for defensive purposes; they may also serve as computer or network

security analysts. Again, the term is a cultural or stereotypical reference to fictional

white-hatted characters who enforce the law, or who are represented as virtuous [2], [6].

C. MAVNATT

The Mapping, Awareness, and Virtualization Network Administrator Training

Tool (MAVNATT) is a software framework developed at NPS in 2015 to enable tactical

network administrators the ability to train on and evaluate live networks [7]. MAVNATT

provides three core capabilities: 1) the ability to map a network, 2) the ability to maintain

awareness of the changing status of the mapped network, and 3) a virtualized

instantiation of the mapped network that can be used for training network administrators

and situational awareness of user activity [7]. This description of the MAVNATT

framework will be brief, as the full details of the MAVNATT framework and project are

described in Daniel McBride’s thesis, “Mapping, awareness, and virtualization network

administrator training tool (MAVNATT) architecture and framework” [7].

The MAVNATT framework was designed to demonstrate that a “lightweight

system can be utilized in tactical environments to provide training and evaluation

capabilities to tactical network administrators without jeopardizing the unit mission and

 8

without jeopardizing the network on which users are operating” [7]. The MAVNATT

architecture consists of three separate components or modules—Mapping, Awareness,

and Virtualization—all connected through an underlying framework. Its design, depicted

in Figure 1, portrays the interrelationship between the modules and the scope of

responsibility of each component. The Mapping Module interfaces with and acquires the

network topology data from the live network [8], while the Virtualization Module

interacts with the virtual representation of the live network through virtualization

management software. The Awareness Module maintains the symmetry of the

architecture as it interacts with both the live network and virtualized network and is the

nexus for the monitor and train functions [9].

Figure 1. MAVNATT Conceptual Model. Source: [7].

1. Mapping Module

The Mapping Module is responsible for mapping and enumerating the

components of a network, and their connections, to determine the physical topology of

that network [8]. The resultant information is parsed into an open-format graph file that

contains information on the attributes of each host, and their interconnections [8], [9].

 9

Once the open-graph format file has been created, it may be passed to the Visualization

Module to be instantiated as a virtual network by the hypervisor [9]. The Mapping

Module will continue to update the open-graph format file with updates from the

Awareness Module to reflect changes in the live network configuration.

2. Awareness Module

The Awareness Module’s function is to provide a visual representation of the

network devices in an estimated topological layout based on their attributes and

connections, and the status of the various components in the network [7]. This visual

representation permits a user the ability to quickly gain and maintain situational

awareness of the network under examination. This module also provides the additional

capability of allowing virtual devices to be inserted into the network representation to

facilitate training scenarios [7].

3. Virtualization Module

Once the Mapping Module has created the open-graph file of a live network, the

Virtualization Module uses the file data to create a virtualized instantiation of the

network in a logically separate partition. This module also creates the interface between

MAVNATT and a hypervisor to support the creation of the virtual network [7], [9].

D. MAST

The Malicious Activity Simulation Tool (MAST) system utilizes a three-tiered

client-server model, that was designed to be able to test an organization’s users,

administrators, and security tools [10], [11]. An overview of the MAST architecture is

shown in Figure 2. It consists of a top-level Scenario Generation Server (SGS), a second-

tier Scenario Execution Server (SES), and a third tier comprised of the MAST client(s).

This architecture allows the SGS to be geographically disparate from the SES and the

MAST client(s) [11].

MAST uses two types of files to facilitate its operations, client module files and

scenario files. Client module files are what contain the core malware simulation code

 10

known as Simulated Malware (SimWare), while the scenario files contain instructions for

particular clients to run specific client modules [11] .

Figure 2. MAST Three-Tier Client Server Architecture. Source: [11].

1. Scenario Generation Server

The SGS sits atop the tree structure of MAST and is responsible for many of the

command level functions. It installs as a Java desktop application program and can be run

from a local or remote location to control the execution server(s) [11]. The SGS is

responsible for:

 Generating and disseminating training scenarios

 Providing a central repository for all available scenarios

 Controlling connected Scenario Execution Servers

 Running independent scenarios on multiple networks simultaneously.

2. Scenario Execution Server

The SES is the middle-tier of the MAST architecture, receives commands from

the SGS, and communicates directly with the MAST clients. The SES also handles the

execution of the scenarios on the clients and requires a local install on the operational or

 11

target network for training [11]. As the middle manager of MAST, SES is responsible for

a number of intermediate tasks that include [12]:

 Distributing SimWare and scenario files to MAST clients

 Maintaining MAST client and SimWare status

 Overseeing all scenario activity and MAST clients

 Handling “kill switch” functionality in case of emergency shutdown

 Maintaining a copy of deployed SimWare and scenario files.

3. Scenarios

MAST Scenario files are a compilation of SimWare modules along with various

options and commands needed to run them. These scenario files or scripts allow the tester

to combine various amalgamations of the SimWare modules as needed to exercise

various features on the system under test. The SGS and SES run these scenario files and

collect the results, and in some instances respond with the appropriate “reply” in

accordance with the scenario parameters [11].

4. Clients

The MAST client software is a Java program that runs on each of the client

machines that is a part of the MAST test network [10], [11]. The client application is

controlled by the SES and does the following:

 Reports the status of the running scenario to the MAST SES

 Lists all the modules that are installed on the host client to the MAST SES

 Executes the scenario as directed from the MAST SES.

5. Simulation Malware modules

MAST SimWare modules contain the code that provides the malware mimicking

behavior and are at the heart of the MAST framework. These mimics can simulate a

range of malevolent behaviors such as scanning, pinging, and hijacking of browsers.

 12

Additionally, these malware modules could be identified as a particular type of attack by

their binary signature matching a known type of malware [11].

Due to the modular nature of these software objects and the extensibility of the

MAST framework, new SimWare modules can be developed to mimic more advanced

malware and then be inserted for use into the MAST framework.

6. Graphical User Interface

The MAST framework also has a Graphical User Interface (GUI) that allows for

the starting, stopping, and selection of various scenarios that can be executed. The GUI

also provides a way to visualize the feedback from the clients controlled by the SES.

Additionally, the MAST GUI and the server instantiation can be on different computers

and in different locations due the GUI’s client-server based architecture. An example of

the MAST GUI, as shown in Figure 3, displays the scenario information, client

properties, and the network of computers being tested with MAST.

Figure 3. MAST Graphical User Interface. Source: [10].

13

7. Evolutionary Progress

Malware Mimics, now known as Malicious Activity Simulation Tool (MAST),

is a software framework based on the NPS thesis work of William Taff and Paul Salevski

in 2011 [13]. Their software framework, Malware Mimics, was designed to meet

the following objectives: 1) provide a system for training system administrators that

could mimic malware on live networks, 2) allow the mimicking system to be

geographically separate from the system or network being tested, and, 3) cause no

harm to the live system being used as the training environment. Their original system

provided a useful network-testing tool that could complement Red Team pen-testers and

provide additional monitoring and testing capabilities to network administrators.

In recent years, several NPS students have made enhancements to the original

framework. In 2012, Justin Neff compared the Malware Mimics framework, renamed

MAST, to other commercial software platforms to determine the effectiveness of MAST

as a training tool. He concluded that MAST was a useful and effective tool that provided

significant complementary capability to Red Team activities [14]. Also in 2012, Ray

Longoria Jr. proved that the MAST framework was capable of scaling to support a large

number of additional clients without significant detrimental impact to the remaining

system and network resources [15].

In 2013, Aaron M. Littlejohn and Ehab Makhlouf proved that the MAST

framework was able to perform its training and malware mimicking functions on a

shipboard LAN, using the Common PC Operating System Environment (COMPOSE) via

the Navy Cyber Operating Range (NCOR) [16].

Following this, Brian Diana, in 2015, identified security vulnerabilities within the

MAST framework, and recommended encrypting its communication channels, and

developing an authentication scheme for its modules [12]. Subsequent work by Adam

Farber and Robert Rawls in 2015 addressed the security concerns raised by Diana by

implementing secure communication between the endpoints, and a digitally signed

verification protocol between the Generation and Execution servers of MAST. Also in

2015, Erik Lowney published the MAST Communication Protocol (MCP), which

 14

allowed MAST to synchronize scenarios across the network, and implemented the

emergency “kill switch” behavior which allows the MAST server(s) to immediately

terminate the simulation scenario [10], [11].

Finally, in 2016, Gregory Belli published a scenario scripting language for MAST

to allow the incorporation of multiple malware mimics into a scenario file. These

scenario files can be customized, saved, and run on any instance of a MAST client.

Additionally, Belli described the ability for MAST to be responsive to signals received

from MAST clients and to reply with programmed responses to simulate complex

interactions between MAST and the client [10].

E. SURVEY OF EXISTING TOOLS AND METHODS

The desire to be able to test one’s own network systems via a collection of

software exploits that a black hat attacker or white hat tester might utilize has spurned the

creation of several commercial and open-source products that provide that penetration

testing capability. Their continued improvement over the last fifteen years has led to

robust products that contain an array of features [1], [17], [18]. As a result, several of

these open-source and COTS penetration-testing products are used by a variety of

government, academic, and commercial organizations for routine testing of their own

networks.

In sections B and C of this chapter, we examined a few custom software

frameworks that that were architected explicitly for the design and development of

simulated malware (SimWare) attack scenarios and the mapping, awareness, and

virtualization of networks (MAST and MAVNATT, respectively). In the following

survey, we review some of the more common penetration testing tools for their ability to

be used to develop and test simulated cyber-attack scenarios. We assess if they could

provide a software framework or methods that could be useful in the development and

testing of simulated cyber-attack scenarios and serve as a basis for this research effort.

The evaluation criteria, as mentioned earlier, will be: 1) a software framework in which

to create the malware mimics and provide a mechanism to start, aim, and control said

 15

exploits; 2) a testing environment in which these created exploits can be exercised and

tested; and 3) methods to observe the resulting behavior in the testing environment.

1. Metasploit Framework

The Metasploit Framework (MSF) is a software framework for penetration

testing. It has been available to the public since 2004, has undergone many revisions over

the years, and was acquired by Rapid 7 in 2009 [1]. The MSF is an open-source product

that is free to download; however, the makers of the MSF also offer two commercial

versions (Metasploit Express and Nexpose Ultimate with Metasploit Pro) that provide a

web interface, increased automation, and more robust reporting features that are available

for $5,000 to $13,000 USD, respectively [1], [17], [19].

The MSF has a rich set of features that enable it to be a premier penetration

testing tool but MSF also has additional capabilities that lend themselves to the

development of simulated cyber-attack scenarios. One of the foremost capabilities of

MSF is the ability for users to develop and deploy their own custom designed modules.

Within the context of MSF, a module is any collection of code that can be executed

within MSF (i.e., an exploit or a payload) [1]. MSF also comes preloaded with hundreds

of common exploits and payloads written in the Ruby programming language. Any of

these can be edited or modified to form a new payload or exploit that may be needed for a

particular scenario. Additionally, MSF contains a class of auxiliary modules that are used

to perform non-exploit tasks such as scanning, fuzzing, or brute force password cracking

[1]. These auxiliary modules can be modified and customized, providing an additional

range of capabilities when developing simulated cyber-attack scenarios. Moreover, if the

needed exploits exist in another programming language, C for example, MSF facilitates

the porting over to the exploit to the MSF. This creation, customization, and porting

capability of new and existing modules allows for a wide variety of exploits and auxiliary

functions to be added to the framework, thereby allowing for the development of wholly

custom attack scenarios [1]. These MSF modules are analogues to the code segments that

are run by the MAST clients; however, the MSF modules were not designed to mimic

 16

malware and simulate the behavior of an exploit or payload, but to be the actual

exploit/payload.

MSF also provides three methods to aim, launch, and interact with the various

stock or custom-developed MSF modules. These methods are the terminal-like MSF

console, the Armitage GUI, and the Meterpreter shell. The MSF console allows a user to

launch exploits, create listeners, and access all the settings within the MSF using

instructions typed at a command prompt. The Meterpreter is a shell-type interface that

allows the user to interact with an exploited machine and utilize the full suite of MSF

features. The Meterpreter can utilize a full range of organic MSF commands, but also

supports creation of new scripts to provide any needed functionality that a user may

require [1]. The Armitage GUI is a full-featured interface allowing a user to click and

select the various services of the framework with standard point and click methodology.

