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Abstract 

Attacks such as the one that compromised the control systems for Iranian centrifuges demonstrate 
a growing need to improve the design of security in cyber-physical systems. While much of the 
work on security has focused on coding, many of the common weaknesses that lead to successful 
attacks are actually introduced by design. This technical report shows how important system-wide 
security properties can and must be described and validated at the architectural level. This is done 
through the adoption and use of the Architecture Analysis and Design Language (AADL) and a 
further extension of it to describe security properties. This report demonstrates the viability and 
limitations of this approach through an extended example that allows for specifying and analyzing 
the security properties of an automotive electronics system.  

The report begins with a modeling of threats using the Microsoft STRIDE framework and then 
translates them into attack scenarios. Next, the report describes—as AADL components, relation-
ships, and properties—the architectural structures, services, and properties needed to guard 
against such attacks. Finally, the report shows how these properties can be validated at design 
time using a model checker such as Resolute and discusses the limitations of this approach in ad-
dressing common security weaknesses. 
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1 Research Introduction  

1.1 Initial Research Plan for Extending AADL to Include Security 

Safety-critical verification of cyber-physical systems (CPSs) has benefited from the use of archi-
tectural fault-modeling capabilities provided by Architecture Analysis and Design Language 
(AADL). Architecture-led hazard analysis using mechanisms such as AADL has become an effec-
tive capability in safety fault modeling. The cost of successfully addressing safety compliance has 
been significantly reduced through the use of extensions to AADL that automate safety analysis 
and produce safety assessment reports to meet recommended practice standards (such as SAE 
ARP4761) [SAE 1996]. The Software Engineering Institute (SEI) has used AADL to effectively 
address design verification for the qualities of safety, reliability, and performance [Lewis 2009, 
Delange 2013, Feiler 2009, AVSI 2015]. 

Attacks such as Stuxnet1 demonstrate a growing need to improve the design of security in CPSs 
[Kelley 2013]. Other researchers have incorporated selected attack scenarios into modeling lan-
guages (e.g., OCL [Almorsy 2013], OWL-DL and SWRL [Asnar 2011], and SysML [Ouchani 
2011]). Their research explored adding security analysis capabilities into an architecture descrip-
tion language to better record and analyze the design decisions that are relevant to security. The 
architecture description language AADL was chosen to leverage existing SEI capabilities for 
safety and reliability analysis and to extend the use of AADL into the security aspects of software 
assurance. New rules or language extensions would, however, be needed to address the gaps. 
When reviewing security vulnerability attacks assembled in an Air Force Research Laboratory 
(AFRL) study [Calloni 2011] (36 attacks covering 632 out of 945 [MITRE 2015] Common Weak-
ness Enumerations [CWEs]), we observed that current descriptions of vulnerabilities focus on 
coding.  

However, many of the important decisions that establish security in a system are made at the ar-
chitecture level. To build in security from the start, the security coding requirements must be ab-
stracted into the design characteristics and constraints that should be considered in formal model-
ing to prevent vulnerabilities. We started with the AFRL report [Calloni 2011], using its identified 
groups of attack patterns based on CWEs to construct desirable design capabilities for at least two 
critical security capabilities currently missing in AADL: authentication and input validation. 
Through an appropriately structured analysis, a detailed system architecture design of a CPS can 
be analyzed using AADL to prevent such types of CWEs.  

We divided the work into two tasks as follows: 

1. Enhance AADL to incorporate security design assurance. For a set of attack scenarios, we 
identified the capabilities, constraints, and other design characteristics that reduce the risk of 
possible attack success. 

 

1  Stuxnet was a cyber attack that damaged Iranian centrifuges by compromising the commercial control systems 
that managed them (https://en.wikipedia.org/wiki/Stuxnet). 

https://en.wikipedia.org/wiki/Stuxnet
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2. Apply architectural security modeling to CPSs, and develop a case study to show how formal 
modeling using AADL could be applied to a CPS to improve the security design of the archi-
tecture.  

1.2 Value in Improved Security for CPSs 

The training2 for AADL provided an automobile example to evaluate the safety features of a pro-
posed design. We found value in exploring this same example to see how security could be ad-
dressed in the design. First, because the AADL model was already built, we didn’t have to spend 
time constructing one from scratch. Also, security problems linked to various types of automo-
biles and based on attacks using external connectivity were frequently reported in the news, indi-
cating the need for strengthening security in this type of CPS. These examples of recent attacks 
against automobiles have been reported: 

 A wireless device used by Progressive Insurance to gather information about customers’ 
driving habits and communicate data to a monitoring station lacked adequate authentication 
security, so the device could be exploited to unlock car doors, start cars, and access engine 
information. The device has been used in more than two million vehicles since 2008.3 

 Add-on devices such as Zubie, a combined hardware and software solution that tracks a car’s 
location and movement and tells drivers how to drive more effectively, also provide hackers 
the ability to remotely manipulate a car’s physical operation and expose driver data.4 

 Hackers demonstrated how they took control of a Jeep Cherokee through connectivity pro-
vided in the entertainment system and successfully disabled the car’s transmission and 
brakes.5 

 A vulnerability in the OnStar mobile service in GM vehicles allowed hackers to unlock, re-
motely start, and track those vehicles.6 

 An attack launched by researchers who installed a Trojan on the Tesla Model S network suc-
ceeded in remotely shutting off the car’s engine. 

These attacks exhibit characteristics of the security failures we wanted to explore. Critical auto-
motive components such as the transmission and brakes are acting on input from untrusted 
sources (entertainment system or driver-monitoring devices). This research project analyzed 
mechanisms currently available within AADL, which is a formal modeling language. The goal 
was to determine how a design could be evaluated to establish confidence that sufficient authenti-
cation and input validation are in place to deter the types of attacks cited above.  

 

2  The Modeling System Architectures Using the Architecture Analysis and Design Language (AADL) course 
(http://www.sei.cmu.edu/training/p72.cfm) 

3  Progressive SnapShot device attack: http://arstechnica.com/security/2015/01/ 
wireless-device-in-two-million-cars-wide-open-to-hacking/ and http://www.scmagazine.com/ 
insurance-dongle-could-be-compromised/article/393707/ 

4  Zubie vulnerability: http://www.autelligence.com/car-hacked-telematics-add/ 

5  Jeep Cherokee attack: http://www.wired.com/2015/07/hackers-remotely-kill-jeep-highway/ 

6  OnStar vulnerability: http://arstechnica.com/security/2015/07/ownstar-researcher-hijacks-remote-access-to-on-
star/ 

http://www.sei.cmu.edu/training/p72.cfm
http://arstechnica.com/security/2015/01/
http://www.scmagazine.com/
http://www.autelligence.com/car-hacked-telematics-add/
http://www.wired.com/2015/07/hackers-remotely-kill-jeep-highway/
http://arstechnica.com/security/2015/07/ownstar-researcher-hijacks-remote-access-to-on-star/CMU/SEI-2015-TR-014
http://arstechnica.com/security/2015/07/ownstar-researcher-hijacks-remote-access-to-on-star/CMU/SEI-2015-TR-014
http://arstechnica.com/security/2015/07/ownstar-researcher-hijacks-remote-access-to-on-star/CMU/SEI-2015-TR-014
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1.3 Audience and Structure of This Report 

Readers of this report do not need a background in AADL or formal modeling. However, those 
wishing to apply the security approaches recommended by the analysis will need this background 
knowledge.7 

This report has been prepared to provide those responsible for program management and design 
review with an understanding of the ways formal modeling can support the verification of key as-
pects of security design. These readers should focus on the first two chapters and the conclusion. 
System and software engineers with general knowledge of security issues and architecture will 
gain an understanding of the ways in which formal modeling with AADL can validate that de-
signs demonstrate key security characteristics. Modeling tools can demonstrate that these evolv-
ing designs continue to exhibit the desired security characteristics.  

Section 2 provides important background information about modeling security and the aspects of 
security that can be established and confirmed from an architecture. 

Section 3 describes the importance of threat modeling in establishing the desired security proper-
ties. The chapter also covers how existing modeling analysis techniques can be applied to estab-
lish confidence that security has been properly addressed in a design.  

Section 4 describes specific security properties as applied to formal modeling and how design 
analysis techniques can be applied to establish confidence that security has been properly ad-
dressed in a design. 

Section 5 describes the AADL model for the automotive example we developed and the details of 
how the model can be evaluated for specific security properties. 

Section 6 provides a summary of the accomplishments and limitations of this research activity and 
opportunities for further research. 

 

7  Read about Architecture Analysis and Design Language at http://www.aadl.info. 

http://www.aadl.info
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2 Analyzing Security Risks 

Preventing security defects typically depends on analysis that extends beyond a single software 
component and requires architectural analysis. As the Object Management Group (OMG) noted, 
detecting back-doors, cross-site scripting vulnerabilities (XSS), or unsecure dynamic SQL queries 
through multiple layers requires a deep understanding of all the data manipulation layers, as well 
as the data structure itself [OMG 2013]. System-level analysis allows us to visualize complete 
transaction paths from user entries, through user authentication and business logic, down to sensi-
tive data access to evaluate the effectiveness of the security design. For example, a weakness in 
the functional software design can affect access control and authentications and provide a means 
of bypassing expected controls.  

Thus, identifying and mitigating the risks of software design or architectural flaws are essential 
security analysis activities. Security practices commonly applied for such risk analysis include 

 identifying the system features and usage that provide opportunities for an attack (otherwise 
known as the attack surface) 

 analyzing how a design could be compromised and the risk of such compromises could be 
mitigated (otherwise known as threat modeling) 

We also need to show that security risks have been reduced by demonstrating that architectural 
decisions have proactively reduced the likelihood or the consequences of a security fault (other-
wise known as an assurance case). 

2.1 Attack Surface 

An attacker needs some kind of access to compromise a system, and the earliest exploits often 
achieved such access by convincing a user to insert a compromised floppy disk. Today, an at-
tacker might try to persuade a user to follow an URL in an email message. Exploring and reduc-
ing potential attack opportunities provide a means of improving security [Howard 2003a]. 

A system’s attack surface can be described along three abstract dimensions: (1) targets and ena-
blers, (2) channels and protocols, and (3) access rights [Howard 2003b]. Consider the examples of 
automotive compromises described in Section 1: The target was the automotive control system. 
At the most general level, channels include all communication links to the automobile such as On-
Star mobile service connectivity, the on-board diagnostic (OBD) port, and external channels pro-
vided by entertainment devices such as input from mobile devices. Enablers include the entertain-
ment components and the plug-in devices for the OBD port. The latter, for example, could enable 
attackers to monitor a motorist’s driving behavior via wireless connectivity. 

2.2 Threat Modeling 

An attack surface simply lists the features that an attacker might try to compromise, and we need 
to analyze how that compromise might occur. The CWE, developed by the MITRE Corporation, 
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describes over 900 software weaknesses that have enabled successful attacks.8 These weaknesses 
have appeared predominantly in the functional software rather than in the security services such 
as those providing authentication and authorization capabilities. Compromises typically occur 
when an attacker creates operating conditions not anticipated by the software designer. For exam-
ple, a programmer might allocate sufficient memory to accept a city name of up to 200 characters 
from a user and assume, in practice, that the name provided will always meet that criteria. But the 
lack of a size check has enabled attackers to gain access by inserting new code into the memory 
that goes around the authentication and access controls. 

Most system development activities seek to provide reliable and trustworthy software, but that can 
be hard to do. Commercial organizations giving high priority to the development of secure soft-
ware is a relatively recent change. Microsoft’s 2006 publication of the book titled The Security 
Development Lifecycle was a step forward [Howard 2006]. The company had made a decision a 
few years earlier to address the security concerns raised about its products. Early requirements in-
cluded code scans to enforce good programming practices and secure programming training. But 
addressing two tasks during design provides the most significant activity for improving security: 
(1) analyzing how the proposed software could be compromised and (2) identifying mitigations 
for high-impact risks. For example, a developer of software for database access should make engi-
neering decisions about how to reduce the risks of known weaknesses associated with such ac-
cess. This approach seems obvious, but too often developers consider possible security risks only 
after the code is written. Analyzing how software could be compromised is referred to as threat 
modeling.  

There are many ways to do threat modeling. For illustrative purposes in this report, we use the 
STRIDE9 approach because it is available through open source documents. Threat modeling uses 
the following activities to analyze the security risks shown in Table 1: 

1. Create information flows for use cases. 

2. Gather a list of external dependencies. 

3. Define the security assumptions. 

4. Determine the threat types. 

5. Identify the threats to the system. 

6. Determine risk. 

7. Plan mitigations. 

8. Create external security notes. 
  

 

8  http://cwe.mitre.org/community/swa/index.html 

9  https://msdn.microsoft.com/en-us/library/ee823878%28v=cs.20%29.aspx 

http://cwe.mitre.org/community/swa/index.html
https://msdn.microsoft.com/en-us/library/ee823878%28v=cs.20%29.aspx
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Table 1:  Security Risks 

Risk Description 

Data exchanges Functional requirements include use cases, which describe system behavior in response to an 
external request such as a data exchange between a user and a system. A data exchange is a 
security risk factor because a software weakness in its implementation (such as not verifying 
user input) could provide an adversary with access to business resources such as the  
customer database. 

External  
dependencies 

External systems can be compromised. Exploitable weaknesses can also arise from unknown 
information about external systems. 

Security  
assumptions 

System integration can introduce exploitable mismatches in the security assumptions made by 
components. 

STRIDE, shown in Table 2, focuses on a predefined set of threat types. In Section 4, we apply the 
STRIDE model to an example CPS in the automotive electronics domain. 

An attack surface might include a connection to an external source. The security risks associated 
with that connection depend on determining the kind of data associated with that connection, 
identifying the software components that might process data provided by the connection, and ana-
lyzing how such specific data could be used to compromise those software components. 

Table 2:  STRIDE Threat Model 

Threat Security Property 

Spoofing Authentication: the process of determining whether someone or something is, in fact, who or 
what it is declared to be 

Tampering Integrity: maintaining the consistency, accuracy, and trustworthiness of data over its entire 
lifecycle 

Repudiation Non-repudiation: Users can’t perform an action and later deny performing it. 

