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1. INTRODUCTION:

We will establish the performance signatures of Robotic Surgery Readiness (RSR)
through tasks on the da Vinci robotic virtual reality simulator by testing the role intervals
of inactivity have on task performance. These signatures will be used to develop a
simulation curriculum that brings the inactive surgeon to RSR. The curriculum
effectiveness will be tested in the operating room on practicing surgeons performing
patient surgery with and without the RSR warm-up curriculum. We will enroll surgical
residents and faculty for hypothesis testing. Objective technical performance and Global
Evaluative Assessment of Robotic Skills (GEARS) scoring will be correlated by the
Principal Investigator (Dr. Thomas Lendvay - UW) and Co-Investigator (Dr. Timothy
Kowalewski - UMN). Optimal methods for extracting surgeon performance metrics from
the da Vinci Application Programming Interface (API) will be evaluated and developed
through collaboration with the Intuitive Surgical Consultant (Simon DiMaio, Senior
Research Manager). We will deliver practical, automated RSR assessment methods and a
warm-up curriculum able to bring a robotic surgeon to his/her optimal state of readiness
before patient surgery.

4 of 41



2. KEYWORDS: Provide a brief list of keywords (limit to 20 words).

Robotic Surgery

Readiness

da Vinci Simulator

Virtual Reality

Simulation Curriculum

GEARS - Global Evaluative Assessment of Robotic Skills
Surgical Education
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3. ACCOMPLISHMENTS:

What were the major goals of the project?

YEAR 1 (0-12 Months)
1) Study design and skill decay model construction, supplies purchasing and acquisition. Completion
date 9/30/2015, major supplies purchased thru 6/30/2016
2) Set-up and flow within and between simulation centers.
Completion date 9/30/2015
3) Development of robust methods for collecting, merging and verifying simulator,
video and optical tracking data.
Completion date 12/31/2015. Continued checks as more equipment comes online.
Tool motion metric capturing technology development — ongoing.
4) Subject recruitment.
Recruitment Continues at all 4 sites. 87% complete
5) Skills decay testing. In progress
6) Independent video review of VR simulator criterion performances using GEARS tool. Not started.
7) Analysis of performance metrics. Not started.

Deliverables: Quantifiable performance signatures of robotic surgery skills decay assessment.
Initial analysis of data. Preliminary RSR warm-up curriculum.

YEAR 2 (12-24 Months)

1) Finalize and validate RSR curriculum and benchmarks. Not started yet — recruitment and skills decay
testing sessions are still underway.

2) Intra-operative RSR warm-up subject recruitment. Not started yet — recruitment and skills decay
testing sessions still underway.

3) RSR curriculum hypothesis testing, intra-operative data collection. Not started yet — recruitment and
skills decay testing sessions still underway.

4) Independent video review of surgical performances using GEARS. Not started yet — recruitment and
skills decay testing sessions still underway.

5) Testing of kinematic & video capture systems In progress - started 4/2017.

6) Building and refining the Aim 2 REDCap database In progress — started 6/2017.

Deliverable: Finalized RSR warm-up curriculum, initial dataset and data quality assessment.

YEAR 3 (24-36 Months)
1) Continued intra-operative RSR curriculum hypothesis testing.

2) Continued independent video review of operative performances using GEARS.
3) Biostatistical analysis and model cross-validation.
4) Abstract and Manuscript drafting.

Final Deliverables: Completed, validated RSR warm-up curriculum and assessment tools.
Methodology for quantifying robotic surgery skills decay. Peer-reviewed publication,
presentation at national meeting.
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What was accomplished under these goals?

YEAR 2

Study design and skill decay model construction, supplies purchasing and acquisition.

Computers have been purchased and setup for all sites (UW, MAMC, VA, FL
Hospital)

Set-up and flow within and between simulation centers.

Recruited subjects complete the intake demographics questionnaire and begin proficiency training.
Subject details are kept at each site and only de-identified data is collected by the team at Minnesota
(UMN). All subjects are given a unique identifier based on their location.

UMN provided early drafts and input on revisions for the data collection forms and a UW
biostatistician continues to improve the REDCap data collection process. REDCap is now being
at all sites to collect data and to randomize the subjects.

UMN has reworked the software to provide high definition video acquisition and compression and
has successfully installed and monitored the acquisition of data from all sites. The data is
synchronizing with our central database as designed. UNM continues to rectify the Google Drive
videos, REDCap data, and dVLogger data to ensure all logs are complete and no data is lost and
where necessary, investigates incomplete logs and proposes fixes.

A collaborative triparty agreement is now in place, brokered between the Office of Sponsored
Research at the University of Washington, UMN and Intuitive Surgical, Inc. to provide kinematic
data directly from the da Vinci robots.

Subject recruitment. (Continues at all sites)

Aim 1 Recruitment is underway at all four sites with the consented and proficient subjects.

Florida Hospital and UW successfully reconciled contract language which had delayed their
active participation.

Skills decay testing. (Continues at all sites)
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As shown in the table 1 below, 28 subjects have completed their study sessions.

MAMC has consented 35 subjects and 20 have progressed to completion. Five of continue to
progress through their sessions and 8 are still working to achieve proficiency and 1 withdrew.
One has been lost to follow-up.

UW/V A has consented 28 subjects. Ten subjects have been randomized and 8 of those have
completed all study sessions. Two subjects are continuing through study sessions. Nine are
working on proficiency, 3 have dropped out due to scheduling issues and 6 are lost to follow-up.
Florida Hospital has 4 consented; 1 has completed, 2 withdrew due to time constraints and
another was relocated to another hospital.



Robatic Surgery Readiness (RSR) : Enrollment Report

July 31, 2017

Table 1: Recruitment data summary by site, n (%)

Florida  Madigan  Weshington  Total
Target Enrollment =1l N 30 i}
Total Randomized 2(10) 26{130) 10 (33) 38 (54)
Completed Participation 1 ( 5) 20 (100} B(2T) 20(41)
Consentad* 4(30) 37 (188) ;| (93) 69 (09)
Gender
Female 1(25) 9 (M) B{29) 18 ()
Mala 3(78) 2B (T6) 17(61). 48 (T0)
Other 00 0(0 ofo TR
Seniority
Attending 4000) 1130 a7 172
Seniar 00 9 (M) 0{32) 18 ()
Junior 0{0) 17 (46) U(s0) 3 (48)
Specialty
Urology 00 12 (32) 1139 2303
Gynocology 1 (25) B(2) (T 1116
Genaral 2 (50) 8 (29) 0(36) 20 (20)
Thoracie 00 IR o[ 00
Cardiothoracic 00 00 [{IN] o
ENT 1(25) 9 (M) an 1207
Handedness
Left, 1{25) 1{3) 14 34
Right ) MWW M
Ambidextrous 1(25) (8 N 57
Musical Experience 2 (50) 22 (50) 18 (64) 42 (61)
Deploysi (0 6 00 6(9)

*Denominator for percontages bolow

Enrollment and Session Completion
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Session 3- @
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Proficiency - . (-] . (]
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Consent-@ O @)
Session 6'....::......:
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Session 4-. .... .
session 3-@ QOO 000000000
Session 2 - ...‘:.:..‘...
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Proficiency - . ‘ @ “
Demographics . ’ O “
@
sessns-@ @ @0 @ OO @
sessins-@ @ @@ @ OO0 (0]
sessons-Q @ @@ @ OO (0}
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Session 1- . . .. . '
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Demographics - .
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Data entry is ongoing and REDCap forms are updated as needed for optimal data capture.
Syncing issues were identified between the Florida and UMN and hardware at Florida could not

be debugged remotely. The laptop was returned, debugged and mailed back to the Florida site.

A data logging time stamp issue was identified from the dVSS . Software was created to parse
data from the logger into human readable format for rectification and logging purposes. Code
was modified to meet end user needs and software was subsequently created to rectify DV logger
data to REDCap logs.

We developed data collection tools for Aim 2. These tools, to be implemented on paper or
through REDCap, include a participant demographics questionnaire, session data caption, and
outcome data collection.

Designed and built the REDCap database for Aim 2. This included developing a randomization
schema and system to randomize each participant to the RSR assignment

Site Visits

9 of 41

We conducted site visits to FL Hospital and to MAMC last October. These visits were very
informative. FL Hospital has a wonderful facility but its distance from the hospital and subjects
has been a problem. The FL Hospital team is very capable and continues to make efforts with the
local surgery population to recruit them into the study. The MAMC coordinator has exceeded
recruitment expectations for her site.

In April, team members met for 3 days in Seattle for orientation to and installation of the Intuitive
DV Logger. Dr. Lendvay and Lois Meryman from UW, Dr. Kowalewski and Anna French from
UM, and Evelyn George from Madigan and were in attendance. Omid Mohareri from Intuitive
Surgical demonstrated the data capture process. We tested integration of dVLogger with our
hardware (only Apple wireless worked without flaw, hence move to Apple devices for Aim 2 data
collection/control)

Test data was captured, reviewed by the team and verified that full data streams are available
from dVLogger for extracting sample metrics like path length and working volume (see sample
plot below, Figure 1)



First UW dV Logger Data Trial Run

Figure 1. Sample plot

Protocol was developed for the implementation of Aim 2 and resulted in documentation and instructions
for site administrators (see BEFORE case checklist below).