From the GUI, all the commands and preloaded exploits that are available in the

framework can be selected and executed. Figure 4 is an example of the Armitage GUI,

which shows the range of attacks the framework has identified for a particular host based

on its vulnerability scan.

 17

Figure 4. Example of Metasploit Armitage GUI Interface.

The MSF also provides a testing platform called Metasploitable, a Linux-based

virtual machine. This virtual machine is designed to be a test platform that a user could

use to test stock or custom developed MSF modules against [1]. Although it is a

functional test environment, Metasploitable lacks the ability to be rapidly customizable to

add any components that would be needed to test against specific hardware, operating

systems, network configurations, or embedded intrusion detections systems.

Overall, MSF provides a powerful architecture for penetration testing; however,

the testing environment that comes with the framework is not highly customizable nor

does it provide a method to simulate an intrusion or host detection systems within a

network construct. Additionally, the MSF modules are not designed to simulate exploits

and payloads but to be an actual instantiation of said payload/exploit, which differs from

a MAST type instantiation of modules that utilize SimWare for their attack scenarios

while the MAVNATT system can utilize its generic virtualization capability to produce a

customized simulated testing environment.

 18

2. SafeBreach

SafeBreach is a software penetration testing tool that utilizes SafeBreach’s

proprietary collection of known offensive network penetration techniques, their

“Hacker’s Playbook™,” via an automated penetration-testing algorithm it continuously

attempts to penetrate a target network throughout a customer’s network [20]. Their

algorithms are then able to identify the vulnerabilities in the target system and

suggest remedial actions to a network administrator or the penetration tester. The tool

can also simulate infiltration methods across the entire cyber-attack kill chain

(i.e., Reconnaissance, Weaponization, Delivery, Exploitation, Installation, Command and

Control, Actions on Objectives), and provide continuous validation of risks while staying

up-to-date with the most current black hat methods and techniques [21].

SafeBreach uses a two-tiered architecture to administer its penetration-testing

services. The first tier consists of the software simulators that are deployed on a

customer’s network which attempt to establish connections to network devices [20].

These simulators are analogous to the MAST clients described in Section C of this

chapter. SafeBreach utilizes a cloud-based service, the Orchestrator, which contains the

proprietary algorithms that control and direct the simulators based on their feedback from

connection attempts and other actions. The algorithms then determine what penetration

tactics to try next. Similar to the MAST architecture, the SafeBreach Orchestrator

performs the combined functions of the SGS and SES servers in MAST as detailed in

Section C of this chapter. Additionally, SafeBreach system developers frequently update

their algorithms with the newest black hat methods as they are discovered to provide a

more robust and up-to-date product [20], [21].

A graphic example of how the SafeBreach system can identify a vulnerability

and show the network route of penetration to the point of data compromise [20] is shown

in Figure 5. In this figure, a particular breach scenario has been executed from their

Hacker’s Playbook by the controlling algorithms of the Orchestrator. Between each

numbered pivot point, SafeBreach indicates how many exploits were tried and how many

exploits successfully overcame the security at that point and an attempt to graphically

 19

depict the steps and exploits an attacker could use the penetrate this system. SafeBreach

also provides suggestions about how these vulnerabilities it found can be remedied [21].

Figure 5. SafeBreach GUI Identifies Route of Attack. Source: [20].

SafeBreach differs from some other penetration-testing tools, such as MSF, in that

it offers continuous testing of the networks over time utilizing intelligent algorithms to

direct the attack, as compared to a snapshot view provided by other static or batch

processing oriented software penetration testing tools. This continuous validation and

retesting through various network and software upgrades, patch installs, and other

network changes that could introduce new vulnerabilities is one of the main features of

this product. Pricing of the system is based on the number of simulators deployed.

The base level contract of ten simulators with a service agreement for one year is

$50,000 USD [20].

The SafeBreach system also uses models to represent the behavior of malware to

increase the accuracy and realism of their testing process. By modeling the malware in

much the same way as a vaccine uses an inert copy of a virus, SafeBreach stimulates the

defenses of the host system to verify a proper reaction. This malware modeling is another

 20

similar concept that is utilized by the MAST framework [21]. However, the SafeBreach

platform does not lend itself to the development of wholly new attack scenarios or

exploits, and neither does it offer a way for these exploits to be tested in a rapidly

configurable and benign test environment.

3. Core Impact

Core Impact from Core Security is a software framework that provides

vulnerability assessment and penetration testing of target networks. Core Security has

been providing an ever-increasing, sophisticated suite of tools that provides network

detection, vulnerability mitigation, and access management penetration testing and

vulnerability assessment since the late-1990s [18].

Their flagship product, Core Impact, is able to execute a suite of automated

penetration tests across all avenues of access to a user’s systems—network, web, and

mobile—and identify areas in need of security remediation. It is also able to enhance the

effectiveness of perimeter defense and anti-virus systems, while ensuring detected

vulnerabilities are remediated through continuous retesting. It provides a GUI to facilitate

the system testing with their provided exploits. An example of the Core Impact Pro GUI

is shown in Figure 6, which depicts the modules or attacks available on the left-hand side.

In the center panels of the GUI, the network and hosts options are selected and show the

discovered hosts in the test network in the panel below. The executed modules and their

associated log information are displayed in the left-hand panels.

Core Impact also allows for dynamic integration with third-party products, such

as the Nessus vulnerability scanner, to increase its range of capabilities. Core Impact is

used by global enterprises such as Credit Suisse, MasterCard, and Dell EMC. A standard

deployment of the product can be purchased for approximately $40,000 USD [22].

21

Figure 6. Core Impact Pro User Interface

Like the MAVNATT network mapping tool, Core Security provides another

product called Core Insight, which has a virtual machine that is able to rapidly map a

network environment. It compares the mapped information against an extensive list of

vulnerabilities to find the ones that absolutely need remediation. This product costs

$66,000 USD for the virtual machine, which also comes with the support of two remote

auditors [23].

Although, the suite of Core Security products provides an array of useful features,

the ability to wholly customize or create unique attack scenarios is not one of them. It

also lacks an organic test environment (virtualized or actual) as it is designed to test,

scan, and execute against a user-specified network.

4. Simulation Modeling

Another approach used by Kistner, Kuhl, Costantini, and Sudit, researchers at

Rochester University, was to model computer networks, intrusion detection systems

(IDS), and the behavior of the network as an alternative way to simulate cyber-attack

scenarios [24]. Their approach requires knowledge of the system or network being tested

to construct an accurate simulation model, and uses the Arena® discrete event simulation

22

software to demonstrate the concepts. IDS sensors are placed throughout the simulated

network to produce real alerts based on the type of network traffic they observe in

keeping with the realism of the simulation. Their model allows the user to construct a

simulated test network and then devise, build, and execute various cyber-attack scenarios

against this network via a GUI. The attack scenarios can be generated manually or

automatically, and allowing for the specification of the path through the network as well

as timing of the attack. Parameters for stealth, efficiency, and skill of the attack may be

set to adjust the behavior of the cyber-attack scenario. Once the cyber-attack scenario is

created, it can be saved and run on different computer network simulations [24].

This simulation model was designed primarily for testing cyber-attack scenarios,

but it also can be used by system administrators to conduct testing of various cyber-attack

methods against a simulated model of their own networks. An example of a simulation

model in the Arena software GUI is shown in Figure 7. The ability to create custom

devices in the Arena software to model machines, connectors, and subnets allows for the

quick setup of customized computer networks used for testing of the cyber-attack

scenarios.

23

Figure 7. Sample Network Model with Arena Interface. Source: [24].

The cyber-attack simulation model produced by these researchers addresses the

full range of criteria we were reviewing in the various commercial tools. The simulation

tool also allows a user to customize additional behaviors to mimic various skill levels of

an attacker such as stealth, skill, and efficiency to various levels while setting up the

attack scenario [24]. However, this was only a research project performed in 2007 and

was detailed in the paper “Cyber Attack Modeling and Simulation for Network Analysis.”

Although the tool is not available for purchase, it does reveal an ingenious method to

create cyber-attack simulations using an unrelated software tool as a foundational base.

5. STEPfwd

The STEPfwd (Simulation, Training and, Exercise Platform) platform is an online

cyber/information assurance workforce development tool developed by the Computer

Readiness Emergency Team (CERT) at the Software Engineering Institute at Carnegie

Mellon University, a federally funded research and development center .

As a training tool for cybersecurity personnel, STEPfwd has a robust capability to

provide virtualized training simulations that closely mimic real-world infrastructures and

 24

attacks [25]. Two proprietary technologies used by STEPfwd to enable this robust

simulation environment are Carnegie Mellon’s Software Engineering Institute’s Virtual

Training Environment (VTE) and CERT’s Exercise Network (XNET). The VTE

facilitates the knowledge and skill building phase of the training encounter by providing

online access to cybersecurity material in the form of technical demonstrations, lecture

slides, and written materials [25]. XNET is a centrally managed infrastructure platform

that allows remote instructors to create customized, full-scale cyber exercise scenarios to

simulate real-world environments. Users are also able to customize scenarios by creating

their own network environment, events, and timeline with the added ability to inject

attacks/anomalies, create robust traffic generation and modify the timeline or event

library. The XNET console also supports the participation of multiple cyber operators

from different locations on the same scenario via its cloud-based architecture to facilitate

real-world interactions between participants on a complex interactive scenario while

creating an experience-building event. [25].

The designers of the CERT ecosystem also had to address the scalability issue

regarding the storage requirements (memory & disk) that several hundreds or thousands

of Virtual Machines (VM) all running simultaneously would consume using the standard

paradigm of taking snap shots. They developed a customized virtualized solution that

modified the snapshot process of the hypervisor to use a single base disk to produce other

needed instances of guest VMs [26]. For example, this method can use a single base disk

image of a Windows 2012 server and create a snapshot to instantiate a domain controller,

an Exchange server, and a web server and so on while staying within their hypervisor’s

storage limits. An illustration of this virtualized solution and the savings that can be

realized in disk storage and server memory by using one base disk image versus the

traditional method of snapshots creating multiple restore points for a single image is

shown in Figure 8.

 25

Figure 8. Design implementation for STEPfwd and XNET. Source: [26].

This allows for the creation and startup of an entire exercise environment in just a

few minutes with a few base disks, installation scripts and a startup sequence on one or

more servers as needed. This architecture forms the core of the VTE and the SEI’s CERT

STEPfwd system [26].

In a 2009 U.S. Air Force Cyber Operations defensive network training event,

CERT was able to provide a scenario using the XNET platform that “encompassed the

anatomy of a real attack—reconnaissance, botnet and malware staging, data exfiltration,

and massive communications disruption—and involved more than 100 virtualized

computers and infrastructure devices” [25]. This example highlights the range of

capabilities of the STEPfwd system with regard to the development of cyber-attack

scenarios. If the emphasis were put on developing virtualized cyber-attack scenarios and

using real defensive-minded operators in the testing process, this tool could be a very

powerful instrument in the development of offensive cyber weapons. As an online or

cloud-based solution, it provides tremendous scalability and allows for collaboration

between geographically disparate teams and team members.

The STEPfwd and XNET systems provide a range of capabilities that could be

used for the development of simulated attack scenarios against virtualized adversary

networks. Specifically, they provide the means to develop complex attack scenarios, a

 26

virtual environment to execute these scenarios within, and an ability to monitor the

scenario as it progresses. However, as a virtualized online solution, these systems are not

able to map new networks, nor can they be used in an operational environment, as

MAVNATT can.

6. Summary of Existing Tools and Methods

The purpose of this survey was to examine some software tools that are available,

both commercially and custom developed, to ascertain what exists currently and if an

existing product could meet the requirements to serve as the foundational platform for the

development of simulated cyber-attack scenarios. The evaluation criteria, as described in

the beginning of the background section, were used to determine which of the surveyed

products would be best for the foundational base of the thesis research.

The commercial products examined demonstrated a strong portfolio of features;

however, the Safe-Breach and the Core Security products, although very robust, lack the

ability to design unique attack scenarios. Conversely, the MSF does allow for the design

and development of user designed exploits, modules, and scripts to be created,

implemented, and utilized against a user-specified target network. MSF also provides an

exploitable Linux ISO (a CD-ROM image saved in ISO-9660 format) for use within a

virtualized environment to experiment with newly created or existing exploits.