Information  
disclosure 

Confidentiality: Data access is restricted to those authorized to view the data in question. 

Denial of service Availability: Systems are ready when needed and perform acceptably. 

Elevation of  
privilege 

Authorization: the process of adding or denying individual user access to a computer network 
and its resources 

Security assumptions are one type of security risk listed in Table 1. Frequently, an elevation of 
privilege succeeds because an attack invalidates a security assumption. For example, the design of 
an organization’s internal software systems frequently assumes that an adversary cannot access 
the internal networks. An attack that compromised the security vendor RSA started by convincing 
an RSA employee to click on a link to an intruder-created video in an email message.10 The video 
was designed to exploit a vulnerability in a third-party extension to the browser and give the in-
truder access to the RSA internal network as that employee. The intruders then took advantage of 
the implicit trust in RSA insiders assumed during internal software development to eventually ob-
tain sensitive information.  

  

 

10  The RSA Hack: How They Did It: http://bits.blogs.nytimes.com/2011/04/02/the-rsa-hack-how-they-did-it/?_r=0 

http://bits.blogs.nytimes.com/2011/04/02/the-rsa-hack-how-they-did-it/?_r=0
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Threat modeling typically uses data flow diagrams (DFDs) to graphically represent a system. 
DFDs use a standard set of symbols consisting of four elements:  

1. data flows (data in motion) 

2. data stores (data at rest) 

3. processes (computation) 

4. interactors (Endpoints of a system are typically providers or consumers of data.) 

Figure 1 shows a high-level DFD for an information system. 

 

Figure 1:  Data Flow Diagram for an Information System 

A generic DFD for an automotive CPS appears in Figure 2.  

 

 
Figure 2:  Data Flow Diagram for Automotive System 

Figure 3 shows the DFD of a cruise control (CC) system designed in the 1980s. Information was 
typically exchanged among vehicle controllers with the Controller Area Network (CAN) that was 
specially developed in the early 1980s for fast serial data exchange between electronic controllers 
in motor vehicles. Instigators include buttons that the driver can use to turn on the CC system and 
change its settings. An example of a use case is going off cruise control when the driver presses 
the brake pedal. The CC control software monitors the frequency of wheel rotations to calculate 
vehicle speed and sends instructions to the engine controller to increase or decrease the velocity. 
In a properly designed CC system, the engine controller should only receive input from the CC 
software component. At the time of the CAN’s development, only motorists and mechanics had 
access to critical vehicle controls, and the CC system was essentially a self-contained one with no 
attack surface and no need for threat modeling.  
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Figure 3:  Data Flow Diagram of Self-Contained Cruise Control System 

An automotive control system now includes dozens of embedded chips running millions of lines 
of code. The attack surface includes remote key systems, satellite radios, control units with wire-
less connectivity, Bluetooth connections, dashboard Internet links, and even wireless tire-pressure 
monitors. A DFD of a CC system now looks like the one shown in Figure 4. A digital radio with 
access to the CAN bus could potentially compromise other devices that use that bus, such as brake 
and throttle controllers. What is the risk that a compromised entertainment system could use that 
connectivity to control braking? Examples mentioned in Section 1 demonstrate that compromising 
a secondary component such as the entertainment system or dashboard displays too often has led 
to compromises of the driving controls. Threat modeling provides a way to identify and mitigate 
such risks. 
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Figure 4:  Data Flow Diagram of Cruise Control System 

2.3 Architecture Description Language (ADL) 

The entertainment system should not be able to apply the brakes. An essential part of a security 
design is to describe the roles, entities, and relationships that exist or should exist to perform cer-
tain actions. Most systems incorporate security services for authentication and access control to 
enforce those roles and relationships. The collection of such security services is often referred to 
as the security architecture. 

Box and line drawings such as the DFD shown in Figure 4 informally represent what is called a 
component and connector (C&C) view of an architecture, which can also be described using an 
ADL such as AADL or a functional modeling language such as the Unified Modeling Language 
(UML). AADL lets us describe C&C types and information more precisely than we could with a 
DFD and supports analysis of the description. For example, an AADL description of the connec-
tion between a CC software controller and the throttle actuator specifies the type of data trans-
ferred, the direction of the transfer, the port on the CC controller that sends the data, and the port 
of the throttle actuator controller that receives the data. We can define well-formedness rules and 
analyze the described architecture using those rules to determine conformance, as we show in 
Section 5. 

A designer can also define system-specific attributes for a C&C model. For example, the model 
could be annotated with the security risks identified by threat modeling and with engineering de-
cisions made to control access and enforce any authorization requirements. As we show in later 
sections, an AADL model enables an analysis of a design before it is implemented, resulting in a 
specification that provides unambiguous guidance for developers. 
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2.4 Assurance 

A well-structured design is not necessarily a secure one. The automobile attack examples de-
scribed in Section 1 did not attempt to compromise any of the existing connections specified in 
Figure 3 on page 8. Instead, the attacks created a new connection. Add-ons such as an infotain-
ment system extend the attack surface and provide an opportunity for a compromise. A security 
assessment must evaluate how well the engineering design decisions reduce the likelihood of an 
attack-created connection; for example, how compromises of third-party components are ad-
dressed. 

The security problems arising with automotive systems share characteristics similar to safety is-
sues the U.S. Federal Drug Administration (FDA) encountered with infusion pumps. A patient-
controlled analgesia infusion pump is used to infuse a pain killer at a prescribed basal flow rate 
that can be augmented by the patient or clinician in response to patient need within safe limits. In-
fusion pumps, in general, have reduced medication errors and improved patient care by allowing 
for a greater level of control, accuracy, and precision in drug delivery than more labor-intensive 
techniques. From 2005 through 2009, 87 infusion pump recalls were conducted by firms to ad-
dress identified safety problems observed across multiple manufacturers and pump types. The 
FDA became aware of many of the problems only after they occurred in the field.  

One of the first steps in a safety engineering process is classifying the health risks for the pump 
(see Table 3). 

Table 3:  Infusion Pump Hazards and Health Risks 

Hazards Health Risks 

Software Environmental Overdose Trauma 

Operational Mechanical Air embolism Exsanguination 

Electrical Hardware Infection Electric shock 

Biological and 
chemical 

Use Allergic response Underdose 

All  Delay of therapy  

Specific hazards include air in the drug delivery line, tampering (e.g., by a patient during home 
use to adjust drug delivery), network errors, false alarms or the lack of an alarm caused by an out-
of-calibration sensor, improperly set alarm priorities, incorrect settings of alarm thresholds, and 
software runtime errors. For serious hazards, an alarm should sound.  

After an analysis of pump recalls and the occurrence of adverse events, the FDA concluded that 
many of the problems appeared to be related to deficiencies in device design and engineering 
[FDA 2010]. Those defects had not been found during development by testing and other methods. 
Such defects need to be identified as a design evolves, and a design review should confirm that 
faults associated with important risks (including attacks) have been identified and mitigated by 
specific design features.  
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Mitigating the spectrum of infusion pump hazards requires an integrated hardware and software 
solution. A pump’s software must be designed to analyze the data from multiple sensors to cor-
rectly identify and respond to the identified adverse conditions. We need to evaluate the integrated 
hardware and software design. 

Safety engineering has used an assurance case to show that systems satisfied their safety-critical 
properties [Kelly 1998, 2004]. For that use, they were called safety cases.  

Assurance case: a documented body of evidence that provides a convincing and valid argu-
ment that a specified set of critical claims about a system’s properties are adequately justi-
fied for a given application in a given environment [Kelly 1998].11 

An assurance case includes 

 claims and subclaims for what we want to show 

 arguments for why we believe each claim is met 

 evidence such as test results, analysis results, and so forth that support each argument 

An assurance case does not imply any kind of guarantee or certification. It is simply a way to doc-
ument the rationale behind system design decisions.  

Confirming the top-level claim that a pump is safe depends on showing that health risks have 
been mitigated. For example, an overdose could be caused by an environmental hazard such as a 
high temperature that leads to a pump malfunction. There is an internationally accepted standard 
for diagraming an assurance case,12 and a graphical representation of an assurance case for an in-
fusion pump appears in Figure 5 on page 14.  

The use of an assurance case provides a formal structure for engineering design reviews. Such a 
review should consider if the argument and evidence provided by the developer might be insuffi-
cient to justify the claim. For example, does information exist that contradicts or rebuts a claim? 
The cause can be a combination of a poor argument and insufficient evidence. Are there specific 
conditions under which the claim is not necessarily true even though the premises (i.e., evidence) 
are true? For example, could an operational condition other than temperature, humidity, and air 
pressure lead to a pump malfunction? Is there sufficient evidence to justify the claim? The evi-
dence supplied could have been provided by a simulation. How well does the simulated model 
represent projected operational conditions? Does the design mitigate sensor failures? 

Not only can we specify an architecture using AADL, but extensions to the language enable an 
architect to construct an assurance case, add assurance attributes to the architecture, and describe 
the argument as rules to be analyzed and documented by an AADL tool (e.g., Resolute) [Gacek 
2014].  

 

11  Assurance cases were originally used to show that systems satisfied their safety-critical properties. For this us-
age, they are called safety cases. The notation and approach used in this report have been used for over a dec-
ade in Europe to document why a system is sufficiently safe [Kelly 1998, 2004]. In this report, we extend the 
concept to cover system security claims. 

12  http://www.sei.cmu.edu/dependability/tools/assurancecase/ 

http://www.sei.cmu.edu/dependability/tools/assurancecase/
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3 Analysis Framework for Security Assurance 

Establishing security requirements depends on an understanding of how systems have been com-
promised, the resources and motivations of possible attackers, and the business consequences of a 
system compromise. The role of an AADL model is not necessarily to create security require-
ments but rather to help verify that an architectural design meets them. For example, as shown in 
Table 4, a data flow can be the target of tampering and information-disclosure threats. Threat 
modeling analysis could lead to a requirement that all connections capable of transporting a par-
ticular category of data should be encrypted. An analysis of the data flows in an AADL model 
could then verify that a design satisfies that requirement. 

Table 4:  Threats and Data Flow Elements 

Element Interactors Data Flows Data Stores Software 

Processes 

Spoofing  ◊   ◊ 

Information  
disclosure  ◊ ◊ ◊ 

Tampering with 
data ◊   ◊ 

Repudiation  ◊ ◊ ◊ 

Denial of service  ◊ ◊ ◊ 

Elevation of  
privilege    ◊ 

AADL models can play a significant role in architectural tradeoff analysis. The success of a de-
sign is often determined by how well it satisfies a desired combination of architectural attributes 
such as usability, performance, reliability, and security. For example, an AADL model can be 
used to analyze the additional time required to encrypt a communications link to see if it violates 
latency requirements [Lewis 2009].  

An essential part of a security design is to describe the roles, entities, and relationships that exist 
or should exist to perform a set of actions. Most systems incorporate security services for authen-
tication and access control to enforce those roles and relationships. The collection of such security 
services is often referred to as the security architecture. Access control and authentication require-
ments can be verified using an AADL.  
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3.1 Resolute: An AADL Analysis Tool 

Research funded by the Defense Advanced Research Projects Agency’s (DARPA’s) High Assur-
ance Cyber Military Systems (HACMS) developed an extension of AADL called Resolute that 
describes the assurance rules a system should satisfy to justify a claim [Gacek 2014]. For exam-
ple, a design rule could specify that user input is always verified. 

The syntax of Resolute is inspired by logic programming. Each rule defines the meaning and evi-
dence for a claim. The meaning of a claim is given by a text string in the rule that is parameterized 
by the claim’s arguments. The body of the rule consists of an expression that describes sufficient 
evidence to satisfy that claim. Claims can be parameterized by AADL types (e.g., threads, sys-
tems, memories, connections), integers, strings, Booleans, or sets. The following are examples of 
Resolute rules: 
only_receive_decrypt(x : component) <= 

 ** "The component " x " only receives messages that pass Decrypt" ** 

 forall (c : connection). 

    (parent(destination(c)) = x) => 

     is_sensor_data(c) or only_receive_decrypt_connection(c) 

only_receive_decrypt_connection(c : connection) <= 

 ** "The connection " c " only carries messages that pass Decrypt" ** 

 let src : component = parent(source(c)); 

 unalterable_connection(c) and (is_decrypt(src) or  

 only_receive_decrypt(src)) 

An assurance case is initiated in Resolute by adding a Prove statement for an AADL component. 
A Prove statement consists of a claim applied to some component such as the following example 
for the claim that the Motor Controller thread only receives input from the ground station: 
  prove only_receive_ground_station (MC) 

To evaluate a Prove command, Resolute acts like a theorem prover but with assurance-case rules 
replacing logical rules. A successful proof produces an assurance case. Resolute can demonstrate 
that the rules representing the design decisions have been appropriately applied but cannot justify 
the choice of rules. For example, when the risk of a SQL injection vulnerability exists because 
user input is used to create database queries, invalid input can enable an attacker to modify the 
contents of a database. Assume that assurance for eliminating the risk of a SQL injection is based 
on the rule that user input is verified. A Prove command for that rule succeeds if user input has 
been checked at some point along a data flow. But verification is not validation that the applica-
tion of the rule reduces the risk of a SQL injection. Input verifications are difficult to validate for 
SQL injections, and the CWE recommends alternative mitigations that have a higher level of as-
surance. 