BEFORE Case checklist:

Ethernet cable connected

L and R SDI cables connected

Power cables connected

Confirm stereo configurations on tower

Confirm USB connection between hard drive and dV-Logger
Power on dV-Logger well before surgeon begins operating
Log into web-UlI

Access webpage via http://10.42.0.1

Check hard drive storage space

Confirm that data is streaming

Confirm that recording has started BEFORE the procedure begins

If any items from the checklist were NOT addressed, please describe why:
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What opportunities for training and professional development has the project

provided?

All Aim 1 participants are provided training in robotic surgery simulation activities

to meet proficiency. This has been accomplished through peer and one-on-one

training with an expert. The Proficiency Training introduces novices and hones experienced
clinicians in robotic object transfer, suturing, management of the third working arm, camera and
instrument clutching skills. We have not provided “Professional development” opportunities.

How were the results disseminated to communities of interest?
Nothing to report.

What do you plan to do during the next reporting period to accomplish the goals?

YEAR 3

A site visit to MAMC is planned for August 1 to test the DV logger and to capture data from two
surgeries in preparation for Aim 2. A Mobile App interface between the DV Logger and a mobile
device that assures the system is operating properly will be tested.

Subject recruitment is expected to be completed and all subjects randomized. Recruitment for Aim
2 will commence.

Data acquisition is continually monitored by the UMN team.

The entire team is diligently working to ensure all data collection systems are in place for Aim 2
implementation. Refinements will continue for Aim 2 methods for collecting, merging and
verifying simulator and video.

The Florida Hospital team is currently in discussions with the lead robotic urologist to schedule
fellows for Aim 1.

4. IMPACT:

What was the impact on the development of the principal discipline(s) of the project?
We have developed a video and data capture system that allows remote software updates on each
site’s computer. This has minimized the need for any on-site software/hardware servicing.
Furthermore, a workable user-interface was developed so that each site’s coordinators can
seamlessly capture video and upload data.

What was the impact on other disciplines?
A method for reliable seamless video capture, data tagging, and storage has a universal application
in any training and skills assessment programs.

What was the impact on technology transfer?
Nothing to report.
What was the impact on society beyond science and technology?

Nothing to report.
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5. CHANGES/PROBLEMS:
Changes in approach and reasons for change
Nothing to report

Actual or anticipated problems or delays and actions or plans to resolve them
As this is a multisite project, problems were anticipated. Due to the nature of funding a military site

and the need for all funds to be used within that fiscal year we had to bring back the money
allocated to MAMC and fund any manpower hours required centrally. The funding contract with
Florida Hospital took longer than anticipated but is now in place.

Enrollment Barriers

Data collection is always the most unpredictable factor in a study. Enrollment has been
less robust than anticipated.

While one site (MAMC) has proven exceptional, enrollment at UW+VA and Florida are lower than
projected. The principal barrier appears to be subject inconvenience. Slower enrollment at UW/VA
sites were due to staffing issues which have been resolved by the addition of dedicated staff
MAMC’s simulator is in a room beside the clinic, near the physicians’ offices, and is used in
surgery one to two days per week. The subjects are in a relatively private space, with nearly
unlimited access to the equipment, and are not required to access the operating suites or change into
scrubs.

In comparison, the UWMC simulator is located in an operating room (OR), and is not available
during surgery hours (i.e., ~07:00-19:00 weekdays). All users are required to change into scrubs.
The VA’s simulator, when not in use, is packed in a storage closet adjacent to the OR; access to the
equipment is dependent on the OR’s usage. All users are required to change into scrubs. Further,
the General Surgery residents share a key-card, limiting access to the locker rooms and OR.

In addition, the General Surgery residents in the UW/V A program are required to work a minimum
of 80 hours per week. The General Surgery Director has determined that time related to this study
may not be included in that commitment, and must be scheduled separately. This restriction has
been a deterrent to proceeding through the study.

At FL Hospital, the simulator facility is approximately 20 minutes’ drive from the hospital proper.
Subjects are understandably reluctant to invest in the additional commute.

Randomization of consented subjects has been impacted by clinical rotations and busy schedules,
limiting residents to participate once they have consented to the study.

Changes that had a significant impact on expenditures
Since Florida has not been as successful at recruitment and retention, more resources are needed at

University of Washington/VA to cover the additional FTE for Year 3. The DV Logger will be able
to extract the necessary kinematic data from the daVinci Robot, and thus we hope to seek approval
from the DoD to repurpose monies allocated to the optical tracker to personnel FTE, especially at

UW and UMN. A formal budget modification request will be forthcoming in Year 3 to detail these

12 of 41



expenditure changes once we understand the true FTE budget needs. We do not expect any
additional funds will be needed to complete this project.

Nothing to Report

Significant changes in use or care of human subjects, vertebrate animals, biohazards,
and/or select agents

Nothing to Report

Significant changes in use or care of human subjects

Nothing to Report

Significant changes in use or care of vertebrate animals.

Nothing to Report

Significant changes in use of biohazards and/or select agents

Nothing to Report
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6. PRODUCTS:

Publications, conference papers, and presentations

Dr. Timothy M. Kowalewski presented research related to skill evaluation methods to be used in
this project at International Conference on Information Processing in Computer-Assisted
Interventions:

"Predicting Surgical Skill from the First N Seconds" at the IPCAI conference, Barcelona, Spain
June 2017

Journal publications.

UMN has submitted two papers related to development of the metrics and analysis processing
applied in this study:

(See appendix W8 IXWH-15-2-0030 Paper #1)

“Predicting Surgical Skill from the First N Seconds of a Task Value over Task Time Using the
Isogony Principle” Anna French, Thomas S. Lendvay M.D.,Robert M. Sweet M.D. , Timothy M.
Kowalewski Ph.D., CARS International Conference on Information Processing in Computer-
ssisted Interventions (IPCAI) 2017 [Published]

(See appendix W81XWH-15-2-0030 Paper #2)

“The Minimally Acceptable Classification Criterion for Surgical Skill: Intent Vectors and
Separability of Raw Motion Data” Rodney L. Dockter, Thomas S. Lendvay M.D., Robert M.
Sweet M.D., Timothy M. Kowalewski Ph.D., CARS International Conference on Information
Processing in Computer-Assisted Interventions (IPCAI) 2017 [Published]

(See appendix W8IXWH-15-2-0030 Paper #3)
“Laparoscopic Skill Classification Using the Two-Third Power Law and the Isogony Principle
Anna French, Timothy M. Kowalewski Ph.D, Journal of Medical Devices 2017 [Accepted]

9

Books or other non-periodical, one-time publications.
Nothing to report

Other publications, conference papers, and presentations.
Nothing to report

Website(s) or other Internet site(s)

Nothing to report

Technologies or techniques

Nothing to report

Inventions, patent applications, and/or licenses
Nothing to report

Other Products

Nothing to report
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7. PARTICIPANTS & OTHER COLLABORATING ORGANIZATIONS

What individuals have worked on the project?
Name: Thomas Lendvay
No change

Name: Karen Edwards (No longer involved in this study)

Name: Anna French
No change

Name: Prof. Tim Kowalewski
No Change

Name: Sara Teller (No longer involved in this study)

Name: Lois Meryman (Assuming Sara Teller’s’ administrative role)
Project Role:  Project Manager/Site Coordinator

Nearest person month worked: 2

Contribution to Project: Project management and subject management

Example:
Has there been a change in the active other support of the PD/PI(s) or senior/key
personnel since the last reporting period?

Nothing to Report

What other organizations were involved as partners?

Nothing to Report
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8. SPECIAL REPORTING REQUIREMENTS
COLLABORATIVE AWARDS: Nothing to Report

QUAD CHARTS: See Appendix
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9. APPENDICES:

W81 XWH-15-2-0030 Paper #1
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Int J CARS manuscript No.
(will be inserted by the editor)

Predicting Surgical Skill from the First N Seconds of
a Task

Value over Task Time Using the Isogony Principle

Anna French - Thomas S. Lendvay M.D. -
Robert M. Sweet M.D. - Timothy M.
Kowalewski Ph.D.

Received: date / Accepted: date

Abstract Purpose: Prior attempts at surgical skill evaluation have focused pre-
dominantly on diagnosis using task-specific maneuvers. These maneuvers required
surgical expertise to identify and are observed over the course of a full task. The
aim of this investigation is to propose features for automated skill evaluation that
are relevant regardless of the surgical training task the tools perform. A secondary
goal is to diagnose skill without requiring the complete time series of data from a
given trial.

Methods: Features calculated from the isogony principle are used to train four
common machine learning algorithms from dry-lab laparoscopic data gathered
from three common training exercises. These models are used to predict the binary
or ternary skill level of a surgeon. K-fold and leave-one-user-out cross-validation
are used to assess the accuracy of the generated models.

Results: 1t is shown that the proposed scalar features can be trained to create 2-
class and 3-class classification models that map to Fundamentals of Laparoscopic
Surgery (FLS) skill level with median 85% and 63% accuracy in cross validation,
respectively, for the targeted dataset. Also, it is shown that the 2-class models can
discern class at 90% of best-case mean accuracy with only 8s of data from the
start of the task.

Conclusion: Novice and expert skill levels of unobserved trials can be discerned us-
ing a state vector machine trained with parameters based on the isogony principle.

Anna French
Department, of Mechanical Engineering University of Minnesota, Minneapolis, MN
E-mail: afrench@umn.edu

T. Lendvay
Department of Urdlogy, Seattle Children’s Hospital, Seattle, WA

R. Sweet
Department, of Urology, University of Washington, Seattle, WA

T. Kowalewski
Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN
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2 Ammna French et al.

