

State of Practice Report: Essential
Technical and Nontechnical Issues Related
to Designing SoS Platform Architectures

Sholom Cohen
John Klein

May 2015

TECHNICAL REPORT
CMU/SEI-2015-TR-007

Software Solutions Division

http://www.sei.cmu.edu

http://www.sei.cmu.edu

Copyright 2015 Carnegie Mellon University

This material is based upon work funded and supported by the Department of Defense under Contract

No. FA8721-05-C-0003 with Carnegie Mellon University for the operation of the Software Engineer-

ing Institute, a federally funded research and development center.

Any opinions, findings and conclusions or recommendations expressed in this material are those of the

author(s) and do not necessarily reflect the views of the United States Department of Defense.

This report was prepared for the

SEI Administrative Agent

AFLCMC/PZM

20 Schilling Circle, Bldg 1305, 3rd floor

Hanscom AFB, MA 01731-2125

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING

INSTITUTE MATERIAL IS FURNISHED ON AN “AS-IS” BASIS. CARNEGIE MELLON

UNIVERSITY MAKES NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED,

AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR

PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM USE

OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY

WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK,

OR COPYRIGHT INFRINGEMENT.

This material has been approved for public release and unlimited distribution except as restricted be-

low.

Internal use:* Permission to reproduce this material and to prepare derivative works from this material

for internal use is granted, provided the copyright and “No Warranty” statements are included with all

reproductions and derivative works.

External use:* This material may be reproduced in its entirety, without modification, and freely distrib-

uted in written or electronic form without requesting formal permission. Permission is required for any

other external and/or commercial use. Requests for permission should be directed to the Software En-

gineering Institute at permission@sei.cmu.edu.

* These restrictions do not apply to U.S. government entities.

Architecture Tradeoff Analysis Method® and ATAM® are registered in the U.S. Patent and Trademark

Office by Carnegie Mellon University.

DM-0001615

mailto:permission@sei.cmu.edu

CMU/SEI-2015-TR-007 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY i

Table of Contents

Acknowledgments v

Abstract vii

1 Introduction 1
 Problem Statement 1
 SoS and Common Platform Definitions 1
 Goals of the Study 4
 Structure of the Report 5

2 Research Method 6
 Interview Design 6
 Participants – Demographics 6

3 Interview Responses 8
 Interview Questions and Groups 8
 Question Section 2: SoS Architecture Development 10
 Question Section 3: SoS Success Patterns and Challenges 13

3.4 Question Section 4: Solution Constraints 17

4 Results 20
 Dependency 20
 Evolution and Sustainment 22
 Emergent Behavior 23
 Deployment and Binding Decisions to Physical Systems 24
 Information Assurance and Certification 25

5 Conclusions 26
 Common Practices in Commercial SoS for DoD Consideration 26
 DoD Achieving the Successes of the Commercial World 27
 Recommendations for Further Study 28

Appendix Interview Outline 29

References 31

CMU/SEI-2015-TR-007 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY ii

CMU/SEI-2015-TR-007 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY iii

List of Tables

Table 1: Organization Types Represented 7

Table 2: Summary of Interview Questions 8

Table 3: Comparison of Answers to Questions in Section 2 – SoS Architecture Development 11

Table 4: Comparison of Answers to Questions in Section 3 – Success Patterns and Challenges 14

Table 5: Comparison of Answers to Questions in Section 4 – Solution Constraints 18

CMU/SEI-2015-TR-007 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY iv

CMU/SEI-2015-TR-007 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY v

Acknowledgments

The authors are grateful to all of the government and industry experts who participated in the in-
terviews. We also appreciate the extensive comments provided by our reviewers.

