
ASSURED CLOUD COMPUTING UNIVERSITY CENTER OF
EXCELLENCE (ACC-UCOE)

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

JANUARY 2018

FINAL TECHNICAL REPORT

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

STINFO COPY

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE

AFRL-RI-RS-TR-2018-013

 UNITED STATES AIR FORCE  ROME, NY 13441 AIR FORCE MATERIEL COMMAND

NOTICE AND SIGNATURE PAGE

Using Government drawings, specifications, or other data included in this document for any purpose other
than Government procurement does not in any way obligate the U.S. Government. The fact that the
Government formulated or supplied the drawings, specifications, or other data does not license the holder
or any other person or corporation; or convey any rights or permission to manufacture, use, or sell any
patented invention that may relate to them.

This report is the result of contracted fundamental research deemed exempt from public affairs security
and policy review in accordance with SAF/AQR memorandum dated 10 Dec 08 and AFRL/CA policy
clarification memorandum dated 16 Jan 09. This report is available to the general public, including
foreign nations. Copies may be obtained from the Defense Technical Information Center (DTIC)
(http://www.dtic.mil).

AFRL-RI-RS-TR-2018-013 HAS BEEN REVIEWED AND IS APPROVED FOR PUBLICATION IN
ACCORDANCE WITH ASSIGNED DISTRIBUTION STATEMENT.

FOR THE CHIEF ENGINEER:

/ S /
LAURENT Y. NJILLA
Work Unit Manager

 / S /
WARREN H DEBANY, JR.
Technical Advisor, Information
 Exploitation and Operations Division
Information Directorate

This report is published in the interest of scientific and technical information exchange, and its publication
does not constitute the Government’s approval or disapproval of its ideas or findings.

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite
1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information
if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY)

JANUARY 2018
2. REPORT TYPE

FINAL TECHNICAL REPORT
3. DATES COVERED (From - To)

MAY 2011 – JUN 2017
4. TITLE AND SUBTITLE

ASSURED CLOUD COMPUTING UNIVERSITY CENTER OF
EXCELLENCE (ACC-UCOE)

5a. CONTRACT NUMBER
FA8750-11-2-0084

5b. GRANT NUMBER
N/A

5c. PROGRAM ELEMENT NUMBER
61102F

6. AUTHOR(S)

Roy H. Campbell

5d. PROJECT NUMBER
CLUD

5e. TASK NUMBER
UC

5f. WORK UNIT NUMBER
OE

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

University of Illinois at Urbana-Champaign
201 N. Goodwin Avenue
Urbana, IL 61801

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Air Force Research Laboratory/RIGA
525 Brooks Road
Rome NY 13441-4505

10. SPONSOR/MONITOR'S ACRONYM(S)

AFRL/RI
11. SPONSOR/MONITOR’S REPORT NUMBER

AFRL-RI-RS-TR-2018-013
12. DISTRIBUTION AVAILABILITY STATEMENT
Approved for Public Release; Distribution Unlimited. This report is the result of contracted fundamental research
deemed exempt from public affairs security and policy review in accordance with SAF/AQR memorandum dated 10 Dec
08 and AFRL/CA policy clarification memorandum dated 16 Jan 09
13. SUPPLEMENTARY NOTES

14. ABSTRACT

-Security and isolation in cloud environments
-Cyber infrastructure security
-Design of algorithms and techniques for real-time assuredness in cloud computing
-Map-reduce task assignment with data locality constraint
-Trustworthiness estimation for workflow completion
-Application-aware cloud network resource allocation

15. SUBJECT TERMS

Security in Cloud environments, cyber infrastructure security

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

UU

18. NUMBER
OF PAGES

19a. NAME OF RESPONSIBLE PERSON
LAURENT Y. NJILLA

a. REPORT
U

b. ABSTRACT
U

c. THIS PAGE
U

19b. TELEPHONE NUMBER (Include area code)

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39.18

119

TABLE OF CONTENTS

SECTION 1 ... 1

SECURITY AND ISOLATION IN CLOUD ENVIRONMENTS .. 1

SECTION 2 ... 6

CONTAINERS: STUDY SECURITY ISOLATION CONCERNS WHEN USING CONTAINER-BASED VIRTUALIZATION AND
DESIGN MECHANISMS TO ADDRESS IDENTIFIED SECURITY CONCERNS COORDINATION AND PROBABILISTIC
CONSISTENCY .. 6

SECTION 3 ... 44

CYBER INFRASTRUCTURE SECURITY: DYNAMIC POLICY MONITORING WITH INTERFERENCE IN CLOUD ... 44

SECTION 4 ... 46

DESIGN OF ALGORITHMS AND TECHNIQUES FOR REAL-TIME ASSUREDNESS IN CLOUD COMPUTING 46

SECTION 5 ... 50

GREATLY INCREASE THE ASSURANCE LEVEL TO CLOUD COMPUTING SYSTEMS THROUGH FORMAL SPECIFICATION
& VERIFICATION IN MAUDE .. 50

SECTION 6 ... 56

DESIGN OF ALGORITHMS AND TECHNIQUES FOR REAL-TIME ASSUREDNESS IN CLOUD COMPUTING 56

SECTION 7 ... 63

MAP-REDUCE TASK ASSIGNMENT WITH DATA LOCALITY CONSTRAINT ... 63

SECTION 8 ... 65

SECURITY AND PRIVACY MECHANISMS: AN ANALYSIS OF CERTIFICATIONS FOR FEDERAL CLOUD SERVICE
PROVIDERS .. 65

SECTION 9 ... 71

SECURITY DATA ANALYSIS AND DESIGN OF SOFTWARE ARCHITECTURE FOR ATTACK CONTAINMENT 71

SECTION 10 ... 78

TEST-BED FOR EXPERIMENTAL EVALUATION: DESIGN AND PROTOTYPE OF TECHNIQUES FOR PROVIDING CLOUD
ERROR AND ATTACK RESILIENCY ... 78

SECTION 11 ... 91

TRUSTWORTHINESS ESTIMATION FOR WORKFLOW COMPLETION ... 91

SECTION 12 ... 96

APPLICATION-AWARE CLOUD NETWORK RESOURCE ALLOCATION .. 96

BIBLIOGRAPHY ... 100

LIST OF SYMBOLS, ABBREVIATIONS AND ACRONYMS ... 111

i

LIST OF FIGURES

FIGURE.. PAGE

1: THE APPLICATION SCENARIO AT A HIGH LEVEL .. 8

2: CONSTRAINTS ENFORCED BY CONVENTIONAL SYNCHRONIZERS 21

3: RESOURCE ADMINISTRATION SYNCHRONIZATION CONSTRAINT 22

4: DISABLING ATTACK ... 23

5: ATOMICITY ATTACK .. 23

6: CONSTRAINTS ENFORCED BY SCOPED SYNCHRONIZERS... 24

7: INFORMATION LEAK THROUGH .. 26

8: THE SLIDING WINDOW PROTOCOL IN LANG-A .. 29

9: SPEEDUP SUMMARY FOR LOCAL & REMOTE EXECUTION OF N-QUEEN 36

10: SPEEDUP SUMMARY FOR LOCAL & REMORE EXECUTION OF IMAGE PROCESS 37

11: SPEEDUP SUMMARY FOR LOCAL & REMOTE EXECUTION OF N-QUEEN PROB 38

12: SPEEDUP SUMMARY FOR REMOTE EXECUTION VS. LOCAL+REMOTE 39

13: SPEEDUP SUMMARY FOR REMOTE EXECUTION (X REMOTE WORKERS) 40

14: SPEEDUP SUMMARY FOR LOCAL EXECUTION (BASE CASE) VS. REMOTE 41

15: OVERHEAD RESULTING FROM ELASTICIY MANAGER FOR IMAGE PROCESSING .. 42

16: ATTACK STAGES AND TRACES OF A MULTI-STAGE ATTACK USING VEMOM 72

17: WORKFLOW OF FACTOR GRAPH FRAMEWORK TO DETECT ATTACKS 74

18: B-BENIGN, S-SCAN, --INITIAL COMPROMISE, G-GATHER INFORMATION, ETC. 77

19: HOOK BASED MONITORING ... 80

20: HYPERTAP PROTOTYPE COUPLED WITH THE KVM HYPERVISOR 83

21: HPROBES INTEGRATED WITH KVM HYPERVISOR ... 85

22: A PROBE HIT IN THE HPROBE PTOTOTYPE .. 85

23: SINGLE PROBE LATENCY .. 87

24: OVERVIEW OF THE APPROXIMATE FAULT LOCALIZATION APPROACH 88

25: EXAMPLE OF AN END-TO-END FLOW ... 89

26: GENERAL STRUCTURE FOR EVIDENCE-BASED TRYST JUDGEMENT 92

27: HADOOP/YARN SYSTEM PERFORMANCE .. 93

28: CUMULATIVE DISTRIBUTION FUNCTION OF A MAPREDUCE JOB COMPLETION 94

29: BELIEF NETWORK MODEL ... 95

ii

LIST OF TABLES

TABLE .. PAGE

1: THE SYNTAX OF GLOBAL TYPES .. 27

2 THE SYTAX OF LOCAL TYPES .. 30

3 SPECIFICATIONS OF THE USED EQUIPMENT FOR EVALUATION ... 32

4: PROGRAMS USED TO EVALUTATE OUR FRAMEWORK .. 34

5: CONVERSION FROM RAW LOGS TO EVENTS AND LABELED ATTACK STAGE .. 76

6: CVE-2008-0600 DETECTOR/CRIU ... 88

iii

1

Section 1 Security and Isolation in Cloud Environments (Rakesh Bobba, Sibin Mohan, Roy
Campbell, and Read Sprabery)

Section 1 Summary of Research Project

Assured and mission critical cloud computing requires security and isolation both at the compute
platform and network levels. In this work we focus on providing security and isolation both at
the platform level and network level. In particular, at the platform level we focus on a) integrity
of software appliances, b) preventing information leakage through cache-based side channels
across security domains (e.g., organizations in multi-tenant clouds, security levels in private
single-tenant clouds), and c) monitoring and secure logging. At the network level we focus on, a)
network update abstractions that is not only consistent but also allows interflow constraints (e.g.,
spatial and temporal) to be satisfied during the update process, and b) secure and partial
delegation of network configuration to tenants.

Section 2 Introduction

Assured and mission critical cloud computing requires security and isolation both at the compute
platform and network levels. At the computing platform level, confidentiality, integrity and
availability of the data and computations are needed. For instance, one needs to ensure that the
software appliances (e.g., single-purpose VMs) are not tampered with or compromised. Similarly,
one needs to ensure that information does not leak across domain or security level boundaries.
While MLS systems may be able to ensure this at the application and OS levels, shared hardware
such as caches still pose a risk by enabling side-channels.

At the network level, temporal and spatial isolation of critical flows across domains or security
levels is important in mission critical computing and for compliance. For instance, a cloud
infrastructure manager may need to ensure that critical flows belonging to different security levels
do not transit the same links/nodes (spatial isolation).

Our work focuses on various security and isolation problems at both the computing platform and
network levels. At the platform level, i) we worked on verifying the integrity of software
appliances using a whitelisting approach, ii) worked on a framework for preventing information
leakage through cache-based side channels across security domains, and iii) worked on secure
logging and monitoring frameworks for both security and compliance. At the network level, i) we
worked on a novel configuration update abstraction for software define networks (SDNs) that can
not only ensure consistency but also take interflow constraints into account during the update; ii)
we worked on an initial framework for secure and partial delegation of cloud network
infrastructure configuration.

Section 3 Methods, Assumptions, and Procedures

Virtual Appliance Integrity [6,8]: Design a software whitelist-based framework that allows
cloud providers and users to determine the trustworthiness of a virtual appliance measured in

Approved for Public Release; Distribution Unlimited.

2

terms of its software integrity. The framework assumes that integrity codes for software are
available through the vendors and requires virtual appliance image providers/creators to provide
a “bill-of-software” for the appliance. This “bill-of-software” is then compared against what is
actually found in the appliance image and a trust rating is computed based on the state of the
software and the presence of malware. Our empirical study with 151 virtual appliance images
from public image stores found that ~9% of them had seriously questionable software integrity.

Cache-based Side Channel Attack Defense [T1]: Proposed a framework to defend
Containers/VMs against side-channel attacks by co-tenants in cloud environments. It leverages
both hardware and software mechanisms to achieve low overheads. In particular, we leverage
Intel’s CAT technology to partition last level cache and provide spatial isolation, co-scheduling
to provide temporal isolation, and selective sharing of libraries to balance performance and
security needs.

Policy-Based Monitoring for Security [1,T4,5,9]: In our recent work we proposed a framework
for event-based logging of virtual applications to enable policy-based monitoring [1]. The
framework leverages virtual probes to log system calls. The logs can then be used to detect
anomalies using a whitelisted policy. The challenge was in ensuring that logging is complete and
not easily circumvented by the adversary.

In the past we proposed a multi-domain policy-conformance monitoring framework for hybrid
cloud deployments that limits data exposure [5] when sharing logs for compliance. Specifically,
the framework minimizes the logs that need to be shared for policy compliance and monitoring
across domain boundaries.

While the aforementioned work focused on log sharing across multiple cloud providers, in [9]
our focus was assurance of log information collected by a virtual machine. We undertook a
preliminary exploration of an approach where the cloud provider could expose an API to provide
information than can help corroborate the information in the logs provided by the virtual
machine.

Supporting Inter-flow Constraints during updates in SDNs [2,3,T3]: Given the distributed
nature of a network, global configuration changes are not atomic as a result of which the network
will have transient configuration states. We proposed a novel SDN update consistency
abstraction called “Interflow Consistency” that builds on existing consistent update abstractions
and ensures that temporal and spatial flow isolation constraints (e.g., security policy constraints)
are respected during such transient states.

Enabling Network Control Delegation in Cloud Networks [4]: We explored the idea of
allowing cloud tenants to manage their portion of the network without impacting the security of
cloud infrastructure provider so they may manage the network configuration to ensure security
policy compliance (e.g., interflow consistency etc.). The approach leverages SDN network
virtualization tools such as a FlowVisor for network control delegation.

Approved for Public Release; Distribution Unlimited.

3

Section 4 Results and Discussion

Virtual Appliance Integrity [6]: Our empirical study with 151 virtual appliance images from
public image stores found that ~9% of them had seriously questionable software integrity. Only
about half of them were flagged by traditional malware scanning, demonstrating that a whitelist-
based approach is necessary and complementary to traditional blacklisting-based approaches
such as signature-based scanning approaches.

Cache-based Side Channel Defense [T1]: Our cache-based side-channel attack defense
requires no changes to applications and is suitable for either single-tenant MLS Clouds, multi-
tenant clouds or a combination. Our initial prototype showed promising results. A full paper is
under preparation.

Event-based Logging and Monitoring for Security [1,T4]: A prototype of our logging
framework showed that the overhead is naturally dependent on the number and type of systems
events monitored. When monitoring exec and open system calls the overhead was less than 10%
when monitoring Apache. However, when high-assurance for log completeness is needed the
overheads went up to 55%. On the other hand, overheads for monitoring OpenSSL were
negligible in both cases.

Supporting Inter-flow Constraints during updates in SDNs [2,3,T3]: We implemented a
prototype system on a Mininet OpenFlow network and Ryu SDN controller. Experimental results
show that our approach is able to enforce inter-flow consistency constraints with reasonable
overheads and that overheads for version isolation (temporal isolation) are higher than for spatial
isolation. Furthermore, when only spatial isolation constraints are in use, overheads on update
times for flows that have no isolation constraints are very small (around 1%).

Section 5 Conclusions

Ensuring security and isolation in cloud computing environments is a challenging problem.
Security and isolation need to be addressed at every layer of computing and networking stacks.
Thanks to the Assured Cloud Computing (ACC) – University Center of Excellence, we have
made significant progress towards better understanding these challenges and towards addressing
some of them. However, many challenges remain and a sustained focus and effort are needed to
realize the goal of assured and mission critical cloud computing.

Section 6 Bibliography

Conference and Journal Publications

1. Read Sprabery, Zachary Estrada, Zbigniew Kalbarczyk, Ravishankar Iyer, Roy
Campbell, and Rakesh Bobba, “Defense in Depth for Virtual Applications Built on Event
Based Probing of Untrusted Guests,” Annual Computer Security Applications Conference
(ACSAC 2016), Los Angeles, CA, December 5-9, 2016.

Approved for Public Release; Distribution Unlimited.

4

2. Weijie Liu, Rakesh B. Bobba, Sibin Mohan, and Roy H. Campbell, “Inter-Flow
Consistency: A Novel SDN Update Abstraction for Supporting Inter-Flow Constraints”,
IEEE Conference on Communications and Network Security (CNS 2015), Florence, Italy,
September 28-30, 2015.

3. Weijie Liu, Rakesh B. Bobba, Sibin Mohan, and Roy H. Campbell, “Inter-Flow
Consistency: Novel SDN Update Abstraction for Supporting Inter-Flow Constraints”,
NDSS Workshop on Security of Emerging Networking Technologies (SENT) co-located
with Network and Distributed System Security Symposium (NDSS 2015), San Diego, CA,
February 8, 2015.

4. Salman Malik, Mirko Montanari, Jun Ho Huh, Rakesh B. Bobba, Roy H. Campbell,
“Towards SDN Enabled Network Control Delegation in Clouds”, Third International
Workshop on Dependability of Clouds, Data Centers and Virtual Machine Technology
(DCDV 2013), co-located with the 43rd IEEE/IFIP International Conference on
Dependable Systems and Networks (DSN 2013), Budapest, Hungary, June 24-27, 2013.

5. Mirko Montanari, Jun Ho Hun, Rakesh B. Bobba, and Roy H. Campbell, “Limiting Data
Exposure in Monitoring Multi-domain Policy Conformance”, 6th International
Conference on Trust and Trustworthy Computing (TRUST 2013), London, UK, June 17-
19, 2013.

6. Jun Ho Huh, Mirko Montanari, Derek Dagit, Rakesh Bobba, Dong Wook Kim, Yoonjoo
Choi and Roy H Campbell, “An Empirical Study on the Software Integrity of Virtual
Appliances: Are You Really Getting What You Paid For?”, 8th ACM SIGSAC
Symposium on Information, Computer and Communications Security (ASIA CCS 2013),
Hangzhou, China, May 13-16, 2013.

7. Stephen Skeirik, Rakesh B. Bobba, and Jose Meseguer, “Formal Analysis of Fault-
tolerant Group Key Management using ZooKeeper”, First International Workshop on
Assured Cloud Computing Conference (CCGrid 2013), 13th IEEE/ACM International
Symposium on Cluster, Cloud and Grid Computing, Delft, The Netherlands, May 13-16,
2013.

8. Jun Ho Huh, Mirko Montanari, Derek Dagit, Rakesh Bobba, Dong Wook Kim, Yoonjoo
Choi and Roy H Campbell, “Assessing Software Integrity of Virtual Appliances through
Software Whitelists: Is it any good?”, Network & Distributed System Security Symposium
(NDSS 2013), San Diego, CA, February 24-27, 2013.

9. Mirko Montanari, Jun Ho Huh, Derek Dagit Rakesh Bobba and Roy H. Campbell,
“Evidence of Log Integrity in Policy-based Security Monitoring”, 2nd International
Workshop on Dependability of Clouds, Data Centers and Virtual Machine Technology
(DCDV 2012), in conjunction with the 42nd Annual IEEE/IFIP International Conference
on Dependable Systems and Networks (DSN 2012), Boston, MA, June 25-28, 2012.

10. Jingwei Huang, and David M. Nicol, Rakesh Bobba, Jun Ho Huh, “A Framework
Integrating Attribute-based Policies into Role Based Access Control”, 17th ACM
Symposium on Access Control Models and Technologies (SACMAT 2012), Newark, NJ,
June 20-22, 2012.

Approved for Public Release; Distribution Unlimited.

5

Theses

1. Mohammad Ahmad, “Cauldron: A Framework To Defend Against Cache-Based
Side-Channel Attacks In Clouds”, MS Thesis, Department of Computer Science,
University of Illinois at Urbana-Champaign, May 2016.

2. John Bellessa “Implementing MPLS with Label Switching in Software Defined
Networks”, MS Thesis, Department of Computer Science, University of Illinois at
Urbana-Champaign, May 2015.

3. Weijie Liu, “Inter-Flow Consistency: Novel SDN Update Abstraction For Supporting
Inter-Flow Constraints”, MS Thesis, Department of Computer Science, University of
Illinois at Urbana-Champaign, May 2015.

4. Read Sprabery, “An architecture for trustworthy services built on event based probing
of untrusted guests”, MS Thesis, Department of Computer Science, University of
Illinois at Urbana-Champaign, August 2016.

Approved for Public Release; Distribution Unlimited.

6

Section 2 Containers: Study Security Isolation Concerns When Using Container-based
Virtualization and Design Mechanisms to Address Identified Security Concerns,
Coordination, and Probabilistic Consistency (Gul Agha, Reza Shiftehfar, Minas
Charalambides, and Kirill Mechitov)

Section 1 Summary of Research Project

Smart sensors, mobile devices, and cloud-based ecosystems are increasingly integrated to create
a mobile cloud. However, integration can lead to security and trust issues. For example, security
of cloud spaces has sometimes been breached by accessing peripheral devices such as a HVAC
system. Our research shows how cloud security and trust can be improved in mobile cloud
systems—thus facilitating Assured Cloud Computing (ACC). Specifically, we have developed a
programming framework that can simplify development of mobile cloud systems while
providing assurance in satisfying service level agreements and constraints of mobile devices such
as bandwidth, processing power and energy. The framework builds on research in actor
programming languages, constraint systems, and runtimes to support mobility. Experiments with
a prototype implementation of the framework illustrate its utility. Finally, we show how the
framework may be extended to facilitate formal methods for reasoning about ACC systems using
recent work in multi-party session types and applications of learning to infer concurrency
patterns and coordination constraints.

Section 2 Introduction

Mobile devices and smart sensors have become ubiquitous. Yet, to realize their full potential,
they need to be integrated into a broader context by interacting with network services—in
particular, those offered by computing clouds, which can provide elastic on-demand access to
virtually unlimited resources at an affordable price. We call a system that achieves this
integration a mobile cloud.

An important issue that affects mobile cloud users, and which currently precludes availability of
many complex applications, is the multitude of limitations on resources of mobile devices.
Compared to laptops and desktops, mobile devices typically have weaker hardware, more
restricted network access, and more limited availability of energy. However, even in the face of
such constraints, users require availability and timeliness of services, device efficiency, and
assurance of security and privacy.

We show how these requirements can be met in mobile clouds by proper use and coordination of
cloud resources. More specifically, we have developed a programming middleware framework,
called IMCM, which with minimal developer effort can dynamically outsource storage and
computation needs of demanding mobile applications to cloud spaces. To achieve such off
sourcing, certain parts of mobile applications are selected, sent to the cloud space, executed, and

Approved for Public Release; Distribution Unlimited.

7

the results brought back to the mobile device. This process is known as code offloading and has
been widely studied within the context of distributed systems and grid computing.

Code offloading can be either coarse grained, e.g., at the level of virtual machines, or fine
grained, at the level of components or individual computations. Our framework supports fine-
grained offloading, which has greater potential for improvements in energy use and response
times of mobile devices. The framework considers a mobile-cloud application as a composition
of self-contained autonomous actor components, which are individually subject to performance
and energy consumption monitoring. For energy consumption specifically, technique we
consider relies on statistical comparison of energy drops for actors of different types against a
control setting on the mobile device. This is in contrast to existing frameworks, which typically
rely on device-level energy measurements to make offloading decisions.

While code offloading can improve application user experience and device resource usage, it
must be performed while respecting security and privacy requirements. In an environment with
both trusted (private) and untrusted (public) cloud resources, the origin and destination of data
and code sent from devices, e.g., during code offloading, must be taken into account. To support
such hybrid cloud environments, the framework allows specifying detailed security policies that
are monitored and enforced by the application runtime in the cloud. In addition, runtime
monitoring is used to collect observations on application intent, which in turn can be used to
infer and adapt (constrain) behavior of application components, e.g., when past communication
patterns suggest offloading to specific cloud resources for better application latency. Since
applications at runtime are collections of actors, application constraints, explicitly expressed or
inferred, can be encoded in the framework in a variety of formal representations, such as actor
synchronization constraints and actor session types, to allow refinement and synthesis of new
constraints.

By using these approaches and techniques, our framework facilitates holistic Assured Cloud
Computing (ACC) for hybrid mobile clouds.

Consider a mobile application that should perform facial recognition of a given image using a
database of known faces, of which some must remain confidential. Since this kind of image
processing is computationally expensive, tasks should be offloaded to the cloud whenever
possible. We assume application developers want to deploy this application in a hybrid cloud
environment, spanning both a public and a private cloud. Using existing frameworks, engineers
face a number difficult issues in the development, deployment, and maintenance of such an
application:

Productivity. The application may have to be decomposed in specific ways to enable
fine-grained code offloading, and the decomposition may be different depending on the

Approved for Public Release; Distribution Unlimited.

8

typical deployment scenarios. Developers may have to translate high-level application
requirements into executable imperative code. To programmatically access sensor data,
knowledge of low-level interfaces may be required.

Security and Privacy. To achieve requirements on security and privacy, developers may
have to use specific knowledge about the deployment environment, e.g., whether a
specific offloading task is sent to a certain public cloud. Developers may also need to add
security checks at specific places in the application code, e.g., where a photo that should
remain confidential is accessed.

Maintainability. The application may have to be re-architected and re-deployed due to
small changes in the environment, e.g., cloud provider changes or increases in average
network latency. When application requirements on energy consumption and availability
change, developers may have to manually adjust parameters inside imperative code.

A central goal of the IMCM middleware framework is to mitigate these and related issues.
Specifically, by programming the application using the actor model, there is no particular tie to a
specific code offloading approach, although actor granularity matters for offloading efficiency.
When requirements are encoded as declarative constraints enforced by the framework,
application evolution becomes less involved and prone to failures; developers no longer carry the
burden of inserting code for checking security policy conformance. The framework also hides
low-level sensor interfaces. In addition, programmers need not write any logic for deciding when
it is beneficial (with respect to energy consumption, latency, etc.) to offload actors into the cloud.
Instead, using data on energy consumption, latency times, policies, and other runtime
information, the framework can make offloading decisions on-the-fly.

Figure 1 illustrates the application scenario at a high level when the IMCM framework is used.
The image application runs on one or more mobile devices that may offload certain actors to
either the private or public cloud. Meanwhile, the framework runtime performs monitoring of
devices and can provide the data to determine when it is appropriate perform offloading.

Approved for Public Release; Distribution Unlimited.

9

Figure 1. The application scenario at a high level when the IMCM framework is used

Section 3 Methods, Assumptions, and Procedures

Our framework is focused on improving individual application performance while addressing
dynamic run-time environment, end-user context, and application behavior. Unlike previous
research, our system supports offloading to multiple remote locations, a concurrent application
model, and simultaneous execution on both mobile device and remote cloud resources.

IMCM Framework Overview

Many organizations, developers or users benefitting from cloud resources have privacy
requirements, expectations, and policies in terms of how different private or public cloud
resources can be used by a mobile application. Without having enough flexibility in the
offloading framework to address these requirements, many users will not be able to benefit from
the cloud resources. In order to accommodate these requirements, we describe a language to
define policies, and explain how the framework can be customized to address them.

While addressing these policies is critical, other quantitative properties such as performance and
energy characteristics on the mobile device greatly affect the quality of an application in meeting
overall user requirements. The framework allows configuring policies that need to be enforced,
but they may affect the performance and energy usage of the application. On the other hand,
optimized performance and energy can possibly be leveraged for providing stronger privacy

Approved for Public Release; Distribution Unlimited.

10

guarantees. Through the IMCM framework, we discuss mechanisms that allow developers or
users to control all privacy, performance and energy aspects of their applications via code
offloading. In order to formulate the application component offloading problem, a
comprehensive mobile-hybrid-cloud application model is needed.

Cloud Model

Over time, cloud services have moved from the model of using public cloud spaces to private
clouds and recently to the hybrid model combining both. Cloud infrastructure is traditionally
provided by large organizations, thus referred to as public clouds. However, storing data on
third-party machines suffers from potential lack of control and transparency in addition to the
legal implications. Cryptographic methods can be used to secure the data by encrypting it before
storing it in a public cloud, while decryption keys are only disclosed to authorized users.
However, these solutions do not scale well and inevitably introduce heavy computational
overhead.

In modern mobile-cloud applications, application code is also stored along with data in the cloud.
This creates an additional challenge with using public clouds, wherein encrypted pieces of code
cannot be executed without decrypting and revealing its content to the cloud provider. These
issues have caused companies to gradually move toward building their own private clouds.
However, owning private datacenters is not as efficient, reliable, or scalable as using the public
ones. Thus, in recent years, a combination of both private and public cloud spaces is used that
benefits from all the advantages of the public cloud while keeping the confidential or sensitive
data and algorithms in-house. Unlike previous mobile-cloud solutions that consider only one
single remote location for offloading, our model considers a hybrid cloud space consisting of one
or several private and public cloud spaces and allows concurrent application component
offloading and execution on all of them.

Cloud Application Model

In order to replace the traditional data-centric view of the cloud with a more general
data/computation-centric view, the current popular service-oriented architecture that provides
services on data stored in the cloud to external users, needs to be replaced with a new
architecture that dynamically and transparently leverage cloud resources to address end-user
mobile device limitations. An elastic application development environment allows components
storing data or performing computations to be transparently distributed between private clouds,
public clouds, and end-user device. When such an application is launched, an elasticity manager
monitors the environment, measures resource requirements of different application components,
and makes decisions about component distribution between mobile device and different cloud
spaces based on run-time parameters, application behavior, and user expectations. This allows

Approved for Public Release; Distribution Unlimited.

11

mobile applications to enforce security policies while adapting to different workloads,
performance goals, energy limitations, and network latencies.