The accuracy of this classification comes within 90% of the classification accuracy
from observing the full trial within 10 seconds of task initiation on average.

Keywords Surgical Skill Evaluation - Computer aided decision - Tracking
systems

1 Introduction

Surgical technical skill directly impacts patient health cutcomes, as shown in [2].
An accurate automated surgical skill evaluation system would consequently be an
important tool in reducing a surgical patient’s injury risk. A system able to deliver
evaluations immediately following a training module would also prove beneficial to
surgeons in training, since formative feedback is a landed goal in surgical training
[12]. Knowing when one makes an error is invaluable information that molds good
behavior. It is a core educational principle that spans disciplines [13]. Current
methods introduce time barriers to feedback, either by requiring humans to de-
liver ratings or by using scoring models which require the compilation of scored
trial data each time a new training technique is developed. To accomplish timely
feedback, a scoring method must be developed that depends neither on human in-
tervention nor on prior probability distributions for features specific to a particular
task.

Past attempts at developing an automated skill evaluation system have fo-
cused on diagnosing skill using task-specific performance measurements. In [10],
a method using linear discriminant analysis and tool motion features achieved
accuracy in the 90% range, however the assessment method was tailored to four-
throw suturing tasks and defining task features (surgemes) required a surgeon’s
expertise. Investigation from [1] reports similar classification success but also used
features very specific to septoplasty, and classified by segmenting and analyzing
the stroking motions of the cottle. The investigation in [8] showed the crowd is
capable of discerning surgical skill concordant with the current gold standard (an
expert panel) and can generate a skill evaluation weeks faster than the expert
panel. However, these scores still depend on human intervention and also intro-
duce several hours of lag time between task completion and score delivery to the
trainee. A method that does not require task completion to diagnose skill and can
model skill regardless of which task the surgeon performs would be preferred.

The Fundamentals of Laparoscopic Surgery is a high-stakes certification exam
of cognitive and technical laparoscopic skills [4, 5, 11]. It is now often required
for graduation and or board certification among laparoscopic curricula. It has
been extensively validated and even shown to correlate with patient outcomes
[14]. However, there are some limitations. The score is based on task time and
penalty counts (e.g. dropping an item, cutting outside a boundary, loose knots).
[7] found that the weights used in computing FLS score greatly emphasize task
time, rendering the penalties virtually irrelevant. This suggests that FLS score
provides little or no practical value over task time. However the value of FLS
scoring (or, implicitly, FLS task time) in its link to patient outcomes remains
undisputed and therefore valuable as a measure of surgical technical skill. Our
observations in operating rooms, surgical simulator sessions, and among trainees
reveal that a subject’s approximate level of technical skill is often evident very
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quickly—within tens of seconds—when watching video of their tool motions during
a procedure. This suggests that skill evaluation can be correctly approximated
with a fraction of the time it takes to do a procedure—be it an FLS task or a
surgical procedure. This would alleviate the need for trainees and proctors to wait
until the end of a task to receive a skill evalnation. However, it is unclear either
what motion features to identify or how much time is needed before obtaining
adequate confidence in such an assessment, i.e., how many seconds are required to
predict an FLS score?

1.1 Isogony Principle

The isogony principle may provide some value to tool motion-based skill evalua-
tion. In [9], subjects were recorded drawing shapes of various curvature with the
goal of relating curvature of the drawn shape to speed of the pen tip. A relation
between these two parameters was determined using the isogony principle as:

u(t) = vE(®HY/?

where w(t) is the instantaneous velocity of the tip of the pen, k(%) is the local cur-
vature that the tip of the pencil traces, and v is the velocity gain factor parameter
relating v(¢) and k(¢). In [9], it was asserted that v(¢) can be predicted from k()
based on a constant value of v for a given segment of motion.

This investigation extends the velocity gain factor relationship to 3D tool mo-
tion, using the velocity and curvature from the 3D space. For the purpose of this
study, we do not assume constant values of v, and instead choose to observe the
behavior of the v parameter:

0= s

For the k(t) parameter, the radius of curvature was used:

(L +()%)*?

K="

1.2 Hypotheses and Objectives

Based on the property from [9], several hypotheses were drawn. First, it was hy-
pothesized that the variability of the v parameter between novice surgeons will be
small. This was drawn from the idea that novice surgeons will adhere more to their
“natural” hand motion pattern, while the more practiced motions of experienced
surgeons will vary from this natural motion pattern.

Second, it was hypothesized that scalar parameters such as the mean (u) and
standard deviation (o) of a trial’s v for each hand can be used as features to train
machine learning algorithms and coarsely predict the Fundamentals of Laparo-
scopic Surgery (FLS) score of unobserved trials.

Third, it was hypothesized that the full duration of the task is not required to
evaluate skill since y(¢) is easily observable at any point in the task. Accordingly,
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investigation was made into the minimum number of seconds of data from a trial
required to discern the subject’s FLS class with an acceptable level of accuracy.
This ability would provide significant value over task time related features, which
require probability distributions based on the results of previous users, and would
not be agile to changes in training. A secondary hypothesis is that prediction
accuracy will increase as more time is included, but gains will taper off.

Results from both task-specific and task-blind models were generated and are
reported here. Task-specific models are models trained using only samples from
a specific task, and are included as a basis for comparison. Task-blind models
are models where data across all tasks were included in training, and were used
to predict the skill of any task. Both leave-trial-out cross validation and leave-
one-user-out (sometimes referred to as leave-surgeon-out, and abbreviated here
as LOUQ) validation methods were used to test the accuracy of the binary and
ternary classification algorithms developed.

There are three key contributions offered by this paper. First, we introduce
isogony as a potentially useful feature in surgical skill evaluation. Second, we intro-
duce task invariance as a desired attribute of skill evaluation. Third, we introduce
the notion of estimating skill normally evaluated over the course of a full task from
a partial task observation, i.e. predicting final scores from N seconds.

2 Methods
2.1 Dataset

This investigation used the dataset established in the Electronic Data Generation
and Evaluation (EDGE) study described by [7]. This study gathered video, tool
motion and demographic data on 98 different surgeons performing typical FLS
tasks. From this data set, 108 peg transfer, 63 suturing and 124 circle cutting
tasks were used for this study.

Bach instance where data was recorded while a subject was performing a par-
ticular FLS task will be referred to as a “trial.” Within the dataset, each trial
is comprised of a 30Hz fixed camera-position video recording of the laparoscopic
tools interacting with the training field, numeric data documenting the position,
orientation and grasp force of the tool tips corresponding to each frame in the
video, an FLS score ranking the subject’s skill level based on their performance in
each trial, and demographic information relating relevant information about the
subject such as their dominant hand and experience level.

The FLS score alone was used to establish skill groups within each of the three
tasks. This resulted in the FLS expert class (any trial with FLS scores above a
threshold of OSATS scores from identity-blind review by two faculty surgeons for
each task; see [6]); the FLS novices (trials from the bottom 15th-percentile of FLS
scores within each task); and FLS Intermediates (trials from the 15th-percentile
range about a midpoint between the lowest FLS Expert score and highest FLS
Novice score, for each task). The video portion of the data was not used. This choice
of criteria gave us complete trials from 67 FLS Novices, 71 FLS Intermediates, and
157 FLS Experts.
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2.2 Analysis Methods and Algorithms

The mean and standard deviation of the v parameter of each trial for the dominant
(d) and non-dominant (nd) hands are the features selected for evaluation. These are
referred to as 0(va), t(va), 0(¥na) and p(vmq). These four features were calculated
for each trial, and were used along with their FLS class to train several different
machine learning algorithms to classify skill level. The accuracies these trained
algorithms obtained were used as evidence of feature strength. The algorithms
used for testing were logistic regression (LR), support vector machine (SVM),
linear discriminant analysis (LDA), and quadratic discriminant analysis (QDA).

The accuracy of each trained model was evaluated using k-fold cross valida-
tion (with k=10) and leave-one-user-out validation. For the k-fold, each fold was
assigned an equal number of trials from each class. The k-fold cross validation was
performed N=10 different times, where a new set of k-folds was selected and eval-
uated for each iteration of N, which resulted in kN different models trained and
evaluated for each machine learning algorithm. Note that these are folds created
using each individual trial, hence it is partitioning in a leave-trial-out manner.

Accuracy was also evaluated using leave-one-user-out (LOUQ) for all Q sur-
geons. Bach surgeon has r different trials in the database, where + may differ for
each surgeon. In this method, each surgeon takes a turn as the test set while the
other @ — 1 are used for the training set to generate the models. The accuracy is
reported by evaluating the classification results of each of the » trials for each of
the (Q surgeons. Feature strength and model accuracy were assessed separately for
both 2-class classification (discriminating between novice and expert) and 3-class
classification (discriminating between novice, intermediate, and expert).

Models were generated in both task-specific and task blind manners. Task-
specific models were trained using only trials where a specific task was performed,
and their accuracy was tested using only trials from that specific task. Task-blind
models were trained using all trials regardless of task and were used to create
predictions of any trials regardless of class. The accuracy of task-blind model
predictions for each specific class was also analyzed, where the model was trained
task-blind but the testing set was partitioned to analyze how well the task-blind
model can predict the skill for each specific task.

