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Abstract A continuum mechanics theory of
deformable solids is formulated to account for large
deformations, nonlinear elasticity, inelastic deforma-
tion mechanisms, microstructure changes, and time
dependent fields, i.e., dynamics. The theory incorpo-
rates notions from Finsler differential geometry, and
it provides a diffuse interface description of surfaces
associated with microstructure. Mechanisms include
phase transitions and inelastic shearing, with phase
boundaries and shear planes the associated surfaces.
A director or internal state vector of pseudo-Finsler
space is viewed as an order parameter. Newly derived
in the present work are the governing equations for
dynamics, including kinematic relations, balances of
momentum and energy, and evolution law(s) for the
internal state. Also derived are jump conditions per-
tinent to shock loading. Metric tensors and volume
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can vary isotropically with internal state via a confor-
mal transformation. The dynamic theory is applied to
describe shock loading of ceramic crystals of boron
carbide, accounting for inelastic mechanisms of shear
accommodation and densification upon amorphization
under high pressure loading. Analytical predictions
incorporating the pseudo-Finsler metric demonstrate
remarkable agreement with experimental data, with-
out parameter fitting. Additional solutions suggest that
dynamic shear strength could be improved significantly
in boron-based ceramics by increasing surface energy,
decreasing inelastic shear accommodation in softened
amorphous bands, and to a lesser extent, by increasing
the energy barrier for phase transformation.

Keywords Continuum mechanics · Differential
geometry · Shock physics · Dynamic fracture ·
Phase field · Ceramics

1 Introduction

Crystalline solids may demonstrate a number of inelas-
tic deformation and failure mechanisms under intense
dynamic loading. Thesemechanisms include crystallo-
graphic slip (i.e., dislocation glide), deformation twin-
ning, adiabatic shear localization, phase transforma-
tions, dynamic cleavage and intergranular fracture, and
nucleation, growth, and coalescence of voids. Efforts
towardsmodeling the physics of such phenomena in the
context of continuum constitutive theory and numeri-
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54 J. D. Clayton

cal simulations have witnessed incremental progress
for several decades. Models for continuum crystal
plasticity at high strain rates include (Clayton 2005a;
Luscher et al. 2013; Lloyd et al. 2014a; Shahba and
Ghosh2016).Models for deformation twinning include
pseudo-slip approaches (Barton et al. 2009; Clayton
2009) and phase field approaches (Clayton and Knap
2011a, 2013, 2015a; Hildebrand and Miehe 2012).
Theoretical and computational continuum mechanics
models havebeendeveloped accounting for shear local-
ization (Li et al. 2001; Bronkhorst et al. 2006; Sun and
Mota 2014) and ductile damage, i.e., void mechanics
(Bammann and Solanki 2010; Bronkhorst et al. 2016).
Phase field theory has also been applied to describe
solid-solid phase transformations in the context of finite
deformations (Levitas et al. 2009; Clayton 2014a; Lev-
itas 2014). Fractures have been modeled via a num-
ber of computational schemes, including cohesive zone
methods (Xu and Needleman 1994; Li andWang 2004;
Clayton 2005b; Vogler and Clayton 2008; Foulk and
Vogler 2010) and phase field representations (Borden
et al. 2012; Clayton and Knap 2014, 2015b).

The current paper invokes a Finsler-geometric
theory of continuum mechanics (Clayton 2016a, b,
2017a, b) to account for nonlinear elasticity, inelastic-
ity, and microstructure evolution under dynamic load-
ing conditions. In the context of geometrically nonlin-
ear continuum physics, the body manifold in its refer-
ential and spatial configurations is treated as a Finsler
space rather than a Euclidean space of conventional
continuummechanics. Themetric tensor and its deriva-
tive quantities such as lengths, areas, and volumes all
functionally depend on an internal state vector or direc-
tor vector. More precisely, in the present class of theory
(Clayton 2016a, b, 2017a, b), each configuration is con-
sidered of pseudo-Finsler geometry since the internal
state vector need not be a unit vector and the metric
need not be homogeneous of degree zero with respect
to internal state (Minguzzi 2014). In this work, as first
proposed inClayton (2016a, 2017a), a conformal trans-
formation, i.e., Weyl scaling (Weyl 1952), is used to
account for dependence of the metric on internal state.
Prior work in the context of quasi-static loading condi-
tions has demonstrated similarities between this class
of Finsler theory (Clayton 2016a) and variational phase
field models (Clayton and Knap 2015a) when the inter-
nal state is regarded as an order parameter. Historically,
work in Finsler geometry applied to solid mechan-
ics is limited in scope: the ferromagnetic theory of

Amari (1962), kinematic models of Bejancu (1990),
and a more comprehensive thermomechanical theory
with a numerical example in Saczuk (1996), Stumpf
and Saczuk (2000). A recent review of the subject is
Clayton (2015a).

As explained inClayton (2017b), generalizedFinsler
geometric continuum mechanics includes some dis-
tinctive features absent in continuum mechanics mod-
els of standard Riemannian geometry. Pseudo-Finsler
space invokes basis vectors,metric tensors, and connec-
tion coefficients thatmay explicitly depend on the inter-
nal state or director vector. Volume and area elements
inherit an explicit state dependence, and Stokes’ the-
orem includes terms accounting for state dependence
of connection coefficients in covariant differentiation.
Resulting equilibrium equations thereby contain cor-
respondingly novel terms that arise from application
of Stokes’ theorem. This enriching of the governing
equations is thus motivated by mathematical physics
rather than ad-hoc constitutive assumptions. Physi-
cally, dependence of the metric tensor on internal state
is realistic for solid bodies when evolving microstruc-
ture alters lengths and/or orientations of material
line elements. Finsler geometry is not required for
mathematically rigorous modeling of microstructure
changes or inelastic deformation, but it does provide an
enhanced description relative to standard Riemannian-
geometric representations. The present general frame-
work also has been shown (Clayton 2017a) to encom-
pass and reduce to (under certain simplifying assump-
tions) other classes of continuum models such as those
of micropolar (Clayton et al. 2006), strain gradient
(Clayton et al. 2004a), and phase field type. Further
advantages may become evident upon examination of
solutions to specific problems.

The present paper extends previous variational-
based (i.e., quasi-static or incremental) theory (Clay-
ton 2016a, b, 2017a, b) to the dynamic regime. Govern-
ing equations for dynamics are newly derived: balances
of mass, linear momentum, and energy and evolution
equation(s) for the internal state. The latter equation(s)
are similar in form to those of Ginzburg-Landau or
Allen-Cahn phase field theory (Allen and Cahn 1979;
Levitas 2014), albeit with additional terms manifest-
ing to account for Finsler space. An important mathe-
matical device used in the current derivations centers
on the divergence theorem of Finsler geometry first
presented by Rund (1975). Also newly addressed is a
Finsler-geometric description of shock wave propaga-
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Finsler-geometric continuum dynamics and shock compression 55

tion in solids. Jump conditions are derived by extend-
ing methods in Casey (2011) and Clayton (2014b, c)
for Euclidean space to pseudo-Finsler space. In this
context, discontinuities in stress, deformation gradi-
ent, and particle velocity are assumed to exist across a
shock front moving at steady velocity. A linear differ-
ence approximation is used to represent state variable
gradients across the front, and regions far behind the
front are assumed to be in equilibrium with respect to
internal state.

The Finsler description of shock physics is used to
model planar impact in boron carbide crystals. Boron
carbide (B4C) is a ceramic material of keen current
interest. Beneficial physical properties for industrial
and defense applications include high hardness, high
elastic stiffness, and low mass density. Detrimental
properties include lowductility and, under impact load-
ing conditions, a tendency for failure by shear localiza-
tion. Stress induced amorphization is thought to pre-
cede and/or accompany this failure mechanism. Shear
banding is a prominent inelastic deformation mecha-
nism in metallic glasses as well (Cheng and Ghosh
2013). The mechanism of amorphization in B4C is
thought related to collapse of the rhombohedral unit cell
under compression along the c-axis ([0001] in hexag-
onal Miller indices) and is further enabled by shearing
modes (Grady 2011; Taylor et al. 2012; Clayton 2012a,
2013a, 2014a; Taylor 2015; An and Goddard 2015a).

Prior work applied (Clayton 2016b, 2017b) a static
version of Finsler theory to describe tension, compres-
sion, and shear of boron carbide single crystals. In this
paper, the dynamic version of Finsler theory is newly
applied to shock compression of this ceramic. An order
parameter is linked simultaneously to densification and
inelastic shear accommodation as the crystal transitions
to a glassy phase under intense dynamic loading. Ana-
lytical solutions are derived in termsof a set of algebraic
equations that may be solved simultaneously (albeit,
not in closed form) for the shock stress, order param-
eter, entropy, and shock characteristics such as shock
velocity and particle velocity. In addition to model-
ing the response of the nominal material, the current
solutions are used to probe effects of changes in fun-
damental material properties on dynamic shock stress
and dynamic shear strength, the latter of high impor-
tance in the context of resistance of ceramicmaterials to
ballistic penetration (Curran et al. 1993; Bourne 2008;
Clayton and Tonge 2015; Clayton 2015b, 2016c). Such
studies are motivated by concurrent efforts at computa-

tional materials design (e.g., via atomic simulations) of
boron-based ceramics for improved ductility and fail-
ure resistance, for example alloying with boron subox-
ide (An and Goddard 2015b; Tang et al. 2015).

The remainder of this paper is organized as fol-
lows. Section 2 presents the general theory for contin-
uumdynamics in the absence of discontinuities, includ-
ing differential geometry, kinematics, thermodynam-
ics, and balance laws. Section 3 develops the conser-
vation or jump conditions for a solid domain through
which a shock wave propagates at a steady material
velocity. Section 4 reports application of the dynamic
theory to planar shock loading of B4C. Section 5 con-
tains concluding remarks.

Notation of continuum physics and Finsler geome-
try is used. For coordinate-free descriptions, bold type
is used for vectors and tensors, and italic type is used
for scalars and scalar components. Index notation is fre-
quently invoked with the usual Einstein convention for
summation over repeated contravariant and covariant
pairs.

2 Theory

Finsler-geometric descriptions of reference and spatial
configurations are given, followed by a description of
motion of the body. Mathematical aspects discussed
already in prior work (Clayton 2016b, 2017a, b) are
presented only in brief. Kinematics are further devel-
oped to account for time dependency, e.g., velocities
and deformation rates. Thermodynamic principles and
corresponding balance laws are then newly defined or
derived for the dynamic case.

2.1 Pseudo-Finsler geometry

Finsler geometric representations of reference and spa-
tial configurations are given in Sects. 2.1.1 and 2.1.2.
Mappings between such configurations are then dis-
cussed in Sect. 2.1.3. Rate kinematics are defined in
Sect. 2.1.4.Multiplicative decompositions of the defor-
mation gradient and metric tensors are introduced in
Sect. 2.1.5.

2.1.1 Reference configuration

Let M be a differential manifold of spatial dimen-
sion 3. Let X ∈ M denote a material point, and let
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56 J. D. Clayton

{X A}(A = 1, 2, 3) denote a coordinate chart covering
part or all of M. To each point is assigned a vector D
serving as a descriptor of possibly evolvingmicrostruc-
ture. Coordinates {DA}(A = 1, 2, 3) are the entries of
D. The vector D, called a state vector or internal state
vector, need not be of unit length, thought it may be
referred to as a director vector regardless. In notational
arguments, dependence of a function on (X, D) implies
dependence on reference charts ({X A}, {DA}).

Holonomic basis vectors are the fields { ∂
∂X A , ∂

∂DA }.
Let N A

B (X, D) denote nonlinear connection coeffi-
cients. In Finsler geometry, the non-holonomic basis
whose entries transform between coordinate systems
as typical vectors is

δ

δX A
= ∂

∂X A
− N B

A
∂

∂DB
, δDA = dDA + N A

B dX
B .