In order to prevent creation of additional work for application developers, unnecessary details of
distribution and move-around of application components should be masked. In order to reach
the maximum level of parallelism without the hassle of traditional multi-threading model,
modern cloud-based applications avoid using a shared memory model that is unnatural for
developers and leads to error-prone non-scalable programs. Instead, modern cloud-based
applications restrict the interaction between various components to communication using
messages. This approach to cloud application development aligns with the concepts of the actor
model of computation that sees distributed components, called actors, as autonomous objects
operating concurrently and asynchronously. In response to a received message, an actor can
make local decisions, create new actors, send more messages, or change its behavior to respond
differently to the next received message. Compared to the traditional shared memory model,
actors are a better fit for highly dynamic applications operating in open and challenging
environments. Actors may be created and destroyed dynamically, they can change their
behaviors, and migrate to different physical locations. The model provides natural concurrency,
resiliency, elasticity, decentralization, extensibility, location transparency, and transparent
migration that ease the process of scaling-up or -out, which is a critical requirement for cloud-
based applications.

Also note that minimizing energy usage on the mobile device requires solving the problem of
attributing energy consumption to components of an application. The actor model also lends
itself naturally to defining the granularity for energy monitoring at the level of individual or
groups of actors. Actor instances can be the primitive units for targeting energy measurements,
while groupings of actors of a particular type can be considered for aggregations/higher-level
metrics like average energy consumption. Schedulers for actor-based languages also view actors
as basic computational entities for scheduling decisions, so the underlying runtime can be
instrumented to track actors running in different time intervals.

As a result, our view of a mobile-cloud application consists of actors distributed between local
mobile device and different cloud spaces.

Defining Privacy for Mobile Hybrid Cloud Applications

We want to enable developers/users to restrict access to different resources and mobility of
sensitive or confidential components resources based on required policies. This requires the
framework to follow authorization rules defined by the organizations, developers, or users.
Elastic application components on the cloud should adhere to the property of least privileges.
Which permissions a component should have may depend on its execution location, application

Approved for Public Release; Distribution Unlimited.

12

requirements, or user concerns. Implicit access to device resources may require additional
scrutiny when the component is no longer running local to the device. A comprehensive security
solution requires authentication, access control, and auditing. There has been significant amounts
of work on authentication and auditing for cloud applications in the past, and the existing
solutions are mature enough to address most applications. So we focus on an approach for adding
policy-based privacy to our framework which restricts the accesses, actions, and mobility of
components.

Design of the Authorization System

Since we want to provide fine-grained authorization systems for application components, we
adopt a hierarchical approach where organizations can enforce an organization-wide policy while
developers and end-users can fine-tune it. An organization is the primary owner of the data and
resources and must be able to keep private and public cloud components separate from each
other and define an overall policy in terms of resource usage for different users or different
applications. Specific applications may also need to further tighten these organization-wide
policy rules. End users or programmers must also be able to further restrict resource usage and
component distributions for specific applications. As a result, our framework supports two types
of policies: hard policies and soft policies.

A hard policy refers to organization-wide authorization rules defined per user or application by
the organization. Users include different developers inside the organization in addition to
external clients. On the other hand, a soft policy refers to application-specific authorization rules
defined in addition to the organization-wide hard policy. Despite the fact that these two types of
policies have complementary roles in increasing system flexibility, a soft policy can only tighten
the organization-wide policy and not vice versa. In other words, if the organization-wide hard
policy allows a specific user or a specific application to access resources A and B, soft policy can
only further restrict the access to one of the resources A or B and can never loosen the
restrictions by allowing access to a new resource such as C. Separating the restriction policy
definition from the application logic in this way allows organizations to define its hard policies
without programmers having to worry about compromising the pre-defined organization-wide
policy.

Each application instance initially authenticates itself with a Policy Manager Machine (PMM)
and receives a locked unchangeable hard policy that contains the organization-wide authorization
rules defined by the organization. Each organization can define its authorization policy as one
policy for all users, one policy for all applications, one policy per application, one policy per
user, or one policy per application instance. In the end, each application instance can acquire one
locked hard policy from the policy manager machine. In addition, each application instance can
have one soft-policy. Developers can define the initial soft-policy per application or per

Approved for Public Release; Distribution Unlimited.

13

application instance. They can also allow end-users to change all or part of this soft policy
through the application. To implement these rules, we follow the XACML usage model and
assume a Policy Enforcement Point (PEP) as part of our elasticity manager. PEP is responsible
for protecting authorization rules, sending a request containing description of the attempted
action to a Policy Decision Point (PDP) for evaluation against available hard and soft policies.
The PDP evaluates the requested action and returns an authorization decision for the PEP to
enforce.

Our authorization framework needs to be able to apply the restriction rules at the granularity of
actors. It still allows defining those rules at higher-level entities, such as groups or sets of actors,
but it recursively propagates all those specified authorizations (permissions or denials) to all
actors contained within that set at runtime. This makes it easy to specify authorizations holding
for a larger set of actors (on the whole system in case ALL is used) and have it propagated to all
the actors within that set until stopped by an explicit conflicting restriction rules. Actor
frameworks allow multiple actors to be placed together in a container, called actor system or
theater, to share common attributes. We respect this structuring in our language and allow
authorization rules to be defined on actors, actor systems, sets of actors (called Group), set of
actor systems (called Location), or subset of multiple actors and actor systems (called Selection).

While access control models restrict access to different components or resources, our mobile
hybrid cloud framework provides more than access restriction. The actor programming paradigm
allows an actor to send and receive messages, create new actors, or migrate to new locations. As
a result, our authorization grammar must allow defining rules regulating all these actions. Note
that these actions are usually bidirectional, meaning that if actor 1 is allowed to send to actor 2,
then actor 2 must also be allowed to receive from actor 1 in order for the policy to be consistent.
If any of these two actions are not explicitly allowed as part of the policy, the framework
automatically rejects both actions, as they will always happen together.

Mobile Hybrid Cloud Authorization Language

Authorization decisions are made based on the attributes of the requester, the resource, and the
requested action using policy-defined rules. As a result, defining an authorization policy means
defining the authorization entities and their required attributes in addition to defining rules and
desired rule orderings.

In the cloud application model where actors are the smallest entities in an application, actors are
the finest granularity on which we can define access restriction. In order to provide location
transparency, multiple actors running on one runtime instance on one machine are placed inside
a container, called actor system or theater as in the SALSA language. Our language supports
defining both actors and actor systems. Every actor is defined by its related reference, logical

Approved for Public Release; Distribution Unlimited.

14

path to reach the element in the runtime environment, in addition to its containing actor system.
The authorization framework uses these attributes to bind the actors defined in the policy to their
real-world application components.

In our language, every actor belongs to an actor system. An actor system is defined by specifying
its related URL/IP address and the listening port number. Since more than one actor system can
run in one runtime instance on a specific machine, both an URL and a port number is needed to
connect to different actor systems running on the same machine. Note that the use of actor
systems hides all the underlying details such as using thread pools for the use of actors,
scheduling the actors, etc., from the programmer or the authorization policy writer.

In order for our language to be able to account for the existence and activities of to-be-developed
application-specific components (while enabling writing organization-wide policies), anonymous
types of entities are defined as part of the proposed language grammar. A rule called anonymous-
actor allows restricting the creation and number of unknown actors in a reference-actor-system.
Similarly, a rule called anonymous-actor-system allows controlling the creation and the number
of unknown actor-systems.

Grouping, Selection, and Binding

Although definitions like those in the previous section can be used to define individual actors
and actor systems, in many cases it is easier to group several entities and treat them as one. A
Group definition puts several actors together into one virtual container and allows placing both
known actors and unknown anonymous-actors together into one group. Similarly we can have a
Location definition to provide the same grouping functionality but for actor-systems. One or
several previously defined actor-systems, locations or even unknown anonymous-actor-systems
can be placed into one container location entity.

Instead of specifying individual entities to form a container, a Selection definition can be used to
pick entities based on a condition. In order to bind previous dynamic actors and actor-systems to
specific run-time component, an Assignment definition can be used. Any remaining unbound
dynamic actor or actor-system is in passive state and will be ignored while enforcing the policy.
Assignment definition can then be used to bind them to specific actors or actor-systems and
change their passive state to active at any time.

Policy Description

The main goal of writing a policy file is to define required authorization rules on actions among
actors. Previous defined grammar allows defining entities and grouping or selecting them that is

Approved for Public Release; Distribution Unlimited.

15

a pre-requisite for defining restriction rules. We now look at using them to express authorization
rules and their evaluation ordering.

Each rule definition regulates one action from subject entities to be performed on object entities.
Actions include all allowable actions within an actor framework: sending, receiving, migrating,
and creating. This allows regulating actions, move-around, and communication between actor
components of a mobile hybrid cloud application.

Policy Evaluation

In a mobile hybrid cloud framework with authorization restrictions, every requested action by the
subject has to be approved by the authorization framework before being performed on the object.
To make a decision, authorization system has to evaluate the defined policy rules. However, it is
possible for different policy rules to contradict each other, as rules are human-defined by
different parties, organization and developers, at different times, at different levels, and for
different purposes. Our framework prioritizes hard policy rules, defined at a higher level by the
organization, over soft policy rules, defined by programmers for individual applications or
instances. Prioritizing hard policy restriction rules over soft policy rules allows resolving any
potential conflict between hard and soft policies. In other types of conflicts between rules of the
same type, we always prioritize action denials over permissions.

Every authorization rule can be summarized as a five-tuple of the form <Subject, Object, Action,
Sign, Type>. Here, Subject and Object are the entities between which the specific action is being
restricted. Sign can be allowance (+) or prohibition (-) and Type covers hard policy (H) or soft
policy (S). In order to decide on any requested action, the authorization system has to process
rules in a meaningful way from the most prioritized one, usually the most specific rule, to the
least prioritized one, the most general one.

Performance and Energy Usage Based Code-Offloading

Target offloading goals can affect the component distribution plan in a hybrid cloud environment
with multiple public and private cloud spaces in addition to fully parallel application execution.
Thus we examine application performance and energy usage on mobile device as target
offloading goals and create an offloading decision-making model for the same.

Migrating an entire VM to a more resourceful machine is expensive, so we consider an
offloading process that consists of decision making about appropriate parts of an application to
offload in addition to migrating them, executing them on remote servers and bringing back the
results. The actor-based mobile-cloud application model provides natural application partitioning
and masks component migration process. What remains is finding appropriate components for

Approved for Public Release; Distribution Unlimited.

16

offloading and this section focuses on making such optimal offloading decision with respect to
target goal, application behavior, and run-time parameters.

Offloading for Sequential Execution on a Single Server

Considering the offloading process cost and its effect on application behavior, we see that such a
cost highly depends on the target offloading goal. Offloading goals can vary significantly based
on the application or user and range from maximizing the application performance (e.g. games,
vision-based applications) to minimizing energy consumption on the mobile device (e.g.
background applications).

Equations 1 and 2 below show the offloading goals for maximizing application performance and
minimizing energy usage on mobile device respectively. First, let

Tdevice = time for offloadable work to be done on mobile device
Ttransfer = time for data to be transferred from mobile device
Tremote = time for offloadable work to be done on remote server processes

then:
Tdevice > Ttransfer + Tremote (1)

Second, let

Eactive = energy spent for carrying out computation on mobile device
Etransfer = energy spent by device to transfer data to remote server
Eidle = energy spent in idle mode waiting for offloaded work to complete

then:
 Eactive > Etransfer + Eidle (2)

The above equations lead to the pause-offload-resume model, which results in sequential execution. We
consider parallelism where multiple remote servers are working concurrently with mobile devices. Also
note that Equations 1 and 2 are very similar and usually result in close decisions, if power consumption on
mobile device for computation, transferring data to remote server and waiting in idle mode are all
proportional. This is the case for sequential execution and is the result of assuming mobile screen is to be
on even in idle state.

Offloading for Parallel Execution on Hybrid Clouds

Deciding on an optimized offloading plan for parallel applications in a hybrid cloud environment
requires considering the application type, available resources at different remote machines, and
offloading effects on future application behavior.

Fully parallel execution refers to both parallel execution on multiple remote locations and
simultaneous local and remote execution. As a result, the total application execution time is the
maximum time required for any of the mobile or remote spaces to finish executing program code

Approved for Public Release; Distribution Unlimited.

17

for all of its assigned components. Since local communication between components located on
the same machine is relatively fast, we can ignore local communication and only consider
communications between components placed at different locations. The offloading goal can be
summarized as maximizing application performance (MaxAppPerf) or minimizing application
execution time (MinAppExec) using:

A mobile application consists of N components, and each component i ∈ [1,N] is located at
Loc(i,t) at time t. Having M different cloud spaces results in Loc(i,t) ∈ [0,M] where 0 represents
the local mobile device and [1,M] corresponds to different cloud spaces. Assuming that we know
the application component distribution between the local mobile device and the hybrid cloud
spaces at time t1, our goal is to find the component distribution for the next time interval t2 such
that application performance is maximized.

Thus, different parts of Equation 3 can be extended so that the first term max(ExecAtLoc(L))
captures the maximum across M different cloud spaces, of execution time for all components on
each of those locations L. This can be obtained using monitoring and previous profiling for
execution time of each component in its location at time t2.

Similarly the second term max(CommAtLoc(L)) of Equation 3 captures the maximum required
time for one of the locations to send out all its communications. This can be obtained using the
profiled amount of communication between each pair of components during elasticity manager's
running time interval ∆ and the location of components across locations in time t2.

However, not all components of an application are offloadable. So, a few constraints must be
added to the above optimization problem. As we are considering a hybrid cloud consisting of
multiple private and public cloud spaces, application developers or users can specify additional
constraints in terms of how different components can be offloaded to different locations. These
additional constraints can also address privacy issues in terms of not offloading sensitive or
confidential components to public cloud spaces.

Let us now examine the differences in terms of minimizing mobile device energy consumption,
instead of performance. This goal can be defined as below. Let

Eapp = application mobile energy consumption
Edevice = energy saved on mobile device
Eremote = total mobile energy saving by remote component execution
Ercomm = energy loss due to local communication becoming remote communication

Approved for Public Release; Distribution Unlimited.

18

Elcomm = energy saved due to remote communication becoming local communication
then:

Eremote in Equation 4 can be further elaborated into

where Energy(i) is the profiled energy consumption of component i running locally on the
mobile device during the time interval ∆, LocEQ(l1, l2) returns 1 if two given locations are
identical and 0 otherwise. Note that the first term of the equation considers only components that
are currently on the device and second term adds the condition that those element must now be at
a remote location. This way energy saving is only counted for components that have been
migrated from the local device to a remote location. It should be noted again that our goal is to
minimize energy consumption at the mobile device and not the total energy. Thus, the migration
of components between remote locations does not help with this goal and is not considered in the
equation.

Ercomm and Elcomm in Equation 4 be obtained using the profiled amount of communication
between each pair of components and the profiled mobile power when communicating with
remote servers.

Similar to its performance counterpart, we can add constraints such as offloading components to
remote locations to save local energy should not affect the performance of the application. In
other words it allows energy saving as long as a certain service performance quality is satisfied.
An important observation we made in our fully parallel application model is that the results of
our offloading goals are very different for application performance improvement and energy
savings on mobile device. This is unlike the sequential case in which the models lead to similar
configuration results. So we use the constraints to add restrictions on how much improvement for
one goal can affect the other.

Energy Monitoring

A big challenge to solving Equation 5 is the use of Energy(i). As mentioned, Energy(i) is the
profiled energy consumption of component i running locally on the mobile device. This requires
fine-grained profiling of energy consumption per application component on mobile device.
However, most mobile devices do not provide any tool for direct measurement of the consumed
energy. Almost all previous research in this area rely on external power meters to measure
energy consumption. Although using expensive external power meters work for experimental
settings, we cannot expect end users to carry such a device with themselves to profile energy

Approved for Public Release; Distribution Unlimited.

19

consumption of the mobile device. This is a big challenge for optimizing energy consumption of
mobile hybrid cloud applications. Even if the total energy consumption of the mobile device can
be measured, there are multiple applications running on a mobile device at any time. This
requires distribution of the total measured energy among those applications. Further there are
multiple components within our target application running over times and distributing energy
further among those application components is a challenge. The solution we explore here can
scalably profile runtime energy consumption of the application, while treating it as a black-box.
This approach can detect complex component interactions/dependencies between components or
actors in an application that affect energy consumption on mobile device.

We consider mobile applications written using the actor model based programming language
SALSA that natively supports migration of actors between mobile and cloud platforms. We build
the mechanism to profile running applications from underlying SALSA runtime layer to attribute
battery drops to subsets of actor types. It begins with instrumentation of SALSA runtime that
enables determining actors scheduled in the application at each (pre-defined) interval of time.
Using the corresponding battery drops in these intervals, a combination of linear regression and
hypothesis testing techniques is used to infer battery drop distribution of subsets of actor groups
within an execution context.

Note that different subsets of actors would be active in each interval so if we observed this data
for an application coming from large number of smartphones, it would then be possible to collect
measurements that help generate a distribution for battery drop characteristics for different actor
types with increasing accuracy. Apart from speeding up the availability of battery drops for
subsets of actor types, this crowdsourcing based approach could handle noise in the sensor
readings. We would have to partition this data by execution context however, which includes
hardware context such as screen or GPS being turned on/off, along with software context such as
other running applications on the device. The additional data allows us to manage heterogeneity
of context in which different applications are running before being able to do energy attribution.
We leave this crowdsourcing based monitoring approach as an extension for future work.

Security Policies and Energy Monitoring

We can now extend IMCM to include energy policy based authorization system which can
enforce runtime restrictions on actors running in mobile-cloud ecosystem such as:

• Policies that prevent malicious actors from draining battery on mobile devices to prevent
secure actors from carrying out their tasks.

• Energy consumption based policies to restrict sending or receiving of messages from
abusive actors and managing DoS attacks by enforcing maximum energy threshold based
restrictions on actor creation within a container.

Approved for Public Release; Distribution Unlimited.

20

• Organization-wide policies for abusive actors (based on energy characteristics) as the
actor signature. This is useful when runtime actor information is unavailable while
writing such policies.

• Track the energy consumption of an actor over time, in order to detect any large
deviations in energy characteristics that may occur due to the actor being compromised.

Actor-Based Coordination with Synchronizers

Synchronizers are collections of declarative synchronization constraints that can be imposed on
groups of actors. The constraints express under which conditions an actor is able to handle a
message. Until the conditions are met, the message stays in the actor's mailbox. The constraints
have a global effect and affect all messages an actor receives.

The conventional form of synchronizers supports disabling and atomicity constraints. Disabling
constraints prevent an actor from handling messages that match a given pattern. For example, by
disabling the handlers for all but the initialization message, a disabling constraint ensures that an
Actor dispatches (starts to process) the initialization message before it dispatches any other
message. Atomicity constraints coordinate groups of actors by bundling messages into
indivisible sets. A constraint enforces that either all the messages in a set are dispatched, or none
of them are (there is no partial delivery). The constraint provides spatial atomicity.

Programmers declare synchronizers as templates. Similar to classes or actor behaviors, these
templates are dynamically instantiated at runtime with concrete values filled in for the
parameters. Consequently, synchronizers can adapt the system to meet new specifications during
system execution. Actors can install synchronizers at any of their acquaintances. Synchronizers
can have local state that changes with the observed messages. They may also overlap, that is,
multiple synchronizers can constrain the same actor. Figure 2 shows the effects of a possible
synchronizer.

Approved for Public Release; Distribution Unlimited.

21

Figure 2 Constraints Enforced by Conventional Synchronizers

Synchronizers support (combinations of) atomicity and disabling constraints. Atomicity
constraints ensure that a set of messages is dispatched as a whole and without temporal
(happened before) ordering. Messages m and n satisfy the atomicity constraint together and are
therefore dispatched at their target actors. Message p matches a disabling pattern in the lower
synchronizer and therefore cannot be dispatched.

Consider a system that provides two kinds of resources for its users, for example disk drives and
optical drives. There are multiple instances of both drive types and each of these resource kinds
is governed by an administrating Actor that limits the number of instances that can be used at the
same time. Suppose that the disks and optical drives are accessed over the same network
connection. To ensure that drive accesses stay within the bandwidth limit, the administrating
actors have to restrict the total allocations made of both drive types. The synchronizer in Figure
3 implements the necessary coordination pattern using disabling constraints. It stores the total
number of allocated drives in the system in an internal counter alloc. Observing requests and
releases at the resource administrators updates the counter (lines 5 and 6). When the maximum
number of drives has been requested, the synchronizer disables the request handlers of both
administrators (line 4). Thus, neither administrator can process further allocation requests. These
pending requests can be processed only after one of them releases a drive.

Approved for Public Release; Distribution Unlimited.

22

Figure 3. Resource administration synchronization constraint

Synchronization Constraints in Large-Scale Systems

Scalable coordination models must not only use additional resources efficiently, but also address
the inherent requirements of large systems:

Support of dynamic reconfiguration and adaptation. Large systems, for instance a
cloud computing service, are expensive to reboot. Nevertheless, the environment and
specifications of the system are likely to change over the system lifetime, for example
when new services are introduced. A scalable coordination model must therefore support
dynamic adaptation.

Robustness against misbehaving actors. The chance of having a faulty, compromised,
or malicious actor in a system increases with the system size. A scalable coordination
model must therefore be able to cope with uncooperative actors and gracefully degrade in
the presence of failures. It must also guard its reconfiguration mechanisms against abuse.

The second requirement implies that, in general, actors in large systems cannot rely on the good
intentions of other actors. We therefore think of actors as being mutually suspicious, that is, they
do not trust each other. Consequently, actors must try to give others as little control over
themselves as possible and follow the principle of least authority. In particular, actors must try to
avoid making their (eventual) computational progress dependent on others.

Mutual suspicion conflicts with the global scope of synchronization constraints defined in the
conventional synchronizer semantics. Under these semantics, synchronizers observe and affect
all messages a constrained actor receives. Since any actor may install synchronizers on
acquaintances, malicious actors can cause intentional deadlocks on other actors, effectively
resulting in a denial of service at the target. For example, suppose that an actor A can handle
messages of type message1, message2, and so on, up to messageN. A malicious actor M can
prevent A from receiving any further messages by installing a synchronizer, shown in Figure 4
that disables all message handlers in A.

Approved for Public Release; Distribution Unlimited.

23

Figure 4. Disabling attack

Similar problems arise from atomicity constraints. If M forces A to only dispatch messages in
unison with an anonymous actor that never receives any messages, then A will deny all service.
An example of such a synchronizer is shown in Figure 5.

Figure 5. Atomicity attack

Scoped Synchronization Constraints

The examples in Figure 4 and Figure 5 demonstrate that allowing synchronizers to constrain all
messages an actor receives is problematic in large systems. We now describe a scoping
mechanism for synchronization constraints that restricts their effects to a subset of messages,
which addresses this problem.

The central idea behind the approach is that synchronization constraints restrict not the receivers,
but the sources of messages. Consequently, a constraint installed on actor A by actor I should not
apply to all messages that A receives. Instead, the constraints should only apply to messages
received by A if they were sent by actors that are under control of I. Hence, the constraints
should only apply if the installing actor I has the capability to impose constraints on the sending
actors.

Synchronization constraints, and thus synchronizers, work in the opposite direction of object-
capabilities. Object-capability security is the natural security model of actor systems. Its defining
notion is that once an actor address—the capability for this actor—is known, any message may
be sent to it. Access to services hence depends on the knowledge of actor addresses; security can
be implemented through their careful distribution. The underlying assumptions are that addresses
are unique across the system and cannot be guessed. For actors, the only ways of obtaining
knowledge of other actors' addresses are (1) initialization: the system starts with this knowledge
distribution; (2) parenthood: creating a new actor yields an address; and (3) introduction:
addresses are values and can be propagated inside messages.

Approved for Public Release; Distribution Unlimited.

24

As a complement to object-capabilities, we introduce synchronization-capabilities that determine
the scope of synchronization constraints. Synchronizers can constrain messages only if they hold
the synchronization-capability to the message source. They receive their synchronization-
capabilities from the installing actor. Figure 6 shows the scoping effects of synchronization-
capabilities.

Figure 6. Constraints Enforced by Scoped Synchronizers

Scoped synchronizers (dashed frames) constrain only messages sent by actors for which they
hold the synchronization-capability. These actors are placed in the left part of the synchronizer.
Their sent messages must satisfy the constraints before they can be dispatched at the recipients
(placed right). Since message u matches a disabling pattern of the lower synchronizer, it cannot
be dispatched. However, the respective synchronizer lacks control over the sender of message v,
so v can be dispatched despite having the same shape as u.

As with object-capabilities, we assume that synchronization-capabilities are unique across the
system and cannot be guessed. Their distribution follows similar rules. Actors can obtain
synchronization-capabilities through initialization and introduction. However, the parenthood
rule is transitive: creating a new actor yields a synchronization-capability for this actor and all its
children. The transitivity of synchronization-capabilities prevents actors from escaping
synchronization constraints by transferring their behavior to a new actor, thereby changing their
identity. Synchronization-constraints hence grant control over families of actors, including future
members whose identities are yet unknown.

The two types of capabilities are separate; a capability of one type cannot be used in places that
require the other. This separation allows actors to send messages to other, potentially untrusted
actors, without submitting to the synchronization constraints of the recipient actors. In contrast to

Approved for Public Release; Distribution Unlimited.

25

the conventional synchronizer semantics, the semantics of scoped synchronizers ensures that the
reply address contained inside a message can be used solely for communication.

With synchronizers only constraining messages for which they hold the synchronization-
capabilities, it becomes unnecessary to restrict access to the synchronizer installation primitive.
Any actor may therefore install synchronizers on all its acquaintances. The imposed constraints
will simply stay without effect for most messages.

Synchronization-capabilities thus prevent the intentional deadlock scenarios discussed in section
3. In the DisablingAttack} and AtomicityAttack synchronizer examples, scoping the situation is
similar to that of the lower right actor in Figure 6: unless the synchronizers hold some relevant
synchronization-capability, all messages will remain unaffected—as is the case for message v in
the figure. Hence, the malicious installing actor poses no threat if none of the other actor in the
system supplies it with a synchronization-capability. However, even in this case, the deadlock
concerns only parts of the system. Synchronization-capabilities cannot completely prevent
deadlocks that arise from incompatible constraints. Nevertheless, accidental interference of
constraints becomes less likely.

Synchronization constraints determine whether a message can be dispatched (processed) at the
receiving actor. Because communication is asynchronous, the sending actor cannot answer this
question as the state of the recipient actor may change while the message is in transit.
Synchronizers therefore reside at the receiving actors; they can be regarded as constraint servers
that are queried by the message dispatch mechanism. This remains true despite the scoping
mechanism's focus on message senders. The only change is that synchronizers now have to
possess the right synchronization-capability to control a message.

An actor's scheduler can dispatch a message only if the message is not disabled by a
synchronizer. The scheduler identifies applicable synchronizers by matching the message against
the patterns declared by installed synchronizers. The scoped semantics requires not only that the
pattern matches (as in conventional synchronizer semantics), but also that the synchronizer's
synchronization-capability gives it control over the message.

When a message is dispatched, all synchronizers belonging to matching update patterns receive a
notice. This includes synchronizers that lack the required synchronization-capability. Making the
dispatch of messages public guarantees a consistent view on the system; it allows synchronizers
to take into account the actions of the uncontrolled part of the environment. For example,
consider the cooperating resource administrators above. If the AllocationPolicy synchronizer was
blind to the requests and release messages of some users, then it could not enforce the intended
limit on the total number of drive allocations on the users it controls.

Approved for Public Release; Distribution Unlimited.

26

However, a globally visible message dispatch is a trade-off. While it allows a consistent view on
the system, it enables malicious actors to spy on other actors, as shown in Figure 7.

Figure 7. Information Leak through Updates

Scoping only limits the constraining power of Synchronizers. To guarantee a consistent view on the system,
Synchronizers can observe all messages that an Actor dispatches—regardless of the synchronization-
capabilities the synchronizer holds. The Attacker Actor exploits this fact to gather information about the
Target Actor: First, the Attacker creates a Trampoline Actor and installs a Synchronizer on the Target and
the Trampoline. The Synchronizer disables the dispatch of message x at the Trampoline until it observes
message y at the Target. Then, the Attacker sends message x to the Trampoline. Once the Trampoline
dispatches x, it bounces a message back to the Attacker, providing the Attacker with the knowledge that the
Target dispatched message y.

Session Types for Actors

Session types are a means of expressing the order and type of messages exchanged by
concurrently executing processes. In particular, session types can be used to statically check if a
group of processes communicates according to a given specification. In these systems, a global
type specifies the permissible sequences of messages that participants may exchange in a given
session, as well as the types of these messages. The typing requires the programmer to provide
the global type. A projection algorithm then generates the restrictions implied by the global type
for each participant. Such restrictions are called end-point types or local types and describe the
expected behavior of the individual participants in the protocol. The actual program code
implementing the behavior of a participant is checked for conformance against this localized
behavior specification. Conventional session types can be generalized to typing coordination
constraints in parameterized actor programs, which can then be enforced using, e.g.,
synchronizers.

Typing coordination constraints in actors requires addressing two problems. First, asynchronous
communication leads to delays that require considering arbitrary shuffles. Second, parameterized
protocols must be considered. For example, assume two actors communicating through a sliding

Approved for Public Release; Distribution Unlimited.

27

window protocol: the actors agree on the length of the window (i.e., the number of messages that
may be buffered) and then proceed to a concurrent exchange of messages. Conventional session
types are not suitable for typing interactions such as the sliding window protocol. The reason for
this limitation is that their respective type languages depend on other formalisms for type
checking (such as typed λ-calculus or System T), and these formalisms do not support a
concurrency construct.

We have developed a programming language, Lang-A, along with a session type system,
System-A, that overcomes many of the aforementioned limitations through the use of novel
constructs; in particular, the introduction of parameterized constructs for expressing asynchrony,
concurrency, sequence, choice and atomicity in protocols, an inference algorithm that derives
local System-A types from Lang-A programs, and a formal treatment of the type system.