Although not as mature or robust as the surveyed commercial products,

MAVNATT does more closely align to the original evaluation criteria of providing a

software framework that provides the ability to create custom cyber-attack scenarios, an

organically generated virtual testing environment wholly separated from the live network,

and a method to observe the resulting behavior in the testing environment. MAVNATT,

as part of its “train” mission, was designed to be able to interact with the MAST

framework via Virtual Machine Disk (VMDK) files allowing the MAVNATT

Virtualization Module to render an interactive session with a virtualized MAST

instantiation [9]. This capability of MAVNATT makes it an ideal foundational platform

for the stated goal of this thesis to develop simulated cyber-attack scenarios for use

 27

against virtualized adversary networks. A comparison of various features of the tools and

frameworks examined in this chapter is shown in Table 1.

Table 1. Commercial Tool Summary

 Metasploit Core Impact Safe Breach Arena STEPfwd

Host OS Platform All Primary OSes Win OSes All Primary OSes* Win OSes Web based
Custom Scenarios Yes No No Yes Yes
Organic Test Env Metasploitable No No Yes Yes
Cost Free ~ $40,000 ~ $50,000 $90/seat/month Variable
API Yes Yes, 3rd Party No* No No

F. SUMMARY

This chapter provided a high-level overview of MAVNATT and its core elements,

and examined the architecture of MAST. Additionally, it provided a survey of some of

the more widely used commercial products for penetration testing to ascertain the

suitability of these products as a base element for the work of creating simulated cyber-

attack scenarios. The next chapter provides a thorough examination of the necessary

elements for developing robust and realistic simulated cyber-attack scenarios.

 28

THIS PAGE INTENTIONALLY LEFT BLANK

 29

III. DESIGN AND METHODOLOGY

A. OVERVIEW

Effective design, implementation, and testing of simulated cyber-attacks require a

number of components, to include the following: knowledge about the target network,

requirements of the virtualization platform, and a method to handle imperfect knowledge

about the target system or network. We examine each of these components in detail, as

well as the different interaction parameters for simulated cyber-attack software, and the

implementation strategies for modeling such methods to mimic real-world network

interactions. Finally, we outline the key requirements of a simulation environment

necessary for planning, developing, and rehearsing offensive cyber operations.

B. VIRTUALIZED ATTACK SCENARIO NEEDS

The existing software products and methods reviewed in the previous chapter

demonstrate an array of capabilities that could be used for developing and simulating

offensive cyber-attack scenarios. Modeling cyber-attacks in a simulated or virtual

environment, however, requires additional components and information, such as detailed

knowledge about the network that will be attacked, and a virtualization or hardware-

testing platform that can replicate the target network to a very high degree of fidelity. The

size of the network to be modeled is also an important data point since it will affect

the hardware solution used for virtualization. Furthermore, if the cyber-attack scenario is

to simulate effects in the physical world (e.g., by acting on supervisory control and

data acquisition (SCADA) systems), those systems and their associated hardware

must be modeled accurately to achieve relevant results. Finally, knowledge of

the adversary network will likely be imperfect, which can introduce uncertainty into the

derived cyber solution

1. Network Knowledge

Creating a simulation that would have a high probability of success against a real-

world system first demands knowledge of the target network. At its core, offensive cyber

 30

operations uses the network knowledge to determine a vulnerability that can be

subsequently exploited. The knowledge of the network consists of some, if not all, of the

following information: network specific (IP addresses, network topology, domain

names), host specific (user names, architecture type(s) (e.g., x86), OS variant and

version, services running, ports open/closed), and security specific (firewalls, IDS/HBSS

running with associated detection methods, password complexity requirements and

change frequency), and physical security of the network (e.g., locks, keycards, hardened

facility) [27]. This knowledge allows the offensive-minded operator to bypass target

defenses and enter the system to achieve the mission objective(s). Knowledge of the

network vulnerabilities can be achieved through active or passive computer scanning,

and intelligence gathering through traditional sources of human, signals, and open

source methods.

To acquire knowledge about an adversary network via computer means would

require following the process that white- or black-hat hackers use when gathering

intelligence on a network. This process is referred to as the hacking phases [28], and is

used to glean information about the target system before a tactical cyber-attack scenario

is devised. Two well-known models, which outline the phases, are described by the

Certified Ethical Hacker (CEH) association and by Stuart McClure’s “Anatomy of a

Hack” in the book Hacking Exposed [29]. The two models share the same objective but

differ slightly on terminology and number of steps in their respective approach. The

general steps of these hacking phases are as follows:

 Reconnaissance

 Scanning

 Gaining Access

 Maintaining Access

 Covering Tracks.

The first two steps are common to most models, although the term footprinting

may be used instead of reconnaissance. The need to find out about the target system, its

defenses, its software variants and versions, and its outward facing configurations are the

 31

objectives of these initial steps. Reconnaissance is a preparatory phase in which

information is gathered about the target organization, its network, employees, and

operations. This step can be performed using passive methods such as searching

through publicly available records and data, or with more active methods that involve

interacting with the target directly. Additionally, traditional methods of espionage

(human and signals intelligence) can also be employed to gather information or to recruit

and use human sources with placement and access to gain greater knowledge of an

enemy’s systems.

A more aggressive form of network discovery involves scanning the adversary

network to reveal an array of logical and physical information about the target systems.

The information gathered through scanning could include operating system software that

is being run by the target machines, a list of active hosts, the status of computer ports on

the hosts, services that are running, and the network topology. A number of popular

commercial tools can carry out these scans, such as Nessus [30] and Zenmap [31].

The knowledge gained about an adversary network, its services, applications, and

vulnerabilities during the reconnaissance and scanning phases enables the subsequent

steps in the hacking process. Moreover, this information is critical for creating an

accurate network model on which to simulate and test cyber-attacks. The network

information that could not be ascertained, be it operating system software on some hosts

or proprietary software on a router, would require assumptions to fill the gaps. These

assumptions could significantly weaken the efficacy of the network model, which

reaffirms the importance of obtaining knowledge on the adversary network.

2. Virtualization Platform

A key requirement of the virtualization platform would be the capability to model

a large selection of computer and network devices accurately for the test environment.

This modeling of computer devices could be done via a physical instantiation of the

target network or be completely virtualized. For the former alternative, cyber test ranges

have been built by the DOD at a number of different sites, such as the National Cyber

Range (NCR) and the Navy Cyberspace Operations Range (NCOR). A detailed

 32

discussion of the capabilities of these cyber test ranges can be found in the thesis by

Nathaniel Hayes, “A Definitive Interoperability Test Methodology for the Malicious

Activity Simulation Tool (MAST)” [32]. For this research, we focused on virtualized test

environments, which could provide a portable and customizable solution to simulating an

adversary network for offensive cyber operations.

A hypervisor is commonly used for developing a network of virtualized hosts.

Hypervisors normally work in one of two ways. One method is to run the hypervisor

directly on the host machine’s firmware (Type I / bare metal); the other is to layer the

virtualization application on top of the host machines OS (Type II / hosted) [33], [34].

Both implementations are used to allocate the physical resources of the host machine for

the virtual machine instantiations. MAVNATT utilizes a Type II hypervisor for its

virtualization module, while SEI’s XNET uses a Type I hypervisor implementation [9],

[25]. The hypervisor implementation shown in Figure 9 illustrates a Type I bare metal

implementation on the left, and a hosted (Type II) model on the right. In either case, the

virtual machines always interface with the host machine through the hypervisor, never

directly to the host machine’s hardware or OS.

Figure 9. Illustration of Different Hypervisor Implementations. Source [34].

The incorporation of device-specific information gathered about the adversary

network into the virtualized environment is vital. This requires a virtualization capability

that could instantiate hosts, connectors, subnets, and routers in a way that allows for the

 33

input of the device’s defining characteristics, as captured during the intelligence

gathering phase (active services, open/closed ports, operating system software, and

software patch levels). Moreover, the virtualized network environment should also be

able to simulate regular network traffic and noise in the test environment in order to

simulate the realism of a physical network. The noise would provide the additional

network traffic that could cause bottlenecks, reduced availability of network services and

other congestion issues that the simulated malware should be able to overcome.

Another important requirement of the virtualized network is that it should

properly simulate the network defense mechanisms (i.e., IDS, HBSS, firewalls and

others). These network defenses should be configurable, just like they are on a physical

network, and should respond to proper provocations from SimWare. These simulated

network defenses should also employ a range of common detection algorithms, which

should include the following: signature-based, host-based, and hybrid variants of the two.

Finally, the ability to support an omnipotent administrator role with multiple

simulation participants is a critical need to support a large-scale simulation environment

testing complex cyber scenarios. Multiple defenders or offensive cyber warriors should

be able to collaborate within the virtualized environment while working on the same

problem to mimic real-world interactions. Additionally, the scenario administrator would

have the capability to dynamically add or remove events from the scenario, such as a

Denial of Service (DoS) event, and be able to review each participant’s response(s) to the

scenario and the injected events.

3. Scale Factor

The size of an operational network to be virtualized is a key consideration when

simulating cyber-attacks. Many modern networks are comprised of hundreds or even

thousands of devices, all interacting and communicating according to the activity of

individual users and automated processes. The ability to replicate a large network in a

virtualized environment would be required in order to conduct accurate simulations of

real-world network systems.

 34

For the simulation to have a high degree of accuracy, each individual virtualized

object would need to incorporate all of the information acquired about its real-life

counterpart. To have this degree of fidelity in the network model would require

significant amounts of computing resources. However, to have the capability to conduct

network simulations and offensive cyber scenario development in a tactical environment

would require some significant tradeoffs in either the fidelity of the model or the size

of the network modeled. Each alternative would carry significant risk to the derived

cyber solution.

4. Accounting for the Unknown

When developing a virtualized attack scenario, imperfect intelligence of the

adversary network must be recognized and accounted for. This awareness of one’s own

lack of knowledge, known as “Socratic ignorance” [35], highlights the importance of the

unknown elements of the enemy network. Similarly, when trying to accurately model the

computer system of an adversary, many factors cannot be known with a high degree of

certainty, which could significantly affect the precision of the network simulation. Such

factors could include the fluidity of real-world networks, the time lag of patch releases to

application, the frequency of penetration tests, advanced proprietary IDSs, active

defensive measures, and the variable actions of network operators and defenders.

Real-world networks are frequently upgraded, patched, reconfigured, and

penetration tested, creating a rapidly changing target for simulation. This results in

incomplete knowledge, and thus imperfect modeling of an adversary network. This

shortfall can cause cyber-attack scenarios to be developed and tested in an imprecise

simulation environment, leading potentially to failed cyber operations against the enemy

network. Furthermore, the perishability or obsolescence of cyber-attack methods is a very

real issue in cyber mission planning as most cyber weapons depend upon the exploitation

of a vulnerability in the target system to achieve their mission effects [36]. These

vulnerabilities could be remedied in the course of an adversary’s normal cyber hygiene

yet remain unknown to offensive cyber operator. This could render the cyber weapon

based on that vulnerability inert.

 35

Another unknown about the adversary network that generates problems for the

creation of an accurate simulation is the type of IDS being used and the type of detection

schema employed. The IDS could either be host-based or network-based and use either a

signature based or behavior based algorithm or combination thereof. If the intrusion

detection scheme cannot be determined with certainty, the simulated cyber-attack

solution may not perform as expected in the physical network.

A target’s employment of active defensives is also challenging to replicate in a

simulated environment. Active defenses refer to proactive cyber security measures that

may be taken by an organization to defend its operational networks. These measures

could include denial and deception techniques such as tarpits or honeypots [37]. Tarpits

are a defensive computer technique used to delay incoming connections with a slow

response from the server, while honeypots provide an inviting albeit false target for

attackers [37], [38]. Their active defense measures could also consist of hunting teams,

who are highly skilled cyber defenders who actively seek out malicious software on their

network that has evaded passive security measures such as firewalls and anti-virus

scanners [37], [39]. These active defensive methods may be approximated to some degree

in simulated environments, but the behavior is difficult to replicate perfectly.