3.1.1 Developing Assurance Cases for Security  

Security and safety engineering identify possible risks in significantly different ways. Using the 
Goal Structuring Notation (GSN) shown in Figure 5, a safety engineer could develop the assur-
ance case argument based on the hazard categories listed in column 1 of Table 3 (on page 10), as 
shown in Figure 6.  
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Figure 5:  Goal Structuring Notation [Kelly 2004] 

 

Figure 6:  Assurance Case Argument 

The health risks within a category could change for this generation of pumps, but the categories 
are not likely to change. The security-threat categories do change because of the adversarial as-
pects of security. For example, in the 90s, attacks typically targeted network or operating system 
weaknesses. As better engineering reduced the effectiveness of such exploits, attack tactics shifted 
to finding exploitable defects in the new target category of application software [Nagaraju 2013]. 
An email sent to RSA employees included an Excel attachment with malware that exploited a vul-
nerability in Adobe Flash. The compromise enabled the attacker to take remote control of an RSA 
employee’s computer and use it as a backdoor into the RSA network.13 The CWE documents over 
900 such weaknesses.14 

Too often, the architect for a CPS creates a design defect that is well-known to an IT architect. 
For example in July 2010, malware called Stuxnet targeted specialized industrial control equip-
ment made by Siemens [Mills 2010, McGraw 2010]. This malware enabled the attacker to modify 
how the control system managed a physical system, such as one for water treatment. The operat-
ing system is typically the case-loaded system libraries at runtime. Stuxnet exploited a defect in 

 

13  http://www.cnet.com/news/attack-on-rsa-used-zero-day-flash-exploit-in-excel/ 

14  http://cwe.mitre.org 

http://www.cnet.com/news/attack-on-rsa-used-zero-day-flash-exploit-in-excel/
http://cwe.mitre.org
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the implementation of that feature to load attacker-developed libraries—a defect that had been 
eliminated from IT operating systems for over 10 years.  

An objective of applying software assurance techniques is to increase our level of confidence that 
software is free from vulnerabilities, either intentionally designed into the software or accidentally 
inserted at any time during its lifecycle, and that the software functions in the intended manner.15 

The justification for a level of confidence can be documented in a security assurance case. Archi-
tectural security models and the use of tools such as Resolute to verify such models can contribute 
to that justification. The next section explores how such models and tools could support security 
analysis.  

 

15  https://en.wikipedia.org/wiki/Software_assurance#cite_note-1. 

https://en.wikipedia.org/wiki/Software_assurance#cite_note-1
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4 STRIDE Analysis of the Infotainment System 

As described in the prior section, security requirements must first be established, based on the 
threats considered to be important to the system. Threat modeling is used to determine the im-
portant security concerns that must be translated into design considerations and incorporated into 
the model. The architect must systematically determine the potential consequences of each threat. 
To demonstrate how this process would work, we applied the STRIDE threat modeling approach 
to a car infotainment system. 

The name STRIDE [Hernan 2006] is an acronym based on the initials of the six threat categories: 
Spoofing, Tampering, Repudiation, Information disclosure, Denial of service, and Elevation of 
privilege. These categories are not mutually exclusive, and complex attacks may involve a combi-
nation of them. However, they provide a useful set that non-security experts can use to reason 
about security threats. 

This technique is a way to walk through the major categories of threats a system may face and to 
systematically determine the potential consequences of each threat category, as that type of threat 
applies to the particular system under scrutiny. Below, we consider the security implications of 
each of the six STRIDE threat categories on the automotive electronics system presented in Fig-
ure 4. For each category, we describe 

1. how the threat might be realized: the conditions under which it might occur 

2. the implications of this threat on the infotainment system design and, in particular, how the 
system design is represented in an AADL model 

3. the risks that arose from a consideration of the threat in the infotainment context 

4. questions about the architecture of the infotainment system and its implementation that will 
inform the security analysis 

5. the security property that is violated if this threat is not mitigated 

Mitigating many of the STRIDE threats involves establishing trust boundaries. A trust boundary 
can be thought of as a line drawn through a program. On one side of the line, data or an agent (a 
user) is untrusted. On the other side of the line, the data or agent is assumed to be trustworthy. For 
example, input validation could be required for data to cross a trust boundary. But data may only 
be trusted from specific sources, and in those instances a trust boundary could have authentication 
and authorization requirements.  

In the following six subsections, we use the five categories above to describe each STRIDE threat 
as it applies to the infotainment system. 

4.1 Spoofing 

Spoofing is an attack in which people (or programs) represent themselves as something other than 
what they truly are, with the intent of gaining authorized access to resources for which they 
should be unauthorized. A successful spoofing attack is one that allows an attacker to foil or avoid 
authentication. 
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4.1.1 Conditions Under Which Spoofing Might Occur 

Spoofing can occur when the source or destination of a message is not properly trusted (e.g., via 
authentication), but the requested action in the message is still performed. Spoofing can be suc-
cessful if the attacking component can steal another component’s identity to appear authentic or if 
other components do not demand proof of authentication. 

4.1.2 AADL Implications of Spoofing 

AADL can define a system scope, so we can check whether information flows across the (car) 
system boundary. To do that, we need to classify components inside and outside the system and 
determine that each has been identified and has an associated credential, such as a certificate. In 
the architecture, we can establish a placeholder, abstract data type for authentication that is passed 
between components. This data type could be modeled as a pattern in AADL (with an authentica-
tor, an error-handling component, and entities that need to be validated). 

4.1.3 Spoofing Risks 

When considering spoofing attacks, we must think about these general design weaknesses that 
would allow spoofing to occur: 

1. There is no authentication, or the authentication mechanism has been broken or bypassed. 

2. An external (third-party) component is mistakenly trusted as authenticated. 

We can test for these weaknesses by analyzing an AADL model. 

4.1.4 Questions About Spoofing 

From an analysis perspective, we must answer the following questions: 

1. Does a service exist in the system that provides proof of the integrity and origin of data? 

2. Have trust boundaries been established and documented appropriately? 

3. What connections and interfaces does the system have to the outside world? 

The answers to these questions must be modeled in AADL to establish how the system will ad-
dress the risk of spoofing. 

4.1.5 Security Property Violated by Spoofing 

Spoofing attacks violate the Authentication property. 

4.2 Tampering 

The objective of tampering is to perform unauthorized modifications to data or services. In a tam-
pering attack, an attacker makes a modification to change the system’s runtime behavior through 
unauthorized access to the data or service. 

4.2.1 Conditions Under Which Tampering Might Occur 

Tampering could occur if the infotainment system contains data stores, as it almost certainly will. 
If the data’s encryption is strong, the attacking component can attempt to simply corrupt the data, 
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rendering the system unusable or less usable. If the encryption is weak (or non-existent), the at-
tacking component can modify the data, perhaps without being detected (particularly if the system 
does not log messages and transactions). This risk can also affect data in motion, if it is not ade-
quately encrypted. 

4.2.2 AADL Implications of Tampering 

In AADL, a component’s encryption property (such as a data store) can be specified. Similarly, an 
encryption property can be associated with any connection (the data-sharing mechanism between 
two components). Encryption can be specified over multiple AADL components, and an encryp-
tion property can be specified on the data itself. The communication mechanism that accesses the 
data may stipulate an encryption mechanism. If multiple logical data channels are modeled, you 
can specify for each channel a set of properties that include, among other things, their encryption 
properties. This group of logical channels is called a feature group. 

4.2.3 Tampering Risks 

When considering tampering attacks, we must think about these risks: 

1. If tampering is not detected, any assumptions about system behavior are invalidated. 

2. Trust boundaries will affect how components are grouped and hence where encryption will 
and will not be applied. 

3. Trust boundaries will affect when and where an actor is authenticated or re-authenticated. 

Therefore, trust boundaries must be explicitly specified in any AADL model. 

4.2.4 Questions About Tampering 

From an analysis perspective, we must answer the following questions: 

1. Have the critical pieces of data been defined? 

2. Is the encryption of the data sufficiently strong (given the criticality of the data)? 

3. Is a system-wide encryption scheme uniformly applied? 

4. How easily can the specified encryption be broken? 

5. Have authentication and access control mechanisms been planned? 

The answers to these questions must be modeled in the AADL model. 

4.2.5 Security Property Violated by Tampering 

Tampering attacks violate the Integrity property. 

4.3 Repudiation 

Repudiation can occur when a system does not properly track and log the actions or changes of 
users (or other system actors). In such a case, malicious users may be able to forge an identity so 
that their actions (attacks) will be difficult to trace and might go undetected for an extended pe-
riod of time. 
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4.3.1 Conditions Under Which Repudiation Might Occur 

Repudiation could occur if an attacking component changes data (e.g., state information, driver 
information) without the possibility of that change being traced back to that component. Such 
changes will be difficult to detect and prevent if, for example, the components store data without 
using a data hash. 

4.3.2 AADL Implications of Repudiation 

A typical pattern used to guard against repudiation attacks would require a logging function in the 
architecture. The elements to be logged must be determined (typically from the data architecture), 
and the frequency and limits for logged data must be specified, since the logging actions might 
impact performance. To support non-repudiation, the design should clearly designate the exist-
ence of a logging function and the ways in which the data to be logged are communicated and 
stored by this function. Mechanisms that authenticate those with legitimate access to logs must be 
established. The AADL model can then be checked to ensure that the logging function is em-
ployed correctly and ubiquitously. 

4.3.3 Repudiation Risks 

When considering repudiation attacks, we must think about these risks: 

1. If no logging is being done, repudiation cannot be ensured. 

2. If authentication is inadequate, logging is meaningless. 

4.3.4 Questions About Repudiation 

From an analysis perspective, we must answer the following questions: 

1. Which parts of the system are trusted? 

2. How is trust established with third-party components? 

3. How is authentication managed? Can a component’s identity be spoofed? For example, does 
a system-wide authentication service exist that can be asserted to be genuine with high assur-
ance? 

4. Does a service exist that provides proof of the integrity and origin of data? 

5. Is transaction data logged? 

4.3.5 Security Property Violated by Repudiation 

Repudiation attacks violate the Non-Repudiation property. 

4.4 Information Disclosure 

Information disclosure enables an attacker to gain (potentially sensitive) information about a sys-
tem, possibly leading to a data leak, a privacy breach, or the disclosure of information that could 
be used to launch additional attacks. 

4.4.1 Conditions Under Which Information Disclosure Might Occur 

If an attacker can read a process’s state, capture information in transit, or break into a system’s da-
tabase, sensitive information might be disclosed. For example, if the system uses the broadcast of 



 

CMU/SEI-2015-TR-014 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY  20  

Distribution Statement A: Approved for Public Release; Distribution is Unlimited 

messages or publish/subscribe features (where subscriptions are not managed via authentication 
and authorization), an attacking component might be able to use this design weakness to steal in-
formation in transit. Similarly, if an attacking component can spoof a recipient’s identity, it could 
collect (and steal) poorly protected information intended for the legitimate recipient. 

4.4.2 AADL Implications of Information Disclosure 

From an architectural perspective, to address information disclosure risks, we need to design into 
the system the same authorization and authentication safeguards that also address spoofing, eleva-
tion of privilege, and tampering risks.  

4.4.3 Information Disclosure Risks 

When considering attacks that could lead to information disclosure, we must think about these 
risks: 

1. Disclosure of operational information can lead to other security or availability problems. 

2. Disclosure of customer or user information can lead to a loss of reputation, as well as in-
creased likelihood of other kinds of attacks. 

4.4.4 Questions About Information Disclosure 

From an analysis perspective, we must answer the following questions: 

1. What data in the system is operational, affecting the state of the system? 

2. How is information transmitted around the system (what mechanisms, what properties)? 

3. Where is information about the communication medium (e.g., publish/subscribe) and its 
properties documented? 

4.4.5 Security Property Violated by Information Disclosure 

Information disclosure attacks violate the Confidentiality property. 

4.5 Denial of Service 

A denial of service (DoS) attack is an attempt to make a computational or network resource una-
vailable to its intended (legitimate) users. This attack is typically accomplished by flooding the 
system with useless traffic or service requests. 

4.5.1 Conditions Under Which DoS Might Occur 

DoS attacks, which are perhaps the most critical security risk for an automotive system, can affect 
safety-critical performance and availability properties. An attacking component, which may or 
may not be authorized in the system, could attempt to saturate the available system channels with 
communication requests. 

4.5.2 AADL Implications of DoS 

The desire for performance modeling, now a well-established capability of AADL, was one of the 
driving factors that led to AADL’s creation. To detect and respond to a DoS attack, the system 
would need to include monitoring and control functionality that monitors network traffic and re-
sponds to unacceptable anomalies by shedding load or changing configurations. Employing 



 

CMU/SEI-2015-TR-014 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY  21  

Distribution Statement A: Approved for Public Release; Distribution is Unlimited 

AADL allows limits to be associated with the performance properties of (previously identified) 
critical portions of the system, and these limits can be monitored by the monitoring component. 
Furthermore, the consequences and probabilities of a component failure due to a DoS attack need 
to be assessed so that mitigations can be planned, such as increasing the cost for the attacker. Po-
tential DoS attack vectors must be identified through a distinct threat modeling activity to estab-
lish where monitoring activities should occur. 

4.5.3 DoS Risks 

A successful DoS attack can affect the system’s safety-critical properties. For example, if the 
brake system is under attack, it may not be able to respond to legitimate commands in a timely 
fashion, and that delay could affect a car’s safety by making the vehicle unresponsive to the 
driver’s actions. 

4.5.4 Questions About DoS 

From an analysis perspective, we must answer the following questions: 

1. What is the minimum (safe) operating state of the system that can be guaranteed despite fail-
ures? 

2. What system component is receiving external packets, making it a potential target for DoS? 

3. How much “headroom” is in the processing capacity of the computers or network? 

4. How are “bad” components shut down or bypassed? 

5. Does a central communication “manager” exist? If so, does it have the ability to inspect (and 
scrub) communications, limit rates, or monitor system network traffic to detect and respond 
to anomalies? 

4.5.5 Security Property Violated by DoS 

DoS attacks violate the Availability property. 

4.6 Elevation of Privilege (EoP) 

An EoP attack occurs when an attacker obtains authorization permissions beyond those initially 
granted, typically by exploiting a weakness—a programming error or design flaw—in the system. 
As a result of this exploit, the attacker can perform unauthorized actions. 

4.6.1 Conditions Under Which EoP Might Occur 

EoP involves an attacking component gaining access to data or resources beyond what its permis-
sions allow (in terms of its group membership and data access rights [read/write/execute]). This 
unauthorized access can occur due to “stealing” the identity of another component (via spoofing 
or information disclosure) or due to a jailbreak-type attack. 

4.6.2 AADL Implications of EoP 

An AADL model can define data types with allowable enumerated values and then check the 
compatibility of data shared between components such that they comply with the data access rules 
on those types. We have defined two such properties: group membership and access mode. 