(2.1)

The set { δ
δX A , ∂

∂DA } is logically used for a local basis
on the referential tangent bundle, and the reciprocal
set {dX A, δDA} for the cotangent bundle. The Sasaki
metric is

G(X, D) = GAB(X, D)dX A ⊗ dX B

+GAB(X, D)δDA ⊗ δDB . (2.2)

Components GAB (GAB) are used to lower (raise)
indices, and the determinant is G(X, D) =
det[GAB(X, D)]. Partial coordinate differentiation and
delta-differentiation are written as

∂A(·) = ∂(·)
∂X A

, ∂̄A(·) = ∂(·)
∂DA

;

δA(·) = δ(·)
δX A

= ∂A(·) − N B
A ∂̄B(·). (2.3)

TheChristoffel symbols of the secondkind for theLevi-
Civita connection on M are

γ A
BC = 1

2G
AD(∂CGBD + ∂BGCD − ∂DGBC )

= GADγBCD . (2.4)

Cartan’s tensor referred to reference coordinates is

CA
BC = 1

2G
AD(∂̄CGBD + ∂̄BGCD − ∂̄DGBC )

= GADCBCD . (2.5)

The horizontal coefficients of the Chern-Rund and Car-
tan connections are both equal to

Γ A
BC = 1

2G
AD(δCGBD + δBGCD − δDGBC )

= GADΓBCD . (2.6)

The spray and its canonical nonlinear connection coef-
ficients, with the latter an example of those in (2.1)
when N A

B = GA
B , are, respectively,

GA = 1
2γ

A
BC D

BDC , GA
B = ∂̄BG

A. (2.7)

Denote by ∇ the covariant derivative. Horizontal gra-
dients of basis vectors are

∇δ/δXB
δ

δXC
= H A

BC
δ

δX A
,

∇δ/δXB
∂

∂DC
= K A

BC
∂

∂DA
, (2.8)

with coefficients H A
BC and K A

BC . Vertical gradients of
basis vectors are similarly obtained from coefficients
V A
BC and Y A

BC :

∇∂/∂DB
∂

∂DC
= V A

BC
∂

∂DA
,

∇∂/∂DB
δ

δXC
= Y A

BC
δ

δX A
. (2.9)

The above descriptions pertain to both pseudo-Finsler
space and Finsler space. The latter type of space is a
subset of the former, and conditions forwhich a pseudo-
Finsler space is a strict Finsler space are discussed else-
where (Minguzzi 2014; Clayton 2016a). Two connec-
tions often encountered in the (pseudo)-Finsler litera-
ture are (Minguzzi 2014)

• Chern-Rund connection: N A
B = GA

B, H A
BC =

K A
BC = Γ A

BC , V A
BC = Y A

BC = 0;
• Cartan connection: N A

B = GA
B, H A

BC = K A
BC =

Γ A
BC , V A

BC = Y A
BC = CA

BC .

Let (·)|C denote horizontal covariant differentiation in
a coordinate chart {XC }. Then when either of these two
connections is used, the horizontal covariant derivative
GAB|C = 0.

Denote by dX and and dD differential line or vector
elements. Squared differential line lengths with respect
to (2.2) are

|dX|2 = 〈dX, GdX〉 = GABdX
AdXB,

|dD|2 = 〈dD, GdD〉 = GABdD
AdDB . (2.10)

Scalar volume elements and volume forms of M are
Rund (1975)

dV = √
GdX1dX2dX3,

dΩ = √
GdX1 ∧ dX2 ∧ dX3. (2.11)
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Finsler-geometric continuum dynamics and shock compression 57

The differential area form corresponding to a compact
region of M is

Ω = √
βdU 1 ∧ dU 2;

[
X A = X A(Uα), (α = 1, 2);

β A
α = ∂X A

∂Uα
, β = det(β A

α GABβB
β )

]
(2.12)

The following identities apply for gradients of G:

δA(ln
√
G) = Γ B

AB,

(
√
G)|A = ∂A(

√
G) − N B

A ∂̄B(
√
G) − √

GHB
AB .

(2.13)

Let V A(X, D)Ω(X, D) be a 2-form, and let V A be
contravariant components of generic differentiable vec-
tor field V = V A δ

δX A . Prescribe the horizontal connec-

tion as one for which HB
AB = Γ B

AB ⇒ (
√
G)|A = 0.

Then in a coordinate chart {X A}, Stokes’ theorem is
Rund (1975)
∫

M
[V A|A + (V ACC

BC + ∂̄BV
A)DB

;A]dΩ

=
∮

∂M
V ANAΩ. (2.14)

Here, NA is the unit outward normal to ∂M, V A|A =
δAV A + V AH B

BA, and DB
;A = ∂ADB + N B

A . Motivated
by this theorem, a covariant derivative operation (·)||A
is defined in a reference coordinate chart as

(·)||A = (·)|A + [(·)CC
BC + ∂̄B(·)]DB

;A

⇒
∫

M
(·)||AdΩ =

∮

∂M
(·)NAΩ. (2.15)

In other words, (2.15) enables presentation of Stokes’
theorem (including the divergence theorem of Rund
Rund (1975)) in Finsler geometry in a compact form
comparable to that in Riemannian geometry (Clayton
2014d).

2.1.2 Spatial configuration

The spatial configuration corresponds to a time t at
which the solid has undergone motion. A pseudo-
Finsler geometric framework exists that exactly par-
allels Sect. 2.1.1. Notation provides the distinction:
deformed coordinates and their indices are written in
lower-case rather than capitals.

Differential manifold m of spatial dimension 3
describes the body embedded in ambient Euclidean
3-space. Let x ∈ m denote a spatial point, and let
{xa}(a = 1, 2, 3) denote a chart on m. Attached to

each point is the internal state vector d, with secondary
coordinates {da}(a = 1, 2, 3); d need not be a unit vec-
tor. The natural or holonomic basis is { ∂

∂xa , ∂
∂da }. With

nab(x, d) spatial nonlinear connection coefficients, the
usual non-holonomic basis vectors are
δ

δxa
= ∂

∂xa
− nba

∂

∂db
, δda = dda + nabdx

b.

(2.16)

The set { δ
δxa , ∂

∂da } will be used as a local basis over the
spatial tangent bundle, and {dxa, δda} for the cotangent
bundle. The spatial Sasaki metric tensor is

g(x, d) = gab(x, d)dxa ⊗dxb +gab(x, d)δda ⊗δdb,

(2.17)

with determinant g(x, d) = det[gab(x, d)]. Spatial
differentiation follows the notation

∂a(·) = ∂(·)
∂xa

, ∂̄a(·) = ∂(·)
∂da

;

δa(·) = δ(·)
δxa

= ∂a(·) − nba ∂̄b(·). (2.18)

Levi-Civita connection coefficients on m are

γ a
bc = 1

2g
ad(∂cgbd + ∂bgcd − ∂dgbc) = gadγbcd .

(2.19)

Cartan’s tensor is

Ca
bc = 1

2g
ad(∂̄cgbd + ∂̄bgcd − ∂̄dgbc) = gadCbcd .

(2.20)

Horizontal coefficients of Chern-Rund and Cartan con-
nections are

Γ a
bc = 1

2g
ad(δcgbd + δbgcd − δdgbc) = gadΓbcd .

(2.21)

The spray and canonical nonlinear connection coeffi-
cients (when nab = gab ) are

ga = 1
2γ

a
bcd

bdc, gab = ∂̄bg
a . (2.22)

Horizontal gradients of basis vectors are found from
connection coefficients Ha

bc and Ka
bc:

∇δ/δxb
δ

δxc
= Ha

bc
δ

δxa
, ∇δ/δxb

∂

∂dc
= Ka

bc
∂

∂da
.

(2.23)
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58 J. D. Clayton

Vertical connection coefficients V a
bc and Ya

bc yield ver-
tical gradients:

∇∂/∂db
∂

∂dc
= V a

bc
∂

∂da
, ∇∂/∂db

δ

δxc
= Ya

bc
δ

δxa
.

(2.24)

Line and volume elements analogous to those in
Sect. 2.1.1 exist, as does an area formω likeΩ in (2.12).
Spatial versions of Stokes’ theorem (2.14) hold, where
in particular, the analog of (2.15) is

(·)||a = (·)|a + [(·)Cc
bc + ∂̄b(·)]db;a

⇒
∫

m
(·)||adω =

∮

∂m
(·)naω. (2.25)

2.1.3 Deformation kinematics

The time-dependent motions from M to m and vice
versa are the C2 functions

xa(X, D, t) = ϕa[X, D(X, t), t],
X A(x, d, t) = Φ A[x, d(x, t), t]. (2.26)

Unlike variational theories in prior work (Clayton
2016b, 2017a, b), here time t is an explicit independent
variable. Finsler kinematics (Bejancu 1990; Saczuk
1996; Stumpf and Saczuk 2000; Clayton 2017a) may
differ from classical finite kinematics in Riemannian
geometry via incorporation of internal state in these
motion functions. State vector mappings are

da(X, D, t) = θa[X, D(X, t), t],
DA(x, d, t) = Θ A[x, d(x, t), t]. (2.27)

The deformation gradient of Finsler-geometric con-
tinuum mechanics (Clayton 2016b, 2017a) is defined
as the partial derivative of motion referred to the non-
holonomic basis:

F(X, D, t) = Fa
A(X, D, t)

δ

δxa
⊗ dX A

= ∂ϕa(X, D, t)

∂X A

δ

δxa
⊗ dX A

= ∂x(X, D, t)

∂X
, Fa

A = ∂Aϕa = ∂Ax
a .

(2.28)

The inverse tangent mapping from spatial to referential
coordinates similarly is

f (x, d, t) = f Aa (x, d, t)
δ

δX A
⊗ dxa

= ∂Φ A(x, d, t)

∂xa
δ

δX A
⊗ dxa

= ∂X(x, d, t)

∂x
, f Aa = ∂aΦ

A = ∂a X
A.

(2.29)

Functions F and f are invertible with positive deter-
minants, and are inverses of one another at coincident
points on M or m at the same time instant t :

Fa
A[X, D(X, t), t] f Ab [x(X, D, t), d(x(X, D, t), t)] = δab ,

f Aa [x, d(x, t), t]Fa
B [X(x, d, t), D(X(x, d, t), t)] = δAB .

(2.30)

Director deformation gradients introduced elsewhere
(Clayton 2016b) are admissible but inessential to forth-
coming derivations.

Similar to those of Riemannian geometry, transfor-
mation equations for line elements and volume ele-
ments/forms are (Clayton 2016a, b, 2017a, b)

dx = ∂x
∂X

dX ⇔ dxa = Fa
AdX

A,

dX = ∂X
∂x

dx ⇔ dX A = f Aa dxa; (2.31)

dv = JdV = [det(Fa
A)

√
g/G]dV,

dV = jdv = [det( f Aa )
√
G/g]dv,

dω = JdΩ, dΩ = jdω. (2.32)

Lengths of deformed to initial line elements are
described by the symmetric deformation tensor C:

|dx|2 = Fa
AF

b
BgabdX

AdXB = CABdX
AdXB

= 〈dX,CdX〉,
C = CABdX

A ⊗ dX B = Fa
AgabF

b
BdX

A ⊗ dX B .

(2.33)

It follows that det(CA
B ) = det(CAB)/G = J 2.

Mixed horizontal gradients of non-holonomic bases are
obtained using (2.3), (2.23), and (2.28):

∇δ/δX A
δ

δxc
= δxa

δX A
∇δ/δxa

δ

δxc

= (Fa
A − N B

A ∂̄Bx
a)∇δ/δxa

δ

δxc

= (Fa
A − N B

A ∂̄Bx
a)Hb

ac
δ

δxb
. (2.34)

123



Finsler-geometric continuum dynamics and shock compression 59

2.1.4 Material time derivatives

The notion of amaterial time derivative in Finsler space
is needed for subsequent derivations in the dynamic
Finsler-geometric continuum theory. Let a superposed
dot and the notation D(·)/Dt denote the material time
derivative, which is defined here as the partial time
derivative of a quantity at a fixed material point X and
at fixed internal state D. For example, let A(X, D, t)
denote a generic differentiable field variable; its mate-
rial time derivative is

Ȧ(X, D, t) = DA(X, D, t)

Dt
= ∂A(X, D, t)

∂t
.

