

Extending AADL for Security Design
Assurance of Cyber-Physical Systems

Robert Ellison, PhD
Allen Householder
John Hudak
Rick Kazman, PhD
Carol Woody, PhD

December 2015

TECHNICAL REPORT
CMU/SEI-2015-TR-014

CERT Division

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

http://www.sei.cmu.edu

http://www.sei.cmu.edu

CMU/SEI-2015-TR-014 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

Copyright 2015 Carnegie Mellon University

This material is based upon work funded and supported by the Department of Defense under Contract

No. FA8721-05-C-0003 with Carnegie Mellon University for the operation of the Software Engineer-

ing Institute, a federally funded research and development center.

Any opinions, findings and conclusions or recommendations expressed in this material are those of the

author(s) and do not necessarily reflect the views of the United States Department of Defense.

References herein to any specific commercial product, process, or service by trade name, trade mark,

manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation,

or favoring by Carnegie Mellon University or its Software Engineering Institute.

This report was prepared for the

SEI Administrative Agent

AFLCMC/PZM

20 Schilling Circle, Bldg 1305, 3rd floor

Hanscom AFB, MA 01731-2125

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING

INSTITUTE MATERIAL IS FURNISHED ON AN “AS-IS” BASIS. CARNEGIE MELLON

UNIVERSITY MAKES NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED,

AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR

PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM USE

OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY

WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK,

OR COPYRIGHT INFRINGEMENT.

[Distribution Statement A] This material has been approved for public release and unlimited distribu-

tion. Please see Copyright notice for non-US Government use and distribution.

Internal use:* Permission to reproduce this material and to prepare derivative works from this material

for internal use is granted, provided the copyright and “No Warranty” statements are included with all

reproductions and derivative works.

External use:* This material may be reproduced in its entirety, without modification, and freely distrib-

uted in written or electronic form without requesting formal permission. Permission is required for any

other external and/or commercial use. Requests for permission should be directed to the Software En-

gineering Institute at permission@sei.cmu.edu.

* These restrictions do not apply to U.S. government entities.

DM-0003138

mailto:permission@sei.cmu.edu

CMU/SEI-2015-TR-014 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

CMU/SEI-2015-TR-014 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY i

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

Table of Contents

1 Research Introduction 1
1.1 Initial Research Plan for Extending AADL to Include Security 1
1.2 Value in Improved Security for CPSs 2
1.3 Audience and Structure of This Report 3

2 Analyzing Security Risks 4
2.1 Attack Surface 4
2.2 Threat Modeling 4
2.3 Architecture Description Language (ADL) 9
2.4 Assurance 10

3 Analysis Framework for Security Assurance 12
3.1 Resolute: An AADL Analysis Tool 13

3.1.1 Developing Assurance Cases for Security 13

4 STRIDE Analysis of the Infotainment System 16
4.1 Spoofing 16

4.1.1 Conditions Under Which Spoofing Might Occur 17
4.1.2 AADL Implications of Spoofing 17
4.1.3 Spoofing Risks 17
4.1.4 Questions About Spoofing 17
4.1.5 Security Property Violated by Spoofing 17

4.2 Tampering 17
4.2.1 Conditions Under Which Tampering Might Occur 17
4.2.2 AADL Implications of Tampering 18
4.2.3 Tampering Risks 18
4.2.4 Questions About Tampering 18
4.2.5 Security Property Violated by Tampering 18

4.3 Repudiation 18
4.3.1 Conditions Under Which Repudiation Might Occur 19
4.3.2 AADL Implications of Repudiation 19
4.3.3 Repudiation Risks 19
4.3.4 Questions About Repudiation 19
4.3.5 Security Property Violated by Repudiation 19

4.4 Information Disclosure 19
4.4.1 Conditions Under Which Information Disclosure Might Occur 19
4.4.2 AADL Implications of Information Disclosure 20
4.4.3 Information Disclosure Risks 20
4.4.4 Questions About Information Disclosure 20
4.4.5 Security Property Violated by Information Disclosure 20

4.5 Denial of Service 20
4.5.1 Conditions Under Which DoS Might Occur 20
4.5.2 AADL Implications of DoS 20
4.5.3 DoS Risks 21
4.5.4 Questions About DoS 21
4.5.5 Security Property Violated by DoS 21

4.6 Elevation of Privilege (EoP) 21
4.6.1 Conditions Under Which EoP Might Occur 21
4.6.2 AADL Implications of EoP 21
4.6.3 EoP Risks 22

CMU/SEI-2015-TR-014 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY ii

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

4.6.4 Questions About EoP 22
4.6.5 Security Property Violated by EoP 22

4.7 Using the STRIDE Model 22

5 Example Solution Approach for Security Threats 23
5.1 AADL Description 23
5.2 Security Analysis for the Infotainment Example in AADL 24
5.3 Architectural Models in the Design Process 27

5.3.1 Focus Phase 27
5.3.2 Build Phase 27
5.3.3 Analysis Phase 29

5.4 Model Problem and Associated Architecture 29
5.5 Analysis Options for Our Example 32
5.6 Modeling and Analyzing Security 32
5.7 Scenario 1: Architectural Analysis to Counteract EoP Attacks 33

5.7.1 Architecture of the Original System 33
5.7.2 Architecture of the System Including Authentication 34
5.7.3 Semantics of Access Privilege 35
5.7.4 Definition of Properties for Access Right Privileges 35
5.7.5 Development of Resolute Claims for Access Privilege Compliance 36
5.7.6 Architecture Components Annotated with Properties 39
5.7.7 Running the Resolute Model Checker 40

5.8 Scenario 2: Ensuring the Level Among Components 41
5.8.1 Express the Conditions for the Security Rule to Be Developed 41
5.8.2 Define the Properties in AADL for Trust-Level Assurance 41
5.8.3 Developing and Annotating the Model Problem for Trust-Level Compliance 42
5.8.4 Compose the Resolute Rules to Verify the Trust Level 42
5.8.5 Compose an Implementation of the Model and Run Resolute 44

5.9 Summary 46

6 Conclusions 47
6.1 Limitations 47

Appendix A: Threat Modeling Using the Elevation of Privilege Game 49

Appendix B: AADL and STRIDE 55

Appendix C: AADL for Scenarios 57

Bibliography 60

CMU/SEI-2015-TR-014 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY iii

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

List of Figures

Figure 1: Data Flow Diagram for an Information System 7

Figure 2: Data Flow Diagram for Automotive System 7

Figure 3: Data Flow Diagram of Self-Contained Cruise Control System 8

Figure 4: Data Flow Diagram of Cruise Control System 9

Figure 5: Goal Structuring Notation [Kelly 2004] 14

Figure 6: Assurance Case Argument 14

Figure 7: Trust 24

Figure 8: Trust Boundary for CAN Bus 25

Figure 9: Monitoring 26

Figure 10: AADL Model Logical View of Automotive Electronics 30

Figure 11: AADL Model Physical View of Automotive Electronics 30

Figure 12: Component and Connector View of a Subset of the Model Problem 34

Figure 13: Subset of Vehicle Control System with Authentication Server 34

Figure 14: Resolute Results 40

Figure 15: AADL Model Showing WheelRotationSensor Connected to CruiseControl 44

Figure 16. Resolute Rule Check Results Showing TrustLevel Rule SC1c and Its Two Component
Sub-Rules, SC1 and SC1a 45

Figure 17: Resolute Rule Check Results Showing the Failing of the TrustLevel Rule SC1c and SC1a
and the Passing of SC1 45

Figure 18: Model Automotive Cyber-Physical System 50

List of Tables

Table 1: Security Risks 6

Table 2: STRIDE Threat Model 6

Table 3: Infusion Pump Hazards and Health Risks 10

Table 4: Threats and Data Flow Elements 12

Table 5: Cards Played in First Game (by Vulnerability Analysts) 51

Table 6: Cards Played in Second Game (by Security and Software Researchers) 51

CMU/SEI-2015-TR-014 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY iv

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

Abstract

Attacks such as the one that compromised the control systems for Iranian centrifuges demonstrate
a growing need to improve the design of security in cyber-physical systems. While much of the
work on security has focused on coding, many of the common weaknesses that lead to successful
attacks are actually introduced by design. This technical report shows how important system-wide
security properties can and must be described and validated at the architectural level. This is done
through the adoption and use of the Architecture Analysis and Design Language (AADL) and a
further extension of it to describe security properties. This report demonstrates the viability and
limitations of this approach through an extended example that allows for specifying and analyzing
the security properties of an automotive electronics system.

The report begins with a modeling of threats using the Microsoft STRIDE framework and then
translates them into attack scenarios. Next, the report describes—as AADL components, relation-
ships, and properties—the architectural structures, services, and properties needed to guard
against such attacks. Finally, the report shows how these properties can be validated at design
time using a model checker such as Resolute and discusses the limitations of this approach in ad-
dressing common security weaknesses.

CMU/SEI-2015-TR-014 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 1

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

1 Research Introduction

1.1 Initial Research Plan for Extending AADL to Include Security

Safety-critical verification of cyber-physical systems (CPSs) has benefited from the use of archi-
tectural fault-modeling capabilities provided by Architecture Analysis and Design Language
(AADL). Architecture-led hazard analysis using mechanisms such as AADL has become an effec-
tive capability in safety fault modeling. The cost of successfully addressing safety compliance has
been significantly reduced through the use of extensions to AADL that automate safety analysis
and produce safety assessment reports to meet recommended practice standards (such as SAE
ARP4761) [SAE 1996]. The Software Engineering Institute (SEI) has used AADL to effectively
address design verification for the qualities of safety, reliability, and performance [Lewis 2009,
Delange 2013, Feiler 2009, AVSI 2015].

Attacks such as Stuxnet1 demonstrate a growing need to improve the design of security in CPSs
[Kelley 2013]. Other researchers have incorporated selected attack scenarios into modeling lan-
guages (e.g., OCL [Almorsy 2013], OWL-DL and SWRL [Asnar 2011], and SysML [Ouchani
2011]). Their research explored adding security analysis capabilities into an architecture descrip-
tion language to better record and analyze the design decisions that are relevant to security. The
architecture description language AADL was chosen to leverage existing SEI capabilities for
safety and reliability analysis and to extend the use of AADL into the security aspects of software
assurance. New rules or language extensions would, however, be needed to address the gaps.
When reviewing security vulnerability attacks assembled in an Air Force Research Laboratory
(AFRL) study [Calloni 2011] (36 attacks covering 632 out of 945 [MITRE 2015] Common Weak-
ness Enumerations [CWEs]), we observed that current descriptions of vulnerabilities focus on
coding.

However, many of the important decisions that establish security in a system are made at the ar-
chitecture level. To build in security from the start, the security coding requirements must be ab-
stracted into the design characteristics and constraints that should be considered in formal model-
ing to prevent vulnerabilities. We started with the AFRL report [Calloni 2011], using its identified
groups of attack patterns based on CWEs to construct desirable design capabilities for at least two
critical security capabilities currently missing in AADL: authentication and input validation.
Through an appropriately structured analysis, a detailed system architecture design of a CPS can
be analyzed using AADL to prevent such types of CWEs.

We divided the work into two tasks as follows:

1. Enhance AADL to incorporate security design assurance. For a set of attack scenarios, we
identified the capabilities, constraints, and other design characteristics that reduce the risk of
possible attack success.

1 Stuxnet was a cyber attack that damaged Iranian centrifuges by compromising the commercial control systems
that managed them (https://en.wikipedia.org/wiki/Stuxnet).

https://en.wikipedia.org/wiki/Stuxnet

CMU/SEI-2015-TR-014 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 2

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

2. Apply architectural security modeling to CPSs, and develop a case study to show how formal
modeling using AADL could be applied to a CPS to improve the security design of the archi-
tecture.

1.2 Value in Improved Security for CPSs

The training2 for AADL provided an automobile example to evaluate the safety features of a pro-
posed design. We found value in exploring this same example to see how security could be ad-
dressed in the design. First, because the AADL model was already built, we didn’t have to spend
time constructing one from scratch. Also, security problems linked to various types of automo-
biles and based on attacks using external connectivity were frequently reported in the news, indi-
cating the need for strengthening security in this type of CPS. These examples of recent attacks
against automobiles have been reported:

 A wireless device used by Progressive Insurance to gather information about customers’
driving habits and communicate data to a monitoring station lacked adequate authentication
security, so the device could be exploited to unlock car doors, start cars, and access engine
information. The device has been used in more than two million vehicles since 2008.3

 Add-on devices such as Zubie, a combined hardware and software solution that tracks a car’s
location and movement and tells drivers how to drive more effectively, also provide hackers
the ability to remotely manipulate a car’s physical operation and expose driver data.4

 Hackers demonstrated how they took control of a Jeep Cherokee through connectivity pro-
vided in the entertainment system and successfully disabled the car’s transmission and
brakes.5

 A vulnerability in the OnStar mobile service in GM vehicles allowed hackers to unlock, re-
motely start, and track those vehicles.6

 An attack launched by researchers who installed a Trojan on the Tesla Model S network suc-
ceeded in remotely shutting off the car’s engine.

These attacks exhibit characteristics of the security failures we wanted to explore. Critical auto-
motive components such as the transmission and brakes are acting on input from untrusted
sources (entertainment system or driver-monitoring devices). This research project analyzed
mechanisms currently available within AADL, which is a formal modeling language. The goal
was to determine how a design could be evaluated to establish confidence that sufficient authenti-
cation and input validation are in place to deter the types of attacks cited above.

2 The Modeling System Architectures Using the Architecture Analysis and Design Language (AADL) course
(http://www.sei.cmu.edu/training/p72.cfm)

3 Progressive SnapShot device attack: http://arstechnica.com/security/2015/01/
wireless-device-in-two-million-cars-wide-open-to-hacking/ and http://www.scmagazine.com/
insurance-dongle-could-be-compromised/article/393707/

4 Zubie vulnerability: http://www.autelligence.com/car-hacked-telematics-add/

5 Jeep Cherokee attack: http://www.wired.com/2015/07/hackers-remotely-kill-jeep-highway/

6 OnStar vulnerability: http://arstechnica.com/security/2015/07/ownstar-researcher-hijacks-remote-access-to-on-
star/

http://www.sei.cmu.edu/training/p72.cfm
http://arstechnica.com/security/2015/01/
http://www.scmagazine.com/
http://www.autelligence.com/car-hacked-telematics-add/
http://www.wired.com/2015/07/hackers-remotely-kill-jeep-highway/
http://arstechnica.com/security/2015/07/ownstar-researcher-hijacks-remote-access-to-on-star/CMU/SEI-2015-TR-014
http://arstechnica.com/security/2015/07/ownstar-researcher-hijacks-remote-access-to-on-star/CMU/SEI-2015-TR-014
http://arstechnica.com/security/2015/07/ownstar-researcher-hijacks-remote-access-to-on-star/CMU/SEI-2015-TR-014

CMU/SEI-2015-TR-014 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 3

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

1.3 Audience and Structure of This Report

Readers of this report do not need a background in AADL or formal modeling. However, those
wishing to apply the security approaches recommended by the analysis will need this background
knowledge.7

This report has been prepared to provide those responsible for program management and design
review with an understanding of the ways formal modeling can support the verification of key as-
pects of security design. These readers should focus on the first two chapters and the conclusion.
System and software engineers with general knowledge of security issues and architecture will
gain an understanding of the ways in which formal modeling with AADL can validate that de-
signs demonstrate key security characteristics. Modeling tools can demonstrate that these evolv-
ing designs continue to exhibit the desired security characteristics.

Section 2 provides important background information about modeling security and the aspects of
security that can be established and confirmed from an architecture.

Section 3 describes the importance of threat modeling in establishing the desired security proper-
ties. The chapter also covers how existing modeling analysis techniques can be applied to estab-
lish confidence that security has been properly addressed in a design.

Section 4 describes specific security properties as applied to formal modeling and how design
analysis techniques can be applied to establish confidence that security has been properly ad-
dressed in a design.

Section 5 describes the AADL model for the automotive example we developed and the details of
how the model can be evaluated for specific security properties.

Section 6 provides a summary of the accomplishments and limitations of this research activity and
opportunities for further research.

7 Read about Architecture Analysis and Design Language at http://www.aadl.info.

http://www.aadl.info

CMU/SEI-2015-TR-014 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 4

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

2 Analyzing Security Risks

Preventing security defects typically depends on analysis that extends beyond a single software
component and requires architectural analysis. As the Object Management Group (OMG) noted,
detecting back-doors, cross-site scripting vulnerabilities (XSS), or unsecure dynamic SQL queries
through multiple layers requires a deep understanding of all the data manipulation layers, as well
as the data structure itself [OMG 2013]. System-level analysis allows us to visualize complete
transaction paths from user entries, through user authentication and business logic, down to sensi-
tive data access to evaluate the effectiveness of the security design. For example, a weakness in
the functional software design can affect access control and authentications and provide a means
of bypassing expected controls.