 

CMU/SEI-2015-TR-014 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY  22  

Distribution Statement A: Approved for Public Release; Distribution is Unlimited 

4.6.3 EoP Risks 

Elevation invalidates all the other security properties and mechanisms built into the system. An 
EoP attack may facilitate any of the other attacks described in this chapter. 

4.6.4 Questions About EoP 

From an analysis perspective, we must answer the following questions: 

1. Does the system employ any form of data execution prevention? 

2. Do multiple levels of privilege exist? If so, does the system execute processes with least 
privilege? 

3. Are system components “certified”? Can the validity of that certificate be confidently 
checked so a compromised component can be identified? 

4. Does the system employ anti-virus software to reduce the likelihood of component attacks 
from known malicious code? Is that software kept current? 

5. Does a patching mechanism exist? If so, are patches automatically (and promptly) applied? 

6. Has any diversity been designed into the system such that an attack on one part does not per-
mit compromise of the entire system? 

4.6.5 Security Property Violated by EoP 

EoP attacks violate the Authorization property. 

4.7 Using the STRIDE Model 

These STRIDE threat categories provide an analysis framework of possible threats against a sys-
tem. To analyze a specific system, we use the framework to characterize and analyze specific 
threats that are instances of one or more STRIDE categories and to construct a system-specific 
threat model. In Section 5, we show how we instantiated two specific threat scenarios for the car 
infotainment system—one for EoP and one for confidentiality—and modeled the mitigations of 
such threats in AADL. 

Over the course of this project, we were interested in exploring other ways to improve threat mod-
eling efforts, especially among those who may be relatively new to the process and have limited 
security expertise. To that end, we assembled two groups of people to play the Elevation of Privi-
lege card game from Microsoft, which is designed to facilitate discussions of system threats 
among individuals with and without security experience. Playing that game was a useful way to 
seed security discussions about a system even with minimal information about it; for example, at 
the point when the architecture is still being developed and no software has been written or even 
fully specified yet. We believe that threat modeling in general and the EoP game in particular are 
complementary to early phases of the system architecture and design lifecycle. We describe the 
results further in Appendix A.  
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5 Example Solution Approach for Security Threats  

This chapter provides a brief introduction to AADL and explores some of the ways in which the 
language supports the security design structures needed for the automotive infotainment example. 
The detailed steps for building an AADL model are described, along with how to represent and 
check the selected security requirements. 

5.1 AADL Description 

AADL and its extensions support 

 architecture specification and validation 

 specification of functional components, their interfaces, and their interactions 

 mechanisms for analysis representation (i.e., qualitative analysis and rule checking of system 
specifications that define properties, mathematical evaluation, and model checking) 

 verification of approaches and outcomes (e.g., Mathematically verify that a quantitative re-
quirement is met by the architecture, and ensure that a claim about components, interactions, 
and associated properties is upheld throughout the architecture.) 

AADL specifies a static representation of the system architecture by the use of component types 
that can model software functionality, software runtime specifications, execution hardware, hard-
ware and protocols used for connections, and related components such as sensors and actuators. 
The language supports the notation for logical flows, binding of software to execution hardware, 
and modal operation of both software and hardware. The modeling notation is structured to sup-
port a number of consistency checks to be developed in a modeling tool set.  

The language defines the following component types:  

 system 

 device 

 thread and thread group 

 process 

 processor 

 bus 

 memory 

 subprogram 

These components represent abstractions of their named entities and interface with each other 
through ports (and port groups) features. A system is modeled, in general, by connecting compo-
nent types within a system implementation. AADL allows for modeling an architecture by sepa-
rating concerns and having multiple views of the architecture (e.g., logical data/control view; exe-
cution platform view; and process and thread view). 
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In the language, properties capture the essential characteristics of components and allow for com-
ponent constraint specifications, documentation of expected (to be implemented) capabilities, exe-
cution specifications, latency values, and so forth. For example, a software component that per-
forms encryption can have a property that specifies the execution time latency (e.g., 3 ms) and 
another property that specifies the type of encryption the component is to perform (e.g., Rivest-
Shamir-Adleman [RSA]16). If needed for the particular modeling effort, additional detailed prop-
erties relevant to the encryption type could be specified (e.g., data [word] size).  

Properties can be defined by an AADL user to extend the core language. Properties capture im-
portant design constraints and architectural specifications that support the mathematical analysis 
of the overall architecture. For example, the latency property specified for a number of compo-
nents can support analysis for computing the overall end-to-end latency of a flow. Properties can 
also capture boundaries on system resource requirements such as memory footprint (in words), 
power consumption, and scheduling protocols. 

5.2 Security Analysis for the Infotainment Example in AADL 

Securing a computer system involves establishing and enforcing security policies such as a re-
quirement that all users must be authenticated. The design of an architecture includes designating 
Policy Enforcement Points (PEPs) such as where authentication is enforced in a data flow. An es-
sential security policy is that untrusted input should not be used when constructing commands that 
will be executed by other components such as a database query (SQL injection) or in JavaScript 
programming instructions that will be executed by an external user’s browser (Cross-Script Injec-
tion). For a database query (SQL injection vulnerability) as shown in Figure 7, the data is un-
trusted as supplied by the user but must be trusted when it reaches the database server. 

 

Figure 7:  Trust 

Security analysis starts with a description of the attack surface. As described in Section 2, it in-
cludes communication channels and access rights. Over time, the automotive attack surface has 
grown from the initial OBD port to now include remote key systems, satellite radios, telematics 
control units, Bluetooth connections, dashboard Internet links and even wireless tire-pressure 
monitors. But the expanded attack surface has not been matched by the addition of security func-
tions to monitor and control access. The threat modeling framework, described in Section 4, 
draws on knowledge of successful attacks to analyze how a proposed design could be exploited 
and analyzed ways that a design or architecture could eliminate or at least reduce such risks. 

 

16  For the definition of RSA, go to http://searchsecurity.techtarget.com/definition/RSA. 

http://searchsecurity.techtarget.com/definition/RSA
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Invalid input of some form is the root cause of many compromises. For many of the automotive 
ones, the format of the input (e.g., input to the braking system) was valid, but the source (e.g., the 
infotainment system) was invalid. 

There were no access controls on the infotainment system’s access to the CAN bus. The architec-
ture for the automotive control system should include a trust boundary as shown in Figure 8. A 
trust boundary defines a segment of an architecture with a requirement that, within the bounda-
ries, access is controlled. Examples discussed in this chapter show how to specify a trust boundary 
using AADL extensions. 

 
Figure 8: Trust Boundary for CAN Bus 

There are several ways to design such a trust boundary for an automotive electronics system. In 
what follows, we focus on the portion of the automotive electronics system related to CC, along 
with the interactions between the CC system and other automotive electronics components.  

Trust could be assumed among the components of a CC system, since they are provided by the 
manufacturer and are not runtime replaceable. Because we assume that there are no security risks 
associated with a network consisting of only CC components, one mitigation tactic is to create a 
sub-network consisting of only those components. We can create such a network by having the 
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gateway component in Figure 8 act as a PEP to block all access to the sub-network from non-CC 
components. This gateway could implement a second sub-network consisting of the infotainment 
system and the display. Such an approach would be sufficiently secure as long as the gateway 
controls all connectivity to the CAN bus. The security problems are more difficult if the CAN bus 
can be accessed wirelessly. For example, a DoS targeting the wireless access point could be used 
to compromise the control system. Should such access be allowed if that risk cannot be suffi-
ciently mitigated? 

 

Figure 9:  Monitoring  

A CC system is just one of the electronic control systems (ECSs) that can be installed. Others in-
clude electronic stability controls, driving monitoring, and maintenance and diagnostic packages. 
For example, an ECS could include a steering-wheel-angle sensor to determine the driver’s in-
tended rotation, a yaw rate sensor to measure the rotation rate of the car, a lateral acceleration sen-
sor, a wheel-speed sensor, and a longitudinal acceleration sensor that might provide additional in-
formation about road pitch and a second source of vehicle acceleration and speed. 
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The architectural issues for security can arise with the use of third-party OBD-port plug-ins with 
real-time access to sensor data or with remote access to stored data such as that used for mainte-
nance. For example, after an accident occurs, the saved record of automobile behavior could be 
analyzed to determine whether the cause was driver or vehicle failure. The system should be de-
signed so that a driver cannot use the OBD port to clear that data store. AADL can be used to 
model a trust boundary between the automotive control system and devices connected to the OBD 
port, and between the control system and other automotive components such as the infotainment 
system as shown in Figure 9. 

5.3 Architectural Models in the Design Process 

Architectural models can be developed in several ways. In this research example, we performed 
the model development process in three phases: (1) Focus, (2) Build, and (3) Analyze, each ex-
plained below.  

5.3.1 Focus Phase 

The goal of the Focus phase is to create a foundation for analysis by identifying elements of the 
model problem and conceptualizing the functionality of the key quality attributes and hardware 
and software components. For our model problem, this exercise is based on understanding secu-
rity aspects of the automotive ECS and how they could be captured and evaluated. Performing 
this activity on a real project would identify a broader set of key quality attributes (e.g., require-
ments for performance, capacity, communication [bandwidth], safety, reliability). These quality 
attribute requirements would form the basis against which the architectural model could be ana-
lyzed, quantified, and evaluated. 

We applied the STRIDE framework to develop a threat model for the system and identify the crit-
ical security mechanisms needed to address the security concerns. In our automobile example, 
many of the security mechanisms rely on authentication, which led us to add an authentication 
service, the associated authentication server hardware, and logical communication channels that 
supported the authentication service and protocol (and that would eventually be mapped to hard-
ware realizations). 

Also in this phase, we developed usage scenarios for exhibiting the operational and logical behav-
ior that would allow us to evaluate how well the architecture met the STRIDE categories. We dis-
cuss two of the usage scenarios in detail later in this chapter. 

5.3.2 Build Phase 

The Build phase was decomposed into three parts: (1) building the initial model, (2) identifying 
gaps when comparing that model to the security concerns developed from the STRIDE frame-
work, and (3) formulating the logic rules to be used in the Resolute model checker.  

The activities in building the initial model for this investigation were the same as for any model-
ing effort. We initially developed a context model for the model problem: a vehicle control sys-
tem with major functional components that included 

 the CC system 

 an infotainment system 
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 stability control 

 the sensors that provided data on the physical vehicle and its environment to the control sys-
tems 

 the associated actuators controlled by the systems 

 system data to be displayed on the infotainment system 

 computing hardware 

 communication physical layers such as Ethernet, CAN bus, and radio (e.g., Bluetooth) 

We chose AADL model components based on the degree of abstraction necessary to capture func-
tionality. For example, sensors were modeled as simple devices because we did not need to model 
the sensors’ execution characteristics. We developed two views of the system: a logical view and 
a deployment view17 to support our analysis goals. We focused on identifying application patterns 
and communications that are typical in real-time control and CPSs to create a model that supports 
analyzing how the architecture would respond to security requirements. 

As we built the model, we realized that crucial elements needed to address security concerns were 
not part of our initial conceptualization, because they were not driven by the primary domain con-
cerns of managing the car’s sensors, actuators, driver controls, and displays. For example, we de-
cided to add authentication functionality to the architecture in the form of a software service that 
performed authentication, the associated execution platform for this service, and logical connec-
tions between the authentication service and components that needed authentication. These com-
ponents were added into their respective views. 

Models for analysis are built with an eye towards validating system requirements. To that end, 
properties are added to the components to specify a constraint (reflected in the requirements) or as 
a placeholder for data that can only be determined when the software is actually executed. In us-
ing the threat scenarios developed from the STRIDE model to generate security requirements, we 
identified properties that were not part of the AADL default property set. To address those proper-
ties, we needed to develop the security-specific properties described in Section 5.5 and determine 
how best to analyze them. 

In some cases, the identified properties cannot be analyzed at the architectural level but serve as a 
constraint for downstream design and implementation, or serve as a placeholder for a property 
value that can be obtained by simulation. An example of the former is specifying RSA as an en-
cryption property defining the algorithm that should be implemented. An example of the latter 
would be specifying an encryption protocol with a latency requirement that could be simulated in 
a communication simulation environment such as OpNet. The values obtained from the simula-
tion could then be assigned back to the appropriate properties. 

Resolute, the AADL tool described in Section 3, can be used to verify a model. Formulation of 
the Resolute rules involve expressing the model components particular to a claim in association 
with the logical relationship between or among components. For example, one rule, expressed in 
English, is that any component reading data marked with a confidentiality level of 1 should also 

 

17  For details on these two views, refer to the AADL reference book [Feiler 2012] or to a more general discussion 
of architecture documentation [Clements 2010]. 
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have a confidentiality level of at least 1. This rule essentially ensures that any component han-
dling data has the same or greater level of confidentiality as the data. The specifics regarding rule 
creation are described in the scenario descriptions later in this chapter. 

5.3.3 Analysis Phase 

The activities in the Analysis phase included ensuring the model had enough detail to meet valida-
tion requirements and using Resolute to determine if the defined security rules were satisfied. The 
example models were reviewed against the scenarios formulated in the Focus phase to ensure they 
were constructed correctly. Next, we instantiated the models and ran the Resolute rule checker. 
The results of Resolute are that either the rules were satisfied or they failed. In either case, but 
particularly if the rule failed, we checked the rule manually for correctness. Normally, various 
what-if analyses would be done in this phase to identify gaps in the application of the rule; for ex-
ample, if a component was annotated with an invalid property. Once correctness is established, 
the rules could be applied to larger models.  

Changing the architecture or specifying other quality attribute properties of a system can often un-
cover related but hidden dependencies that may result in the architecture not meeting the design 
requirements. For example, consider the case where a requirement to increase confidentiality is 
revised, necessitating a change in the encryption policy. Modifying the frequency of key changes 
along with the key size will increase the message size, and that, in turn, may increase bandwidth 
usage and power consumption. Increased computational complexity may increase the worst-case 
execution time, CPU usage, and power consumption. Running the analysis to check for the correct 
confidentiality level on data and software applications may indicate that the requirement is met, 
but running subsequent analysis for end-to-end latency, bus bandwidth usage, and power con-
sumption may show that one or more of the requirements will not be met. Having one architec-
tural model that can capture the properties and their interdependencies helps to discover early in 
the design lifecycle some of the interdependency problems that typically surface during integra-
tion. At that stage, those problems are typically expensive to discover and correct. 