Finally, the skill level and resilience of the enemy cyber defender cannot be

known completely. The resilience factor would be difficult to replicate in simulations, as

it varies by individual cyber operator, depending on their dedication and work ethic. The

skill level of individual operators can result in a large variance across an organization that

represents expertise peaks and valleys that can occur over the course of a day, week, or

month. Furthermore, there is the changing dynamic of improving skills through advanced

training or declining skills through inactivity of the individual cyber defender.

In summary, numerous aspects of operational networks are either highly dynamic

or hard to quantify, and therefore difficult to model precisely. There are ways to quantify

the skill level or expertise of cyber defenders by defining and implementing interaction

parameters into the simulation, but imperfect knowledge of dynamically changing

computer systems, and unknown active defenses could introduce a degree of uncertainty

into any simulation.

 36

C. INTERACTION PARAMETERS

Creating accurate simulations of offensive cyber operations requires interaction

parameters that can define the behaviors of SimWare. These parameters can modify the

manner in which the SimWare traverses through the network to accurately mimic real-

world behaviors. The interaction parameters can also allow for complimentary behaviors,

such as skill and stealth, to be combined to form a new hybrid behavior that affects

SimWare differently than either would independently. In the following section, various

interaction parameters will be defined and described as to how they could enhance the

network simulation.

1. Propagation

Propagation refers to how SimWare will move through the simulated network,

either by self-propagation or by some other means. A self-propagating selection would

not require another program to act as a conveyor and could leverage network resources

and its associated connectivity to spread. Furthermore, the way in which the propagation

parameter affects SimWare must emulate standard network routing protocols, and must

address its interaction with security measures such as firewalls, network/port address

translations, and active defenses.

2. Specificity

Specificity refers to the ability of a SimWare module to discriminate a particular

target with a high degree of precision. The Stuxnet virus provided an example of malware

that was highly focused on a very particular target, the specific make and model of the

Iranian centrifuges used at Natanz, but did not damage any other systems [40].

Specificity would ensure that the SimWare would target a particular media access code

(MAC) address, IP address, or SCADA device, while not affecting any other systems on

the network. If the SimWare module were not able to find its specific target, it would do

nothing or try to move onto another system to keep searching for its target.

 37

3. Timing

The timing parameter provides temporal control of when a SimWare module

executes its intended behavior. A simulation might include, for example, a timeline of

various SimWare cyber actions, each with timing dependencies such that one action must

be completed before another. The ability for the SimWare to act only after a certain time

has passed or a particular event has occurred is crucial to realistic modeling. The Y2K

bug, although not malware, is a good example of a software problem that was triggered

by a specific time event.

4. Stealth

Stealth refers to how well a cyber-attack avoids detection [24]. Conducting a

cyber-attack in stealth mode will require extra precautions, and may not necessarily result

in the most expedient traversal of a network. For example, maintaining stealth may

require traversing through authorized ports that expect encrypted web traffic, such as port

443, or having malware be resident on an existing process or daemon to avoid leaving

any trace in memory. These methods, although stealthy, are not the most expedient ways

to achieve the desired cyber effect.

5. Efficiency

Efficiency relates to how directly an attack will proceed [24]. A SimWare module

with a high efficiency selection would not take steps to avoid detection, traps, or detour

around obstacles. High efficiency would be desirable when the shortest time for the

malware to achieve its effects is the most important factor. A high efficiency value

applied to SimWare would be analogous to walking through the front door to burglarize a

house because it is the quickest way to get to the intended target. Although, doing so

would result in being caught on the security camera instead of crawling through an open

upstairs window which would take more time (lower efficiency), but might avoid active

surveillance systems (greater stealth).

 38

6. Skill

This interaction parameter is used to determine the probability that the cyber-

attack will overcome the simulated network’s defensives and obstacles [24]. In the

physical world, a skillful thief can efficiently pick locks, evade security systems, and

avoid leaving behind any physical traces of his activities. Similarly, in a virtualized

environment, SimWare with a high skill level may have a higher likelihood of evading or

bypassing computer defenses.

7. Summary

These interaction parameters form the basis of interaction methods within a

simulated attack scenario. These methods could be controlled by allowing the user to

select a numerical value from a range with a low value of one to a high value of ten. The

algorithms of the simulation would then resolve the parameter governing the interactions.

For example, if a SimWare module had a high stealth value (nine) and a high skill value

(seven), then it should be able to overcome most defenses while remaining hidden. The

simulation software would also need to modify the propagation rate, and interaction

results based on the input selections of the modifiers.

D. SIMULATED ATTACK REHEARSAL ESSENTIALS

As cyber operations become more complex and more highly integrated with

kinetic operations, the need for better collaboration and rehearsal between cyber and

physical domain operators becomes increasingly critical. A visual and sequenced run

through the plan with all the participants used to enhance understanding is a common

technique in the physical domain known as a Rehearsal of Concept (ROC). For a

virtualized network to be used effectively in ROC drills, a number of capabilities are

necessary. These include the ability of the test environment to do the following: to reset

and reconfigure the environment rapidly, provide a large menu of configurable SimWare

options to achieve various effects, set timelines for activities and their execution,

incorporate intelligence on vulnerabilities of the adversary’s network or system, and an

ability for autonomous testing of the simulation.

 39

1. Reset and Reconfigure

For a virtualized network to be used effectively for testing offensive cyber

operations, its simulated environment should be resettable and reconfigurable quickly and

efficiently. This would include the capability to do the following: add or remove

components to the simulation, modify components with new parameters that take effect

immediately, save simulation run results with used network parameters run, and capture

the behaviors of each simulation participant.

2. Menu of SimWare

Another important factor for OCO planning and rehearsal is the ability to quickly

select and utilize SimWare modules from a menu. The ability to match capabilities to

intended effects is referred to as weaponeering in the military lexicon [41]. Once the

desired cyber effects have been determined from earlier planning efforts, achieving those

effects will depend upon the ability to rapidly test various cyber-attack capabilities on a

simulated adversary network. Moreover, new capabilities may need to be developed if

repeated testing proves the existing tools are not able to achieve mission objectives. A

detailed SimWare menu allows a cyber operator to quickly scan through the available list

of tools to find a particular tool, or combination of tools, that could exploit the identified

vulnerability and create the desired effect in an expeditious manner.

3. Timelines

Being able to see a timeline of various events in the cyber-attack simulation is a

key capability for planning and rehearsing offensive cyber-attacks. As a scenario

becomes increasingly complex, with multiple participants and interdependent effects, the

need to precisely coordinate the different elements and effects will become more

pronounced. The ability to add SimWare behaviors and events onto a timeline would be

indispensable to structuring advanced time-interdependent simulation scenarios. The

SimWare menu could be configured to add or remove various events and attacks on a

timeline to aid in the planning of cyber-attack simulations. An illustration of how such a

timeline might be presented to the user is shown in Figure 10.

 40

A visual script that depicts cyber events from STARTEX to ENDEX.

Figure 10. Visually Scripting the Timing of Various Cyber Events. Source [42].

4. Vulnerability Intelligence

Cyber-attack scenarios are commonly focused on target network vulnerabilities

determined during the information-gathering phase. To conduct a successful cyber-attack

against an adversary network will require knowledge of identified or high-probability

vulnerabilities. By utilizing the hacking steps described earlier in Chapter III and

exploiting the determined vulnerabilities, we can start from the public-facing Internet to

compromise the external network, and then repeating the process to penetrate the internal

network, which is depicted in Figure 11. For both the external and the internal network,

the vulnerabilities facilitate the system breach. Having an external public-facing presence

and a private internal enclave, as shown in Figure 11, is a common design for many

secure networks. Different variations of a cyber-attack scenario can be rehearsed based

on the desired mission effects, the vulnerabilities identified, and the cyber tools available.

Cyber-attack scenario traversing from Internet to External network to internal network
using hacking phases.

Figure 11. An Overview of a Cyber-Attack Scenario. Source: [24].

 41

5. Automated Testing

When developing cyber-attack scenarios with imperfect intelligence of the target

network, the capability to perform automated testing would be especially valuable.

Defensive measures that prevent scanning of the target network can obfuscate network

host parameters such as operating systems, active services, and open ports. Iterating

through all the possible variants for these unknown factors could result in thousands, if

not millions, of different network permutations.

An automated testing capability in the virtualized environment could provide the

ability to execute the prescribed cyber-attack scenario against a virtualized adversary

network while each time varying a parameter of the adversary network. The automated

testing could relieve the cyber scenario developer from the precarious task of making

assumptions for the unknown attributes of the adversary network and extrapolating the

results of a limited number of test runs into a confidence factor for the derived cyber

solution. Some of the commercial systems examined in Chapter II exhibit some

automated testing features. The MSF allows a Hail Mary style attack where every exploit

in the framework repository can be launched at a particular host or network without the

need to configure each individual attack. SafeBreach also supports a similar penetration

test mode that will continuously attempt to penetrate a customer’s network in attempt to

provide real-time awareness of any new vulnerabilities.

As both the networks to model and the number of unknowns of the enemy

network grow, the ability for automated testing would become an essential element of a

robust cyber scenario development platform. In the recent Defense Advanced Research

Projects Agency (DARPA) Cyber Grand Challenge (2016), seven autonomous machines

competed in a capture-the-flag computer hacking competition in Las Vegas, NV [43]. In

capture-the-flag, teams are responsible for protecting their server data (the flag) while

trying to find, diagnose, and fix their own vulnerabilities. At the same time, they attempt

to exploit another team’s vulnerabilities to capture their flag. For the first time ever, these

algorithms competed at this human-centric game in 96 rounds of 270 seconds each. The

algorithms developed 421 replacement binaries and detected 650 vulnerabilities, some of

which were unknown to the challenge creators [44]. This challenge demonstrated that an

 42

automated, machine-speed, vulnerability detecting and patching system is a real

capability [45]. These algorithms could form the basis of an automated testing capability

for a DOD offensive cyber scenario development platform to aid with the testing of

derived cyber-attack solutions against many permutations of an enemy network.

With the ability to run many thousands of tests of the proposed cyber scenario

solution against many permutations of the enemy network, a large array of test results

would become available. These results could provide the basis for an analysis, which

could determine which combinations of variables from the enemy network and the

derived cyber solution resulted in success. Using the resulting analysis, a cyber scenario

author could associate a high confidence factor to those cyber solutions that achieved a

greater degree of success against multiple variations of an enemy network.

E. ATTACK TYPES

A primary goal of this thesis is to define and develop the capability to simulate

cyber-attacks. A key component of this capability is to identify the various attack

categories available. Cyber-attacks can be classified in different ways based on their

methods, capabilities, and various attack vectors, but in general they can be grouped into

four main categories: reconnaissance, access, denial-of-service, and data manipulation

[46]. These categories enable attacks on all components of computer system security,

where confidentiality represents the prevention of unauthorized viewing, integrity refers

to the prevention of unauthorized alteration, and availability is a measure of the

operational readiness of a computer system and its data when needed.

1. Reconnaissance

Attacks in this category focus on information gathering. The information acquired

does not directly compromise any part of a computer system’s security, but is a necessary

step to enable the other categories of attacks. Reconnaissance uses open source

intelligence (OSINT) gathering methods to leverage publicly available information about

a target network and its systems through overt collection. This may include such

methods as accessing public records on people associated with the target, or researching

43

Internet Protocol (IP) registration information through the American Registry of Internet

Numbers [46].

Another aspect of reconnaissance is electronic intelligence gathering on the target

network, using network and port scanning techniques such as nmap or traceroute. The

data gathered might consist of connectivity of the various hosts on the network, the

software environment running on each host, status of server and security settings (e.g.,

which ports are open or blocked), network protection software (e.g., HBSS), and

computer architecture employed (e.g., scalable processor architecture). The types of

methods used, and the data acquired, are similar to information gathering techniques

mentioned earlier in Chapter III (Section B.1 Network Knowledge), however the topic

is readdressed here as it is a relevant part of the attack taxonomy when developing

cyber scenarios.

2. Access

Access-based attacks include methods that focus on gaining or elevating privilege

to unauthorized computer resources [46]. A user attempting to gain privileged access

could be an individual or part of a group external to the target organization, or it could be

a trusted insider attempting to gain higher authorization than his privileges allow. Most

computer systems today use a password-based identification and authentication system as

a first line of access protection. Using password-based attack methods to determine user

passwords via brute force, trying default passwords, or cracking a password file are

among the techniques used to circumvent this first level of defense [47].