Thus, identifying and mitigating the risks of software design or architectural flaws are essential
security analysis activities. Security practices commonly applied for such risk analysis include

 identifying the system features and usage that provide opportunities for an attack (otherwise
known as the attack surface)

 analyzing how a design could be compromised and the risk of such compromises could be
mitigated (otherwise known as threat modeling)

We also need to show that security risks have been reduced by demonstrating that architectural
decisions have proactively reduced the likelihood or the consequences of a security fault (other-
wise known as an assurance case).

2.1 Attack Surface

An attacker needs some kind of access to compromise a system, and the earliest exploits often
achieved such access by convincing a user to insert a compromised floppy disk. Today, an at-
tacker might try to persuade a user to follow an URL in an email message. Exploring and reduc-
ing potential attack opportunities provide a means of improving security [Howard 2003a].

A system’s attack surface can be described along three abstract dimensions: (1) targets and ena-
blers, (2) channels and protocols, and (3) access rights [Howard 2003b]. Consider the examples of
automotive compromises described in Section 1: The target was the automotive control system.
At the most general level, channels include all communication links to the automobile such as On-
Star mobile service connectivity, the on-board diagnostic (OBD) port, and external channels pro-
vided by entertainment devices such as input from mobile devices. Enablers include the entertain-
ment components and the plug-in devices for the OBD port. The latter, for example, could enable
attackers to monitor a motorist’s driving behavior via wireless connectivity.

2.2 Threat Modeling

An attack surface simply lists the features that an attacker might try to compromise, and we need
to analyze how that compromise might occur. The CWE, developed by the MITRE Corporation,

CMU/SEI-2015-TR-014 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 5

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

describes over 900 software weaknesses that have enabled successful attacks.8 These weaknesses
have appeared predominantly in the functional software rather than in the security services such
as those providing authentication and authorization capabilities. Compromises typically occur
when an attacker creates operating conditions not anticipated by the software designer. For exam-
ple, a programmer might allocate sufficient memory to accept a city name of up to 200 characters
from a user and assume, in practice, that the name provided will always meet that criteria. But the
lack of a size check has enabled attackers to gain access by inserting new code into the memory
that goes around the authentication and access controls.

Most system development activities seek to provide reliable and trustworthy software, but that can
be hard to do. Commercial organizations giving high priority to the development of secure soft-
ware is a relatively recent change. Microsoft’s 2006 publication of the book titled The Security
Development Lifecycle was a step forward [Howard 2006]. The company had made a decision a
few years earlier to address the security concerns raised about its products. Early requirements in-
cluded code scans to enforce good programming practices and secure programming training. But
addressing two tasks during design provides the most significant activity for improving security:
(1) analyzing how the proposed software could be compromised and (2) identifying mitigations
for high-impact risks. For example, a developer of software for database access should make engi-
neering decisions about how to reduce the risks of known weaknesses associated with such ac-
cess. This approach seems obvious, but too often developers consider possible security risks only
after the code is written. Analyzing how software could be compromised is referred to as threat
modeling.

There are many ways to do threat modeling. For illustrative purposes in this report, we use the
STRIDE9 approach because it is available through open source documents. Threat modeling uses
the following activities to analyze the security risks shown in Table 1:

1. Create information flows for use cases.

2. Gather a list of external dependencies.

3. Define the security assumptions.

4. Determine the threat types.

5. Identify the threats to the system.

6. Determine risk.

7. Plan mitigations.

8. Create external security notes.

8 http://cwe.mitre.org/community/swa/index.html

9 https://msdn.microsoft.com/en-us/library/ee823878%28v=cs.20%29.aspx

http://cwe.mitre.org/community/swa/index.html
https://msdn.microsoft.com/en-us/library/ee823878%28v=cs.20%29.aspx

CMU/SEI-2015-TR-014 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 6

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

Table 1: Security Risks

Risk Description

Data exchanges Functional requirements include use cases, which describe system behavior in response to an
external request such as a data exchange between a user and a system. A data exchange is a
security risk factor because a software weakness in its implementation (such as not verifying
user input) could provide an adversary with access to business resources such as the
customer database.

External
dependencies

External systems can be compromised. Exploitable weaknesses can also arise from unknown
information about external systems.

Security
assumptions

System integration can introduce exploitable mismatches in the security assumptions made by
components.

STRIDE, shown in Table 2, focuses on a predefined set of threat types. In Section 4, we apply the
STRIDE model to an example CPS in the automotive electronics domain.

An attack surface might include a connection to an external source. The security risks associated
with that connection depend on determining the kind of data associated with that connection,
identifying the software components that might process data provided by the connection, and ana-
lyzing how such specific data could be used to compromise those software components.

Table 2: STRIDE Threat Model

Threat Security Property

Spoofing Authentication: the process of determining whether someone or something is, in fact, who or
what it is declared to be

Tampering Integrity: maintaining the consistency, accuracy, and trustworthiness of data over its entire
lifecycle

Repudiation Non-repudiation: Users can’t perform an action and later deny performing it.

Information
disclosure

Confidentiality: Data access is restricted to those authorized to view the data in question.

Denial of service Availability: Systems are ready when needed and perform acceptably.

Elevation of
privilege

Authorization: the process of adding or denying individual user access to a computer network
and its resources

Security assumptions are one type of security risk listed in Table 1. Frequently, an elevation of
privilege succeeds because an attack invalidates a security assumption. For example, the design of
an organization’s internal software systems frequently assumes that an adversary cannot access
the internal networks. An attack that compromised the security vendor RSA started by convincing
an RSA employee to click on a link to an intruder-created video in an email message.10 The video
was designed to exploit a vulnerability in a third-party extension to the browser and give the in-
truder access to the RSA internal network as that employee. The intruders then took advantage of
the implicit trust in RSA insiders assumed during internal software development to eventually ob-
tain sensitive information.

10 The RSA Hack: How They Did It: http://bits.blogs.nytimes.com/2011/04/02/the-rsa-hack-how-they-did-it/?_r=0

http://bits.blogs.nytimes.com/2011/04/02/the-rsa-hack-how-they-did-it/?_r=0

CMU/SEI-2015-TR-014 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 7

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

Threat modeling typically uses data flow diagrams (DFDs) to graphically represent a system.
DFDs use a standard set of symbols consisting of four elements:

1. data flows (data in motion)

2. data stores (data at rest)

3. processes (computation)

4. interactors (Endpoints of a system are typically providers or consumers of data.)

Figure 1 shows a high-level DFD for an information system.

Figure 1: Data Flow Diagram for an Information System

A generic DFD for an automotive CPS appears in Figure 2.

Figure 2: Data Flow Diagram for Automotive System

Figure 3 shows the DFD of a cruise control (CC) system designed in the 1980s. Information was
typically exchanged among vehicle controllers with the Controller Area Network (CAN) that was
specially developed in the early 1980s for fast serial data exchange between electronic controllers
in motor vehicles. Instigators include buttons that the driver can use to turn on the CC system and
change its settings. An example of a use case is going off cruise control when the driver presses
the brake pedal. The CC control software monitors the frequency of wheel rotations to calculate
vehicle speed and sends instructions to the engine controller to increase or decrease the velocity.
In a properly designed CC system, the engine controller should only receive input from the CC
software component. At the time of the CAN’s development, only motorists and mechanics had
access to critical vehicle controls, and the CC system was essentially a self-contained one with no
attack surface and no need for threat modeling.

CMU/SEI-2015-TR-014 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 8

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

Figure 3: Data Flow Diagram of Self-Contained Cruise Control System

An automotive control system now includes dozens of embedded chips running millions of lines
of code. The attack surface includes remote key systems, satellite radios, control units with wire-
less connectivity, Bluetooth connections, dashboard Internet links, and even wireless tire-pressure
monitors. A DFD of a CC system now looks like the one shown in Figure 4. A digital radio with
access to the CAN bus could potentially compromise other devices that use that bus, such as brake
and throttle controllers. What is the risk that a compromised entertainment system could use that
connectivity to control braking? Examples mentioned in Section 1 demonstrate that compromising
a secondary component such as the entertainment system or dashboard displays too often has led
to compromises of the driving controls. Threat modeling provides a way to identify and mitigate
such risks.

CMU/SEI-2015-TR-014 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 9

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

Figure 4: Data Flow Diagram of Cruise Control System

2.3 Architecture Description Language (ADL)

The entertainment system should not be able to apply the brakes. An essential part of a security
design is to describe the roles, entities, and relationships that exist or should exist to perform cer-
tain actions. Most systems incorporate security services for authentication and access control to
enforce those roles and relationships. The collection of such security services is often referred to
as the security architecture.

Box and line drawings such as the DFD shown in Figure 4 informally represent what is called a
component and connector (C&C) view of an architecture, which can also be described using an
ADL such as AADL or a functional modeling language such as the Unified Modeling Language
(UML). AADL lets us describe C&C types and information more precisely than we could with a
DFD and supports analysis of the description. For example, an AADL description of the connec-
tion between a CC software controller and the throttle actuator specifies the type of data trans-
ferred, the direction of the transfer, the port on the CC controller that sends the data, and the port
of the throttle actuator controller that receives the data. We can define well-formedness rules and
analyze the described architecture using those rules to determine conformance, as we show in
Section 5.

A designer can also define system-specific attributes for a C&C model. For example, the model
could be annotated with the security risks identified by threat modeling and with engineering de-
cisions made to control access and enforce any authorization requirements. As we show in later
sections, an AADL model enables an analysis of a design before it is implemented, resulting in a
specification that provides unambiguous guidance for developers.

CMU/SEI-2015-TR-014 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 10

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

2.4 Assurance

A well-structured design is not necessarily a secure one. The automobile attack examples de-
scribed in Section 1 did not attempt to compromise any of the existing connections specified in
Figure 3 on page 8. Instead, the attacks created a new connection. Add-ons such as an infotain-
ment system extend the attack surface and provide an opportunity for a compromise. A security
assessment must evaluate how well the engineering design decisions reduce the likelihood of an
attack-created connection; for example, how compromises of third-party components are ad-
dressed.

The security problems arising with automotive systems share characteristics similar to safety is-
sues the U.S. Federal Drug Administration (FDA) encountered with infusion pumps. A patient-
controlled analgesia infusion pump is used to infuse a pain killer at a prescribed basal flow rate
that can be augmented by the patient or clinician in response to patient need within safe limits. In-
fusion pumps, in general, have reduced medication errors and improved patient care by allowing
for a greater level of control, accuracy, and precision in drug delivery than more labor-intensive
techniques. From 2005 through 2009, 87 infusion pump recalls were conducted by firms to ad-
dress identified safety problems observed across multiple manufacturers and pump types. The
FDA became aware of many of the problems only after they occurred in the field.

One of the first steps in a safety engineering process is classifying the health risks for the pump
(see Table 3).

Table 3: Infusion Pump Hazards and Health Risks

Hazards Health Risks

Software Environmental Overdose Trauma

Operational Mechanical Air embolism Exsanguination

Electrical Hardware Infection Electric shock

Biological and
chemical

Use Allergic response Underdose

All Delay of therapy

Specific hazards include air in the drug delivery line, tampering (e.g., by a patient during home
use to adjust drug delivery), network errors, false alarms or the lack of an alarm caused by an out-
of-calibration sensor, improperly set alarm priorities, incorrect settings of alarm thresholds, and
software runtime errors. For serious hazards, an alarm should sound.

After an analysis of pump recalls and the occurrence of adverse events, the FDA concluded that
many of the problems appeared to be related to deficiencies in device design and engineering
[FDA 2010]. Those defects had not been found during development by testing and other methods.
Such defects need to be identified as a design evolves, and a design review should confirm that
faults associated with important risks (including attacks) have been identified and mitigated by
specific design features.

CMU/SEI-2015-TR-014 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 11

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

Mitigating the spectrum of infusion pump hazards requires an integrated hardware and software
solution. A pump’s software must be designed to analyze the data from multiple sensors to cor-
rectly identify and respond to the identified adverse conditions. We need to evaluate the integrated
hardware and software design.

Safety engineering has used an assurance case to show that systems satisfied their safety-critical
properties [Kelly 1998, 2004]. For that use, they were called safety cases.

Assurance case: a documented body of evidence that provides a convincing and valid argu-
ment that a specified set of critical claims about a system’s properties are adequately justi-
fied for a given application in a given environment [Kelly 1998].11

An assurance case includes

 claims and subclaims for what we want to show

 arguments for why we believe each claim is met

 evidence such as test results, analysis results, and so forth that support each argument

An assurance case does not imply any kind of guarantee or certification. It is simply a way to doc-
ument the rationale behind system design decisions.

Confirming the top-level claim that a pump is safe depends on showing that health risks have
been mitigated. For example, an overdose could be caused by an environmental hazard such as a
high temperature that leads to a pump malfunction. There is an internationally accepted standard
for diagraming an assurance case,12 and a graphical representation of an assurance case for an in-
fusion pump appears in Figure 5 on page 14.

The use of an assurance case provides a formal structure for engineering design reviews. Such a
review should consider if the argument and evidence provided by the developer might be insuffi-
cient to justify the claim. For example, does information exist that contradicts or rebuts a claim?
The cause can be a combination of a poor argument and insufficient evidence. Are there specific
conditions under which the claim is not necessarily true even though the premises (i.e., evidence)
are true? For example, could an operational condition other than temperature, humidity, and air
pressure lead to a pump malfunction? Is there sufficient evidence to justify the claim? The evi-
dence supplied could have been provided by a simulation. How well does the simulated model
represent projected operational conditions? Does the design mitigate sensor failures?

Not only can we specify an architecture using AADL, but extensions to the language enable an
architect to construct an assurance case, add assurance attributes to the architecture, and describe
the argument as rules to be analyzed and documented by an AADL tool (e.g., Resolute) [Gacek
2014].

11 Assurance cases were originally used to show that systems satisfied their safety-critical properties. For this us-
age, they are called safety cases. The notation and approach used in this report have been used for over a dec-
ade in Europe to document why a system is sufficiently safe [Kelly 1998, 2004]. In this report, we extend the
concept to cover system security claims.

12 http://www.sei.cmu.edu/dependability/tools/assurancecase/

http://www.sei.cmu.edu/dependability/tools/assurancecase/

CMU/SEI-2015-TR-014 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 12

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

3 Analysis Framework for Security Assurance

Establishing security requirements depends on an understanding of how systems have been com-
promised, the resources and motivations of possible attackers, and the business consequences of a
system compromise. The role of an AADL model is not necessarily to create security require-
ments but rather to help verify that an architectural design meets them. For example, as shown in
Table 4, a data flow can be the target of tampering and information-disclosure threats. Threat
modeling analysis could lead to a requirement that all connections capable of transporting a par-
ticular category of data should be encrypted. An analysis of the data flows in an AADL model
could then verify that a design satisfies that requirement.

Table 4: Threats and Data Flow Elements

Element Interactors Data Flows Data Stores Software

Processes

Spoofing ◊ ◊

Information
disclosure ◊ ◊ ◊

Tampering with
data ◊ ◊

Repudiation ◊ ◊ ◊

Denial of service ◊ ◊ ◊

Elevation of
privilege ◊

AADL models can play a significant role in architectural tradeoff analysis. The success of a de-
sign is often determined by how well it satisfies a desired combination of architectural attributes
such as usability, performance, reliability, and security. For example, an AADL model can be
used to analyze the additional time required to encrypt a communications link to see if it violates
latency requirements [Lewis 2009].

An essential part of a security design is to describe the roles, entities, and relationships that exist
or should exist to perform a set of actions. Most systems incorporate security services for authen-
tication and access control to enforce those roles and relationships. The collection of such security
services is often referred to as the security architecture. Access control and authentication require-
ments can be verified using an AADL.

CMU/SEI-2015-TR-014 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 13

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

3.1 Resolute: An AADL Analysis Tool

Research funded by the Defense Advanced Research Projects Agency’s (DARPA’s) High Assur-
ance Cyber Military Systems (HACMS) developed an extension of AADL called Resolute that
describes the assurance rules a system should satisfy to justify a claim [Gacek 2014]. For exam-
ple, a design rule could specify that user input is always verified.

The syntax of Resolute is inspired by logic programming. Each rule defines the meaning and evi-
dence for a claim. The meaning of a claim is given by a text string in the rule that is parameterized
by the claim’s arguments. The body of the rule consists of an expression that describes sufficient
evidence to satisfy that claim. Claims can be parameterized by AADL types (e.g., threads, sys-
tems, memories, connections), integers, strings, Booleans, or sets. The following are examples of
Resolute rules:
only_receive_decrypt(x : component) <=

 ** "The component " x " only receives messages that pass Decrypt" **

 forall (c : connection).

 (parent(destination(c)) = x) =>

 is_sensor_data(c) or only_receive_decrypt_connection(c)

only_receive_decrypt_connection(c : connection) <=

 ** "The connection " c " only carries messages that pass Decrypt" **

 let src : component = parent(source(c));

 unalterable_connection(c) and (is_decrypt(src) or

 only_receive_decrypt(src))

An assurance case is initiated in Resolute by adding a Prove statement for an AADL component.
A Prove statement consists of a claim applied to some component such as the following example
for the claim that the Motor Controller thread only receives input from the ground station:
 prove only_receive_ground_station (MC)

To evaluate a Prove command, Resolute acts like a theorem prover but with assurance-case rules
replacing logical rules. A successful proof produces an assurance case. Resolute can demonstrate
that the rules representing the design decisions have been appropriately applied but cannot justify
the choice of rules. For example, when the risk of a SQL injection vulnerability exists because
user input is used to create database queries, invalid input can enable an attacker to modify the
contents of a database. Assume that assurance for eliminating the risk of a SQL injection is based
on the rule that user input is verified. A Prove command for that rule succeeds if user input has
been checked at some point along a data flow. But verification is not validation that the applica-
tion of the rule reduces the risk of a SQL injection. Input verifications are difficult to validate for
SQL injections, and the CWE recommends alternative mitigations that have a higher level of as-
surance.