Global Types

A global type describes a protocol to which the whole system must adhere. The sliding window
protocol specification is a global type since it describes the behavior of all participants. Table 1
presents the grammar that generates the syntactic category G of global types. The elements of G,
instances of global types, will be denoted by variations of the variable G. Intuitively, the rules
capture the following concepts:

(G-Interaction) denotes the sending and receiving of a message.
(G-Seq) is used for the sequential composition of events.
(G-Choice) denotes exclusive choice between the arguments.
(G-Paral) means that the arguments run concurrently. Interleavings are allowed, as long
as the order established by the ; operator is respected.
(G-Shuffle) means that both arguments are executed atomically, in an unspecified order.
Formally, G 1 ⊗ G 2 ≡ (G 1 ; G 2) ⊕ (G 2 ; G 1) with the ≡ relation denoting semantic
equivalence.
(G-KleeneStar) has the usual semantics of zero or more repetitions of the argument. We
assume a finite number of repetitions.

Table 1. The syntax of global types. The auxiliary symbols appearing in the grammar have the following
domains: i ∈ IndexNames; n,n1,n2 ∈ ParamNames ∪ N; a,b ∈ ActorNames ∪ {αj |α ∈ ActorNames, j ∈
IndexNames}; and m ∈ MsgNames∪ {µj |µ ∈ MsgNames, j ∈ IndexNames}.

Approved for Public Release; Distribution Unlimited.

28

The n-ary versions of the operators express behaviors where the value of n, n1, and n2 are
unknown at compile time. Intuitively, the rules (G-Seq-N), (G-Choice-N), (G-Parallel-N), and
(G-Shuffle-N) apply the respective binary operator n2 - n1 times, generating a global type for
each of the n2 - n1 + 1 values of i. (G-Exp) denotes the n-fold, sequential repetition of the
argument. Note that for known parameter values, these expansions can take place during
compilation.

All of the operators are commutative, with the exception of sequencing. All operators are
furthermore associative, with the exception of shuffling. In particular,

because the meaning is that all arguments Gi are executed atomically, but in an unspecified
order. Instead, the right-hand side above prevents, for example, G3 from occurring between G1
and G2.

The distinction between the Kleene star and exponentiation is fundamental. The use of Gn means
that the protocol conformance checker will have to prove that the system is correct for any fixed
value of the parameter n. G* on the other hand means an unbounded number of repetitions of G.
There is no parameter fixing this number, and it may be different from instance to instance of the
Kleene star and/or among executions of the same program with the same run-time values for its
parameters. The Kleene star entails a choice as to when to exit the loop.

Approved for Public Release; Distribution Unlimited.

29

The traces of a global type G ∈ G capture the permissible sequences of messages that
participants may exchange. More formally, an event is defined as a single interaction p1 −→m p2.
A trace is a finite sequence of events and is of the form e1 ; e2 ; … ; ek.

Programming Language

Global types by themselves provide no implementation of protocols; implementations are given
in the language Lang-A. A Lang-A program begins with declaring the program parameters, akin
to System-A parameters. Then come message structure definitions, and the code for each actor.
Both actor and message definitions can include an optional array syntax after their name. In the
case of actors, this syntax declares as many of them as the array parameter. In the case of
message structures, it declares as many message types as the array parameter. This allows the
expression of protocols where both actor names and message types are parameterized. Lang-A is
defined so that there is almost a one-to-one correspondence between the language constructs and
the syntax of local types, described below.

Figure 8 shows an implementation in Lang-A of the sliding window protocol. The spawn
statement launches n parallel instances of its block argument, one for each value of the provided
index expression. Sends and receives coming from different spawned operations can be
interleaved in any way possible. In this example, both the sender and the receiver spawn n
parallel operations, each consisting of a repeating send/receive pair. This allows any interleaving
of sends and receives, as long as no more than n sends are left unacknowledged.

Figure 8. The sliding window protocol in Lang-A

Approved for Public Release; Distribution Unlimited.

30

Local Types

A local type specifies the abstract behavior of a single protocol participant, for example of one of
the actors in a Lang-A program. Furthermore, local types specify the behavior restrictions that a
global type implies for each protocol participant. The main use of local types, which can be
inferred from Lang-A syntax, is to check whether a program conforms to a global type.

The syntactic category L of local types is defined by the grammar in Table 2. We will use the
variable L ∈ L, often indexed, to refer to local types. Besides characterizing actor behavior, local
types also specify the behavior restrictions that a global type implies for each participant. In the
grammar,

(L-Send) denotes sending a message of type t to actor a.
(L-Recv) denotes receiving a message of type t from actor a.
(L-Seq), (L-Choice), (L-Shuffle), (L-Exp), (L-KleeneStar) describe the same concepts
as in the global types.
(L-Paral) is also defined as in the case of global types.

Table 2. The syntax of local types. As in the syntax of global types, the grammar contains the auxiliary
symbols.

Type Checking

After inferring the local types in a Lang-A program, and projecting out the local types from a
global type for all participants, we can check a program's conformance to a given global type. To
perform the comparison, local types are reduced to a normal form. Types in normal form are

Approved for Public Release; Distribution Unlimited.

31

simpler in several ways, e.g., complex operator applications have been replaced simpler ones,
and the terms of commutative operators have been rearranged to a deterministic order.

Due to how normalization is defined, for any local type L ∈ L in System-A, there exists a finite
sequence of reduction steps which brings the type to a normal form. In addition, a type L and its
normal form Lnorm are trace equivalent.

Realization of Global Types

A global type must satisfy certain properties in order to be projectable. Applying the projection
function to a projectable global type will result in local types for the participants whose
combined behavior is consistent with the global type.

First, to be projectable, the sequential constructs of a global type must retain their sequential
semantics after projection. In addition, it must be ensured that projecting G1 ⊕ G2 maintains the
choice semantics, meaning that all participants can recognize which branch of the choice
operator they need to take during execution. For shuffling to be projectable, it has to be the case
that the constituents can be sequenced both ways, and also that the right hand side satisfies the
choice projectability criteria. In general, the problem with the shuffle operator appears when
actions in one concurrent branch affect choices made on another. Global types that do not
exhibit this problem are concurrently projectable. Use of the Kleene star in global types can
result in protocols whose projection is unsafe, that is, can result in execution traces that are not
part of the original global type. To avoid this, a global type must be such that the entry and exit
conditions to the starred type can be identified by all participants.

Correctness

If a global type G is projectable according to the criteria sketched above, the projection function
generates local types which are functionally consistent with the global type. We denote the
environment resulting from the projection of G onto each one of the participants by ∆G. That is,
∆G = { p : G -> p} p ∈ Π where Pi is the set of participating actors. The set of traces tr (∆)
producible by an environment ∆ is the union of the sets of traces producible by the local types in
∆. Now, let PR be the set of projectable global types. The key correctness property is then that G
∈ PR ⇒ tr (G) = tr (∆ G). The proof is by induction on the structure of global types.

Section 4 Results and Discussion

IMCM Framework

Approved for Public Release; Distribution Unlimited.

32

We measure effectiveness as the speedup gained compared to sequential local execution on
mobile device in order to make the results comparable and link them to our target offloading goal
of maximizing application performance. Our selected corpus consists of applications covering
different types of programs: CPU intensive, communication intensive, I/O intensive, and
combined. We investigate the effect of different application parameters on offloading decision
and evaluate the performance of the IMCM middleware framework.

Experimental Setup

The equipment we used include a Samsung Google Nexus S as the mobile device and a Macbook
Pro Laptop as the remote offloading server. Table 3 summarizes the specifications of our used
equipment. Mobile device and the remote server are both on the same WiFi network.

Table 3. Specifications of the used equipment for evaluation

Our mobile-cloud application model is based on the actor model of computing that offers natural
parallelism for developed applications. Many actor programming languages have been developed
over years to support different applications. Despite some small differences, most of these
programming languages provide main standard actor semantics including encapsulation, fair
scheduling, location transparency, locality of references, and transparent migration. For our

Approved for Public Release; Distribution Unlimited.

33

experiments, we chose SALSA as the programming language mainly due to its adherence to
standard actor semantics. SALSA provides good support for parallel and distributed
programming. Its support for code and data mobility and asynchronous message passing makes
programming for distributed systems a natural task. Its coordination model provides an attractive
feature for parallel programming where multiple CPUs need to coordinate and communicate
between themselves in an efficient manner. SALSA depends on Java, hence it inherits Java's
powerful feature of portability across different platforms. We were able to make SALSA work
on Android mobile devices running DalvikVM with some modifications. SALSA provides
lightweight actors. The use of lightweight actors makes SALSA highly scalable that is one of the
main limitations of some older actor languages. A huge advantage of using lightweight actors is
the speed and ease of actor migration between different devices. Our experimental result showed
that SALSA actors are usually small in size (if not carrying large amount of internal data) and
can be created or migrated in 100 ∼ 200 ms on or between different machines working on the
same WiFi network. This fast migration speed eases the process of mobile-cloud application
offloading.

The base case in our evaluation is the required time for local sequential execution of the
application on the mobile device and the execution speedups are used for comparing different
scenarios. In order to account for randomness, we repeat each experiment five times and verify
the statistical significance of observed execution times through non-parametric Mann-Whitney
U-tests. Unless stated otherwise, the test is two-tailed and the significance level is α = 0.01.

Program Corpus

Table 4 lists the programs used in the evaluation together with their main characteristics.
Evaluation benchmark programs are selected based on their characteristics to cover different
application behavior: Computational intensive, Communication intensive, and I/O intensive. In
addition, a multi-behavior application is added to combine different characteristics. To avoid a
bias towards specific strengths of our approach and to foster comparability, we mostly use
similar examples as for works presenting solutions to mobile-cloud computation offloading. The
NQueen program is a computation-intensive application that places N queens on a N*N
chessboard so that no two queens threaten each other. The Heat program is a communication-
intensive application that simulates heat transfer in a two-dimensional grid in an iterative
fashion. Our implementation allows specifying the desired level of communication and both
medium and high level of communications are studied. The Trap program is a computation-
intensive application that calculates a definite integral by approximating the region under the
graph as a trapezoid and calculating its area. The Virus program reads in file streams from disk
and scans for the signature of a given virus. The Rotate program is an I/O-intensive application
that reads in an image from disk, rotates it in memory and writes it back to disk. Similarly, the
ExSort program is an I/O-intensive application that sorts the content of a large file using external
sort algorithm in limited amount of memory. Finally, the Image program combines all I/O, CPU,
and communication characteristics by detecting and recognizing all faces in a given picture using

Approved for Public Release; Distribution Unlimited.

34

a large dataset of known faces. Since processing of each picture is performed sequentially,
multiple images are processed simultaneously in order to add parallelism.

Table 4. Programs used to evaluate our framework. Application characteristic column shows
dominant behavior of the application, raw speedup column summarizes maximum speedup
gained by running application on a more-resourceful machine excluding offloading time, and
offload speedup shows maximum speedup resulting from offloading including offloading
overhead.

Influence of Application Parameters on Offloading Decision

This section discusses how different application or execution properties influence offloading
decision, answering the following research questions:
RQ1: What influence do the a) cost of offloading process, b) application type, and c) run-time
parameters have on the mobile-cloud offloading decision?

Table 4 shows the speedup results for different applications together with applications' main
characteristics. While the raw speedup column ignores the cost of offloading process, offload
speedup column shows a more realistic view on mobile-cloud offloading by including the
required time for offloading process. Note that different rows of the table relate to different
applications with significantly different behavior, architecture and characteristics that should not
be compared with each other. Comparing the values of raw speedup and offload speedup
columns shows the effect of offloading cost on gained speedup. Offloading cost includes the
required resources to make offloading decision, offload the application code to remote server and
bringing back the result. Ignoring the cost of offloading process, The equation predicts the
speedup resulting from running the same code on a faster machine. Assuming Xserver = 7 for our
experimental setup, the expected speedup is as below:

Approved for Public Release; Distribution Unlimited.

35

raw speedup column shows that a speedup of 64 times or even higher is possible. However,
when large amount of data needs to be offloaded (such as Rotate application), offloading
speedup reached in practice is significantly lower. Moreover, the result highly depends on the
application type and behavior as well. A computational-intensive application with high degree of
parallelism (e.g. NQueen) can benefit from all the additional available resources on the remote
server and can reach a high offloading speedup. Extensive I/O operations or communications
between different components limits application's ability of benefiting from additional available
computational resources at the remote server and reduces the gained speedup (e.g. Rotate and
Heat).

In order to decide on the beneficiary of offloading w amount of computation to a remote server
for our experimental setup, Equation 7 can be used with values from Table 3:

Rearranging the equation to compute Bmin to be the minimum required bandwidth in order for
offloading decision to reduce total application execution time. The equation depends on the ratio
of di / w and can only be true when the ratio is small enough. In other words, application
offloading is beneficial for large amount of computation (w) and low amount of transferred data
(di). For values in between, the decision depends on the available bandwidth (B) and an elasticity
manager must evaluate the equation based on run-time parameters. For the NQueen problem, a
single integer value has to be transferred both for input value (N) and final result and di is very
small. At the same time, problem is computational-intensive and requires large amount of
computation (large w). As a result, any type of network connection provides enough bandwidth
and offloading always improves application performance. Note that the code of the NQueen
solver is assumed to be available on the remote server and network latency is ignored. In case of
the Image, assuming remote server to be very fast (Ss = ∞), offloading decision depends on w, di
and B. If detection of faces in the initial image, extracting features for every detected face and
comparison to database are all offloaded, the entire initial image needs to be transferred to the
remote server and the amount of communicated data (di) is large. Thus, it is only beneficial to
offload, if B is large enough. On the other hand, if the initial detection of faces are performed
locally and only the extracted features are transferred, di is much smaller. Consequently, even for
slower network connections, offloading of the remaining parts is beneficial. This highlights the
importance of considering the combination of all parameters for deciding on offloading.
Different parts of an application can become offloading candidates at different time and an
elasticity manager is required to dynamically decide on offloading based on run-time parameters.

RQ2: How significant is the influence of problem size (amount of work) on mobile-cloud
offloading?

Approved for Public Release; Distribution Unlimited.

36

Figure 9 and Figure 10 show the offloading speedup for different amount of work for NQueen
and Image applications. The results show that larger amount of work results in more
computationally-intensive applications, reduces the importance of the fixed amount of work
required for offloading process, and increases the gained speedup. While initial offloading
speedup of NQueen problem is almost equal to 1 (for N = 8) due to low amount of required
computation, changing N value exponentially increases the amount of work to be performed and
the resulting speedup. Image problem is a multi-behavior application with initial speedup of
larger than 1 due to the size of computations required for processing even one single image. For
this problem, changing the amount of work equals increasing the number of images to be
processed and results in linear increase of speedup.

Figure 9. Speedup summary for local and remote execution of N-Queen execution for different

amount of work (different problem size)

Approved for Public Release; Distribution Unlimited.

37

Figure 10. Speedup summary for local and remote execution of Image Processing

application for different amount of work (different no. of images to process).

RQ3: What influence does the application parallelism degree have on mobile-cloud offloading?

If the ideal speedup resulting from offloading where computation is large enough, code has high
degree of parallelism roughly comparable to available resources, and negligible amount of
resources is used for offloading process. Without benefiting from parallelism, running the same
code on a more resourceful machine can only provide limited speedup (sequential remote
execution graphs of Figure 9 and Figure 10). This speedup is mostly because of benefiting from
remote server's faster CPU speed, additional available caches, and more memory. However,
additional available processing units are not used. We mentioned that for practical applications,
the amount of resources required for offloading process is negligible compared to resources
required for performing large amount of computation. If computation is not large enough, even
using high degree of parallelism does not provide significant additional speedup. However, when
the amount of computation is large enough, higher degree of parallelism significantly improves
the performance and the benefit of having additional processing resources becomes visible.

Figure 11 shows the relationship between application parallelism degree and speedup resulting
from offloading. While on a mobile device with only one single core increasing parallelism
degree does not improve the performance, on a more resourceful remote server increasing the
program parallelism degree allows better utilization of resources and increases application
performance. While sequential execution of the NQueen problem on a faster system generates a
speedup of 14 times, increasing the parallelism degree increases the resulting speedup to 55.
Performance improvement resulting from increasing program parallelism degree is limited by the
availability of resources. At a certain parallelism degree, resources will become saturated and

Approved for Public Release; Distribution Unlimited.

38

further increase of parallelism degree will have reverse negative effect (Figure 10). Considering
the null hypothesis that remote sequential execution is as effective as the remote parallel
execution, Mann-Whitney U-test shows that all differences for various problem sizes and
parallelism degrees are significant. Consequently, the null hypothesis is rejected.

Figure 11. Speedup summary for local and remote execution of the NQueen problem with

different degree of parallelism

Effectiveness of the Proposed Middleware Framework

This section discusses the performance of the proposed IMCM middleware framework,
answering the following research questions:

RQ4: Is the IMCM proposed parallel local & remote execution offloading solution more
effective than existing sequential (or pseudo-parallel) execution offloading solutions?

While offloading computation to a more resourceful system can improve overall application
performance, mobile device local resources are wasted while waiting in the idle state for the
result of offloaded code to be returned. With mobile devices becoming more powerful, this
wasted computational power can be put to a better use. Our proposed framework supports
simultaneous local and remote application execution and uses local mobile resources to execute
other parts of an application while waiting for the offloaded code result.

Figure 12 shows the speedup differences between processing different number of images using
only remote server and simultaneous execution on both local device and remote server. Since
processing of a single image is sequential, for small amount of work (small number of pictures to

Approved for Public Release; Distribution Unlimited.

39

process), total execution time will be dominated by the required time for local mobile device to
process its share. This will result in remote server starvation and waste of resources, as there will
be no more job for it to process. However, with increase in the amount of work, there will always
be enough job for remote server to perform and the advantage of using both local and remote
server for application code execution becomes visible. Figure 13 shows the same effect based on
application parallelism degree. We mentioned earlier that higher degree of parallelism will
increase the flexibility of the application and results in higher offloading speedup. However, this
is only true, if enough computational resources are available. As can be seen in the graph,
increasing the parallelism degree (number of workers) initially results in higher speedup but after
a certain point this effect is reversed. In fact, having higher degree of parallelism than the
available resources results in over-saturation of resources, adds the overhead of managing all
those workers, and reduces overall speedup. Our results show that required parallelism degree
for an application to reach highest speedup is proportional to number of processing cores
available. The coverage differences of any two different number of workers for both remote and
simultaneous local and remote executions are significant α = 0.01. Thus, the null hypothesis that
there is no significant difference between image processing execution with different number of
workers can be rejected.

Figure 12. Speedup summary for remote execution vs. local + remote execution of image processing
problem with different problem size (different number of images).

Approved for Public Release; Distribution Unlimited.

40

Figure 13. Speedup summary for remote execution (x remote workers) vs. local + remote
execution (1 local + x remote workers) of image processing problem with different number

of remote workers

RQ5: How effective is the IMCM elasticity manager in detecting application run-time
environmental parameters and offloading appropriate application components?

Despite significant performance speedup resulting from offloading application to more
resourceful systems, manual configuration of components between local mobile device and
remote server is not possible. Ideal component distribution depends on several factors that can
dynamically change during execution. Thus, an elasticity manager is required to monitor
environmental changes and find optimal offloading plan. Figure 14 shows the result for manual
placement of application components versus automatic component management using IMCM
elasticity manager. Implemented elasticity manager uses the previous profiled execution times of
different components at various locations to find the optimal location for placing every
component for next interval. We currently do not use profiled execution time from previous
execution of the application. As a result, there is an initial lag between start of an application and
optimal placement of components resulting from the required time to collect enough profiled
data. As a result, when problem size and resulting total application execution time increases, the
gap between ideal placement of component and automatic distribution becomes narrower.

Approved for Public Release; Distribution Unlimited.

41

Figure 14. Speedup summary for local execution (base case) vs. remote execution (ideal
case) vs. local execution with elasticity manager (all automatic management) of image

processing problem with different problem size (different number of images to process)

RQ6: What is the performance overhead of the IMCM automatic elasticity manager?

While offloading appropriate components to a remote server can potentially improve application
performance, having a costly elasticity manager to profile run-time and application parameters
and finding optimal distribution plan can result in less overall performance. Figure 15 shows the
overhead results from our implemented elasticity manager. Results show that having profiler and
elasticity manager running in the background generates 1 - 5% speedup decrease on average.
Considering the range of 9 - 60x for speedup gain from offloading applications shows that
IMCM elasticity manager overhead is low. Moreover, as the problem size increases, the benefit
of offloading becomes more dominant and the elasticity manager overhead becomes even less
important.

Approved for Public Release; Distribution Unlimited.

42

Figure 15. Overhead resulting from elasticity manager for image processing problem with

different problem size (different number of images to process)

Synchronizers

In their current form, synchronizers are limited in their expressiveness through their choice to
offer but a functional core consisting of two constraint types. An interesting opportunity for
future research is extending the selection of available constraints. For instance, syntactic sugar
like ordering constraints allows programmers to express their intentions more naturally, and thus
make fewer mistakes. Other concepts like non-interleaving of message sequences cannot be
expressed at all.

Another opportunity concerns the robustness of synchronizers against network partitions and
crash failures. Augmenting the semantics with failure detectors appears to be a promising
approach. A further interesting direction is finding methods for handling information leaks.

Finally, implementing synchronizers in a modern actor framework and conducting a large case
study would give interesting insights into the (programmer and computational) performance of
synchronizers.

Session Types

Adding support for dynamic process creation is an important direction for future work in session
types for actor systems. In its current form, System-A cannot express actor creation as a
behavior, and global types assume that all participants already exist. Matching a created actor
with its subsequent use in a type requires an extra step which is not obvious.

Approved for Public Release; Distribution Unlimited.

43

Furthermore, System-A omits support for session delegation, and does not deal with issues of
progress. In addition, it does not consider overlapping indexed names when nested in multiple
operators. This disallows some cases, such as all-to-all communication.

Finally, other possible extensions concern the runtime monitoring application domain. In
particular, adding support for global assertions can form the basis of a powerful theory for
deriving local restrictions for each participant, which an asynchronous observer can then enforce.

Section 5 Conclusions

We have developed the IMCM middleware framework for transparent automatic code offloading
from mobile devices to hybrid cloud spaces. The framework is fine-grained, supporting
application configuration and distribution at the granularity of individual components; it is
adaptive, addressing the dynamicity in run-time conditions and end-user contexts. It further
supports component distribution in a hybrid cloud environment consisting of one or more public
and private cloud spaces. Finally, it provides a new code offloading model that supports parallel
program execution where application components located at mobile device and different cloud
spaces are executed independently but concurrently. Evaluation results show that the offloading
result depends on application behavior, offloading cost, and run-time parameters and can range
between 9 to 56 times.

Future work based on the results of the project involves extending the framework to support
mobile energy consumption optimization and to allow dynamic adjustment of application target
goals. A big challenge with energy optimization is profiling detailed consumption of individual
application components. While the execution time of different components can individually be
recorded using the system clock, a mobile device only reports lump sum energy consumption,
and obtaining a breakdown of total energy among different components remains as a challenge.

Approved for Public Release; Distribution Unlimited.

44

Section 3 Cyber Infrastructure Security: Dynamic Policy Monitoring with Interference in
Cloud (Roy Campbell, John Bellessa, Shadi Noghabi, Luke Leslie, and Chris Cai)

Section 1 Summary of Research Project and Introduction

• Cyber Infrastructure Security: Dynamic Policy Monitoring with inference in cloud
• Large organizations’ IT systems and critical infrastructure systems (e.g., airports, power

grid) are system-of-systems composed of a large number of components vulnerable to
attacks. Enforcing policies that cover different aspects of the system increases the overall
system trustworthiness. The project aims at designing tools to enable
monitoring/enforcing such policies in cloud computing infrastructure.

Section 2 Methods, Assumptions, and Procedures

Our approach permits each organization to monitor independently its own infrastructure, and
exchange information with other organizations only when the local events are relevant to the
detection of a violation. Our approach significantly reduces the amount of information shared
while guaranteeing that all multi-organization policy violations can still be detected.

• Our approach uses the policies for determining which information should be shared.
Through an analysis of the policies and of its current state, each organization
independently decides which information should be shared, and with which organization,
to guarantee the detection of violations.

• Our solution brings together the advantages of a distributed solution where each
organization works independently to detect problems, with the advantages of a
centralized solution that detects all inter-organization problems.

Section 3 Results and Discussion

Our approach permits each organization to monitor independently its own infrastructure, and
exchange information with other organizations only when the local events are relevant to the
detection of a violation. Our approach significantly reduces the amount of information shared
while guaranteeing that all multi-organization policy violations can still be detected. It isolates
virtual machines and helps prevent side channel attacks. In more detail:

• Our approach uses the policies for determining which information should be shared.
Through an analysis of the policies and of its current state, each organization
independently decides which information should be shared, and with which organization,
to guarantee the detection of violations.

• Our solution brings together the advantages of a distributed solution where each
organization works independently to detect problems, with the advantages of a
centralized solution that detects all inter-organization problems.

Approved for Public Release; Distribution Unlimited.

45

• The approach leverages intrusion detection/VMI introspection, encryption, and software
defined networks.

Section 4 Conclusions

Coupled with the results form Section 2, Containers/Software Defined Networking
(SDN) - Security and Services, monitoring probes at the virtual machine level and
preventing cross channel side attacks using the Intel SDX architecture, the research
indicates that containment and isolation can be built for both virtual machines and
containers. Multi-organizational policy-based monitoring and network traffic isolation
through software defined network virtualization and hypervisors can be applied to cross
security domain communication providing a new confidence in security within the Cloud.

Section 5 Recommendations

This research will continue, albeit at a slower pace without funding, to try to integrate these
technologies into a practical solution.

Approved for Public Release; Distribution Unlimited.

46

Section 4 Design of Algorithms and Techniques for Real-time Assuredness in Cloud
Computing (Indranil Gupta, PhD student: Mainak Ghosh; Graduated PhD students: Brian
Cho and Imranul Hoque)

Section 1 Summary of Research Project

This part of the effort within the ACC project has designed, implemented, and experimentally
evaluated new techniques that make today’s cloud systems for storage, batch processing, and
stream processing, more predictable in performance. This includes: i) support for priorities and
real-time deadlines for Apache Hadoop jobs in YARN, ii) support for automated, background,
and seamless reconfiguration operations in storage systems, and stream, and graph processing
systems (Apache Cassandra, MongoDB, Apache Storm, LFGraph), iii) support for consistency-
latency SLAs/SLOs (Service Level Agreements/Objectives) for cloud storage systems (NoSQL
databases; Apache Cassandra, Riak). Our work has contributed both algorithms and techniques,
as well as incorporate modifications into open-source cloud systems including Hadoop,
Cassandra, Riak, MongoDB, Apache Storm, etc.

Further, we are collaborating with co-PI Jose Meseguer in assuring predictability by using
model-checking tools on several of these cloud systems, from NoSQL to transactional databases
(model-checking work covered in a different section).

Section 2 Introduction

Cloud computing today relies heavily on distributed systems (typically open-source) running at
large scales inside datacenters and under unpredictable failure-prone environments. Production
deployments are subjected to workloads that are diverse and dynamic, have to deal with large
numbers of machines and large amounts of data, and yet at the same time they need to meet
service/application requirements for low latency, consistency, and high throughput.

This part of the effort within the ACC center has made contributions to making today’s
distributed systems more predictable even in dynamic environments. Predictability comes from
the ability to support customer requirements such as deadlines and SLAs/SLOs (Service Level
Agreements/Objectives), job deadlines and priorities, the ability to scale out/in seamlessly when
requested by the admin, and to assure the system is up and running in spite of reconfiguration
changes that may be occurring in the background. All of these problems are hot topics of
discussion today and much needed by developers and deployers of large-scale cloud systems. We
make contributions that are both theoretical and algorithmic, and also implement our techniques
into several open-source systems.

Approved for Public Release; Distribution Unlimited.

47

Section 3 Methods, Assumptions, and Procedures

1. In the Natjam system [SoCC 2013] we support priorities and deadlines for jobs in
Hadoop YARN. The key idea is to preempt the tasks of lower priority jobs so that
resources can be freed up immediately for higher priority jobs, however we also
checkpoint these preempted tasks so that they are work-conserving and such preempted
tasks can resume from where they left off in the future (when resources become available
for them). We explored policies for both job eviction (which jobs to victimize) and task
eviction and found that evicting the job with most resources and the tasks with shortest
time remaining is the best policy. Natjam was implemented into Apache Hadoop YARN.

2. In the Morphus system [ICAC 2015, IEEE TETC 2015, ICCAC 2015] we support

reconfiguration operations for sharded NoSQL databases. Examples include changing the
shard key, or scale out/in. The key ideas are to place the new shards at existing servers
(we do not use new servers) using maximum matching so as to minimize network transfer
volume, and to transfer the data in the background smartly, while still supporting reads
and writes in the foreground. Morphus was implemented in MongoDB as well as Apache
Cassandra.

3. In our two systems of Stela [IEEE IC2E 2016] and elastic graph processing [IEEE IC2E

2016] we support scale out and scale in (increase/decrease the number of machines/VMs)
for stream processing systems and graph processing systems in such a way that the
reconfiguration does not interrupt ongoing computation and gives close to optimal
performance after the scaling. The key ideas in Stela, for instance, are to calculate which
operators/tasks benefit from the most from the additional resources (on scale out) or are
affected the least on shrinking (on scale in), and then to initiate such changes to them in
the background. These systems were implemented in Apache Storm and LFGraph
respectively.

4. In the PCAP project [ACM TAAS 2017] we first extend the classical CAP theorem

(which says that all 3 properties consistency, availability and partition-tolerance are
impossible to achieve together) to be a probabilistic impossibility theorem that takes into
account parameters for each of C, A, and P. This allows us to support latency SLAs/SLOs
as well as consistency SLAs/SLOs for NoSQL databases, a sorely needed requirement in
these otherwise-weakly-consistent databases. PCAP was integrated into both Apache
Cassandra and Riak.

Section 4 Results and Discussion

All experiments were done with the production open-source systems, using traces from industry
where available.

Approved for Public Release; Distribution Unlimited.

48

1. Natjam was evaluated with both microbenchmarks and traces from Yahoo!’s Hadoop

production cluster. Natjam comes within 2% of ideal runtime for low priority jobs and
within 7% of idea for high priority jobs. It is significantly better than existing techniques
of either killing low priority tasks (Capacity scheduler) or waiting for such tasks to finish.
When evaluated on real traces from Yahoo!’s Hadoop clusters, 53-63% of jobs improve
in their runtime, and there is minimal starvation of jobs.