Social engineering and phishing techniques are used by attackers to gain

privileged access to a target system. Social engineering techniques attack authorized

users by presenting a plausible ruse or questions that persuade the user to divulge their

password or other sensitive network data [48]. Phishing is a particular form of email-

based social engineering that attempts to entice the authorized user to innocently access a

malicious web link that will install malicious software on the user system, providing

system access for the attacker. This class of attacks compromises a computer system’s

44

confidentiality by overcoming access restrictions and providing key benefits that would

be advantageous in the development of most cyber-attack scenarios.

3. Denial of Service

Denial of Service (DoS) attacks compromise the availability of computer systems

to their intended users. DoS attacks can be accomplished in a number of different ways.

A common method is to flood a targeted network or system with requests so that the

target cannot provide service to any valid user. A more aggressive form of denial uses

many computers to overwhelm the targeted network with traffic. This distributed denial

of service (DDoS) can be effected using hundreds or thousands of compromised hosts,

known as a botnet, that are controlled by the attacker’s system [46].

Another DoS attack surface uses methods that cause the target computer or its

software not to function correctly. A buffer overflow attack exploits software flaws that

allow an input field or parameter in a program to accept too large data, which then

overwrites legitimate computer data in the software’s memory space [48]. By overwriting

a portion of memory called the execution stack with invalid inputs, or more seriously,

illegal instructions or malicious code, the attacker can cause the system to crash or allow

an attacker to gain control of the host. This technique can lead to a DoS to the targeted

computer system.

4. Data Manipulation

These types of attacks can compromise the integrity of computer systems’ data.

These attacks often exploit vulnerabilities in networking communication protocols [48],

using techniques such as Internet Protocol (IP) spoofing, man-in-the-middle, and session

hijacking and replay attacks. The ability to alter data to/from a target computer system

provides a cyber-attack scenario an array of capabilities. For example, commands to a

SCADA device could be altered to elicit a range of desired effects (e.g., shutdown, reset,

or ignore safety limits), as could modified orders/messages used for command and

control purposes.

 45

Internet protocol spoofing allows an attacker to deceive defensive packet filtering

schemas by impersonating another host [46]. Most packet filtering and computer identity

recognition protocols use IP addresses to determine a packet’s source and destination. By

manipulating the IP addresses in the packets, attackers can conceal their identity, bypass

defenses, and introduce malicious data or commands into a system thereby compromising

its integrity.

Man-in-the-middle attacks occur when an attacker is placed between the source

and destination of a network communication [48]. From this vantage, attackers can see

and modify network traffic between the endpoints, unbeknownst to the participants.

Similarly, session replay is related to the man-in-the-middle attack, and is used by

attackers to manipulate captured packet data and then replay it (e.g., in a banking

transaction scenario) for a number of different effects [46].

F. SUMMARY

This chapter detailed capabilities needed to create a virtualized environment to

conduct meaningful OCO testing. It examined the key factors required to create a

virtualized scenario, as well as the interaction parameters needed to provide greater

adherence to real-world malware behaviors. Finally, a list of attributes that are essential

for the virtualized environment to be used for OCO planning, and rehearsal were derived.

The next chapter describes the implementation of the derived interaction parameters into

software modules, the virtualized test environment, and the methods used to test the new

modules.

 46

THIS PAGE INTENTIONALLY LEFT BLANK

 47

IV. IMPLEMENTATION

A. OVERVIEW

This chapter describes the approach used to implement advanced attack scenarios

according to the requirements outlined in Chapter III. The interaction parameters

described were the basis for new SimWare modules designed to test interesting types of

cyber-attack scenarios. These scenarios were tested using MAST, which was the console

used to launch the offensive cyber-attack modules, while a virtualized network provided

the training area. A description of the test environment, the setup of the scenario files,

and the attack modules developed are detailed in this chapter.

B. TEST ENVIRONMENT

The test environment is comprised of three important segments: the virtualized

network infrastructure, the software tools used for execution of the cyber-attack

scenarios, and the virtualized target hosts. All were important to designing and testing the

cyber-attack scenarios, which were based on the derived interaction parameters and

coded into the test attack modules. A detailed description of each of the segments

follows.

1. Virtual Network Infrastructure

The test environment consisted of a virtual network infrastructure, using a Type I

hypervisor implementation. The NPS Computer Science Department’s Cyber Battle Lab

(CYBL) was used for the testing environment. This lab provided numerous benefits that

facilitated the scenario testing, such as an infrastructure that was professionally managed,

sufficient computer resources that allowed for the simulation of a sizeable network, and

an isolated testing area to prevent collateral damage to any operational computer

resources. This allowed the use of virtual hosts that had a high degree of configurability,

a key requirement for the accurate modeling of an adversary network. vSphere, a server

virtualization platform by VMware [49], served as the interface tool for the virtual

environment.

 48

A private network was also created and configured within the CYBL virtual space

to allow communication between hosts on the subnet 10.1.99.1 – 10.1.99.255. Each host

had a unique IP address, and required its own instance of the MAST client to be run

locally. The network architecture was intentionally kept flat, with no additional subnets,

to allow better examination of the behaviors of the new modules, and to avoid additional

complexity that could have obscured the testing results.

2. Software Tools

MAST, a malware simulation tool described in Chapter II, served as the

foundational platform from which the offensive cyber-attack methods were demonstrated.

MAST is a custom software framework originally designed to facilitate the training of

network administrators on live networks using SimWare. The MAST framework supports

a capability to easily plug-in new SimWare modules for simulating malware effects, and

allows the scenario author to combine SimWare modules to meet scenario objectives.

New modules can support additional malware behaviors, attack types, or some

combination thereof.

IBM’s Java Integrated Development Environment (IDE) tool, Eclipse, was used

to develop and compile the Java-based modules used for testing. Since MAST is also

developed in Java, Eclipse was used to compile, run, and monitor its various components.

The Java Development Kit (JDK), version 1.8, was used for compiling the prototype

modules to maintain compatibility with MAST’s current Java libraries.

3. Virtual Hosts

The testing environment utilized eight virtualized Microsoft Windows-based

clients running within vSphere. Each host was a Windows 7 Service Pack 1 VM, loaded

with MAST and other tools needed to execute the tests. The host VMs included a full

instantiation of the Windows OS and GUI, which allowed the workstations to be

configured in any way that was needed to support the attack module and scenario. Every

VM client required 2 gigabytes of host memory and 34 gigabytes of host storage for a

total of 16 gigabytes of host memory and 272 gigabytes of host storage. Normally,

intelligence would be gained via reconnaissance and scanning of the target network to

 49

configure host services, ports, and firewalls to represent them with a high degree of

accuracy. These tests, however, used default settings for the services and ports while the

firewall was set to a permissive setting. These settings were chosen since they would not

obscure the test results. For example, if a virtual host’s communication to another host

had been blocked due to a firewall setting, the test of the module would have failed and

thus the result would have been a false negative.

The test setup used within the virtually hosted environment is shown in Figure 12.

The VM hosts are listed on the far left-side, within the red box, while the network

configuration within MAST and running clients are shown on the right-side of the figure.

MAST does not resize the contents within its viewing area, so all eight hosts are not

visible in this image. The center window allows selection of a scenario from a predefined

list. The three new scenarios for this research are indicated in red, and include: “Attack

When Idle,” “Logic Bomb,” and “Targeted Virus Attack.”

Figure 12. Virtualized Test Network

 50

C. SCENARIO FILE

The scenario file is a set of instructions made up of key-value pairs and read by

MAST to execute the desired scenario. A detailed description of the design choices and

how MAST interacts with the scenario file are described in Belli’s thesis, “Extensible

SimWare architecture for flexible training scenarios” [10]. Here, we only provide a brief

overview of how the scenario file is used for this research. MAST can parse the

commands in the scenario file and then direct the execution of those commands to the

appropriate MAST clients. The MAST client runs as an application process on the host

VMs.

The scenario file consists of six sections that provide the MAST framework with

instructions for how to execute the SimWare module(s), and how to perform subsequent

actions based on return codes. Not all the sections need to be used in every scenario; for

example, a scenario may not result in an infected host, in which case the infected section

would be omitted. The scenario in Figure 13 was designed to launch an attack after five

minutes (300 seconds) of user inactivity, illustrating an attack against a host whose user

had walked away, thus leaving the machine idle. The attack was launched by the MAST

framework to test a variant of the timing specific interaction parameter. We step through

this scenario to explain each of the sections in the scenario file.

1. Scenario

This section is mandatory and provides two critical items of information to

MAST. The first item is the name of the scenario. The name placed here will be

displayed in the MAST GUI (reference Figure 12) scenario list. The user is

allowed to select the desired scenario from this list. The second item, MinClients,

is the minimum number of clients needed for the scenario to run properly, as

determined by the scenario author. For this scenario, we selected the name

“Attack When Idle” to provide a clear description of the scenario’s objective, with

a requirement that at least one client be running.

 51

Figure 13. The “Attack When Idle” Scenario File

2. Module List

This section provides a listing of the SimWare modules that will be used

for the scenario. It is referenced in the scenario file as [ModuleList], as shown in

Figure 13. The listing order is not important because the individual modules are

referenced by their number. Modules are the executable code, and do not have

spaces in their name. The scenario in Figure 13 used “AttackWhenIdle”, a new

module developed in Java to determine when a host machine is idle (i.e., when no

user input is detected for a specified amount of time). It also used a pre-existing

module, “EICAR,” which simulates a virus by writing a known virus signature

pattern file to disk.

 52

3. Group List

In this section, the scenario author is able to specify the number of

different groups that the clients will be assigned. The listing of the different

groups is collected under the heading [GroupList]. This scenario used three

groups, at least one group is always required. Groups can be assigned either a

fixed number or a percentage of the total number of clients. In this instance, all of

the clients are in Group #1.

Having multiple groups allows the scenario writer to attack different

groups with dissimilar attack events within the same scenario or move clients to

new groups after some event, such as an infection. In this example, there is an

infected segment that correlates to Group #3. Clients moved into Group #3 were

marked as infected. This example denotes that all hosts will initially be in Group

#1.

4. Infected List

This is the only optional section. The groups beneath the [Infected] section

header tell MAST which group or groups contain infected hosts. Hosts that are

infected via the scenario are colored red in the GUI viewing window (reference

Figure 3) and a count of the number of infected hosts is also shown on the GUI

console. Clients that have been infected but have not had their group changed to

one of the infected groups will not show as infected on the GUI console.

5. Command List

This section lists the commands that will be subsequently executed via

events. Commands are comprised of modules and their command line arguments,

and are referenced by their index number. In the example shown in Figure 13, the

module “AttackWhenIdle” accepts an input (300) for the number of seconds to

wait before concluding that the client is idle. The “EICAR” module uses two

command line parameter inputs to create a randomized wait time before writing

its output file. The “EICAR” module was included to test whether the

 53

“AttackWhenIdle” module could be stacked with other modules and perform the

combined function correctly. The “EICAR” module was executed after the

“AttackWhenIdle” module returned from a host that had been without user input

for 300 seconds.

6. Events

This section combines the scenario commands and modules with the

MAST event functionality to create functional scenario events. Commands are

referenced by their index while modules are referenced by their name. The

commands listed in the Command List can be ordered as the scenario designer

desires, and can be directed at the different groups in the Group List. Event #1 in

our example (see Figure 13) is a timer (T) event:

1=T 2000 SGC 1 1

The [Events] list is required to have a timer event as the first element. The timer

event’s first parameter is the wait interval in milliseconds, 2000 in the example

above. The rest of the event (SGC 1 1) instructs MAST to send a specific

command from the Command List to a specific group from the Group List. The

Send Group Command (SGC) [10] has the general form:

(SGC) to <GROUPNUM> <COMMANDNUM>

In the example Event #1, Command #1 (“AttackWhenIdle 300”) will be sent to all

the clients in Group #1. Event #2 is a conditional event, based on the return code

(RC) from the previous command in Event #1 (“AttackWhenIdle”):

2=RC 1 AttackWhenIdle 1 SCC 2

The return code event [10] has the general form:

RC <GROUPNUM> <MODULENAME> <RETURNCODE>

Event #2 evaluates the return code from the “AttackWhenIdle” module that was

executed against the clients in Group #1. If the return code is a 1 from any client,

 54

then that client would be sent the second command from the Command List for

execution (“EICAR 50 5”) [10]. This command has the general form:

Send Client Command (SCC) <COMMANDNUM>

In our scenario, Event #1 invoked the Command #1 on Group #1 clients. Event #2

checked to see whether the module returned any success codes (return code = 1).