3.1.1 Developing Assurance Cases for Security

Security and safety engineering identify possible risks in significantly different ways. Using the
Goal Structuring Notation (GSN) shown in Figure 5, a safety engineer could develop the assur-
ance case argument based on the hazard categories listed in column 1 of Table 3 (on page 10), as
shown in Figure 6.

CMU/SEI-2015-TR-014 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 14

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

Figure 5: Goal Structuring Notation [Kelly 2004]

Figure 6: Assurance Case Argument

The health risks within a category could change for this generation of pumps, but the categories
are not likely to change. The security-threat categories do change because of the adversarial as-
pects of security. For example, in the 90s, attacks typically targeted network or operating system
weaknesses. As better engineering reduced the effectiveness of such exploits, attack tactics shifted
to finding exploitable defects in the new target category of application software [Nagaraju 2013].
An email sent to RSA employees included an Excel attachment with malware that exploited a vul-
nerability in Adobe Flash. The compromise enabled the attacker to take remote control of an RSA
employee’s computer and use it as a backdoor into the RSA network.13 The CWE documents over
900 such weaknesses.14

Too often, the architect for a CPS creates a design defect that is well-known to an IT architect.
For example in July 2010, malware called Stuxnet targeted specialized industrial control equip-
ment made by Siemens [Mills 2010, McGraw 2010]. This malware enabled the attacker to modify
how the control system managed a physical system, such as one for water treatment. The operat-
ing system is typically the case-loaded system libraries at runtime. Stuxnet exploited a defect in

13 http://www.cnet.com/news/attack-on-rsa-used-zero-day-flash-exploit-in-excel/

14 http://cwe.mitre.org

http://www.cnet.com/news/attack-on-rsa-used-zero-day-flash-exploit-in-excel/
http://cwe.mitre.org

CMU/SEI-2015-TR-014 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 15

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

the implementation of that feature to load attacker-developed libraries—a defect that had been
eliminated from IT operating systems for over 10 years.

An objective of applying software assurance techniques is to increase our level of confidence that
software is free from vulnerabilities, either intentionally designed into the software or accidentally
inserted at any time during its lifecycle, and that the software functions in the intended manner.15

The justification for a level of confidence can be documented in a security assurance case. Archi-
tectural security models and the use of tools such as Resolute to verify such models can contribute
to that justification. The next section explores how such models and tools could support security
analysis.

15 https://en.wikipedia.org/wiki/Software_assurance#cite_note-1.

https://en.wikipedia.org/wiki/Software_assurance#cite_note-1

CMU/SEI-2015-TR-014 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 16

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

4 STRIDE Analysis of the Infotainment System

As described in the prior section, security requirements must first be established, based on the
threats considered to be important to the system. Threat modeling is used to determine the im-
portant security concerns that must be translated into design considerations and incorporated into
the model. The architect must systematically determine the potential consequences of each threat.
To demonstrate how this process would work, we applied the STRIDE threat modeling approach
to a car infotainment system.

The name STRIDE [Hernan 2006] is an acronym based on the initials of the six threat categories:
Spoofing, Tampering, Repudiation, Information disclosure, Denial of service, and Elevation of
privilege. These categories are not mutually exclusive, and complex attacks may involve a combi-
nation of them. However, they provide a useful set that non-security experts can use to reason
about security threats.

This technique is a way to walk through the major categories of threats a system may face and to
systematically determine the potential consequences of each threat category, as that type of threat
applies to the particular system under scrutiny. Below, we consider the security implications of
each of the six STRIDE threat categories on the automotive electronics system presented in Fig-
ure 4. For each category, we describe

1. how the threat might be realized: the conditions under which it might occur

2. the implications of this threat on the infotainment system design and, in particular, how the
system design is represented in an AADL model

3. the risks that arose from a consideration of the threat in the infotainment context

4. questions about the architecture of the infotainment system and its implementation that will
inform the security analysis

5. the security property that is violated if this threat is not mitigated

Mitigating many of the STRIDE threats involves establishing trust boundaries. A trust boundary
can be thought of as a line drawn through a program. On one side of the line, data or an agent (a
user) is untrusted. On the other side of the line, the data or agent is assumed to be trustworthy. For
example, input validation could be required for data to cross a trust boundary. But data may only
be trusted from specific sources, and in those instances a trust boundary could have authentication
and authorization requirements.

In the following six subsections, we use the five categories above to describe each STRIDE threat
as it applies to the infotainment system.

4.1 Spoofing

Spoofing is an attack in which people (or programs) represent themselves as something other than
what they truly are, with the intent of gaining authorized access to resources for which they
should be unauthorized. A successful spoofing attack is one that allows an attacker to foil or avoid
authentication.

CMU/SEI-2015-TR-014 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 17

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

4.1.1 Conditions Under Which Spoofing Might Occur

Spoofing can occur when the source or destination of a message is not properly trusted (e.g., via
authentication), but the requested action in the message is still performed. Spoofing can be suc-
cessful if the attacking component can steal another component’s identity to appear authentic or if
other components do not demand proof of authentication.

4.1.2 AADL Implications of Spoofing

AADL can define a system scope, so we can check whether information flows across the (car)
system boundary. To do that, we need to classify components inside and outside the system and
determine that each has been identified and has an associated credential, such as a certificate. In
the architecture, we can establish a placeholder, abstract data type for authentication that is passed
between components. This data type could be modeled as a pattern in AADL (with an authentica-
tor, an error-handling component, and entities that need to be validated).

4.1.3 Spoofing Risks

When considering spoofing attacks, we must think about these general design weaknesses that
would allow spoofing to occur:

1. There is no authentication, or the authentication mechanism has been broken or bypassed.

2. An external (third-party) component is mistakenly trusted as authenticated.

We can test for these weaknesses by analyzing an AADL model.

4.1.4 Questions About Spoofing

From an analysis perspective, we must answer the following questions:

1. Does a service exist in the system that provides proof of the integrity and origin of data?

2. Have trust boundaries been established and documented appropriately?

3. What connections and interfaces does the system have to the outside world?

The answers to these questions must be modeled in AADL to establish how the system will ad-
dress the risk of spoofing.

4.1.5 Security Property Violated by Spoofing

Spoofing attacks violate the Authentication property.

4.2 Tampering

The objective of tampering is to perform unauthorized modifications to data or services. In a tam-
pering attack, an attacker makes a modification to change the system’s runtime behavior through
unauthorized access to the data or service.

4.2.1 Conditions Under Which Tampering Might Occur

Tampering could occur if the infotainment system contains data stores, as it almost certainly will.
If the data’s encryption is strong, the attacking component can attempt to simply corrupt the data,

CMU/SEI-2015-TR-014 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 18

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

rendering the system unusable or less usable. If the encryption is weak (or non-existent), the at-
tacking component can modify the data, perhaps without being detected (particularly if the system
does not log messages and transactions). This risk can also affect data in motion, if it is not ade-
quately encrypted.

4.2.2 AADL Implications of Tampering

In AADL, a component’s encryption property (such as a data store) can be specified. Similarly, an
encryption property can be associated with any connection (the data-sharing mechanism between
two components). Encryption can be specified over multiple AADL components, and an encryp-
tion property can be specified on the data itself. The communication mechanism that accesses the
data may stipulate an encryption mechanism. If multiple logical data channels are modeled, you
can specify for each channel a set of properties that include, among other things, their encryption
properties. This group of logical channels is called a feature group.

4.2.3 Tampering Risks

When considering tampering attacks, we must think about these risks:

1. If tampering is not detected, any assumptions about system behavior are invalidated.

2. Trust boundaries will affect how components are grouped and hence where encryption will
and will not be applied.

3. Trust boundaries will affect when and where an actor is authenticated or re-authenticated.

Therefore, trust boundaries must be explicitly specified in any AADL model.

4.2.4 Questions About Tampering

From an analysis perspective, we must answer the following questions:

1. Have the critical pieces of data been defined?

2. Is the encryption of the data sufficiently strong (given the criticality of the data)?

3. Is a system-wide encryption scheme uniformly applied?

4. How easily can the specified encryption be broken?

5. Have authentication and access control mechanisms been planned?

The answers to these questions must be modeled in the AADL model.

4.2.5 Security Property Violated by Tampering

Tampering attacks violate the Integrity property.

4.3 Repudiation

Repudiation can occur when a system does not properly track and log the actions or changes of
users (or other system actors). In such a case, malicious users may be able to forge an identity so
that their actions (attacks) will be difficult to trace and might go undetected for an extended pe-
riod of time.

CMU/SEI-2015-TR-014 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 19

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

4.3.1 Conditions Under Which Repudiation Might Occur

Repudiation could occur if an attacking component changes data (e.g., state information, driver
information) without the possibility of that change being traced back to that component. Such
changes will be difficult to detect and prevent if, for example, the components store data without
using a data hash.

4.3.2 AADL Implications of Repudiation

A typical pattern used to guard against repudiation attacks would require a logging function in the
architecture. The elements to be logged must be determined (typically from the data architecture),
and the frequency and limits for logged data must be specified, since the logging actions might
impact performance. To support non-repudiation, the design should clearly designate the exist-
ence of a logging function and the ways in which the data to be logged are communicated and
stored by this function. Mechanisms that authenticate those with legitimate access to logs must be
established. The AADL model can then be checked to ensure that the logging function is em-
ployed correctly and ubiquitously.

4.3.3 Repudiation Risks

When considering repudiation attacks, we must think about these risks:

1. If no logging is being done, repudiation cannot be ensured.

2. If authentication is inadequate, logging is meaningless.

4.3.4 Questions About Repudiation

From an analysis perspective, we must answer the following questions:

1. Which parts of the system are trusted?

2. How is trust established with third-party components?

3. How is authentication managed? Can a component’s identity be spoofed? For example, does
a system-wide authentication service exist that can be asserted to be genuine with high assur-
ance?

4. Does a service exist that provides proof of the integrity and origin of data?

5. Is transaction data logged?

4.3.5 Security Property Violated by Repudiation

Repudiation attacks violate the Non-Repudiation property.

4.4 Information Disclosure

Information disclosure enables an attacker to gain (potentially sensitive) information about a sys-
tem, possibly leading to a data leak, a privacy breach, or the disclosure of information that could
be used to launch additional attacks.

4.4.1 Conditions Under Which Information Disclosure Might Occur

If an attacker can read a process’s state, capture information in transit, or break into a system’s da-
tabase, sensitive information might be disclosed. For example, if the system uses the broadcast of

CMU/SEI-2015-TR-014 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 20

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

messages or publish/subscribe features (where subscriptions are not managed via authentication
and authorization), an attacking component might be able to use this design weakness to steal in-
formation in transit. Similarly, if an attacking component can spoof a recipient’s identity, it could
collect (and steal) poorly protected information intended for the legitimate recipient.

4.4.2 AADL Implications of Information Disclosure

From an architectural perspective, to address information disclosure risks, we need to design into
the system the same authorization and authentication safeguards that also address spoofing, eleva-
tion of privilege, and tampering risks.

4.4.3 Information Disclosure Risks

When considering attacks that could lead to information disclosure, we must think about these
risks:

1. Disclosure of operational information can lead to other security or availability problems.

2. Disclosure of customer or user information can lead to a loss of reputation, as well as in-
creased likelihood of other kinds of attacks.

4.4.4 Questions About Information Disclosure

From an analysis perspective, we must answer the following questions:

1. What data in the system is operational, affecting the state of the system?

2. How is information transmitted around the system (what mechanisms, what properties)?

3. Where is information about the communication medium (e.g., publish/subscribe) and its
properties documented?

4.4.5 Security Property Violated by Information Disclosure

Information disclosure attacks violate the Confidentiality property.

4.5 Denial of Service

A denial of service (DoS) attack is an attempt to make a computational or network resource una-
vailable to its intended (legitimate) users. This attack is typically accomplished by flooding the
system with useless traffic or service requests.

4.5.1 Conditions Under Which DoS Might Occur

DoS attacks, which are perhaps the most critical security risk for an automotive system, can affect
safety-critical performance and availability properties. An attacking component, which may or
may not be authorized in the system, could attempt to saturate the available system channels with
communication requests.

4.5.2 AADL Implications of DoS

The desire for performance modeling, now a well-established capability of AADL, was one of the
driving factors that led to AADL’s creation. To detect and respond to a DoS attack, the system
would need to include monitoring and control functionality that monitors network traffic and re-
sponds to unacceptable anomalies by shedding load or changing configurations. Employing

CMU/SEI-2015-TR-014 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 21

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

AADL allows limits to be associated with the performance properties of (previously identified)
critical portions of the system, and these limits can be monitored by the monitoring component.
Furthermore, the consequences and probabilities of a component failure due to a DoS attack need
to be assessed so that mitigations can be planned, such as increasing the cost for the attacker. Po-
tential DoS attack vectors must be identified through a distinct threat modeling activity to estab-
lish where monitoring activities should occur.

4.5.3 DoS Risks

A successful DoS attack can affect the system’s safety-critical properties. For example, if the
brake system is under attack, it may not be able to respond to legitimate commands in a timely
fashion, and that delay could affect a car’s safety by making the vehicle unresponsive to the
driver’s actions.

4.5.4 Questions About DoS

From an analysis perspective, we must answer the following questions:

1. What is the minimum (safe) operating state of the system that can be guaranteed despite fail-
ures?

2. What system component is receiving external packets, making it a potential target for DoS?

3. How much “headroom” is in the processing capacity of the computers or network?

4. How are “bad” components shut down or bypassed?

5. Does a central communication “manager” exist? If so, does it have the ability to inspect (and
scrub) communications, limit rates, or monitor system network traffic to detect and respond
to anomalies?

4.5.5 Security Property Violated by DoS

DoS attacks violate the Availability property.

4.6 Elevation of Privilege (EoP)

An EoP attack occurs when an attacker obtains authorization permissions beyond those initially
granted, typically by exploiting a weakness—a programming error or design flaw—in the system.
As a result of this exploit, the attacker can perform unauthorized actions.

4.6.1 Conditions Under Which EoP Might Occur

EoP involves an attacking component gaining access to data or resources beyond what its permis-
sions allow (in terms of its group membership and data access rights [read/write/execute]). This
unauthorized access can occur due to “stealing” the identity of another component (via spoofing
or information disclosure) or due to a jailbreak-type attack.

4.6.2 AADL Implications of EoP

An AADL model can define data types with allowable enumerated values and then check the
compatibility of data shared between components such that they comply with the data access rules
on those types. We have defined two such properties: group membership and access mode.

CMU/SEI-2015-TR-014 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 22

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

4.6.3 EoP Risks

Elevation invalidates all the other security properties and mechanisms built into the system. An
EoP attack may facilitate any of the other attacks described in this chapter.

4.6.4 Questions About EoP

From an analysis perspective, we must answer the following questions:

1. Does the system employ any form of data execution prevention?

2. Do multiple levels of privilege exist? If so, does the system execute processes with least
privilege?

3. Are system components “certified”? Can the validity of that certificate be confidently
checked so a compromised component can be identified?

4. Does the system employ anti-virus software to reduce the likelihood of component attacks
from known malicious code? Is that software kept current?

5. Does a patching mechanism exist? If so, are patches automatically (and promptly) applied?

6. Has any diversity been designed into the system such that an attack on one part does not per-
mit compromise of the entire system?

4.6.5 Security Property Violated by EoP

EoP attacks violate the Authorization property.

4.7 Using the STRIDE Model

These STRIDE threat categories provide an analysis framework of possible threats against a sys-
tem. To analyze a specific system, we use the framework to characterize and analyze specific
threats that are instances of one or more STRIDE categories and to construct a system-specific
threat model. In Section 5, we show how we instantiated two specific threat scenarios for the car
infotainment system—one for EoP and one for confidentiality—and modeled the mitigations of
such threats in AADL.

Over the course of this project, we were interested in exploring other ways to improve threat mod-
eling efforts, especially among those who may be relatively new to the process and have limited
security expertise. To that end, we assembled two groups of people to play the Elevation of Privi-
lege card game from Microsoft, which is designed to facilitate discussions of system threats
among individuals with and without security experience. Playing that game was a useful way to
seed security discussions about a system even with minimal information about it; for example, at
the point when the architecture is still being developed and no software has been written or even
fully specified yet. We believe that threat modeling in general and the EoP game in particular are
complementary to early phases of the system architecture and design lifecycle. We describe the
results further in Appendix A.