(2.35)

Thematerial velocity (vector) is defined as the material
time derivative of position, i.e.,

υυυ(X, D, t) = ∂x(X, D, t)

∂t
= ∂ϕa(X, D, t)

∂t

δ

δxa
,

υa = Dxa

Dt
. (2.36)

Thematerial acceleration is thematerial time derivative
of velocity:

a(X, D, t) = ∂υυυ(X, D, t)

∂t
= aa(X, D, t)

δ

δxa
,

aa = Dυa

Dt
. (2.37)

A fundamental assumption is that material time deriva-
tives of Sasaki metric tensors vanish identically, anal-
ogously to the same identities that can be derived in
Riemannian geometry (Clayton 2014d) where metrics
may depend only on coordinates but not internal state:

Ġ(X, D) = ∂G(X, D)

∂t
= 0,

ġ[x(X, D, t), d(x(X, D, t), t)]
= ∂ g[x(X, D, t), d(x(X, D, t), t)]

∂t
= 0. (2.38)

This description naturally excludes convected coordi-
nate representations. The first of (2.38) is derived triv-
ially by inspection; the second assumes that a metric-
compatible connection describes spatial gradients of
basis vectors and that d is held fixed during time dif-
ferentiation.

The definition of the material time derivative of
the deformation gradient, like that of F itself
(Bejancu 1990; Stumpf and Saczuk 2000; Clayton
2016a, 2017a), is non-unique in Finsler-geometric con-
tinuum mechanics. In the present theory, the rate of
deformation gradient is defined as follows:

Ḟ(X, D, t) = D

Dt
F(X, D, t) = L(X, D, t)F(X, D, t),

(2.39)

where L is the velocity gradient tensor:

L = La
b

δ

δxa
⊗ dxb = υa||b

δ

δxa
⊗ dxb. (2.40)

The covariant derivative operation entering definition
(2.40) is defined in (2.25). From (2.38) to (2.40), the
time derivative of the Jacobian determinant of (2.32) is

J̇ = ∂ J

∂Fa
A
Ḟa
A = J (F−1)Aa Ḟ

a
A = J La

a = Jυa||a . (2.41)

Let Φ denote the volume integral of a generic scalar
quantity φ over spatial domain ω, with material time
derivative Φ̇:

Φ(t) =
∫

ω

φ(x, D, t)dω,

Φ̇(t) = D

Dt

∫

ω

φ(x, D, t)dω. (2.42)

The second of (2.42) can be manipulated using (2.25)
and (2.41):

Φ̇ = D

Dt

∫

Ω

φ JdΩ =
∫

ω

(φ̇ + φυa||a)dω

=
∫

ω

[
∂φ

∂t

∣∣∣∣
x,D

+ (φυa)||a

]

dω

= ∂

∂t

(∫

ω

∂φ

∂t
dω

) ∣∣∣∣
x,D

+
∮

∂ω

(φυa)naω. (2.43)

In this version ofReynolds’ transport theoremextended
to Finsler space, the partial derivative of φ(x, D, t) at
fixed x and D is defined as the difference ∂φ/∂t = φ̇−
φ||aυa . Equations (2.35)–(2.43) reduce to their usual
counterparts of classical continuum physics (Clayton
2011, 2014d) when D and d are omitted entirely, in
which case the respective reference and current config-
uration manifolds become those of usual Riemannian
geometry and Euclidean space in particular.

2.1.5 Multiplicative kinematics

A multiplicative decomposition of the
Finsler-geometric deformation gradient of (2.28) is
invoked. Let F be decomposed into a product of two
non-singular two-point tensors:
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F = FE FD, Fa
A = (FE )aα(FD)αA. (2.44)

Both the thermoelastic or thermomechanically recov-
erable deformation, FE , and the residual or inelastic
deformation associated with changes of internal state,
FD , have positive determinants. Functional forms are
(Clayton 2016b, 2017b)

(FE )aα = (FE )aα(X, t), (FD)αA = (FD)αA[D(X, t)],
(2.45)

where the inelastic two-point tensor FD may have fur-
ther dependence on X only via possible dependence of
its basis vectors on X . Greek indices correspond to a
generally anholonomic space (Clayton 2012b, 2014d)
(i.e., incompatible intermediate configuration). Local
integrability conditions, or lack thereof, for the total
deformation gradient and its constituents are discussed
inClayton (2016b).Amultiplicative split of the director
gradient functionhas also been introduced in priorwork
(Clayton 2016b). As demonstrated in detail in Clayton
(2017b), the multiplicative decomposition of deforma-
tion is useful for partitioning elastic and inelastic contri-
butions, whereby only the former directly influence the
mechanical stress. The inelastic deformation may gen-
erally consist of contributions from various structural
transformations including plasticity, twinning, phase
changes, and damage development. Setting FD as an
explicit function of D enables a kinetic relation or equi-
librium equation for the internal state to dictate the evo-
lution of inelastic deformation, eliminating the need to
introduce a separate governing equation for the latter.

Multiplicative decompositions of the referential
Sasaki metric tensor and its inverse are used later:

GAB(X, D) = Ḡ AC (X)ĜC
B(D),

GAB(X, D) = Ḡ AC (X)(Ĝ−1)BC (D). (2.46)

Analogous decompositions into position- and
microstructure-dependent parts apply for the spatial
metric:

gab(x, d) = ḡac(x)ĝcb(d),

gab(x, d) = ḡac(x)(ĝ−1)bc(d). (2.47)

Another metric tensor is used on the intermediate con-
figuration (Clayton et al. 2004b), split multiplicatively
(Clayton 2016b):

gαβ(X, D) = ḡαγ (X)ĝγ
β (D),

gαβ(X, D) = ḡαγ (X)(ĝ−1)βγ (D);
g̃ = det(gαβ) = 1/ det(gαβ). (2.48)

For the total intermediate metric and intermediate
structure-independent metric, the following forms
(Clayton 2016b) prove most convenient:

gαβ(X, D) = δAα GAB(X, D)δBβ = δAα Ḡ AB(X)ĝγ
β (D)δBγ ,

ḡαβ(X) = δAα Ḡ AB(X)δBβ ; (2.49)

A local volume element dṽ and volume form dω̃ on the
intermediate space are obtained, similarly to (2.32), as

dṽ = {det[(FD)aA]√g̃/G}dV = J DdV,

dṽ = {det[(FE−1)αa ]√g̃/g}dv = j Edv;
dω̃ = J DdΩ = j Edω. (2.50)

Jacobiandeterminants are defined for inelastic and ther-
moelastic mappings:

J D = 1

j D
= {det[(FD)aA]√g̃/G} = dṽ

dV
,

j E = 1

J E
= {det[(FE−1)αa ]√g̃/g} = dṽ

dv
. (2.51)

For the convenient selection (2.49), g̃ = G. The inelas-
tic deformation FD of (2.44) and (2.45), in indicial
notation with basis vectors, is

FD[D(X, t)] = (FD)αB[D(X, t)] gα ⊗ dX B

= (FD)AB[D(X, t)]gα
A gα ⊗ dX B,

(2.52)

with gα generic basis vectors for the intermediate state
and gα

A shifter components from reference to interme-
diate configurations (Clayton 2014d). For consistency
with (2.49),

gα = δAα
δ

δX A
; gα

A = δα
A, det(gα

A) = 1. (2.53)

2.2 Balance equations and thermodynamics

General conservation laws for Finsler-continuum
dynamics are developed in Sect. 2.2.1. Constitutive
assumptions leading to thermodynamic identities fol-
low in Sect. 2.2.2. Further derivations in the context of
the multiplicative kinematic framework of Sect. 2.1.5
conclude the section in Sect. 2.2.3.
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2.2.1 General conservation principles

Conservation laws for mass, momentum, and energy
are derived inwhat follows next. This treatment extends
the quasi-static variational approach of prior work
(Clayton 2016b, 2017a, b) to the dynamic regime and
reduces to the latter when the body is in static equilib-
rium.

Let m denote the mass of a material body, and dm a
differential element of mass, where

dm(X) = ρ0(X, D)dV (X, D)

= ρ[x(X, D, t), D, t]dv[x(X, D, t), D, t].
(2.54)

Referential mass density ρ0 is related to spatial mass
density via application of (2.32):

ρ0 = ρ J. (2.55)

As in classical continuum mechanics in the absence
of mass transport, ρ0 is presumed constant in time at
fixed point X , though it may generally vary with D.
Therefore, itsmaterial time derivative vanishes, leading
to a local mass balance upon use of (2.41):

D

Dt
ρ0 = 0 ⇒ ρ̇ + ρυa||a = ∂ρ

∂t
+ (ρυ)a||a = 0. (2.56)

The rightmost equality can alternatively be derived by
substituting φ = ρ into (2.43) and localizing the result,
noting that the volume integral of spatial mass density
over the current configuration of the body yields its
total mass which is constant in time.

Let nada and NAdA denote area elements on the
boundaries of m andM, related by the usual Nanson’s
formula (Clayton 2014d) at a coincident point x =
x(X, D, t):

NAdA = j Fa
Anada. (2.57)

Let dPa = tada = ta0 dA denote a component of a dif-
ferential mechanical force vector, where traction com-
ponents are defined according to

ta = σ abnb, ta0 = gabP A
b NA. (2.58)

The first Piola-Kirchhoff stress PA
a and Cauchy stress

σ ab are related by the deformation gradient and Jaco-
bian determinant as follows from (2.58) and also obey

a local angular momentum balance (Clayton 2016b,
2017a, b):

σ ab = jgac P A
c Fb

A = σ ba . (2.59)

In other words, Cauchy stress σσσ is symmetric. Let B
denote a local body force vector measured per unit ref-
erence volume.Theglobal balance of linearmomentum
is posited for material domain M as

D

Dt

∫

M
ρ0υυυdV =

∫

M
BdV +

∮

∂M
t0dA. (2.60)

Expressing the reference traction in terms of Piola-
Kirchhoff stress via (2.58), using Stokes’ theorem
(2.14) for generalized pseudo-Finsler space, and local-
izing the result to a differential volume element at point
X gives the following local balance of linear momen-
tum:

ρ0υ̇
a = Ba + gabP A

b||A. (2.61)

Let U be the internal energy density measured per
unit reference volume. Restricting the current presen-
tation to adiabatic conditions, i.e., no heat flux or heat
sources applied to the body, the global balance of
energy is stated in integral form as

D

Dt

∫

M

(ρ0

2
υυυ · υυυ +U

)
dV =

∮

∂M
t0 · υυυdA

+
∮

∂M
z · ḊdA +

∫

M
B · υυυdV, (2.62)

where z is a conjugate traction-like force to the time
derivative of internal state defined by

Ḋ(X, t) = ∂DA(X, t)

∂t

∂

∂DA
,

z = zAδDA = Z B
A NBδDA, (2.63)

with Z B
A components of a corresponding stress-like ten-

sor. The left side of (2.62) accounts for the rate of
change of kinetic plus internal energy, the right side
for work done by traction on the boundary and by the
distributed body force. Use of (2.14), (2.58), (2.61),
and (2.63) gives a global energy balance that can sub-
sequently be localized to material point X as

U̇ = PA
a υa

||A + (Z A
B Ḋ

B)||A. (2.64)

The first term on the right is the stress power, the second
the rate of working from changes in internal state. It is
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again noted that when D is omitted from all equations,
the resulting balances of mass, momentum, and energy
reduce to their counterparts from nonlinear continuum
mechanics (Clayton 2011) in Riemannian geometry
(and more specifically, Euclidean space).

2.2.2 Constitutive assumptions and identities

Internal energy density per unit reference volume on
M is of the following general form:

U =U (F, η, D,∇D, G)=U (Fa
A, η, DA, DA|B,GAB).