2. Morphus was evaluated with the industry benchmark YCSB (Yahoo Cloud Serving

Benchmark). Morphus is able to complete reconfigurations quickly using over 50% of
network bandwidth. It leaves read and write latencies unchanged (in fact improves
median write times slightly!) and causes a very small drop in availability (only for
writes).

3. These systems were evaluated with microbenchmarks and with production Storm

topologies from Yahoo!. Stela and elastic graph processing are able to scale out/in
quickly and without affecting the ongoing computation – for graph processing our
techniques incur only a 6-11% overhead compared to the ideal. For stream processing our
Stela system converges about 75-85% faster than the base Apache Storm system. While
the base Storm system sometimes degrades in performance after scale out, Stela gives
proportionally higher performance when machines are added.

4. PCAP was evaluated using both the industry YCSB benchmark, as well as network delay

models from literature. The PCAP system always satisfies SLOs in spite of highly
dynamic scenarios. In terms of optimizing other metrics (which are not part of the SLO)
PCAP performs very close to the optimal achievable boundary when network conditions
are good to reasonable. PCAP requires only minimal modifications to the underlying
NoSQL system. We also extended PCAP to geo-distributed settings.

Section 5 Conclusions

Our work shows that todays distributed systems for storage, batch processing and stream
processing can be made predictable. Developers/deployers can specify what they need in a
declarative way using SLAs/SLOs, deadlines, or priorities, and our techniques allow the system
itself to decide how to achieve these requirements (today’s state of the art requires developers to
grapple with both the what and the how).

Ongoing Work: Our ongoing work is extending the scale out/in building blocks we have
designed for graph processing and stream processing into systems that support SLAs/SLOs for
multi-tenant clusters that have stream processing and graph processing jobs. A separate related

Approved for Public Release; Distribution Unlimited.

49

project is starting to look at distributed machine learning systems, and making them truly multi-
tenant.

Section 6 Recommendations

Cloud systems should use increase the use of declarative ways of specifying requirements from
users and developers. SLAs/SLOs should be standardized. Further work is needed on: i)
extending the richness of these SLAs/SLOs while still keeping them user-facing and away from
the innards of the system, and ii) extending the notion of such requirements to other emerging
areas of distributed systems such as distributed machine learning (like TensorFlow).

Approved for Public Release; Distribution Unlimited.

50

Section 5 Greatly Increase the Assurance Level to Cloud Computing Systems through
Formal Specifications and Verification in Maude (Jose Meseguer, Si Liu, Peter Olveczky,
and Stephen Skeirik)

Section 1 Summary of Research Project

To deal with large amounts of data while offering high availability, throughput and low latency,
cloud computing systems rely on distributed, partitioned, and replicated data stores. Such cloud
storage systems are complex software artifacts that are very hard to design and analyze. Formal
specification and model checking analysis can significantly improve their design and validation.
In the ACC project we have rewriting logic and it’s accompanying Maude tools as a suitable
framework for formally specifying and analyzing both the correctness and the performance of
cloud storage systems. Specifically, we have used rewriting logic to model and analyze
industrial cloud storage systems such as Google's Megastore, Apache Cassandra, Apache
ZooKeeper, and RAMP.

Section 2 Introduction

Vision: Formal Methods for Cloud Storage Systems

Our vision is to use formal methods to design cloud storage systems and to provide high levels of
assurance that their designs satisfy given correctness and performance requirements. In a
formally-based system design and analysis methodology, a mathematical model S describes the
system design at the appropriate level of abstraction. This system specification S should be
complemented by a formal property specification P that describes mathematically (and therefore
precisely) the requirements that the system S should satisfy. Being a mathematical object, the
model S can be subjected to mathematical reasoning (preferably fully automated or at least
machine-assisted) to guarantee that the design satisfies the properties P. If the mathematical
description S is executable, then it can be immediately simulated; there is no need to generate an
extra artifact for testing and verification. An executable model can also be subjected to various
kinds of model Checking analyses that automatically explore all possible system behaviors
from a given initial system configuration. From a system developer's perspective, such model
checking can be seen as a powerful debugging and testing method that can automatically find
subtle ``corner case'' bugs and that automatically executes a comprehensive ``test suite'' for
complex fault-tolerant systems. We advocate the use of formal methods throughout the design
process to quickly and easily explore many design options and to validate designs as early as
possible, since errors are increasingly costly the later in the development process they are
discovered. Of course, one can also do a postmortem formal analysis of an existing system by
defining a formal model of it in order to analyze the system formally; we have shown the
usefulness of such postmortem analysis in the modeling and design of the Cassandra system.

Approved for Public Release; Distribution Unlimited.

51

Performance is as important as correctness for storage systems. Some formal frameworks
provide probabilistic or statistical model checking that can give performance assurances with a
given confidence level.

What properties should a formal framework have in order to be suitable for developing and
analyzing cloud storage systems in an industrial setting? The requirements can be summarizes as
follows:

1. Expressive languages and powerful tools that can handle very large and complex distributed
systems. Complex distributed systems at different levels of abstraction must be expressible
without tedious workarounds of key concepts (such as, e.g., time and different forms of
communication). This requirement also includes the ability to express and verify complex
liveness properties. In addition to automatic methods that help users diagnose bugs, it is also
desirable to be able to machine-check proofs of the most critical parts.

2. The method must be easy to learn, apply, and remember, and its tools must be easy to use.
The method should have clean simple syntax and semantics, should avoid esoteric concepts, and
should use just a few simple language constructs. The author also recommends against distorting
the language to make it more accessible, as the effect would be to obscure what is really going
on.

3. A single method should be effective for a wide range of problems, and should quickly give
useful results with minimal training and reasonable effort. A single method should be useful for
many kinds of problems and systems, including data modeling and concurrent algorithms.

4. Modeling and analyzing performance, since performance is almost as important as correctness
in industry.

Section 3 Methods, Assumptions, and Procedures

The Rewriting Logic Framework

Satisfying the above requirements is a tall order. We have found that rewriting logic and its
associated Maude tool is a suitable framework for formally specifying and analyzing cloud
storage systems.

In rewriting logic, data types are defined by algebraic equational specifications. That is, we
declare sorts and function symbols; some function symbols are constructors} used to define the
values of the data type; the others denote defined functions that are defined in a functional
programming style using equations. Transitions are then defined by rewrite rules of the form l =>

Approved for Public Release; Distribution Unlimited.

52

r, where l and rare terms (possibly containing variables) representing local state patterns.
Rewriting logic is particularly suitable for specifying distributed systems in an object-oriented
way, in which case the states are multisets of objects and messages (traveling between the
objects), and where an object o of class C may have attributes a1, …,an. For example, a rewrite
rule

rl [l] : m(O,w)
 < O : C | a1 : x, a2 : O', a3 : z >
 =>
 < O : C | a1 : x + w, a2 : O', a3 : z >
 m'(O',x) .
\

defines a family of transitions in which a message m with parameters O and w is read and
consumed by an object O of class C, the attribute a1 of the object O is changed to x + w, and a
new message m'(O',x) is generated.

Maude is a specification language and high-performance simulation and model checking tool for
rewriting logic. Simulations --which simulate single runs of the system---provide a first quick
initial feedback of the design. Maude reachability analysis--which checks whether a certain
(un)desired state pattern can be reached from the initial state---and linear temporal logic (LTL)
model checking---which checks whether all possible behaviors from the initial state satisfy a
given LTL formula---can be used to analyze all possible behaviors from a given initial
configuration.

The Maude tool ecosystem also includes Real-Time Maude, which extends Maude to real-time
systems, and probabilistic rewrite theories, a specification formalism for specifying distributed
systems with probabilistic features. A fully probabilistic subset of such theories can be
subjected to statistical model checking analysis using the PVeStA tool. Statistical model
checking performs randomized simulations until a probabilistic query can be answered (or the
value of an expression be estimated) with the desired statistical confidence.

Rewriting logic and Maude address the above requirements as follows:

1. Rewriting logic is an expressive logic in which a wide range of complex concurrent systems,
with different forms of communication and at various levels of abstractions, can be modeled in a
natural way. In addition, its real-time extension supports the modeling of real-time systems. The
Maude tools have been applied to a range of industrial and state-of-the-art academic systems.
Complex system requirements, including safety and liveness properties, can be specified in
Maude using linear temporal logic, which seems to be the most intuitive and easy-to-understand

Approved for Public Release; Distribution Unlimited.

53

advanced property specification language for system designers. We can also define functions on
states to express nontrivial reachability properties.

2. Equations and rewrite rules: these intuitive notions are all that have to be learned. In addition,
object-oriented programming is a well-known programming paradigm, which means that
Maude's simple model of concurrent objects should be attractive to designers. We have
experienced in other projects that system developers find object-oriented Maude specifications
easier to read and understand than their own use case descriptions, and that students with no
previous formal methods background can easily model and analyze complex distributed systems
in Maude. The Maude tools provide automatic (``push-button'') reachability and temporal logic
model checking analysis, and simulation for rapid prototyping.

3. As mentioned, this simple and intuitive formalism has been applied to a wide range of
systems, and to all aspects of those systems. For example, data types are modeled as equational
specification and dynamic behavior is modeled by rewrite rules. Maude simulations and model
checking are easy to use and provide useful feedback automatically: Maude's search and LTL
model checking provides a counterexample trace if the desired property does not hold.

4. We have shown in previous work that randomized Real-Time Maude simulations (e.g., of
wireless sensor networks) can give performance estimates as good as those of domain-specific
simulation tools. More importantly, we can analyze performance measures and provide
performance estimations with given confidence levels using probabilistic rewrite theories and
statistical model checking; e.g.: ``I can claim with 90% confidence that at least 75% of the
transactions satisfy the property P.'' For performance estimation for cloud storage systems see the
results section.

To summarize, a formal executable specification in Maude or one of its extensions allows us to
define a single artifact that is, simultaneously, a mathematically precise high-level description of
the system design and an executable system model that can be used for rapid prototyping,
extensive testing, correctness analysis, and performance estimation.

Section 4 Results and Discussion

We summarize below some of the key results obtained in the work performed at the Assured
Cloud Computing Center at the University of Illinois at Urbana-Champaign using Maude and its
extensions to formally specify and analyze the correctness and performance of several important
industrial cloud storage systems and a state-of-the-art academic one. In particular, we can list the
following contributions:

Approved for Public Release; Distribution Unlimited.

54

1. Apache Cassandra. This is a popular open-source industrial key-value data store that only
guarantees eventual consistency. We were interested in: (i) evaluating a proposed variation of
Cassandra, and (ii) analyzing under what circumstances---and how often in practice---Cassandra
also provides stronger consistency guarantees, such as read-your-writes or strong consistency.
After studying Cassandra's 345,000 lines of code, we first developed a 1,000-line Maude
specification, which captured the main design choices. Standard model checking allowed us to
analyze under what conditions Cassandra guarantees strong consistency. By modifying a single
function in our Maude model we obtained a model of our proposed optimization. We subjected
both of our models to statistical model checking using PVeStA; this analysis indicated that the
proposed optimization did not improve Cassandra's performance. But how reliable are such
formal performance estimates? To investigate this question, we modified the Cassandra code to
obtain an implementation of the alternative design, and executed both the original Cassandra
code and the new system on representative workloads. These experiments showed that PVeStA
statistical model checking provides reliable performance estimates. To the best of our
knowledge this was the first time that, for key-value stores, model checking results were checked
against a real system deployment, especially on performance-related metrics.

2. Megastore. This is a key part of Google's celebrated cloud infrastructure. Megastore's trade-
off between consistency and efficiency is to guarantee consistency only for transactions that
access a single entity group. It is obviously interesting to study such a successful cloud storage
system. Furthermore, one of us had an idea on how to extend Megastore so that it would also
guarantee strong consistency for certain transactions accessing multiple entity groups without
sacrificing performance. The first challenge was to develop a detailed formal model of
Megastore from the short high-level description. We used Maude simulation and model checking
throughout the formalization of this complex system until we obtained a model that satisfied all
desired properties. This model also provided the first reasonable detailed public description of
Megastore. We then developed a formal model of our extension, and estimated the performance
of both systems using randomized simulations in Real-Time Maude; these simulations indicated
that Megastore and our extension had about the same performance. (Note that such ad hoc
randomized simulations do not give a precise level of confidence in the performance estimates.)

3. RAMP, is a state-of-the-art academic partitioned data store that provides efficient lightweight
transactions that guarantee the simple ``read atomicity'' consistency property. The RAMP
designers have given hand proofs of correctness properties and proposed a number of variations
of RAMP without giving details. We used Maude to: (i) check whether RAMP indeed satisfies
the guaranteed properties, and (ii) develop detailed specifications of the different variations of
RAMP and check which properties they satisfy.

4. ZooKeeper is a fault-tolerant distributed key/value data store that provides reliable distributed
coordination. We have investigated whether a useful group key management service can be

Approved for Public Release; Distribution Unlimited.

55

built using ZooKeeper. PVeStA statistical model checking showed that such a ZooKeeper-based
service handles faults better than a traditional centralized group key management service, and
that it scales to a large number of clients while maintaining low latencies.

To the best of our knowledge, the above-mentioned work at the Assured Cloud Computing
Center represents the first published papers on the use of formal methods to model and analyze
such a wide swathe of industrial cloud storage systems.

Section 5 Conclusions

We have summarized our experience using rewriting logic and Maude, with its extensions and
tools, as a suitable framework for formally specifying and analyzing both the correctness and the
performance of cloud storage systems. Rewriting logic is a simple and intuitive yet expressive
formalism for specifying distributed systems in an object-oriented way. The Maude tool supports
both simulation for rapid prototyping and automatic ``push-button'' model checking exploration
of all possible behaviors from a given initial system configuration. Such model checking can be
seen as an exhaustive search for ``corner case'' bugs, or as a way to automatically execute a more
comprehensive ``test suite'' than is possible in standard test-driven system development.
Furthermore, PVeStA-based statistical model checking can provide assurance about quantitative
properties measuring various performance and quality of service behavior of a design with a
given confidence level, and Real-Time Maude supports model checking analysis of real-time
distributed systems.

We have used Maude and Real-Time Maude to develop quite detailed formal models of a range
of industrial cloud storage systems (Apache Cassandra, Megastore, and Zookeeper) and an
academic one (RAMP), and have also designed and formalized significant extensions of these
systems (a variant of Cassandra, Megastore-CGC, a key management system on top of
ZooKeeper, and variations of RAMP) and have provided assurance that they satisfy desired
correctness properties; we have also analyzed their performance. Furthermore, in the case of
Cassandra, we compared the performance estimates provided by PVeStA analysis with the
performance actually observed when running the real Cassandra code on representative
workloads; they differed only by 10-15%.

Approved for Public Release; Distribution Unlimited.

56

Section 6 Intrusion Detection, Response, and Recovery in the Cloud (William H. Sanders,
Atul Bohara, and Uttam Thakore)

Section 1 Summary of Research Project

This report presents our work on intrusion resilience of distributed systems such as clouds and
enterprise networks. First, we build an actor-centric, asset-based model for cloud security threats.
Using the proposed model, we identify the layers in the cloud that each threat affects to assist
practitioners in targeting defenses. Next, we propose a quantitative methodology to determine
optimal monitor deployment. The approach is based on admin-specified intrusion detection goals
and cost constraints. Subsequently, to fuse and analyze the diverse information recorded by the
monitors to achieve intrusion resilience goals, we propose the following techniques:

1. We enable highly-relevant prioritization of monitor data for analysis that aids
administrators with the real-time incident response. Our approach uses statistical
causality analysis techniques on monitor data to identify information that would promote
earlier detection of incidents, without relying on administrator labeling.

2. To improve the detection of flooding-based network attacks on enterprise systems, we
propose an unsupervised cluster analysis and prioritization approach using features
extracted from host-level authentication logs and network-level firewall logs. We
compare the feature distributions of different clusters to identify anomalous behavior. We
then propose a cluster difference metric that we use to prioritize the anomalous clusters
based on their likely maliciousness.

3. We formally define a framework for distributed fusion of host and network-level events.
We use the framework to detect network-wide lateral movement behavior with low
overhead in performance.

4. We correlate the lateral movement detection with command and control indicators to
identify infected hosts. The approach uses an ensemble of anomaly detectors to have an
accurate detection even when attacker deviates from assumed threat model.

Section 2 Introduction

Cloud providers and enterprise systems today face a broad range of attacks, both from outside
agents and potentially from their consumers or users. In particular, sophisticated and large-scale
attacks, such as those on Target Corp. in 2013 and Anthem Inc. in 2015, result in the theft of the
personal information of tens of millions and tremendous losses for the companies breached. Such
attacks are called advanced persistent threats (APTs) for the long duration of the attack and the
stealth and skill used in evading detection and compromising the system.

In large enterprise and cloud systems, monitors and sensors can generate upwards of tens to
hundreds of terabytes of heterogeneous data on system behavior per day. The burden of deciding

Approved for Public Release; Distribution Unlimited.

57

what information to collect and how to analyze it falls on system administrators and security
analysts, who must use their domain knowledge to manually adjust system monitoring as attacks
are missed and monitor data goes unused. These administrators and analysts must also perform
real-time root cause analysis and after-the-fact digital forensic analysis when an incident has
taken place to uncover the underlying vulnerabilities in the system, and the sheer diversity and
volume of data can make efficient investigation difficult.

Existing security mechanisms are disjointed and noisy, and do not provide a security
administrator the ability to observe the actual attacks occurring on their systems easily.
Furthermore, existing mechanisms assume that monitor data can be completely trusted, which is
a false assumption when the monitoring infrastructure resides on the system being attacked. This
project aims to allow cloud providers and enterprise security administrators to quickly and
effectively decide what information to collect in the system; how to fuse the heterogeneous data
to discover behaviors otherwise difficult to detect, such as lateral movement during an APT; and
how to best present the information to administrators to help them detect intrusions and respond
to them in real time. Ultimately, we aim to help administrators provide stronger security
assurances to their stakeholders.

Our approach is to use both model-driven and data-driven techniques to make monitoring and
fusion decisions. We use the system model, motivated by system topology, vulnerabilities, attack
surface, and response mechanisms, to drive the placement of monitors and fusion agents. We
further use many semi-supervised and unsupervised learning techniques to analyze monitor data
and fuse it in new and meaningful ways to discover new information about the system and
improve our likelihood of intrusion detection. Ultimately, we provide administrators with
improved context and visibility into their systems in real-time by analyzing, correlating, and
prioritizing data collected from many different instrumented components of the system.

Section 3 Methods, Assumptions, and Procedures

In this section, we describe the proposed methodology for security monitoring, data fusion, and
intrusion detection.

Monitors and Monitor Deployment:
In this work, we address the problem of improving security monitoring and monitor data analysis
techniques for enterprise and cloud systems. Specifically, we help system administrators
determine what data to collect within their system and how to target analysis efforts to maximize
their effectiveness in detecting and responding to intrusions.

This work consists of the following components: (1) quantifying the utility of security monitor
data in detecting intrusions, (2) devising a methodology to determine an optimal placement of

Approved for Public Release; Distribution Unlimited.

58

monitors based on intrusion detection requirements, and (3) devising a mechanism by which data
collected from security monitoring can be correlated and analyzed dynamically based on ongoing
observations and in tandem with input from system administrators.

To start, we create an actor-centric, asset-based cloud threat model that enables practitioners to
reason about monitor deployment regarding the security of their cloud assets [5]. We define an
actor model that consolidates several roles in the literature to three roles motivated by security.
We also define an architectural model that identifies the assets that can be owned by each actor
and use it to create an asset-based cloud threat model. Our threat model promotes reasoning
about cloud monitor deployment, and motivates our subsequent work.

One of the assumptions that drives our work is that security monitor data can be unreliable,
which is a known issue in large enterprise and cloud systems. The first move a stealthy attacker
will make is to disable monitoring or hide its tracks to hinder the ability of security analysts to
observe and detect its malicious activity. This understanding motivates our research in two ways.
First, we consider the effect of monitor compromise in the development of our metrics and
analysis techniques. Second, we strive for increased redundancy in data collection from many
levels of the system to increase the ability to detect intrusions when some monitors are
unavailable or are providing erroneous data.

Furthermore, we observe that different monitors produce heterogeneous information. As a result,
we take heterogeneous information into account when representing the information produced by
monitors and consumed by intrusion detection systems and forensic analysts.

Motivated by our threat model, we develop a methodology to both evaluate enterprise and cloud
monitor deployments quantitatively in terms of security goals and to deploy monitors optimally
based on cost constraints [3]. First, we define a model that describes the system assets,
deployable monitors, and the relationship between generated data and intrusions. Then, we
define a set of metrics that quantify the utility and richness of monitor data with respect to
intrusion detection and the cost associated with deployment. Finally, we formulate a nonlinear,
0-1 optimization problem using our model and metrics to determine the cost-optimal, maximum-
utility placement of monitors. In our optimization problem, we attempt to find a monitoring
deployment that meets security administrator cost and utility constraints and maximizes the
utility of the administrator. We define a set of weights and constraints on the monitoring metrics
that an administrator can use to specify intrusion detection requirements, and define the monitor
utility as a weighted sum of our monitoring metrics. To solve the optimization problem, we
develop a branch and bound algorithm, then create a greedy approximation that would scale to
large systems.

Approved for Public Release; Distribution Unlimited.

59

Finally, we start to move towards a data-driven approach to quantifying the utility of monitors.
We are working on a method to provide dynamic monitoring recommendations as incidents take
place and aid administrators in incident investigation during system operation by analyzing
diverse monitor data using statistical methods. In this work, we use statistical correlation tests,
which identify strong correlations between features that may be attributed to causal relationships
between the features, to identify time-lagged correlations between cloud logging and monitoring
data sources when specific incidents take place. Using correlation techniques best suited to the
data sources being analyzed, we construct a temporal chain of strongly correlated relationships
between logging and monitoring data sources for a given incident extending backwards from an
incident’s occurrence, which we use to prioritize the importance of the data sources for data
collection and analysis by security and operations administrators.

Fusion and Analysis:
In this work, we build methods to combine and analyze diverse monitor data to improve
intrusion detection for enterprise and cloud systems.

First, we present an approach to identifying anomalous behavior in the unlabeled system log and
network log data using unsupervised machine learning [4]. We first establish a threat model and
extract meaningful features from the log data that aid in attack detection. We then describe a
method to combine the data using features we have defined that allows us to perform anomaly
detection over the joined network and host log data. Next, we use the k-means and DBSCAN
clustering algorithms to categorize the data into different usage profiles, and we compare the
feature distributions of different clusters to identify anomalous behavior. We then propose a
cluster difference metric that we use to prioritize the anomalous clusters based on their likely
maliciousness. Finally, we manually analyze the clusters to correlate them with known attacks
and evaluate our approach.

Next, we develop a flexible framework for distributed data fusion aimed at addressing intrusion
resilience [2]. The framework defines different components of data fusion: data transformation,
dissemination, and abstraction. We use the framework to define a method that uses agents in the
system to detect lateral movement. Our method merges host-level communication causation
events to create host communication graphs. The merge algorithm exploits the semantics of the
causation relation to avoid requiring time ordering on the host-level events. Then, to avoid
having a centralized collection agent, we cluster the agents into a hierarchy in which each cluster
leader maintains local host communication graphs and sends abstracted updates to the global
collection agent.

Finally, we propose an unsupervised multi-detector approach to detect lateral movement-based
attacks in enterprise systems [1]. We extract useful features using NetFlow, C&C, and
specialized lateral movement monitors. We then propose a graph-based model to combine the

Approved for Public Release; Distribution Unlimited.

60

diverse features to evaluate current security state of the system. We show that by using the
proposed features with an ensemble of PCA, k-means clustering, and extreme value analysis
enables the identification of compromised hosts in an unsupervised manner.

Section 4 Results and Discussion

To demonstrate the utility of our asset-based, actor-centric cloud threat model, we applied our
model to analyze security-driven monitor deployment in an artificial but realistic cloud
architecture based upon Netflix’s use of Amazon Web Services [5]. This work motivated our
quantitative methodology for security monitor deployment.

We illustrated how our monitor deployment methodology could be used in practice to determine
optimal monitor deployments by constructing a case study using a set of common attacks on
Web servers in an enterprise Web service use case [3]. We built the case study model using
common Web service softwares – specifically, we set up a distributed LAMP stack running on
top of Metasploitable Kali Linux instances, and ran the Mutillidae web service on top of it. To
obtain the data model, we attacked the service and collected network and application log, then
mined them for indicators and their mappings to monitors. We then demonstrated the scalability
of our methodology and optimization problem heuristic solution algorithm by simulating systems
with hundreds of monitors and attacks and showing that our approach can compute optimal
monitor deployments for such systems within minutes.

We have been evaluating our cloud monitor prioritization technique on IBM Watson Health
Cloud testing data sources, which contain primarily reliability and performance incidents. We
find that our approach can prioritize data sources for analysis without the need for administrator
input or labeling, but our experiments are ongoing.

We evaluated the efficacy of our approach to cluster-and-combine diverse logs to detect
enterprise system intrusions [4]. We used a publicly available enterprise network dataset. The
proposed approach detected all attacks present in the data set except those that require additional
information to detect. Using the joined network-level and host-level data, our approach could
detect attacks that were not detectable with either data source alone.

We used trace-based evaluation to study the performance trade-offs of the proposed lateral
movement detection framework [2]. We simulated lateral movement over a network topology
and ran our fusion algorithms using the simulation traces. We evaluated the scalability of the
hierarchical fusion by implementing different host-clustering techniques and computing fairness
and locality metrics. Our results show that clustering methods that utilize network topology
achieve a good balance between performance and quality of the state. We also implemented a

Approved for Public Release; Distribution Unlimited.

61

prototype of the host-level agent and found that the agent is lightweight and suitable for practical
use.

We performed experiments to evaluate the accuracy of the proposed anomaly detection approach
in identifying compromised hosts [1]. The experiments used internal network flow logs obtained
from the Los Alamos National Lab (LANL)’s Comprehensive Multi-Source Cyber-Security
Events dataset and simulated traces of lateral movement activity. Our results show that the
proposed approach could accurately detect the infected hosts with a small false positive rate. The
insights that we obtained during the sensitivity analysis of the proposed approach can be used by
researchers to test new defense mechanisms before deploying them on real systems.

Section 5 Conclusions

In this project, we devised a quantitative monitor deployment framework that outputs a
deployment plan by optimizing metrics such as coverage, cost, and confidence. The monitor
deployment framework formalizes the process of choosing which monitors to deploy for
protection. We also developed a technique to aid enterprise cloud security administrators in
investigating performance, reliability, and security incidents during system operation by using
statistical correlation tests on diverse cloud monitor data to prioritize the importance of the data
sources for data collection and analysis. Furthermore, we developed methods for distributed
detection of lateral movement chains using process communication graphs; the method combines
process information and network information. The work on lateral movement used process
communication graphs to infer network event relations previously inferred only through timing
information. Finally, we developed multiple anomaly detection methods: (1) unsupervised
clustering of diverse network and host logs to detect flooding-based network attacks, and (2)
ensemble of multiple anomaly detectors to identify hosts that are part of malicious lateral
movement.

Approved for Public Release; Distribution Unlimited.

62

Section 6 Bibliography

Conference and Journal Publications

[1] Atul Bohara, Mohammad A. Noureddine, Ahmed Fawaz, William H. Sanders, “An Unsupervised
Multi-Detector Approach for Identifying Malicious Lateral Movement”, [Submitted for publication].

[2] Ahmed Fawaz, Atul Bohara, Carmen Cheh, and William H. Sanders, “Lateral Movement
Detection using Distributed Data Fusion”, 35th Symposium of Reliable Distributed Systems (SRDS
2016), Budapest, Hungary, September 26-29, 2016.

[3] Uttam Thakore, Gabriel A. Weaver, and William H. Sanders, “A Quantitative Methodology for
Security Monitor Deployment”, 46th Annual IEEE/IFIP International Conference on Dependable
Systems and Networks (DSN 2016), Toulouse, France, June 28-July 1, 2016. Best Paper Award.
[4] Atul Bohara, Uttam Thakore, and William H. Sanders, “Intrusion Detection in Enterprise Systems
by Combining and Clustering Diverse Monitor Data”, Symposium and Bootcamp on the Science of
Security (HotSoS 2016), Pittsburgh, PA, April 20-21, 2016.
[5] Uttam Thakore, Gabriel A. Weaver, and William H. Sanders, “An Actor-Centric, Asset-Based
Monitor Deployment Model for Cloud Computing”, 6th IEEE/ACM International Conference on
Utility and Cloud Computing (UCC 2013), Dresden, Germany, December 9-12, 2013.

Theses

[1] Uttam Thakore, “A Quantitative Methodology for Evaluating and Deploying Security
Monitors,” MS Thesis, Department of Computer Science, University of Illinois at Urbana-
Champaign, Urbana, IL, August 2015.

Approved for Public Release; Distribution Unlimited.

63

Section 7 Map-Reduce Task Assignment with Data Locality Constraint (Yi Lu)

Section 1 Summary of Research Project

Task scheduling for a system with data locality constraint is an important problem as it plays a significant
role in system efficiency, which can be evaluated by throughput and job completion time. We are
interested in designing a scheduling algorithm that achieves throughput optimality and fast task
completion.

Section 2 Introduction

This research focuses on improving the scalability and efficiency of large data analytic systems
in the software layer.

While the current data analytic systems, such as the Hadoop ecosystem, employs the horizontal
scaling philosophy and makes it easy to build a more powerful system simply by adding servers,
the bottleneck lies in the master node responsible for scheduling and resource management.
The problem is exacerbated by the new demand of fast, on-line queries, which are key to
accelerating discoveries, but makes the overhead of a centralized scheduler excessive.

A naïve solution is to segregate the cluster into disjoint sub-clusters, each with its own central
scheduler, but this will require a much higher level of data replication, wasting storage and
increasing file system maintenance overhead. An alternative will be an array of distributed
schedulers, each with full knowledge of the cluster status. This will not change the amount of
data replication, but will require a high communication overhead, as each server in the cluster
needs to communicate with each of the distributed schedulers.