CMU/SEI-2015-TR-014 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 23

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

5 Example Solution Approach for Security Threats

This chapter provides a brief introduction to AADL and explores some of the ways in which the
language supports the security design structures needed for the automotive infotainment example.
The detailed steps for building an AADL model are described, along with how to represent and
check the selected security requirements.

5.1 AADL Description

AADL and its extensions support

 architecture specification and validation

 specification of functional components, their interfaces, and their interactions

 mechanisms for analysis representation (i.e., qualitative analysis and rule checking of system
specifications that define properties, mathematical evaluation, and model checking)

 verification of approaches and outcomes (e.g., Mathematically verify that a quantitative re-
quirement is met by the architecture, and ensure that a claim about components, interactions,
and associated properties is upheld throughout the architecture.)

AADL specifies a static representation of the system architecture by the use of component types
that can model software functionality, software runtime specifications, execution hardware, hard-
ware and protocols used for connections, and related components such as sensors and actuators.
The language supports the notation for logical flows, binding of software to execution hardware,
and modal operation of both software and hardware. The modeling notation is structured to sup-
port a number of consistency checks to be developed in a modeling tool set.

The language defines the following component types:

 system

 device

 thread and thread group

 process

 processor

 bus

 memory

 subprogram

These components represent abstractions of their named entities and interface with each other
through ports (and port groups) features. A system is modeled, in general, by connecting compo-
nent types within a system implementation. AADL allows for modeling an architecture by sepa-
rating concerns and having multiple views of the architecture (e.g., logical data/control view; exe-
cution platform view; and process and thread view).

CMU/SEI-2015-TR-014 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 24

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

In the language, properties capture the essential characteristics of components and allow for com-
ponent constraint specifications, documentation of expected (to be implemented) capabilities, exe-
cution specifications, latency values, and so forth. For example, a software component that per-
forms encryption can have a property that specifies the execution time latency (e.g., 3 ms) and
another property that specifies the type of encryption the component is to perform (e.g., Rivest-
Shamir-Adleman [RSA]16). If needed for the particular modeling effort, additional detailed prop-
erties relevant to the encryption type could be specified (e.g., data [word] size).

Properties can be defined by an AADL user to extend the core language. Properties capture im-
portant design constraints and architectural specifications that support the mathematical analysis
of the overall architecture. For example, the latency property specified for a number of compo-
nents can support analysis for computing the overall end-to-end latency of a flow. Properties can
also capture boundaries on system resource requirements such as memory footprint (in words),
power consumption, and scheduling protocols.

5.2 Security Analysis for the Infotainment Example in AADL

Securing a computer system involves establishing and enforcing security policies such as a re-
quirement that all users must be authenticated. The design of an architecture includes designating
Policy Enforcement Points (PEPs) such as where authentication is enforced in a data flow. An es-
sential security policy is that untrusted input should not be used when constructing commands that
will be executed by other components such as a database query (SQL injection) or in JavaScript
programming instructions that will be executed by an external user’s browser (Cross-Script Injec-
tion). For a database query (SQL injection vulnerability) as shown in Figure 7, the data is un-
trusted as supplied by the user but must be trusted when it reaches the database server.

Figure 7: Trust

Security analysis starts with a description of the attack surface. As described in Section 2, it in-
cludes communication channels and access rights. Over time, the automotive attack surface has
grown from the initial OBD port to now include remote key systems, satellite radios, telematics
control units, Bluetooth connections, dashboard Internet links and even wireless tire-pressure
monitors. But the expanded attack surface has not been matched by the addition of security func-
tions to monitor and control access. The threat modeling framework, described in Section 4,
draws on knowledge of successful attacks to analyze how a proposed design could be exploited
and analyzed ways that a design or architecture could eliminate or at least reduce such risks.

16 For the definition of RSA, go to http://searchsecurity.techtarget.com/definition/RSA.

http://searchsecurity.techtarget.com/definition/RSA

CMU/SEI-2015-TR-014 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 25

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

Invalid input of some form is the root cause of many compromises. For many of the automotive
ones, the format of the input (e.g., input to the braking system) was valid, but the source (e.g., the
infotainment system) was invalid.

There were no access controls on the infotainment system’s access to the CAN bus. The architec-
ture for the automotive control system should include a trust boundary as shown in Figure 8. A
trust boundary defines a segment of an architecture with a requirement that, within the bounda-
ries, access is controlled. Examples discussed in this chapter show how to specify a trust boundary
using AADL extensions.

Figure 8: Trust Boundary for CAN Bus

There are several ways to design such a trust boundary for an automotive electronics system. In
what follows, we focus on the portion of the automotive electronics system related to CC, along
with the interactions between the CC system and other automotive electronics components.

Trust could be assumed among the components of a CC system, since they are provided by the
manufacturer and are not runtime replaceable. Because we assume that there are no security risks
associated with a network consisting of only CC components, one mitigation tactic is to create a
sub-network consisting of only those components. We can create such a network by having the

CMU/SEI-2015-TR-014 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 26

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

gateway component in Figure 8 act as a PEP to block all access to the sub-network from non-CC
components. This gateway could implement a second sub-network consisting of the infotainment
system and the display. Such an approach would be sufficiently secure as long as the gateway
controls all connectivity to the CAN bus. The security problems are more difficult if the CAN bus
can be accessed wirelessly. For example, a DoS targeting the wireless access point could be used
to compromise the control system. Should such access be allowed if that risk cannot be suffi-
ciently mitigated?

Figure 9: Monitoring

A CC system is just one of the electronic control systems (ECSs) that can be installed. Others in-
clude electronic stability controls, driving monitoring, and maintenance and diagnostic packages.
For example, an ECS could include a steering-wheel-angle sensor to determine the driver’s in-
tended rotation, a yaw rate sensor to measure the rotation rate of the car, a lateral acceleration sen-
sor, a wheel-speed sensor, and a longitudinal acceleration sensor that might provide additional in-
formation about road pitch and a second source of vehicle acceleration and speed.

CMU/SEI-2015-TR-014 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 27

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

The architectural issues for security can arise with the use of third-party OBD-port plug-ins with
real-time access to sensor data or with remote access to stored data such as that used for mainte-
nance. For example, after an accident occurs, the saved record of automobile behavior could be
analyzed to determine whether the cause was driver or vehicle failure. The system should be de-
signed so that a driver cannot use the OBD port to clear that data store. AADL can be used to
model a trust boundary between the automotive control system and devices connected to the OBD
port, and between the control system and other automotive components such as the infotainment
system as shown in Figure 9.

5.3 Architectural Models in the Design Process

Architectural models can be developed in several ways. In this research example, we performed
the model development process in three phases: (1) Focus, (2) Build, and (3) Analyze, each ex-
plained below.

5.3.1 Focus Phase

The goal of the Focus phase is to create a foundation for analysis by identifying elements of the
model problem and conceptualizing the functionality of the key quality attributes and hardware
and software components. For our model problem, this exercise is based on understanding secu-
rity aspects of the automotive ECS and how they could be captured and evaluated. Performing
this activity on a real project would identify a broader set of key quality attributes (e.g., require-
ments for performance, capacity, communication [bandwidth], safety, reliability). These quality
attribute requirements would form the basis against which the architectural model could be ana-
lyzed, quantified, and evaluated.

We applied the STRIDE framework to develop a threat model for the system and identify the crit-
ical security mechanisms needed to address the security concerns. In our automobile example,
many of the security mechanisms rely on authentication, which led us to add an authentication
service, the associated authentication server hardware, and logical communication channels that
supported the authentication service and protocol (and that would eventually be mapped to hard-
ware realizations).

Also in this phase, we developed usage scenarios for exhibiting the operational and logical behav-
ior that would allow us to evaluate how well the architecture met the STRIDE categories. We dis-
cuss two of the usage scenarios in detail later in this chapter.

5.3.2 Build Phase

The Build phase was decomposed into three parts: (1) building the initial model, (2) identifying
gaps when comparing that model to the security concerns developed from the STRIDE frame-
work, and (3) formulating the logic rules to be used in the Resolute model checker.

The activities in building the initial model for this investigation were the same as for any model-
ing effort. We initially developed a context model for the model problem: a vehicle control sys-
tem with major functional components that included

 the CC system

 an infotainment system

CMU/SEI-2015-TR-014 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 28

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

 stability control

 the sensors that provided data on the physical vehicle and its environment to the control sys-
tems

 the associated actuators controlled by the systems

 system data to be displayed on the infotainment system

 computing hardware

 communication physical layers such as Ethernet, CAN bus, and radio (e.g., Bluetooth)

We chose AADL model components based on the degree of abstraction necessary to capture func-
tionality. For example, sensors were modeled as simple devices because we did not need to model
the sensors’ execution characteristics. We developed two views of the system: a logical view and
a deployment view17 to support our analysis goals. We focused on identifying application patterns
and communications that are typical in real-time control and CPSs to create a model that supports
analyzing how the architecture would respond to security requirements.

As we built the model, we realized that crucial elements needed to address security concerns were
not part of our initial conceptualization, because they were not driven by the primary domain con-
cerns of managing the car’s sensors, actuators, driver controls, and displays. For example, we de-
cided to add authentication functionality to the architecture in the form of a software service that
performed authentication, the associated execution platform for this service, and logical connec-
tions between the authentication service and components that needed authentication. These com-
ponents were added into their respective views.

Models for analysis are built with an eye towards validating system requirements. To that end,
properties are added to the components to specify a constraint (reflected in the requirements) or as
a placeholder for data that can only be determined when the software is actually executed. In us-
ing the threat scenarios developed from the STRIDE model to generate security requirements, we
identified properties that were not part of the AADL default property set. To address those proper-
ties, we needed to develop the security-specific properties described in Section 5.5 and determine
how best to analyze them.

In some cases, the identified properties cannot be analyzed at the architectural level but serve as a
constraint for downstream design and implementation, or serve as a placeholder for a property
value that can be obtained by simulation. An example of the former is specifying RSA as an en-
cryption property defining the algorithm that should be implemented. An example of the latter
would be specifying an encryption protocol with a latency requirement that could be simulated in
a communication simulation environment such as OpNet. The values obtained from the simula-
tion could then be assigned back to the appropriate properties.

Resolute, the AADL tool described in Section 3, can be used to verify a model. Formulation of
the Resolute rules involve expressing the model components particular to a claim in association
with the logical relationship between or among components. For example, one rule, expressed in
English, is that any component reading data marked with a confidentiality level of 1 should also

17 For details on these two views, refer to the AADL reference book [Feiler 2012] or to a more general discussion
of architecture documentation [Clements 2010].

CMU/SEI-2015-TR-014 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 29

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

have a confidentiality level of at least 1. This rule essentially ensures that any component han-
dling data has the same or greater level of confidentiality as the data. The specifics regarding rule
creation are described in the scenario descriptions later in this chapter.

5.3.3 Analysis Phase

The activities in the Analysis phase included ensuring the model had enough detail to meet valida-
tion requirements and using Resolute to determine if the defined security rules were satisfied. The
example models were reviewed against the scenarios formulated in the Focus phase to ensure they
were constructed correctly. Next, we instantiated the models and ran the Resolute rule checker.
The results of Resolute are that either the rules were satisfied or they failed. In either case, but
particularly if the rule failed, we checked the rule manually for correctness. Normally, various
what-if analyses would be done in this phase to identify gaps in the application of the rule; for ex-
ample, if a component was annotated with an invalid property. Once correctness is established,
the rules could be applied to larger models.

Changing the architecture or specifying other quality attribute properties of a system can often un-
cover related but hidden dependencies that may result in the architecture not meeting the design
requirements. For example, consider the case where a requirement to increase confidentiality is
revised, necessitating a change in the encryption policy. Modifying the frequency of key changes
along with the key size will increase the message size, and that, in turn, may increase bandwidth
usage and power consumption. Increased computational complexity may increase the worst-case
execution time, CPU usage, and power consumption. Running the analysis to check for the correct
confidentiality level on data and software applications may indicate that the requirement is met,
but running subsequent analysis for end-to-end latency, bus bandwidth usage, and power con-
sumption may show that one or more of the requirements will not be met. Having one architec-
tural model that can capture the properties and their interdependencies helps to discover early in
the design lifecycle some of the interdependency problems that typically surface during integra-
tion. At that stage, those problems are typically expensive to discover and correct.

5.4 Model Problem and Associated Architecture

We created both a logical view of a plausible (but not exhaustive) set of application components
(Figure 10) and a physical view of the execution platform. These views map each software com-
ponent to a hardware component (Figure 11).

CMU/SEI-2015-TR-014 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 30

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

Figure 10: AADL Model Logical View of Automotive Electronics

Figure 11: AADL Model Physical View of Automotive Electronics

Figure 4 on page 9 is a DFD of a CC system. Many of the components shown in that diagram can
be mapped directly to either the system or device components as shown in Figure 10 and Figure
11 above (e.g., Wheel Motion Sensor, Brake Pedal Sensor). In some cases, abstractions are used
to capture the essence of the objects and their interfaces. For example, the Operator Buttons in

CMU/SEI-2015-TR-014 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 31

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

Figure 4 are part of the automotive ECS and were represented in the Infotainment User Interface
that we modeled in AADL. We paid particular attention to the Function Select port that provides
data as to what function the user wants (e.g., vehicle data, navigation/GPS) and the data associ-
ated with the function. We aggregated the individual signals (data) coming out of the Operator
Buttons element into a single interface (data port) in this model. A general guideline in architec-
tural modeling is to represent enough detail to capture the essence of the situation being studied to
perform analysis. If the signals (data) going from one component to another are conceptually sim-
ilar and have no significant quality attribute differences (e.g., different latency goals), those sig-
nals can be combined into a single data element for modeling and analysis purposes and then be
shown as a single connection to another component in the architecture diagram.

Figure 10 represents a component and connector view of our model. The intent of this diagram is
to determine the interfaces, the data associated with the interfaces, and the logical interaction
among components. Most of the threats associated with the STRIDE categories are based on some
entity gaining access to the system via existing hardware interfaces, and the malicious activities
are largely centered on accessing and manipulating data. Many of the deterrents to attacks involve
detection of data manipulation or data protection via access protection or encryption. Hence the
component and connector view is a key to reasoning about, representing, and analyzing the archi-
tecture.

We found it necessary to add components in our model to capture the notion of Internet devices,
diagnostic devices (a diagnostic instrument via the vehicle’s OBD interface), or external threats.
These devices are not permanently connected to the vehicle but need to be represented in a static
system view to provide a source of threats and an interface through which they interact with the
rest of the system. AADL is a modeling and specification language, not a simulation language, so
the existence of objects dynamically joining the system must be represented via static objects. We
can then analyze the physical, logical, and data exchanges among such objects.

Figure 11 represents a physical view of the model problem. This view shows the processors,
buses, and connection to the buses that represent the computing platforms and connection topol-
ogy for the components of our model problem. For example, CruiseControlCPU contains connec-
tions to the CAN bus and the OBD connector (OBD2) used by technicians to read and write diag-
nostic information for the vehicle. Wireless devices connect to the system via radio links. Both
communication mediums can be represented by the AADL Ether bus component that represents
the air and the corresponding Bluetooth radio. The Ether bus represents the medium through
which any Internet of Things (IoT) device such as a smartphone or iPod would attempt a connec-
tion. As part of any architectural design and for review and analysis, it is important to capture in-
teractions at this level to ensure that the necessary protocols are in place. For example, a data en-
cryption technique that is mapped to a software application must also be mapped onto a secure
communication protocol as part of the (hardware) bus model specification.

The physical view of the system is not technically a deployment view, but in this example, the ap-
plication components were bound to the processor using the AADL binding properties and a sim-
ple similar-name binding approach. For example, the CruiseControl system component was bound
to the CruiseControlCPU processor, and the StabilityControl system was bound to the Stabil-
ityCPU processor, essentially making the physical view a deployment view. To keep the diagram
uncluttered, this binding is not shown in Figure 11.

CMU/SEI-2015-TR-014 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 32

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

The logical and physical views (which are two views of the same system) allow designers and an-
alysts to focus on security concerns specific to that view. Looking at a physical connection/com-
munication view of the system reveals the paths by which hardware components interact. Note
that security design decisions can affect other system quality attributes such as performance, relia-
bility, and so forth. From a holistic system perspective, it is important to qualitatively understand
the implications of software and hardware security design decisions with respect to other system
quality attributes. For example, changing an encryption technique may adversely affect bus band-
width. Using AADL to model various perspectives from a single model allows concurrent analy-
sis of other quality attributes to ensure that the overall system requirements are being met.

5.5 Analysis Options for Our Example

Having developed an understanding of the threat types and associated semantics for the infotain-
ment example, we needed to determine the best approach to both capture and analyze the security
characteristics to ensure consistency of the security characteristics across a system model.

For some attack types, certain new architectural functions, possibly packaged as independent
components, had to be specified. For example, we needed a software component that would func-
tion as an authentication server. Secondly, the external characteristics we needed to consider the
security properties would have to be represented as AADL user-defined properties.

Designating the architectural components that provide authentication services would have to be
done manually, by a person performing an architectural review. Checking for correct property-to-
component associations is handled by the syntax of the property definition language in AADL.
For example, when a property is defined, a list of the AADL architectural elements to which it ap-
plies can be specified. Checking for matching properties across components, across the system, or
over the component hierarchy is more difficult, but modeling checking tools can be used.