The minimum period of time required for acceptable prediction accuracy was
evaluated by taking successively longer series of time from the beginning of each
trial to time ¢ and calculating u(*va), o(*va), (*¥na), and o(*yna) based on those
different time periods. The feature u(*y,) is the feature p(vq) calculated from the
v values from the start of the training exercise until time ¢, where n(t) represents
the number of time-steps included in the range [0,t] (data was recorded at 30Hz,
so n = 30t):

t 1 ) vglt b 1 i) vql(
1 yd):%;ﬁgl)” a(*vy) = W;(ﬁgg/s,ﬂ(mﬁ))

The (*¥na) and o(*y,4) are calculated by the same method, but with the non-
dominant hand measurements. The above features were generated for each integer-
valued time period second within ¢ = (1,30)s, where 30s was chosen since all task
times in the data set were greater than this amount. This created 30 different
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Table 1: Median and standard deviation of the ¢(y4) and ¢(y.d) over all subjects.

o(7a) o(¥na)
med(standard deviation) med(standard deviation)
PegTx  Nov 13.91 (4.22) 11.52 (5.83)
Exp 2286 (7.03) 20.98 (8.71)
Cutting  Nov 924 (583) 9.72 (3.88)
Exp 18.37 (5.97) 18.83 (10.61)
Suturing Nov  9.09 (2.31) 9.45 (2.76)
Exp 1485 (583) 17.66 (7.90)
All Tasks  Nov 10,19 (5.14) 9.93 (4.23)
Exp 18.80 (7.04) 19.45 (9.57)

groups of u(*va), o(*va), 11(*yna), and o(*yna) specific to the period of time they
were calculated from. Each of these 30 groups were then passed through the same
machine learning algorithms and validation process as for o(va), £(va), ¢(na) and
#(¥na), vielding a mean accuracy py for each group. Trends for the value of p¢ for
t = (1,30)s for each different machine learning algorithm were then plotted, and
are displayed in the results section. The minimum ¢ required to get within 90% of
the observed settling accuracy is reported in Table 2.

In addition, these methods have been validated against other validated methods
for skill classification, such as those in [3]. The validation methods trains three
different models using either tool path lengths (PL), economy of motion (EOM)
and motion smoothness (MS) as features using SVM.

3 Experimental Results
3.1 Two Class Classification: FL.S Expert vs. FLS Novice

Figures la-1d show the distribution of FLS scores plotted against the o) feature
of each trial for a given subject, where the marker type and color specifies expertise.
Recall that o(7ys) and o(vma) are features representing the intra-subject standard
deviations (the subject’s standard deviation for motion during a given trial). Table
1 details the median and range of the o(y4) and o(v,q) features for each subject. It
is observable from here that the inter-subject medians for novices are much lower
and have much smaller inter-subject standard deviation.

Figures 2a-2c show six example plots of the vp parameter calculated for each
time step in the first 20 seconds of a trial.

Figure 3a shows the statistics reporting the mean accuracy of each model
trained to classify between FLS novice and FLS expert trials. Five different types
of models were generated and tested at each round. The left four box plots repre-
sent the model prediction accuracy based on training using a single feature. The
rightmost column used all four features to train the model. The mean accuracy of
each model trained in each k-cross validation and each N-iteration was recorded
and used to generate the box plots. Thus the statistics displayed are values calcu-
lated over the kN models penerated in the cross validations. These models were
trained task-blind, meaning all trials regardless of task type were used to train the
model. They were also tested task-blind, meaning the results reported here are the
accuracy over all trials regardless of task.
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Fig. 1: FLS score vs o(7y4) feature calculated over the full duration of each trial
(dominant hand). Each point represents the feature value for one trial. Raw data
displayed for all trials and each trial individually.

For all provided box plots, the 25th and T5th percentiles are the lower and
upper box boundaries while the median is the central line. The whiskers extend
to the most extreme non-outlier points, and the + are considered outliers. The
models trained using single features from each hand have agreement not far from
the model trained on all features, which shows a median agreement with desired
skill class of 85%.

Figure 4a shows the box plots representing model prediction accuracy using
LOUO. These models are trained using all four features and the labeled machinery
type. This figure shows a median model prediction accuracy of between 80% and
100% depending on model type. Note that LOUO tests the accuracy of each user
individually, i.e. each user has performed n trials and a prediction accuracy is
assessed for each individual user based on the percentage of those n trials that
were correctly classified. The LOUO box plot displays the crowd tendencies of the
percent accuracies of each user.
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Expert and Novice users performing PegTx
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Fig. 2: Example of o(v4) activity over the first 20 seconds of each trial

3.2 Three Class Classification: FLS Expert, FLS Intermediate, FLS Novice

Figure 3b uses the same k-fold method as Figure 3a, however it predicts over all
three classes (novice, intermediate, expert) rather than just between novice and
expert. It shows a median agreement with desired skill class of 62% when trained



25 of 41

Predicting Surgical Skill from the First N Seconds of a Task 9

i e Vaatn for Novkos v Expart Pl Grose Vel forNovkos v, briadlad v, Expart
: T i o T - : : - -
ER T T
o e -
i L : w L3 T = - T ‘
7
a i = G5 18l ==
i+ i g — = B ;
;s ry i + iy
5 W 1 g wl, = [
M 18wl
* *
R ) i ) a W o wod i T
Featirs Usad for modsl franing arwi predicticn Foturn tpec for modal traiuing and preciction
calculatd from a8 timepoints of vata catculoted fromm all Bmapoints of data
(a) 2-class classification (b) 3-class classification
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Fig. 4: LOUO classification task-blind training and task-blind testing using ro(*vy),
a(*v4), p(*¥na), and o(*v,q) features combined to train each model, comparing
strength of machinery.

using all features. Figure 4b uses the same LOUO method as Figure 4a, and it
also predicts over all three classes. It shows a median agreement of 50%.

3.3 Minimum Time to Classification

Figure ba was generated from SVM, QDA, LR and LDA models trained using all
four features and shows the overall model error rate of as ¢ is increased from Os to
30s, which increases the number of data points in a trial used to calculate [L(t"/d)7
o(*va), 1(*¥na), and o(*y,.q). Integer values of ¢ from 1 to 30 were used. Figure 5b
uses similar methods, but is classifying between novice, intermediate and expert
surgeons.

3.4 Validation with Similar Methods

Figure 6a and 6b compare the performance for 2-class classification of the 4 pa-
rameters against previously validated aggregate task metrics as described in [3].
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Table 2: 2-class classification accuracy results per algorithm and per task. Models
generated for this figure were trained task-blind, results at left reports how well

the model classifies each task

Task Specific accuracy (i) over
all kN model accuracies in cross
validation, mean(std dev)

Task Blind mean accuracy over
all &N model accuracies in cross
validation

PegTx Cutting Suturing Best % Accuracy Min time to 90%
(o) wlo) (o) Mean/Median of best accuracy
LDA 501 (13) 861(11) 830(3) 837/85.7 %
QDA 87.6 (12) 860 (11) 66.0(.24) 825/82.6 ds
SVM 852 (12) 0902 (10) 826 (.20) 87.2/88.7 85
LR 846 (12) 902 (10) 8L5(.21) 86.6/86.4 7s
Table 3: 3-class classification accuracy results per algorithm
Task Specific accuracy (u) over Task Blind mean accuracy over
all kN model accuracies in cross all N model accuracies in cross
validation, mean(std dev) validation
PegTx Cutting Suturing Best % Accuracy Min time to 90%
wlo) wlo) (o) Mean/Median of best accuracy
LDA 57.3 (13) 63.0(14) 66.0(.16) 61.6/61.7 2s
QDA 666 (12) 59.2(14) 44.3(.16) 55.9/55.6 48
SVM 622 (13) 67.0(13) 655(.14) 65.1/655 38
LR 608 (12) 68.3(13) 657(15) 651/64.3 3s
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Fig. 6: LOUO validation for a 2-class classification using SVM for task-blind train-
ing and task-blind testing, comparing strength of each feature set.

PL; and PL, 4 are the path length variables calculated for the dominant and non-
dominant hand. The PL boxes represents the accuracy of an SVM trained using
PLg and PL,g together as features, with accuracy measured using k-fold for N
iterations. The same applies for EOM and MS boxes. The v box represents the
accuracy of an SVM trained using p(va), o(va), ti(¥nd), and o(¥na).

4 Conclusion

The results give support to our three initial hypotheses. The first hypothesis is
supported by Figures la - 1d and Table 1. The feature o(+,) is taken to represent
the intra-subject variability in the v, parameter for a hand. A low intra-subject
~a (le. a small o(v4)), may imply a given subject is nearly following the motion
law outlined in [9], where the tool tip is assumed to maintain a constant vya.
Broadening the scope to how these skill levels behave at the group level, from Table
1 it is observable that novice subjects have inter-subject median and standard
deviation values for o(v4) and o(¥,4) that are comparatively lower than experts.
This supports the first hypothesis. A comparatively low inter-subject standard
deviation for the o(v4) feature for the novices may imply a behavioral pattern
between subjects. Meanwhile, a comparatively low inter-subject median for the
o(~q) feature for the novices may imply that, as a group, novices stay closer to
the “natural” motion law. This could suggest that experienced surgeons mature
out of this adherence to the motion pattern with practice for laparoscopic tools.
Second, the scalar parameters o(vg), p(va),0(vnd), and p(y.d) were able to
train LDA, QDA, SVM and LR models to predict the class of partitioned data
with mean cross validation accuracy in the 85% region for binary classification
and in the 60% region for ternary classification. Prediction accuracy using LOUQO
vielded median accuracy of up to 100% for binary classification and 50% median
accuracy for ternary classification using Logistic Regression. It should be noted
that there is a large variation in classification accuracy across the different users
for the LOUO box plots. Chiefly, for a 2-class classification the 25th percentile is
as low as 33% for certain users while a 3-class classification gets all the way to
0% for certain users. The outliers also reach 0% for 2-class classification. Further
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investigation will have to be made into this behavior. It is unclear at this point
whether this exposes a limitation in the chosen features or whether our data still
has insufficient N to capture human variability in surgery.