If so, then Command #2 (EICAR 50 5) will be issued to Group #1 clients. Event

#3 is another return code (RC) conditional event:

3=RC 1 EICAR 2 CG 3

As before, this event will evaluate the return code from Group #1 clients from the

execution of the “EICAR” command. If the return code from any client is 2, then

the Change Group (CG) command will be executed on that particular client. Any

client moved into Group #3 will have been displayed by the MAST GUI as

infected because Group #3 was our infected group. Finally, Event #4 is another

return code (RC) conditional event:

4=RC 1 EICAR 456 CG 2

This event will move any client that had a return code of 456 from the execution

of the “EICAR” module from Group #1 to Group #2. These scenario files can be

very complex when working with multiple groupings of clients and several

command modules. This example was designed to demonstrate the scenario file

concepts and was also used to test the “AttackWhenIdle” module.

D. MODULES

These programs and scenario files are at the heart of the MAST framework. They

are the SimWare that creates the offensive cyber effects in the scenario. MAST allows

the scenario designer a large degree of latitude to construct SimWare modules to meet

mission objectives. The modules can be written in a compiled, scripted, or batch

programming language. For this thesis, three new modules were developed, using the

Java programming language, to implement several of the interaction parameters derived

in Chapter III.

 55

1. Detect Idle Host

For the offensive cyber-attack scenario developer, the timing of an attack can be

just as important as how it occurs. The capability to manipulate the temporal specificity is

paramount for the development of realistic scenarios. This module provides a scenario

author the ability to have his attack run at time when the user has not interacted with the

target machine for some specified amount of time, to further obfuscate the attacker’s

activity.

In general, to determine user inactivity, this module can detect user inputs (mouse

clicks or keyboard entries) and measures the amount of time a client system has been

idle. If the idle time is greater than the timeout value passed as an argument, the module

exits with a successful return code. If a user event has been detected, the timer is reset

and the waiting begins anew. The motivation for this module is to find a time when the

user is not at their computer so that subsequent exploit modules can be executed

unnoticed.

The code for this component was written in Java using JDK 1.8. For Windows

systems, we invoked native shared libraries through the code using the capabilities within

Java native access libraries [50]. This provided access to native Windows library

functions that returns the time (in milliseconds) since the last user input action (i.e.,

keypress or mouse action). For non-Windows systems, a similar looping construct checks

for any changes in the mouse coordinates over time. If no change occurred during the

defined period, the system is determined to be idle, and a successful exit code is returned.

The input parameter for the “AttackWhenIdle” module is the minimum number of

seconds during which no user activity is detected. For example, if the scenario developer

required two hours of user inactivity before executing subsequent SimWare events, he

would pass 7,200 seconds as the input parameter. The return code for this module must

correspond to what is expected in the scenario file. This module returns a 1 to denote

success, however, if the client continues to receive user inputs, the timer would be reset

each time and the module would keep waiting and checking an idle period beyond the

timeout parameter. The logic for the module starts with an initial query of the idle time of

 56

the host. If the idle time is less than the input time, the delta between the two is

calculated. This differential time is used for the sleep interval. If the desired idle time has

passed after the sleep interval has expired, the module will return the success code.

Otherwise, the time differential is calculated again and the sleep process is repeated.

The three Java classes shown in Figure 14 were used to implement the module.

The IdleStatusCheck.java class parses the input arguments and returns the final status

code to the calling program, MAST in this case. The IdleTest.java class performs the

looping and differential time logic described in the preceding paragraph, while the

WinIdleTime.java class returns the idle time in milliseconds via native Windows systems

calls. The full code listing for the “AttackWhenIdle” executable module in shown in

Appendix A.

.

Figure 14. The Idle Test Classes Used for “AttackWhenIdle”

2. Logic Bomb

This module name draws its inspiration from the common term given to malware

that will activate when a specific set of conditions occur, often at a pre-designated time,

and thus a “logical time bomb.” This module provides the scenario author the ability to

manipulate the temporal targeting aspect of the scenario, albeit in a materially different

 57

way than with the “AttackWhenIdle” module. Its modular design also allows it to work in

concert with other modules, such as the “EICAR” module, similar to the way

“AttackWhenIdle” was shown in Figure 13.

The logic for this module was designed to be efficient and stealthy. It uses a loop

construct to check the current date against the date to execute supplied by the scenario

author. If the execute date is after the current date, the differential time is calculated and

is used as the parameter for the sleep function. Since the module cannot proceed until the

current time is after the execute time, there is nothing gained by checking the time more

frequently. When the execute date is less than the current date, the module will return a

successful exit code. If the date argument given is less than the current date, the module

will return a successful exit code immediately.

Like its sibling, “AttackWhenIdle,” this module was written in Java using the 1.8

version of the JDK. The only input parameter is the date when the SimWare is

programmed to activate (i.e., return a success code). The format for the input parameters

is a four-digit year, two-digit month, and two-digit day, followed by a two-digit hour

(24hr format), with two-digit minutes and two-digit seconds. The general form is as

follows: yyyy-MM-dd HH:mm:ss. It would appear similar to the following example:

[CommandList]

1=LogicBomb 2017-03-05 13:30:10

This module accepts its input parameter as a passed argument in the scenario file,

similar to the demonstrated scenario in Figure 13, or it can receive the threshold time

argument from an input window. The output, upon completion of a successful waiting

period, is a successful exit code of 1. If the module receives no input time or bad input

time data, either malformed or nonsensical, it will fail and return with an exit code of

456.

The Logic Bomb Java project consists of one Java class, CheckTimeGo.java,

shown in Figure 15. This class has one method, main, which contains all the logic

described for this module. The full code listing of the Logic Bomb module is shown in

Appendix B.

 58

Figure 15. Logic Bomb Project Hierarchy

3. Target Specific Host

The last two modules focused on some aspect of temporal specificity. This

module enabled the target specificity on the logical level. The ability to target an

adversary network or host by IP address or MAC address is vital for a scenario author to

develop complex offensive scenarios.

This module accepts one or more IP addresses, MAC addresses, or computer host

names as the input parameter(s). This provides maximum flexibility for the scenario

designer depending of the piece identifying data they may possess. For example, a

scenario might have several hosts, with the goal to have the SimWare run on the two

hosts that match the given IP addresses. Since a separate instance of the

“TargetSpecificHost” module will run on each host, there can only be one matching IP

address even if two IP addresses were given to the module. If the module determines a

successful match of an IP address, MAC address, or host name it will exit with a return

code of 2, 3, or 4, respectively. If no matches are found, the module exits with a returned

code of 456. Similar to Figure 13, the input in the command list for the scenario file

would appear similar to the following example:

[CommandList]

1=TargetSpecificHost 10.1.99.11 10.1.99.34

Or

1=TargetSpecificHost 00-50-56-9C-4A-EF

 59

This logic for this module proceeds in a linear fashion. It loops through the input

parameters and compares each one the host’s IP address. Java library functions are able

to return the IP address for each host and for all its network interfaces (Ethernet, Wi-Fi,

virtual). The hosts used in the testing had two network adapters each. If no matches are

found, the same looping process is repeated again with the input parameters comparing

them to each host’s computer name. The last looping iteration traverses the input list and

compares each item in the list to each host’s MAC address checking for a match.

The IP Specific Java project also consists of one Java class,

TargetSpecificHost.java, shown in Figure 16. This class has four methods, which

contains all the logic described for this module. The full code listing of the Target

Specific Host module is shown in Appendix C.

Figure 16. The Classes and Methods Used for the “TargetSpecificHost”

E. SUMMARY

In this chapter, we detailed the setup of the test environment and the processes

used to conduct cyber scenario tests. Additionally, we examined the contents of a

scenario file within the context of a new module. This should provide a better

understanding of the workings of the scenario file, the capabilities of the new modules,

and how they can be combined to create scenarios with increasingly complex interactions

and behaviors. In the next chapter, the results of these scenario tests are analyzed, and a

way ahead is plotted for future work.

 60

THIS PAGE INTENTIONALLY LEFT BLANK

 61

V. CONCLUSIONS AND FUTURE RESEARCH

A. SUMMARY

The objective of this thesis was to identify requirements for and build a system to

support the development and testing of simulated offensive cyber operations scenarios.

Although the DOD has cyber ranges where cyber scenario testing can take place, these

ranges are in high demand, are expensive to operate and manage, and are not mobile.

Moreover, the majority of commercial scenario development frameworks are for testing

of network vulnerabilities and do not support the customization necessary to adapt the

tool to DOD’s needs. This reality highlighted a capability gap that exists at the mid-to-

lower end of the offensive cyber scenario development and testing spectrum.

At NPS, an active research initiative called MAST was designed to help train

system administrators through the use of simulated malware (SimWare). This research

was able to repurpose parts of MAST for the creation and testing of offensive cyber

scenarios, focused on determining the elements useful for the formation of a robust

offensive scenario development capability. From this work, we extended MAST with

those elements to include new interaction parameters, a virtualized test environment, and

a working prototype within an integrated, lightweight system.

B. CONCLUSIONS

The research objectives for this thesis were successfully accomplished. The

derived requirements, modules, and research of existing frameworks yielded a capability

that can be used for the development of offensive cyber-attack scenarios. The following

examines the body of work produced by this thesis in light of the specific research

questions set out in the objectives of the research.

1. Research Questions

Primary Question: How can offensive cyber tools and exploits be developed and

tested effectively in a controlled environment against virtualized models of adversary

networks?

 62

Conclusion: This thesis derived several new concepts, and a working prototype

that was able to support the development and testing of cyber-attack scenarios. We

successfully repurposed and extended MAST to execute scenarios and modules

specifically developed for this project. Additionally, a virtualized test environment was

constructed within the NPS CYBL, which allowed for the modeling of a scalable notional

adversary network. The network consisted of hosts that were complete instances of

Windows 7 virtual machines. This allowed for effective testing of the new SimWare

modules developed during this research.

Secondary Question 2: What control mechanisms or methods would allow

simulated malware to focus on a user-defined target set grouping (e.g., a single host or

single subnet)?

Conclusion: One test module was developed and successfully tested to target a

specific host by IP address or MAC address addresses this question. The

“TargetSpecificHost” module targeted one specific IP and one specific MAC address

from among the eight virtual clients in the test environment. The system was able to

successfully identify and infect that particular host, and only that host. The module is

currently not able to target a single subnet (such as all hosts on 10.1.99.x), but can be

extended later to support this capability.

Secondary Question 3: What methods can be used to perform temporal

sequencing of malware mimics?

Conclusion: The development and implementation of two temporal specific

modules, “LogicBomb” and “AttackWhenIdle,” provided a new capability that addresses

this requirement. The “LogicBomb” module provided the ability to delay execution of

subsequent modules in the scenario file to some pre-determined time in the future. The

“AttackWhenIdle” module provided the ability to detect user inputs to a host machine,

and delay attack until some author-specified idle time period had passed.

Several test iterations were run based on various date/time inputs for the

“LogicBomb” module, and various wait intervals for the “AttackWhenIdle” module. The

“LogicBomb” module performed flawlessly across a series of clients. During one series

 63

of early tests, it seemed that it may have been performing incorrectly on some clients, but

further analysis revealed that the system time on these VM hosts was not correct, and the

module was performing as designed. Similarly, when the “AttackWhenIdle” module was

tested across multiple hosts, the results showed some clients becoming infected much

quicker than expected. Further analysis revealed that there had been no user input on

those clients, across multiple test iterations, for more than five minutes (the threshold

value used or the AttackWhenIdle testing) and thus the module had performed as

intended.

C. RECOMMENDATIONS FOR FUTURE RESEARCH

This thesis was able to achieve a number of important milestones toward the

creation of an offensive-oriented cyber scenario development platform. However, this

thesis is only the first step in this process, having laid the groundwork upon which

additional research can add even greater capabilities to the framework. Future research

could focus on three core areas that would provide substantial improvement to the

process of developing simulated cyber-attack scenarios: further development of advanced

interaction parameters, integration of the MAST framework with the mapping and

virtualization capabilities of MAVNATT (described in Chapter II), and enhancement of

the MAST framework to support more robust scenario development.