(2.65)

Entropy density per unit reference volume is the scalar
field η(X, D, t). As discussed in Clayton (2016a),
Clayton (2017a), physical reasoning behind this form
follows from generalized continuum theories of mate-
rials with microstructure including phase field models
(Capriz 1989; Clayton andKnap 2011a, 2015a; Levitas
2014). The internal state vector D is considered to be
a vector-valued set of order parameter(s). Thermody-
namic forces follow from the material time derivative
and chain rule applied to (2.65):

U̇ = ∂U

∂Fa
A
Ḟa
A + ∂U

∂η
η̇ + ∂U

∂DA
ḊA

+ ∂U

∂DA|B

D

Dt
(DA|B) + ∂U

∂GAB
Ġ AB

= PA
a Ḟa

A + θη̇ + QAḊ
A

+Z B
A
D

Dt
(DA|B) + SABĠ AB . (2.66)

The temperature field is θ(X, D, t). Spatial coordinate
invariance requires that strain dependence of internal
energy density be of the form

U = U [C(F, g), η, D,∇D, G]
= U (CAB, η, DA, DA|B,GAB). (2.67)

It follows that the first Piola-Kirchhoff stress PA
a and

Cauchy stress σ ab obey a local angular momentum bal-
ance that agrees with (2.59):

PA
a = 2gabF

b
B

∂U

∂CAB
,

σ ab = jgac P A
c Fb

A = 2 j Fa
AF

b
B

∂U

∂CAB
= σ ba . (2.68)

Invoking a variational principle in prior work (Clay-
ton2017a), a local equilibriumequationwas derived for

micro-momentum, containing terms in Q and Z. In the
dynamic regime, a rate equation for internal state vec-
tor components DA is posited by setting the residual of
that equilibrium equation proportional to the negative
rate of internal state:

ḊK = −LKC [QC − ∂AZ
A
C − Z B

C H A
AB + Z A

B H
B
AC

− ∂̄B Z
A
C ∂AD

B − Z B
A (∂̄C N

A
B

− ∂̄C K
A
BDD

D + δACC
D
EDD

E
;B)

− PA
a ∂̄B ∂̄Cϕa∂AD

B

+ (SAB +UGAB)∂̄CGAB]. (2.69)

Here, LKC is a positive definite matrix of constants
(depending on the material) that control the time scale
for the rate of change of internal state. Equation (2.69)
states that the order parameters evolve in time such that
at equilibrium, the term in square braces vanishes in
accordancewith the static directormomentumequation
derived previously (Clayton 2017a). Kinetic equation
(2.69) can be expressed in condensed form as

ḊK = −LKC
[

∂U

∂DC
− ∇A

(
∂U

∂∇ADC

)
+ · · ·

]
,

(2.70)

where here ∇ is the horizontal covariant derivative and
remaining terms have been truncated only for presenta-
tion purposes. This equation is reminiscent of the time
dependent Ginzburg-Landau or Allen-Cahn equations
(Allen and Cahn 1979; Levitas 2014).

Several choices depending on the class of material
complete the model. A metric tensor G is introduced,
from which connection coefficients are obtained from
relations in Sect. 2.1.1. Horizontal and vertical con-
nection coefficients in (2.8) and (2.9) must be chosen,
typically those of the Chern-Rund connection. Simi-
lar features are assigned for the current configuration,
as described by equations of Sect. 2.1.2. The internal
energy density function U in (2.65) must be assigned.
Finally, constitutive equations for inelastic components
of the deformation gradient, FD of Sect. 2.1.5, are usu-
ally needed, as are kinetic coefficients LKC for general
dynamic problems.

2.2.3 Multiplicative thermodynamics

Extendingprior treatments ofClayton (2016a, 2017a, b)
to account for entropy, and those addressed in phase
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field theory (Clayton and Knap 2011a, 2015a), the
internal energy U of (2.65) is split into a sum of ther-
moelastic energy densityW and structure/internal state
dependent energy density f :

U (Fa
A, η, DA, DA|B,GAB) = W [(FE )aα, η, DA, ḡαβ ]

+ f (DA, DA|B, Ḡ AB).

(2.71)

Notice that general dependence on F is replaced by
dependence on its thermoelastic part FE . A more gen-
eral treatment would allow for couplings among elas-
tic deformation, entropy, and internal state. For terms
entering the multiplicative kinematics, the conditions
(2.44) and (2.45) are imposed:

(FE )aα[F, FD(D)]
= Fa

A[X, D(X, t), t](FD−1)Aα [D(X, t)]. (2.72)

Applying (2.72) and invoking (2.49) for intermediate
space metric components ḡαβ , thermodynamic forces
of (2.66), at fixed X , obey

PA
a = ∂U

∂Fa
A

= ∂W

∂Fa
A

= (FD−1)Aα
∂W

∂(FE )aα
,

θ = ∂U

∂η
= ∂W

∂η
;

QA = ∂U

∂DA
= ∂W

∂DA
+ ∂ f

∂DA
− PB

a (FE )aα
∂(FD)αB

∂DA
,

Z B
A = ∂U

∂DA|B
= ∂ f

∂DA|B
.

(2.73)

Furthermore, ∂U/∂GAB → ∂U/∂Ḡ AB and ˙̄GAB(X)

= 0, so SAB → 0 in (2.66) and (2.69)without energetic
consequence. Spatial invariance analogous to (2.67)
follows from forcing W to depend on CE rather than
FE , where

(CE )αβ =(FE )aα ḡab(F
E )bβ =(FD −1)Aα C̄AB(FD −1)Bβ ,

C̄AB = Fa
AḡabF

b
B . (2.74)

3 Theory: moving surfaces of discontinuity

Consider a planar shock moving with a normal compo-
nent of natural velocity D in the material manifoldM,
across which velocity, stress, and deformation gradient
may be discontinuous. Let (·)+ and (·)− denote values

of a quantity upstream and downstream from the shock.
The jump of a quantity across the shock plane is then

�·� = (·)− − (·)+. (3.1)

Denote by w = v−D the velocity of the material rela-
tive to the shock front, with v the scalar particle veloc-
ity, i.e., the component of velocity vector υυυ parallel to
the direction of shock propagation. For convenience,
let the shock direction be parallel to X1, and further
assume that uniaxial strain conditions hold:

F = 1 + (∂u/∂X)g1 ⊗ G1. (3.2)

Basis vectors g1 andG
1 point in the direction ofmotion

X = X1, and u(X, D, t) is the displacement compo-
nent in this direction. The equal first Piola-Kirchhoff
and Cauchy stress components normal to the front are
equal to the negative of the so-called shock pressure,
i.e., P1

1 = σ 1
1 = −P . The internal energy per unit mass

is e = U/ρ0.
The form of Reynolds’ transport theorem derived

in (2.43) can be used in conjunction with assumptions
and definitions for time derivatives in Sect. 2.1.4 to
obtain a general transport theorem accounting for flux
of a quantity φ(x, D, t) across the shock plane. The
derivations of Casey (Casey 2011) (in Euclidean space)
apply in full when the above definitions and caveats for
Finsler space hold. Specifically, let subscripts 1 and 2
denote subregions of the body manifoldM partitioned
by a shock plane Σ(t). Then the transport theorem can
be expressed as (Casey 2011)

Φ̇ = D

Dt

∫

m
φdv = Φ̇1 + Φ̇2 +

∫

Σ

�φw�da. (3.3)

The first two terms following the second equality
account for rates of change of φ in each subregion.
First taking φ = ρ in (3.3), the global form of mass
conservation law (2.56) requires that Φ̇ vanish for each
subregion as well as for the whole body, leaving

�ρw� = 0. (3.4)

Next taking φ = ρv as the spatial linear momentum,
conservation law (2.60) requires

�P + ρvw� = 0. (3.5)
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Let ζζζ denote the Piola transform of z in (2.62):

ζAda= Za
Anada= j Fa

B Z
B
Anada= Z B

A NBdA = zAdA.

(3.6)

Then the conservation law for energy is obtained by
setting φ = ρ(e + 1

2v
2) in (3.3) and using (2.62) and

(3.6):

�ρw(e + v2/2) + Pv − ζζζ · Ḋ� = 0. (3.7)

Equations (3.4) and (3.5) are identical in form to
the classical Rankine-Hugoniot conditions, while (3.7)
reduces to its classical counterpart when ζζζ · Ḋ = 0.

The equations simplify further when the material is
undeformed, unstressed, and at rest ahead of the shock,
with null internal energy (U+ = 0) taken as the datum.
In that case, algebraic manipulations yield

v = −D
∂u

∂X
, P = ρ0vD,

U = 1

2
ρ0v2 − 1

D
�ζζζ · Ḋ�. (3.8)

Quantities in each equality correspond to the down-
stream (shocked) state besides the jump term on the
right side of final equation in (3.8). The latter term,
written in general vector form for the moment, is sub-
jected to further assumptions later upon specification
of a particular constitutive model.

4 Application: shock loading of boron carbide

The dynamic theory of Finsler-geometric continuum
mechanics is now applied to shock loading of ceramic
single crystals. In particular, the problem considered in
Sect. 4 is focused on anisotropic boron carbide (B4C)
subjected to planar impact loading along its c-axis
([0001]). The pseudo-Finsler metric quantifies local
densification (i.e., local volume decrease) that accom-
panies the stress-induced phase transformation from a
trigonal crystal to glassy phase (Yan et al. 2009; Clay-
ton 2012a, 2013a, 2014a; Clayton and Tonge 2015;
Taylor et al. 2012; Taylor 2015; An and Goddard
2015a). Inelasticity arises from two contributions: the
aforementioned volume change and shear strain within
amorphous bands (Chen et al. 2003; An and Goddard
2015a). The boundary value problem involves steady
shock wave propagation, under conditions of uniaxial

strain compression, of a nonlinear elastic domain of the
ceramic. The presentation that follows proceeds from
a general constitutive description to a focused solution
of the specific problem.

4.1 Geometry and deformation

The material body is a domain of effectively infinite
dimensions. Uniaxial strain conditions are imposed,
with compression in the X3-direction. The internal
state vector is prescribed as {DA} → {0, 0, D3}, later
linked physically to structure collapse of boron car-
bide. By construction, field variables may vary only
with Z = X3 and D = D3. Components D1 and D2

are superfluous, while X1 and X2 are important in the
context of lateral, i.e., transverse, stresses, for example.
A Cartesian coordinate system is used for {X A}, and
thus the metric tensor G contains no explicit depen-
dence on X .

Definitions and identities of Sect. 2.1 are givenmore
specific forms to be consistent with these protocols. An
isotropic metric tensor is prescribed, similar to that in
prior work (Clayton 2016b):

{X,Y, Z} = {X1, X2, X3}, D = D3 = D(Z , t);
(4.1)

G(D) = Ĝ(D) = B(D)1 =
⎡

⎣
B(D) 0 0
0 B(D) 0
0 0 B(D)

⎤

⎦ ,

GAB = BδAB; G = det G = B3(D); (4.2)

γABC = 1
2 (∂AGBC + ∂BGAC − ∂CGAB) = 0,

GA = 1
2γ

A
BC D

BDC = 0, N A
B = ∂̄BG

A = 0

⇒ δA(·) = ∂A(·); (4.3)

C131 = C311 = C333 = C322 = C232 = B ′/2,
C113 = C223 = −B ′/2. (4.4)

The prime notation obeys B ′(D) = dB(D)/dD, and
all other covariant componentsCABC ofCartan’s tensor
are zero. The Cartesian metric 1 is scaled isotropically
by scalar function B, a conformal transformation of
Weyl type (Weyl 1952; Clayton 2016a, 2017a). The
pseudo-Finsler manifold M is locally Minkowskian
Minguzzi (2014).