We propose to investigate a solution with distributed schedulers using the idea of “reverse
information balancing”, with no increase in data replication and only a slight increase in
communication overhead compared to a centralized scheduler. We have managed to show its
superiority in performance in a homogeneous cluster. The challenge is to demonstrate its
efficiency and scalability in the data analytic environment where each server is different from
another due to the “data locality” constraint: It is much more efficient for a server to process a
task with data stored locally than one with data stored remotely, and each server stores a
different combination of data chunks due to availability concerns. Our initial experiments have
shown promising results.

Section 3 Methods, Assumptions, and Procedures

We investigated some existing approaches to map task scheduling: The FIFO scheduler
maximizes utilization, delay scheduling maximizes data locality, and the JSQ-MaxWeight
algorithm pre-assigns remote tasks. However, except for the throughput optimality of JSQ-
MaxWeight, very little is known about the relative performance of the three approaches. Part of
our work is to study the performance of these existing algorithms.

Approved for Public Release; Distribution Unlimited.

64

We proposed a novel algorithm that is throughput-optimal and achieves fast task completion.
The main idea is to use a queueing structure within the scheduler to 1) load balance local tasks
across servers to reduce unnecessary idling; 2) identify the overloaded servers and offer timely
remote service; 3) provide estimates of a task’s waiting time to help with remote task
assignment: it prevents unnecessary remote task assignment in FIFO scheduler that results in
longer completion time and also prevents unnecessary waiting in the delay scheduling.

In order to make the algorithm robust, we do not assume the knowledge of traffic intensity or the
distribution of requested data on servers. In particular, to evaluate the proposed algorithm against
existing algorithms, we considered two distinct scenarios for simulation: 1) uniform workload
case where the data requested by the incoming traffic are uniformly distributed on servers; 2)
skewed workload case where the data requested are skewed towards a subset of servers, which
become hotspots at high load.

Section 4 Results and Discussion

As for the existing algorithms, we have following findings:
• We proved that the task-level algorithm of the FIFO scheduler is throughput optimal.
• We showed that while delay scheduling yields fast completion with a uniform load, the stability

region it achieves is much smaller than full capacity region with skewed load distribution.
• For completion time, the simulation results showed that the task-level FIFO scheduler performs

poorly at low and medium load, and JSQ-MaxWeight performs poorly at medium and high load.
For the proposed algorithm:
• We established the throughput optimality of the proposed algorithm.
• Simulation results for the throughput-optimal algorithms showed that the proposed algorithm

outperforms both FIFO and JSQ-MaxWeight at all loads. It achieves 2-4 fold improvement over the
other algorithms in completion time.

Section 5 Conclusions

We have shown that the proposed algorithm is heavy-traffic optimal, which makes it the only
known heavy-traffic optimal algorithm for all load distributions.

Section 6 Recommendations

• Future work:

o We are planning on implementing the algorithm in the Hadoop framework.
o Our current results are based on the assumption of Poisson arrival and exponential service time

distribution. We would like to study the proposed algorithm without these assumptions.
o We are investigating the response time distribution at any load for a system with data locality

Approved for Public Release; Distribution Unlimited.

65

Section 8 Security and Privacy Mechanisms: An Analysis of Certifications for Federal Cloud
Service Providers (Masooda Bashir and Carlo Di-Giulio)

Section 1 Summary of Research Project

To demonstrate compliance with privacy and security principles, information technology (IT)
service providers often rely on security standards and certifications. However, new service
models such as cloud computing have brought new threats to information assurance.

In the first section of our project, we analyze four of the most highly regarded information
technology security certifications used to assess cloud security. Those are ISO/IEC 27001,
SOC2, C5, and FedRAMP. We describe the evolution of those four security standards and the
improvements made to them over time to cope with new threats, and focus on their adequacy and
completeness by comparing them to each other.

In the second section of our research project, we focus the attention on FedRAMP. We evaluate
resilience and completeness of the standard in relation to new technology such as containers. The
additional threats that derive from using containers make existing security standards inadequate,
and FedRAMP needs to include additional elements to cope with those new vulnerabilities.

Section 2 Introduction

The goal of the research is to help identify some of the most secure, and define possible limits in
the usage of, cloud services provided to the Air Force by private outsourcers.

In the first section of our research, our focus is on privacy and security standards and
certifications for cloud services. The creation of the Federal Risk Authorization Management
Program and equivalence of its baseline with DISA security level (moderate baseline to level 1-
2, and high to 3-4) makes of FedRAMP requirements a topic of extreme relevance for DoD
agencies. Significant costs for Cloud Service Providers in the achievement of a FedRAMP
authorization, and the existence of concurrent internationally recognized IT security standards
has raised questions about the necessity of a new certification such as FedRAMP: how effective
are current IT security measures and standards at addressing cloud security? Is FedRAMP better
than ISO/IEC 27001, SOC 2, or the recently developed C5 at protecting information assurance in
cloud environments, and if so, how? Is it ultimately worth it to invest in new cloud security
standards like FedRAMP? To answer to these questions, we have concentrated our effort in
evaluating the effectiveness of FedRAMP at a moderate and high baseline compared to ISO/IEC
27001, SOC2, and C5 in terms of addressing IT security needs in cloud computing. The results
of our observations have clarified the impact of FedRAMP on the vast landscape of IT security
standards. By observing the evolution of FedRAMP, ISO/IEC 27001, SOC2, and C5 in more

Approved for Public Release; Distribution Unlimited.

66

than a decade since their first releases, we are able to draw further conclusions about their
timeliness and adaptability. Through a systematic, combined review of the four standards we
offer a comprehensive picture of their completeness and adequacy. We highlight missing
controls and control domains. In our conclusions, we offer evidence of the existence of
weaknesses in the certification build process and suggest improvements to the effectiveness of
further versions of these frameworks.

In the second section of our research, we consider the appearance of newer technology in cloud
environments and the potential risks associated with it, which make of information assurance a
top priority for Federal Agencies and IT Industry. We move from the results obtained in the first
part of our research to answer to several more questions: what resilience do standards such as
FedRAMP show when new technology is used in cloud environments? What sort of adjustments
does the standard need to be considered adequate?

One of the most revolutionary innovations in cloud computing in the last years has been the
adoption of containers replacing virtual machines to host tenants’ applications. Containers can
optimize the virtualization capabilities of the host, reducing the consumption of resources
supporting the applications, and sensibly improving their response time. However, existing IT
security standards, and in the specific FedRAMP, are not designed for container technology, and
their lack of adaptability might cause limitations, or even worse flaws in the certification process.
To answer to our questions, and determine resiliency of FedRAMP in relation to container
technology, we analyze existing standards, laws, and guidelines to find flaws and gaps in the
current regulatory landscape. For example, a gap-analysis of FedRAMP and NIST SP 800-53
(Security and Privacy Controls for Federal Information Systems), helps highlighting missing
controls and measures useful to adequately respond to the use of containers instead of virtual
machines.

Section 3 Methods, Assumptions, and Procedures

In the first section of our project, we rely on a mixed quantitative and qualitative method. The
methodology can be divided in three steps.
1. We collect the controls in FedRAMP, SOC2, ISO/IEC 27001, and C5 and compared them

against a third-party framework, the Cloud Control Matrix (CCM) by the Cloud Security
Alliance Error! Reference source not found.. The CCM offers the advantages of being
focused on cloud security and being easily comparable with the other standards because of its
structure, which is based on controls and control families like the standards.

2. We analyze the differences in the numbers of controls from the CCM that are omitted in each
of the four standards. That allows us to build a quantitative comparison among the standards,
highlighting their shortcomings. We compare all the available versions of the standards to
obtain an historical perspective on their adequacy in addressing cloud security.

Approved for Public Release; Distribution Unlimited.

67

3. We narrow down the analysis to the most relevant controls, selected from those having a
direct impact on the particularly critical risks the CSA identified as the “treacherous twelve”

In the second section of our project, we focus our attention to the security controls listed in NIST
SP 800-53 useful to increase security of cloud systems using container technology and missing in
FedRAMP. We narrow the scope of our study to specific areas where countermeasures to
container vulnerabilities could be applied. We select three areas from six suggested in NIST SP
800-190, Hardware, Host OS, and Orchestrator level. In this section of the project, the
methodology follows three steps.
1. We analyze the controls and enhancements in NIST SP 800-53 Error! Reference source not

found. to identify those relevant to protect against container vulnerabilities. Using a full-text
search of keywords in the “control description” and “guidance” fields of the controls in NIST
SP 800-53, we reduce the number of controls in NIST 800-53 to some of the most relevant
for container technology. In addition, we include all the controls referred in NIST 800-190 as
relevant for container technology.

2. Of all the selected controls and enhancements, we keep only the ones we consider relevant as
countermeasure in the three areas identified as the subject of our study (Hardware, Host OS,
Orchestrator). We do not consider controls resulting in general security measures, applicable
regardless of whether the configuration of cloud systems is based on containers or virtual
machines. The evaluation is on the effectiveness of the control to be particularly impactful in
case of containerization.

3. We remove the controls included in FedRAMP moderate baseline and focus on controls
adopted only in the high baseline, or completely excluded from FedRAMP.

Section 4 Results and Discussion

In the first section of our study, we analyze FedRAMP, ISO/IEC 27001, SOC 2, and C5 and their
response to cloud security threats. Out of 133 controls in CSA’s Cloud Control Matrix, the third-
party framework used for our comparison:

• SOC 2 - The three versions of TSPC, published in 2009, 2014, and 2016, and specifying the

criteria for SOC 2 assessments show 43, 47, and 39 omissions, respectively;
• FedRAMP rev. 3, released in 2012, shows 45 omissions, while the 2015 release 4 of

FedRAMP shows a significant improvement with 29 missing controls;
• ISO/IEC 27001 satisfies all but 43 and 3 controls in its 2005 and 2013 releases, respectively;
• C5, although building on the ISO certification and TSPC to define its own set of criteria,

shows as many as 30 omitted controls across multiple control domains.

Interestingly, two control domains are completely or substantially omitted in most of the
frameworks we analyzed. The first domain is Mobile Security (MOS). The second domain is

Approved for Public Release; Distribution Unlimited.

68

Interoperability and Portability (IPY). Only ISO/IEC 27001:2013 addresses all the controls in
those domains. When we consider the relevance of the omitted controls according to their impact
on at least one of the treacherous twelve threats identified by the Cloud Security Alliance, on a
total of 83 controls relevant for the Treacherous Twelve:

• SOC 2 – TSPC show a fluctuation suggesting that the older version (from 2009) offers better

protection than the newer ones. The TSPC from 2009, 2014, and 2016 omit 10, 16, and 12
controls, respectively;

• FedRAMP rev 3 omits 11 controls, while rev. 4, goes to only 5 omissions;
o we acknowledge that of the five controls missing in FedRAMP only one finds

mitigation in other measures prescribed in FedRAMP itself or Federal acts. In
particular, FedRAMP oversees mobile security, missing controls on Bring Your
Own Device (BYOD) policies and automatic lock screen measures.

• ISO/IEC 27001 - ISO/IEC 27001:2013 goes from 3 to 2 omitted controls. ISO/IEC
27001:2005 still omit 10 controls;

• C5 drops the number of omitted controls to 7.

If we focus on the controls relevant for the Treacherous Twelve, the absence of controls in the
MOS and IPY domains largely accounts for the drop in numbers of missing controls. The same
absence justifies the limited variation in ISO/IEC 27001:2013 that covers both domains. Of 83
controls impacted by the Treacherous Twelve threats identified by CSA, 63 are addressed in all
the standards, thus we affirm that there is not a radical difference in their substance. All four of
the frameworks are aimed at providing information assurance in IT systems through a similar set
of baseline controls. The four standards are complementary, as they overlap significantly and
demonstrate to be interchangeable when it comes to cloud assurance. On the other hand, a total
of nineteen controls are missing from at least one standard; of those, only four are missing from
more than one standard. That highlights some relevant differences in the standards’ approaches
to IT security.

In the second section of our project, we focus our attention on FedRAMP and its resiliency to
new technology such as containers, and new vulnerabilities. Of 922 controls in NIST 800-53,
which include control enhancements and withdrawn controls, we do a first selection based on
keywords.

• We identify 222 controls through twenty-three keywords or key-phrase (e.g. “Operating

System”), and we add 16 more controls specified in the Draft NIST SP 800-190.
• We select 44 controls as being relevant to the three areas included in our study: Hardware,

Host OS, and Orchestrator countermeasures;
• We isolate 30 relevant controls not included in FedRAMP moderate baseline.

Approved for Public Release; Distribution Unlimited.

69

Although some vulnerabilities are shared between VMs and containers, and some controls could
be used to add security to VMs as well, the more insecure nature of containers makes necessary
for standardization bodies and auditors to consider additional security measures, and perform
more stringent controls compared to VMs. Those controls only included in FedRAMP high
baseline could be included at a lower tier.

Section 5 Conclusions

CSPs might benefit from our completeness and adequacy assessment of each standard to
determine which framework is the most appropriate to evaluate their cloud security.
We have determined that the examined standards are not completely interchangeable, but rather
complementary. On the one hand, that finding justifies the existence of multiple standards, as
they can be used in combination to guarantee cloud assurance. Since each of them proposes a
slightly different approach to assessment and auditing, and focuses on different aspects of IT
security, compliance with more than one framework allows a CSP to perform a more
comprehensive and nuanced audit of its systems. On the other hand, little effort would be
required to improve the standards, adding missing measures to prevent more vulnerabilities or
threats.
In regard to FedRAMP, we have shown how it could be improved with greater attention to
information management policies and procedures. Additional attention must be given to mobile
security, which is a flaw not only in FedRAMP, but in three of the four standards. Clarity in the
definition of bring-your-own-device policies is the main issue in mobile security, since the
absence of well-defined rules could generate (or amplify the magnitude of) insider threats.
At the same time, FedRAMP results insufficient to provide full protection against new
vulnerabilities deriving from the use of containers. The nature of containers, less secure than
virtual machines, justifies the addition to the moderate security level of controls currently
included only in the high baseline; nonetheless, controls not currently included in FedRAMP at
all must be included to ensure better protection of information and applications residing in cloud
systems.

Section 6 Bibliography

[1] Carlo Di-Giulio, Read Sprabery, Charles Kamhoua, Kevin Kwiat, Roy Campbell, and
Masooda Bashir, “Cloud Standards in Comparison Are New Security Frameworks
Improving Cloud Security?”, 10th IEEE International Conference on Cloud Computing
(Cloud 2017), Honolulu, HI, June 25-June 30, 2017, to appear.

[2] Carlo Di-Giulio, Read Sprabery, Charles Kamhoua, Kevin Kwait, Roy Campbell, and
Masooda Bashir, “IT Security and Privacy Standards in Comparison: Improving
FedRAMP Authorization for Cloud Service Providers”, International Workshop on

Approved for Public Release; Distribution Unlimited.

70

Assured Cloud Computing and QoS Aware Big Data (WACC 2017), Madrid, Spain, May
14, 2017, to appear.

[3] Carlo Di-Giulio, Read Sprabery, Charles Kamhoua, Kevin Kwiat, Roy Campbell, and
Masooda Bashir, “Cloud Security Certifications: A Comparison to Improve Cloud
Service Provider Security”, International Conference on Internet of Things, Data and
Cloud Computing (ICC 2017), Churchill College, Cambridge, UK, March 22-23, 2017.

[4] Bashir, M. and Di Giulio, C. “Certifications Past and Future. Future model for
assigning certifications that incorporate lessons learned from past practices”. In Assured
Cloud Computing. Edited by Roy H. Campbell. IEEE Press. Forthcoming 2017.

[5] Masooda Bashir, Jay P. Kesan, Carol M. Hayes, and Robert Zielinski; “Privacy in the
Cloud: Going Beyond the Contractarian Paradigm”, 2011 Workshop on Governance of
Technology, Information, and Policies (GTIP 2011), Orlando, FL, December 6, 2011.

[6] Mullens, C., Kesan, J., Hoff, K. & Bashir, M. (2015, 25-27 September). Shaping
privacy law and policy by examining the intersection of knowledge and opinions. Paper
to be presented at the Research Conference on Communication, Information and Internet
Policy (TPRC 43), Arlington, Virginia.
http://papers.ssrn.com/sol3/papers.cfm?abstract_id=2588077

[7] Mullens, C. Kesan, J., Hoff, K. & Bashir, M. (2014, 12-14 Sept.). Knowledge,
behavior, and opinions regarding online privacy. Proceedings of the 42nd Research
Conference on Communication, Information and Internet Policy (TPRC 2014), George
Mason University, Arlington,
VA. http://papers.ssrn.com/sol3/papers.cfm?abstract_id=2418830

[8] Hoff, K. & Bashir, M. (2014) Trust in automation: integrating empirical evidence on
factors that influence trust. Human Factors: The Journal of the Human Factors and
Ergonomics Society, 57 (3), 407-434. DOI:10.1177/0018720814547570

Approved for Public Release; Distribution Unlimited.

http://papers.ssrn.com/sol3/papers.cfm?abstract_id=2588077
http://papers.ssrn.com/sol3/papers.cfm?abstract_id=2418830
http://hfs.sagepub.com/content/early/2014/08/31/0018720814547570

71

Section 9 Security Data Analysis and Design of Software Architecture for Attack
Containment (Ravi Iyer and Phuong Cao)

Section 1 Summary of Research Project

Our research addresses the problem of detecting real, multi-stage attacks targeting enterprise
networks at an early stage to demonstrate significant reduction to system misuse and data leaks
caused by attackers. Such attacks are difficult to detect by traditional Intrusion Detection
Systems (IDS) because at an early stage, only partial information of the attack is available for
detection. We propose a new probabilistic framework that detect such attack stage-by-stage
using Factor Graphs. The key idea in our approach is to learn and incorporate dependencies
among observed security events and hidden attack stages, to infer the most probable attack stage
at runtime. Factor Graphs works because current multi-stage attacks share significant
characteristics of their stages with past attacks, despite attackers employ novel exploitation
techniques. Our framework has been integrated to Bro, a widely-used IDS, such that we provide
the first implementation of an open-source IDS that can detect multi-stage attacks. Our results on
real attacks show that majority of multi-stage attacks can be identified and stopped before system
misuse.

Approved for Public Release; Distribution Unlimited.

72

Section 2 Introduction

Motivation. As the scale and complexity of enterprise networked systems increase, so as the
number of security vulnerabilities. Traditional attacks exploit well-known vulnerabilities, such as
SQL injections or buffer overflows, and often involve a single attack stage that executes a
malicious command. Detection of such attacks are straight-forward using signature of malicious
commands. However, a signature only works for a specific, known malicious command and
often does not generalize to novel malicious commands. Motivated by financial and political
gains, modern attacks are becoming increasingly sophisticated and more difficult to detect. Such
multi-stage attacks gain persistent access to the target system using root-kit, use covert
communication channels (C&C) to stay under the radar of security scanning tools, and extract
sensitive data while the attacker maintain C&C to the target system. As a result, multi-stage
attacks can result in a system being compromised for a long time, e.g., in average 205 days
before the intruder is discovered, cf. FireEye Advanced Threat Report.

A real example. Figure 16 shows a multi-stage
attack observed in the wild in Jan 2017. This
attack started with an illegitimate login to a user
account via stolen passwords and ssh keys.
While in the system, the attacker logged into a
vulnerable node, obtained the root permission
using a kernel local privileged escalation exploit
targeting Redhat Enterprise Linux (CVE-2016-
5195), and deployed a rootkit (named Venom) in
a memory-mounted directory /dev/shm. Per
analysis of the VENOM rootkit from CERN, the
rootkit has been active in the wild since Jan
2017. The rootkit had two components that
aimed at maintaining unauthorized and persistent
access to the compromised system:
i) A user-land binary that is an encrypted
backdoor that receives remote commands to
launch attack payloads, and
ii) Aa Linux Loadable Kernel Module (LKM) that provides a stealth port knocking service for
the user-land backdoor.
ort knocking is a stealthy technique to open a port only upon receiving a specific sequence of
“knocking” packets. For example, the port 9090 on a compromised machine opens only after
receiving a “knocking” sequence of three TCP packets such that: “TCP src_port + seq_number =
1221”. As a result, the compromised node can stay under the radar of regular network security
scanning tools.

Figure 16. Attack stages and traces of a multi-stage

attack using the VENOM rootkit

Approved for Public Release; Distribution Unlimited.

73

Problem formulation and goals. In this paper, we consider attacks that follow a multi-stage
model:
(i) a penetration stage, in which attackers access the victim’s network, by scanning for valid
credentials using a dictionary of leaked password or using stolen credentials, to establish an
initial compromise;
(ii) a preparation stage, in which attackers gather system information and identify vulnerabilities
(e.g., by querying system configuration or running applications), exploit and escalate privilege to
develop an attack strategy and/or tools to deploy the attack; and
(iii) an execution stage, in which attackers deliver the malicious attack payload (e.g., construct
and download specialized malware), maintain persistent presence, clear logs, monitor (using
command and control), and deliver of attack payloads. While the model is generic, in this work
we focus on a family of multi-stage successful attacks occurring at the National Center for
Supercomputing Applications (NCSA, http://www.ncsa.illinois.edu/) over a period of nine years.
Our goal is to use security events (corresponding to both alerts and other user activities, e.g.,
login, downloading a file, or scanning a host) observed at network and host level to infer what
stage an attack is in.
Previous work and research gap. Even though critical infrastructures are equipped with
multiple monitoring solutions, security violations nevertheless happen. The main causes of
security violations are: i) compromised accounts allow attackers to masquerade as legitimate
users, ii) session hijacking allows attackers to gain unauthorized access using a valid session key,
and iii) use of remotely exploitable vulnerabilities.
Related work on multi-stage attacks have mainly focused on analysis and monitoring. First,
analysis of vulnerabilities such as Heartbleed or VENOM rootkit provided an understanding of
vulnerability used in one attack stage. However, to detect multi-stage attacks, we need to put
such vulnerabilities in the context of multi-stage attacks that requires: i) not only a vulnerable
library but also its complicated dependencies and ii) corresponding network and host monitoring
infrastructure (e.g., network flows, system logs, or authentication logs). It presents an
engineering challenge to reconstruct such vulnerable environment depending on nature of each
attack. Second, individual network and host monitors can detect potential malicious actions in
one attack stage; however, they do not detect multi-stage attacks which involve a chain of
malicious activities. An individual alert in an alert chain by itself can be a false positive. For
example, a host monitor may issue alert “sshd: failed password for root”, which is often a brute-
force attempt and can only indicate an attempt for an initial compromise. Without correlating
alerts from host and network logs, system administrators often neglect individual alerts and
cannot provide a complete picture of an ongoing, multi-stage attack Error! Reference source
not found.. Finally, while very few work has addressed the issue of detecting multi-stage
attacks, past work have focused on a specific type of attack, e.g., multi-stage denial of service
attack or fishing campaigns. Techniques used for multi-stage attack detection involve manually
defining attack signatures which introduced subjectivity and required extensive manual efforts.

Approved for Public Release; Distribution Unlimited.

74

Such techniques, however, have not been integrated to open-source IDS for immediate testing
with current attacks in the wild.

Challenges. Detecting such multi-stage attacks in their early stages (penetration and preparation)
presents several challenges, because attackers use valid credentials and leave no easily
discernible trace, as they infiltrate a target system in the guise of legitimate users (albeit with
different behavioral patterns). Thus, only partial knowledge of attacks is available at their early
stages, because the attacker’s activities in the system remain to be seen. A login from a remote
location, for example, may simply mean that a legitimate user is connecting from outside the
regular infrastructure, not necessarily that an illegitimate user is logging-in using stolen
credentials. To address threats of this nature, we need to have a mechanism to estimate the attack
stages based on past and current events.

Section 3 Methods, Assumptions, and Procedures
We propose a probabilistic framework that address such challenges (Figure 9.2)

Figure 17. Workflow of factor graph framework to detect attacks from security logs

Overview. We propose a new probabilistic framework that detects an ongoing attack stage-by-
stage as the attack progresses. The key idea is to infer an attack stage in a context of observed
events. We represent progression of ongoing multi-stage attacks using Factor Graphs (FG), a
probabilistic framework that can learn dependencies among the security events and attack stages
in past attacks the form of factor functions. Legitimate user and attacker activities are
represented by observed variables in a Factor Graph. Such activities are derived from security
events collected at runtime by monitoring tools, such as the Bro IDS, network flows, and system

Approved for Public Release; Distribution Unlimited.

75

logs. Factor functions in a Factor Graph connect observed variables and hidden variables
(representing a finite number of attack stages). At run-time, the most probable attack stage is
inferred from the Factor Graph using belief propagation or Markov Chain Monte Carlo
methods.

Our solution. The key idea behind our approach is to learn dependencies among the observed
events and hidden attack stages (offline), represent such dependencies to model an ongoing
attack stage-by-stage and predict the most probable stage (at runtime). Our framework takes raw
host and network logs as an input, and output value of a random variable indicating the most
probable attack stage.
Input data in our domain of multi-stage attack detection is illustrated in Table 2 and consists of
followings:

• Raw logs of user activities at the host-level, e.g., system log, authentication log, and
network-level, e.g., network flows generated by security monitoring tools.

• Ground truth data indicating an attack associated with a set of raw logs.
This input data, however, is not immediately usable by any detection model. While most IDS
implement detection policies based on pattern matching in raw logs, mismatching patterns can
happen and coordinating among detection policies are difficult. The main reason is that raw logs
may change overtime and they are highly dependent on the underlying system. For example, a
raw log for a failed password in Linux syslog is different from Windows Events Viewer logs, but
both can be transformed into a common event ALERT_FAILED_PASSWORD that conveys the
meaning of the underlying raw log. Thus, we seek to abstract raw logs to a set of security events.
Abstraction of security events allows our framework to work with a high level semantic of
events instead of raw logs. This is a must have requirement as security monitors in enterprise
networks produce a diverse set of raw logs coming from multiple operating systems. First, for
each raw log line, a regular expression script automatically extract a security event 𝑒𝑒𝑖𝑖

𝑡𝑡 observed
at time 𝑡𝑡. Thus, we can define a finite set of events ℰ = {𝑒𝑒1, … , 𝑒𝑒𝑛𝑛} that defines possible security
violations in a target system and use such events to construct factor functions
Accountability of security events is an important preprocessing step. Given a security event, we
must determine which entity, i.e., a process, a user, or an IP address generated such events. For
example, in a system log a security event can be bound to a process and a user id in a session. In
our approach, we group security events by each user such that each user has a timeline of
associated security events.

Approved for Public Release; Distribution Unlimited.

76

Ground truths for learning involve security experts to label each event with a corresponding
attack stage 𝑠𝑠𝑖𝑖 ∈ 𝑆𝑆. As a result, the data preprocessing step outputs a timeline 𝒯𝒯 = [𝜏𝜏1, … , 𝜏𝜏𝑛𝑛],
each entry 𝜏𝜏𝑖𝑖 corresponds to a raw log line and consists of an of an event 𝑒𝑒𝑖𝑖 and an attack stage
𝑠𝑠𝑖𝑖. While most IDS only indicate an attack using alerts that prone to false positives, our approach
is the first that provide stage-by-stage ground truth for multi-stage attacks and used that for
supervised learning and prediction of such attacks.
Learning dependencies is the key in our approach in which prior probability of an attack stage
and dependencies between observed alerts and attack stages are learned from past data using
maximum likelihood estimation. In learning prior of attack stages, we collected data on
frequency of each attack stage to construct the prior probabilities. In learning dependencies, we
assess strength of the statistical relationship among observed events and hidden attack stages
using independence test. Finally, parameters such as weights and return values of factor
functions are learned using expectation minimization. The results of learning dependencies is a
set of factor functions ℱ that are used to construct Factor Graphs.
Construction of Factor Graphs is done at runtime. As an event 𝑒𝑒𝑖𝑖 is observed, a corresponding
factor function 𝑓𝑓𝑐𝑐(𝑋𝑋𝑐𝑐) is chosen from the set of factor functions ℱ to construct a Factor Graph
𝐹𝐹𝐹𝐹 = {𝐸𝐸, 𝑆𝑆, 𝐹𝐹}.
Section 4 Results and Discussion
Following are highlights of our results
Theoretical results.
 We proposed a novel probabilistic framework based on Factor Graphs for representation,

learning, and inference on progression of multi-stage attacks. To the best of our knowledge,
we are the first to apply factor graphs to security domain.

Real-world deployment results.
 We provided an immediate integration with the Bro IDS, an open source IDS, for detection

of multi-stage attacks. Our multi-stage attack detector framework has been ingesting real
network alerts generated by Bro in the National Center for Supercomputing Applications
(NCSA) network.

 Our multi-stage attack detector framework can infer attack stages in real-time. An example
confusion matrix of our inference result is given in Figure 9.3. The x-axis and y-axis shows
the attack stages that we inferred. A number in a cell (x,y) represented the number prediction

made
by our

Raw logs User Event (x) Attack
Stage (z)

unix_chkpwd[4495]
password check failed for
user (root)

alice ALERT_FAILE
D_PASSWORD

scan

bro[820]download
sensitive(venom.c) text/x-
c”

alice ALERT_SENSI
TIVE_HTTP_U
RI

gather

ossec[918]
compile in volatile directory
/dev/shm

alice ALERT_COMM
AND_ANOMAL
Y

persist

bro[820]
port knocking sequence
SSH-2.5-OpenSSH_6.1.9

alice ALERT_PORT_
KNOCKING_SE
QUENCE

control

Table 5. Conversion from raw logs to events and labeled attack stage

Approved for Public Release; Distribution Unlimited.

77

approach. For example, cell (x=D, y=D) has a value 9 means that there are 9 attacks in
delivery stage that have been correctly predicted by our approach; cell (x=B, y=G) has a
value 5 means that there are 5 attacks in the gather information stage that have been mis-
predicted as in benign stage by our approach.

Figure 18. B-Benign, S-Scan, I-Initial Compromise, G-Gather information, E-Escalate

Privilege, P-Persist, CL-Clear Logs, CC-Command & Control, D-Deliver payloads

Section 5 Conclusions
Our results on real attacks collected in the wild and security incidents at NCSA show that
majority of multi-stage attacks (74%) can be identified and stopped before system misuse. While
an early detection based on the most probable attack stage may carry some false detection, Factor
Graphs works because current multi-stage attacks share significant characteristics of their stages
with past attacks, despite attackers employ novel exploitation techniques. Even if Factor Graphs
cannot resist all attacks, it allows creation of factor functions and learning from new attacks.
Hence to continue to build its attack knowledge database and stop the attacks before misuse
occurs.