5.4 Model Problem and Associated Architecture 

We created both a logical view of a plausible (but not exhaustive) set of application components 
(Figure 10) and a physical view of the execution platform. These views map each software com-
ponent to a hardware component (Figure 11).  
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Figure 10: AADL Model Logical View of Automotive Electronics 

 

Figure 11:  AADL Model Physical View of Automotive Electronics 

Figure 4 on page 9 is a DFD of a CC system. Many of the components shown in that diagram can 
be mapped directly to either the system or device components as shown in Figure 10 and Figure 
11 above (e.g., Wheel Motion Sensor, Brake Pedal Sensor). In some cases, abstractions are used 
to capture the essence of the objects and their interfaces. For example, the Operator Buttons in 
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Figure 4 are part of the automotive ECS and were represented in the Infotainment User Interface 
that we modeled in AADL. We paid particular attention to the Function Select port that provides 
data as to what function the user wants (e.g., vehicle data, navigation/GPS) and the data associ-
ated with the function. We aggregated the individual signals (data) coming out of the Operator 
Buttons element into a single interface (data port) in this model. A general guideline in architec-
tural modeling is to represent enough detail to capture the essence of the situation being studied to 
perform analysis. If the signals (data) going from one component to another are conceptually sim-
ilar and have no significant quality attribute differences (e.g., different latency goals), those sig-
nals can be combined into a single data element for modeling and analysis purposes and then be 
shown as a single connection to another component in the architecture diagram.  

Figure 10 represents a component and connector view of our model. The intent of this diagram is 
to determine the interfaces, the data associated with the interfaces, and the logical interaction 
among components. Most of the threats associated with the STRIDE categories are based on some 
entity gaining access to the system via existing hardware interfaces, and the malicious activities 
are largely centered on accessing and manipulating data. Many of the deterrents to attacks involve 
detection of data manipulation or data protection via access protection or encryption. Hence the 
component and connector view is a key to reasoning about, representing, and analyzing the archi-
tecture. 

We found it necessary to add components in our model to capture the notion of Internet devices, 
diagnostic devices (a diagnostic instrument via the vehicle’s OBD interface), or external threats. 
These devices are not permanently connected to the vehicle but need to be represented in a static 
system view to provide a source of threats and an interface through which they interact with the 
rest of the system. AADL is a modeling and specification language, not a simulation language, so 
the existence of objects dynamically joining the system must be represented via static objects. We 
can then analyze the physical, logical, and data exchanges among such objects.  

Figure 11 represents a physical view of the model problem. This view shows the processors, 
buses, and connection to the buses that represent the computing platforms and connection topol-
ogy for the components of our model problem. For example, CruiseControlCPU contains connec-
tions to the CAN bus and the OBD connector (OBD2) used by technicians to read and write diag-
nostic information for the vehicle. Wireless devices connect to the system via radio links. Both 
communication mediums can be represented by the AADL Ether bus component that represents 
the air and the corresponding Bluetooth radio. The Ether bus represents the medium through 
which any Internet of Things (IoT) device such as a smartphone or iPod would attempt a connec-
tion. As part of any architectural design and for review and analysis, it is important to capture in-
teractions at this level to ensure that the necessary protocols are in place. For example, a data en-
cryption technique that is mapped to a software application must also be mapped onto a secure 
communication protocol as part of the (hardware) bus model specification. 

The physical view of the system is not technically a deployment view, but in this example, the ap-
plication components were bound to the processor using the AADL binding properties and a sim-
ple similar-name binding approach. For example, the CruiseControl system component was bound 
to the CruiseControlCPU processor, and the StabilityControl system was bound to the Stabil-
ityCPU processor, essentially making the physical view a deployment view. To keep the diagram 
uncluttered, this binding is not shown in Figure 11. 
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The logical and physical views (which are two views of the same system) allow designers and an-
alysts to focus on security concerns specific to that view. Looking at a physical connection/com-
munication view of the system reveals the paths by which hardware components interact. Note 
that security design decisions can affect other system quality attributes such as performance, relia-
bility, and so forth. From a holistic system perspective, it is important to qualitatively understand 
the implications of software and hardware security design decisions with respect to other system 
quality attributes. For example, changing an encryption technique may adversely affect bus band-
width. Using AADL to model various perspectives from a single model allows concurrent analy-
sis of other quality attributes to ensure that the overall system requirements are being met. 

5.5 Analysis Options for Our Example 

Having developed an understanding of the threat types and associated semantics for the infotain-
ment example, we needed to determine the best approach to both capture and analyze the security 
characteristics to ensure consistency of the security characteristics across a system model.  

For some attack types, certain new architectural functions, possibly packaged as independent 
components, had to be specified. For example, we needed a software component that would func-
tion as an authentication server. Secondly, the external characteristics we needed to consider the 
security properties would have to be represented as AADL user-defined properties.  

Designating the architectural components that provide authentication services would have to be 
done manually, by a person performing an architectural review. Checking for correct property-to-
component associations is handled by the syntax of the property definition language in AADL. 
For example, when a property is defined, a list of the AADL architectural elements to which it ap-
plies can be specified. Checking for matching properties across components, across the system, or 
over the component hierarchy is more difficult, but modeling checking tools can be used.  

For example, a component whose output has a confidential level of high can only communicate 
with components that can accept that level of confidentiality. We used Resolute to verify such 
claims. Next, we describe the syntax and claim formulation using examples specific to our do-
main, along with an issue we discovered.  

5.6 Modeling and Analyzing Security 

The architectural model documents system-wide design decisions and constrains the detailed de-
sign and implementation of system components. Typical design constraints include the input and 
output associated with a component (e.g., the interface descriptions), data types, connections 
among components, the mechanisms and protocols by which data and control are exchanged, the 
use of shared resources, and so forth. The components must, of course, comply with the architec-
tural specifications for the designed properties to hold in the implemented system.  

This is the case for architecture design, implementation, and analysis in general. To determine 
whether security requirements are being met, the model must be annotated to capture security 
characteristics so that the system can be analyzed appropriately. In our approach, we developed 
security properties based on security threat scenarios as described in Section 4 and constructed 
logic rules within Resolute that can be run against the model to verify that these security proper-
ties are satisfied by the architecture. 
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A number of known compromises exploited the connection between the entertainment system and 
the CAN bus shown in Figure 4. As described in Section 5.2, we can create a trust boundary to 
mitigate this threat. Assume that the CC components could be compromised and, in particular, 
that a component is tampering with the speed sensor data. 

A tactic to address this problem is to specify authentication/authorization mechanisms in the ar-
chitecture, to associate group memberships with vehicle components, and then to ensure that data 
can only be accessed by members of the appropriate group, given appropriate permissions. 

Here are the steps necessary to develop and evaluate security characteristics against a model ex-
pressed in AADL: 

1. Ensure that the necessary architectural components are represented in the model. 

2. Express the conditions that must exist to ensure the architectural components meet a prede-
fined security claim (rule). 

3. Define the properties that capture the characteristics of the security rule to be verified. 

4. Annotate the model problem with the security property (or properties) for checking the secu-
rity rule. 

5. Compose the security rules in the Resolute model checker. 

6. Run the Resolute rule checker on the model implementation, and observe the outcome of the 
rule evaluation. 

Next, we walk through our realization of these steps for two scenarios that cover the most im-
portant security requirements for the CC infotainment center example: counteracting EoP and es-
tablishing groups of trusted components. 

5.7 Scenario 1: Architectural Analysis to Counteract EoP Attacks 

5.7.1 Architecture of the Original System 

In Appendix B, we provide the complete model problem constructed for this work. In this section, 
we describe a subset of the components we can use as a basis for our scenarios. We choose a sub-
set so that it is small enough to discuss and graphically display in this description. The subset of 
the vehicle electronics that we present here includes sensors (WheelRotation, BrakePedal), actua-
tors (ThrottleActuator), and control application software (CC and infotainment). The CC system 
reads vehicle speed from the wheel rotation sensor and compares it to a speed setpoint. Then, the 
CC system outputs a control variable to the throttle actuator that is proportional to the delta be-
tween the desired speed and vehicle speed. The brake pedal system also communicates its status 
to the CC system. Using the brake pedal causes the CC system to reduce the throttle signal to 
zero. The infotainment system has multiple modes of operation including one in which it displays 
various vehicle state variables such as the vehicle speed. The graphical representation of the logi-
cal view (e.g., component and connector view) is shown in Figure 12. 



 

CMU/SEI-2015-TR-014 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY  34  

Distribution Statement A: Approved for Public Release; Distribution is Unlimited 

 

Figure 12:  Component and Connector View of a Subset of the Model Problem 

5.7.2 Architecture of the System Including Authentication 

To provide support for tampering prevention, two techniques are employed. The first is an archi-
tectural change that ensures every component is authenticated before it can provide or acquire 
data in the system. In Section 5.7.3, we discuss the second technique, which employs the concept 
of data access privilege. The details of how the authentication works are not described in the ar-
chitecture description. However, the components are annotated with user-defined properties that 
specify authentication properties. A representation of the authentication server and associated 
communication connections is shown in Figure 13. 

 

Figure 13:  Subset of Vehicle Control System with Authentication Server 

Figure 13 shows the logical connections between the authentication server and the components 
with which it communicates. As part of the architectural description, is it necessary to specify in-
formation about the server that can be used for evaluating system security, such as the contents, 
type, units, associated encryption techniques, and the directionality of the communication. A cor-
responding physical view of this system would show the hardware communication paths, execu-
tion platforms, and the mapping of the software functionality to them. To these components, the 
architect would specify bus communication protocols, bus bandwidth capacity, the budget of each 
communication activity, and so forth. Such specification would allow the assessment of security 
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measures together with the cross-cutting effects of this security, such as performance conse-
quences. 

5.7.3 Semantics of Access Privilege 

A second technique employed to mitigate EoP is access privilege. Given a piece of data, we might 
want to constrain how that data can be used and which components can access it. We describe a 
data access design modeled after the UNIX file protection scheme where files contain access 
mode designations that specify if the data is read-only, write-only, modifiable (read-write), or ex-
ecutable (a command or series of commands). Each of these modes has an associated group acces-
sibility that indicates which groups can access the data the way the mode allows—that is, which 
groups can read the data; write it; read and write it; or execute it. Determining, in the architecture, 
who can access which data is important in providing insight into overall system security. In subse-
quent sections, we show how this access model can be specified and analyzed in AADL. 

5.7.4 Definition of Properties for Access Right Privileges 

We need to translate the access model described above into analyzable pieces of information that 
can be placed into an AADL specification. We created a user-defined AADL property named Ac-
cessMode that specifies one of the following enumerations: r for read access, w for write access, 
rw for read-write access, and x for execution permission. Associated with that data is some stipu-
lation about which entities can access that data. For example, a vehicle speed sensor can write to a 
global data area where multiple control systems in a vehicle can read the vehicle speed. The data 
could be tagged with an access property of r and a list of subsystems that are allowed to read it; 
for example, the CC system. A malicious application could attempt to write to the vehicle speed 
location to overwrite the real speed value with a much lower value. That lower value would, in 
turn, cause the CC component to increase the amount of fuel to the throttle actuator/fuel injectors, 
resulting in rapid acceleration of the vehicle to reach a high speed. Hence, in this example, we 
need to specify that only certain applications can write to the speed location and only certain ones 
can read the speed data. To accomplish that specification, we created another user-defined prop-
erty named AccessGroup that would contain the list of applications that can access the data. 

Finally, we created a user-defined property named AccessProtection that is a list of records con-
taining the AccessMode and the AccessGroup properties. 

We formally specify the AccessProtection, AccessMode, and AccessGroup properties in a prop-
erty set description within our model as follows: 
property set Security_Trust is 

 
-- properties to support documenting and analyzing security  

-- Added property that supports access mode of data 

 
 AccessProtection: list of record ( 

  AccessMode: enumeration (r, w, rw, x); 

  AccessGroup: enumeration (CC, ABS); 

 ) applies to (all); 

 
end Security_Trust; 



 

CMU/SEI-2015-TR-014 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY  36  

Distribution Statement A: Approved for Public Release; Distribution is Unlimited 

The user would then annotate a specific data type with the AccessProtection properties in the fol-
lowing way: 
data VehicleSpeed 

properties 

     Security_Trust::AccessProtection => ([ 
      -- the Cruise Control has R access 

      AccessMode => r; 

        AccessGroup => CC; 

      ], 
      -- the ABS has read write access 

      [AccessMode => rw; 

      AccessGroup => ABS; 

      ]); 
end VehicleSpeed; 

In this example, the CC system can read and write VehicleSpeed data, but the anti-lock brake sys-
tems (ABS) can only read it. 

From the AADL perspective, defining properties in a record is valid and seems to be the best way 
to express the AccessProtection properties Since Resolute can’t parse a record for individual prop-
erties, we recast the user-defined properties as AADL enumerations. We believe the general con-
cept would be captured by a single record containing both the AccessMode and AccessGroup 
properties. 

The revised property set becomes 
 AccessModeNew: enumeration (r, w, rw, x) applies to (all); 

 AccessGroupNew: enumeration (cc, abs) applies to (all); 

And the revised example now becomes 
data VehicleSpeed 

properties 

     -- the Cruise Control has Read access 

     Security_Trust::AccessModeNew => r; 

       Security_Trust::AccessGroupNew => CC; 
end VehicleSpeed; 

Given these properties, we now need to formulate the Resolute rules that will be used to check the 
architecture to ensure that the data can be accessed properly and only by the allowed components.  