Components of coefficients of the Chern-Rund con-
nection are used, also following prior work (Clayton
2016b, 2017a). From this choice and from the vanish-
ing nonlinear connection coefficients in (4.3), it follows
that
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H A
BC = K A

BC = Γ A
BC

= 1
2G

AD(δCGBD + δBGCD − δDGBC ) = 0;
V A
BC = Y A

BC = 0. (4.5)

For the spatial configuration, i.e., the deformed
material manifoldm, coordinates and metric tensor are
of fully analogous forms to those used forM. Invoking
lower case font for the spatial frame,

{x, y, z} = {x1, x2, x3}, d = d3 = d(z, t);
g(d) = ĝ(d) = b(d)1, gab = bδab,

g(d) = b3(d); (4.6)

γabc = 1
2 (∂agbc + ∂bgac − ∂cgab) = 0,

ga = 1
2γ

a
bcd

bdc = 0,

nab = ∂̄bg
a = 0 ⇒ δa(·) = ∂a(·); (4.7)

C131 = C311 = C333 = C322 = C232 = b′/2,
C113 = C223 = −b′/2, (4.8)

where b′(d) = db(d)/dd. The spatial geometry is also
locally Minkowskian. Using Chern-Rund connection
coefficients with vanishing nonlinear coefficients from
(4.7),

Ha
bc = Ka

bc = Γ a
bc

= 1
2g

ad(δcgbd + δbgcd − δdgbc) = 0;
V a
bc = Ya

bc = 0. (4.9)

Summarizing, nonlinear connection coefficients
(N A

B and nab) vanish identically in both configurations,
as do Chern-Rund coefficients (Γ A

BC and Γ a
bc). Cartan’s

coefficients CA
BC and Ca

bc may be nonzero. The hori-
zontal covariant derivatives of the metric tensors van-
ish so (

√
G)|A = 0 and (

√
g)|a = 0. Thus, use of

Rund’s version of Stokes’ theorem of (2.14), (2.15),
and (2.25) to derive balance and transport equations is
mathematically valid. Vertical connection coefficients
(V A

BC ,V
a
bc,Y

A
BC , and Y

a
bc) all vanish by definition, which

greatly simplifies calculations.

Motions, deformations, and director gradients
defined in Sect. 2.1.3 take the following forms under
unaxial strain conditions. Let z = ϕ(Z , D, t) denote
deformation in the Z direction with ε(Z , D, t) a cor-
responding displacement gradient measure, negative in
compression, such that

x = X, y = Y, z = ϕ;
d = d(Z , D, t); D = D(Z , t); (4.10)

F(X, D, t) =
⎡

⎣
∂x(X)/∂X ∂x(X)/∂Y ∂x(X)/∂Z
∂y(Y )/∂X ∂y(Y )/∂Y ∂y(Y )/∂Z

∂ϕ(Z , D, t)/∂X ∂ϕ(Z , D, t)/∂Y ∂ϕ(Z , D, t)/∂Z

⎤

⎦

=
⎡

⎣
1 0 0
0 1 0
0 0 ∂ϕ(Z , D, t)/∂Z

⎤

⎦ =
⎡

⎣
1 0 0
0 1 0
0 0 1 + ε(Z , D, t)

⎤

⎦ ; (4.11)

J = F1
1 F

2
2 F

3
3

√
g/G = F3

3 (g/G)1/2

= (1 + ε)(b/B)3/2; (4.12)

D3|3 = ∂3D − N 3
3 + K 3

33D = ∂D/∂Z = D′, (4.13)

where the prime notation in (4.13) denotes a partial
derivative with respect to the axial coordinate.

The non-vanishing component of the director vector,
i.e., the internal state variable D, is physically related
to transformation to a glassy phase and shear failure of
boron carbide. An overall loss of shear strength and
volume collapse are simultaneously associated with
nonzero values of D. A regularization constant l with
dimensions of length and a normalized order parameter
ξ ∈ [0, 1] are now introduced:

ξ = D/ l, ξ ′ = D′/ l. (4.14)

The scalar l is identified as the value of state variable
D at which the material ruptures and undergoes com-
plete densification, and it is assumed to be a material
property. Letting k denote a constant depending on the
material, a more specific form of the pseudo-Finsler
material metric in (4.2) is now prescribed:

G(D) = B(D)1 = exp[(k/3)(D/ l)2]1;
G(ξ) = B3(ξ) = exp(kξ2)

⇒ 3B ′/(2B) = kD/ l = kξ. (4.15)

The third/axial component of the trace of Cartan’s ten-
sor of (4.4) will be used later:

CA
3A = GABC3AB = G11C311 + G22C322 + G33C333

= 3B ′/(2B) = kD/ l = kξ. (4.16)
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This form of conformal transformation is similar, but
not identical, to that used in Clayton (2017a). A ben-
efit of the current prescription is vanishing of (4.16)
at ξ = 0, which eliminates certain driving force con-
tributions for transformation in the fully elastic state.
The length of a referential line element in (2.10) and
the corresponding volume form in (2.11) become

|dX|2 = exp[(k/3)(D/ l)2](dX · dX
+ dY · dY + dZ · dZ),

dΩ = exp[(k/2)(D/ l)2]dX ∧ dY ∧ dZ . (4.17)

For ξ > 0, expansion occurs when k > 0 and contrac-
tion when k < 0. Volume collapse in boron carbide is
associated with the latter condition.

As in prior work (Clayton 2016b, 2017a, b), the spa-
tial and referential state vector entries are set to coincide
in the sense (4.10):

d(Z , D, t) = D(Z , t) = lξ(Z , t). (4.18)

This canbe interpreted as a scalar push-forward relation
for field D (Clayton 2017b). An analogous Weyl-type
form of the spatial metric of (4.6) is

g(d) = b(d)1 = exp[(k/3)(D/ l)2]1;
g(ξ) = b3(ξ) = exp(kξ2) ⇒ 3b′/(2b) = kD/ l = kξ.

(4.19)

With these choices of metrics, (4.12) reduces to

J (Z , D, t) = F3
3 (Z , D, t) = 1 + ε(Z , D, t). (4.20)

As remarked already, inelasticity in shock com-
pressed boron carbide consists of contributions of den-
sification as well as shearing in amorphous bands. For
compressive loading normal to the c-axis, densifica-
tion is presumed spherical as in Clayton (2016b). Also,
for loading according to this protocol, inelastic shear-
ing takes place on planes and in directions analogous
to those for pyramidal slip of the type 〈1̄101〉{011̄1̄}
in hexagonal crystals, following examination of recov-
ered fragments (Chen et al. 2003; Yan et al. 2009).
Shear localization and amorphization for this kind of
deformation system were studied via atomic simula-
tions of simple shearing of boron carbide single crys-
tals inAn andGoddard (2015a),wherein no twinning or
dislocation glide were reported. These authors further
considered shearing of a different crystal orientation
〈101̄0〉{0001} resulting in twinning and amorphization

on the basal plane. The present study does not address
basal plane localization or twinning since elastic driv-
ing forces (i.e., resolved shear stress) on (0001) vanish
and since such modes are inconsistent with symmetry
for c-axis compression of the crystal.

Themultiplicative description of (2.44) is used,with
the inelastic portion containing microstructure (i.e., D)
dependent terms. The total deformation gradient in
Cartesian coordinates is

F =
⎡

⎣
1 0 0
0 1 0
0 0 1 + ε

⎤

⎦ = FE FD

=
⎡

⎣
(FE )xX 0 0

0 (FE )
y
Y 0

0 0 (FE )zZ

⎤

⎦

⎡

⎣
(FD)XX 0 0

0 (FD)YY 0
0 0 (FD)ZZ

⎤

⎦ .

(4.21)

The inelastic term is diagonal due to symmetry of
the crystal structure and the present loading mode. It
accounts for the inelastic volume change β and inelas-
tic shearing γ0 on the six pyramidal systems of type
〈1̄101〉{011̄1̄}:

FD(ξ) = 1 + ι(ξ)

[

χ1 + γ0

6∑

α=1

sα ⊗ mα

+ γ 2
0

2

(
6∑

α=1

sα ⊗ mα

)2

+ γ 3
0

6

(
6∑

α=1

sα ⊗ mα

)3⎤

⎦ . (4.22)

Here, the material constant χ = 1
3 [exp(k/2) − 1]

accounts for isotropic volume collapse with k < 0.
Unit vectors sα andmα are the orthogonal direction and
plane for inelastic pyramidal shear of maximum mag-
nitude γ0, another material constant. The terms con-
taining γ0 are the first three in the series approximation
of the exponential function corresponding to an exact
representation of this symmetric inelastic deformation
mode (Clayton 2014b, e). Finally, ι(ξ) : [0, 1] →
[0, 1] is an interpolation function with vanishing end-
point derivatives, specifically as used in phase field rep-
resentations of structural changes (Levitas et al. 2009;
Clayton and Knap 2011a):
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ι(ξ) = 3ξ2 − 2ξ3, ι′(ξ) = 6ξ(1 − ξ). (4.23)

The form of (4.22) scales contributions of phase trans-
formation and inelastic shearingby aphasefield-typeof
interpolation function (4.23). The first term in square
braces is assumed isotropic or spherical, accounting
for compaction commensurate with the crystal-to-glass
transition. Depending on the loading protocol and
deformation system, the phase change could demon-
strate some anisotropy (e.g., preferential structure col-
lapse along the c-axis (Yan et al. 2009;Clayton 2012a)),
but the present work, as in Clayton (2016b), simplifies
this part of transformation strain as isotropic. Terms
involving the dyadic product of shearing direction and
plane encompass all deviatoric mechanisms associated
with amorphization, shear localization, and eventual
mode II failure on pyramidal planes. The assumption
that evolution of volumetric and deviatoric inelastic
deformations proceed in lock-step, via the same func-
tion ι, benefits fromsimplicity and is demonstrated later
to depict physically reasonable solutions to the present
highly symmetric, one-dimensional shock problem for
compressive strains up to on the order of 20%. Gen-
eralizations, albeit at the possible expense of further
assumptions or calibration, are anticipated to be neces-
sary in the future to address more sophisticated prob-
lems.

Noting that slip/shear is isochoric, the inelastic vol-
ume change is approximately

J D = det FD ≈ (1 + ιχ)3 ≈ 1 + 3ιχ = ι exp(k/2).

(4.24)

Crystal plasticity-type representations of inelastic
shearing modes distinct from slip have been used else-
where for cleavage fracture in rocks (Clayton 2010)
and other brittle solids (Aslan et al. 2011).

Parameter γ0 is regarded as a constant for simplic-
ity, here describing shearing on pyramidal planes. For
other deformation systems or other shear mechanisms
in boron carbide, γ0 would presumably vary, and it
would also presumably vary with material composi-
tion. In (4.22), function ι(ξ) scales the magnitude of
shear deformation, where evolution of ξ is dictated by a
kinetic process or incremental equilibrium conditions.

The material logarithmic thermoelastic strain tensor
eE is used in the constitutive model of boron carbide,
as in Clayton and Tonge (2015), Clayton (2017b). This

strain tensor more accurately represents the nonlinear
elastic response of strong solids with a large ratio of
effective shear to bulk modulus such as quartz (Clay-
ton 2014b, 2015c) and boron carbide (Clayton and
Tonge 2015) than the Green elastic strain (Clayton and
McDowell 2003; Clayton 2011) or Eulerian material
strain (Clayton 2013b; Lloyd et al. 2014b). The loga-
rithm of the elastic stretch corresponding to the first of
(2.74) is

eE = lnU E = ln[(CE )1/2] = 1

2
ln CE ,

(eE )αβ = 1

2
(lnCE )αβ. (4.25)

For the present class of problemswith (4.11) and (4.21)
now invoked and ḡαβ = δαβ , the first of (2.74) results
in the following three possibly nonzero components:

(CE )11 = [(FE )xX ]2, (CE )22 = [(FE )
y
Y ]2,

(CE )33 = [(FE )zZ ]2. (4.26)

Computation of the thermoelastic logarithmic strain
(omitting the redundant numerical superscript) is then
trivial since CE is diagonal:

eE1 = (eE )XX = ln[(FE )xX ],
eE2 = (eE )YY = ln[(FE )

y
Y ],

eE3 = (eE )ZZ = ln[(FE )zZ ]. (4.27)

Thermoelastic volume change is related to the trace of
the logarithmic strain via ln J E = eE1 + eE2 + eE3 .

