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Abstract 
TiO2 or ZnO nanoparticles (NPs) have a very strong finite-size dependency in their Raman 

spectra or photoluminescence (PL) spectra due to the phonon confinement effect or the quantum 
confinement effect. Together with a fast grain growth kinetics and a high stability under high 
temperature and pressure, they can forensically retain the complete thermal history of an event. By 
spatially distributing these NPs during thermal events such as blasts or weapon tests, a spatially 
and temporally non-uniform thermal environment can be determined by a direct read off their 
Raman or PL spectra at various locations. These thermosensors can also be used in non-defense 
applications such as for detecting the transient heating in electronics and measuring the rapid 
energy release during catastrophic fractures. The protocols developed in this project can be easily 
extended to the design of other thermosensors where a grain growth or phase transition at lower 
temperatures is needed to characterize the thermal environment on the biological or cellular level. 

Objective 
The objective of this research is to utilize the phonon/quantum confinement effect in 

Raman/PL spectra and grain growth kinetics in NPs as thermosensor materials, which allow us to 
forensically retain the complete thermal history (spatial and temporal variation) of a thermal 
event under extreme conditions. 

Approach 
We have been searching for NPs and substrates that meet the following requirements as 

thermosensor materials:  
NPs: 

1) Strong phonon/quantum confinement effect
2) Fast growth kinetics
3) Easy synthesis to get spherical NPs
4) High thermal and mechanical stability

Substrates as NPs’ carrier and protector: 
1) High thermal and mechanical stability
2) High thermal conductivity

We synthesized small and monodisperse TiO2 and ZnO NPs of 5-6 nm in size and loaded 
them onto SBA-15 or graphite nanoplatelets (GNPs) substrates. Raman and PL spectrometers 
were used to establish the particle size versus the Raman/PL peak position master curves. 
Systematic isothermal and temperature-dependent heat treatments of NPs using a ribbon 
pyroprobe microheater (Fig. 1) were carried out to study their grain growth kinetics.  
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Fig. 1. Ribbon pyroprobe microheater from the CDS analytical, Inc., which can be heated from 
room temperature to 1400 ±C with heating rates from 0.01°C/min to 20,000 ±C/s. 

 
 

Work accomplished 
We first explored bare TiO2 and ZnO NPs as thermal sensors as they can be easily synthesized 

into spherical NPs (Fig. 2), and have strong phonon confinement in Raman spectrum (Fig. 3, left) 
and quantum confinement in PL spectrum (Fig. 3, right), respectively.  

 
Fig. 2. SEM and TEM image of ZnO and TiO2 NPs.  
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Fig. 3. Raman Eg band peak position of TiO2 (left) and band gap of ZnO NPs (right) versus the 
NPs size.  
 

Raman/PL spectra for TiO2/ZnO after the constant temperature and constant time heat treat 
were taken and used to estimate the particle size from the master curves and used to fit the grain 
growth parameters for TiO2 and ZnO, respectively: 
 
                                     TiO2 
 
                                     ZnO 
 

 
We heat treated TiO2 and ZnO NPs under various conditions, afterwards the particle sizes were 

estimated from the master curves and substituted into equation (1) and (2) to extract T and t, 
respectively.  Calculated temperature and time are listed in Table 1. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

89
( )2 2 6 1.11

0 1.4 10  (1)RTD D t e
−

= + ×
71

( )2 2 4 0.88
0 7.4 10  (2)RTD D t e

−
= + ×
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Table 1. Temperature and time measurements from grain growth kinetics. 

number Setting T/t (K/s) Calculated T/t (K/s) 

1 823/15 812/16 

2 853/10 867/9 

3 773/60 795/53 

4 873/30 855/34 

5 973/5 948/6 

 
We demonstrate that both temperature and time can be determined simultaneously by using 

NPs as thermosensors in the range of 400-700±C and 5-60 s, assuming that the temperature is 
constant (a step-function approximation to a thermal spike) during a thermal event. 
 

Then we loaded TiO2 and ZnO NPs of different sizes onto SBA-15 and GNP. Both substrates 
act like a carrier and protector for NPs, but do not interfere with the Raman/PL spectra of NPs as 
demonstrated in Fig. 4.   