CMU/SEI-2015-TR-007 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY vi

CMU/SEI-2015-TR-007 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY vii

Abstract

This report presents an analysis of the state of the practice in system-of-systems (SoS) develop-
ment. SoS architectures, or blueprints for integrating multiple systems based on common software
platforms, have been successful in many commercial environments. The report discusses technical
issues related to SoS common platform development and adoption in the Department of Defense
(DoD) and the nontechnical constraints that must be satisfied. The analysis is based on infor-
mation captured from 12 interviews of leading SoS developers in the DoD and industry, applying
a SoS definition from the literature to identify gaps between the current state and the desired end
state. The results of the study show that while commercial and DoD developers follow different
approaches, all organizations report nontechnical constraints as more challenging than technical
issues. For the DoD, these include leadership changes, shifting political priorities, and difficulty in
replacing suppliers. The report recommends further study of SoS planning and agile approaches
that better support incremental development; bridging the gap from SoS to system concerns so
that system designers understand SoS concerns and can focus on their products in the context of
the SoS; and documenting the platform at all software levels, including architecture views and
component integration strategies.

CMU/SEI-2015-TR-007 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY viii

CMU/SEI-2015-TR-007 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 1

1 Introduction

 Problem Statement

When we consider the term system of systems (SoS), each of us summons a slightly different im-
age. Some current examples of SoS contexts illustrate the various meanings that we apply to the
term:

 large-scale business enterprise – integration of manufacturing, sales, global information, ana-
lytics, and other business operations through connecting systems across the enterprise

 small-medium enterprise – integration of warehouse, distribution, and accounting across the
enterprise

 consumer or web user – (1) e-commerce solutions that link consumer marketing, sales, pay-
ment, and fulfillment and (2) mobile apps that link product search, geo-location, product
availability, and customer reviews

 distributed command and control – military systems that support situational awareness, battle
command, intelligence analysis, and weapon deployment and engagement

 on-board electronics (aviation, automotive, other) – integration of GPS, communications, and
internet to enhance vehicle guidance and control

This report describes technical and nontechnical issues that help define the current state of prac-
tice in SoS development and operations. The context is primarily distributed command and con-
trol, with a focus on the Department of Defense (DoD) context, but we also examine the
commercial, large-scale enterprise context. The report contrasts the current state of practice with
goals desired by SoS developers. It also highlights issues in the DoD related to moving toward an
integration platform that provides common infrastructure and applications support for SoS devel-
opment.

 SoS and Common Platform Definitions

A system may be defined as “a construct or collection of different elements that together produce
results not obtainable by the elements alone” [INCOSE 2006]. The individual systems in a SoS
must be large-scale or complex and frequently are stand-alone systems. They do not exist as a re-
sult of decomposing a SoS. Rather, each SoS constituent system has come into existence inde-
pendently of the others. Given these definitions, what characteristics of a SoS distinguish it from a
collection of collaborating or communicating systems?

The distinguishing factor of a SoS highlighted in this report is the issue of independence, for both
operations and management of the individual elements. In many systems considered systems of
systems, the individual elements may be capable of operating on their own, apart from the remain-
der of the SoS, but SoS development and certainly sustainment are centrally controlled. Two con-
stituent elements may even rely on common systems or subsystems that prevent them from
complete independence of operation.

CMU/SEI-2015-TR-007 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 2

The DoD recognizes that in many cases, its evolving needs and required capabilities can be met
only by linking individual systems as a SoS. Dahmann and Baldwin report, “Most user capabili-
ties require multiple systems to work together to meet user needs, so there has been increased em-
phasis on understanding SoS behavior toward user capability objectives” [Dahmann 2011a]. In
this section, we look at a working definition for SoS and a framework to evaluate an existing or a
planned SoS.

Many sources stop short of establishing both operational and managerial independence as criteria
for a SoS [Clark 2008, INCOSE 2011, OUSD 2008]. Independence may have existed before the
constituent systems were brought together, but the definitions do not explicitly require this inde-
pendence after integration as a SoS.

 The OUSD defines a SoS in terms of a “set or arrangement of systems that results when inde-
pendent and useful systems are integrated into a larger system that delivers unique capabili-
ties” [OUSD 2008].