Approved for Public Release; Distribution Unlimited.

78

Section 10 Test-bed for Experimental Evaluation: Design and Prototype of Techniques for
Providing Cloud Error and Attack Resiliency (PI: Zbigniew Kalbarczyk (PI); graduate
students: Cuong Pham, Zak Estrada, Lavin Devnani)

Section 1 Summary of Research Project

In this research, we developed a monitoring framework that addresses reliability and security in
cloud computing infrastructures. We identify the commonalities between reliability and security
to guide the design of HyperTap, a hypervisor-level framework that efficiently supports both
types of monitoring in virtualization environments used to deploy the cloud systems. In
HyperTap, the logging of system events and states is common across monitors and constitutes
the core of the framework. The audit phase of each monitor is implemented and operated
independently. In addition, HyperTap relies on hardware invariants to provide a strongly isolated
root of trust. HyperTap uses active monitoring, which can be adapted to enforce a wide spectrum
of reliability and security policies. We validate HyperTap by introducing three example
monitors: Guest OS Hang Detection (GOSHD), Hidden RootKit Detection (HRKD), and
Privilege Escalation Detection (PED). Our experiments with fault injection and real
rootkits/exploits demonstrate that HyperTap provides robust monitoring with low performance
overhead.

In order to further extend the capabilities of the HyperTap framework, we introduced and
implemented the concept of hprobes as a basis for implementing active monitoring techniques.
An hprobe is a mechanism used to generate an event when the target executes a particular
instruction. When the target’s execution reaches the hprobe, control is transferred to the
monitoring system, which can record the event and/or inspect the system’s state. Once the
monitor has finished processing the event, it returns control to the target system, and execution
continues until the next event. Hprobes based techniques are robust against failures and attacks
inside the target when the monitoring system is properly isolated from the target system. We
demonstrated usefulness of hprobes by implementing sample detectors: an emergency detector
for security vulnerability, a process hang (or infinite-loop) detector, and detector of unauthorized
privilege escalation. We tested our detectors on real applications and demonstrated that those
detectors achieve an acceptable level of performance overhead with a high degree of flexibility.

Exploration of all these ideas paves the path to make Reliability and Security as a Service an
actual offering from cloud providers.

Section 2 Introduction

Building resilient (i.e., reliable and secure) computing systems is hard due to growing system
and application complexity and scale, but maintaining reliability and security is even harder. A
resilient system is expected to maintain an acceptable level of service in the presence of internal
and external disturbances. Achieving resiliency requires mechanisms for efficient monitoring,
detection, and recovery from failures due to malicious attacks and accidental faults with
minimum negative impact on the delivered service.

Approved for Public Release; Distribution Unlimited.

79

All those challenges must be tackled when building resilient cloud computing infrastructures.
Prolific failures have kept reliability a leading concern for customers considering the cloud.
Monitoring is especially important for security, since many attacks go undetected for long
periods of time.

Cloud computing environments are often built on top of virtual machines (VMs) running on top
of a hypervisor. A virtual machine is a complete computing system that runs on top of another
system. The hypervisor is a privileged software component that manages the VMs. Typically,
one can run multiple VMs on top of a single hypervisor, which is often how cloud providers
distribute customers across multiple physical servers. As the low-level manager of VMs, the
hypervisor has privileged access to those VMs, and this access is often supported by hardware-
enforced isolation. The strong isolation between the hypervisor and VMs provides an
opportunity for robust security monitoring. Because cloud environments are often built using
hypervisor technology, VM monitoring can be used to protect cloud systems.

In addressing those challenges, this research develops resilient virtual machines to ensure
protection against failures and attacks. We exploit virtualization to design and deploy low-cost
highly efficient monitoring and recovery techniques that can transform a typical cloud
environment into resilient computing infrastructure. In the following sections we highlight the
major contributions of this work, including design and implementation of HyperTap framework
and several detection/monitoring techniques (e.g., hypervisor hang detection, hidden rootkit
process detection) prototyped on Linux OS.

Section 3 Methods, Assumptions, and Procedures

In order to achieve resiliency against malicious attacks and accidental failures we developed
robust monitoring to provide situational awareness about the system and users’ state and
behavior in the context of cloud computing infrastructure. Monitoring systems can generally be
split into two classes: those that perform passive monitoring, and those that perform active
monitoring. Passive monitoring systems are polling-based systems that periodically inspect the
system’s state. These systems are vulnerable to transient attacks that occur between monitoring
checks. Furthermore, constant polling of a system can be a source of unnecessary performance
overhead. Active monitoring systems overcome these weaknesses since they are triggered only
when events of interest occur. However, it is essential to ensure that an active monitoring
system’s event generation mechanism cannot be circumvented.

One class of active monitoring systems is that of hook-based systems (see Figure 19), in which
the monitor places hooks inside the target application or OS. A hook is a mechanism used to
generate an event when the target executes a particular instruction. When the target’s execution
reaches the hook, control is transferred to the monitoring system, which can record the event
and/or inspect the system’s state. Once the monitor has finished processing the event, it returns
control to the target system, and execution continues until the next event.

Approved for Public Release; Distribution Unlimited.

80

Figure 19. Hook-based monitoring. A hook is triggered by event e, and control is transferred to
the monitor through notification N. The monitor processes e with a behavior B and returns
control to the target with a response R.

We find dynamic hook-based systems attractive for system monitoring, as they can be easily
adapted: once the hook delivery mechanism is functional, implementation of a new monitor
involves adding a hook location and deciding how to process the event. In this context, dynamic
refers to the ability to add and remove hooks without disrupting the control flow of the target.
This is particularly important in real-world use, where monitoring needs to be configured for
multiple applications and operational environments. Following those principles we designed,
prototyped, and demonstrated HyperTap framework for reliability & security monitoring. Below
we discuss the technologies developed.

HyperTap framework for reliability & security monitoring of virtual machines using hardware
architectural invariants. We developed HyperTap, a hypervisor-level framework that efficiently
simultaneously addresses both reliability and security types of monitoring in virtualization
environments. In HyperTap, the logging of system events and states is common across monitors
and constitutes the core of the framework. The audit phase of each monitor is implemented and
operated independently. In addition, HyperTap relies on hardware invariants to provide a
strongly isolated root of trust. HyperTap uses active monitoring, which can be adapted to enforce
a wide spectrum of reliability and security policies. We prototype HyperTap on top of KVM
hypervisor and validated the framework by introducing three example monitors: Guest OS Hang
Detection (GOSHD), Hidden RootKit Detection (HRKD), and Privilege Escalation Detection
(PED). Our fault injection based experiments and real rootkits/exploits demonstrate that
HyperTap provides robust monitoring with low performance overhead. Evaluation results are
presented in the next section.

Hypervisor Probes (hprobes) for dynamic dependability monitoring of virtual machines. We
developed hprobes, a framework that allows one to dynamically monitor applications and
operating systems inside a virtual Machines (VM). The hprobe framework (discussed later) does
not require any changes to the guest OS, which avoids the tight coupling of monitoring with its
target. Furthermore, the monitors can be customized and enabled/disabled while the VM is
running. We demonstrated the usefulness of this framework by implementing sample detectors:
(i) an emergency detector for a security vulnerability, (ii) an application watchdog, and (iii) an
infinite-loop detector. We tested our detectors on real applications and shown that those detectors
achieve an acceptable level of performance overhead with a high degree of flexibility.

Approved for Public Release; Distribution Unlimited.

81

Failure diagnosis for distributed systems using targeted fault injection. We developed, an
approach to automate failures diagnostic in distributed systems by combining fault injection and
data analytics. We use fault injection to populate a database of failures for a distributed system.
When a failure is reported from the field, the database is queried to find (in the data base)
execution traces similar to those of the new failure. Relying on the assumption that similar
failures are caused by similar faults, we use information from the matched faults as hints to
locate the actual root cause of newly reported failures. We evaluated the approach with
OpenStack, a popular cloud infrastructure management system. The experimental results show
that this approach can effectively determine the root causes, e.g., fault types and affected
components, for 71-100% of tested failures. Furthermore, it can provide fault locations close to
exact and can easily be used to find and fix actual root causes. We validate this technique by
localizing real bugs that occurred OpenStack.

Section 4 Results and Discussion

In this section we provide key results from evaluation of the porotype implementation of
technologies introduced in the previous section.

HyperTap framework for reliability & security monitoring of virtual machines using
hardware architectural invariants.
We split the monitoring process into two phases: logging and auditing. The logging phase, when
data/events are captured, constitutes the core of the framework and is common to all monitors.
The auditing phase, when data/events are analyzed, is implemented and operated independently
by each monitor. In order to support a broad range of auditing policies, logging needs to capture
a complete view, including both actions and states of target systems. Furthermore, logging is
responsible for the trustworthiness of the captured view; otherwise, auditing faces a “garbage in,
garbage out” situation.

We applied the principles stated above when designing HyperTap, a hypervisor-level monitoring
framework for Virtual Machines (VMs). In contrast to most existing VM monitoring techniques,
HyperTap employs hardware architectural invariants to establish the root of trust for the logging
phase. Hardware architectural invariants are properties defined and enforced by a hardware
platform (e.g., the x86 processor architecture). Additionally, the framework supports continuous
monitoring of VMs in an event-driven fashion; that enables both capturing the system state and
responding rapidly to actions of interest.

We deployed and evaluated three auditors as parts of HyperTap: (i) Guest Operating System
Hang Detection (GOSHD) to detect operating system hangs in a VM, (ii) Hidden Rootkit
Detection (HRKD) to detect hidden malicious processes and threads, and (iii) Privilege
Escalation Detection (PED) to detect privilege escalations (in Linux operating system) which
allow users and applications to obtain unauthorized access to resources. Experimental evaluation
of the three auditors shows that they are effective in detecting hangs (caused by injecting bugs in
the guest operating system), and real-world rootkits and privilege escalation attacks while

Approved for Public Release; Distribution Unlimited.

82

causing less than 5% and 2% performance overhead for disk I/O and CPU intensive workloads,
respectively.

Continuous Monitoring. HyperTap’s continuous monitoring takes advantage of the “trap-and-
emulate” mechanism in x86 Hardware Assisted Virtualization (HAV). HAV is an extension to
the x86 architecture to support running an unmodified operating system in VMs. It defines guest
mode and host mode execution. In the guest mode, a processor “traps” certain privileged
operations (e.g., access to processor control registers or I/O instructions) and fires VM exit
events to notify the hypervisor to emulate those operations. HyperTap intercepts VM exit events,
records the related VM state, and passes the collected state information to the auditor for
detecting potential errors or malicious tampering with the system.

Hardware Architectural Invariants. A hardware architectural invariant, or hardware invariant
for short, is a property defined and enforced by the hardware architecture. In most cases, these
invariants must hold so that the entire software stack, e.g., the hypervisor, OS, and user
applications, can operate correctly. Hardware invariants, particularly the ones defined by HAV,
provide features that are desirable for VM monitoring. The behaviors enforced by HAV involve
primitive building blocks of essential OS operations, such as process/application context
switches, system calls, I/O accesses, and memory access events.

Implementation. The bottom left portion of Figure 20 shows a HyperTap prototype coupled with
the KVM hypervisor. The same design principles can be applied to other HAV-based
hypervisors. In this design, each VM can have multiple auditors of choice running at the same
time. Each type of auditor can have multiple instances attached to different VMs. The core
HyperTap components, including the Event Forwarder and Event Multiplexer, are responsible
for delivering VM exit events to correct auditors. This design enables flexible deployment of
auditors (implemented as user processes) to meet different demands of target VMs. Next we
discuss auditor examples their evaluation.

Approved for Public Release; Distribution Unlimited.

83

Figure 20. (Bottom left) HyperTap implementation with KVM on a Linux platform; (Top left)
Event types used by three auditors; (Right) Example of GOSHD auditor; principle of operation
and coverage results from fault injection experiments.

Guest OS Hang Detection (GOSHD)
Failure Model. We consider an OS as being in a hang state if it ceases to schedule tasks. In
multiprocessor systems, it is possible for the OS to experience a hang on a proper subset of
available CPUs. If that happens, we say that the OS is in a partial hang state, as opposed to a full
hang state in which the OS is hung on all CPUs. Distinguishing between partial and full OS
hangs is important, because OS hang detection approaches, such as heartbeats, are effective only
against full hangs.

Detection. GOSHD tracks thread dispatches to monitor the VM’s OS scheduler. If a virtual CPU
(vCPU), meaning a CPU of a VM, does not generate any thread switch events for a predefined
threshold of time, GOSHD declares the guest OS as hung on that vCPU. Because vCPUs are
monitored independently of each other, GOSHD detects both partial and full hangs. The timeline
in the top right portion of Figure 1 depicts the described detection mechanism.

Results. We evaluated GOSHD by injecting errors in the locking mechanisms used by Linux OS
to synchronize access to shared data. The chart in the bottom right portion of Figure 2
summarizes the results. Of ~18,000 injections, about 82% manifested as hangs, and 99.8% of
these hangs were detected by GOSHD. More interestingly, the experiment showed that partial
OS hangs were a relatively common consequences of the injected bugs: 18% to 26% of hangs
were partial hangs on preemptible and non-preemptible operating systems, respectively. That
result emphasizes the importance of partial hang detection.

Hidden Rootkit Detection (HRKD)
Threat Model. Rootkits are malicious computer programs created to hide other programs from
system administrators and security monitoring tools. Autonomic security scanning tools can also
be bypassed simply because their inspection lists do not contain the hidden programs.

Approved for Public Release; Distribution Unlimited.

84

Detection. Our HRKD auditor employs context switch monitoring methods to inspect every
process and thread that uses CPUs, regardless of how kernel objects are manipulated. Each time
a process or a thread is scheduled to use a CPU, it is intercepted by the auditor for further
inspection. That interception defeats hidden malware by putting malicious programs back on the
inspection list.

Results. We tested HRKD with nine real-world rootkits in both Linux and Windows
environments. In all cases, HRKD discovered the hidden applications, regardless of their hiding
technique.

Privilege Escalation Detection (PED)
Threat model. A process gains a higher privilege to obtain unauthorized access to system
resources. Privilege escalation is an essential step of many real-world attacks.

Detection. We employ a real-world privilege escalation detection system (Ninja) that uses
passive monitoring. It is included in the mainline repository for major Linux distributions. It
periodically scans the process list to determine whether a privileged (root-owned) process has a
parent process that is not from an authorized user, and if it does, flags the process as privilege-
escalated. We implemented two new versions of Ninja: H-Ninja and HT-Ninja. Both new
versions operate at the hypervisor level. While H-Ninja uses the traditional VM monitoring
method of polling and decoding VM guest memory, HT-Ninja uses architectural invariants and
HyperTap to monitor VMs in an event-driven fashion.

Results. To compare the three implementations, we crafted transient attacks: attacks that take a
very small amount of time in order to avoid being detected. We also improved transient attacks
by combining them with three new attacks:

1. Side-channel attacks, which can determine the exact monitoring interval so that a transient
attack can be timed strategically.

2. Spamming attacks, which increase the workload of the monitor so that the vulnerable window
in which the transient attack will execute is larger.

3. Attacks that combine a privilege escalation attack with a rootkit, which make transient attacks
persistent by hiding them from the monitor.

Using those proposed attacks, we showed that both the original Ninja and H-Ninja are highly
vulnerable to transient attacks. For example, our side channel attack precisely predicted the
monitoring interval of O-Ninja. Using the predicted values, we could launch transient attacks
with an extremely low chance of being detected. When an attack needs more time to execute, it
can utilize the spamming attack. For example, when 200 dummy processes are introduced, the
detection coverage of O-Ninja is reduced to less than 2%. On the other hand, our HT-based Ninja
is not vulnerable to any of those attacks, as it uses event-driven monitoring.

Hypervisor Probes (hprobes) for dynamic dependability monitoring of virtual machines
Our implementation of hprobes leverages hardware-assisted virtualization (HAV), and the
prototype framework is built on the KVM hypervisor. The prototype’s architecture is shown in
Figure 10.3. The modifications to KVM itself make up the Event Forwarder, which is a set of

Approved for Public Release; Distribution Unlimited.

85

callbacks inserted into KVM’s VM Exit handlers. The Event Forwarder uses Helper APIs to
communicate with a separate hprobe kernel agent. The hprobe kernel agent is a loadable kernel
module that is the workhorse of the framework. The kernel agent provides an interface to
detectors for inserting and removing probes. This interface is accessible by kernel modules
through a kernel API in the host OS (which is also the hypervisor, since KVM itself is a kernel
module) or by user programs via an ioctl interface.

The execution of an hprobe-based detector is illustrated in Figure 21. A probe is added by
rewriting the instruction in memory at the target address with int3, saving the original
instruction, and adding the target address to a doubly linked list of active probes. This process
happens at runtime and requires no application or guest OS restart. Although the prototype was
implemented using KVM, the concept extends to any hypervisor that can trap on similar
exceptions.

Figure 21. Hprobes integrated with the KVM hypervisor. The Event Forwarder has been added
to KVM and communicates with a separate kernel agent through Helper APIs. Detectors can be
implemented as kernel modules either in the host OS or in user space.

Figure 22. A probe hit in the hprobe prototype. Right-facing arrows are VM Exits, and left-
facing arrows are VM Entries. When int3 is executed, the hypervisor takes control. The
hypervisor optionally executes a probe handler (probefunc()) and places the CPU into single-step
mode. It then executes the original instruction and does a VM Entry to resume the VM. After the
guest executes the original instruction, it traps back into the hypervisor, and the hypervisor will
write the int3 before allowing the VM to continue as usual.

Approved for Public Release; Distribution Unlimited.

86

Example Detector: Emergency Exploit Detector
In this section, we present emergency exploit detector, a sample detector built upon the hprobe
prototype framework. These detector is unique to the hprobe framework and cannot be
implemented on any other current VM monitoring system.

Most system operators fear zero-day vulnerabilities, as there is little that can be done about them
until the vendor or maintainer of the software releases a fix. Furthermore, even after a
vulnerability is made public, a patch takes time to be developed and must be put through a QA
cycle. The challenge is even greater in environments with high availability concerns and
stringent change control requirements; even if a patch is available, many times it is not possible
to restart the system or service until a regular maintenance window. This leaves operators with a
difficult decision: risk damage from restarting a system with a new patch, or risk damage from
running an unpatched system.

Consider the CVE-2008-0600 vulnerability, which resulted in a local root exploit through the
vmsplice() system call used to perform a zero-copy map of user memory into a pipe. At a high
level, the CVE-2008-0600 vmsplice() exploit works by using an integer overflow to corrupt the
kernel stack and hijack the system.

The emergency detector works by checking the arguments of a system call for a potential integer
overflow. This differs in functionality from the upstream patch, which checks whether the
memory region (specified by the struct iovec argument) is accessible to the user program. A
major benefit of using an hprobe handler is that developing such a detector does not require a
deep understanding of the vulnerability; the developer of the emergency detector only needs to
understand that there is an integer overflow in an argument. This is far simpler than developing
and maintaining a patch for a core kernel function (a system call), especially when reasoning
about the risk of running a home-patched kernel (a process that would void most enterprise
support agreements). Our solution uses a monitoring system that resides outside of the VM and
relies on a hardware-enforced int3 event. A would-be attacker cannot circumvent this event
without having first compromised the hypervisor or modified the guest’s kernel code.

Evaluation. We run microbenchmarks to estimate the latency of a single hprobe, which is the
time from execution of int3 by the VM until the VM is resumed (Steps 1–3 in Figure 10.4). We
ran these microbenchmarks without a probe handler function to determine the lower bound of
hprobe-based detector overhead.

Measurements were conducted on a Dell PowerEdge R720 server with dual-socket Intel Xeon
E5-2660 “Sandy Bridge” 2.20 GHz CPUs (3.0 GHz turbo boost). We used a 32-bit Ubuntu 14.04
guest and measured 1000 samples. The mean latency (across samples) was found to be 2.6 µs. In
addition to the Sandy Bridge CPU, we have also included data for an older-generation 2.66GHz
Xeon E5430 “Harpertown” processor (running the same kernel, KVM version, and VM image),
which had a mean latency of 4.1 µs. The distribution of latencies for these experiments is shown
in Figure 5. The remainder of the benchmarks presented used the Sandy Bridge E5-2660. The
hprobe prototype requires multiple VM Exits per probe hit. However, in many practical cases,
the flexibility of dynamic monitoring and the reduced maintenance costs resulting from a simple

Approved for Public Release; Distribution Unlimited.

87

implementation outweigh that cost. The flexibility can increase performance in many practical
cases by allowing one to add and remove probes throughout the VM’s lifetime.

In addition to microbenchmarking individual probes, we measured the overhead of the example
hprobe-based detectors presented in the previous section. All measurements were obtained using
the hypercall-based timer. Our emergency exploit detector that protects against the CVE-2008-
0600 vmsplice() vulnerability is extremely lightweight. Unless vmsplice() is used, the overhead
of the detector is zero since the probe will not be executed. The vmsplice() system call is rare (at
least in the open-source repositories that we searched), so zero overhead is overwhelmingly the
common case. One application that does use vmsplice() is Checkpoint/Restart in User space
(CRIU). CRIU uses vmsplice() to capture the state of open file descriptors referring to pipes. We
used the Folding@Home molecular dynamics simulator and the pi-qmc Monte Carlo simulator
as test programs. We ran these applications in a 64-bit Ubuntu 14.04 VM. At each sample, we
allowed the application to warm up (load input data and start the main simulation) and then
checkpointed it. The timing hypercalls were inserted into CRIU to measure how long it takes to
dump the application. This was repeated 100 times for each case with and without the detector,
and the results are tabulated in Table 10.1. In the table, we can see that there is a slight difference
between the mean checkpoint times (roughly 3.3% for F@H and 1.7% for pi-qmc) and that the
variance in the experiment with the detector active is higher for the Folding@Home case.
Sys_vmsplice() was called 28 times when Folding@Home was being checkpointed, and 11 times
for pi-qmc. We can attribute this difference to the negative cache effects of the context switch
when probes are being activated.

Figure 22. Single probe latency. (CPUs’ release years are in parentheses.) The E5-2660’s larger
range can be attributed to “Turbo Boost,” whereby the clock scales from 2.2 to 3.0 GHz. The
shaded area is the quartile range (25th percentile to 75th percentile); whiskers are the
minimum/maximum; the center is the mean; and the notches in the middle represent the 95%
confidence interval of the mean.

Approved for Public Release; Distribution Unlimited.

88

Table 6: CVE-2008-0600 DETECTOR /CRIU

Failure diagnosis for distributed systems using targeted fault injection
We developed and evaluated a failure diagnosis technique that enables fast system and
application fixes. Specifically, we propose a technique called Approximate Fault Localization,
which allows fast determination of failure root-causes’ locations and failure modes of distributed
systems. We applied this technique in the context of OpenStack, an open source cloud
management system, to reduce its maintenance cost.

The approach is summarized in Figure 24. When a failure is observed in a production system, we
collect its failure profile through our distributed tracing tool. The collected failure profile is
processed to reconstruct an end-to-end processing flow corresponding the failure. An end-to-end
processing flow is a sequence of system events (e.g., system calls) across multiple distributed
components that are invoked from the moment a request is received by the system, to the
moment when the final response is returned, or the processing of the request is terminated (e.g.,
due to a failure). An example end-to- end flow of one request is given in Figure 24. This
reconstructed end-to-end processing flow is then used to query against a pre-constructed Failure
Profile Database to find faults that generate ‘similar’ flows. The returned faults are given to
developers as hints to the locations in the processing flow where the actual root-caused fault
might have occurred.

Figure 24. Overview of the Approximate Fault Localization approach

The approach is summarized in Figure 5. When a failure is observed in a production system, we
collect its failure profile through our distributed tracing tool. The collected failure profile is
processed to reconstruct an end-to-end processing flow corresponding the failure. An end-to-end
processing flow is a sequence of system events (e.g., system calls) across multiple distributed
components that are invoked from the moment a request is received by the system, to the
moment when the final response is returned, or the processing of the request is terminated (e.g.,
due to a failure). An example end-to- end flow of one request is given in Figure 24. This
reconstructed end-to-end processing flow is then used to query against a pre-constructed Failure
Profile Database to find faults that generate ‘similar’ flows. The returned faults are given to

Approved for Public Release; Distribution Unlimited.

89

developers as hints to the locations in the processing flow where the actual root-caused fault
might have occurred.

Figure 25. Example of an end-to-end flow

In order to construct the Failure Profile Database, we developed a fault injection framework,
called Targeted Fault Injection, to allow deterministically injecting faults at exact locations in the
execution flows of a distributed system. The fault injection framework consists of a specification
language and a runtime system. The specification language is used to define precise fault
injection scenarios. The runtime system takes the specification as input to generate execution
plan and automate the fault injections. The collected profiles of fault-injected executions are
added to the Failure Profile Database.

We evaluated the proposed approach with Open Stack to demonstrate its feasibility. We are
trying to answer the following two questions. The results show that we can correctly determine
the failed components, among multiple components of Open Stack, for 70-100% of tested cases.

Section 5 Conclusions

Cloud computing allows users to obtain scalable computing resources, but with a rapidly
changing landscape of attack and failure modes, the effort to protect these complex systems is
increasing. As we demonstrated VM monitoring plays an essential role in achieving resiliency.
However, existing VM monitoring systems are frequently insufficient for cloud environments as
those monitoring systems require extensive user involvement when handling multiple operating
system (OS) versions. Cloud VMs can be heterogeneous, and therefore the guest OS parameters
needed for monitoring can vary across different VMs and must be obtained in some way. Past
work involves running code inside the VM, which may be unacceptable for a cloud environment.

We envisage that this problem will be solved by recognizing that there are common OS design
patterns that can be used to infer monitoring parameters from the guest OS. We can extract
information about the cloud user’s guest OS with the user’s existing VM image and knowledge
of OS design patterns as the only inputs to analysis. As a proof of concept we have been
developing VM monitors by applying this technique. Specifically, we implemented sample
monitors that include a return-to-user attack detector and a process-based keylogger detector.

Another important aspect of delivering robust and efficient monitoring and protection against
accidental failures and malicious attacks is our ability to validate (using formal and experimental
methods) the detection capabilities of the proposed mechanisms and strategies. Towards that end
we require development of validation frameworks that integrate the use of tools such as model

Approved for Public Release; Distribution Unlimited.

90

checkers (for formal analysis and symbolic execution of software) and fault/attack injectors (for
experimental assessment).

Approved for Public Release; Distribution Unlimited.

91

Section 11 Trustworthiness Estimation for Workflow Completion (David Nicol & Jingwei
Huang)

Section 1 Summary of Research Project

This research developed methods, models, and algorithms for trustworthiness estimation of cloud
workflow, from the belief in the attributes of workflow components, and for trust judgment in a
cloud service or a cloud entity, based on suitable trust mechanisms for the clouds.

Section 2 Introduction

We built trust models for clouds and cloud workflow, and developed a decision aid framework
for workflow cloud resource management. We also attempted to estimate trustworthiness of
Hadop/YARN application (workflow of tasks) completion, by taking into account of not only
performance attributes, but also security attributes.

The issues and challenges of trust in cloud computing have been widely discussed from different
perspectives, and there is little research on formal models and systematical mechanisms of trust
in clouds, or trust chains from users to services through various cloud entities. Hadoop has been
widely deployed in cloud computing, and it is evolving through replacing MapReduce with
YARN (the next generation); however, current research, design, and development of Hadoop
focuses on the performance aspect of cloud, and the security issues and their impacts on Hadoop
system are rarely studied.

Because of the criticality of many cloud services, cloud clients (especially organizations) need to
make decisions about employing a cloud service based on “formal” trust, which is more certain,
more accountable and more dependable than that based on some informal trust, such as
experience and reputation as we often see in e-commerce. We explore such “formal” trust
approaches for clouds, leveraging our experience with PKI trust mechanisms. In our trust
mechanism design, the attributes of a cloud service (or cloud provider) that are critical to a cloud
user are used as evidence for the user’s trust judgment, and the belief in those attributes is based
on formal certification and chains of trust for validation. The proposed trust mechanism could
meet the needs of cloud clients especially on mission-critical services. The mechanisms are
based on past successful experience with modeling trust in PKI.

Trust itself is associated with risk, due to incomplete information. The more information and
attributes we can know, the more we are confident about what we trust. We need to make our
attribute-based calculus of trust be flexible to handle different level of information
incompleteness and in different granularity.

Approved for Public Release; Distribution Unlimited.

92

Section 3 Methods, Assumptions, and Procedures

Figure 26. General structure for evidence-based tryst judgement

• Based on the semantics of trust, we constructed a general structure for evidence-

based trust judgment, which defines the attributes to be examined as evidence in a
space of two-dimensions: domain of expectancy and source of trust including
competence, goodwill, and integrity. Trust is a complex social phenomenon; this
abstraction is based on the findings from social sciences.

• We developed workflow trust aggregation models, including sequence
aggregation and parallel aggregation, and analyzed their properties. Different
from our previous trust calculus, where trust propagates in a trust network; the
new aggregation is from the perspective of workflow completion and “Reliability
Block Graph” and has different operators.

• We developed a stochastic event simulation model that estimates the degree of
belief of the completion of a workflow in Hadoop/YARN system, and studies the
impacts of security issues to the workflow completion. In particular, we focus on
the impacts of multi-tenancy and denial of service attack on Hadoop’s
performance.

Approved for Public Release; Distribution Unlimited.

93

Section 4 Results and Discussion

Figure 27. Hadoop/YARN system performance

Our simulation shows that even a small amount of compromised capacity may significantly
degrade Hadoop/YARN system performance. The following figure shows the Cumulative
Distribution Function of a MapReduce job completion time in some situations under denial of
service attacks. (CCap denotes compromised capacity). For larger cluster, e.g. 10,000 nodes, the
simulation results are similar.

Approved for Public Release; Distribution Unlimited.