For example, a component whose output has a confidential level of high can only communicate
with components that can accept that level of confidentiality. We used Resolute to verify such
claims. Next, we describe the syntax and claim formulation using examples specific to our do-
main, along with an issue we discovered.

5.6 Modeling and Analyzing Security

The architectural model documents system-wide design decisions and constrains the detailed de-
sign and implementation of system components. Typical design constraints include the input and
output associated with a component (e.g., the interface descriptions), data types, connections
among components, the mechanisms and protocols by which data and control are exchanged, the
use of shared resources, and so forth. The components must, of course, comply with the architec-
tural specifications for the designed properties to hold in the implemented system.

This is the case for architecture design, implementation, and analysis in general. To determine
whether security requirements are being met, the model must be annotated to capture security
characteristics so that the system can be analyzed appropriately. In our approach, we developed
security properties based on security threat scenarios as described in Section 4 and constructed
logic rules within Resolute that can be run against the model to verify that these security proper-
ties are satisfied by the architecture.

CMU/SEI-2015-TR-014 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 33

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

A number of known compromises exploited the connection between the entertainment system and
the CAN bus shown in Figure 4. As described in Section 5.2, we can create a trust boundary to
mitigate this threat. Assume that the CC components could be compromised and, in particular,
that a component is tampering with the speed sensor data.

A tactic to address this problem is to specify authentication/authorization mechanisms in the ar-
chitecture, to associate group memberships with vehicle components, and then to ensure that data
can only be accessed by members of the appropriate group, given appropriate permissions.

Here are the steps necessary to develop and evaluate security characteristics against a model ex-
pressed in AADL:

1. Ensure that the necessary architectural components are represented in the model.

2. Express the conditions that must exist to ensure the architectural components meet a prede-
fined security claim (rule).

3. Define the properties that capture the characteristics of the security rule to be verified.

4. Annotate the model problem with the security property (or properties) for checking the secu-
rity rule.

5. Compose the security rules in the Resolute model checker.

6. Run the Resolute rule checker on the model implementation, and observe the outcome of the
rule evaluation.

Next, we walk through our realization of these steps for two scenarios that cover the most im-
portant security requirements for the CC infotainment center example: counteracting EoP and es-
tablishing groups of trusted components.

5.7 Scenario 1: Architectural Analysis to Counteract EoP Attacks

5.7.1 Architecture of the Original System

In Appendix B, we provide the complete model problem constructed for this work. In this section,
we describe a subset of the components we can use as a basis for our scenarios. We choose a sub-
set so that it is small enough to discuss and graphically display in this description. The subset of
the vehicle electronics that we present here includes sensors (WheelRotation, BrakePedal), actua-
tors (ThrottleActuator), and control application software (CC and infotainment). The CC system
reads vehicle speed from the wheel rotation sensor and compares it to a speed setpoint. Then, the
CC system outputs a control variable to the throttle actuator that is proportional to the delta be-
tween the desired speed and vehicle speed. The brake pedal system also communicates its status
to the CC system. Using the brake pedal causes the CC system to reduce the throttle signal to
zero. The infotainment system has multiple modes of operation including one in which it displays
various vehicle state variables such as the vehicle speed. The graphical representation of the logi-
cal view (e.g., component and connector view) is shown in Figure 12.

CMU/SEI-2015-TR-014 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 34

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

Figure 12: Component and Connector View of a Subset of the Model Problem

5.7.2 Architecture of the System Including Authentication

To provide support for tampering prevention, two techniques are employed. The first is an archi-
tectural change that ensures every component is authenticated before it can provide or acquire
data in the system. In Section 5.7.3, we discuss the second technique, which employs the concept
of data access privilege. The details of how the authentication works are not described in the ar-
chitecture description. However, the components are annotated with user-defined properties that
specify authentication properties. A representation of the authentication server and associated
communication connections is shown in Figure 13.

Figure 13: Subset of Vehicle Control System with Authentication Server

Figure 13 shows the logical connections between the authentication server and the components
with which it communicates. As part of the architectural description, is it necessary to specify in-
formation about the server that can be used for evaluating system security, such as the contents,
type, units, associated encryption techniques, and the directionality of the communication. A cor-
responding physical view of this system would show the hardware communication paths, execu-
tion platforms, and the mapping of the software functionality to them. To these components, the
architect would specify bus communication protocols, bus bandwidth capacity, the budget of each
communication activity, and so forth. Such specification would allow the assessment of security

CMU/SEI-2015-TR-014 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 35

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

measures together with the cross-cutting effects of this security, such as performance conse-
quences.

5.7.3 Semantics of Access Privilege

A second technique employed to mitigate EoP is access privilege. Given a piece of data, we might
want to constrain how that data can be used and which components can access it. We describe a
data access design modeled after the UNIX file protection scheme where files contain access
mode designations that specify if the data is read-only, write-only, modifiable (read-write), or ex-
ecutable (a command or series of commands). Each of these modes has an associated group acces-
sibility that indicates which groups can access the data the way the mode allows—that is, which
groups can read the data; write it; read and write it; or execute it. Determining, in the architecture,
who can access which data is important in providing insight into overall system security. In subse-
quent sections, we show how this access model can be specified and analyzed in AADL.

5.7.4 Definition of Properties for Access Right Privileges

We need to translate the access model described above into analyzable pieces of information that
can be placed into an AADL specification. We created a user-defined AADL property named Ac-
cessMode that specifies one of the following enumerations: r for read access, w for write access,
rw for read-write access, and x for execution permission. Associated with that data is some stipu-
lation about which entities can access that data. For example, a vehicle speed sensor can write to a
global data area where multiple control systems in a vehicle can read the vehicle speed. The data
could be tagged with an access property of r and a list of subsystems that are allowed to read it;
for example, the CC system. A malicious application could attempt to write to the vehicle speed
location to overwrite the real speed value with a much lower value. That lower value would, in
turn, cause the CC component to increase the amount of fuel to the throttle actuator/fuel injectors,
resulting in rapid acceleration of the vehicle to reach a high speed. Hence, in this example, we
need to specify that only certain applications can write to the speed location and only certain ones
can read the speed data. To accomplish that specification, we created another user-defined prop-
erty named AccessGroup that would contain the list of applications that can access the data.

Finally, we created a user-defined property named AccessProtection that is a list of records con-
taining the AccessMode and the AccessGroup properties.

We formally specify the AccessProtection, AccessMode, and AccessGroup properties in a prop-
erty set description within our model as follows:
property set Security_Trust is

-- properties to support documenting and analyzing security

-- Added property that supports access mode of data

 AccessProtection: list of record (

 AccessMode: enumeration (r, w, rw, x);

 AccessGroup: enumeration (CC, ABS);

) applies to (all);

end Security_Trust;

CMU/SEI-2015-TR-014 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 36

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

The user would then annotate a specific data type with the AccessProtection properties in the fol-
lowing way:
data VehicleSpeed

properties

 Security_Trust::AccessProtection => ([
 -- the Cruise Control has R access

 AccessMode => r;

 AccessGroup => CC;

],
 -- the ABS has read write access

 [AccessMode => rw;

 AccessGroup => ABS;

]);
end VehicleSpeed;

In this example, the CC system can read and write VehicleSpeed data, but the anti-lock brake sys-
tems (ABS) can only read it.

From the AADL perspective, defining properties in a record is valid and seems to be the best way
to express the AccessProtection properties Since Resolute can’t parse a record for individual prop-
erties, we recast the user-defined properties as AADL enumerations. We believe the general con-
cept would be captured by a single record containing both the AccessMode and AccessGroup
properties.

The revised property set becomes
 AccessModeNew: enumeration (r, w, rw, x) applies to (all);

 AccessGroupNew: enumeration (cc, abs) applies to (all);

And the revised example now becomes
data VehicleSpeed

properties

 -- the Cruise Control has Read access

 Security_Trust::AccessModeNew => r;

 Security_Trust::AccessGroupNew => CC;
end VehicleSpeed;

Given these properties, we now need to formulate the Resolute rules that will be used to check the
architecture to ensure that the data can be accessed properly and only by the allowed components.

5.7.5 Development of Resolute Claims for Access Privilege Compliance

Earlier in this section, we informally described some guidelines about how data can be accessed
and by which components. We need to revisit those guidelines in the context of AADL compo-
nents and their associated semantics so the checks can be explicitly formulated in Resolute. Recall
that components interact with other components in AADL through event and data ports. Ports pro-
vide the interface specification of connection characteristics (e.g., queued, not queued) and, op-
tionally, the data that is communicated via the port. Consider a simple example where a WheelRo-
tationSensor component with an output data port is connected to the input port of a CC
application. The semantics of this configuration is that the WheelRotationSensor writes a Vehi-
cleSpeed data value to the output port that is then read via the input port of the CruiseControl
component. At this level of specification, the method of data exchange can be ignored. The

CMU/SEI-2015-TR-014 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 37

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

CruiseControl application, through its input port, will read the vehicle speed data. The method of
the component’s data access is specified by the directionality of the port. The semantics of the
port specifier in AADL allows for ports to be specified as output, input, or bidirectional. By defi-
nition, a component that has an input data port can only read that port. Similarly, a component
that has an output port can only write to that port. Components that have bidirectional ports can
both read and write to that port. From this observation, we can formulate a rule that will check the
AccessModeNew of data attached to a port. Data associated with an input port should have read
access, data associated with output ports should have write access, and data associated with bidi-
rectional ports should have read-write access. (We will defer checking and specifying execution
privilege until later in this section.)

To check that the architectural description satisfies the design intention, we write claims in Reso-
lute that ensure components have input, output, or bidirectional data ports and that data specified
with those ports have the correct AccessModeNew property. Resolute rules are contained in a sep-
arate AADL package. In our case, the package name is SecurityCase, and the text for the three
claims is shown below.

package SecurityCase

 -- Claim to check read privilege on incoming data

 -- making use of the fact that an incoming port with data is a feature of

the component and that

 -- component will be reading that data

SC_ReadPrivilege(self:component) <=

 ** "Read privilege is matched on component " self **

 forall (comp : component) (f : features (comp)). ((f instanceof

data_port) and (direction(f) = "in") and has_type(f))

 =>

-- if (property (type (f) , SecurityProperties::AccessProtectionNew) = "r")

then true else false
 property(type(f), SecurityProperties::AccessProtectionNew) = "r"

 -- Claim to check write privilege on outgoing data

 -- making use of the fact that an out port with data is a feature of the

component and that

 -- component will be writing the data
 SC_WritePrivilege(self:component) <=

 ** "Write privilege is matched on component " self **

 forall (comp : component) (f : features (comp)). ((f instanceof

data_port) and (direction(f) = "out") and has_type(f))

 =>

-- if (property (type (f) , SecurityProperties::AccessProtectionNew) = "r")

then true else false
 property(type(f), SecurityProperties::AccessProtectionNew) = "w"

 -- Claim to check read write privilege on incoming data

 -- making use of the fact that an in-out port with data is a feature of

the component and that

 -- component will be reading and/or writing the data

 SC_ReadWritePrivilege(self:component) <=

CMU/SEI-2015-TR-014 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 38

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

 ** "Write privilege is matched on component " self **

 forall (comp : component) (f : features (comp)). ((f instanceof

data_port) and (direction(f) = "inout"))

 =>

 if ((property (type (f) , Security_Trust::AccessProtectionNew) = "w")=>

true) or

 ((property (type (f) , Security_Trust::AccessProtectionNew) = "r") =>

true) then true else false

end SecurityCase;

Claim SC_ReadPrivilege checks that, for any input port with an associated data type, the data has
an AccessModeNew property of r. Claim SC_WritePrivilege checks that, for any output port with
an associated data type, the data has an AccessModeNew property of w. In a similar fashion,
claim SC_ReadWritePrivilege checks any bidirectional port to ensure that the associated data type
has an AccessModeNew property of rw.

Accommodating the AccessModeNew that indicates execution is a bit more challenging. The se-
mantics of executing data means that the “data” could comprise a series of instructions (possibly
with self-contained data) that are to be executed. In such cases, there is something that interprets
the instructions as commands. For example, in the UNIX/LINUX operating system, the shell is a
command interpreter. It parses each command keyword, checks if the command matches a name
in its command library and, if it does, loads the command image into memory and executes it. At
the assembly language level, the interpreter could be a small program that places the command
data into memory and then forces the CPU to begin execution at the address where the command
data is located (e.g., load the instruction register with the first word of the data and execute it). In
either case, whatever mechanism is implemented to force the CPU to fetch/decode/run a com-
mand is contained within the system type abstraction. It may or may not be explicitly modeled. A
reasonable way to capture this capability is to create a user-defined property named CmdExecu-
tion that can be set to true if a command execution capability is intended. A rule would check if
the AccessModeNew property of data associated with an input port is x and then check the com-
ponent’s CmdExecution property to see if it is true. If so, the claim would be proven. The Reso-
lute formulation of the claim to check execution privilege is shown below:
 -- Claim to check execution privilege on incoming data
 -- If data being read by component is a command, additionally check
that component has
 -- Command Execution capability, set by CmdExecution Property

 SC_ExecutionPrivilege(self:component) <=
 ** "Execution privilege is matched on component " self **
 forall (comp : component) (f : features (comp)). ((f instanceof
data_port) and (direction(f) = "in"))
 =>
 if ((property (type (f) , Security_Trust::AccessProtectionNew) = "x")
 and
 (property (type (f), Security_Trust::CmdExecution) = true)) then true
else false

Having created user-defined properties for EoP attacks and the Resolute rules to check compli-
ance to the rules in the architecture, we can now illustrate the rules’ use on a subset of our model
problem.

CMU/SEI-2015-TR-014 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 39

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

5.7.6 Architecture Components Annotated with Properties

So far, we have identified the attributes of the AADL components that we need to check for, en-
coded them into a user-defined property set, and formulated the Resolute claims to check all the
components in the architecture. The next step is to annotate the components of our model problem
with the appropriate properties, specify the claims we want to verify, and run the Resolute model
checker.

First, we look at data components and decide which values from the AccessModeNew and Ac-
cessGroupNew properties each data component in the system should have. Then, we specify the
data with the port classifier for each component in the system. Where appropriate, we specify the
CmdExecution property for components that are intended to have command execution capability.
Figure 3 on page 8 represents the subset of components used in the system ExampleCC:
WheelRotationSensor, ThrottleActuator, and the CruiseControl system. The following AADL text
depicts the VehicleSpeed data and the Throttle Position data associated with the appropriate ports.
We show the complete model in Appendix C.

system BrakePedal

 features

 Brake: in out data port BrakeData;

end BrakePedal;

system ThrottleActuator

 features

 Throttle: in data port ThrottlePosition;

end ThrottleActuator;

system CruiseControl

 features

 VSpeed: in data port VehicleSpeed;

 Throttle: out data port ThrottlePosition;

 Auth: in out data port AuthData;

 BrakePedal: in data port BrakeData;

 properties

 Security_Trust::AccessGroupNew => cc;
 Security_Trust::CmdExecution => true;

end CruiseControl;

system Infotainment

 features

 VSpeed: in data port VehicleSpeed;

 Auth: in out data port;

end Infotainment;

system ExampleCC

end ExampleCC;

system implementation ExampleCC.impl

 subcomponents

CMU/SEI-2015-TR-014 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 40

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

 WRS: system WheelRotationSensor;

 CC: system CruiseControl;

 TA: system ThrottleActuator;

 Info:system Infotainment;

 BP: system BrakePedal;

 connections

 c1: port WRS.VehicleSpeed -> CC.VSpeed;

 --c4: port CC.Throttle -> TA.Throttle;

 c5: port WRS.VehicleSpeed -> Info.VSpeed;

 c3: port BP.Brake -> CC.BrakePedal;

 properties

 Security_Trust::CmdExecution => true;

annex Resolute {**

 prove (SC_ReadPrivilege(this))

 prove (SC_WritePrivilege(this))

 prove (SC_ExecutionPrivilege(this))

**};

5.7.7 Running the Resolute Model Checker

Running the Resolute model checker within OSATE18 requires that the model be instantiated.
Resolute walks the instantiated model hierarchy, looking for components specified in its claims
and then checks those components according to the logic encoded in the claim.

In this example, we execute the read, write, and execution privilege checks over the entire model.
For the read privilege, we want to ensure that data being read by the CC system has the read mode
specified and likewise for the write mode. For example, if the command execution check deter-
mines that the data is specified as executable, does the CC system have that capability? Figure 14
shows the results of running the checks.

Figure 14: Resolute Results

The read and write privilege checks both failed, but the execution check passed. The AccessMo-
deNew property was set to w on the incoming port for VehicleSpeed data and r for the ThrottlePo-
sition. As a result, both checks failed. The BrakePedal position data was marked as executable,
and the CC system’s execution property was set to true, so the claim passed. While this example
shows the functional viability of the rule checking, it also shows that this reduced scope is not suf-
ficient for adequately specifying and checking the entire system. Brake data could potentially go
to many different components, and the access modes for that data must be specified for all those
components.