 Clark discusses only the integration of the individual parts, which are themselves inde-
pendently developed [Clark 2008].

 The definition of the International Council on Systems Engineering (INCOSE) does not in-
clude independence of management, stating only that “interoperating collections of compo-
nent systems usually produce results unachievable by the individual systems alone.” The
INCOSE definition does acknowledge “multiple, heterogeneous, distributed systems” as the
constituent elements [INCOSE 2011].

A more specific definition of a SoS by Maier establishes the following qualities [Maier 1998]:

 operational independence of the elements: Constituent component systems can usefully oper-
ate independently.

 managerial independence of the elements: Constituent component systems are acquired sepa-
rately and maintain an ongoing operational existence independent of the SoS.

 evolutionary development: The SoS continues to develop and evolve, through modification of
existing constituent components and addition or removal of others.

 emergent behavior: Properties are emergent when the system has capabilities not resident in
any component system but that emerge through interactions among constituent components.

 geographic distribution: Elements are not confined to any predetermined location or deploy-
ment scheme.

This final definition has formed the basis for the analysis performed in this report. Both research-
ers [Gorod 2008, Maier 2005] and practitioners [OUSD 2008] acknowledge that these properties
necessitate developing and operating a SoS in different ways than in a large, complex (mono-
lithic) system. The construction of these systems of systems also moves along a continuum from
more to less central control:

 directed: The SoS is developed and operated to a common purpose, which is expressed
through formal organizations, technical standards, and the socialization of its operators to the
common purpose.

CMU/SEI-2015-TR-007 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 3

 acknowledged: “An organization is responsible for the SoS and supporting SoS systems engi-
neering while independent organizations and SE [systems engineering] teams are responsible
for the constituent systems that support the SoS capability objectives” [Dahmann 2011b].

 collaborative: The SoS began with a directed purpose, but now follows purposes imposed
upon it by its users. Operation and development occur through the collaboration (largely vol-
untary) of its participants.

 virtual: No current body, voluntary or otherwise, controls all the elements. Participants (gov-
ernments, corporate entities, users) will often have conflicting purposes that they will simulta-
neously attempt to fulfill.

The relationship of systems of systems to the concept of a “platform” also forms a key part of this
report. The term platform refers to different concepts, depending on the context. Military vehicles,
including ships, aircraft, and ground vehicles, are considered platforms in the DoD context. The
concept of “platform architecture” in this context may reflect the separation of payload from plat-
form. For example, Greenert recommends, “The design of future platforms also must take into ac-
count up front the volume, electrical power, cooling, speed, and survivability needed to
effectively incorporate new payloads throughout their service lives” [Greenert 2012]. In software,
the term platform is used to refer to the common elements reused across a product line, product
family, or “product platform” [Cusumano 2010a]. The commercial approach to platforms that
span systems from multiple organizations, termed an industry platform (e.g., iPhone or Facebook
platforms), is described as “A foundation technology (or service) used beyond a single firm,
whose value increases geometrically with (a) complementary products and services, and (b) more
and more users” [Cusumano 2010b]. This definition of industry platform addresses many of the
goals set in the DoD SoS concept for programs such as the U.S. Army Common Operating Envi-
ronment, the U.S. Navy Open Architecture, and the multi-service Future Avionics Capability En-
vironment (FACE).

In this report, we use the term SoS platform to extend the definition of the industry platform that
supports individual systems from multiple organizations. A SoS platform, by extension, “must
balance sufficient commonality to support economical reuse, while also providing variability and
extensibility to enable innovation in system and system of systems (SoS) capabilities” [Klein
2012]. SoS platforms, like industrial platforms, provide general-purpose services, for example,
directory and authentication, as well as mission-specific services, such as geospatial and message
handling for command-and-control SoS. The SoS platform addresses essential architectural goals
[Klein 2013]. These include

 supporting interoperation among the systems using the platform: The SoS platform provides
common information models (semantics) and common communication mechanisms. The plat-
form may also prescribe patterns or sequences of interaction for certain SoS functions.

 reducing the cost and time needed to develop or modify systems for use in the SoS: The SoS
platform provides implementations of services needed by constituent systems. Those services
of a constituent system that can be shared by other constituent systems of the SoS are relo-
cated into the SoS platform. System-to-platform dependencies enable strategic reuse, which
typically reduces the time and effort required to develop, integrate, and test systems to create
the SoS and for an organization to create a new or replacement system. The SoS platform re-
duces required effort, expertise, and risk.