4.2 Thermomechanics

The internal energy per unit reference volume U in
(2.65) is additively split into a thermoelastic strain
energy per unit reference volume W and a structure
or phase dependent energy per unit reference volume
f , following (2.71). The following sum is used:

U (Fa
A, η, DA, DA|B,GAB)=W (eEαβ, η)+ f (DA, DA|B);

(4.28)

W = 1

2
Cαβγ δeEαβe

E
γ δ + 1

6
Cαβγ δεφeEαβe

E
γ δe

E
εφ

+ θ0η[1 − Γ
αβ
0 eEαβ + η/(2c0)]; (4.29)

f = Υ

l
|∇D|2 + Υ

l3
|D|2 + A

( |D|
l

)2 (
1 − |D|

l

)2

.

(4.30)

The thermoelastic strain energy functionW is essen-
tially identical to oneused inClayton andTonge (2015),
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accounting for anisotropic linear and nonlinear elas-
tic effects, thermoelastic coupling, and specific heat.
Entropy η = 0 and temperature θ = θ0 for the datum
of the ambient reference state. Isentropic second- and
third-order elastic constants are Cαβγ δ and Cαβγ δεφ .
These are taken herein to be independent the phase of
the solid since inelastic deformation rather than mod-
uli degradation as in Clayton (2016b) now accounts
for shear softening. The specific heat at constant elas-
tic strain per unit reference volume is the constant
c0. The anisotropic and symmetric Grüneisen tensor
most generally consists of six constants Γ

αβ
0 . Since

GAB(D) = δAB B(D), explicit dependence of func-
tions on the right side of (4.28) on the metric tensor
would be redundant.

Themicrostructure dependent function f consists of
three parts: a form quadratic in |D|, representative of
fracture or rupture; a form quadratic in |∇D|, account-
ing for energy of phase boundaries, shear bands, and/or
crack surfaces; and a doublewell potential of order four
in |D|. The surface energy per unit reference area is
the intrinsic material constant Υ . This energy can be
associated with the formation of mode II shear zones
commensurate with cavitation and rupture upon com-
plete amorphization (An andGoddard 2015a). The first
term on the right side of (4.30) is the standard quadratic
form for gradients of order parameter(s) in models of
fracture (Clayton and Knap 2014, 2015b) and phase
transformations, e.g., Levitas (2014). The second term
on the right side of (4.30) is the usual prescription for
bulk fracture energy in phase field theory (Clayton and
Knap 2014, 2015a). Finally, the double well poten-
tial with barrier strength quantified by A, a constant
of dimensions of energy per unit reference volume,
is the conventional form used in phase field models
of phase transformations and twinning (Clayton and
Knap 2011a; Levitas 2014). In the present work, the
phase transformation corresponding to the double well
potential is that fromcrystal to amorphous solid inB4C.
In summary, f is a hybrid potential combining standard
forms from the literature to account for energies asso-
ciated with related processes of phase transformation,
shear localization, and shear failure in shock loaded
boron carbide crystals.

The generic energy densities W and f are applica-
ble to any loading direction and any Cartesian coor-
dinate system, with full anisotropy and a vector-
valued internal state variable, respectively. These gen-
eral forms are simplified further for the present appli-

cation in shock physics with an effectively scalar order
parameter. Regarding thermoelastic strain energy, the
Grüneisen scalar is used for thermoelastic coupling,
and an isotropic contribution from third-order elasticity
is used to account for increases in tangent bulkmodulus
with increasingmass density under shock compression.
Letting B0 and B ′

0 denote the isentropic bulk modulus
and its pressure derivative at the reference state, and
letting Γ

αβ
0 → Γ0δ

αβ , the strain energy function in
(4.29) becomes

W = 1

2
CI J e

E
I e

E
J + 1

6
B0(2 − B ′

0)(ln J E )3

+ θ0η[1 − Γ0 ln J E + η/(2c0)]. (4.31)

Indices I, J = 1, 2, . . . 6 denote Voigt notation, and
CI J are the second-order elastic constants to be intro-
duced for boron carbide in Sect. 4.3. Now considering
(4.13) and (4.14) whereby D(Z , t) = lξ(Z , t) is the
only relevant component of D, the phase transition and
fracture energy function in (4.30) becomes

f = Υ l[ξ2/ l2 + (ξ ′)2] + Aξ2(1 − ξ)2. (4.32)

More specific forms of thermodynamic forces for
Finsler continuum mechanics at a fixed material point
X are then obtained:

PA
a = ∂U

∂Fa
A

= (FD −1)Aα
∂W

∂(FE )aα

= (FD −1)Aα
∂W

∂eEγβ

∂eEγβ

∂(FE )aα
, (4.33)

θ = ∂U

∂η
= ∂W

∂η
= θ0

(
1 − Γ0 ln J E + η

c0

)
, (4.34)

Q = Q3 = QZ = ∂U

∂D

= 1

l

[
∂ f

∂ξ
− PA

a (FE )aα
∂(FD)αA

∂ξ

]

= 1

l

[
2
Υ

l
ξ + 2Aξ(1 − ξ)(1 − 2ξ)

−PA
a (FE )aα

∂(FD)αA

∂ξ

]

, (4.35)

T = Z Z
Z = Z3

3 = ∂U

∂D|3
= 1

l

∂ f

∂ξ ′ = 2Υ ξ ′. (4.36)

For the present problem of shock compression, now
consider the Cartesian coordinate system and uniax-
ial strain conditions of Sect. 4.1. Boron carbide single
crystals have rhombohedral, i.e., trigonal symmetry.

123



Finsler-geometric continuum dynamics and shock compression 69

The current application assigns the XY -plane as the
basal plane, i.e., (0001) in hexagonal Miller-Bravais
indices, with Z the direction of loading along [0001].
For this loading mode, pertinent isentropic second-
order elastic constants inVoigt notation areC11 = C22,
C33, C12, and C13 = C23. Other loading directions
or more general crystal orientations might require use
of C14 = −C24 = C56 which are not needed here.
The thermoelastic strain energy in (4.29) and (4.31)
becomes, for the potentially nonzero elastic strain com-
ponents in (4.27),

W = W (eE1 , eE2 , eE3 , η) = 1

2
[C11(e

E
1 )2 + C11(e

E
2 )2

+ C33(e
E
3 )2 + 2(C12e

E
1 e

E
2

+ C13e
E
1 e

E
3 + C13e

E
2 e

E
3 )]

+ 1

6
B0(2 − B ′

0)(e
E
1 + eE2 + eE3 )3

+ θ0η[1 − Γ0(e
E
1 + eE2 + eE3 ) + η/(2c0)].

(4.37)

For the present loading mode and symmetry consider-
ations, lateral elastic strains are equal, i.e.,

(FE )xX = (FE )
y
Y , eE1 = eE2 . (4.38)

Three possibly nonzero stress components, two of
which are equal, are obtained from (4.33) and (4.37):

P1
1 = PX

x = P2
2 = PY

y = (C11 + C12)e
E
1

+ C13e
E
3 + 1

2
B0(2 − B ′

0)(ln J E )2 − θ0Γ0η,

P3
3 = PZ

z = 1

1 + ε

[
2C13e

E
1 + C33e

E
3

+1

2
B0(2 − B ′

0)(ln J E )2 − θ0Γ0η

]
.

(4.39)

The conjugate thermodynamic force to D = lξ in
(4.35) is then given by

Q = −1

l

[
2
Υ

l
ξ + 2Aξ(1 − ξ)(1 − 2ξ)

−2P1
1 (FE )xX

∂(FD)XX

∂ξ
− P3

3 (FE )zZ
∂(FD)ZZ

∂ξ

]

,

(4.40)

where from (4.22),

∂FD(ξ)

∂ξ
= ι′(ξ)

[

χ1 + γ0

6∑

α=1

sα ⊗ mα

+γ 2
0

2

(
6∑

α=1

sα ⊗ mα

)2

+γ 3
0

6

(
6∑

α=1

sα ⊗ mα

)3⎤

⎦ . (4.41)

For shock loading in the Z direction, define the
shock stress, positive in compression, as

P = −P3
3 = −PZ

z . (4.42)

The treatment of surfaces of discontinuity of Sect. 3
applies here if direction X is replaced with direction
Z . The thermodynamic driving force in (3.6) is, for
uniaxial strain and a single scalar component of D,

ζ = ζ3 = T = 2Υ ξ ′. (4.43)

For the present problem, the jump of scalar product
ζζζ · Ḋ across the shock front becomes

�ζζζ · Ḋ� = 2Υ l�ξ ′ξ̇�. (4.44)

Regions far ahead and far behind the shock front are
assumed to be in equilibrium with respect to internal
state. Across the front of presumed width l, the fol-
lowing diffuse interface approximations are imposed
for the jump in order parameter gradient and its rate,
whereby ξ increases from zero (i.e., its far upstream
value ξ+ = 0) to its downstream value ξ− with
decreasing material coordinate Z :

ξ ′ ≈ −ξ−/ l, ξ̇ ≈ −ξ ′D
⇒ 2Υ l�ξ ′ξ̇�/D ≈ −2(Υ/ l)(ξ−)2. (4.45)

Now let ξ− → ξ in subsequent equations since ξ van-
ishes upstream. Analogs of Rankine-Hugoniot equa-
tions in (3.8) then become

v = −Dε, P = ρ0vD, U = 1

2
ρ0v2 + 2

Υ

l
ξ2.

(4.46)

Downstream, the Ginzburg-Landau type equation
(2.69) presumably holds with vanishing left side, i.e.,
Ḋ = l ξ̇ = 0.

Forthcoming equations pertain to the downstream
state. The shocked material in this state has nonzero
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particle velocity v and density ρ, but it has null accel-
eration. Stress does not vary with time in regions far
behind the shock so axial stress is of functional form
P = P(Z , D). The only significant equation in lin-
ear momentum balance (2.61) describes the direction
of compressive loading: a = z = 3. Recalling that
off-diagonal components of P vanish, momentum con-
servation in the downstream state requires P1

1||1 = 0.
Substituting from (2.15) and (4.16), this results in the
ordinary differential equation

∂P(Z , D)

∂Z
+ ∂P(Z , D)

∂D

∂D

∂Z
+ 3B ′(D)

2B(D)
P

∂D

∂Z

= dP

dZ
+ P

kD

l

dD

dZ
= 0. (4.47)

The other two macroscopic linear momentum balance
equations simply require that transverse stress com-
ponents PX

x = PY
y are constant with respect to X

and Y , respectively. These requirements are consistent
with the assumed X and Y independence of solution
fields for unaxial loading. The only pertinent equation
in kinetic law (2.69) is, with ξ̇ = 0 for the downstream
state,

∂T (Z , D)

∂Z
+

[
∂T (Z , D)

∂D
+ 3B ′(D)

2B(D)
T

−P
∂2ϕ(Z , D)

∂D2

]
∂D

∂Z
− 3B ′(D)

B(D)
U (Z , D) = Q(Z , D).