Third, Figure 5a, Figure 5b, Table 2 and Table 3 show that for all four tested
algorithms, the time required to get within 90% of the best observed accuracy
is less than the full task duration. Note there is some oscillation in several of the
curves in Figure 5a. It is not obvious what this signifies, e.g. data may be truncated
through incomplete maneuvers or v may be only significant at sustained speeds
to rise above the noise floor. Exploring this will require a dataset with motion
segments continuously labeled by skill level.

In addition, this method was compared against previously validated methods.
For the EDGE dataset, Figures 6a and 6b show that v parameters outperform
economy of motion and motion smoothness, but fall short of path length. When
measured short of task completion (at 30s), Figure 6b shows that v parameters
outperform the validation features. This is expected, since the validation metrics
are heavily influenced by task time, a characteristic v features are free of.

Determining the FLS class in the first seconds of a task for this dry-lab sim-
ulation data is a significant ontcome. This implies that a trainee and proctor can
potentially take less time for FLS certification. Also, traditional human-required
tasks in FLS penalty scoring that were resource intensive — such as counting ob-
ject drops or measuring cut accuracies — may not always be required. The positive
classification results that were done in task-blind settings also suggest that the
isogony measure may be capturing some of the aspects of skill evident in human
motion that may be obvious to expert reviewer but difficult to articulate— aspects
that may allow them to infer skill from only a few seconds of a video.

Prior art has typically not investigated task-blind skill classification methods.
Qur results of median 85% accuracy for novice-expert classification within the first
30s of a task rival or ontperform existing, often more complex approaches. The fact
that a task-blind model can be generated using v with the demonstrated accuracy
suggests that v provides insight into some task invariant attributes of skill level.

There were several limitations in this study that should be addressed in future
work. This study used only dry-lab laparoscopic simulation tasks, which do not
necessarily mimic real surgical maneuvers. This limits our results and conclusions
to only this simulated manual laproscopy context. The skill groups used here
are defined based on FLS score only and are thresholded based on the subjects
available in the dataset. Data defining skill based on the surgical panel and crowd
sourced skill determinations will be used in its place in the future. It was assumed
that meaningful motion was occurring in the data used this study, and selecting
only the first 30s of task execution was used as a surrogate for capturing meaningful
motion. It is possible that some trials may include subjects keeping their tools
immaobile while planning their maneuvers at the start of the task, so this must
be filtered out in future work. Additional datasets could also be generated by
sub-sampling randomized time intervals from existing tests. This would also help
investigate the question of whether the quicker diagnoses (within 2 seconds) are
due to the fact that expert surgeons get to work more quickly and confidently
early in the task than novices.

‘We do not claim that our approach, as given, is immediately useful to surgical
trainees. However, it is a necessary step towards achieving formative feedback.
Namely, if a skill measuring feature only correlates with task time (e.g. FLS score
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is almost identical to task time [7]), it would have little or no value for formative
feedback (or even as a summary metric itself). We show that isogony provides some
accuracy in measuring skill even within the first N seconds, this suggests that it
has some utility over task time. However, this is a necessary but not sufficient
step for formative feedback. For example, a mapping of isogony features to easy-
to-understand continuous motion guality scores on, say, a percentage scale could
be more useful.

‘We conclude that predicting final FLS score from roughly the first 10 seconds
of a trial is potentially feasible and that isogony provides some useful task-blind
skill-classification information above simple task-time or FLS score.
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Abstract

Purpose Minimally invasive surgery requires objective
methods for skill evaluation and training. This work presents
the minimally acceptable classification (MAC) critetion for
computational surgery: Given an obvious novice and an obvi-
ous expert, a surgical skill evaluation classifier must yield
100% accuracy. We propose that a rigorous motion analysis
algorithm must meet this minimal benchmark in order to jus-
tify its cost and use.

Methods We use this benchmark to investigate two con-
cepts: First, how separable is raw, multidimensicnal dry lab-
aratory laparoscopic motion data between obvious novices
and obvious experts? We utilized information thearetic tech-
niques to analytically address this. Second, we examined the
use of intent vectors to classify surgical skill using three FLS
tasks.

Results 'We found that raw motion data alone are not suf-
ficient to classify skill level; however, the intent vector
approach is successful in classifying surgical skill level for
cettain tasks according to the MAC criterion. For a pattern
cutting task, this approach yields 100% accuracy in leave-
one-nger-put cross-validation.

Conclusion Compared toprior art, the intent vector approach
provides a generalized method to assess laparogcopic surgi-
cal skill uging basic motion segments and passes the MAC
criterion for some but not all FLS tasks.
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Introduction

The fundamentals of laparoscopic surgery (FLS) were devel-
oped to evaluate and credential laparoscopic surgeons. The
FLS scoring criteria are based primarily on task time and
number of task errors as determined by a qualified proctor.
‘While FLS has been shown to discriminate between expert
and novice subjects [18], these measures have the potential
to miss key information and overemphasize task time [13].
The challenges related to laparoscopic surgery motivate the
development of objective, automated, and accurate surgical

Prior work on surgical skill evaluation has been wide-
spread. One approach has utilized aggregate task measures
such as task time and path length [5,6]. In [16], task level
metrics were used to estimate pairwise maneuver prefer-
ences with 80% accuracy. In [9], robotic arm vibrations
and interaction forces were used within a composite gkill
rating; however, statistical analysis showed that completion
time provided the primary contribution. Another method has
been to decompose surgical tasks into specific gestures or
*surgemes’ [15]. Using these surgemes, models for skill can
be trained using a variety of machine learning approaches.
Hidden Markov models (HMMs) have been used extensively
to model surgical skill level. An HMM model for various
surgemes was used to classify a sequence as a particular
skill level [17]. This resulted in 100% classification accu-
racy for leave-one-super-trial-out (LOSO) cross-validation
but required manually segmented surgemes and did not
report leave-one-user-cut (LOUQ) validation results. The
results of [19] had high classification rates for LOSO cross-
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validation, but these results fell precipitously under LOUO
validation suggesting overfitting. Another method utilizes
descriptive curve coding (DCC) in which the principal direc-
tion changes within a trajectory are encoded as a string of
integers [1]. With this approach, encoded common strings or
motifs were used to model skill level. This method results
in 98% accuracy for LOSO validation but around 90% for
LOUO. Task-specific motion models have been proposed for
procedures such as septoplasty [2]. This approach involves
stroke-based features designed to assess the consistency and
efficiency with which a surgeon removes skin from under-
lying cartilage. This approach gave a LOSO classification
accuracy of 90%, but its applicability to other procedures
is not yet clear, The ribbon area measure treats the surgical
tool wrist as a brush and measures the accumulated surface
area of the trajectory as a surrogate for dexterity [11]. This
approach resulted in an 80% binary classification accuracy.
Both the stroke-based features and ribbon area approaches
are conceptually similar to the work presented here; however,
we attempt to use these concepts in a manner more general-
izable across tasks and that results in a higher classification
accuracy. The gapin prior art has been a fully automated algo-
rithm which provides 100% classification between obvicus
expert and novice surgeons using LOUO cross-validation.

Prior art has revealed a secondary problem: Data set cate-
gories are unreliably labeled relative to true skill level. These
categories are typically defined by subject demographics
such as caseload, academic rank, or experience level. Yet
even an expert surgeon can exhibit skill decay and demon-
strate a variance in skill level within a given context. True
experts or technical masters can sometimes (e.g., for a given
grasp or motion within an entire procedure) exhibit novice-
like motions. Kowalewski et al. [14] showed that expert
categories based on these demographics are unsuitable for
validation studies as they often result in recorded trials from
perceived experts that can exhibit poor technical skill. Over-
all this can confound supervised classifiers that assume a
clean ground truth for correct analysis. The current gold stan-
dard for skill assessment is blinded review of surgical videos
by panels of expert surgeons using structured survey tools
such as the objective structured assessment of technical skill
(OSATS) [7]. Birkmeyer et al, [3] showed that using simi-
lar evaluation methods technical skill can be linked directly
with patient cutcomes. To this end, Kowalewski et al. [13]
defined a ground truth expert trial (a single recording by a
given individual) as one that is deemed an expert by a con-
sensus of three validated methods: demographically-derived
expertise, FLS score, and OSATS-like video review.