CMU/SEI-2015-TR-007 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 4

 enabling modular substitution of constituent systems in the SoS: The SoS platform can sup-
port creation of an ecosystem, where organizations “have a strategy to open their technology
to complementors and create economic incentives (such as free or low licensing fees, or fi-
nancial subsidies) for other firms to join the same ‘ecosystem’ and adopt the platform tech-
nology as their own” [Cusumano 2010a].

 Goals of the Study

The DoD desires the ability to quickly and economically create, integrate, certify (if needed), and
sustain new combinations of existing, independently developed system capabilities. The Army’s
Common Operating Environment (COE) and the Integrated Air and Missile Defense Battle Com-
mand System exemplify the need to rapidly field combinations of existing systems in new ways.
This report contributes to the improvement of that ability through incorporation of successful in-
dustry practices.

To meet these needs of the DoD, this report answers the following questions:

1. What processes are used to develop SoS architectures, and how do these processes use soft-
ware elements in the architecture? Current approaches do not support the quick development,
integration, and certification of such system combinations or the sustainment and evolution of
such system combinations after initial deployment. Conventional, top-down processes may, in
some cases, give way to more incremental or agile approaches, but better methods are still
needed to support such goals as evolution across the SoS and attainment of the desired quality
attributes across the SoS.

2. What challenges do SoS programs face in developing architectures; performing test, integra-
tion, and assurance; managing runtime configuration and operation; and evolving the SoS?
What approaches have been used in successful programs to overcome these challenges? Sys-
tems-of-systems activities in the DoD have had varying degrees of success. The independent
management of the definition, acquisition, and evolution of the constituent systems remains a
challenge and is further aggravated in the context of the SoS. Also, the external environment
may undergo unanticipated changes during development and integration. These changes may
apply to the constituents or to the SoS as a whole, resulting in significant change in opera-
tional needs. These challenges are partly related to the time (and resulting cost) to develop,
integrate, and field SoS capabilities—longer cycles make coordination across constituent sys-
tem programs more difficult and increase the likelihood that environmental changes will ne-
cessitate redirection.

3. What are the constraints on new approaches to developing, using, and evolving these SoS ar-
chitectures? The DoD is moving toward a needs-based approach to defining new systems.
Rather than define a system by specific functions or capabilities, this approach seeks to iden-
tify new and emerging operational needs and then search for or acquire systems that address
those needs. In some cases, no existing system or combination of existing systems can meet
those needs, but often the needs are achievable through a SoS approach, which integrates ex-
isting systems, augmented with some new development. While contributing to meet the needs
of the SoS users, these constituent systems must continue to support previous users with ex-
isting capabilities.

CMU/SEI-2015-TR-007 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 5

4. What are the important differences between practices used to create commercial SoS archi-
tectures and DoD SoS architectures? Commercial platforms like Apple, Facebook, and Ama-
zon have been successful in enabling the rapid creation and delivery of SoS capabilities.
These platforms employ modular architectures that provide commonly used features such as
identity management, geospatial location and mapping, or intersystem communications. The
platform architectures include design rules and standards that allow developers to rapidly cre-
ate, integrate, and deploy innovative SoS capabilities on top of the underlying common plat-
form. The DoD has attempted to duplicate the successes of commercial platforms, with
varying results (e.g., Technical Architecture Framework for Information Management
[TAFIM], Defense Information Initiative Common Operation Environment [DIICOE], Man-
aged Operation System Alliance [MOSA], Joint Technical Architecture [JTA], DoD Infor-
mation Technology Standards and Profile Registry [DISR], and Future Combat Systems
[FCS]). Technical barriers to success include more stringent and diverse quality attribute re-
quirements, stronger assurance requirements, and more complex system interactions.