18 OSATE is an open-source tool platform that provides end users with a complete text editor and a simple analy-
sis tool for AADL and provides developers with full support for the AADL meta-model on an Eclipse platform.

CMU/SEI-2015-TR-014 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 41

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

5.8 Scenario 2: Ensuring the Level Among Components

To avoid unnecessary clutter in this description, we use only small subsections of the entire model
and show how all the steps apply. When the Resolute engine is run, it traverses the entire model,
evaluating the expressed claims on every model component.

5.8.1 Express the Conditions for the Security Rule to Be Developed

Consider the case where one component, the producer, has a logical connection to another compo-
nent, the consumer. The producer has a port interface specification where data is made available
to the input data port of the consumer. A trust boundary exists between the producer and con-
sumer. Two conditions must be satisfied for the model to represent the desired trust:

1. Both the producer and consumer components must belong to the same group.

2. The trust level of the consumer (receiving) component’s data must be at the same or greater
level of trust as the producer (sending) component’s data.

Both of these rules can be written as Resolute claims and checked in the architecture.

5.8.2 Define the Properties in AADL for Trust-Level Assurance

Following the development of Scenario 1, we can capture the notion of group membership and
trust level in the form of AADL properties. We must specify the properties in a property set de-
scription within our model, as done in the following code.

property set Security_Trust is

-- properties to support documenting and analyzing trust boundaries in a

system

-- Trust level {Low, Medium, High} - initial cut at trust levels

-- Constants defined for our TrustLevel Property, with the semantics

-- that the higher the value, the greater the trust level

Low : constant aadlinteger => 0;

Medium : constant aadlinteger => 1;

High : constant aadlinteger => 2;

-- Definition of the TrustLevel property

TrustLevel: aadlinteger applies to (all);

-- Specify the allowable groups in the GroupMembership property

 GroupMembership: enumeration (StabilityControl,

CruiseControl,DriverDisplays, DriverControls) applies to

 (device, system, process, thread, processor,memory,bus);

end Security_Trust;

The Security_Trust property set describes two properties that can be applied to the architecture
components. We define one property, TrustLevel, of AADL integer type that can be applied to
any AADL component. To capture the notion of levels of trust, we define numeric constants—
Low, Medium, and High—that convey degrees of trust. The numeric relationship among the prop-
erties will be defined in the Resolute claim discussed later in this section.

CMU/SEI-2015-TR-014 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 42

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

The second property we define is GroupMembership, an enumeration type consisting of compo-
nents in our model problem, specifically StabilityControl, CruiseControl, DriverDisplays, and
DriverControls.

5.8.3 Developing and Annotating the Model Problem for Trust-Level
Compliance

The textual model below shows how we applied these properties to our model problem.

data WheelRotationSpeed

 properties

 Security_Trust::TrustLevel => Security_Trust::med ;
end WheelRotationSpeed;

data WheelRotationSpeed2

 properties

 Security_Trust::TrustLevel => Security_Trust::low ;
end WheelRotationSpeed2;

device WheelRotationSensor

 features

 output: out data port WheelRotationSpeed

 properties

 Security_Trust::TrustLevel => Security_Trust::low;

 Security_Trust::GroupMembership => CruiseControl;
end WheelRotationSensor;

system CruiseControl

 features

 input: in data port WheelRotationSpeed;

 properties

 Security_Trust::TrustLevel => Security_Trust::low;

 Security_Trust::GroupMembership => CruiseControl;
end CruiseControl;

This model contains two data components, WheelRotationSpeed and WheelRotationSpeed2. The
intention is to represent two data types with the only difference being the values of TrustLevel,
which will become significant shortly.

Two component types are defined as well: the WheelRotationSensor device type and the Cruise-
Control system type. WheelRotationSensor contains an output port with the associated data type
WheelRotationSpeed, and the WheelRotationSensor device has TrustLevel and GroupMember-
ship properties associated with it. The CruiseControl system type has an input data port containing
WheelRotationSpeed data. In the composition of the model, the intention will be to connect the
output data port of the WheelRotationSensor to the input data port of the CruiseControl system.
Both the WheelRotationSensor device type and the CruiseControl system type contain the appro-
priate GroupMembership property.

5.8.4 Compose the Resolute Rules to Verify the Trust Level

To check that the architectural description satisfies the design intention, we write claims in Reso-
lute that will ensure components connected together with the specified trust levels meet the rules

CMU/SEI-2015-TR-014 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 43

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

described above. Resolute rules are contained in a separate AADL package called SecurityCase.
The text of this package is shown below.

package SecurityCase

-- Contains the Resolute Claims for Security Trust model

public

annex Resolute {**

--
-- Rule SC1 checks that the data component on sending side of a logical

connection has a trustlevel equal to or greater than that of the data

component of the receiving component.

--

 SC1(self:component) <=

 ** "Confidentality security level is met on " self **

 forall (c1 : component) (conn : connection) (c2 : component) . (connected

(c1, conn, c2)) and (has_property (c1, Security_Trust::TrustLevel)) and

(has_property (c2, Security_Trust::TrustLevel))

 =>

 property (c1, Security_Trust::TrustLevel) <= property (c2,

Security_Trust::TrustLevel)

-- Rule SC1a checks if the components on either side of the logical

connection have the same Group Membership

 SC1a(self:component) <=

 ** "Group membership criteria is met " self **

 forall (c1 : component) (conn : connection) (c2 : component) . (connected

(c1, conn, c2)) and (has_property (c1, Security_Trust::GroupMembership)) and

(has_property (c2, Security_Trust::GroupMembership))

 =>

 property (c1, Security_Trust::GroupMembership) = property (c2,

Security_Trust::GroupMembership)

-- Rule SC1s is the logical and of security rules SC1 and SC1a e.g. that

each component belongs to the same group and the data confidenatlity is

maintained between the components.

 SC1c(self:component) <=

 ** "Composite Check_ " self **

 SC1(self) and SC1a(self)

**};
end SecurityCase;

We use the claim composition capability of Resolute and write two rules to check each sub-condi-
tion (SC1 and SC1a) and then combine the rules into one larger rule (SC1c). Rule SC1 verifies
that two connected components must be in the same group. Rule SC1a verifies that the trust level
of the data associated with the output data port of one component is equal to or less than the input
data port of the other data component. For example, the data trust level of the writing component
must be less than or equal to the trust level of the reading component’s data. Rule SC1c checks
that both rules are true for a valid trust-level specification.

CMU/SEI-2015-TR-014 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 44

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

5.8.5 Compose an Implementation of the Model and Run Resolute

In the preceding sections, we annotated the architectural components in our model with the
TrustLevel properties so the TrustLevel rule SC1c could be evaluated. To provide the context for
rule evaluation in AADL, we must first compose our components into the logical structure of our
model and then run the Resolute rule engine over that model. Below is the AADL model that con-
tains the specification of the WheelRotationSensor device communicating the WheelRotation-
Speed to the CruiseControl system (the software component that reads the wheel rotation speed
and compares the speed to some predetermined speed setpoint).

system CompleteSystem

end CompleteSystem;

system implementation CompleteSystem.Impl

 subcomponents

 WheelSpeed: device WheelRotationSensor;

 CruiseControlApp: system CruiseControl;

 connections

 c1: port WheelRotationSensor.WheelRotationSpeed ->

CruiseControlApp.CruiseControl;
annex Resolute {**

 prove (SC1c(this)) –- Prove the complete TrustLevel Rule

 prove (SC1(this)) -- For illustrative purposes, prove each subrule

 prove (SC1a(this))

**};
end CompleteSystem.Impl;

Figure 15 shows what our model looks like graphically.

Figure 15: AADL Model Showing WheelRotationSensor Connected to CruiseControl

The subcomponents sub-clause above contains the components to be contained in the implemen-
tation of our model. The connections sub-clause specifies the connections between each of the
specified subcomponents. The annex Resolute {** **} sub-clause contains the names of the Res-
olute rules to be checked against the implementation; for example, CompleteSystem.impl together

CMU/SEI-2015-TR-014 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 45

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

with the keyword prove. The keyword this sets the context for the evaluation, specifically the im-
plementation that contains the Resolute annex, CompleteSystem. In this example, the rules to
check are SC1, SC1a, and SC1c, contained in the SecurityCase package.

As mentioned earlier, rule SC1c is the conjunction of rules SC and SC1a. In the current version of
OSATE (2.0.9), running the check on all three rules produces the output shown in Figure 16.

Figure 16. Resolute Rule Check Results Showing TrustLevel Rule SC1c and Its Two Component Sub-
Rules, SC1 and SC1a

Since SC1 and SC1a both pass, SC1c should also pass. We can now change the GroupMember-
ship of WheelRotationSensor to ABS, which will cause the rule check to fail, as shown in Figure
17.

Figure 17: Resolute Rule Check Results Showing the Failing of the TrustLevel Rule SC1c and SC1a
and the Passing of SC1

The passing of the rules indicates that the architectural specification meets the conditions to en-
sure the TrustLevel rule between the two components. This means that the implementation of the
actual software should contain TrustLevel and GroupMembership parameters with the correct val-
ues assigned to each.

Now it is straightforward to extend this small example to a chain of components that represent the
entire logical data flow; for example, WheelRotationSensor – CruiseControl – ThrottleActuator
and assigning GroupMembership and TrustLevel to the CruiseControl output data and the Throt-
tleActuator input data. Applying the Resolute rule checks would evaluate each interface connec-
tion along the chain and report the results accordingly.

CMU/SEI-2015-TR-014 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 46

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

5.9 Summary

As our example shows, the use of user-defined properties can effectively express key security
characteristics of a system. Annotating a model component represents a constraint on downstream
development activities. We specify the characteristics that implementations must contain so that
the security approach can be verified over the entire architecture. The properties have values that
can be checked across the architecture to ensure that a security concern can be validated. This
check implies that the implementation must properly implement these properties.

For our example, Resolute provided an effective solution to the analysis capability. The issue of
not being able to understand properties in a record structure is a limitation that affected the useful-
ness of the approach, but we did find an acceptable workaround.

Given that the security characteristics can be captured and analyzed allows us to explore the ef-
fects of the interaction with other quality attributes across the entire system well before imple-
mentation and integration.

CMU/SEI-2015-TR-014 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 47

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

6 Conclusions

In this report, we have shown how selected security properties can be modeled architecturally us-
ing AADL. We exemplified this process in a cyber-physical example—that of automotive elec-
tronics—because it is a timely and relevant example with enormous real-world consequences. Fu-
ture work is needed to show how additional threat categories can be addressed using AADL.

As we have learned, doing this architectural security modeling has several concrete benefits. First,
it guides an architect to think in terms of system-wide security properties and how they can be es-
tablished, expressed, and maintained. This activity actually changes the process of design, which
needs to begin with threat modeling—in our case, using the STRIDE framework. The designer
uses the threats identified in the threat model to guide the architect in establishing design strate-
gies to mitigate the risks imposed by the threats. This mitigation may involve the creation of new
components (such as an authentication service), new connections, and new properties. By model-
ing the architecture in this way, we can ensure that any decisions made are consistent with the
system-wide strategies that have been designed.

Second, this approach provides a framework for checking that such properties are maintained dur-
ing system maintenance and evolution. This checking, of course, assumes that the architectural
model and the implementation are maintained in lock-step. That is, when code changes are made,
any architectural implications of those changes are reflected in an updated AADL model, and if
the model changes, we can be immediately alerted to any modifications that must be made in the
implementation.

However, this approach is not a panacea. Next we discuss some of the limitations associated with
architectural modeling for security.

6.1 Limitations

Scenarios 1 and 2 in Section 5 used security policies, as specified in the AADL model, to guard
against the identified security threats. AADL modeling provides an effective way to document
and verify security policies across a system or indeed across multiple systems. But because the
AADL model does not validate that those policies provide sufficient security, we need to inde-
pendently determine whether the enforcement of those polices sufficiently secures the system,
given its planned usage. The problem here is not with AADL, or with any such modeling ap-
proach, but rather with the limitations of modeling the adversarial aspects of security. Attackers
often use the preliminary phases of a compromise to build their own model of a site’s security ar-
chitecture. Attackers look for ways to invalidate the very assumptions underlying the security ar-
chitecture. For example, security attacks such as an application buffer overflow or successful
phishing of a user can allow an adversary to obtain network privileges without authentication.

Furthermore, the verification offered by tools such as AADL (and its associated tools, such as
Resolute) does not show that the specifications provide the desired level of security assurance.
For example, an architect could claim that a component sufficiently verifies input data to elimi-
nate the risk of a SQL injection. However, such a claim is difficult to validate for SQL injections,
and alternative mitigations might in fact have higher levels of assurance.

CMU/SEI-2015-TR-014 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 48

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

We can improve security (and reliability) by tolerating an event at runtime or by employing de-
sign strategies that reduce or eliminate the possibility of such an event. The AADL appendix on
fault modeling enables an architect to specify how a system detects, reports, and responds to
runtime errors [Delange 2014]. Fault tolerance for hardware failures can draw on well-understood
mitigations such as the use of redundant servers. We have much less experience with tolerating
software defects. We may be able to detect a software error, but recovery strategies might depend
on distinguishing an error caused by normal but unanticipated conditions from one where the fail-
ure was orchestrated by an adversary. Currently improved security and software reliability depend
much more on fault prevention than fault tolerance.

CMU/SEI-2015-TR-014 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 49

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

Appendix A: Threat Modeling Using the Elevation of Privilege
Game

Elevation of Privilege (EoP) is a card game designed to draw people who are not security practi-
tioners into the craft of threat modeling [Shostack 2012]. Because it does not require detailed de-
sign, we found it useful to generate a set of potential threats faced by our model system. This ap-
pendix provides an overview of the game, describes our experience using it, and provides some
observations about the process.

About the Game

We provide a brief summary of the game here; Shostack describes it in more detail [Shostack
2012]. The game consists of 74 playing cards, plus an additional 2 instruction cards, 6 reference
cards, a flowchart card, and an “about” card. The playing cards are in six suits, each representing
one of the concepts in the STRIDE model: Spoofing, Tampering, Repudiation, Information Dis-
closure, Denial of Service, and Elevation of Privilege. Each card suggests a threat that might af-
fect the system being modeled. Suits are arranged in approximate order from least to most impact-
ful threats, with the ace cards representing new and novel threats invented by the players. The
only prerequisites for playing the game are (1) a diagram of the system to be modeled, (2) a way
to track the problems identified (an easel pad and markers worked well for us), and (3) a deck of
EoP cards.

Playing the Game

We were interested in identifying threats relevant to the automotive system that forms the guiding
example of this report. In the context of the game, we used the diagram shown in Figure 18 on
page 50 to guide the discussion. Note that while we wanted to reflect a sufficiently realistic sys-
tem, we were not attempting to describe any specific existing design. Nor do we claim any exper-
tise in automotive system engineering. Thus, the diagram is intended to be a representative design
rather than a specific real-world one. See Miller and Valasek’s work for more detailed system de-
scriptions [Miller 2013, 2014, 2015].

CMU/SEI-2015-TR-014 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 50

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

Figure 18: Model Automotive Cyber-Physical System

We played the game twice, with two distinct groups of five players:

1. The first game was played by vulnerability analysts experienced in discovering, identifying,
and analyzing software vulnerabilities.

2. The second game was played by security and software engineering researchers with a
broader scope of experience than the first-game players.

The diagram evolved somewhat during the game play, as it became evident that our initial rough
sketch lacked salient details. That evolution in itself, was a useful result of playing the game: We
refined our model of the system based on our reasoning about its security properties.

CMU/SEI-2015-TR-014 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 51

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

Tables 1 and 2 show the cards played, along with a summary of the threat associated with each.

Table 5: Cards Played in First Game (by Vulnerability Analysts)

Card Threat

3T Entertainment system fails to validate SSL certificates.

6T Attacker can overwrite entertainment system code.

8T Tire pressure wireless link has no integrity checks so packets can be injected onto CAN bus.

JT Given compromised entertainment system, an attacker can send throttle control messages to throttle
actuator because no ACLs exist on CAN bus.

QR Tire pressure sensors can be updated with no logs.

KR The CAN bus has no logging of data sent over it.

5I User can listen to a subscription-based radio station without paying for it because the satellite radio uses
proprietary crypto.

7R Attacker can saturate the electronic control unit (ECU) log ring buffer and make it wrap.

8R Attacker can erase the ECU logs.

JI ECU firmware has embedded symmetric key to decide upgrade validity (attacker gets key).

KI Attacker can read data on CAN bus because there is no crypto.

3I Attacker can capture security-relevant error messages via CAN bus sniffing (e.g., OBD2 port).

JD Attacker can effectively disable logging on ECU by flooding ECU with bogus messages.

2D If you drain the battery, the key fob won’t open the door (no mechanical key or externally accessible lock).

5D Attacker floods the driver information system with messages to prevent it from updating the speed
indicator.

AD Attacker can cause arbitrary information to be displayed (rather than what should be).

7D Attacker physically smashes the driver information system.

Table 6: Cards Played in Second Game (by Security and Software Researchers)

Card Threat

3T Attacker can leverage unchecked certificate against entertainment system and send arbitrary messages
on the CAN bus.