1. Advanced Parameters

The temporal and target specificity modules provided the MAST framework with

a significant increase in behavioral complexity that could be applied to other SimWare

modules. However, several additional parameters were considered in this research, but

were not implemented. Parameters such as skill, efficiency and stealth would add greater

realism and nuanced behavior to the developed scenarios.

These additional parameters could be developed and integrated within the MAST

framework and selected via menus on the GUI. In this way, the parameters could be

applied to any of the scenarios developed and used in the framework. For example, the

skill parameter could be implemented as a weighted average, based on a selected value

from the GUI menu, and could be applied to the module behavior that would be evaluated

 64

at decision points during its execution. A physical analog of this idea would be a surface-

to-surface missile, where the guidance control systems provide accurate target

discrimination and the operator has control over when the missile is launched. However,

if the missile flies with a high arching trajectory, it is still vulnerable to adversary

countermeasures. If the missile were equipped with terrain hugging flight capabilities

(stealth) to avoid enemy radar and evasive maneuvers to thwart enemy countermeasures

(skill), these same features (stealth and skill) could be added to the MAST framework in

a programmatic fashion to provide greater realism to the designed scenarios.

The menu of SimWare modules available to MAST is still quite small. Before this

research, there were only a small number of scans, virus emulator, and drive-by-

download type modules. The three new modules added to the framework nearly doubled

the types of behaviors that could be used to create scenarios. Nonetheless, additional

SimWare functionality still can be implemented that will provide other types of cyber-

attack such as DOS attacks, identity spoofing, man-in-the-middle, and a delivery vehicle

such as a Trojan horse. These additional types of SimWare would greatly add to the range

of scenarios that could be developed.

2. Integration with MAVNATT

For this thesis, a virtual network environment was constructed for the testing of

the interaction behaviors. However, the success of the scenario ultimately depends on the

accuracy of the model of the adversary network. MAVNATT has the capability to

automatically map a network and then produce a virtualized instance of that network.

Since MAST has been demonstrated to run successfully within a virtual environment, the

marriage of MAST and MAVNATT could produce a synergy that leverages the best of

both research initiatives. Integrating MAST within the virtual instance of a network

mapped by MAVNATT would allow the full capability of MAST to generate and test

scenarios against a virtualized replica of an adversary network.

3. MAST Framework

There are also improvements that can be made to the MAST framework itself to

make it a more robust cyber-attack development platform. The first enhancement would

 65

be a menu of available SimWare modules that can be selected from a GUI-style menu

and loaded automatically into a scenario file shell. The second major improvement would

be to add support for common programming constructs to the scenario file. If these

improvements could be implemented, they would greatly increase the effectiveness of

MAST as an offensive cyber-attack scenario development platform.

Currently, the MAST scenario files have to be constructed manually by the

scenario author. Knowing what modules are available for use in the scenario, and having

quick access to them, would greatly facilitate scenario development. Moreover, a

scenario that can be quickly constructed by selecting the desired modules from the

SimWare menu and have MAST assemble them into a scenario file would speed the

development of the various scenarios.

MAST only allows linear processing of the scenario file at this time. There are no

looping constructs, complex conditionals, or variable assignments within the current

framework. These advanced programming features are very common in modern scripting

languages such as Java Script, Bash shell, and others. If these advanced scripting

constructs were implemented, this would allow the creation of scenarios many times

more complex than what is currently possible.

 66

THIS PAGE INTENTIONALLY LEFT BLANK

 67

APPENDIX A. ATTACK WHEN IDLE SOURCE CODE

public class IdleStatusCheck {

 /**
 * Check and wait for the host to observe required idle time
 * return success when this has occurred. Can be waiting for
 * a long time.
 * @param args idle time in seconds
 * @return Success 1, error or fail 456
 */

 public static void main(String[] args) {

 int timeToWait = 0;
 int returnCode = 456;

 //Read the input argument
 if(args.length != 0){
 timeToWait = Integer.parseInt(args[0]);
 System.out.println("Time to wait: " + timeToWait);
 }
 else {
 System.err.println("No INPUT wait time given!!");
 System.err.println("exiting with failure return code!");
 System.exit(returnCode);
 }

 IdleTest idleCk = new IdleTest();

 returnCode = idleCk.checkForIdleHost(timeToWait);

 System.exit(returnCode);
 }

}

IdleTest.java

import java.awt.MouseInfo;

public class IdleTest {

 public IdleTest() {

 }

 68

 public int checkForIdleHost(int timeToWait) {

 if (System.getProperty("os.name").contains("Windows")) {

 System.out.println("Our system: " + System.getProperty("os.name"));
 WinIdleTime idleTime = new WinIdleTime();

 for (;;) {
 int idleSec = idleTime.getIdleTimeMillisWin32() / 1000;

 if (idleSec >= timeToWait) {
 System.out.println("Waited " + timeToWait + " seconds.
The user must be away. :)");
 System.out.println("Returning success code!");
 return(1);
 }
 try {
 // Calculate remaining time to sleep,
 // want to minimize frequency of checks
 // timeToWait and idleSec is in seconds
 // sleepTime is differential between idleSec and timeToWait
 long sleepTime = ((timeToWait ‐ idleSec) + 1) * 1000;
 Thread.sleep(sleepTime);
 } catch (Exception ex) {
 ex.printStackTrace();
 }
 }
 }
 else {
 // if not windows OS, check for mouse movements
 // send timeToWait in milliseconds
 System.out.println("Our system: " +
 System.getProperty("os.name"));
 long mouseInterval = timeToWait*1000;
 return(mouseCheck(mouseInterval));
 }

 }

 /**
 * threshold is in milliseconds
 * keeps checking for mouse position
 * If time has elapsed and mouse hasn't moved
 * assumption is system is unattended by user
 * @threshold ‐ amount of time to determine if system idle.
 */

 public int mouseCheck(long threshold)
 {

 long startTime;
 long currentTime;
 long diff;

 69

 int startXPos;
 int currentXPos;

 startTime = System.currentTimeMillis();
 startXPos = MouseInfo.getPointerInfo().getLocation().x;

 do {
 currentTime = System.currentTimeMillis();
 diff = currentTime ‐ startTime;
 currentXPos = MouseInfo.getPointerInfo().getLocation().x;

 // If the mouse moved, we have to reset
 if (currentXPos != startXPos) {
 startXPos = currentXPos;
 diff = 0;
 startTime = System.currentTimeMillis();
 System.out.println("Waited " + diff + " seconds but mouse
moved");
 System.out.println("Staring the wait all over");
 }

 // sleep for differential time between
 // IdleTime and the elapsed time
 try {
 long sleepTime = threshold ‐ diff;
 Thread.sleep(sleepTime);
 } catch (Exception ex) {}

 } while (diff > threshold && currentXPos == startXPos);

 return(1);
 }

}

 70

THIS PAGE INTENTIONALLY LEFT BLANK

 71

APPENDIX B. LOGIC BOMB SOURCE CODE

import java.util.*;
import java.text.*;
import javax.swing.JOptionPane;

/** Format for input date time string four digit year yyyy,
 * two digit month MM, two digit day dd, followed by a
 * two digit hr (24hr format), two digit minute,
 * and a two digit second yyyy‐MM‐dd HH:mm:ss
 * @author L. Aybar
 */

public class CheckTimeGo {

 public static void main(String[] args) {

 String date1 = null;
 String time1 = null;
 String exeDateTime = null;
 Date executeTime = new Date(10000);

 // get current time
 Date currentTime = new Date();
 System.out.println("Current Time: " + currentTime.toString());

 // format of date to read from command args
 SimpleDateFormat ft =
 new SimpleDateFormat ("yyyy‐MM‐dd HH:mm:ss");

 //Check to see if date,time was passed via command line
 if(args.length == 2){
 date1 = args[0];
 time1 = args[1];
 //make the input date;
 exeDateTime = date1 + " " + time1;
 }

 // make sure we get some input
 if (exeDateTime == null){
 exeDateTime = (String)JOptionPane.showInputDialog(
 null,
 "Enter the date and time to start:\n",
 "Temporal attack",
 JOptionPane.INFORMATION_MESSAGE,
 null,
 null,
 "yyyy‐mm‐dd hh:mm:ss");

 }

 // if still no input values, just exit with an error code

 72

 if ((exeDateTime == null) || (exeDateTime.charAt(1) == 'y')){
 System.err.println("Nothing received for date‐time
 value, exiting!");
 System.exit(456);
 }

 // try to parse input date from inputs
 try
 {
 executeTime = ft.parse(exeDateTime);
 System.out.println("Execute time: " + executeTime);
 }
 catch (ParseException e)
 {
 System.out.println("Unparseable using " + ft);
 System.exit(456);
 }

 // if executeTime is in the future, then wait for it
 while (executeTime.after(currentTime))
 {
 // go to sleep, wake when it's time
 // sleep for differential time between the future time and
 // the current time, then check again.
 long sleepTime;
 long tmpTime = (executeTime.getTime() ‐ currentTime.getTime());
 if (tmpTime < 0){
 // we have passed our time, time to exit
 }
 else{
 sleepTime = tmpTime +1;
 System.out.println("Sleep time: " + sleepTime);
 try {
 Thread.sleep(sleepTime);
 currentTime = new Date();
 } catch (InterruptedException e) {
 // TODO Auto‐generated catch block
 e.printStackTrace();
 System.exit(456);
 }
 }
 }

 System.out.println("Current time: " + currentTime);
 System.out.println("Time to go break things!");
 System.exit(1);
 }

}

 73

APPENDIX C. TARGET SPECIFIC SOURCE CODE

import java.io.File;
import java.io.FileWriter;
import java.io.IOException;
import java.net.InetAddress;
import java.net.NetworkInterface;
import java.net.SocketException;
import java.net.UnknownHostException;
import java.util.Enumeration;

public class TargetSpecificHost {

 /**
 * Get host IP address, compare it passed IP address
 * @param myIPAddress
 * @return true for a match, false if no match
 * @author L. Aybar
 */
 public static boolean ipAddressMatch(String myIPAddress){

 Enumeration<?> e = null;
 try {
 e = NetworkInterface.getNetworkInterfaces();
 } catch (SocketException e1) {
 e1.printStackTrace();
 }
 while(e.hasMoreElements())
 {
 NetworkInterface n = (NetworkInterface) e.nextElement();
 Enumeration<?> ee = n.getInetAddresses();
 while (ee.hasMoreElements())
 {
 InetAddress i = (InetAddress) ee.nextElement();
 String tmpIPAddress = i.getHostAddress();
 if(tmpIPAddress.equalsIgnoreCase(myIPAddress)){
 System.out.println("Found match! " + myIPAddress + "
 ClientIPAddress: " + i.getHostAddress());;
 return true;
 }
 System.out.println(i.getHostAddress());
 }
 }
 return false;

 }

 /**
 * Get host machine name, compare it passed host name
 * @param hostName
 * @return true if matches, false if does not match.
 */

 74

 public static boolean hostNameMatch(String hostName) {
 // see if client host name matches

 InetAddress IP = null;
 String clientHost = null;

 try {
 IP = InetAddress.getLocalHost();
 } catch (UnknownHostException e) {
 e.printStackTrace();
 }
 System.out.println("Host name of my system is := "+IP.getHostName());

 clientHost = IP.getHostName();
 if (clientHost.equalsIgnoreCase(hostName)) {
 System.out.println("Host name match := "+ IP.getHostName() +"
Passed hostname: " + hostName);
 return true;
 }
 else
 return false;

}

 /**
 * Get host MAC address, compare to MAC address passed.
 * @param myMacAddress
 * @return true for match, false for no match
 */
 public static boolean macAddressMatch(String myMacAddress){

 InetAddress ip;
 String macAdd = null;
 try {

 ip = InetAddress.getLocalHost();
 NetworkInterface network = NetworkInterface.getByInetAddress(ip);

 byte[] mac = network.getHardwareAddress();

 System.out.print("Host MAC address : ");

 StringBuilder sb = new StringBuilder();
 for (int i = 0; i < mac.length; i++) {
 sb.append(String.format("%02X%s", mac[i], (i < mac.length
‐ 1) ? "‐" : ""));
 }