Addressing qualities (business, architecture, system) at the system level or across the SoS also re-
mains a challenge. The National Research Council’s Critical Code report notes the DoD need for
effective evaluation of critical quality attributes [NRC 2010, p. 127], particularly in net-centric
systems of systems, and notes that improvement is needed in the DoD’s ability to manage the de-
sign, evaluation, development, and evolution of systems of systems [NRC 2010, p. 123].

SoS development and integration also face nontechnical barriers, including organizational align-
ment, governance, and policy [Northrop 2012]. This report will touch on these nontechnical chal-
lenges as part of the framework but will not examine them to the same degree as technical
approaches.

 Structure of the Report

The report uses an interview framework to analyze a number of exemplar systems of systems, pri-
marily in the distributed command-and-control area, and address the goals of the study. As a
means to explore aspects of systems that are integrated as systems of systems, the report will ex-
amine the state of practice in SoS development using the following structure:

Section 2 provides the research method in terms of the interview design for exploring systems of
systems, a consistent reporting structure, and the demographics of the organizations that were in-
terviewed.

Section 3 provides the questions and reports the results of the interviews. The interviews used the
SoS definition and an interview script (contained in the appendix) as vehicles for interviewing
leaders in industry and government who are developing systems of systems.

Section 4 provides results in the form of challenges and sensitivity points with recommendations
for addressing them.

Section 5 provides conclusions and areas for future research for refining the interview framework,
including an example for community analysis, and creating a roadmap for community collabora-
tion in the area of SoS maturity.

CMU/SEI-2015-TR-007 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 6

2 Research Method

 Interview Design

To better understand the current state of practice for development of systems of systems, the SEI
conducted a series of interviews with leaders in industry and government who are developing sys-
tems of systems. These interviews covered two large-scale commercial organizations and six SoS-
related DoD projects.

The interviews were structured according to the following outline. (See the appendix for the com-
plete list of questions.)

1. interviewee demographics

2. SoS architecture development: definition, design process, architecture tradeoffs, and architec-
ture decision process

3. SoS success patterns and challenges: case studies of success, challenges encountered, test and
integration practices, and configuration management (CM) approaches

4. solution constraints: development, test and integration, CM, and sustainment

The 12 interviewees came from three categories of systems of systems. For the purposes of this
report, the interview results are grouped as1

 commercial enterprise systems: 4

 large-scale command-and-control systems (government and industry): 4

 platform architecture development: 6

We categorized the results of the interviews to preserve anonymity and to collect common infor-
mation across the various sectors.

 Participants – Demographics

To obtain input for the study, the team planned a workshop—the Composing Assured System of
Systems Challenge Problem Workshop—to address the need for improved approaches to SoS de-
velopment. Participants—program managers (PMs), technical directors, chief architects, and other
experts from the DoD and industry—would share experiences, help refine the essential elements
of the need statement, and identify constraints on viable solutions. Invited participants were from
the professional networks of the SEI research team members, SEI customer rolls, and DoD SoS
initiative organizations. However, most invitees declined, expressing reluctance to share relevant
experience in a group setting.

To overcome this objection, the team adopted a scripted interview approach—an interview proto-
col to capture and anonymously report responses to the questions. We re-contacted workshop in-
vitees with direct experience as architects or systems engineering leaders on the development of at

1 The numbers by category include interviews that covered both a command-and-control system plus the derived

platform for future development.

CMU/SEI-2015-TR-007 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 7

least one SoS. Invitees were also requested to forward the invitation to other appropriately quali-
fied members of their professional networks. This approach resulted in 14 qualified participants, 2
of whom later withdrew from the study, leaving the 12 participant interviews reported here.