94

Figure 28. Cumulative Distribution Function of a MapReduce job completion time

Section 5 Conclusions

We developed a framework for using evidence-based trust to calculate the degree of belief in a
service provider's performance with respect to satisfying a user's privacy protection expectation.
Based on privacy theories, we identified users’ expectation space and privacy policy compliance
evidence space. Based on trust theories, we identified privacy CIA (Ability, Intension,
Consistency) triad of evidence for trust. To infer trust from evidence, we constructed a specific
form of Belief Network model, in which the uncertain belief in each variable (representing a
proposition) is measured with a triple <belief degree, disbelief degree, unknown degree>; this
model is an extension to the formal-semantics-based calculus of trust we previously developed.
The framework is illustrated as the following figure.

Approved for Public Release; Distribution Unlimited.

95

Figure 29. Belief Network model

Approved for Public Release; Distribution Unlimited.

96

Section 12 Application-Aware Cloud Network Resource Allocation (Roy Campbell, Chris
Cai, and Gourav Kheneja)

Section 1 Summary of Research Project

This research is aimed at the performance and algorithms used in Cloud computing and
addresses issues of network performance, geographic distribution and stream processing. The
results of the research are encapsulated in the products of four separately titled thrusts:

1) Phurti: Application and Network-Aware Flow Scheduling for Multi-tenant MapReduce
Cluster.

2) CRONets: Cloud-Routed Overlay Networks.
3) Data assurance in Clouds
4) Ambry: Geographically distributed blob store.
5) Samza: Large state in Stream Processing Systems.

6) R-Storm: Apache Storm is one of the most popular stream processing systems in industry
today. However, Storm, like many other stream processing systems lacks an intelligent
scheduling mechanism. R-Storm is designed to increase overall throughput by maximizing
resource utilization while minimizing network latency.

Section 2 Introduction

Phurti: Phurti is a Mapreduce job traffic flow scheduling framework. Phurti uses an API to
acquire the network topology knowledge from the application user. Given Phurti’s
understanding of the traffic characteristics of Mapreduce jobs, it schedules jobs so that the
network traffic is considered at the job level instead of flow level.

CRONets: CRONets allows individual users to build their own overlay network using publicly
available cloud servers, without explicit negotiation with ISPs. Taking advantage of TCIP’s
reliable transmission of data but its need for acknowledgments, CRONets optimizes transmission
by reliably transmitting the data for partial segments of the route, avoiding high latency caused
by error loss and retransmit.

Data assurance in Clouds: Availability of data stored in or across clouds is critical to the whole
operation of the systems that depend on this data. Storage workload models that can be used to
design better metadata management schemes and better placement schemes to achieve desired
levels of availability.

Approved for Public Release; Distribution Unlimited.

97

SDN based policy enforcement: SDN networks are becoming more popular but require a
controller and switches to interact. This research built SDN-based policy enforcement vis-à-vis
network virtualization, address abstractions and work abstractions into a “Fabric” network using
SDN-based label switching. The approach allows enclaves and virtualization of SDN network
routes and controllers.

Ambry: Large social networks and similar Cloud applications allow users storage and sharing
over large geographical areas. Latency and availability are key attributes of appropriate
solutions. We researched a distributed storage system for storing large immutable objects (so
called blobs) efficiently in geo-distributed environment.

Samza: This is research into handling very large state (100s of TBs to PBs) in stream processing
systems which enables large joins and aggregations over streams. We developed large state
handling on Apache Samza, and based on our evaluation we can reach up to 100x better
performance compared to traditional way of handling state. Evaluated various state handling
mechanisms and our proposed mechanism. Based on our results, our mechanism reaches low
latency, high throughput, and almost constant failure recovery time. The research added the
fault-tolerance to Apache Samza. Based on our evaluations, the failure recover can be in parallel
and almost constant irrespective of the number of failures. We have design a mechanism to
reduce failure recovery by preventing state rebuild as much as possible.

Examined the network as a resource in the context of graph processing, Supporting On-demand
Elasticity in Distributed Graph Processing.

R-Storm: We evaluate R-Storm on set of microbenchmark Storm applications as well as Storm
applications used in production at Yahoo! Inc. From our experimental results we conclude that
R-Storm achieves 30-47% higher throughput and 69-350% better CPU utilization than default
Storm for the micro-benchmarks. For the Yahoo! Storm applications, R-Storm out performs
default Storm by around 50% based on overall throughput.

Section 3 Methods, Assumptions, and Procedures

Phurti: Phurti uses a centralized approach to gather both application information and network
topology information through APIs. On top of Phurti framework, we develop a scheduling
algorithm which prioritizes jobs with shortest sequential traffic.

CRONets: We build overlay network using cloud servers provided by IBM Softlayer at different
geographical locations. We conduct extensive experiments using Planetlab located at a wide
range of locations. We also examine the effect of Split-Overlay method to boost network

Approved for Public Release; Distribution Unlimited.

98

throughput. We also develop a new approach to dynamically choose the best overlay path out of
multiple overlay paths.

Data assurance in Clouds: Analysis of real workloads. Workload modeling through statistical
techniques. Validation through case studies in distributed storage systems.

SDN based policy enforcement: The SDN network routing was abstracted by an MLS routing
scheme. The SDN Controller then mapped traffic through the network onto labels and
transferred the tyraffic through MLS routes. The scheme allows virtualization of the routes,
allowing policies to decide how to route within the SDN network.

Section 4 Results and Discussion

Phurti: Based on evaluation results using job traces sampled from Facebook cluster, Phurti
improves job completion time for improves job completion time for 95% of the jobs, decreases
average job completion time by 20% and tail job completion time by 13%.

CRONets: We show that CRONets improve the throughput for 78% of the default Internet paths
with a median and average improvement factors of 1.67 and 3.27 times respectively, at a tenth of
the cost of leasing private lines of comparable performance.

Data assurance in Clouds: Improved distributed storage system design with respect to metadata
management, data placement, and availability in failure-prone scenarios. Demonstrations using
real Big Data workloads from Yahoo!. Products include: Workload characterization, workload
models, synthetic workload generator, and applications that demonstrate the usability of our
models.

SDN based policy enforcement: We showed lightweight switching of routes and virtualization of
controllers (hypervisor control for SDN). Switching was shown to retain integrity.

Ambry: In collaboration with LinkedIn, we have developed “Ambry”, a scalable geo-distributed
object store. For over 2.5 years, Ambry has been the mainstream storage for all LinkedIn’s media
objects, across all of its four datacenters, serving more than 450 million users. Our experimental
results show that Ambry reaches high throughput (reaching up to 88% of the network bandwidth)
and low latency (serving 1 MB objects in less than 50 ms), works efficiently across multiple geo-
distributed datacenters, and improves the imbalance among disks by a factor of 8x-10x while
moving minimal data.

Samza: In collaboration with LinkedIn, we have developed a scalable large state stream
processing system. The results were:
The system is designed to handle very large state (100s of TBs to PBs) in stream processing
systems which enables large joins and aggregations over streams. We developed large state

Approved for Public Release; Distribution Unlimited.

99

handling on Apache Samza, and based on our evaluation we can reach up to 100x better
performance compared to traditional way of handling state. Based on our evaluations, the failure
recover can be in parallel and almost constant irrespective of the number of failures. We have
design a mechanism to reduce failure recovery by preventing state rebuild as much as
possible. Evaluated various state handling mechanisms and our proposed mechanism. Based on
our results, our mechanism reaches low latency, high throughput, and almost constant failure
recovery time. Samza is a currently running system of Linked-In and the code is Open Source.

R-Storm: R-Storm (Resource-Aware Storm) is a system that implements resource-aware
scheduling within Storm. R-Storm is designed to increase overall throughput by maximizing
resource utilization while minimizing network latency. When scheduling tasks, R-Storm can
satisfy both soft and hard resource constraints as well as minimizing network distance between
components that communicate with each other. We evaluate R-Storm on set of micro-benchmark
Storm applications as well as Storm applications used in production at Yahoo! Inc. From our
experimental results we conclude that R-Storm achieves 30-47% higher throughput and 69-350%
better CPU utilization than default Storm for the micro-benchmarks. For the Yahoo! Storm
applications, R-Storm out performs default Storm by around 50% based on overall throughput.
We also demonstrate that R-Storm performs much better when scheduling multiple Storm
applications than default Storm.

Section 5 Conclusions

1) Network Aware Applications, Phurti, improves job completion time.
2) We have finished a set of prevalent measurement showing a significant portion of Internet

paths could benefit from CRONets.
3) With CRONETS, we validate that using Split-Overlay perform better than plain overlay

overlay for most cases.
4) The SDN based policy enforcement and hypervisor for virtual SDN network software is

available for further experimentation.
5) We designed and developed an industry scale object store optimized for a geo-distributed

environment (Ambry). Ambry serves requests in a geographically distributed environment
of multiple datacenters while maintaining low latency and high throughput. Using a
decentralized design, rebalancing mechanism, chunking, and logical blob grouping, we
provide load balancing and horizontal scalability to meet the rapid growth at LinkedIn.
Ambry source code available as Open Source contributions.

6) We minimized cross-datacenter traffic by using asynchronous writes (write to local
datacenter and propagate to other in the background),

7) We designed and developed an industry scalable large state stream processing system
(Samza). We developed a 2 phase background replication mechanism. We developed a
load balancing mechanism returning the system to a balanced state after expansion.

8) Ambry and Samza are in current use by Linked-In
9) R-Storm out performs default Storm by around 50% based on overall throughput

Approved for Public Release; Distribution Unlimited.

100

Bibliography

2017

1. Roy H. Campbell, Charles Kamhoua, and Kevin Kwiat (Eds.), Assured Cloud Computing,
IEEE-Wiley, New York, NY, to be published 2017.

2. Shadi A. Noghabi, Kartik Paramasivam, Yi Pan, Navina Ramesh, Jon Bringhurst, Indranil Gupta,
and Roy H. Campbell, "Samza: Stateful Stream Processing at Scale", 43rd International
Conference on Very Large Data Bases (VLDB 2017), Munich, Germany, August 28-September 1,
2017, to appear.

3. Carlo Di-Giulio, Read Sprabery, Charles Kamhoua, Kevin Kwiat, Roy Campbell, and Masooda
Bashir, “Cloud Standards in Comparison: Are New Security Frameworks Improving Cloud
Security?”, 10th IEEE International Conference on Cloud Computing (Cloud 2017), Honolulu,
HI, June 25-June 30, 2017, to appear.

4. Carlo Di-Giulio, Read Sprabery, Charles Kamhoua, Kevin Kwait, Roy Campbell, and Masooda
Bashir, “IT Security and Privacy Standards in Comparison: Improving FedRAMP Authorization
for Cloud Service Providers”, International Workshop on Assured Cloud Computing and QoS
Aware Big Data (WACC 2017), Madrid, Spain, May 14, 2017.

5. Zackary J. Estrada, Read Sprabery, Lok Yan, Zhongzhi Yu, Roy Campbell, Zbigniew
Kalbarczyk, and Ravishankar K. Iyer, “Using OS Design Patterns to Provide Reliability and
Security as-a-Services for VM-based Clouds”, 13th ACM SIGPLAN/SIGOPS International
Conference on Virtual Execution Environments (VEE 2017), Xi’an China, April 8-9, 2017.

6. Read Sprabery, Zachary Estrada, Jon Calhoun, Zbigniew Kalbarczyk, Ravishankar Iyer, Rakesh
B. Bobba, and Roy Campbell, “Trustworthy Services Built on Event Based Probing for Layered
Defense”, IEEE International Conference on Cloud Engineering (IC2E 2017), Vancouver,
Canada, April 4-7, 2017.

7. Phuong Cao, Alexander Withers, Zbigniew Kalbarczyk, and Ravishankar Iyer, “Learning Factor
Graphs for Preempting Multi-State Attacks in Cloud Infrastructure”, poster, Symposium and
Bootcamp on the Science of Security (HotSoS 2017), Hanover, MD, April 4-5, 2017.

8. Stephen Skeirik, Andrei Stefanescu, and Jose Meseguer, “A Constructor-Based Reachability
Logic for Rewrite Theories”, Technical Report, Department of Computer Science, University of
Illinois at Urbana-Champaign, March 27, 2017.

9. Carlo Di-Giulio, Read Sprabery, Charles Kamhoua, Kevin Kwiat, Roy Campbell, and Masooda
Bashir, “Cloud Security Certifications: A Comparison to Improve Cloud Service Provider
Security”, International Conference on Internet of Things, Data and Cloud Computing (ICC
2017), Churchill College, Cambridge, UK, March 22-23, 2017.

10. SI Liu, Jatin Ganhotra, Muntasir Raihan Rahman, Son Nguyen, Indranil Gupta, and Jose
Meseguer, "Quantitative Analysis of Consistency in NoSQL Key-value Stores", Leibniz
Transactions on Embedded Systems (LITES Special Issue on Quantitative Evaluation of Systems
(QEST)), volume 4, number 1, 2017.

2016

1. Read Sprabery, Zachary Estrada, Zbigniew Kalbarczyk, Ravishankar Iyer, Roy Campbell, and
Rakesh Bobba, “Defense in Depth for Virtual Applications Built on Event Based Probing of

Approved for Public Release; Distribution Unlimited.

101

Untrusted Guests,” Annual Computer Security Applications Conference (ACSAC 2016), Los
Angeles, CA, December 5-9, 2016.

2. Read Sprabery, Güliz Seray Tuncay, Carl Gunter, and Roy Campbell, “Securely Retrofitting
Door Locks for Cheap Control through Mobile Devices”, Annual Computer Security Applications
Conference (ACSAC 2016), Los Angeles, CA, December 5-9, 2016.

3. Marjan Sirjani, Ehsan Khamespanah, Kirill Mechitov and Gul Agha, “A Compositional Approach
for Modeling and Timing Analysis of Wireless Sensor and Actuator Networks”, 9th International
Workshop on Compositional Theory and Technology for Real-Time Embedded Systems (CRTS
2016), Porto, Portugal, November 29, 2016.

4. Keywhan Chung, Valerio Formicola, Alexander Withers, Adam Slagell, Zbigniew Kalbarczyk,
and Ravishankar Iyer, “Attacking Supercomputers Through Targeted Alteration of Environmental
Control: A Data Driven Case Study,” International Workshop on Cyber-Physical Systems
Security, in conjunction with IEEE Conference on Communications and Network Security (CNS
2016), Philadelphia, PA, October 17-19, 2016.

5. Ahmed Fawaz, Atul Bohara, Carmen Cheh, and William H. Sanders, “Lateral Movement
Detection using Distributed Data Fusion”, 35th Symposium of Reliable Distributed Systems (SRDS
2016), Budapest, Hungary, September 26-29, 2016.

6. Peter Olveczky, “Design and Validation of the P-Store Replicated Data Store in Maude”, 23rd
International Workshop on Algebraic Development Techniques (WADT 2016), Gregynog, Wales,
September 21-24, 2016.

7. Shadi A. Noghabi, Roy H. Campbell, and Indranil Gupta, “Building a Scalable Distrusted Online
Media Processing Environment”, 42nd International Conference on Very Large Data Bases
(VLDB 2016), New Delhi, India, September 5-9, 2016.

8. Muntasir Raihan Rahman, Lewis Tseng, Son Nguyen, Indranil Gupta, and Nitin Vaidya,
“Characterizing and Adapting the Consistency-Latency Tradeoff in Distributed Key-value
Stores”, ACM Transactions on Autonomous and Adaptive Systems (TAAS), volume 11, issue 3,
September 2016.

9. Peter Csaba Olveczky, “Design and Validation of Cloud Computing Data Stores using Formal
Methods”, invited paper, International Symposium on Intelligent Systems and Applications (ISA
2016), Ho Chi Minh City, Vietnam, August 22-23, 2016.

10. Gul Agha, “Abstractions, Semantic Models and Analysis Tools for Concurrent Systems: Progress
and Open Problems”, 14th International Conference on Software Engineering and Formal
Methods (SEFM 2016), Vienna, Austria, July 4-8, 2016.

11. Uttam Thakore, Gabriel A. Weaver, and William H. Sanders, “A Quantitative Methodology for
Security Monitor Deployment”, 46th Annual IEEE/IFIP International Conference on Dependable
Systems and Networks (DSN 2016), Toulouse, France, June 28-July 1, 2016. Best Paper Award.

12. Chris X. Cai, Franck Le, Xin Sun, Geoffrey Xi, Hani Jamjoon, and Roy H. Campbell, “CRONets:
Cloud-Routed Overlay Networks”, 36th IEEE International Conference on Distributed and
Computing Systems (ICDCS 2016), Nara, Japan, June 27-30, 2016.

13. Shadi A. Noghabi, Sriram Subramanian, Priyesh Narayanan, Sivabalan Narayanan,
Gopalakrishna Holla, Mammad Zadeh, Tianwei Li, Indranil Gupta, and Roy H. Campbell,
"Ambry: LinkedIn's Scalable Geo-Distributed Object Store", 2016 ACM SIGMOD/PODS, San
Francisco, CA, June 26 - July 1, 2016.

14. Atul Bohara, Uttam Thakore, and William H. Sanders, “Intrusion Detection in Enterprise Systems
by Combining and Clustering Diverse Monitor Data”, Symposium and Bootcamp on the Science
of Security (HotSoS 2016), Pittsburgh, PA, April 20-21, 2016.

15. Ehsan Khamespanah, Kirill Mechitov, Marjan Sirjani, and Gul Agha, “Schedulability Analysis of
Distributed Real-Time Sensor Network Applications using Actor-based Model Checking”, 23rd
International SPIN Symposium on Model Checking of Software (SPIN 2016), Eindhoven, The
Netherlands, April 7-8, 2016.

Approved for Public Release; Distribution Unlimited.

102

16. Mayank Pundir, Manoj Kumar, Luke Leslie, Indranil Gupta, and Roy H. Campbell, “Supporting
On-demand Elasticity in Distributed Graph Processing”, IEEE International Conference on
Cloud Engineering (IC2E 2016), Berlin, Germany, April 4-8, 2016. Best Paper Award.

17. Chris X. Cai, Shayan Saeed, Indranil Gupta, Roy Campbell, and Franck Le, “Phurti: Application
and Network-Aware Flow Scheduling for Multi-tenant MapReduce Cluster”, IEEE International
Conference on Cloud Engineering (IC2E 2016), Berlin, Germany, April 4-8, 2016.

18. Le Xu, Boyang Peng, and Indranil Gupta, “Stela: Enabling Stream Processing Systems to Scale-
in and Scale-out On-Demand”, IEEE International Conference on Cloud Engineering (IC2E
2016), Berlin, Germany, April 4-8, 2016.

19. Si Liu, Peter Olveczky, Muntasir Raiham Rahman, Jatin Ganhotra, Indranil Gupta, and Jose
Meseguer, “Formal Modeling and Analysis of RAMP Transaction Systems”, 31st ACM
Symposium on Applied Computing (SAC 2016), Pisa, Italy, April 4-8, 2016.

20. Minas Charalambides, Peter Dinges, and Gul Agha, “Parameterized, Concurrent Session Types
for Asynchronous Multi-Actor Interactions”, Science of Computer Programming, volume 115-
116, pages 100-126, January-February 2016.

21. Keywhan Chung, Charles A. Kamhoua, Kevin A. Kwiat, Zbigniew T. Kalbarczyk and
Ravishankar K. Iyer, “Game Theory with Learning for Cyber Security Monitoring”, 17th IEEE
International Symposium on High Assurance Systems Engineering (HASE 2016), Orlando, FL,
January 7-9, 2016.

2015

1. Fangzhou Yao, Kevin Chen-Chuan Chang, and Roy H. Campbell, “Ushio: Analyzing News
Media and Public Trends in Twitter”, 8th IEEE/ACM International Conference on Utility and
Cloud Computing (UCC 2015), Limassol, Cyprus, December 7-10, 2015.

2. Boyang Peng, Mohammad Hosseini, Zhihao Hong, Reza Farivar, and Roy Campbell, “R-Storm:
Resource-Aware Scheduling in Storm”, Middleware 2015, Vancouver, Canada, December 7-11,
2015.

3. Mainak Ghosh, Wenting Wang, Gopalakrishna Holla, and Indranil Gupta, “Morphus: Supporting
Online Reconfigurations in Sharded NoSQL Systems”, IEEE Transactions on Emerging Topics
in Computing, volume PP, issue 99, November 11, 2015.

4. Weijie Liu, Rakesh B. Bobba, Sibin Mohan, and Roy H. Campbell, “Inter-Flow Consistency: A
Novel SDN Update Abstraction for Supporting Inter-Flow Constraints”, IEEE Conference on
Communications and Network Security (CNS 2015), Florence, Italy, September 28-30, 2015.

5. Jay P. Kesan, Carol Mullins Hayes, and Masooda Bashir, “Shaping Privacy Law and Policy by
Examining the Intersection of Knowledge and Opinions”, Research Conference on
Communication, Information and Internet Policy (TPRC 43), Arlington, VA, September 25-27,
2015.

6. Yosub Shin, Mainak Ghosh, and Indranil Gupta, "Parqua: Online Reconfigurations in Virtual
Ring-Based NoSQL Systems", IEEE International Conference on Cloud and Autonomic
Computing (ICCAC 2015), San Diego, CA, September 17-21, 2015.

7. Zachary J. Estrada, Cuong Pham, Fei Deng, Lok Yan, Zbigniew Kalbarczyk, and Ravishankar K.
Iyer, "Dynamic VM Dependability Monitoring Using Hypervisor Probes,", 11th European
Dependable Computing Conference (EDCC 2015), Paris, France, September 7-11, 2015.

8. Si Liu, Son Nguyen, Jatin Ganhotra, Muntasir Raihan Rahman, Indranil Gupta, and José
Meseguer, “Quantitative Analysis of Consistency in NoSQUL Key-value Stores”, 12th
International Conference on Quantitative Evaluation of SysTems (QEST 2015), Madrid, Spain,
September 1-3, 2015. Nominee for Best Paper Award

Approved for Public Release; Distribution Unlimited.

103

9. Mayank Pundir, Luke M. Leslie, Indranil Gupta, and Roy H. Campbell, “Zorro: Zero-Cost
Reactive Failure Recovery in Distributed Graph Processing”, ACM Symposium on Cloud
Computing (SoCC 2015), Kohala Coast, Hawaii, August 27-29, 2015.

10. Gary Wang, Zachary J. Estrada, Cuong Pham, Zbigniew Kalbarczyk, and Ravishankar K. Iyer,
“Hypervisor Introspection: A Technique for Evading Passive Virtual Machine Monitoring,” to
appear 9th USENIX Workshop on Offensive Technologies (WOOT 2015), Washington, DC,
August 10-11, 2015.

11. Reza Shiftehfar, Kirill Mechitov and Gul Agha, “A Fine-Grained Adaptive Middleware
Framework for Parallel Mobile Hybrid Cloud Applications”, 6th Annual International Conference
on ICT: Big Data, Cloud and Security, Singapore, July 27-28, 2015. Best paper award.

12. Mainak Ghosh, Wenting Wang, Gopalakrishna Holla, and Indranil Gupta, “Morphus: Supporting
Online Reconfigurations in Sharded NoSQL Key-value Stores”, 12th IEEE International
Conference on Autonomic Computing (ICAC 2015), Grenoble, France, July 7-10, 2015.

13. Mainak Ghosh, Indranil Gupta, Shalmoli Gupta, and Nirman Kumar, "Fast Compaction
Algorithms for NoSQL Databases", 35th IEEE International Conference on Distributed
Computing Systems (ICDCS 2015), Columbus, OH, June 29-July 2, 2015.

14. Phuong Cao, Eric Badger, Alexander Withers, Adam Slagell, Zbigniew Kalbarczyk, and
Ravishankar Iyer, "Towards an Unified Security Testbed and Security Analytics Framework",
Symposium and Bootcamp on the Science of Security (HotSoS 2015), April 21-22, 2015.

15. Phuong Cao, Eric Badger, Adam Slagell, Zbigniew Kalbarczyk, and Ravishankar Iyer,
"Preemptive Intrusion Detection: Theoretical Framework and Real-world Measurements",
Symposium and Bootcamp on the Science of Security (HotSoS 2015), April 21-22, 2015.

16. Weijie Liu, Rakesh B. Bobba, Sibin Mohan, and Roy H. Campbell, “Inter-Flow Consistency:
Novel SDN Update Abstraction for Supporting Inter-Flow Constraints”, NDSS Workshop on
Security of Emerging Networking Technologies (SENT) co-located with Network and Distributed
System Security Symposium (NDSS 2015), San Diego, CA, February 8, 2015.

2014

1. Fangzhou Yao and Roy H. Campbell, “SafeBox: SCADA Systems in a Secure Framework”, 5th
Analytic Virtual Integration of Cyber-Physical Systems Workshop (AVICPS), Rome, Italy,
December 2-5, 2014.

2. Peter Dinges and Gul Agha, “Solving Complex Path Conditions through Heuristic Search on
Induced Polytopes”, 22nd ACM SIGSOFT Symposium on Foundations of Software Engineering,
Hong Kong, November 16-21, 2014.

3. Si Liu, Muntasir, Raihan Rahman, Stephen Skeirik, Indranil Gupta, and Jose Meseguer, “Formal
Modeling and Analysis of Cassandra in Maude”, International Conference in Formal
Engineering Methods (ICFEM 2014), Luxembourg, November 3-7, 2014.

4. Abhishek Verma, Ludmila, Cherkasova and Roy H. Campbell, "Profiling and Evaluating
Hardware Choices for MapReduce Environments: an Application-Aware Approach", 32nd
International Symposium on Computer Performance, Modeling, Measurements, and Evaluation,
(IFIP WG 7.3 Performance 2014), Turin, Italy, October 7-9, 2014.

5. Cuong Pham, Zachary Estrada, Phuong Cao, Zbigniew Kalbarczyk, and Ravishankar Iyer,
“Building Reliable and Secure Virtual Machines using Architectural Invariants”, IEEE Security
and Privacy Magazine, volume 12, issue 5, September-October 2014.

6. Peter Dinges and Gul Agha, “Targeted Test Input Generation using Symbolic-concrete Backward
Execution” 29th IEEE/ACM International Conference on Automated Software Engineering
(ASE), Västerås, Sweden, September 15-19, 2014.

Approved for Public Release; Distribution Unlimited.

http://osl.cs.illinois.edu/members/dinges.html
http://osl.cs.illinois.edu/members/agha.html
http://osl.cs.illinois.edu/publications/conf/sigsoft/DingesA14.html
http://osl.cs.illinois.edu/publications/conf/sigsoft/DingesA14.html
http://osl.cs.illinois.edu/members/dinges.html
http://osl.cs.illinois.edu/members/agha.html
http://osl.cs.illinois.edu/publications/conf/kbse/DingesA14.html
http://osl.cs.illinois.edu/publications/conf/kbse/DingesA14.html

104

7. Carol Mullins Hayes, Jay P. Kesan, Masooda Bashir, Kevin Hoff, and Gahyun Jeon,
“Knowledge, Behavior, and Opinions Regarding Online Privacy”, Research Conference on
Communication, Information and Internet Policy (TPRC 42), Arlington, VA, September 25-27,
2014.

8. Kevin Hoff and Masooda Bashir, “Trust in Automation: Integrating Empirical Evidence on
Factors That Influence Trust”, Human Factors: The Journal of the Human Factors and
Ergonomics Society, volume 57, issue 3, September 2, 2014.

9. Jon Grov and Peter Csaba Olveczky, “Increasing Consistency in Multi-site Data Stores:
Megasotre-CGC and Its Formal Analysis”, 12th International Conference on Software
Engineering and Formal Methods (SEFM 2014), Grenoble, France, September 1-5, 2014.

10. Wojciech Golab, Muntasir Raihan Rahman, Alvin Auyoung, Kimberly Keeton, Indranil Gupta,
“Client-centric Benchmarking of Eventual Consistency for Cloud Storage Systems”, IEEE
International Conference on Distributed Computing Systems (ICDCS 2014), Madrid, Spain, June
30-July 3, 2014.

11. Fangzhou Yao and Roy H. Campbell, “CouchFS: A High-Performance File System for Large
Data Sets”, 3rd International Congress on Big Data (BigData 2014), Anchorage, AK, June 27-
July 2, 2014.

12. Fangzhou Yao and Roy H. Campbell, “CryptVMI: Encrypted Virtual Machine Introspection in
the Cloud” 7th IEEE International Conference on Cloud Computing (IEEE Cloud 2014).
Anchorage, AK, June 27-July 2, 2014.

13. Jingwei Huang, Zbigniew Kalbarczyk, and David M. Nicol, “Knowledge Discovery from Big
Data for Intrusion Detection Using LDA", 3rd International Congress on Big Data (BigData
2014), Work-in-Progress Track paper, Anchorage, AK, June 26 – July 2, 2014.

14. Jingwei Huang, David M. Nicol, and Roy H. Campbell, “Denial-of-Service Threat to
Hadoop/YARN Clusters with Multi-Tenancy”, 3rd International Congress on Big Data (BigData
2014), Anchorage, AK, June 26-July 2, 2014.

15. Reza Shiftehfar, Kirill Mechitov, and Gul Agha, “Towards a flexible fine-grained access control
system for mobile cloud applications”, 7th IEEE International Conference on Cloud Computing
(IEEE Cloud 2014), Work-in-Progress Track paper, Anchorage, AK, June 26-July 2, 2014.

16. Gul Agha, "Actors Programming for the Mobile Cloud." 13th International Symposium on
Parallel and Distributed Computing (ISPDC 2014), Porquerolles Island, Cote d’Azur, France,
June 24-27, 2014.

17. Cuong Pham, Zbigniew Kalbarczyk, and Ravishankar K. Iyer, “Reliability and Security
Monitoring of Virtual Machines Using Hardware Architectural Invariants”, 44th Annual
IEEE/IFIP International Conference on Dependable Systems and Networks (DSN 2014), Atlanta,
GA, June 23-26, 2014. DSN Best Paper Award.

18. Cuong Pham, Zachary Estrada, Phuong Cao, Zbigniew Kalbarczyk, and Ravishankar K. Iyer
“HyperTap: Security Monitoring for Virtual Machines Using Hardware Architectural Invariants”,
44th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN
2014), Atlanta, GA, June 23-26, 2014.