We herein introduce the minimally acceptable classifi-
cation (MAC) criterion for computational skill evaluation:
Given an obvious novice and an obvious expert, the clas-
sification accuracy must be 100%. Some misclassification
may be acceptable between other skill levels, e.g., experts
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versus Master or Intermediate versus expert, but not an obvi-
ous novice versus obvious expert. Here we define obvious
novices as subjects who should never be allowed to oper-
ate (always disqualified) and obvious experts as subjects
who should never be disqualified from operating. Surgery
requires this stipulation given that patently unqualified sur-
geons endanger lives. Often, such a large difference is very
evident via task time or a casual viewer watching a video [4].
Therefore, a rigorous motion analysis algorithm should meet
this minimal performance benchmark in order to justify cost
and use. While this is not a sufficient criteria, it does pro-
vide a minimal necessary criterion to use as a baseline in
this field. Our approach in this sudy was twofold. First, we
asked ‘how valuable is raw tool motion data alone in classi-
fying skill given the MAC criterion?’ Second, we present the
‘intent vectors’ feature and classification scheme applied to
laparoscopic tool metion. We tested the hypothesis that intent
vectors successfully classify skill according to the MAC for
specific tasks.

Methods

In this section, we present the data set utilized in this study, the
separability analysis used to assess raw surgical motion data,
and the intent vectors derivation. The lack of separability in
the raw data motivates the intent vectors.

Data set

This study utilized a previously recorded data set [13] where
the electronic data generation for evaluation (EDGE) plat-
form (Simulab Corp., Seattle, WA, USA) was used to collect
task video data and tool motion data from participants includ-
ing surgical faculty, residents, and fellows. Participants in the
study performed a subset of the FLS tasks; peg transfer, pat-
tern cutting, and intracorporeal suturing. Each subject was
asked to complete, at minimum, three iterations of the peg
transfer task, two iterations of the pattern cutting task, and
two iterations of the suturing task. The subject pool consisted
of 98 total subjects from a variety of specialties includ-
ing General Surgery, Urclogy, and Gynecology spanning
three teaching hospitals. Two FLS-certified graders manually
recorded task errors, and task completion time was automat-
ically recorded. Task errors and completion time were then
used to compute an overall FLS score for each iteration.
From this data set, we have chosen the ground truth expert
group (determined by a combination of caseload, FLS score,
and p-OSATS score) for our ‘obvious expert’ category and
the FLS novice group (determined by the bottom 15th per-
centile of FLS scores for trials in each task) for our ‘obvious
novice’ category. Individuals with such low scores would fail
FLS and thus not be allowed to operate. The complete data
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Table 1 FLS trials by task and skill level

Skill level Peg transfer Pattern cutting Suturing
‘Obvious novice’ 29 25 13
‘Obvious expert’ 6 10 8

set contains 447 recorded trials across three tasks [13]. We
selected only 91 of the original recorded trials to represent the
extremes of ‘obvious experts’ and ‘obvious novices.” Each
trial was performed by a different subject (Table 1).

Each task was recorded with time synchronized video and
tool motion data. This provided time-stamped Cartesian posi-
tions (x, y, z in cm) along with tool roll and grasper jaw angle
(8, degrees) at 30 Hz. This allowed subsequent computa-
tion of motion derivatives such as velocity and acceleration.
In post-processing, surgical tool motion was segmented into
distinct motions within each task based on information from
the tool grasper at the distal end. A segment was considered
to begin when the grasper was opened (@ > 3°) and the force
within the grasper jaws fells below a threshold (Fy < 4N).
The segment was then considered complete when the jaws
wetre closed (@ < 3°) and the force applied within the grasper
jaws rose above a threshold (Fg > 4N) for 200ms [13]. Each
tool is segmented separately, allowing for overlapping seg-
ments between each instrument (hand). The mean number of
segments per trial and the mean segment duration are given
in Table 2.

Functionally this segmentation scheme results in segments
where a tool is moved in a trajectory toward an object,
and then the jaws are closed around the object to secure
it, thus ending the segment. Our segments focused only on
tool motion where the surgeon is reaching toward an object
(e.g., before grasping or cutting), a motion which is preva-
lent in nearly all surgical tasks. The goal of this segmentation
scheme was to be generalizable to all surgical tasks as com-
pared to task-specific surgical gestures. We expected that
some spurious false positives may occur within segmenta-
tion and assumed that these false segments occur equally
across skill groups.

Value of ‘raw motion data’ for classification

To explore the separability of dexterous skill levels given raw

[12]. This is used in binary classification to rank features
based on their ability to separate the data effectively. For each
point, we find the K-nearest neighbors belonging to the true
class (hit) and the opposite class (miss). Using these nearest
neighbors, a mean distance to both the hit neighbors (Dhit)
and the miss neighbors (Dmiss) is computed. The weights
for a particular feature (W) are updated according to the
difference between mean hit distance and mean miss distance
(computed using that particular features data) (Eq. 1).

N
Wi =) (Drit; — Dimiss;)- m

i=1

Once weights for each feature have been computed, the
features are sorted based on weight. Features with the highest
weights are considered the most relevant features for classi-
fication. RELIEFF and its variants are limited to considering
each feature separately and do not consider combinations of
features simultaneously.

An obvious extension of the RELIEFF approach for mul-
tiple features (a variant termed RELIEF-RBF) utilizes radial
basis functions (RBF) to estimate the probability density
function given within class (hit) and between class (miss)
data across any combination of n dimensions. As compared to
the standard RELIEFEF approach, all data from all dimensions
contribute to the overall probability of that data point instead
of only considering nearby neighbors in a single dimension.
A training data set is utilized, and each point (indexed by i)
within the #-dimensicnal set is assigned a probability esti-
mate via RBFs for within class probability ( Py ) and between
class probability (Pmiss) (Eqgs. 2, 3).

Niit , —(e||x;—x; 2
3 ¢ —Celi—l>

Pipit = N @
Nmiss o— (e [lx;—xx[l)?
"mise g
Py miss = Zk_l— 3
Niss

The bandwidth variable € is used to scale the kernel radius
given a standard deviation. Given the class-specific proba-
bility estimates for each data point, we compute the relative
separability of each data point between its hit class and miss
class. This requires computing the Kullback-Leibler (KL)
divergence of each point using both probability estimates
(Eq. 4).

motion data from EDGE, we refined and utilized information _ . P pic "

theoretic techniques, starting with the RELIEFF algorithm Wibr = Py pic - log P ) @

Table 2 Mean segment count & . " "

standard deviation and [mean Skill level Peg transfer Pattern cutting Suturing

P ‘11“““"“] by task and “Obvious novice’ 30.5 £ 4.6 [260ms] 61,9 18.1 [130ms] 417 £ 18.3 [203 ms]
‘Obvious expert” 24.8 + 1.3 [105ms] 27.1 £ 4.5 [68 ms] 12.4 + 3.0 [107ms]
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Fig. 1 RELIEF-RBF for sepal width (SW) and sepal length (SL) data from the Versicolor and Vitginica classes. a 2D Fisher Iris data. b RELIEF-

RBF weights

Each data point x; in d-dimensional space (d < n) is
assigned an estimate of separability W; wr (i.e., relevance in
terms of classification use). The mean relevance weighting
from all points in the training data set yields an aggregate
estimate of the relevance weighting for that combination of
features. This relevance weight is then compared with other
combinations to improve feature selection for large, multidi-
mensional, numerical data sets. A two-dimensional example
of the relevance weights for two classes of the Fisher Iris
data set [8] (Versicolor and Virginica) is given in Fig. 1. The
RELIEF-RBF algorithm rewards only regions with high con-
fidence of separability (high W; rr), while penalizing both
regions with a prevalence of all classes and regions that are
data scarce (low W; mr).

In both RELIEFF and RELIEF-RBF, all dimensions are
mean—variance pre-scaled to account for data range effects.
The weights for both methods are un-normalized and are used
to compare the relative separability across dimensions.

Using both RELIEFF and the RELIEF-RBF, we investi-
gated which states from the raw EDGE motion data had the
highest separability. The states used in this study are given in
Eq. (5) where x, y, 7 terms represent derivatives w.r.t. time
of the Cartesian location of the surgical tool tip. x; is sample
at each time step in the data set. The Cartesian position of
the surgical tool [x, y, z] was excluded because of its rela-
tionship to the present surgical gesture. All resulting feature
combinations were investigated.
xe=[00%32X5:X V7% 3, z1I% 5. 21]. e

For comparison, we also applied RELIEF-RBF to the
Fisher Iris data set, a well known, separable data set. Using
the three surgical moticn states with the highest RELIEF-
RBEF separability, we employed arandom forest classification
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(100 trees) to examine the classification accuracy in a LOUQ
cross-validation scheme.

Intent vectors

‘We present a novel motion statistic for surgical skill classi-
fication. The ‘intent vectors® statistic is based on the overall
goal of a motion segment. Using the starting and ending
location of a motion segment as endpoints, we compute a
vector which represents the ultimate goal of that segment.
‘We assume this intent vector is the ideal line of motion for
a given segment; then we compute metrics which represent
the amount of deviation from this optimal trajectory.

For a segment of Cartesian tool position data of length
N, we have ¥ = [Dy, Dy, ..., Dy] where D; = [x, y, z]
represents the 3D location at time ¢ = i. The intent vector is
then computed in Eq. (6).

Dy — D

= —_— 6
1By —Dil ®

From this intent vector, the progress of each point in W
along this line can contextualize other actions relative to the
ultimate trajectory. The intent vector progress value (IVP) is
computed according to Eq. (7) using a dot product operator
and scaled by the magnitude of the intent vector (thus fixing
the starting and ending points at 0 and 1). An illustrative
example is given in Fig. 2a.