 
 
 
 
 

  
 

 
 
 
 
 
 
 
 
 
Fig. 4. Raman spectrum of anatase TiO2 NPs with and without SBA-15 substrate (left), Raman 
spectrum of TiO2-GNP nano-composite (right). 

 
A clear shift in Raman spectrum is seen in anatase TiO2 NPs loaded onto SBA-15 after a heat 

treatment at 700±C for 0.3 s (Fig. 5).  
 

TiO
2
 GNP
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Fig. 5. (Left) TEM image of SBA-15 loaded with anatase TiO2 NPs; (right) Raman spectrum of 
anatase TiO2 NPs loaded in SBA-15 before and after a heat treatment at 700±C for 0.3 s. 
 

SBA-15 is good for its thermal stability, but its thermal conductivity is low (<1 W/mK), which 
limits NPs growth during a thermal event. We then tried to use GNP as the carrier, which has high 
thermal stability and high thermal conductivity (~300 W/mK). We decorated TiO2 NPs over GNPs 
(Fig. 6) and studied the effect of substrate on their phonon confinement, grain growth and phase 
stability at high temperatures (Fig. 7 and 8). Thermal sensitive Raman signature, indicating the 
ultrafast grain growth of TiO2 NPs in response to short thermal shock treatments (0.1-25 s) at high 
temperatures, was exploited for high temperature thermal sensing applications based on the 
phonon confinement effect.  
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Fig. 6. SEM image of (a) GNP12 and (b) TiO2-GNP12 nanocomposite, TEM image of (c) GNP12 
and (d) TiO2-GNP12 nanocomposite. Inset images indicate the corresponding SAED patterns. 
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Fig. 7. (a) Raman spectra of TiO2-GNPs nanocomposites and (b) phonon confinement in TiO2-
GNPs nanocomposites. Note: inset in (a) shows the Eg band of anatase TiO2, its position versus 
the particle size is shown as the master curve in (b) for each nanocomposite. Raman spectra of 
TiO2-GNP12 nanocomposite after heat treated (c) at 700°C for different times and (d) for 1 s at 
different temperatures. 

 
 

 
 
Fig. 8. Raman spectra of TiO2 in (a) TiO2-GNP12 (inset shows the D- and G-band of GNPs) and 
(b) TiO2-GNP62 nanocomposites heated at 700°C for different durations. Raman spectrum of 
rutile phase is shown in (b) for comparison.  
 

Some of our thermal sensors were sent to test in a shock tube in Dr. Nick Glumac’s group at 
UIUC, which survived in the wash down process and showed the expected grain grown after 
being tested at 690 K (Fig. 9).  
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Fig. 9. Raman spectra of TiO2 NPs before and after being tested in a shock tube at 690 K.  
 
We also mixed some of our thermal sensors with detonation debris, which does not affect the 
Raman spectrum of NPs (Fig. 10).  

 

 
Fig. 10. Raman spectra of TiO2 NPs with and without detonation debris. 

 
 

Key outcomes 
Our study showed that bare TiO2 and ZnO NPs can be used as thermal sensors to extract both 

temperature and time. They are likely to perform better in static applications where NPs can stay 
together for grain growth to take place during thermal events. For dynamic applications, it is better 
to decorate NPs onto substrates, which act like a carrier and protector to keep NPs together during 
thermal events.  
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We demonstrated higher thermal stability of anatase TiO2 NPs in TiO2-GNPs nanocomposites 
compared to bare TiO2 NPs for high temperature thermal sensor applications. Thermal shock 
responsive grain growth and Raman signature of TiO2 in these nanocomposites enable them to 
map the temperature of harsh environments with a high accuracy of nearly 99% for a given short-
time thermal exposure.  

Our study showed that thermal sensors based on TiO2 and ZnO NPs perform well under hash 
test conditions, can be retrieved using wash down process and show strong signal among 
detonation debris. They have great potential as thermal sensors in field applications, where a 
spatially and temporally non-uniform thermal environment can be determined by a direct read off 
their Raman or PL spectra at various locations. 
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