19. R. Ramamurthy, Z. Estrada, C. Pham, Z. Kalbarczyk, and R. Iyer, “Designing a Performance
Isolation Benchmark for Virtualized Systems”, 44th Annual IEEE/IFIP International Conference
on Dependable Systems and Networks (DSN 2014), Fast Abstract, Atlanta, GA, June 23-26,
2014.

Approved for Public Release; Distribution Unlimited.

105

20. Gary Wang, Zachary Estrada, Cuong Pham, Zbigniew Kalbarczyk, Ravishankar Iyer,
“Hypervisor Introspection: Exploiting Timing Side-Channels against VM Monitoring”, 44th
Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN 2014),
Fast Abstract, Atlanta, GA, June 23-26, 2014.

21. Cristina L. Abad, Yi Lu, Roy H. Campbell and Nathan Roberts “A Model-Based Namespace
Metadata Benchmark for HDFS”, USENIX International Conference on Autonomic Computing,
Philadelphia, PA, June 17-20, 2014.

22. Fangzhou Yao, Read T. Spraybery and Roy H. Campbell, “CryptVMI: a Flexible and Encrypted
Virtual Machine Introspection in the Cloud”, 2nd International Workshop on Security in Cloud
Computing, Kyoto, Japan, June 3-6, 2014.

23. Jingwei Huang and David M. Nicol. “Evidence-based Trust Reasoning”, Symposium and
Bootcamp on the Science of Security (HotSoS 2014), Raleigh, NC, April 8-9, 2014.

24. Phuong Cao, Key-whan Chung, Adam Slagell, Zbigniew Kalbarczyk, and Ravishankar Iyer,
“Preemptive Intrusion Detection”, Symposium and Bootcamp on the Science of Security (HotSoS
2014), Raleigh, NC, April 8-9, 2014.

25. S. Baset, L. Wang B. Tak, C. Pham, and C.Q. Tang, “Toward Achieving Operational Excellence
in a Cloud”, IBM Journal of Research and Development, Issue topic on Software-Defined
Environment, volume 58, issue 2/3, March-May 2014.

26. Cuong Manh Pham, Zbigniew Kalbarczyk, Ravishankar K. Iyer, Victor Dogaru, Rohit Wagle,
Chitra Venkatramani, “An Evaluation of ZooKeeper For High Availability in System S,” 5th
ACM/SPEC International Conference on Performance Engineering, Dublin, Ireland March 22-
26, 2014.

27. Furquan Shaikh, Fangzhou Yao, Indranil Gupta and Roy H. Campbell, “VMDedup: Memory De-
duplication in Hypervisor”, IEEE International Workshop on Cloud Analytics (IWCA 2014),
Boston, MA, March 11, 2014.

28. YoungMin Kwon, Kirill Mechitov, and Gul Agha, "Design and Implementation of a Mobile
Actor Platform for Wireless Sensor Networks", Concurrent Objects and Beyond, pp. 276-316.
Lecture Notes in Computer Science, Volume 8665, 2014, pages 276-316, 2014.

29. Jon Grov and Peter Csaba Olveczky, “Formal Modeling and Analysis of Google’s Megastore in
Real-Time Maude”, Specification, Algebra, and Software – Essays Dedicated to Kokichi
Futatsugi, Lecture Notes in Computer Science, volume 8373, pages 494-519, 2014.

2013

1. Uttam Thakore, Gabriel A. Weaver, and William H. Sanders, “An Actor-Centric, Asset-Based
Monitor Deployment Model for Cloud Computing”, 6th IEEE/ACM International Conference on
Utility and Cloud Computing (UCC 2013), Dresden, Germany, December 9-12, 2013.

2. Imranul Hoque and Indranil Gupta, “LFGraph: Simple and Fast Distributed Graph Analytics”,
ACM Symposium on Timely Results in Operating Systems (TRIOS 2013), Farmington, PA,
November 3, 2013.

3. Brian Cho, Muntasir Rahman, Tej Chajed, Indranil Gupta, Cristina Abad, Nathan Roberts,
Philbert Lin, “Natjam: Design and Evaluation of Eviction Policies for Supporting Priorities and
Deadlines in Mapreduce Clusters”, 4th Annual Symposium on Cloud Computing (SoCC 2013),
Santa Clara, CA, October 1-3, 2013.

Approved for Public Release; Distribution Unlimited.

106

4. Cristina L. Abad, Mindi Yuan, Chris X. Cai, Yi Lu, Nathan Roberts, and Roy H. Campbell;
“Generating Request Streams on Big Data using Clustered Renewal Processes”, Performance
Evaluation Journal, Proceedings of the IFIP Performance 2013, volume 70, issue 10, October
2013.

5. Cuong Pham, Qingkun Li, Zachary Estrada, Zbigniew Kalbarczyk, and Ravishankar K. Iyer, “A
Simulation Framework to Evaluate Virtual CPU Scheduling Algorithms”, 2013 IEEE 33rd
International Conference on Distributed Computing Systems Workshop (ICDCSW 2013),
Philadelphia, PA, July 8-11, 2013.

6. Martin Vigil, Daniel Cabarcas, Jingwei Huang, and Johannes Buchmann, “Assessing Trust in the
Long-Term Protection of Documents”, 18th IEEE Symposium on Computers and
Communications (ISCC 2013), Split, Croatia, July 7-10, 2013.

7. Youngmin Kwon and Gul Agha, “Performance Evaluation of Sensor Networks by Statistical
Modeling and Euclidean Model Checking”, ACM Transactions on Sensor Networks (TOSN)
volume 9, issue 4, article number 39, July 2013.

8. Chris X. Cai, Cristina L. Abad, and Roy H. Campbell; “Storage-Efficient Data Replica Number
Computation for Multi-level Priority Data in Distributed File Systems”, Workshop on Reliability
and Security Data Analysis (RSDA 2013), co-located with the 43rd IEEE/IFIP International
Conference on Dependable Systems and Networks (DSN 2013), Budapest, Hungary, June 24-27,
2013.

9. Salman Malik, Mirko Montanari, Jun Ho Huh, Rakesh B. Bobba, and Roy H. Campbell,
“Towards SDN Enabled Network Control Delegation in Clouds”, Third International Workshop
on Dependability of Clouds, Data Centers and Virtual Machine Technology (DCDV 2013), co-
located with the 43rd IEEE/IFIP International Conference on Dependable Systems and Networks
(DSN 2013), Budapest, Hungary, June 24-27, 2013.

10. Peter Dinges, Minas Charalambides, and Gul Agha, “Automated inference of atomic sets for safe
concurrent execution”, 11th ACM SIGPLAN-SIGSOFT Workshop on Program Analysis for
Software Tools and Engineering (PASTE 2013), Seattle, WA, June 20, 2013.

11. Mirko Montanari, Jun Ho Hun, Rakesh B. Bobba, and Roy H. Campbell, “Limiting Data
Exposure in Monitoring Multi-domain Policy Conformance”, 6th International Conference on
Trust and Trustworthy Computing (TRUST 2013), London, UK, June 17-19, 2013.

12. Jun Ho Huh, Mirko Montanari, Derek Dagit, Rakesh Bobba, Dong Wook Kim, Yoonjoo Choi
and Roy H Campbell, “An Empirical Study on the Software Integrity of Virtual Appliances: Are
You Really Getting What You Paid For?”, 8th ACM SIGSAC Symposium on Information,
Computer and Communications Security (ASIA CCS 2013), Hangzhou, China, May 13-16, 2013.

13. Stephen Skeirik, Rakesh B. Bobba, and Jose Meseguer, “Formal Analysis of Fault-tolerant Group
Key Management using ZooKeeper”, First International Workshop on Assured Cloud Computing
Conference (CCGrid 2013), 13th IEEE/ACM International Symposium on Cluster, Cloud and
Grid Computing, Delft, The Netherlands, May 13-16, 2013.

14. Jingwei Huang and David M. Nicol, “Trust Mechanisms for Cloud Computing”, Journal of Cloud
Computing, volume, 2 issue 9, April 2013.

15. Jun Ho Huh, Mirko Montanari, Derek Dagit, Rakesh Bobba, Dong Wook Kim, Yoonjoo Choi
and Roy H Campbell, “Assessing Software Integrity of Virtual Appliances through Software
Whitelists: Is it any good?”, Network & Distributed System Security Symposium (NDSS 2013),
San Diego, CA, February 24-27, 2013.

Approved for Public Release; Distribution Unlimited.

107

2012
1. Faraz Faghri, Sobir Bazarbayev, Mark Overholt, Reza Farivar, Roy H. Campbell, and William H.

Sanders, “Failure Scenario as a Service (FSaaS) for Hadoop Clusters,” Workshop on Secure and
Dependable Middleware for Cloud Monitoring and Management, in conjunction with the 13th
International Conference on Middleware (Middleware 2012), Montreal, Quebec, Canada,
December 3-7, 2012.

2. Cristina Abad, Huong Luu, Nathan Roberts, Kihwal Lee, Yi Lu, and Roy H. Campbell;
“Metadata Traces and Workload Models for Evaluating Big Storage Systems,” 2012 IEEE/ACM
International Conference on Utility and Cloud Computing (UCC 2012), Chicago, IL, November
5-8, 2012.

3. Cristina Abad, Nathan Roberts, Yi Lu, and Roy H. Campbell, “A Storage-Centric Analysis of
MapReduce Workloads: File Popularity, Temporal Locality and Arrival Patterns”, 2012 IEEE
International Symposium on Workload Characterization (IISWC 2012), La Jolla, CA, November
4-6, 2012.

4. Jingwei Huang and David M. Nicol, “Security and Provenance in M3GS for Cross-domain
Information Sharing”, IEEE Military Communications Conference (MILCOM 20112), Orlando,
FL, October 29-November 1, 2012.

5. Ralf Sasse, Samuel T. King, Jose Meseguer, and Shuo Tang, “IBOS: A Correct-By-Construction
Modular Browser”, 9th International Symposium on Formal Aspects of Component Software
(FACS 2012), Mountain View, CA, September 12-14, 2012.

6. Minas Charalambides, Peter Dinges, and Gul Agha, “Parameterized Concurrent Multi-Party
Session Types”, 111th International Workshop on Foundations of Coordination Languages and
Self-Adaptive Systems (FOCLASA 2012), New Castle, United Kingdom, September 8, 2012.

7. Mirko Montanari, Lucas T. Cook, and Roy H. Campbell, “Multi-organization Policy-based
Monitoring", 2012 IEEE Policies for Distributed Systems and Networks (POLICY 2012), Chapel
Hill, NC, July 16-18, 2012.

8. Cuong Pham; Phuong Cao; Zbigniew Kalbarczyk, and Ravishankar K. Iyer, “Toward a High
Availability Cloud: Techniques and Challenges”, 2nd International Workshop on Dependability
of Clouds, Data Centers, and Virtual Machine Technology, in conjunction with 42nd International
IEEE/IFIP Conference on Dependable Systems and Networks (DSN 2012), Boston, MA, June 25-
28, 2012.

9. Catello Di Martino, Marcello Cinque, and Domenico Cotroneo, “Assessing Time Coalescence
Techniques for the Analysis of Supercomputer Logs”, 42nd International IEEE/IFIP Conference
on Dependable Systems and Networks (DSN 2012), Boston, MA, June 25-28, 2012.

10. Mirko Montanari, Jun Ho Huh, Derek Dagit Rakesh Bobba and Roy H. Campbell, “Evidence of
Log Integrity in Policy-based Security Monitoring”, 2nd International Workshop on
Dependability of Clouds, Data Centers and Virtual Machine Technology (DCDV 2012), in
conjunction with the 42nd Annual IEEE/IFIP International Conference on Dependable Systems
and Networks (DSN 2012), Boston, MA, June 25-28, 2012.

11. Jingwei Huang, and David M. Nicol, Rakesh Bobba, and Jun Ho Huh, “A Framework Integrating
Attribute-based Policies into Role Based Access Control”, 17th ACM Symposium on Access
Control Models and Technologies (SACMAT 2012), Newark, NJ, June 20-22, 2012.

12. Peter Dinges and Gul Agha, “Scoped Synchronization Constraints for Large Scale Actor
Systems”, COORDINATION 2012, Stockholm, Sweden, June 14-15, 2012.

Approved for Public Release; Distribution Unlimited.

http://www.informatik.uni-trier.de/%7Eley/db/indices/a-tree/d/Dinges:Peter.html
http://www.informatik.uni-trier.de/%7Eley/db/indices/a-tree/a/Agha:Gul_A=.html

108

13. Lucian Bentea and Peter Olveczky, “A Probabilistic Strategy Language for Probabilistic Rewrite
Theories and its Application to Cloud Computing”, 21st International Workshop on Algebraic
Development Trends (WADT 2012), Salamanca, Spain, June 7-10, 2012.

14. Abhishek Verma, Ludmila Cherkasova, Vijay Kumar, and Roy H. Campbell, “Deadline-based
Workload Management for MapReduce Environments: Pieces of the Performance Puzzle”, 2012
IEEE/IFIP Network Operations Management Symposium (NOMS 2012), Maui, HI, April 16-20,
2012.

15. Jonas Eckhardt, Tobias Muhlbauer, Musab Al-Turki, Jose Meseguer, and Martin Wirsing, “Stable
Availability under Denial of Service Attacks through Formal Parameters”, 15th International
Conference Fundamental Approaches to Software Engineering (FASE 2012), Tullin, Estonia,
March 24-April 1, 2012.

16. Martin Wirsing, Jonas Eckhardt, Tobias Muhlbauer and Jose Meseguer, “Design and Analysis of
Cloud-Based Architectures with KLAIM and Maude”, 15th International Conference on
Fundamental Approaches to Software Engineering (FASE 2012), Tullin, Estonia, March 24-April
1, 2012.

2011

1. Masooda Bashir, Jay P. Kesan, Carol M. Hayes, and Robert Zielinski; “Privacy in the Cloud:
Going Beyond the Contractarian Paradigm”, 2011 Workshop on Governance of Technology,
Information, and Policies (GTIP 2011), Orlando, FL, December 6, 2011.

2. Roy H. Campbell, Mirko Montanari, and Reza Farivar; “A Middleware for Assured Clouds”,
Journal of Internet Services and Applications, volume 3, number 1, November 2011.

3. John Bellessa, Evan Kroske, Reza Farivar, Mirko Montanari, Kevin Larson, and Roy H.
Campbell, “NetODESSA: Dynamic Policy Enforcement in Cloud Networks”, 30th IEEE
Symposium on Reliable Distributed Systems Workshops (SRDS 2011), Madrid, Spain, October 4-
7, 2011.

4. Cristina L. Abad, Yi Lu; and Roy H. Campbell, “DARE: Adaptive Data Replication for Efficient
Cluster Scheduling”, 2011 IEEE International Conference on Cluster Computing (CLUSTER
2011), Austin, TX, September 26-30, 2011.

5. Antonia Pecchia, Aashish Sharma, Zbigniew Kalbarczyk, and Domenico Cotroneo, Ravishankar
K. Iyer, “Identifying Compromised Users in Shared Computing Infrastructures: A Data-Driven
Bayesian Network Approach”, 30th IEEE Symposium on Reliable Distributed Systems (SRDS
2011), Madrid, Spain, October 4-7, 2011.

6. Mirk Montanari and Roy H. Campbell, “Attack-resilient Compliance Monitoring for Large
Distributed Infrastructure Systems”, 5th International Network and System Security (NSS 2011),
Milan, Italy, September 6-8, 2011.

7. Brian Cho and Indranil Gupta, “Budget-Constrained Bulk Data Transfer via Internet and
Shipping Networks”, 8th International Conference on Autonomic Computing (ICAC 2011),
Karlsruhe, Germany, June 14-18, 2011.

2010

1. Brian Cho and Indranil Gupta, “New Algorithms for Planning Bulk Transfer via Internet and
Shipping Networks”, IEEE 30th International Conference on Distributed Computing Systems
(ICDCS 2010), Genoa, Italy, June 21-25, 2010.

Approved for Public Release; Distribution Unlimited.

109

Theses

1. Carlo Di-Giulio, “Privacy and Security in the Clouds: IT Security and Privacy Standards in the
EU and US”, MA Thesis, School of Information Science, University of Illinois at Urbana-
Champaign, May 2017.

2. Zachary Estrada, “Dynamic Reliability and Security Monitoring: A Virtual Machine Approach”,
PhD Thesis, University of Illinois at Urbana-Champaign, August 2016.

3. Mohammad Ahmad, “Cauldron: A Framework To Defend Against Cache-Based Side-Channel
Attacks In Clouds”, MS Thesis, Department of Computer Science, University of Illinois at
Urbana-Champaign, May 2016.

4. Reza Shiftehafar, “A Flexible Fine-grained Adaptive Framework for Parallel Mobile Hybrid
Cloud Applications”, PhD Thesis, Department of Computer Science, University of Illinois at
Urbana-Champaign, December 2015.

5. Uttam Thakore, “A Quantitative Methodology for Evaluating and Deploying Security Monitors,”
MS Thesis, Department of Computer Science, University of Illinois at Urbana-Champaign,
Urbana, IL, August 2015.

6. Phuong Cao, “An Experiment Using Factor Graph for Early Attack Detection”, MS Thesis,
Department of Computer Science, University of Illinois at Urbana-Champaign, May 2015.

7. Mayank Pundir, “ZORRO: Zero-cost Reactive Failure Recovery in Distributed Graph
Processing”, MS Thesis, Department of Computer Science, University of Illinois at Urbana-
Champaign, May 2015.

8. John Bellessa “Implementing MPLS with Label Switching in Software Defined Networks”, MS
Thesis, Department of Computer Science, University of Illinois at Urbana-Champaign, May
2015.

9. Gourav Khaneja, “An Experimental Study of Monolithic Scheduler Architecture in Cloud
Computing Systems”, MS Thesis, Department of Computer Science, University of Illinois at
Urbana-Champaign, May 2015.

10. Xiao Cai, “Phurti: Application and Network-Aware Flow Scheduling for MapReduce”, MS
Thesis, Department of Computer Science, University of Illinois at Urbana-Champaign, May
2015.

11. Gary L. Wang, “Hypervisor Introspection: A Technique for Evading Passive Virtual Machine
Monitoring”, MS Thesis, Department of Electrical and Computer Engineering, University of
Illinois at Urbana-Champaign, May 2015.

12. Weijie Liu, “Inter-Flow Consistency: Novel SDN Update Abstraction For Supporting Inter-Flow
Constraints”, MS Thesis, Department of Computer Science, University of Illinois at Urbana-
Champaign, May 2015.

13. Fangzhou Yao, “Secure Framework for Virtualized Systems with Data Confidentiality
Protection”, MS Thesis, Department of Computer Science, University of Illinois at Urbana-
Champaign, December 2014.

14. Peter Dinges, “Symcretic Testing of Programs”, PhD Thesis, Department of Computer Science,
University of Illinois at Urbana-Champaign, December 2014.

15. Cristina Abad, “Big Data Storage Workload Characterization, Modeling and Synthetic
Generation”, PhD Thesis, Department of Computer Science, University of Illinois at Urbana-
Champaign, March 2014.

Approved for Public Release; Distribution Unlimited.

110

16. Jon Grov, “Transactional Data Management for Multi-Site Systems”, PhD Thesis, University of
Oslo, January 2014.

17. Mirko Montanari, “Limiting Information Exposure in Multi-domain Monitoring Systems”, PhD
Thesis, Department of Computer Science, University of Illinois at Urbana-Champaign, July 2013.

18. Parya Moinzadah, “I-AdMiN: A Framework for Deriving Adaptive Service Configuration in
Sensor Networks”, PhD Thesis, Department of Computer Science, University of Illinois at
Urbana-Champaign, December 2013.

19. Qiaomin Xie, “Routing and Scheduling for Cloud Service Data Centers”, MS Thesis, Department
of Computer Science, University of Illinois at Urbana-Champaign, December 2012.

20. Brian Cho, "Satisfying Strong Application Requirements in Data-Intensive Cloud Computing
Environments", PhD Thesis, Department of Computer Science, University of Illinois at Urbana-
Champaign, October 2012.

21. Tobias Muhlbauer, "Formal Specification and Analysis of Cloud Computing Management,” MS
Thesis, Department of Computer Science, University of Illinois at Urbana-Champaign, January
2012.

22. Jonas Eckhardt, "Security Analysis in Cloud Computing Using Rewriting Logic”, MS Thesis,
Department of Computer Science, University of Illinois at Urbana-Champaign, January 2012.

23. Musab Al-Turki, "Rewriting-based Formal Modeling, Analysis and Implementation of Real-time
Distributed Services", PhD Thesis, Department of Computer Science, University of Illinois at
Urbana-Champaign, August 2011.

Approved for Public Release; Distribution Unlimited.

111

LIST OF SYMBOLS, ABBREVIATIONS AND ACRONYMS

ACC Assured Cloud Computing

API Application Programing Interface

APTs Advanced Persistent Threats

C&C Command and Control

CAP Capture

CCap Compromised Capacity

CCM Cloud Control Matrix

CPU Central Processing Unit

CSA Cloud Security Alliance

CSP Cryptographic Service Provider

DalvikVM is a discontinued process virtual machine in Google’s Android operating system that
executes applications written for Android.

DBSCAN Density-based spatial clustering clustering of applications with noise

DISA Defense Information Systems Agency

DoD Department of Defense

DoS Denial of Service

FedRamp Federal Risk and Authorization Management Program

FIFO First in, first out

GOSHED Guest OS Hang Detection

HAV Hardware Assisted Virtualization

HRKD Hidden RootKit Detection

HVAC Heating, ventilation and air conditioning

IDS Intrusion Detection Systems

IMCM Illinois Mobile Cloud computing Manager

Intel’s CAT Technology Cache Allocation Technology

I/O Input/Output

IP Internet Protocol

IPY Interoperability & Portability

Approved for Public Release; Distribution Unlimited.

112

ISO/IEC International Organization for Standardization/International Electrotechnical
Commission

ISP Internet Service Provider

IT Information Technology

JSQ-MaxWeight algorithm is a heavy-traffic optimal only for a special traffic scenario with two
locality levels.

KVM Kernel-based Virtual Machine

LAMP stack is a popular open source web platform commonly used to run dynamic web sites
and servers.

LANL Los Alamos National Lab

LFGraph is a recent study by UIUC which seems solid and promises the best results in
distributed graph analytics.

LKM Linux Loadable Kernel Module

LTL Linear Temporal Logic

MLSSystems Multilevel Security

MongoDB is a free and open-source cross-platform document-oriented database program.

MOS Mobile Security

NCSA National Center for Supercomputing Applications

NetFlow is a network protocol developed by Cisco for collecting IP traffic information and
monitoring network traffic.

NIST SP National Institute of Standards and Technology Special Publication

NoSQL database provides a mechanism for storage and retrieval of data that is modeled in
means other than the tabular relations used in relational databases.

OpenSSL Secure Sockets Layer is a software library for applications that secure communications
over computer networks against eavesdropping or need to identify the party at the other end. It is
widely used in internet web servers, serving a majority of all web sites.

OS Operating System

PCA Principal Component Analysis

PCAP Packet Capture

PED Privilege Escalation Detection

PEP Policy Enforcement Point

Approved for Public Release; Distribution Unlimited.

https://en.wikipedia.org/wiki/Computer_network

113

PDP Policy Decision Point

PMM Policy Manager Machine

PVeStA A Parallel Statistical Model Checking and Quantitative Analysis Tool

Raik Database is a line of distributed databases is built on a set of core services providing a
highly reliable, scalable distributed systems framework.

RAMP Cloud Storage System

SALSA Language Simple Actor Language System and Architecture programming language
is an actor-oriented programming language that uses concurrency primitives beyond
asynchronous message passing, including token-passing, join, and first-class continuations.

SDNs Software Defined Networks

SDX Software Defined Internet Exchange

SLAs/SLOs Service Level Agreements/Objectives

SOC2 report focuses on a business’s non-financial reporting controls as they relate to security,
availability, processing integrity, confidentiality, and privacy of a system.

SQL Structured Query Language

ssh Secure Shell

SSHD Solid State Hybrid Drives

TCIP Transmission Control Protocol

TPC Transmit Power Control

TSPC Trust Services Principles and Criteria

URL Uniform Resource Locator

vCPU Virtual Central Processing Unit

VMs Virtual Machines

VMI Virtual Mobile Infrastructure

XACML eXtensible Access Control Markup Language

YARN is the architectural center for Hadoop that allows multiple data processing engines such
as inter as interactive SQL, real-time streaming, data science and batch processing to handle date
stored in single platform, unlocking an entirely new approach to analytics.

ZooKeeper fault-tolerant distributed key/value data store

Approved for Public Release; Distribution Unlimited.

	Section 1 Security and Isolation in Cloud Environments (Rakesh Bobba, Sibin Mohan, Roy Campbell, and Read Sprabery)
	Section 1 Summary of Research Project
	Section 4 Results and Discussion
	Virtual Appliance Integrity [6]: Our empirical study with 151 virtual appliance images from public image stores found that ~9% of them had seriously questionable software integrity. Only about half of them were flagged by traditional malware scanning,...
	Cache-based Side Channel Defense [T1]: Our cache-based side-channel attack defense requires no changes to applications and is suitable for either single-tenant MLS Clouds, multi-tenant clouds or a combination. Our initial prototype showed promising ...
	Section 6 Bibliography

	Section 2 Containers: Study Security Isolation Concerns When Using Container-based Virtualization and Design Mechanisms to Address Identified Security Concerns, Coordination, and Probabilistic Consistency (Gul Agha, Reza Shiftehfar, Minas Charalambide...
	Section 1 Summary of Research Project
	Section 2 Introduction
	Section 3 Methods, Assumptions, and Procedures
	Section 4 Results and Discussion
	Section 5 Conclusions

	Section 3 Cyber Infrastructure Security: Dynamic Policy Monitoring with Interference in Cloud (Roy Campbell, John Bellessa, Shadi Noghabi, Luke Leslie, and Chris Cai)
	Section 1 Summary of Research Project and Introduction
	Section 2 Methods, Assumptions, and Procedures
	Section 3 Results and Discussion
	Section 4 Conclusions
	Section 5 Recommendations

	Section 4 Design of Algorithms and Techniques for Real-time Assuredness in Cloud Computing (Indranil Gupta, PhD student: Mainak Ghosh; Graduated PhD students: Brian Cho and Imranul Hoque)
	Section 1 Summary of Research Project
	Section 2 Introduction
	Section 3 Methods, Assumptions, and Procedures
	Section 4 Results and Discussion
	Section 5 Conclusions
	Section 6 Recommendations

	Section 5 Greatly Increase the Assurance Level to Cloud Computing Systems through Formal Specifications and Verification in Maude (Jose Meseguer, Si Liu, Peter Olveczky, and Stephen Skeirik)
	Section 1 Summary of Research Project
	Section 2 Introduction
	Section 3 Methods, Assumptions, and Procedures
	Section 4 Results and Discussion
	Section 5 Conclusions

	Section 6 Intrusion Detection, Response, and Recovery in the Cloud (William H. Sanders, Atul Bohara, and Uttam Thakore)
	Section 1 Summary of Research Project
	Section 2 Introduction
	Section 3 Methods, Assumptions, and Procedures
	Section 4 Results and Discussion
	Section 5 Conclusions
	Section 6 Bibliography

	Section 7 Map-Reduce Task Assignment with Data Locality Constraint (Yi Lu)
	Section 1 Summary of Research Project
	Section 2 Introduction
	Section 3 Methods, Assumptions, and Procedures
	Section 4 Results and Discussion
	Section 5 Conclusions
	Section 6 Recommendations

	Section 8 Security and Privacy Mechanisms: An Analysis of Certifications for Federal Cloud Service Providers (Masooda Bashir and Carlo Di-Giulio)
	Section 1 Summary of Research Project
	Section 2 Introduction
	Section 3 Methods, Assumptions, and Procedures
	Section 4 Results and Discussion
	Section 5 Conclusions
	Section 6 Bibliography

	Section 9 Security Data Analysis and Design of Software Architecture for Attack Containment (Ravi Iyer and Phuong Cao)
	Section 1 Summary of Research Project
	Section 2 Introduction
	Motivation. As the scale and complexity of enterprise networked systems increase, so as the number of security vulnerabilities. Traditional attacks exploit well-known vulnerabilities, such as SQL injections or buffer overflows, and often involve a sin...
	Section 3 Methods, Assumptions, and Procedures
	Section 4 Results and Discussion
	Section 5 Conclusions

	Section 10 Test-bed for Experimental Evaluation: Design and Prototype of Techniques for Providing Cloud Error and Attack Resiliency (PI: Zbigniew Kalbarczyk (PI); graduate students: Cuong Pham, Zak Estrada, Lavin Devnani)
	Section 1 Summary of Research Project
	Section 2 Introduction
	Section 3 Methods, Assumptions, and Procedures
	Hypervisor Probes (hprobes) for dynamic dependability monitoring of virtual machines. We developed hprobes, a framework that allows one to dynamically monitor applications and operating systems inside a virtual Machines (VM). The hprobe framework (dis...
	Failure diagnosis for distributed systems using targeted fault injection. We developed, an approach to automate failures diagnostic in distributed systems by combining fault injection and data analytics. We use fault injection to populate a database o...
	Section 4 Results and Discussion
	Guest OS Hang Detection (GOSHD)
	Hidden Rootkit Detection (HRKD)
	Privilege Escalation Detection (PED)
	Hypervisor Probes (hprobes) for dynamic dependability monitoring of virtual machines
	Example Detector: Emergency Exploit Detector
	Failure diagnosis for distributed systems using targeted fault injection
	Section 5 Conclusions

	Section 11 Trustworthiness Estimation for Workflow Completion (David Nicol & Jingwei Huang)
	Section 1 Summary of Research Project
	Section 2 Introduction
	Section 3 Methods, Assumptions, and Procedures
	Section 4 Results and Discussion
	Figure 28. Cumulative Distribution Function of a MapReduce job completion time
	Section 5 Conclusions

	Section 12 Application-Aware Cloud Network Resource Allocation (Roy Campbell, Chris Cai, and Gourav Kheneja)
	Section 1 Summary of Research Project
	Section 2 Introduction
	Section 3 Methods, Assumptions, and Procedures
	Section 4 Results and Discussion
	Section 5 Conclusions

	Bibliography
	Theses