5.7.5 Development of Resolute Claims for Access Privilege Compliance  

Earlier in this section, we informally described some guidelines about how data can be accessed 
and by which components. We need to revisit those guidelines in the context of AADL compo-
nents and their associated semantics so the checks can be explicitly formulated in Resolute. Recall 
that components interact with other components in AADL through event and data ports. Ports pro-
vide the interface specification of connection characteristics (e.g., queued, not queued) and, op-
tionally, the data that is communicated via the port. Consider a simple example where a WheelRo-
tationSensor component with an output data port is connected to the input port of a CC 
application. The semantics of this configuration is that the WheelRotationSensor writes a Vehi-
cleSpeed data value to the output port that is then read via the input port of the CruiseControl 
component. At this level of specification, the method of data exchange can be ignored. The 
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CruiseControl application, through its input port, will read the vehicle speed data. The method of 
the component’s data access is specified by the directionality of the port. The semantics of the 
port specifier in AADL allows for ports to be specified as output, input, or bidirectional. By defi-
nition, a component that has an input data port can only read that port. Similarly, a component 
that has an output port can only write to that port. Components that have bidirectional ports can 
both read and write to that port. From this observation, we can formulate a rule that will check the 
AccessModeNew of data attached to a port. Data associated with an input port should have read 
access, data associated with output ports should have write access, and data associated with bidi-
rectional ports should have read-write access. (We will defer checking and specifying execution 
privilege until later in this section.) 

To check that the architectural description satisfies the design intention, we write claims in Reso-
lute that ensure components have input, output, or bidirectional data ports and that data specified 
with those ports have the correct AccessModeNew property. Resolute rules are contained in a sep-
arate AADL package. In our case, the package name is SecurityCase, and the text for the three 
claims is shown below. 

package SecurityCase 

 -- Claim to check read privilege on incoming data 

 -- making use of the fact that an incoming port with data is a feature of 

the component and that 

 -- component will be reading that data 

  
SC_ReadPrivilege(self:component) <= 

 **  "Read privilege is matched on component " self ** 
 
 forall (comp : component) (f : features (comp)). ((f instanceof 

data_port) and (direction(f) = "in") and has_type(f)) 

 =>  

-- if (property (type (f) , SecurityProperties::AccessProtectionNew) = "r") 

then true else false 
 property(type(f), SecurityProperties::AccessProtectionNew) = "r" 

   

 -- Claim to check write privilege on outgoing data 

 -- making use of the fact that an out port with data is a feature of the 

component and that 

 -- component will be writing the data 
 SC_WritePrivilege(self:component) <= 

 **  "Write privilege is matched on component " self ** 

 forall (comp : component) (f : features (comp)). ( (f instanceof 

data_port) and (direction(f) = "out") and has_type(f)) 

 =>  

-- if (property (type (f) , SecurityProperties::AccessProtectionNew) = "r") 

then true else false 
 property(type(f), SecurityProperties::AccessProtectionNew) = "w" 

 

 -- Claim to check read write privilege on incoming data 

 -- making use of the fact that an in-out port with data is a feature of 

the component and that 

 -- component will be reading and/or writing the data 

 
 SC_ReadWritePrivilege(self:component) <= 
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 **  "Write privilege is matched on component " self ** 

 forall (comp : component) (f : features (comp)). ( (f instanceof 

data_port) and (direction(f) = "inout")) 

 =>  

 if ((property (type (f) , Security_Trust::AccessProtectionNew) = "w" )=> 

true) or  

 ((property (type (f) , Security_Trust::AccessProtectionNew) = "r" ) => 

true) then true else false 

  
end SecurityCase; 

Claim SC_ReadPrivilege checks that, for any input port with an associated data type, the data has 
an AccessModeNew property of r. Claim SC_WritePrivilege checks that, for any output port with 
an associated data type, the data has an AccessModeNew property of w. In a similar fashion, 
claim SC_ReadWritePrivilege checks any bidirectional port to ensure that the associated data type 
has an AccessModeNew property of rw. 

Accommodating the AccessModeNew that indicates execution is a bit more challenging. The se-
mantics of executing data means that the “data” could comprise a series of instructions (possibly 
with self-contained data) that are to be executed. In such cases, there is something that interprets 
the instructions as commands. For example, in the UNIX/LINUX operating system, the shell is a 
command interpreter. It parses each command keyword, checks if the command matches a name 
in its command library and, if it does, loads the command image into memory and executes it. At 
the assembly language level, the interpreter could be a small program that places the command 
data into memory and then forces the CPU to begin execution at the address where the command 
data is located (e.g., load the instruction register with the first word of the data and execute it). In 
either case, whatever mechanism is implemented to force the CPU to fetch/decode/run a com-
mand is contained within the system type abstraction. It may or may not be explicitly modeled. A 
reasonable way to capture this capability is to create a user-defined property named CmdExecu-
tion that can be set to true if a command execution capability is intended. A rule would check if 
the AccessModeNew property of data associated with an input port is x and then check the com-
ponent’s CmdExecution property to see if it is true. If so, the claim would be proven. The Reso-
lute formulation of the claim to check execution privilege is shown below: 
 -- Claim to check execution privilege on incoming data 
 -- If data being read by component is a command, additionally check 
that component has 
 -- Command Execution capability, set by CmdExecution Property 
  
 SC_ExecutionPrivilege(self:component) <= 
 **  "Execution privilege is matched on component " self ** 
 forall (comp : component) (f : features (comp)). ((f instanceof 
data_port) and (direction(f) = "in")) 
 =>  
 if ((property (type (f) , Security_Trust::AccessProtectionNew) = "x") 
 and 
 (property (type (f), Security_Trust::CmdExecution) = true)) then true 
else false 

Having created user-defined properties for EoP attacks and the Resolute rules to check compli-
ance to the rules in the architecture, we can now illustrate the rules’ use on a subset of our model 
problem. 
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5.7.6 Architecture Components Annotated with Properties 

So far, we have identified the attributes of the AADL components that we need to check for, en-
coded them into a user-defined property set, and formulated the Resolute claims to check all the 
components in the architecture. The next step is to annotate the components of our model problem 
with the appropriate properties, specify the claims we want to verify, and run the Resolute model 
checker.  

First, we look at data components and decide which values from the AccessModeNew and Ac-
cessGroupNew properties each data component in the system should have. Then, we specify the 
data with the port classifier for each component in the system. Where appropriate, we specify the 
CmdExecution property for components that are intended to have command execution capability. 
Figure 3 on page 8 represents the subset of components used in the system ExampleCC: 
WheelRotationSensor, ThrottleActuator, and the CruiseControl system. The following AADL text 
depicts the VehicleSpeed data and the Throttle Position data associated with the appropriate ports. 
We show the complete model in Appendix C. 

system BrakePedal 

 features 

  Brake: in out data port BrakeData; 

   

end BrakePedal; 

 
system ThrottleActuator 

 features 

  Throttle: in data port ThrottlePosition; 

end ThrottleActuator; 

 
system CruiseControl 

 features 

 VSpeed: in data port VehicleSpeed; 

 Throttle: out data port ThrottlePosition; 

 Auth: in out data port AuthData; 

    BrakePedal: in data port BrakeData; 

    properties 

     Security_Trust::AccessGroupNew => cc; 
     Security_Trust::CmdExecution => true; 

end CruiseControl; 

 

 
system Infotainment 

 features 

 VSpeed: in data port VehicleSpeed; 

 Auth: in out data port; 

end Infotainment; 

 

 
system ExampleCC 

end ExampleCC; 

 
system implementation ExampleCC.impl 

 subcomponents 



 

CMU/SEI-2015-TR-014 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY  40  

Distribution Statement A: Approved for Public Release; Distribution is Unlimited 

  WRS: system WheelRotationSensor; 

  CC: system CruiseControl; 

  TA: system ThrottleActuator; 

  Info:system Infotainment; 

 BP: system BrakePedal; 

 connections 

  c1: port WRS.VehicleSpeed -> CC.VSpeed; 

  --c4: port CC.Throttle -> TA.Throttle; 

  c5: port WRS.VehicleSpeed -> Info.VSpeed; 

  c3: port BP.Brake -> CC.BrakePedal; 

 properties 

  Security_Trust::CmdExecution => true; 

annex Resolute {** 

 prove (SC_ReadPrivilege(this)) 

 prove (SC_WritePrivilege(this)) 

 prove (SC_ExecutionPrivilege(this)) 

**}; 

5.7.7 Running the Resolute Model Checker 

Running the Resolute model checker within OSATE18 requires that the model be instantiated. 
Resolute walks the instantiated model hierarchy, looking for components specified in its claims 
and then checks those components according to the logic encoded in the claim. 

In this example, we execute the read, write, and execution privilege checks over the entire model. 
For the read privilege, we want to ensure that data being read by the CC system has the read mode 
specified and likewise for the write mode. For example, if the command execution check deter-
mines that the data is specified as executable, does the CC system have that capability? Figure 14 
shows the results of running the checks. 

 

Figure 14:  Resolute Results 

The read and write privilege checks both failed, but the execution check passed. The AccessMo-
deNew property was set to w on the incoming port for VehicleSpeed data and r for the ThrottlePo-
sition. As a result, both checks failed. The BrakePedal position data was marked as executable, 
and the CC system’s execution property was set to true, so the claim passed. While this example 
shows the functional viability of the rule checking, it also shows that this reduced scope is not suf-
ficient for adequately specifying and checking the entire system. Brake data could potentially go 
to many different components, and the access modes for that data must be specified for all those 
components. 

 

18  OSATE is an open-source tool platform that provides end users with a complete text editor and a simple analy-
sis tool for AADL and provides developers with full support for the AADL meta-model on an Eclipse platform. 
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5.8 Scenario 2: Ensuring the Level Among Components 

To avoid unnecessary clutter in this description, we use only small subsections of the entire model 
and show how all the steps apply. When the Resolute engine is run, it traverses the entire model, 
evaluating the expressed claims on every model component. 

5.8.1 Express the Conditions for the Security Rule to Be Developed 

Consider the case where one component, the producer, has a logical connection to another compo-
nent, the consumer. The producer has a port interface specification where data is made available 
to the input data port of the consumer. A trust boundary exists between the producer and con-
sumer. Two conditions must be satisfied for the model to represent the desired trust: 

1. Both the producer and consumer components must belong to the same group. 

2. The trust level of the consumer (receiving) component’s data must be at the same or greater 
level of trust as the producer (sending) component’s data. 

Both of these rules can be written as Resolute claims and checked in the architecture. 

5.8.2 Define the Properties in AADL for Trust-Level Assurance 

Following the development of Scenario 1, we can capture the notion of group membership and 
trust level in the form of AADL properties. We must specify the properties in a property set de-
scription within our model, as done in the following code. 

property set Security_Trust is 

 
-- properties to support documenting and analyzing trust boundaries in a 

system 

-- Trust level {Low, Medium, High} - initial cut at trust levels 

-- Constants defined for our TrustLevel Property, with the semantics 

-- that the higher the value, the greater the trust level 

Low : constant aadlinteger => 0; 

Medium : constant aadlinteger => 1; 

High : constant aadlinteger => 2; 

 
-- Definition of the TrustLevel property 

TrustLevel: aadlinteger applies to (all); 

 
-- Specify the allowable groups in the GroupMembership property 

  GroupMembership:  enumeration (StabilityControl, 

CruiseControl,DriverDisplays, DriverControls) applies to  

        (device, system, process, thread, processor,memory,bus); 

end Security_Trust; 

The Security_Trust property set describes two properties that can be applied to the architecture 
components. We define one property, TrustLevel, of AADL integer type that can be applied to 
any AADL component. To capture the notion of levels of trust, we define numeric constants—
Low, Medium, and High—that convey degrees of trust. The numeric relationship among the prop-
erties will be defined in the Resolute claim discussed later in this section. 
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The second property we define is GroupMembership, an enumeration type consisting of compo-
nents in our model problem, specifically StabilityControl, CruiseControl, DriverDisplays, and 
DriverControls.  

5.8.3 Developing and Annotating the Model Problem for Trust-Level 
Compliance 

The textual model below shows how we applied these properties to our model problem. 

data WheelRotationSpeed 

   properties 

     Security_Trust::TrustLevel => Security_Trust::med ; 
end WheelRotationSpeed; 

 
data WheelRotationSpeed2 

   properties 

     Security_Trust::TrustLevel => Security_Trust::low ; 
end WheelRotationSpeed2; 

 

device WheelRotationSensor   

  features 

    output: out data port WheelRotationSpeed 

  properties 

    Security_Trust::TrustLevel => Security_Trust::low; 

    Security_Trust::GroupMembership => CruiseControl; 
end WheelRotationSensor; 

 
system CruiseControl 

  features 

    input: in data port WheelRotationSpeed; 

   properties 

    Security_Trust::TrustLevel => Security_Trust::low; 

    Security_Trust::GroupMembership => CruiseControl; 
end CruiseControl; 

This model contains two data components, WheelRotationSpeed and WheelRotationSpeed2. The 
intention is to represent two data types with the only difference being the values of TrustLevel, 
which will become significant shortly. 

Two component types are defined as well: the WheelRotationSensor device type and the Cruise-
Control system type. WheelRotationSensor contains an output port with the associated data type 
WheelRotationSpeed, and the WheelRotationSensor device has TrustLevel and GroupMember-
ship properties associated with it. The CruiseControl system type has an input data port containing 
WheelRotationSpeed data. In the composition of the model, the intention will be to connect the 
output data port of the WheelRotationSensor to the input data port of the CruiseControl system. 
Both the WheelRotationSensor device type and the CruiseControl system type contain the appro-
priate GroupMembership property. 

5.8.4 Compose the Resolute Rules to Verify the Trust Level 

To check that the architectural description satisfies the design intention, we write claims in Reso-
lute that will ensure components connected together with the specified trust levels meet the rules 
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described above. Resolute rules are contained in a separate AADL package called SecurityCase. 
The text of this package is shown below. 

package SecurityCase 

-- Contains the Resolute Claims for Security Trust model 

public 

annex Resolute {** 

   

--  
-- Rule SC1 checks that the data component on sending side of a logical 

connection has a trustlevel equal to or greater than that of the data 

component of the receiving component. 