_ (DD -V

Ivp, = 11 @
! 1Py — D1l

From the intent vector framework, we also compute the
intent vector angle (IVA): the angle of motion relative to the
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IvP

(a)

Fig. 2 Intent vector measures. a Intent vector progress in 3D. b Intent vector angle in 3D

overall angle of the intent vector. IVA is computed for each
point in ¥ by taking the difference at a given point in time
between the current tool location and the previous location
(D; — D;_;) which is then normalized to give a unit vector
in 3D space (§;). Given this instantaneous unit vector, we
compare with the overall intention, indicating the degree to
which the tool is moving in the correct direction or doubling
back (Egs. 8, 9).

- D; — D,
(1D = Dyl
IVA; = cos™ ' (§; - TV). ©

The value of IVA is bounded between 0 < IVA < & since
we are not concerned with the direction that the angle differs
from the overall intent. An illustrative example is given in
Fig. 2b. The intent vector framework was implemented for
all motion segments within the EDGE data set. For each task,
the IVA and IVP measures were compiled into a 2D feature
vector with corresponding skill 1abels. A plot of TVA and IVP
for the suturing task can be found in Fig. 4a.

Given the high-degree of similarity in the intent vector
space, to use the intent vector data within a classification
scheme we employed aclassification approach which focuses
on deviations from the region of high expert probability. We
first identified the region in 2D IVA-IVP space with the
highest density of expert surgical motion. We employed a
modified version of the RELIEF-RBF algorithm and thresh-
old the relevance weights for the expert class (Eq. 10).

Pi,exp)
Pinov/)

Here Wexp = Wi from Eq. (4) where expert is the
hit class. All training data are assigned a relevance weight

S ®

vvi,exp = Pi,axp -log ( (10)

IVA

relative to the expert data. A threshold on W; exp is com-
puted using an information gain maximization similar to
the typical decision stump algorithm [10]. We identify a
threshold (Ty,) such that classification of the intent vector
data follows Eq. (11) and maximizes the information gain
(IG = H(Y|X) — H(Y)) for classification (¥ = skilllevel)
given (X = [IVA, IVP)).

v Novice,
Expert,

Wexp(X) <Ty an
Wexp(X) = T

Using the relevance weight threshold, we retain all expert
data in [IVA, IVP] space above Ty, as ‘true expert data’
and train a Gaussian probability model for online classifi-
cation (Pexp(X |1, @)). A threshold value for this Gaussian
model (7p) is found by taking the Pexp(X) at the minimum
Wi exp(X) > Ty value.

The next step is to classify each individual time-indexed
data point within a given segment for a specific surgeon. For
surgeon (g) and segment (s), the time series data are given
as Ag’_y = [A1, A2, ..., Ax] where A; = [TVA, IVP] at time
t = i. Using Pexp(X |11, ), we classify each data point as 1
or 0 to signify novice or expert, respectively (Eq. 12). Values
where y; = 1 are considered a ‘demerit’ for behaving like a
novice and are used in the overall evaluation of the motion.

5 L
Yi = 0,

Given a vector of time-indexed motion demerits g,,s =
[¥1, ¥25 - . . » YN, we compute a mean score for that particu-
lar segment SKg s = mean(gg,s). Given the 1, 0 labels, this
score has the effect of being very low for frequent expert
motions and higher if motions fall outside the ‘true expert’

Pexp(hi) < Tp

Pexp(2i) = T, =
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Fig. 3 Relevance weightings for raw motion states. a Top three RELIEFF states. b Top three RELIEF-RBF states

model (many novice demerits). We train a threshold based
on the average SK scores (T ) for expert and novice sur-
geons using a decision stump appreach. We employ a LOUO
scheme per skill group (LOUOpG) (i.e., leave one obvious
novice and one obvious expert out per training) and test each
left-out surgeon based on all motion segments (Eqg. 13).

Novice,
Expert,

mean(SK; s) > To

Cg =
mean(SK; s) < To.

13

For each LOUOpG iteration, we recompute all relevant
measures and thresholds, i.e., Wexp, Ty, Tp, and Ty based
on the training data set alone, therefore limiting overfitting
for the validation data.

In order to compare the accuracy of our classification
approach, we utilized previously validated aggregate task
metrics as highlighted in [5]. For this comparison, we used
a feature vector comprised of tool path length, economy of
motion (Eq. 14), motion smoothness, and motion curvature
(Eq. 15, where r = ||x, 3, z|) (X = [PL, EOM, MS, MC]).
A linear discriminant analysis (LDA) classifier (class-based
means and covariances, equal weighting) was trained on this
feature vector to classify skill levels. We again employed
a LOUOpG cross-validation with this classifier. We also
exarnined classification using a combination of intent vec-
tors and aggregate metrics with combined feature vector
X = [%, mean(SK, ¢)]. Again we utilized a standard LDA
classifier in a LOUOpG cross-validation to classify a com-
plete task.

Path Length
EOM = “Tosk Time (14
Fx¥
MC = . 15
EE W
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Results
Value of ‘raw motion data’ for classification

The relevance of the raw motion states was examined for all
states in Eq. (5). The three motion states with the highest
relevance weights according to RELIEFF were found to be
[0, Z, ¥]. The corresponding RELIEFF weights were [2.3 X
1073,2.7 x 1073,3.0 x 1073]. A plot of these three states
is given in Fig. 3a.

RELIEF-RBF gave slightly different states with high rel-
evance. The motion states with the highest relevance weights
corresponding RELIEF-RBF weight was 6.7 x 1073 for this
combination of states. A plot of these three states is shown
in Fig. 3b. The additional relevance weights for the other
motion states are not included for the sake of brevity but
were all similarly low.

All states in the motion data had separability measures that
were orders of magnitude lower than the separability of the
FisherIris data set, whichhas a maximum relevance weight of
0.63 for sepal width and sepal length (RELIEF-RBF). Using
a random forest classifier on the top RELIEF-RBF motion
states gave a classification accuracy of 70.5% and an out-of-
bag error of 0.28. Given the relatively low feature weights
for the raw motion data, the resulting classification accuracy
did not fulfill the MAC criterion, being well below 100%.

Intent vectors

A sample plot of the intent vectors space is given in Fig. 4a.
These data indicate clear differences between novices and
experts. Novices spend far more time outside the 0-1 range
of the IVF, meaning they often backtrack and overshoot the
starting and ending points. Additionally, experts spend a lot
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Fig. 4 Intent vector data (a) and demerit counts (b) (obvious novice and expert) for suturing task box-plot notch indicate range of 95% confidence

e

Segment Demerits (y i)

=S
T

Novice Expert

Skill Level
(b)

for median separation. & IVA versus IVP with class labels. b Per-segment demerits (y;)

Q 0.5 1 15 2 : 25 3
IVA (rad)

@

Novice 0-0%

Expert

0.035

0.005

IVA (rad) 3 2

(b)

Fig. 5 Intent vector data with ‘true expert’ data and RELIEF-RBF weights (obvious novice and expert). a “True expert’ region. b RELIEF-RBF

weights

of time with low IVA values meaning they generally head in
the correct direction. However, experts also have varied IVA
values around the endpoint of segments (IVP = 1), meaning
that near the endpoint, experts make fine adjustments to their
approach.

The intent vector classification yielded a large separa-
tion among segment demerit counts (y;) between expert and
novice surgeons. A plot of these values for each class is given
in Fig. 4b. The mean segment demerit count was found to be
65.9 (std = 105.2) for novices and 22.6 (std = 27.7) for
experts. The relevance weights (Wexp) and ‘true expert” data
in the intent vector space are shown in Fig. 5.

The intent vector framework yielded an average classifi-
cation accuracy of 97% between novices and experts using

a LOUOpG scheme for all tasks combined (Table 3). The
intent vector approach fails to pass the MAC criterion for
all tasks. However, it does achieve the MAC for the pattern
cutting task.

An example plot of expert versus novice total segment
demerits and the learned thresholds Tg (Eq. 13) from all
LOUOpG iterations is given in Fig. 6 for the intracorporeal
suturing task. Results suggest the existence of an ideal thresh-
old (obtainable using all available data) that provides clear
separation between novice and expert data in the suturing
task.

For comparison, the LDA classifier using the aggregate
task metric features () achieved the classification rates in
square brackets in Table 3. These measures failed to achieve

&) Springer
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Table 3 Intent vectors

Peg transfer

Pattern cutting Intracorporeal suturing

96.5 [100°] {100}
83.3 [83.3] {86.2}
94.2 [97.1] {97.6}

100¢ [96] {96}
100* [90] {100%}
100* [94] {97.2}

100° [92.3] {92.3}
923 [87.5] {1007}
97.1 [90] {952}

© Est. Novice
Est. Expert
—Threshold
- Ideal

[aggregate metrics] {combined Skilllervel
features} classification accutacy Novice
%,
%) Bipert
Macro-accuracy
® Achieves MAC criterion
Fig. 6 LOUOpG classification 180
using intent vectors with o
thresholds (T ) and ideal 160
separable threshold
140 -
g 120
£ 100}
[}
£
8 80
‘g 60
'—
2

I
o
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Novice

100% (macro-accuracy) classification for any of the tasks.
The intent vector approach performed better than aggregate
measures for both the suturing and cutting tasks, but worse in
the peg transfer task. The combined feature vector § achieved
equivalent or better macro-accuracy than the aggregate met-
rics alone for all tasks, indicating improved performance
through the incorporation of intent vectors.