4T Entertainment console makes decisions about what it communicates to the driver console and how it
checks error-handling messages (valid source?).

E9 Driver information display doesn’t know whether the ECU checked the validity of wheel speed.

KT Attacker can load code to ECU via OBD2 port, exploiting other services.

QS Physical access to car lets you alter the account information with remote vehicle assistance service
provider.

KS Stored default admin password on entertainment system does not force change on first use.

AS ECU manufacturer embeds persistent code in supply chain.

1S Attacker can spoof crash-alert messages by exploiting a vulnerable component on the CAN bus.

JS XSS on entertainment system could steal login credentials and vehicle identification number (VIN) (VIN
used as authenticator?) from OnStar device.

8S Attacker breaks into dealership, steals OnStar credentials, and shuts down many cars.

3S Attacker does a remote start by spoofing or breaking by brute force the keyless entry codes.

5S During Bluetooth-pairing process, an attacker could spoof the device being paired to the radio.

5R Attacker can modify log messages in transit on the CAN bus because of weak integrity controls.

KR Most components have no logs.

9R Entertainment system can falsify log entries as if they come from the radio.

3R ECU logs security relevant information that can be copied out via OBD2 port (unauthenticated).

CMU/SEI-2015-TR-014 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 52

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

Discussion of Game Mechanics

We can confirm that five players were reasonable for the game. Had the group been much larger,
it seems unlikely that the game play would have made it around the table enough times to get in-
put from all the participants. We played for about 90 minutes in the first game and 2 hours in the
second. In each case, that was enough time to get through four tricks (one trick = one time around
the table), plus a bit of meta-discussion about the game itself.

We attribute the quicker play of the first game to these player qualities: (1) they were better ac-
quainted with the system being modeled and (2) they were experienced vulnerability analysts who
were already accustomed to thinking about systems from an attacker’s perspective and had prior
exposure to threat modeling techniques. However, given the choice, two hours is a better
timespan, especially if players need an overview of the system and the game.

As for the game play, we observed that the scoring incentivizes the playing of high cards early in
the game, which naturally imposes a greedy knapsack heuristic [Dantzig 1957] for threat prioriti-
zation. That was a nice benefit.

Playing an ace can slow the game down due to debate over whether the vulnerability identified is
really unique compared to all the other cards in the suit. Shostack notes this as well:

“This discussion of equivalency between threats distracts somewhat from game play, but of-
fers an opportunity for a deeper discussion of the suits and threat equivalency” [Shostack
2012].

We found the discussion to be useful though and couldn’t find much fault in the game for the in-
terpretation of aces. In the future, if a quicker pace of play is needed, we might consider using the
aces as a wildcard for the suit topic instead. However, that would of course alter the effectiveness
of the scoring method recommended in the game.

There was an interesting dynamic among playing the game for its own sake, identifying vulnera-
bilities, and understanding the implications of how the game worked. For example, from the per-
spective of identifying vulnerabilities, it seemed odd to play a card without identifying a threat
and still be eligible to win a point for the trick. The instruction card says “Each round is won by
the highest card played in the suit that was led, unless an Elevation of Privilege (EoP) card is
played.” In the ensuing discussion, we concluded that a useful variation could be to require the
player to identify a threat to be eligible to win the trick. (i.e., the highest card played with an asso-
ciated threat identified is the winner of the trick).

Only after playing the game did we notice the following text in Shostack’s paper:
“The written rule says to only count the highest card which was actually connected to the
system being developed, but in practice this is sometimes discarded to give a deeper involve-
ment to beginners” [Shostack 2012].

This text supports our conclusion that experienced analysts may want to play according to the
stricter scoring rules.

Some cards were difficult to relate to the automotive system we were modeling and had a distinct
“traditional computing flavor.” Potential future work could include adapting the deck to threats
more specifically focused on IoT devices or CPSs.

CMU/SEI-2015-TR-014 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 53

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

During the game, we found it easy to divert into discussions of the game strategy, tactics, and as-
pects of the game’s scoring rules. However, it is important to remember that the purpose of play-
ing the game is not actually the playing of the game—rather it’s the structured brainstorming of
threats. To that end, these variant rules seem worthwhile, although we did not try them this time
around:

 Double the number of points, and give one point for threats on other people’s cards.

 Other players may “riff” on the threat, and if they do, they get one point per additional threat.

We had to remind players not to get bogged down in much discussion of “Does the system behave
exactly this way?” and instead to simply note the threat and move on. If we were actually respon-
sible for building the system, we would take the list of identified threats and refine it further by
matching it up against the actual system to identify mitigating factors, validity of the threat, and
so forth.

We also had difficulty because the scope of the system we were modeling wasn’t entirely clear.
For example, should we have allowed the radio playing unauthorized music to score? We opted to
be inclusive, since the threats can always be dropped off the list in a later refinement. Similar to
brainstorming, it seemed like the game time was better spent generating ideas than filtering them
too harshly.

Our scenario seemed to provide an analog to threat modeling a system in the early stages of devel-
opment—say, at a point when the system itself is underspecified and ambiguity in its components
or behavior is expected. Having an actual expert on the system in the room could alleviate some
of the debate on whether a threat is realistic. It might also help to implement the “Are you willing
to create a ticket to fix this?” rule. In our case, we weren’t responsible for the development of the
system and didn’t have any resident experts on it. While those caveats may be typical for vulnera-
bility analysts evaluating a third-party system, it is likely a problem for teams attempting to threat
model systems they are directly responsible for.

Discussion

While some of the identified threats were based on previously reported vulnerabilities, others
would later emerge as actual vulnerabilities in real vehicles. For example, the 8T play in Table 5
on page 51 is equivalent to what Roufa and colleagues describe [Roufa 2010], while Mahaffey de-
scribes a remote attack against a Tesla Model S similar to (although not exactly the same as) the
Jack of Tampering play also in game 1 [Mahaffey 2015]. There is also overlap between the threats
listed in the games and vulnerabilities described by Miller and Valasek [Miller 2015], Checkoway
and colleagues [Checkoway 2011], and Koscher and colleagues [Koscher 2010].

When reviewing the summary of the game results, a colleague who had not participated in the
game sessions noted that privacy-related attacks didn’t appear in either game; for example, the
ability of an attacker to remotely enumerate a vehicle’s Global Positioning System (GPS) location
as Miller and Valasek describe [Miller 2015]. It is unclear whether the absence of that type of at-
tack is an inherent limitation of the players’ mindset or of the game and the card prompts. We sus-
pect the issue is with the former, since “Information Disclosure” is one of the suits in the deck.

Process-wise, recording results is critical; someone must be designated as a scribe for the group.
He or she can play too but needs to capture the threats identified by the players.

CMU/SEI-2015-TR-014 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 54

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

Finally, we recognized that for the effort to be successful, the group must be interested in identify-
ing threats. This game will not work nearly as well if some players have a vested interest in not
finding problems. For example, in the case of an adversarial acquisition process in which develop-
ers are motivated to have the system accepted by the acquirer, they would have little incentive to
identify new vulnerabilities representing additional work that must be completed prior to ac-
ceptance.

Conclusion

In summary, we focused our game play on a “connected car” scenario inspired by the Toyota un-
intended acceleration problem and how it might become a remotely exploitable vulnerability.
However, the threats identified were much broader than that. We found the Elevation of Privilege
game to be quite useful and plan to keep it in our toolbox for vulnerability analysis.

CMU/SEI-2015-TR-014 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 55

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

Appendix B: AADL and STRIDE

The property set below was developed to support the STRIDE model.

property set Security_Trust is

-- properties to support documenting and analyzing trust boundaries in a

system

-- Trust level {Low, Medium, High} - initial cut at trust levels

-- Constants defined for our TrustLevel Property, with the semantics

-- that the higher the value, the greater the trust level
Low : constant aadlinteger => 0;

Medium : constant aadlinteger => 1;

High : constant aadlinteger => 2;

-- Definition of the TrustLevel property
TrustLevel: aadlinteger applies to (all);

-- Specify the allowable groups in the GroupMembership property
 GroupMembership: enumeration (ABS, CruiseControl, DriverDisplays,

DriverControls) applies to

 (device, system, process, thread, processor,memory,bus, data);

-- Group matches to Category in Bell LaPadula confidentiality plug-in

-- Properties that supports access mode of data
 AccessProtection: list of record (

 AccessMode: enumeration (r, w, rw, x);

 AccessGroup: enumeration (CC, ABS);

) applies to (all);

---- Since resolute cannot process record properties, I made separate

properties.

-- The down side of this approach is that an object can only have one access

group and access protection

-- Doing these properties only illustrates the concept

 AccessProtectionNew: enumeration (r, w, rw, x) applies to (all);

 AccessGroupNew: enumeration (cc, computer, abs) applies to (all);

 -- Property to support Command execution of a component
 CmdExecution: aadlboolean applies to (all);

-- Data encryption properties - a list of applicable types (these are just

examples, more can be added later)

-- To support Tampering Attack Type

 DataEncryptionHashing: enumeration (MD5, SHA) applies to (data);

 DataEncryptionPrivateKey: enumeration (DataEncryptionStandard,

AdvancedEncryptionStandard, InternationalDataEncryptionAlgorithm) applies to

(data);

CMU/SEI-2015-TR-014 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 56

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

 --DataEncryptionPrivateKey: enumeration (DES, AES, IDEA) applies to (data);
 DataEncryptionPublicKey: enumeration (RSA, DiffieHellman) applies to

(data);

-- Timing properties specific to Denial of Service Attacks

-- Interval allowed between incoming messages....if interval exceeded then

trigger DOS alert

 PageRequestTime: Time_Range
 applies to (thread);

-- Maximum amount of time for a page to be serviced

 PageServiceDeadline: Time
 applies to (thread, device, subprogram, subprogram access, event

port, event data port);

 PageExecution_Time: Time_Range
 applies to (thread, device, subprogram, event port, event data port);

end Security_Trust;

CMU/SEI-2015-TR-014 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 57

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

Appendix C: AADL for Scenarios

The following is a listing of Resolute claims that check for architectural support for trust levels
and EoP attacks.

package SecurityCase

-- Contains the Resolute Claims for Security Trust model

public

annex Resolute {**

 --SecurityClaim function (SCF1):

--Given a component (e.g., System,Device,Thread) has a property Security

tuple specified (TrustLevel, GroupMembership)

--AND given an in or out port associated with the component has specified

data classifier,

--Then the Security property tuple of the data classifier must equal that of

the associated component classifier.

--e.g., System (TrustLevel)== port data (TrustLevel) AND

System(GroupMembership) == Port Data (GroupMembership) then security claim

is valid.

--

-- Algorithm for checking that IF a component (System,Device,Thread) has a

property Security tuple

-- specified (TrustLevel, GroupMembership) and if an in or out port

(associated with the component)

-- has specified data classifier, then the

-- Security property tuple of the data classifier must equal that of the

associated component classifier.

-- e.g., system (TrustLevel)== port data (TrustLevel) AND

system(GroupMembership) == port data (GroupMembership)

 SC1(self:component) <=

 ** "Confidentality security level is met on " self **

 forall (c1 : component) (conn : connection) (c2 : component) . (connected

(c1, conn, c2)) and (has_property (c1, Security_Trust::TrustLevel)) and

(has_property (c2, Security_Trust::TrustLevel))

 =>

 property (c1, Security_Trust::TrustLevel) <= property (c2,

Security_Trust::TrustLevel)

-- Claim to check if the components have proper Group Membership

 SC1a(self:component) <=

 ** "Group membership criteria is met " self **

 forall (c1 : component) (conn : connection) (c2 : component) . (connected

(c1, conn, c2)) and (has_property (c1, Security_Trust::GroupMembership)) and

(has_property (c2, Security_Trust::GroupMembership))

 =>

 property (c1, Security_Trust::GroupMembership) = property (c2,

Security_Trust::GroupMembership)

-- Composit security level and group membership criteria is met

CMU/SEI-2015-TR-014 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 58

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

 SC1c(self:component) <=

 ** "Composite Check_ " self **

 SC1(self) and SC1a(self)

-- Algorithm for checking that IF a component (System,Device,Thread) has a

property Security tuple

-- specified (TrustLevel, GroupMembership) and if an in or out port

(associated with the component)

-- has specified data classifier, then the

-- Security property tuple of the data classifier must equal that of the

associated component classifier.

-- e.g., system (TrustLevel)== port data (TrustLevel) AND

system(GroupMembership) == port data (GroupMembership)

 SC2(self:component) <=

 ** "Confidentality security level is met on " self **

 forall (comp : component) (f : features (comp)). (f instanceof data_port)

 =>

 property (type (f), Security_Trust::TrustLevel) = property (comp,

Security_Trust::TrustLevel)

 -- Rule to check if

 SC3(self:component) <=

 ** "Confidentality security level is met on " self **

 forall (c1 : component) (conn : connection) (c2 : component) . (connected

(c1, conn, c2)) and (has_property (c1, Security_Trust::TrustLevel)) and

(has_property (c2, Security_Trust::TrustLevel))

 =>

 property (c1, Security_Trust::TrustLevel) <= property (c2,

Security_Trust::TrustLevel)

 -- Claim to check read privilege on incoming data

 -- making use of the fact that an incoming port with data is a feature of

the component and that

 -- component will be reading that data

 SC_ReadPrivilege(self:component) <=

 ** "Read privilege is matched on component " self **

 forall (comp : component) (f : features (comp)). ((f instanceof

data_port) and (direction(f) = "in"))

 =>

 if (property (type (f) , Security_Trust::AccessProtectionNew) = "r") then

true else false

 -- Claim to check write privilege on outgoing data

 -- making use of the fact that an out port with data is a feature of the

component and that

 -- component will be writing the data

 SC_WritePrivilege(self:component) <=

 ** "Write privilege is matched on component " self **

 forall (comp : component) (f : features (comp)). ((f instanceof

data_port) and (direction(f) = "out"))

CMU/SEI-2015-TR-014 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 59

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

 =>

 if (property (type (f) , Security_Trust::AccessProtectionNew) = "w") then

true else false

 -- Claim to check read write privilege on incoming data

 -- making use of the fact that an in-out port with data is a feature of

the component and that

 -- component will be reading and/or writing the data

 SC_ReadWritePrivilege(self:component) <=

 ** "Write privilege is matched on component " self **

 forall (comp : component) (f : features (comp)). ((f instanceof

data_port) and (direction(f) = "inout"))

 =>

 if ((property (type (f) , Security_Trust::AccessProtectionNew) = "w")=>

true) or

 ((property (type (f) , Security_Trust::AccessProtectionNew) = "r") =>

true) then true else false

 -- Claim to check execution privilege on incoming data

 -- If data being read by component is a command, additionally check that

componet has

 -- Command Execution capability, set by CmdExecution Property

 SC_ExecutionPrivilege(self:component) <=

 ** "Execution privilege is matched on component " self **

 forall (comp : component) (f : features (comp)). ((f instanceof

data_port) and (direction(f) = "in"))

 =>

 if ((property (type (f) , Security_Trust::AccessProtectionNew) = "x")

 and

 (property (type (f) , Security_Trust::CmdExecution) = true)) then true

else false

--

**};
end SecurityCase;

CMU/SEI-2015-TR-014 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 60

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

Bibliography

URLs are valid as of the publication date of this document.

[Almorsy 2013]
Almorsy, M.; Grundy, J.; & Ibrahim, A. S. “Automated Software Architecture Security Risk
Analysis Using Formalized Signatures,” 662-671. Proceedings of ICSE 2013. San Francisco, CA,
May 18-26, 2013. IEEE, 2013. http://www.ict.swin.edu.au/personal/jgrundy/papers/icse2013.pdf.

[Asnar 2011]
Asnar, Y.; Paja, E.; & Mylopoulos, J. “Modeling Design Patterns with Description Logics: A
Case Study,” 169-183. Lecture Notes in Computer Science 6741, 2011.

[AVSI 2015]
Aerospace Vehicle Systems Institute (AVSI). SAVI – The System Architecture Virtual Integration
Program. http://savi.avsi.aero/ (2015).

[Backes 2015]
Backes, John; Cofer, Darren; Miller, Steven; & Whalen, Michael W. Requirements Analysis of a
Quad-Redundant Flight Control System. http://arxiv.org/pdf/1502.03343.pdf (2015).

[Bell 1974]
Bell, D. E. & La Padula, L. J. Secure Computer Systems: Vol. I—Mathematical Foundations, Vol.
II—a Mathematical Model, Vol. III—a Refinement of the Mathematical Model (Technical Report
MTR-2547). Mitre Corporation, March–April 1974.
http://www.dtic.mil/dtic/tr/fulltext/u2/780528.pdf.

[Calloni 2011]
Calloni, B.; Camapra, D.; & Mansourov, N. Volume 2 - White Box Definitions of Software Fault
Patterns (AFRL-RY-WP-TR-2012-0111). Lockheed Martin, December 2011.

[Checkoway 2011]
Checkoway, Stephen, et al. “Comprehensive Experimental Analyses of Automotive Attack Sur-
faces.” USENIX Security Symposium. 2011.
http://static.usenix.org/events/sec11/tech/full_papers/Checkoway.pdf.