--  

 SC1(self:component) <= 

 **  "Confidentality security level is met on " self ** 

 forall (c1 : component) (conn : connection) (c2 : component) . (connected 

(c1, conn, c2)) and (has_property (c1, Security_Trust::TrustLevel)) and  

(has_property (c2, Security_Trust::TrustLevel)) 

 => 

 property (c1, Security_Trust::TrustLevel) <= property (c2, 

Security_Trust::TrustLevel) 

  
-- Rule SC1a checks if the components on either side of the logical 

connection have the same Group Membership 

 SC1a(self:component) <= 

 **  "Group membership criteria is met " self ** 

 forall (c1 : component) (conn : connection) (c2 : component) . (connected 

(c1, conn, c2)) and (has_property (c1, Security_Trust::GroupMembership)) and  

(has_property (c2, Security_Trust::GroupMembership)) 

 => 

 property (c1, Security_Trust::GroupMembership) = property (c2, 

Security_Trust::GroupMembership)  

 
-- Rule SC1s is the logical and of security rules SC1 and SC1a e.g. that 

each component belongs to the same group and the data confidenatlity is 

maintained between the components. 

 SC1c(self:component) <= 

 **  "Composite Check_ " self ** 

 SC1(self) and SC1a(self)  

**};  
end SecurityCase; 

We use the claim composition capability of Resolute and write two rules to check each sub-condi-
tion (SC1 and SC1a) and then combine the rules into one larger rule (SC1c). Rule SC1 verifies 
that two connected components must be in the same group. Rule SC1a verifies that the trust level 
of the data associated with the output data port of one component is equal to or less than the input 
data port of the other data component. For example, the data trust level of the writing component 
must be less than or equal to the trust level of the reading component’s data. Rule SC1c checks 
that both rules are true for a valid trust-level specification. 
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5.8.5 Compose an Implementation of the Model and Run Resolute 

In the preceding sections, we annotated the architectural components in our model with the 
TrustLevel properties so the TrustLevel rule SC1c could be evaluated. To provide the context for 
rule evaluation in AADL, we must first compose our components into the logical structure of our 
model and then run the Resolute rule engine over that model. Below is the AADL model that con-
tains the specification of the WheelRotationSensor device communicating the WheelRotation-
Speed to the CruiseControl system (the software component that reads the wheel rotation speed 
and compares the speed to some predetermined speed setpoint). 

system CompleteSystem 

end CompleteSystem; 

 
system implementation CompleteSystem.Impl 

  subcomponents 

    WheelSpeed: device WheelRotationSensor; 

    CruiseControlApp: system CruiseControl; 

  connections 

    c1: port WheelRotationSensor.WheelRotationSpeed -> 

CruiseControlApp.CruiseControl; 
annex Resolute {** 

 prove (SC1c(this)) –- Prove the complete TrustLevel Rule 

 prove (SC1(this))  -- For illustrative purposes, prove each subrule 

 prove (SC1a(this)) 

**}; 
end CompleteSystem.Impl; 

Figure 15 shows what our model looks like graphically.

 

Figure 15:  AADL Model Showing WheelRotationSensor Connected to CruiseControl 

The subcomponents sub-clause above contains the components to be contained in the implemen-
tation of our model. The connections sub-clause specifies the connections between each of the 
specified subcomponents. The annex Resolute {**  **} sub-clause contains the names of the Res-
olute rules to be checked against the implementation; for example, CompleteSystem.impl together 



 

CMU/SEI-2015-TR-014 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY  45  

Distribution Statement A: Approved for Public Release; Distribution is Unlimited 

with the keyword prove. The keyword this sets the context for the evaluation, specifically the im-
plementation that contains the Resolute annex, CompleteSystem. In this example, the rules to 
check are SC1, SC1a, and SC1c, contained in the SecurityCase package. 

As mentioned earlier, rule SC1c is the conjunction of rules SC and SC1a. In the current version of 
OSATE (2.0.9), running the check on all three rules produces the output shown in Figure 16. 

 

Figure 16.  Resolute Rule Check Results Showing TrustLevel Rule SC1c and Its Two Component Sub-
Rules, SC1 and SC1a 

Since SC1 and SC1a both pass, SC1c should also pass. We can now change the GroupMember-
ship of WheelRotationSensor to ABS, which will cause the rule check to fail, as shown in Figure 
17. 

 

Figure 17:  Resolute Rule Check Results Showing the Failing of the TrustLevel Rule SC1c and SC1a 
and the Passing of SC1 

The passing of the rules indicates that the architectural specification meets the conditions to en-
sure the TrustLevel rule between the two components. This means that the implementation of the 
actual software should contain TrustLevel and GroupMembership parameters with the correct val-
ues assigned to each. 

Now it is straightforward to extend this small example to a chain of components that represent the 
entire logical data flow; for example, WheelRotationSensor – CruiseControl – ThrottleActuator 
and assigning GroupMembership and TrustLevel to the CruiseControl output data and the Throt-
tleActuator input data. Applying the Resolute rule checks would evaluate each interface connec-
tion along the chain and report the results accordingly. 
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5.9 Summary 

As our example shows, the use of user-defined properties can effectively express key security 
characteristics of a system. Annotating a model component represents a constraint on downstream 
development activities. We specify the characteristics that implementations must contain so that 
the security approach can be verified over the entire architecture. The properties have values that 
can be checked across the architecture to ensure that a security concern can be validated. This 
check implies that the implementation must properly implement these properties. 

For our example, Resolute provided an effective solution to the analysis capability. The issue of 
not being able to understand properties in a record structure is a limitation that affected the useful-
ness of the approach, but we did find an acceptable workaround. 

Given that the security characteristics can be captured and analyzed allows us to explore the ef-
fects of the interaction with other quality attributes across the entire system well before imple-
mentation and integration. 
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6 Conclusions 

In this report, we have shown how selected security properties can be modeled architecturally us-
ing AADL. We exemplified this process in a cyber-physical example—that of automotive elec-
tronics—because it is a timely and relevant example with enormous real-world consequences. Fu-
ture work is needed to show how additional threat categories can be addressed using AADL. 

As we have learned, doing this architectural security modeling has several concrete benefits. First, 
it guides an architect to think in terms of system-wide security properties and how they can be es-
tablished, expressed, and maintained. This activity actually changes the process of design, which 
needs to begin with threat modeling—in our case, using the STRIDE framework. The designer 
uses the threats identified in the threat model to guide the architect in establishing design strate-
gies to mitigate the risks imposed by the threats. This mitigation may involve the creation of new 
components (such as an authentication service), new connections, and new properties. By model-
ing the architecture in this way, we can ensure that any decisions made are consistent with the 
system-wide strategies that have been designed.  

Second, this approach provides a framework for checking that such properties are maintained dur-
ing system maintenance and evolution. This checking, of course, assumes that the architectural 
model and the implementation are maintained in lock-step. That is, when code changes are made, 
any architectural implications of those changes are reflected in an updated AADL model, and if 
the model changes, we can be immediately alerted to any modifications that must be made in the 
implementation. 

However, this approach is not a panacea. Next we discuss some of the limitations associated with 
architectural modeling for security. 

6.1 Limitations 

Scenarios 1 and 2 in Section 5 used security policies, as specified in the AADL model, to guard 
against the identified security threats. AADL modeling provides an effective way to document 
and verify security policies across a system or indeed across multiple systems. But because the 
AADL model does not validate that those policies provide sufficient security, we need to inde-
pendently determine whether the enforcement of those polices sufficiently secures the system, 
given its planned usage. The problem here is not with AADL, or with any such modeling ap-
proach, but rather with the limitations of modeling the adversarial aspects of security. Attackers 
often use the preliminary phases of a compromise to build their own model of a site’s security ar-
chitecture. Attackers look for ways to invalidate the very assumptions underlying the security ar-
chitecture. For example, security attacks such as an application buffer overflow or successful 
phishing of a user can allow an adversary to obtain network privileges without authentication. 

Furthermore, the verification offered by tools such as AADL (and its associated tools, such as 
Resolute) does not show that the specifications provide the desired level of security assurance. 
For example, an architect could claim that a component sufficiently verifies input data to elimi-
nate the risk of a SQL injection. However, such a claim is difficult to validate for SQL injections, 
and alternative mitigations might in fact have higher levels of assurance. 
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We can improve security (and reliability) by tolerating an event at runtime or by employing de-
sign strategies that reduce or eliminate the possibility of such an event. The AADL appendix on 
fault modeling enables an architect to specify how a system detects, reports, and responds to 
runtime errors [Delange 2014]. Fault tolerance for hardware failures can draw on well-understood 
mitigations such as the use of redundant servers. We have much less experience with tolerating 
software defects. We may be able to detect a software error, but recovery strategies might depend 
on distinguishing an error caused by normal but unanticipated conditions from one where the fail-
ure was orchestrated by an adversary. Currently improved security and software reliability depend 
much more on fault prevention than fault tolerance. 

 

 



 

CMU/SEI-2015-TR-014 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY  49  

Distribution Statement A: Approved for Public Release; Distribution is Unlimited 

Appendix A:  Threat Modeling Using the Elevation of Privilege 
Game 

Elevation of Privilege (EoP) is a card game designed to draw people who are not security practi-
tioners into the craft of threat modeling [Shostack 2012]. Because it does not require detailed de-
sign, we found it useful to generate a set of potential threats faced by our model system. This ap-
pendix provides an overview of the game, describes our experience using it, and provides some 
observations about the process. 

About the Game 

We provide a brief summary of the game here; Shostack describes it in more detail [Shostack 
2012]. The game consists of 74 playing cards, plus an additional 2 instruction cards, 6 reference 
cards, a flowchart card, and an “about” card. The playing cards are in six suits, each representing 
one of the concepts in the STRIDE model: Spoofing, Tampering, Repudiation, Information Dis-
closure, Denial of Service, and Elevation of Privilege. Each card suggests a threat that might af-
fect the system being modeled. Suits are arranged in approximate order from least to most impact-
ful threats, with the ace cards representing new and novel threats invented by the players. The 
only prerequisites for playing the game are (1) a diagram of the system to be modeled, (2) a way 
to track the problems identified (an easel pad and markers worked well for us), and (3) a deck of 
EoP cards. 

Playing the Game 

We were interested in identifying threats relevant to the automotive system that forms the guiding 
example of this report. In the context of the game, we used the diagram shown in Figure 18 on 
page 50 to guide the discussion. Note that while we wanted to reflect a sufficiently realistic sys-
tem, we were not attempting to describe any specific existing design. Nor do we claim any exper-
tise in automotive system engineering. Thus, the diagram is intended to be a representative design 
rather than a specific real-world one. See Miller and Valasek’s work for more detailed system de-
scriptions [Miller 2013, 2014, 2015]. 



 

CMU/SEI-2015-TR-014 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY  50  

Distribution Statement A: Approved for Public Release; Distribution is Unlimited 

 

Figure 18: Model Automotive Cyber-Physical System 

We played the game twice, with two distinct groups of five players: 

1. The first game was played by vulnerability analysts experienced in discovering, identifying, 
and analyzing software vulnerabilities. 

2. The second game was played by security and software engineering researchers with a 
broader scope of experience than the first-game players. 

The diagram evolved somewhat during the game play, as it became evident that our initial rough 
sketch lacked salient details. That evolution in itself, was a useful result of playing the game: We 
refined our model of the system based on our reasoning about its security properties. 
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Tables 1 and 2 show the cards played, along with a summary of the threat associated with each. 

Table 5: Cards Played in First Game (by Vulnerability Analysts) 

Card Threat 

3T Entertainment system fails to validate SSL certificates. 

6T Attacker can overwrite entertainment system code. 

8T Tire pressure wireless link has no integrity checks so packets can be injected onto CAN bus. 

JT Given compromised entertainment system, an attacker can send throttle control messages to throttle  
actuator because no ACLs exist on CAN bus. 

QR Tire pressure sensors can be updated with no logs. 

KR The CAN bus has no logging of data sent over it. 

5I User can listen to a subscription-based radio station without paying for it because the satellite radio uses 
proprietary crypto. 

7R Attacker can saturate the electronic control unit (ECU) log ring buffer and make it wrap. 

8R Attacker can erase the ECU logs. 

JI ECU firmware has embedded symmetric key to decide upgrade validity (attacker gets key). 

KI Attacker can read data on CAN bus because there is no crypto. 

3I Attacker can capture security-relevant error messages via CAN bus sniffing (e.g., OBD2 port). 

JD Attacker can effectively disable logging on ECU by flooding ECU with bogus messages. 

2D If you drain the battery, the key fob won’t open the door (no mechanical key or externally accessible lock).

5D Attacker floods the driver information system with messages to prevent it from updating the speed  
indicator. 

AD Attacker can cause arbitrary information to be displayed (rather than what should be). 

7D Attacker physically smashes the driver information system. 

Table 6: Cards Played in Second Game (by Security and Software Researchers) 

Card Threat 

3T Attacker can leverage unchecked certificate against entertainment system and send arbitrary messages 
on the CAN bus. 

4T Entertainment console makes decisions about what it communicates to the driver console and how it 
checks error-handling messages (valid source?). 

E9 Driver information display doesn’t know whether the ECU checked the validity of wheel speed. 

KT Attacker can load code to ECU via OBD2 port, exploiting other services. 

QS Physical access to car lets you alter the account information with remote vehicle assistance service  
provider. 

KS Stored default admin password on entertainment system does not force change on first use. 

AS ECU manufacturer embeds persistent code in supply chain. 

1S Attacker can spoof crash-alert messages by exploiting a vulnerable component on the CAN bus. 

JS XSS on entertainment system could steal login credentials and vehicle identification number (VIN) (VIN 
used as authenticator?) from OnStar device. 

8S Attacker breaks into dealership, steals OnStar credentials, and shuts down many cars. 

3S Attacker does a remote start by spoofing or breaking by brute force the keyless entry codes. 

5S During Bluetooth-pairing process, an attacker could spoof the device being paired to the radio. 

5R Attacker can modify log messages in transit on the CAN bus because of weak integrity controls. 

KR Most components have no logs. 

9R Entertainment system can falsify log entries as if they come from the radio. 

3R ECU logs security relevant information that can be copied out via OBD2 port (unauthenticated). 
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Discussion of Game Mechanics 

We can confirm that five players were reasonable for the game. Had the group been much larger, 
it seems unlikely that the game play would have made it around the table enough times to get in-
put from all the participants. We played for about 90 minutes in the first game and 2 hours in the 
second. In each case, that was enough time to get through four tricks (one trick = one time around 
the table), plus a bit of meta-discussion about the game itself. 