Conclusion

'We presented the minimally acceptable classification (MAC)
criterion for surgical skill classifiers. That is, given obvi-
ous expert and obvious novice data, a classification accuracy
of 100% must be demonstrable as a minimal criteria for
surgical skill classification. This requires stating both the
classifier performance under LOUOQ-level cross-validation
and enumerating its useful benefits over existing methods
like summary metrics (e.g., task time).

‘We investigated the separability of raw tool motion data
between obvious novices and experts with this MAC criteria
in mind. As visible in Fig. 3, our results indicate extremely
low separability—orders of magnitude lower than, say, the
Fisher Iris dataset. This was true using both the RELIEFF and
RELIEF-RBF feature selection algorithms. This suggests
that motion data alone are statistically inseparable for clas-
sification given the MAC criterion. This is reiterated by the
poor performance of the random forest classifier using raw
tool motion alone. This motivates the inclusion of additional
context (e.g., video data, tracking tissues, and tool-tissue
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Expert

True Skill Level

interaction) to amplify the relevance of input data to the clas-
sification problem,

The intent vector feature and classifier performed surpris-
ingly well given the observed low separability of the raw
tool motion data. The overall classification rate of 97% rivals
or surpasses prior the literature especially under LOUOpG
cross-validation. We note that this approach fails to achieve
the MAC criterion for all three FLS tasks. However, our intent
vector classifier does partially succeed under the MAC cri-
terion for two special cases: the cutting task and identifying
obvious novices in the suturing task. Closer inspection in
Fig. 6 reveals that the intent vector can fully separate the
suturing task (and hence classify with 100% accuracy to
achieve the MAC criterion) given an ideal threshold. This
approach achieves equivalent or better results when com-
pared with aggregate task metrics common in prior art.
‘When used in the combined feature vector ¥, we found that
intent vectors improve classification accuracy when com-
pared with the aggregate task metrics alone. Furthermore,
for the cutting and suturing tasks, the intent vector provides
additional value beyond summary metrics like task time.
Notably, it returns classification results upon completion of
each motion segment. This permits use cases such as (1)
identifying only the worst portions of a surgical video for
streamlined targeted review or (2) providing skill feedback
in near real time at the completion of every motion. The
segmentation approach used has the additional benefits of
not requiring manual segmentation and being task agnos-
tic.
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‘We propose that the MAC criterion be adopted in surgical
skill research as a minimal benchmark for a surgical skill
classifier. Otherwise, the cost or complexity of sophisticated
algorithms may not be justified. Using MAC also demands
more carefully chosen ground truth skill categories to ensure
accurate establishment of the ground truth, e.g., combining
multiple criteria such as OSATS review, caseload, and proce-
dural metrics. Failure to establish such a clean ground truth
may hamper scientific progress in skill evaluaticn research.

This study has multiple limitations. This approach has
only been applied to manual laparoscopic data on simulated
tasks. Our conclusions may not hold for other contexts such
as live surgery or robotic systems. The high selectivity of
our ‘obvious expert’ inclusion critetia resulted in relatively
small numbers of trials for cross-validation. Future work will
include additional data collection to remedy this and applying
the intent vector framework to ternary skill level classifica-
tion. Additional analysis will investigate the concordance of
intent vector metrics with FLS scores. We intend to com-
pare our approach with the DCC and ribbon area measures
[1,11]. This method has only been applied within our ballistic
approach segmentation scheme; future work will investigate
whether intent vectors can be applied to other actions such as
needle passing. The current framework assumes the overall
intent of each segment is correct and does not account for
motion with incorrect intent. This segmentation scheme has
the potential for false positives but is assumed to affect skill
groups equally.
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1 Background

Surgical skill evaluation is a field that attempts to improve
patient outcomes by accurately assessing surgeon proficiency.
An important application of the information gathered from skill
evaluation is providing feedback to the surgeon on their perfor-
mance. The most commonly utilized methods for judging skill
all depend on some type of human intervention. Expert pan-
els are considered the gold standard for skill evaluation, but are
cost prohibitive and often take weeks or months to deliver scores.
The Fundamentals of Laparoscopic Surgery (FLS) is a widely
adopted surgical training regime. Its scoring method is based
on task time and number of task-specific errors, which currently
requires a human proctor to calculate. This scoring method re-
quires prior information on the distribution of scores among skill
levels, which creates a problem amny time a new training module
or technique is introduced. These scores are not normally pro-
vided while training for the FLS skills test, and [1] has shown
that FLS scoring does not lend any additional information over
sorting skill levels based on task time. Crowd sourced methods
such as those in [2] have also been used to provide feedback and
have shown concordance with patient outcomes, however it still
takes a few hours to generate scores after a training session.

It is desired to find an assessment method that can deliver a
score immediately following a training module (or even in real
time) and depends neither on human intervention nor on task-
specific probability distributions. It is hypothesized that isogony-
based surgical tool motion analysis discerns surgical skill level
independent of task time.

2 Methods
2.1 Data Set

This study used tool motion data gathered from the EDGE
(Electronic Data Generation and Evaluation) study [3]. This
dataset contains 295 different samples of surgeons at varying
skill levels interacting with a dry-lab surgical training environ-
ment performing 108 peg transfer (PegTx), 63 suturing and 124
circle cutting tasks.

Each sample is composed of a video recording of the train-
ing module (30 Hz), the cartesian space laparoscopic tool mo-
tion data corresponding to each video frame (30 Hz), features
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such as task name, and an FLS skill rating. The tool tip posi-
tion and velocity measurements from the tool motion data were
used to calculate our features of interest for evaluating skill. The
FLS score was mapped in [1] to a ternary ranking of subjects
as novice, intermediate or expert. The trials utilized for this ex-
periment include 157 FLS novices, 71 FLS intermediates and 67
experts.

2.2 Analysis Methods and Algorithms

The time-agnostic velocity gain factor ¥ has shown promis-
ing results. In [5], this feature was used along with the two-third
power law and the Isogony Principle to relate pencil tip velocity
to the radius of curvature of 2D shapes sketched by a subject as

v(r) = YO k()13
where v is the velocity of the tool tip and k& is the euclidean curva-
ture (i.e. the instantaneous radius of curvature of the tool path.)

The mean and standard deviation of y for the left and right
hand over the course of the training run was taken to create the 4
features for each trial o (y.), (), 0 (&) and p(yg). These fea-
tures were used to train a state vector machine (SVM) to predict
the skill level of each trial.

The accuracy of the model was evaluated based on its agree-
ment with the FLS classification for the trial, i.e. whether each
model correctly classified the trial’s FLS score grouping. Trials
were grouped as either novice, intermediate, or expert. The FLS
score groupings are used as the ground truth data.

To test the expected accuracy of an SVM which uses
o (), (), 0(yr) and/or () as features, a 10-fold cross val-
idation was performed. Cross validation helps ensure that the
data used for testing was not included in the model training, and
thus did not bias the model. The model’s score grouping predic-
tion was compared to the FLS score grouping from the EDGE
data set. Each fold of the 10-fold cross validation samples tri-
als evenly from the three skill levels. In addition, the 10-fold
cross validation was performed 10 times (creating new 10-fold
sets each time) in order to average out any fluctuations in accu-
racy due to the particular samples chosen for each 10-fold. This
means, 100 different models comprised of 100 different parti-
tions of the data were generated, and the statistics for the accura-
cies of each model are communicated in the box plot figures. In
this study, we were only testing discrimination between novice
and expert skill levels.

In each of the box plots, the 25th and 75th percentiles are
displayed as the box boundaries while the median is the cen-
tral line in each box. The whiskers mark the most extreme non-
outlier points, and the + points are outliers.

3 Results
Task specific models were generated as a basis for compari-
son to other task-specific methods. In Figure 1, the classification
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FIGURE 1: Prediction accuracy results of two-class classifica-
tion, task specific trained model.

K-+Folki Cross Valldation for Novice vs. Expert
Claasificaion Accumcy for SVM

g

I

5 2
]

-]

% accuracies, median and range
+

o I . ;
Cuiting Soturing
Task usad for modsl tralning and prediction
calculated from all timspoints of data

FIGURE 2: Prediction accuracy results of two-class classifica-
tion, model trained in task-agnostic manner.

accuracies of task-specific models are displayed. To generate this
figure, trials were separated based on which task was performed
and a model to represent skill for each specific task was gener-
ated. A 10-fold cross-validation was done on each of these 3
partitions. This figure shows that for PegTx and Suturing models
had a median classification accuracy of 100% per model.

In Figure 2, one model was trained using the full dataset ina
task-agnostic manner (using trials across all tasks), and a similar
cross validation technique to Figure 1 was performed. This figure
shows good prediction accuracy for all three tasks despite the fact
that the model was trained task-agnostic.

In Figure 3, five different models were trained using the full
dataset in a task-agnostic manner, four of which were trained
based on a single feature. The “all” column of this figure uses the
same model from Figure 2. This shows the relative strength of
each feature in prediction accuracy, where the accuracy of mod-
els trained using o(yg) or o(y) alone are close in accuracy to
the models trained using all four features.
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FIGURE 3: Prediction accuracy results of two-class classifica-
tion, models trained using either single or all four features.

4 Interpretation

Tt was shown that task and time agnostic isogony-based fea-
tures can be used to train automated skill evaluation models with
good agreement to rough groupings of FLS scores. The ability
to automate skill evaluation will allow surgeons in training to
obtain feedback faster and more frequently. Further work will
incorporate more trials to train more consistent models. These
v features will also be applied to other machine learning algo-
rithms and used for 3-class classification to discern all FLS skill
levels.
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