[Clements 2010]
Clements, Paul et al. Documenting Software Architectures: Views and Beyond, 2nd edition. Addi-
son-Wesley, 2010.

[Dantzig 1957]
Dantzig, George B. “Discrete-variable extremum problems.” Operations Research 5, 2 (1957):
266-288.

http://www.ict.swin.edu.au/personal/jgrundy/papers/icse2013.pdf
http://savi.avsi.aero/
http://arxiv.org/pdf/1502.03343.pdf
http://www.dtic.mil/dtic/tr/fulltext/u2/780528.pdf
http://static.usenix.org/events/sec11/tech/full_papers/Checkoway.pdf

CMU/SEI-2015-TR-014 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 61

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

[Delange 2014]
Delange, Julien; Feiler, Peter; Gluch, David P.; & Hudak, John. AADL Fault Modeling and Analy-
sis Within an ARP4761 Safety Assessment (CMU/SEI-2014-TR-020). Software Engineering Insti-
tute, Carnegie Mellon University, October 2014.
http://resources.sei.cmu.edu/library/asset-view.cfm?assetid=311884.

[Delange 2013]
Delange, Julien. Simple Version of the ARP4761/AIR6110 Example.
https://wiki.sei.cmu.edu/aadl/index.php/Simple_version_of_the_ARP4761/AIR6110_example
(July 23, 2013).

[FDA 2010]
U.S. Food and Drug Administration. Guidance for Industry and FDA Staff Total Product Life Cy-
cle: Infusion Pump Premarket Notification [510(k)] Submissions (Draft Guidance).
http://www.fda.gov/downloads/MedicalDevices/DeviceRegulationandGuidance/
GuidanceDocuments/UCM209337.pdf (April 23, 2010).

[Feiler 2012]
Feiler, Peter H. & Gluch, David P. Model-Based Engineering with AADL: An Introduction to the
SAE Architecture Analysis & Design Language. Addison-Wesley, 2012.

[Feiler 2009]
Feiler, Peter; Hansson, Jörgen; de Niz, Dionisio; & Wrage, Lutz. System Architecture Virtual In-
tegration: An Industrial Case Study (CMU/SEI-2009-TR-017). Software Engineering Institute,
Carnegie Mellon University, 2009.
http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=9145.

[Gacek 2014]
Gacek, Andrew; Backes, John; Cofer, Darren; Slind, Konrad; & Whalen, Mike. “Resolute: An
Assurance Case Language for Architecture Models,” 19-28. Proceedings of the 2014 ACM
SIGAda Annual Conference on High Integrity Language Technology. Portland, OR, October
2014. ACM, 2014.

[HBR 2014]
Harvard Business Review (HBR). Internet of Things: Science Fiction or Business Fact?
https://hbr.org/resources/pdfs/comm/verizon/18980_HBR_Verizon_IoT_Nov_14.pdf (2014).

[Hernan 2006]
Hernan, Shawn; Lambert, Scott; Ostwald, Tomasz; & Shostack, Adam. “Uncover Security Design
Flaws Using the STRIDE Approach.” MSDN Magazine, November 2006.

[Hoglund 2004]
Hoglund, Greg & McGraw, Gary. Exploiting Software: How to Break Code. Addison‐Wesley,
2004. http://www.informit.com/store/exploiting-software-how-to-break-code-9780201786958.

[Howard 2006]
Howard, Michael & Lipner, Steve. The Security Development Lifecycle. Microsoft Press, 2006.

http://resources.sei.cmu.edu/library/asset-view.cfm?assetid=311884
https://wiki.sei.cmu.edu/aadl/index.php/Simple_version_of_the_ARP4761/AIR6110_example
http://www.fda.gov/downloads/MedicalDevices/DeviceRegulationandGuidance/
http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=9145
https://hbr.org/resources/pdfs/comm/verizon/18980_HBR_Verizon_IoT_Nov_14.pdf
http://www.informit.com/store/exploiting-software-how-to-break-code-9780201786958

CMU/SEI-2015-TR-014 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 62

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

[Howard 2003a]
Howard, Michael, “Fending Off Future Attacks by Reducing Attack Surface.”
https://msdn.microsoft.com/en-us/library/ms972812.aspx.

[Howard 2003b]
Howard, M.; Pincus, J.; & Wing, J. Measuring Relative Attack Surfaces.
http://www.cs.cmu.edu/~wing/publications/Howard-Wing03.pdf, 2003.

[ITU 2015]
ITU. “Internet of Things Global Standards Initiative” (2015). http://www.itu.int/en/ITU-
T/gsi/iot/Pages/default.aspx.

[Jacobson 1999]
Jacobson, Ivar; Booch, Grady; & Rumbaugh, James. The Unified Software Development Process.
Addison-Wesley Longman Publishing Co., Inc., 1999 (ISBN: 0-201-57169-2).

[Kelley 2013]
Kelley, Michael B. “The Stuxnet Attack on Iran’s Nuclear Plant Was ‘Far More Dangerous’ Than
Previously Thought.” http://www.businessinsider.com/stuxnet-was-far-more-dangerous-than-pre-
vious-thought-2013-11 (November 20, 2013).

[Kelly 2004]
Kelly, Tim & Weaver, Rob. “The Goal Structuring Notation: A Safety Argument Notation.” Pro-
ceedings of International Workshop on Models and Processes for the Evaluation of COTS Compo-
nents (MPEC 2004). Edinburgh, Scotland, May 2004. IEEE Computer Society, 2004.

[Kelly 1998]
Kelly, Tim P. Arguing Safety. PhD diss., University of York, 1998.

[Koscher 2010]
Koscher, Karl, et al. “Experimental security analysis of a modern automobile.” 2010 IEEE Sym-
posium on Security and Privacy. IEEE, 2010.

[Kruchten 1995]
Kruchten, Philippe. “Architectural Blueprints—The ‘4+1’ View Model of Software Architecture.”
IEEE Software 12, 6 (November 1995): 42-50.

[Lewis 2009]
Lewis, Bruce; Hugues, Jérôme; Wrage, Lutz; Feiler, Peter; & Morley, John. “Model-Based Veri-
fication of Security and Non-Functional Behavior using AADL.” IEEE Security & Privacy, 2009.

[Lopez 2013]
Lopez Research. An Introduction to the Internet of Things (IoT).
http://www.cisco.com/web/solutions/trends/iot/introduction_to_IoT_november.pdf (November
2013).

https://msdn.microsoft.com/en-us/library/ms972812.aspx
http://www.cs.cmu.edu/~wing/publications/Howard-Wing03.pdf
http://www.itu.int/en/ITU-T/gsi/iot/Pages/default.aspx
http://www.itu.int/en/ITU-T/gsi/iot/Pages/default.aspx
http://www.itu.int/en/ITU-T/gsi/iot/Pages/default.aspx
http://www.businessinsider.com/stuxnet-was-far-more-dangerous-than-pre-vious-thought-2013-11
http://www.businessinsider.com/stuxnet-was-far-more-dangerous-than-pre-vious-thought-2013-11
http://www.businessinsider.com/stuxnet-was-far-more-dangerous-than-pre-vious-thought-2013-11
http://www.cisco.com/web/solutions/trends/iot/introduction_to_IoT_november.pdf

CMU/SEI-2015-TR-014 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 63

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

[Mahaffey 2015]
Mahaffey, Kevin. “Hacking a Tesla Model S: What We Found and What We Learned.”
https://blog.lookout.com/blog/2015/08/07/hacking-a-tesla/.

[Mattern 2010]
Mattern, Friedemann & Floerkemeier, Christian. From the Internet of Computers to the Internet
of Things. http://vs.inf.ethz.ch/publ/papers/Internet-of-things.pdf (2010).

[McGraw 2010]
McGraw, Gary. “Software [In]security: How to p0wn a Control System with Stuxnet.” InformIT.
http://www.informit.com/articles/article.aspx?p=1636983 (September 23, 2010).

[Miller 2015]
Miller, Charlie & Chris Valasek. Remote Exploitation of an Unaltered Passenger Vehicle.
http://illmatics.com/Remote%20Car%20Hacking.pdf (August 10, 2015).

[Miller 2014]
Miller, Charlie & Chris Valasek. A Survey of Remote Automotive Attack Surfaces.
http://blog.hackthecar.com/wp-content/uploads/2014/08/
236073361-Survey-of-Remote-Attack-Surfaces.pdf (2014).

[Miller 2013]
Miller, Charlie & Chris Valasek. Adventures in Automotive Networks and Control Units.
http://illmatics.com/car_hacking.pdf (2013).

[Mills 2010]
Mills, Elinor. “Stuxnet: Fact vs. Theory.” CNET News. October 5, 2010.
http://news.cnet.com/8301-27080_3-20018530-245.html.

[MITRE 2015]
MITRE. Common Weakness Enumeration. https://cwe.mitre.org/ (2015).

[Nagaraju 2013]
Nagaraju, S.; Craioveanu, C.; Florio, E.; & Miller, M. Software Vulnerability Exploitation Trends.
Microsoft, 2013. http://www.microsoft.com/en-us/download/details.aspx?id=39680.

[OMG 2013]
Object Management Group. How to Deliver Resilient, Secure, Efficient, and Easily Changed IT
Systems in Line with CISQ Recommendations.
http://www.omg.org/CISQ_compliant_IT_Systemsv.4-3.pdf (2013).

[Ouchani 2011]
Ouchani, S.; Jarraya, Y.; & Mohamed, O. A. “Model-Based Systems Security Quantification,”
142-149. Proceedings from the 2011 9th Annual International Conference on Privacy, Security,
and Trust. Montreal, Quebec, Canada, July 19-21, 2011. IEEE, 2011.

https://blog.lookout.com/blog/2015/08/07/hacking-a-tesla/
http://vs.inf.ethz.ch/publ/papers/Internet-of-things.pdf
http://www.informit.com/articles/article.aspx?p=1636983
http://illmatics.com/Remote%20Car%20Hacking.pdf
http://blog.hackthecar.com/wp-content/uploads/2014/08/
http://illmatics.com/car_hacking.pdf
http://news.cnet.com/8301-27080_3-20018530-245.html
https://cwe.mitre.org/
http://www.microsoft.com/en-us/download/details.aspx?id=39680
http://www.omg.org/CISQ_compliant_IT_Systemsv.4-3.pdf

CMU/SEI-2015-TR-014 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 64

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

[Riverbed 2015]
Riverbed Technology. OpNet Modeler. http://www.riverbed.com/products/
steelcentral/opnet.html?redirect=opnet (2015).

[Roufa 2010]
Roufa, Ishtiaq; Miller, Rob; et al. “Security and privacy vulnerabilities of in-car wireless net-
works: A tire pressure monitoring system case study,” 21. Proceedings of the 19th USENIX Con-
ference on Security. Washington, DC, 2010. USENIX Association, 2010.

[SAE 1996]
SAE. Guidelines and Methods for Conducting the Safety Assessment Process on Civil Airborne
Systems and Equipment (SAE ARP4761). SAE, December 1, 1996.

[Santucci 2014]
Santucci, Gerald. The Internet of Things: Between the Revolution of the Internet and the Meta-
morphosis of Objects. http://cordis.europa.eu/fp7/ict/enet/documents/publications/iot-between-
the-internet-revolution.pdf (February 2010).

[SEI 2010]
Software Engineering Institute (SEI). Architecture Analysis and Design Language.
http:www.aadl.info (2015).

[Shostack 2014]
Shostack, Adam. Threat Modeling: Designing for Security. John Wiley & Sons, 2014.

[Shostack 2012]
Shostack, Adam. Elevation of Privilege: Drawing Developers into Threat Modeling.
https://www.usenix.org/system/files/conference/3gse14/3gse14-shostack.pdf (2012).

[Shostack 2010]
Shostack, Adam. Elevation of Privilege: The Easy way to Threat Model.
https://www.youtube.com/watch?v=gZh5acJuNVg and
https://www.youtube.com/watch?v=uDtVBoj9VpQ (September 17, 2010).

[Soni 1995]
Soni, D.; Nord, R. L.; & Hofmeister, C. “Software Architecture in Industrial Applications,” 196-
207. Proceedings of the 17th International Conference on Software Engineering. ACM, 1995.

[Vermesan 2013]
Vermesan, Ovidiu & Friess, Peter. Internet of Things-Converging Technologies for Smart Envi-
ronments and Integrated Ecosystems. River Publishers, 2013. http://www.internet-of-things-re-
search.eu/pdf/Converging_Technologies_for_Smart_Environments_and_Integrated_Ecosys-
tems_IERC_Book_Open_Access_2013.pdf.

http://www.riverbed.com/products/
http://cordis.europa.eu/fp7/ict/enet/documents/publications/iot-between-the-internet-revolution.pdf
http://cordis.europa.eu/fp7/ict/enet/documents/publications/iot-between-the-internet-revolution.pdf
http://cordis.europa.eu/fp7/ict/enet/documents/publications/iot-between-the-internet-revolution.pdf
http://www.aadl.info
https://www.usenix.org/system/files/conference/3gse14/3gse14-shostack.pdf
https://www.youtube.com/watch?v=gZh5acJuNVg
https://www.youtube.com/watch?v=uDtVBoj9VpQ
http://www.internet-of-things-re-search.eu/pdf/Converging_Technologies_for_Smart_Environments_and_Integrated_Ecosys-tems_IERC_Book_Open_Access_2013.pdf
http://www.internet-of-things-re-search.eu/pdf/Converging_Technologies_for_Smart_Environments_and_Integrated_Ecosys-tems_IERC_Book_Open_Access_2013.pdf
http://www.internet-of-things-re-search.eu/pdf/Converging_Technologies_for_Smart_Environments_and_Integrated_Ecosys-tems_IERC_Book_Open_Access_2013.pdf
http://www.internet-of-things-re-search.eu/pdf/Converging_Technologies_for_Smart_Environments_and_Integrated_Ecosys-tems_IERC_Book_Open_Access_2013.pdf
http://www.internet-of-things-re-search.eu/pdf/Converging_Technologies_for_Smart_Environments_and_Integrated_Ecosys-tems_IERC_Book_Open_Access_2013.pdf

CMU/SEI-2015-TR-014 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, search-
ing existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regard-
ing this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters
Services, Directorate for information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of
Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY

(Leave Blank)

2. REPORT DATE

December 2015

3. REPORT TYPE AND DATES
COVERED

Final

4. TITLE AND SUBTITLE

Extending AADL for Security Design Assurance of Cyber-Physical Systems

5. FUNDING NUMBERS

FA8721-05-C-0003

6. AUTHOR(S)

Robert Ellison, PhD; Allen Householder; John Hudak; Rick Kazman, PhD; Carol Woody, PhD

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213

8. PERFORMING ORGANIZATION
REPORT NUMBER

CMU/SEI-2015-TR-014

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

AFLCMC/PZE/Hanscom
Enterprise Acquisition Division
20 Schilling Circle
Building 1305
Hanscom AFB, MA 01731-2116

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

n/a

11. SUPPLEMENTARY NOTES

12A DISTRIBUTION/AVAILABILITY STATEMENT

Unclassified/Unlimited, DTIC, NTIS

12B DISTRIBUTION CODE

13. ABSTRACT (MAXIMUM 200 WORDS)

Attacks such as the one that compromised the control systems for Iranian centrifuges demonstrate a growing need to improve the de-
sign of security in cyber-physical systems. While much of the work on security has focused on coding, many of the common weaknesses
that lead to successful attacks are actually introduced by design. This technical report shows how important system-wide security prop-
erties can and must be described and validated at the architectural level. This is done through the adoption and use of the Architecture
Analysis and Design Language (AADL) and a further extension of it to describe security properties. This report demonstrates the viability
and limitations of this approach through an extended example that allows for specifying and analyzing the security properties of an auto-
motive electronics system.

The report begins with a modeling of threats using the Microsoft STRIDE framework and then translates them into attack scenarios.
Next, the report describes—as AADL components, relationships, and properties—the architectural structures, services, and properties
needed to guard against such attacks. Finally, the report shows how these properties can be validated at design time using a model
checker such as Resolute and discusses the limitations of this approach in addressing common security weaknesses.

14. SUBJECT TERMS

Architectural description language, Architecture Analysis and Design Language, AADL, threat
modeling, architectural security modeling, cyber-physical system security modeling, software
assurance, Resolute, assurance case

15. NUMBER OF PAGES

72

16. PRICE CODE

17. SECURITY CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY CLASSIFICATION
OF THIS PAGE

Unclassified

19. SECURITY CLASSIFICATION
OF ABSTRACT

Unclassified

20. LIMITATION OF
ABSTRACT

UL
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89) Prescribed by ANSI Std. Z39-18

298-102

	Abstract
	1 Research Introduction
	2 Analyzing Security Risks
	3 Analysis Framework for Security Assurance
	4 STRIDE Analysis of the Infotainment System
	5 Example Solution Approach for Security Threats
	6 Conclusions
	Appendix A: Threat Modeling Using the Elevation of Privilege Game
	Appendix B: AADL and STRIDE
	Appendix C: AADL for Scenarios
	Bibliography