We attribute the quicker play of the first game to these player qualities: (1) they were better ac-
quainted with the system being modeled and (2) they were experienced vulnerability analysts who 
were already accustomed to thinking about systems from an attacker’s perspective and had prior 
exposure to threat modeling techniques. However, given the choice, two hours is a better 
timespan, especially if players need an overview of the system and the game. 

As for the game play, we observed that the scoring incentivizes the playing of high cards early in 
the game, which naturally imposes a greedy knapsack heuristic [Dantzig 1957] for threat prioriti-
zation. That was a nice benefit. 

Playing an ace can slow the game down due to debate over whether the vulnerability identified is 
really unique compared to all the other cards in the suit. Shostack notes this as well: 

“This discussion of equivalency between threats distracts somewhat from game play, but of-
fers an opportunity for a deeper discussion of the suits and threat equivalency” [Shostack 
2012]. 

We found the discussion to be useful though and couldn’t find much fault in the game for the in-
terpretation of aces. In the future, if a quicker pace of play is needed, we might consider using the 
aces as a wildcard for the suit topic instead. However, that would of course alter the effectiveness 
of the scoring method recommended in the game. 

There was an interesting dynamic among playing the game for its own sake, identifying vulnera-
bilities, and understanding the implications of how the game worked. For example, from the per-
spective of identifying vulnerabilities, it seemed odd to play a card without identifying a threat 
and still be eligible to win a point for the trick. The instruction card says “Each round is won by 
the highest card played in the suit that was led, unless an Elevation of Privilege (EoP) card is 
played.” In the ensuing discussion, we concluded that a useful variation could be to require the 
player to identify a threat to be eligible to win the trick. (i.e., the highest card played with an asso-
ciated threat identified is the winner of the trick). 

Only after playing the game did we notice the following text in Shostack’s paper: 
“The written rule says to only count the highest card which was actually connected to the 
system being developed, but in practice this is sometimes discarded to give a deeper involve-
ment to beginners” [Shostack 2012].  

This text supports our conclusion that experienced analysts may want to play according to the 
stricter scoring rules. 

Some cards were difficult to relate to the automotive system we were modeling and had a distinct 
“traditional computing flavor.” Potential future work could include adapting the deck to threats 
more specifically focused on IoT devices or CPSs. 
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During the game, we found it easy to divert into discussions of the game strategy, tactics, and as-
pects of the game’s scoring rules. However, it is important to remember that the purpose of play-
ing the game is not actually the playing of the game—rather it’s the structured brainstorming of 
threats. To that end, these variant rules seem worthwhile, although we did not try them this time 
around: 

 Double the number of points, and give one point for threats on other people’s cards. 

 Other players may “riff” on the threat, and if they do, they get one point per additional threat. 

We had to remind players not to get bogged down in much discussion of “Does the system behave 
exactly this way?” and instead to simply note the threat and move on. If we were actually respon-
sible for building the system, we would take the list of identified threats and refine it further by 
matching it up against the actual system to identify mitigating factors, validity of the threat, and 
so forth. 

We also had difficulty because the scope of the system we were modeling wasn’t entirely clear. 
For example, should we have allowed the radio playing unauthorized music to score? We opted to 
be inclusive, since the threats can always be dropped off the list in a later refinement. Similar to 
brainstorming, it seemed like the game time was better spent generating ideas than filtering them 
too harshly. 

Our scenario seemed to provide an analog to threat modeling a system in the early stages of devel-
opment—say, at a point when the system itself is underspecified and ambiguity in its components 
or behavior is expected. Having an actual expert on the system in the room could alleviate some 
of the debate on whether a threat is realistic. It might also help to implement the “Are you willing 
to create a ticket to fix this?” rule. In our case, we weren’t responsible for the development of the 
system and didn’t have any resident experts on it. While those caveats may be typical for vulnera-
bility analysts evaluating a third-party system, it is likely a problem for teams attempting to threat 
model systems they are directly responsible for. 

Discussion 

While some of the identified threats were based on previously reported vulnerabilities, others 
would later emerge as actual vulnerabilities in real vehicles. For example, the 8T play in Table 5 
on page 51 is equivalent to what Roufa and colleagues describe [Roufa 2010], while Mahaffey de-
scribes a remote attack against a Tesla Model S similar to (although not exactly the same as) the 
Jack of Tampering play also in game 1 [Mahaffey 2015]. There is also overlap between the threats 
listed in the games and vulnerabilities described by Miller and Valasek [Miller 2015], Checkoway 
and colleagues [Checkoway 2011], and Koscher and colleagues [Koscher 2010]. 

When reviewing the summary of the game results, a colleague who had not participated in the 
game sessions noted that privacy-related attacks didn’t appear in either game; for example, the 
ability of an attacker to remotely enumerate a vehicle’s Global Positioning System (GPS) location 
as Miller and Valasek describe [Miller 2015]. It is unclear whether the absence of that type of at-
tack is an inherent limitation of the players’ mindset or of the game and the card prompts. We sus-
pect the issue is with the former, since “Information Disclosure” is one of the suits in the deck. 

Process-wise, recording results is critical; someone must be designated as a scribe for the group. 
He or she can play too but needs to capture the threats identified by the players. 
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Finally, we recognized that for the effort to be successful, the group must be interested in identify-
ing threats. This game will not work nearly as well if some players have a vested interest in not 
finding problems. For example, in the case of an adversarial acquisition process in which develop-
ers are motivated to have the system accepted by the acquirer, they would have little incentive to 
identify new vulnerabilities representing additional work that must be completed prior to ac-
ceptance. 

Conclusion 

In summary, we focused our game play on a “connected car” scenario inspired by the Toyota un-
intended acceleration problem and how it might become a remotely exploitable vulnerability. 
However, the threats identified were much broader than that. We found the Elevation of Privilege 
game to be quite useful and plan to keep it in our toolbox for vulnerability analysis. 
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Appendix B:  AADL and STRIDE 

The property set below was developed to support the STRIDE model. 

property set Security_Trust is 

 

-- properties to support documenting and analyzing trust boundaries in a 

system 

-- Trust level {Low, Medium, High} - initial cut at trust levels 

-- Constants defined for our TrustLevel Property, with the semantics 

-- that the higher the value, the greater the trust level 
Low : constant aadlinteger => 0; 

Medium : constant aadlinteger => 1; 

High : constant aadlinteger => 2; 

 

-- Definition of the TrustLevel property 
TrustLevel: aadlinteger applies to (all); 

 

-- Specify the allowable groups in the GroupMembership property 
  GroupMembership:  enumeration (ABS, CruiseControl, DriverDisplays, 

DriverControls) applies to  

        (device, system, process, thread, processor,memory,bus, data); 

-- Group matches to Category in Bell LaPadula confidentiality plug-in 

   

 

-- Properties that supports access mode of data 
 AccessProtection: list of record ( 

  AccessMode: enumeration (r, w, rw, x); 

  AccessGroup: enumeration (CC, ABS); 

 ) applies to (all); 

 
---- Since resolute cannot process record properties, I made separate 

properties. 

-- The down side of this approach is that an object can only have one access 

group and access protection 

-- Doing these properties only illustrates the concept 

  
 AccessProtectionNew: enumeration (r, w, rw, x) applies to (all); 

 AccessGroupNew: enumeration (cc, computer, abs) applies to (all); 

 

 -- Property to support Command execution of a component 
  CmdExecution: aadlboolean applies to (all); 

 

-- Data encryption properties - a list of applicable types (these are just 

examples, more can be added later) 

-- To support Tampering Attack Type 

 
 DataEncryptionHashing: enumeration (MD5, SHA ) applies to (data); 

 DataEncryptionPrivateKey: enumeration ( DataEncryptionStandard, 

AdvancedEncryptionStandard, InternationalDataEncryptionAlgorithm) applies to 

(data); 
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 --DataEncryptionPrivateKey: enumeration (DES, AES, IDEA) applies to (data); 
 DataEncryptionPublicKey: enumeration (RSA, DiffieHellman) applies to 

(data); 

  

-- Timing properties specific to Denial of Service Attacks 

-- Interval allowed between incoming messages....if interval exceeded then 

trigger DOS alert 

 PageRequestTime: Time_Range     
  applies to (thread); 

-- Maximum amount of time for a page to be serviced 

  PageServiceDeadline: Time 
  applies to (thread, device, subprogram, subprogram access, event 

port, event data port); 

  

 PageExecution_Time: Time_Range 
  applies to (thread, device, subprogram, event port, event data port); 

 
end Security_Trust; 
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Appendix C:  AADL for Scenarios 

The following is a listing of Resolute claims that check for architectural support for trust levels 
and EoP attacks. 

package SecurityCase 

-- Contains the Resolute Claims for Security Trust model 

public 

annex Resolute {** 

   
 --SecurityClaim function (SCF1):  

--Given a component (e.g., System,Device,Thread) has a property Security 

tuple specified (TrustLevel, GroupMembership)  

--AND  given an in or out port associated with the component has specified 

data classifier,  

--Then the Security property tuple of the data classifier must equal that of 

the associated component classifier. 

--e.g., System (TrustLevel)== port data (TrustLevel) AND 

System(GroupMembership) == Port Data (GroupMembership)  then security claim 

is valid. 

--  

-- Algorithm for checking that IF a component (System,Device,Thread) has a 

property Security tuple 

-- specified (TrustLevel, GroupMembership) and if an in or out port 

(associated with the component) 

-- has specified data classifier, then the  

-- Security property tuple of the data classifier must equal that of the 

associated component classifier. 

-- e.g., system (TrustLevel)== port data (TrustLevel) AND 

system(GroupMembership) == port data (GroupMembership) 

 SC1(self:component) <= 

 **  "Confidentality security level is met on " self ** 

 forall (c1 : component) (conn : connection) (c2 : component) . (connected 

(c1, conn, c2)) and (has_property (c1, Security_Trust::TrustLevel)) and  

(has_property (c2, Security_Trust::TrustLevel)) 

 => 

 property (c1, Security_Trust::TrustLevel) <= property (c2, 

Security_Trust::TrustLevel) 

  
-- Claim to check if the components have proper Group Membership 

 SC1a(self:component) <= 

 **  "Group membership criteria is met " self ** 

 forall (c1 : component) (conn : connection) (c2 : component) . (connected 

(c1, conn, c2)) and (has_property (c1, Security_Trust::GroupMembership)) and  

(has_property (c2, Security_Trust::GroupMembership)) 

 => 

 property (c1, Security_Trust::GroupMembership) = property (c2, 

Security_Trust::GroupMembership)  

  
-- Composit security level and group membership criteria is met 
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 SC1c(self:component) <= 

 **  "Composite Check_ " self ** 

 SC1(self) and SC1a(self) 

 

 
-- Algorithm for checking that IF a component (System,Device,Thread) has a 

property Security tuple 

-- specified (TrustLevel, GroupMembership) and if an in or out port 

(associated with the component) 

-- has specified data classifier, then the  

-- Security property tuple of the data classifier must equal that of the 

associated component classifier. 

-- e.g., system (TrustLevel)== port data (TrustLevel) AND 

system(GroupMembership) == port data (GroupMembership)  

 SC2(self:component) <= 

 **  "Confidentality security level is met on " self ** 

 forall (comp : component) (f : features (comp)). (f instanceof data_port) 

 => 

 property (type (f), Security_Trust::TrustLevel) = property (comp, 

Security_Trust::TrustLevel) 

 

   
 -- Rule to check if  

 SC3(self:component) <= 

 **  "Confidentality security level is met on " self ** 

 forall (c1 : component) (conn : connection) (c2 : component) . (connected 

(c1, conn, c2)) and (has_property (c1, Security_Trust::TrustLevel)) and  

(has_property (c2, Security_Trust::TrustLevel)) 

 => 

 property (c1, Security_Trust::TrustLevel) <= property (c2, 

Security_Trust::TrustLevel) 

  
 -- Claim to check read privilege on incoming data 

 -- making use of the fact that an incoming port with data is a feature of 

the component and that 

 -- component will be reading that data 

  
 SC_ReadPrivilege(self:component) <= 

 **  "Read privilege is matched on component " self ** 

 forall (comp : component) (f : features (comp)). ( (f instanceof 

data_port) and (direction(f) = "in")) 

 =>  

 if (property (type (f) , Security_Trust::AccessProtectionNew) = "r") then 

true else false 

 
 -- Claim to check write privilege on outgoing data 

 -- making use of the fact that an out port with data is a feature of the 

component and that 

 -- component will be writing the data 

  
 SC_WritePrivilege(self:component) <= 

 **  "Write privilege is matched on component " self ** 

 forall (comp : component) (f : features (comp)). ( (f instanceof 

data_port) and (direction(f) = "out")) 
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 =>  

 if (property (type (f) , Security_Trust::AccessProtectionNew) = "w") then 

true else false 

 
 -- Claim to check read write privilege on incoming data 

 -- making use of the fact that an in-out port with data is a feature of 

the component and that 

 -- component will be reading and/or writing the data 

 
 SC_ReadWritePrivilege(self:component) <= 

 **  "Write privilege is matched on component " self ** 

 forall (comp : component) (f : features (comp)). ( (f instanceof 

data_port) and (direction(f) = "inout")) 

 =>  

 if ((property (type (f) , Security_Trust::AccessProtectionNew) = "w")=> 

true) or  

 ((property (type (f) , Security_Trust::AccessProtectionNew) = "r") => 

true) then true else false 

  
 -- Claim to check execution privilege on incoming data 

 -- If data being read by component is a command, additionally check that 

componet has 

 -- Command Execution capability, set by CmdExecution Property 

  
 SC_ExecutionPrivilege(self:component) <= 

 **  "Execution privilege is matched on component " self ** 

 forall (comp : component) (f : features (comp)). ( (f instanceof 

data_port) and (direction(f) = "in")) 

 =>  

 if ((property (type (f) , Security_Trust::AccessProtectionNew) = "x") 

 and 

 (property (type (f) , Security_Trust::CmdExecution) = true)) then true 

else false 

--  

**};  
end SecurityCase; 
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