(4.48)

Kinetic coefficients LAB are not needed. Substituting
from (4.14) and (4.40), the two balance laws (4.47)
and (4.48) become, for the equilibrium downstream
shocked state,

dP

dZ
= −kPξ

dξ

dZ
; (4.49)

−P
∂2ϕ

∂ξ2
ξ ′ + 2Υ lξ ′′ − 2

Υ

l
ξ − 2Aξ(1 − ξ)(1 − 2ξ)

= 2kξ
[
U − Υ l(ξ ′)2

]
− 2P1

1 (FE )xX
∂(FD)XX

∂ξ

+ P(FE )zZ
∂(FD)ZZ

∂ξ
. (4.50)

Terms involving Weyl factor k result from dependence
of the generalized pseudo-Finsler metric and corre-
sponding Cartan’s tensor coefficients on internal state.
For Riemannian geometry, k = 0 and such terms van-
ish. Relations (4.49) and (4.50) are two coupled non-
linear differential equations wherein dependent field

variables PA
a , (FE )aα , (F

D)αA, ϕ, ξ , and U all are ulti-
mately functions of independent variable Z . However,
the downstream state is assumed to be spatially homo-
geneous (in material coordinates) with regard to field
variables, meaning that gradients with respect to Z
vanish identically. Thus, differential equation (4.49)
reduces to the trivial condition

P = −P3
3 = constant (downstream equilibrium),

(4.51)

with the value of this component and the equal and
constant lateral stresses obeying constitutive equations
in (4.39). Since a homogeneous order parameter field
over the shocked portion of M is in effect, ξ ′ = 0
and ξ ′′ = 0. Equation (4.50) then degenerates to the
algebraic equation

−2
Υ

l
ξ − 2Aξ(1 − ξ)(1 − 2ξ)

= 2kξU − 2P1
1 (FE )xX

∂(FD)XX

∂ξ

+P(FE )zZ
∂(FD)ZZ

∂ξ
(downstream equilibrium).

(4.52)

If compressive deformation ε = F3
3 −1 is prescribed as

the condition denoting the intensity of the shock load-
ing, equations (4.39), (4.46), and (4.52) can be solved
simultaneously for the downstream state, where the
form of internal energy in (2.65), (4.31), and (4.32)
is also invoked. In other words, volume reduction is
applied incrementally, and then the balance laws, jump
conditions, and constitutive equations are solved simul-
taneously for the stresses, entropy, internal energy, and
order parameter in the material behind the shock, as
well as the particle velocity v and the shock speed
D. Since ι′(0) = 0 from (4.23), the entire right side
of (4.52) vanishes when ξ = 0 according to (4.41).
Because the left side also vanishes for ξ = 0, the non-
linear elastic solution (i.e., no inelastic deformation,
no order parameter evolution) is clearly always a solu-
tion to (4.52). However, the nonlinear elastic solution
is not necessarily the only solution, and it tends to be
metastable, i.e., of higher total energy, than the alter-
native solution that exists above some nonzero strain
and for which ξ > 0. For the present application to
homogeneous downstream states, solutions are sought
in practice by prescribing a value of ξ = 1 as an initial
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guess at each applied strain increment and then decreas-
ing ξ iteratively until the governing equations are sat-
isfied simultaneously to within a tight tolerance. For
more general applications requiring advanced numer-
ical methods, it may be necessary to institute a per-
turbation in ξ somewhere in the domain as an initial
condition to enable the inelastic solution, as has been
invoked in phase field simulations of twinning (Clayton
and Knap 2011a, b, 2013) that demonstrate a similar
condition.

The terms proportional to the gradient of the order
parameter, ξ ′ = dξ/dZ , in (4.47) and (4.49) are ulti-
mately a result of application of Rund’s divergence
theorem to (2.60) for pseudo-Finsler space, leading
to contributions from the product of the trace of Car-
tan’s tensor and the state variable gradient to the bal-
ance of linear momentum (Clayton 2017a). Physically,
such terms can be interpreted as material or configu-
rational forces induced by microstructure heterogene-
ity, since they have a similar, but not identical, effect
on the linear momentum balance as those emerging
from Eshelby-type forces (e.g., forces induced by local
gradients in moduli) in elasticity theory (Marsden and
Hughes 1994; Clayton 2011).

4.3 Material characteristics

Boron carbide (B4C) is the particular material toward
which the analysis of Sects. 4.1 and 4.2 is directed.
In its ambient solid state, boron carbide is a low den-
sity crystalline ceramic of high hardness, high elastic
stiffness, and low ductility. The usual crystal structure
is rhombohedral. Material parameters used in the con-
stitutive model, with supporting references, are listed
in Table 1. If no reference or equation is listed for a
particular value, the reference quoted above applies.

Most physical properties are self-explanatory,
though those in the final six rows merit further dis-
cussion. The surface energy is that corresponding to
fracture on {101̄1} pyramidal planes of the single crys-
tal as computed via first principles density functional
theory (DFT) (Beaudet et al. 2015). The regulariza-
tion length l and intrinsic surface energy are specified
to have magnitudes corresponding to those for frac-
ture since failure accompanies amorphization in exper-
iments and since widths of amorphous zones observed
experimentally are on the order of a nanometer (Yan
et al. 2009; Grady 2011), of the same order as the frac-

ture process zone length. The value of l in Table 1 is
computed as the cohesive fracture process zone size
over which the stress at a (mode II) crack tip degrades
(Rice 1968; Clayton et al. 2012; Clayton 2017a):

l = 4μΥ /[(1 − ν)πσ 2]. (4.53)

Here, ν is Poisson’s ratio and σ ≈ G0
2π is the theoreti-

cal shear strength of the crystal (Clayton 2011). In the
intended interpretation of the theory, as ξ → 1 locally,
the material progresses from glassy sheared state to
a failed state at which inelastic deformation FD satu-
rates. Subsequently, thematerial is expected to undergo
cavitation or some other means of fracture. Though not
implemented in the present paper, a reduction in elas-
tic coefficients would be needed to completely repre-
sent the fully failed state, as in phase field theories of
fracture (Clayton and Knap 2014, 2015b). The surface
energy Υ , which ultimately affects the regularization
length l through (4.53), is assumed equal to the frac-
ture energy, even though the material may be undergo-
ing shear localization rather than (mode II) fracture for
ξ ∈ (0, 1). This assumption is made in part because the
surface energy of the amorphous bands in the material
is not well known. Thus, the same energy is employed
to regularize a related mechanism (shear localization)
as well as govern fracture itself when ξ reaches unity.

TheWeyl transformation factor k is determined from
the ratio of mass density of the crystalline phase to that
of the glassy phase. This value is determined for the
Finsler-geometric theory via consideration of (4.17) at
ξ = 1. As in Clayton (2014a), invoked here is a 4%vol-
ume reduction (i.e., mass density increase) upon struc-
ture collapse commensurate with complete amorphiza-
tion (Yan et al. 2009; Taylor 2015; An and Goddard
2015a), leading to exp(k/2) = 0.96 ⇒ k = 2 ln(0.96),
consistent with (4.24). The barrier for phase transfor-
mation for a double well potential is A

16 at ξ = 0.5. This
barrier is chosen as the difference between ground state
energy of the most stable B4C polytype and the energy
of segregated elemental phases (boron and amorphous
carbon) associated with structure collapse, 0.04 eV
obtained from DFT (Fanchini et al. 2006). Finally,
the inelastic shear strain γ0 accommodated by amor-
phous slip bands at the onset of cavitation is obtained
from results of atomic simulations, specifically molec-
ular dynamics simulations with reactive force fields
(RexFF) (An and Goddard 2015a). In these simula-
tions, simple shearing at fixed volume on a pyrami-
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Table 1 Physical
properties of boron carbide

Property (Units) Value Description References

C11 (GPa) 543 Second-order elastic
constant

Clayton (2012a)

C12 (GPa) 131

C13 (GPa) 64

C14 (GPa) −18

C33 (GPa) 535

C44 (GPa) 165

B0 (GPa) 237 Bulk modulus

B ′
0 4.7 Pressure derivative of bulk

modulus

G0 (GPa) 236 Shear modulus

c, a (nm) 1.21, 0.56 Lattice parameters

ρ0 (g/cm3) 2.51 Mass density

c0 (MPa/K) 2.41 Specific heat Clayton and Tonge (2015)

Γ0 1.28 Grüneisen parameter

θ0 (K) 295 Ambient temperature

Υ (J/m2) 3.27 Surface energy Beaudet et al. (2015)

l (nm) 0.97 Regularization length (4.53)

exp(k/2) 0.96 volume reduction
(amorphization)

Yan et al. (2009), Clayton (2014a),
An and Goddard (2015a)

A (GPa) 3.01 Transformation barrier Fanchini et al. (2006)

γ0
1
12 Inelastic shear

accommodation
An and Goddard (2015a)

dal plane, specifically [1̄101](011̄1̄), resulted in a total
difference in shear strain of ≈ 1

2 from the strain at
emergence of amorphous bands on this plane at peak
shear stress, followed by somewhat gradual softening
behavior, and thenfinally failure by cavitation and shear
fracture. Taking the emergence point in the Finsler con-
tinuum representation as that corresponding to initia-
tion of nonzero ξ , and taking the failure point to corre-
spond to ξ → 1, slip accommodation for a single plane
would thus be 1

2 at saturation, i.e., at complete transfor-
mation just prior to rupture. In the present problem of
compression along [0001], since six pyramidal planes
support identical amorphous bands, it is assumed that
degradation resulting from each plane is cumulative,
leading to γ0 = 1

6 · 1
2 = 1

12 . The following caveat is
noted, however. In atomic simulations reported in An
andGoddard (2015a), steadily increasing shear stresses
reaching localmaxima in excess of 35–45GPa, depend-
ing on possible volume relaxation, were observed, with
substantial amorphization not taking place until shear
strains in excess of 0.3 were applied. Thesemagnitudes

of shear stress and shear strain far exceed those pre-
dicted later in Sect. 4.4 for shock compression. How-
ever, boundary conditions differ substantially for the
present work versus (An and Goddard 2015a), and the
shear strengths reported in the latter are essentially
upper bounds (i.e., theoretical maxima) since initial
imperfections in the material are excluded by design.
Acquisition of the present value of γ0 motivated from
AnandGoddard (2015a) is perhaps inconsistent in light
of the above discrepancies, but the present choice is
deemed favorable to simply treating the constant as an
adjustable parameter. Furthermore, the present choice
is demonstrated later to enable accurate prediction of
shock stress versus experimental data.

Importantly, in the present application of the Finsler
theory to shock compression of boron carbide, param-
eter fitting by matching results of the model to exper-
iments or third-party simulations is not necessary. All
values shown in Table 1 are prescribed a priori and
directly from experimental data or atomic calculations
reported in the literature, though the aforementioned
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Fig. 1 Boron carbide,
planar shock compression
along c-axis a axial (shock)
stress and experimental data
Vogler et al. (2004) b shear
stress and experimental data
Vogler et al. (2004) c
Cauchy pressure d internal
energy e shock velocity
versus particle velocity f
order parameter ξ = D/ l

(a) (b)

(c) (d)

(e) (f)

caveat regarding γ0 is recalled. Thus, model outcomes
reported later in Sect. 4.4 are considered fully predic-
tive.

4.4 Solutions and interpretations

Solutions to the planar shock problem for boron carbide
are illustrated in Fig. 1 which is analyzed in detail in
the following discussion. Axial shock stress P normal-
ized by the bulk modulus B0 is shown versus compres-
sion in Fig. 1a, where J = v/V = F3

3 = 1 + ε is the

ratio of volume after compression to the initial volume.
Results for the physically realistic case invoking inelas-
tic volume reduction in conjunction with amorphiza-
tion, i.e., densification, correspond to the Weyl scaling
parameter k = 2 ln(0.96) as listed in Table 1. Results
for k = 0 omit the density difference between crystal
and glass phases. Experimental data correspond to pla-
nar impact tests on the polycrystalline ceramic (Vogler
et al. 2004); experimental shock data for single crystals
is absent in the literature. The isentrope corresponding
to purely elastic uniaxial strain of the single crystal is
obtained by setting ξ = 0 throughout a correspond-
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ing static compression process. Excellent agreement
between predictions of the present model with k < 0
and experimental data is obvious, thereby lending con-
fidence to the current theory and solution, at least for
this particular application. The Finsler solutions and
experiment all suggest a Hugoniot Elastic Limit (HEL,
i.e., stress P at the initial yield point) of P ≈ 18 GPa
at v/V ≈ 0.96. Post-yielding, shock stress is higher
for the case when inelastic density changes are omitted
(k = 0) than when they are included (k < 0). Stress P
is largest for the isentrope, as expected, since inelastic
deformation by shear localization and volume collapse
that would otherwise relieve elastic strain is excluded.