 System.out.println(sb.toString());
 macAdd = sb.toString();

 } catch (UnknownHostException e) {

 e.printStackTrace();

 75

 } catch (SocketException e){

 e.printStackTrace();

 }

 if(macAdd.equalsIgnoreCase(myMacAddress)){
 System.out.println("MAC address match!");
 System.out.println("Passed MAC address: " + myMacAddress);
 return true;
 }
 else {
 return false;
 }

 }

/**
 * Could pass in one or multiple IP addresses, host names, or MAC addresses
 * Would allow targeted attacks against more than one IP
 * Check to see if any of the clients are a match, an IP match returns 2
 * a host name match returns 3, a MAC address returns 4
 * If no matches found, returns 456
 * @param args IPaddress(es), Host name(s), MAC address(es)
 * @throws IOException
 */
 public static void main(String[] args) throws IOException {

 // defaults
 String[] inputs = new String[]{"1"};
 int returnCode = 456;

 File f1 = new File("targetSpecific.log");
 FileWriter fw = null;
 try {
 fw = new FileWriter(f1);
 } catch (IOException e) {
 e.printStackTrace();
 }

 //Read the input argument(s)
 if(args.length != 0){
 for(int i=0; i < args.length; i++){
 inputs[i] = args[i];
 System.out.println("Input arguments: " + inputs[i]);
 try {
 fw.write("Inputs: " + inputs[i] + " ");
 } catch (IOException e) {
 e.printStackTrace();
 }
 }
 }
 else {

 76

 System.err.println("No INPUT arguments given!!");
 System.err.println("exiting with failure return code!");
 fw.write("No INPUTS arguments given!");
 System.exit(returnCode);
 }

 // check for matching IP addresses
 for(int i=0; i < inputs.length; i++){
 if(ipAddressMatch(inputs[i])){
 fw.write(inputs[i] + " ");
 returnCode = 2;
 }
 }

 // check for matching host name(s)
 for(int i=0; i < inputs.length; i++){
 if (hostNameMatch(inputs[i])) {
 fw.write(inputs[i] + " ");
 returnCode = 3;
 }
 }

 // check for matching MAC addresses
 for(int i=0; i < inputs.length; i++){
 if (macAddressMatch(inputs[i])) {
 fw.write(inputs[i] + " ");
 returnCode = 4;
 }
 }

 System.out.println("returnCode: " + returnCode);
 fw.write("returnCode" + returnCode);
 fw.flush();
 fw.close();

 // return
 System.exit(returnCode);

 } // end main

} // end TargetSpecificHost

77

LIST OF REFERENCES

[1] D. Kennedy, J. O'Gorman, D. Kearns, and M. Aharoni, Metasploit: The
Penetration Tester's Guide. San Francisco: No Starch Press, 2011.

[2] C. Hopkins. (2015, Dec. 11). The definitive glossary of hacking terminology.
[Online]. Available: http://www.dailydot.com/debug/hacking-security-glossary-
adware-bot-doxing/

[3] J. Sandoz, “Red teaming: Shaping the transformation process," Inst. for
Defense Analysis, Alexandria, 2001.

[4] R. Love. (2013, Dec. 08). In computer security, what is a sandbox? [Online].
Available: https://www.quora.com/In-computer-security-what-is-a-sandbox

[5] P. Engebretson, The Basics of Hacking and Penetration Testing, 2nd Ed.
Waltham, MA: Syngress, 2013.

[6] S. Oriyano, Hacker Techniques, Tools, and Incident Handling, 2nd Ed.
Burlington, MA: Jones & Bartlett Learning, 2013.

[7] D. McBride, "Mapping, awareness, and virtualization network administrator
training tool (MAVNATT) architecture and framework," M.S. thesis, Dept. of
Comp. Sci., Naval Postgraduate School, Monterey, CA, 2015.

[8] A. Collier, "Automated network mapping and topology verification," M.S. thesis,
Dept. of Comp. Sci., Naval Postgraduate School, Monterey, CA, 2106.

[9] E. Berndt, "Mapping, awareness, and virtualization network administrator
training tool virtualization module," M.S. thesis, Dept. of Info. Sci., Naval
Postgraduate School, Monterey, CA, 2015.

[10] G. Belli, "Extensible simware architecture for flexible training scenarios," M.S.
thesis, Dept. of Comp. Sci., Naval Postgraduate School, Monterey, CA, 2016.

[11] E. Lowney, "Network communications protocol for the malicious activity
simulation tool (MAST)," M.S. thesis, Dept. of Comp. Sci., Naval Postgraduate
School, Monterey, CA, 2015.

[12] B. Diana, "Malicious activity simulation tool (MAST) and trust," M.S. thesis,
Dept. of Comp. Sci., Naval Postgraduate School, Monterey, CA, 2015.

78

[13] W. Taff and P. Salevski, "Malware mimics for network security assessment,"
M.S. thesis, Dept. of Comp. Sci., Naval Postgraduate School, Monterey, CA,
2011.

[14] J. Neff, "Verification and validation of the malicious activity simulation tool
(MAST) for network administrator training and evaluation," M.S. thesis, Dept. of
Comp. Sci., Naval Postgraduate School, Monterey, CA, 2012.

[15] R. Longoria, "Scalability assessments for the malicious activity simulation tool
(MAST)," M.S. thesis, Dept. of Comp. Sci., Naval Postgraduate School,
Monterey, CA, 2012.

[16] A. Littlejohn and E. Makhlouf, "Test and evaluation of the malicious activity
simulation tool (MAST) in a local area network (LAN) running the common PC
operating system environment (COMPOSE)," M.S. thesis, Dept. of Comp. Sci.,
Naval Postgraduate School, Monterey, CA, 2013.

[17] P. Stephenson. (2015, Mar. 02). Rapid7 nexpose ultimate appliance. [Online].
Available: http://www.scmagazine.com/rapid7-nexpose-ultimate-
appliance/review/4340/

[18] R. Penko, Corporate Computer and Network Security. New York, NY: Cram101
Inc., 2015.

[19] Metasploit. (2011, Apr. 09). Security Tools. [Online]. Available:
http://sectools.org/tool/metasploit/

[20] T. Greene. (2016, Jan. 26). Security startup wages continuous war games against
networks. [Online]. Available:
http://www.networkworld.com/article/3026525/security/security-startup-wages-
continuous-war-games-against-networks.html

[21] P. Stephenson. (2016, Mar. 01). SafeBreach continuous security validation
platform. [Online]. Available: http://www.scmagazine.com/safebreach-
continuous-security-validation-platform/article/474352/

[22] P. Stephenson. (2013, Feb. 01). Core impact professional. [Online]. Available:
http://www.scmagazine.com/core-impact-professional/review/3791/

[23] P. Stephenson. (2015, Mar. 02). Core security core insight. [Online]. Available:
http://www.scmagazine.com/core-security-core-insight/review/4337/

79

[24] M. Sudit, M. Kistner, J. Kistner and K. Costantini, "Cyber attack modeling and
simulation for network security analysis," presented at IEEE Winter Simulation
Conference, Washington, DC, 2007.

[25] J. Hammerstein and C. May, "The CERT approach to cybersecurity workforce
development," Carnegie Mellon Univ. Software Eng. Inst., Pittsburgh, PA, Tech.
Rep. CMU/SEI-2010-TR-45, Dec. 2010.

[26] J. Mayes, "Modeling large-scale networks using virtual machines and physical
appliances," Carnegie Mellon Univ. Software Eng. Inst., Pittsburgh, PA, Tech.
Rep. DM-0000921, Jan. 2014.

[27] S. McClure, J. Scambray, and G. Kurtz, Hacking Exposed 7, Network Security
Secrets and Solutions. New York: McGraw Hill, 2012.

[28] EC Council Press, Ethical Hacking and Countermeasures: Attack Phases.
Boston: Cengage Learning, 2016.

[29] S. McClure, J. Scambray, and G. Kurtz, Hacking Exposed: Network Security:
Secrets and Solutions. New York, NY: McGraw Hill, 1999.

[30] S. Jajodia, S. Noel, and B. O'Berry, "Topological Analysis of Network Attack
Vulnerability," in Mananging Cyber Threats, V. Kumar, Ed., New York, NY:
Springer, 2005, pp. 247-266.

[31] A. Orebaugh and B. Pinkard, Nmap in the Enterprise, Your Guide to Network
Scanning. Burlington, MA: Syngress Publishing Inc., 2008.

[32] N. Hayes, "A definitive interoperability test methodology for the malicious
activity simulation tool (MAST)," M.S. thesis, Dept. of Comp. Sci., Naval
Postgraduate School, Monterey, CA, 2013.

[33] R. Goldberg, “Architectural principles for virtual computer systems,” Ph.D.
dissertation, Dept. of Comp. Sci., Harvard Univ., Cambridge, MA, 1972.

[34] Free Virtualization Software & Hypervisors. (2015, Dec. 13). Web Tech
Magazine. [Online]. Available: http://webtechmag.com/free-virtualization-
software-hypervisors/

[35] J. Ambury. (2008, Jun. 11). Internet Encyclopedia of Philosophy. [Online].
Available: http://www.iep.utm.edu/socrates/

 80

[36] R. Axlerod and R. Lliev, "Timing of cyber conflict," Proceedings of the Nat.
Academy of Sciences, vol. 111, no. 4, pp. 1298-1303, Jan. 2014.

[37] D. Blair, M. Chertoff, F. Cillufo, and N. O’Connor, "Into the gray zone, The
private sector and active defenses," Center for Cyber & Homeland Security,
Washington, DC, Oct. 2016.

[38] N. Provos and T. Holz, Virtual Honeypots, from Botnet Tracking to Intrusion
Detection, Boston. Boston, MA: Addison Wesley, 2007.

[39] Cyberspace Operations, Joint Publication 3-12, Department of Defense,
Washington, DC, 2013, pp. II-2 – II-3.

[40] R. Langer, "To kill a centrifuge, A technical analysis of what Stuxnet's creators
tried to achieve," Langer Grp., Arlington, VA, Rep. TR-001, Nov. 2013.

[41] Joint Targeting, Joint Publication 3-60, Department of Defense, Washington,
DC, 2007, pp. II-15 – II-18.

[42] C. May, "Operationalizing DOD cyber workforce development," unpublished.

[43] D. Coldewey. (2016, Aug. 06). Carnegie Mellon's Mayhem AI takes home $2
million from DARPA's cyber grand challenge. [Online]. Available:
https://techcrunch.com/2016/08/05/carnegie-mellons-mayhem-ai-takes-home-2-
million-from-darpas-cyber-grand-challenge/

[44] C. Pellerin. (2016, Aug. 06). Three teams earn prizes in DARPA cyber grand
challenge. [Online]. Available:
https://www.defense.gov/News/Article/Article/906931/three-teams-earn-prizes-
in-darpa-cyber-grand-challenge

[45] Mayhem declared preliminary winner of historic cyber grand challenge. (2016,
Aug. 04). DARPA. [Online]. Available: http://www.darpa.mil/news-events/2016-
08-04

[46] The four primary types of network attacks. (2012, Feb. 04). eTutorials. [Online].
Available:
http://etutorials.org/Networking/Cisco+Certified+Security+Professional+Certific
ation/Part+I+Introduction+to+Network+Security/Chapter+1+Understanding+Net
work+Security+Threats/The+Four+Primary+Types+of+Network+Attack/

 81

[47] Common types of network attack. (2016, Aug. 01) Microsoft. [Online].
Available: https://technet.microsoft.com/en-us/library/cc959354.aspx

[48] Network security threats and solutions. (2015, Sep. 19).
ComputerNetworkingNotes.com. [Online]. Available:
http://www.computernetworkingnotes.com/ccna-study-guide/network-security-
threat-and-solutions.html

[49] F. Stroud. (2016, Feb. 14). VMware vSphere. [Online]. Available:
http://www.webopedia.com/TERM/V/vmware-vsphere.html

[50] Java Native Access. (2009, Jul. 20). MVN Repository. [Online]. Available:
https://mvnrepository.com/artifact/com.sun.jna/jna

 82

THIS PAGE INTENTIONALLY LEFT BLANK

 83

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
 Ft. Belvoir, Virginia

2. Dudley Knox Library
 Naval Postgraduate School
 Monterey, California