Dynamic shear strength τ normalized by the shear
modulus G0 = 1

2 (C33 − C13) is shown versus com-
pression in Fig. 1b, where specifically

τ = 1

2
|σ 3

3 − σ 1
1 | = 1

2
|σ 3

3 − σ 2
2 | (4.54)

is half the difference between longitudinal and trans-
verse components of Cauchy stressσσσ . Close agreement
between the present solution with k < 0 and experi-
ment (Vogler et al. 2004) is evident. Shear stress at
the HEL is τ ≈ 7 GPa (Vogler et al. 2004); strength
degrades then increases slightly with increasing com-
pression beyond this point for the present model with
k < 0 as well as experiment. As is the case for axial
stress, shear stress is highest at larger compression
for the isentropic solution (no shear accommodation
by slip/inelasticity), with τ for the Finsler model with
k = 0 falling in between the other two cases at com-
pressive strains exceeding that at the HEL. As evi-
denced by the drop in shear strength upon attainment
of the HEL, both the experimental data and the Finsler
solutions demonstrate how boron carbide softens and
fails in shear under compressive loading. In the real
material, at large compressive deformations, friction at
internal surfaces may contribute to shear strength; this
effect is omitted in the present application of the theory.

A limitation of the present shock solutions is the
predicted deviation from realistic behavior at volumet-
ric compressions exceeding 20%, for which an upturn
in shear stress is evident in Fig. 1b. This upturn is a
result of the contribution from internal state ξ to (4.22)
approaching saturation, such that inelastic shear defor-
mation is no longer able to sufficiently offset total devi-
atoric deformation, leading to an increase in elastic
strain and shear stress. The curvature of the curve of

total axial stress P in Fig. 1a likewise becomes too great
at large compression. The problem could be remedied
by permitting elastic stiffness coefficients (e.g., shear
moduli but not compressive bulk modulus) to degrade
with increasing ξ , as in phase field fracture models
(Clayton and Knap 2014, 2015a), above some thresh-
old. Such model additions should be enabled in future
work for more general materials failure problems.

Figure 1c reports the Cauchy pressure p normalized
by the ambient bulk modulus, computed via

p = −1

3
(σ 1

1 + σ 2
2 + σ 3

3 ) = −1

3
(2σ 1

1 + σ 3
3 ) = P − 2τ,

(4.55)

recalling that P = −σ 3
3 . The same three cases are

addressed: the Finsler model with no phase densifica-
tion (k = 0), the Finsler model with realistic inelastic
densification [k = 2 ln(0.96)], and isentropic compres-
sion (ξ = 0). Complementary predictions for the inter-
nal energy per unit reference volume U are shown in
Fig. 1d. Results of the three cases coincide for compres-
sive loading below the HEL, i.e., for v/V � 0.96. For
larger compression, pressure is largest for the Finsler
result with k = 0, followed by the isentrope, and then
smallest for the Finser result with k < 0. Comparing
Fig. 1a with c, the shock stress P only slightly exceeds
the Cauchy pressure p for compressive volume reduc-
tions in the range 0.95 ≥ v/V ≥ 0.80 where shear
stress is relatively small (Fig. 1b). Ordering of internal
energy is interchanged between the cases of isentrope
and Finsler result with k = 0. In particular, results for
internal energy demonstrate that the Finsler solutions
are stable, i.e., of lower total internal energy, relative
to the isentropic elastic solution that has the largest
energy. This is an important finding since the isentropic
solution is always a (possibly non-unique) solution to
the static governing equations in the present constitu-
tive model. Pressure is larger in the Finsler result for
k = 0 than that of the isentropic solution because of
thermoelastic coupling and substantial entropy produc-
tion. The increase in pressure from entropy production
is more than offset by a decrease in pressure with den-
sification for the Finsler result with k = 2 ln(0.96).
Normalized temperatures θ/θ0 at 20% compression for
the shock solutions are 4.0 and 4.1 for k = 0 and
k = 2 ln(0.96), compared to 1.3 for the isentropic solu-
tion. The temperature rise and pressure for the shocked
material in the absence of inelasticity (i.e., for a non-
linear elastic shock, physically valid only for shock
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stresses up to the HEL) only slightly exceed those of
the isentrope; this has been demonstrated elsewhere in
calculations for a number of brittle ceramics and min-
erals invoking nonlinear logarithmic thermoelasticity
(Clayton 2014c, b; Clayton and Tonge 2015). A con-
tribution to tensile pressure in amorphous bands lead-
ing to cavitation has been noted in prior atomic (An
and Goddard 2015a) and continuum (Clayton 2016b)
model results for shear loading.

Shock velocity D is shown versus particle velocity
v in the compressed state in Fig. 1e, with both veloci-
ties normalized by the longitudinal elastic wave speed
CL = √

C33/ρ0. The same three cases are considered,
with the isentropic solution giving a steadily increas-
ing shock speed with increasing particle velocity corre-
sponding to increasing shock stress or decreasing vol-
ume. This increasing isentropic shock speed is a result
of elastic nonlinearity, specifically the increasing tan-
gent longitudinal modulus with increasing elastic com-
pression. When the shock stress exceeds the HEL for
the other two cases, a drop in shock velocity occurs
commensurate with a loss of tangent stiffness and shear
strength (Fig. 1b). The largest drop in shock veloc-
ity occurs for the realistic model with k < 0. Shock
velocity reaches a local minimum then increases with
increasing compressive strain or particle velocity. The
same trends in shock velocity versus particle velocity
are evident in experimental data of Vogler et al. (2004)
and in many, but not all, experimental and quantum
molecular results reported in Taylor (2015).

Finally, the order parameter physically connected to
shear accommodation by amorphous bands is shown
versus compressive strain in Fig. 1f for the Finsler
model with k = 0 and k = 2 ln(0.96). At small
compressive strains v/V � 0.97, the order parame-
ter ξ = 0 and the response is isentropic and elastic. A
rapid increase occurs for each case around the HEL,
followed by a more gradual increase at larger com-
pressive strains or higher shock stresses. The magni-
tude of ξ for the case with densification upon phase
transformation slightly exceeds that for the case with
k = 0 since the magnitude of the elastic driving force
∂W/∂ξ promoting evolution of ξ is greater under com-
pressive loading when volume reduction due to amor-
phization is included in the constitutive model. In other
words, volume reduction due to phase transformation
accommodates strain that otherwise would be accom-
modated elastically leading to an increase in pressure
and volumetric strain energy density. Notice that in

each case, the order parameter increases towards, but
never attains, a value of unity with increasing applied
strain. The reason for this arises from a nonzero ther-
modynamic force (Q) contribution from the quadratic
term in ξ entering the energy functional, leading to the
first term on the left side of (4.52) that does not vanish
at ξ = 1. Such an effect is also present in phase field
models of fracture that employ the standard quadratic
contribution from an order parameter to the energy den-
sity (Clayton and Knap 2015a; Borden et al. 2012).
Homogeneous solutions for quasi-static fracture prob-
lems demonstrate order parameter values that asymp-
totically approach unity with increasing strain, with the
rate of approach dependent upon normalized regular-
ization length (Clayton and Knap 2015a).

Recent work involving either quantum mechanics
(DFT) or molecular dynamics simulations (ReaxFF)
(An and Goddard 2015a, b; Tang et al. 2015) has pro-
vided insight into effects of composition and load-
ing direction (with respect to the crystal structure)
on resistance to shear localization, subsequent cavita-
tion, and failure of boron-based ceramic crystals under
(simple) shear loading with periodic boundary condi-
tions. In particular, computationally designed atomic
structures featuring layers of B4C and boron subox-
ide (B6O) have demonstrated increased overall ductil-
ity relative to more brittle pure boron carbide crystals
(Tang et al. 2015). It is suggested here that improve-
ments in fundamental physical properties such as sur-
face energy Υ , glassy phase characteristics (e.g., mass
density changequantifiedby k and energy changequan-
tified by A), and shear slip accommodation by amor-
phous banding quantified by γ0 may be possible via tai-
loring of boron-based ceramic compositions and struc-
tures. Conversely, as indicated by quantum mechani-
cal results (Taylor 2015), physical properties such as
resistance to structure collapse may be deleteriously
affected via changes in atomic structure, for example
lattice site vacancies.

Predictions of the present continuummodel of shock
compression demonstrating effects of variations of the
aforementioned fundamental properties Υ , A, and γ0
are shown in Fig. 2. Specifically, Fig. 2a shows shock
stress P , the fundamental mechanical force resisting
uniaxial shock compression, while Fig. 2b shows shear
stress (i.e., strength) τ , which is thought to be a primary
indicator of resistance of a ceramic material to ballis-
tic penetration, i.e., penetration by an impacting pro-
jectile (Bourne 2008; Clayton 2015b). Results labeled
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Fig. 2 Effects of surface
energy Υ , transformation
barrier A, and shear band
strain γ0 on a axial (shock)
stress b shear stress

(a) (b)

as “nominal” correspond to the most physically real-
istic model considered here with k = 2 ln(0.96), as
discussed already in the context of Fig. 1. Recall that
effects of k have alreadybeen reported inFig. 1, demon-
strating for k = 0 an increase in shock stress and shear
strength relative to the nominal case. General increases
in shock stress and, more evidently, shear strength are
apparent with increases in fracture energy and trans-
formation energy, and with decreases in γ0. The total
driving force for transformation decreases commensu-
rately with such property variations, thereby inhibiting
the trajectory of the shocked substance towards a fully
amorphous and subsequently ruptured state. Notewor-
thy is the dramatic increase in strength with decreasing
γ0, clarifying remarks from Sect. 4.3 that this parame-
ter is not a measure of ductility of the crystal, but rather
is better labeled as a measure of the shear damage asso-
ciated with amorphous band formation and multiplica-
tion, somewhat analogous to the overall inelastic shear
strain accommodated by crack opening displacement
for mode II fracture. The greatest potential increases
to strength correspond to halving of this parameter
and doubling of surface energy Υ . Less improvement
results from doubling of transformation (double well
potential) barrier A, which affords almost no strength
increase at very large compressions relative to the nom-
inal case.

The example considered herein has imposed homo-
geneous deformation and internal state behind the
shock front, with total deformation one-dimensional.
This example is deemed a requisite early step towards
understanding and eventually validating a novel and
mathematically sophisticated theory. Future work will
considermulti-dimensional problems involvinghetero-
geneous deformation and spatial gradients of state vari-
ables, including explicit localization phenomena.More

advanced numerical methods will be needed to solve
such problems whose solutions should provide addi-
tional insight intomaterial performance, i.e., resistance
to failure.

5 Conclusions

A theory of Finsler-geometric continuum mechanics
developed recently by the author using variational
principles has been extended to address dynamics—
material inertia, order parameter evolution, internal
energy conservation—as well as temperature change
and entropy production for the adiabatic case. Jump
conditions pertinent to exchange of mass, linear
momentum, and energy across a shock front moving
at steady speed have been derived. The theory has been
invoked to describe stress-induced phase transitions
and shear inelasticity in boron carbide subjected to pla-
nar impact-type loading. All parameters in the model
are obtained from fundamental experiments or results
of atomic simulations from the literature, without fur-
ther calibration. Predictions of the model for shock
stress, shear strength, and shock characteristics agree
closely with experimental data when the conformal
transformation accounting for densification upon phase
change is included. In order to guide efforts towards
design of new compositions of boron-based ceramics,
parameter studies predicting effects of variations in sur-
face energy, transformation energy, and shear accom-
modation have been reported. Results suggest that, in
increasing order of improved dynamic shear strength,
the following structural property changes should be
sought: increases in the energy barrier for amorphiza-
tion, decreases in the density of the glassy phase,
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increases in the surface energy, and decreases in the
post-peak shear localization strain.
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