We sought qualified participants with significant experience, including SoS projects and roles as
architects, managers, or integrators. These qualifications were met by the 12 study participants as
follows:

 years of professional experience: between 10 and 25

 participation in SoS projects: 8 with experience in four or more, 2 with direct experience in
only one SoS project (2 did not provide this information)

 roles in project: architects, program or project managers, and SoS integration leads

Table 1 describes the types of organizations represented by the participants.

Table 1: Organization Types Represented

Organization Type Number of Participants

Commercial software development (non-military) 4

Military system development – industry 5

Military system development – government 3

At least two researchers participated in each interview; one acted as the lead interviewer and the
other researcher(s) took notes on the responses. The interview sessions followed a script guiding
the lead interviewer through the questions. An interviewee’s response to one question often cov-
ered several of our topics. The script served as a checklist in those situations, to ensure that all
topics were covered without asking each question directly. The researchers captured interviewee
responses in notes, and one researcher merged the notes into a single interview record. The lead
interviewer met the interviewee in person for nine of the interviews, with the other interviewer(s)
participating by telephone. The other three interviews were conducted solely by telephone. The
researchers all have methodological training and experience in conducting and reporting inter-
views as part of exploratory research.

CMU/SEI-2015-TR-007 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 8

3 Interview Responses

 Interview Questions and Groups

Questions

The four sections of the interview outline (see the appendix) helped capture specific demographic
information and details about development processes, SoS success, and constraints. The question
summaries from Table 2 are used to structure subsequent tables in this section that group re-
sponses. Tables 35 coalesce these interviewee responses to Questions 24.2

Table 2: Summary of Interview Questions

Question Section Question Summary

1. Disclaimer and Demographics
– responses covered above in
Section 2.2

Provide a prepared statement to the interviewee indicating that reported re-
sults will be summarized to maintain anonymity and protect the privacy of
the interviewee and the organization. The lead interviewer also asked the
interviewee not to disclose proprietary information that could not be re-
leased even if the identity of the interviewee and organization were anony-
mized.

Demographic information included the years of experience of the inter-
viewee, years of specific SoS experience, and numbers and names of SoS
projects and programs.

2. SoS Architecture Development
– responses covered in Section
3.2

a. Focus on the processes used to develop SoS architectures:
 interviewee definition of the term system of systems
 general approach to the architecture design (not documentation) pro-

cess
 bridge from SoS-level to system-level focus
 software treated as part of or separate from rest of SoS
 hierarchical vs. layered decomposition

b. Focus on architecture tradeoffs
 how software concerns interact with other SoS concerns
 how to balance constituent system needs in SoS context
 framing architecture tradeoffs and decision making
 factors (technical and nontechnical) influencing decisions

3. SoS Success Patterns and
Challenges with reference to a
specific system, SoS, or pro-
gram to identify specific gaps in
current practice where new
methods would have the great-
est impact and to identify spe-
cific solutions employed by the
interviewees that would be
candidates for generalization –
responses covered in Section
3.3

a. On development of constituent systems for the SoS (with examples and
evidence of success) and of SoS-related challenges in the development
of constituent systems for use in a SoS

b. Success and challenges (technical and nontechnical with examples and
evidence of success) in test, integration, and assurance of constituent
systems in the SoS

c. Success and challenges (technical and nontechnical with examples and
evidence of success) in runtime configuration and management of the
SoS

d. Success and challenges (technical and nontechnical with examples and
evidence of success) in sustainment and evolution of the SoS

4. Solution Constraints on a new
method for design or analysis
to address the challenges –

The final set of questions focused on the constraints that a solution must
satisfy. Focusing on the same four activity areas used in the previous ques-
tion set, identify factors necessary for any new approach to be successfully

2 In this report, references to actual DoD or industry developers or developments have been made anonymous,

to the extent possible, to protect confidentiality of information while preserving the information captured from the
interviews.

CMU/SEI-2015-TR-007 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 9

Question Section Question Summary

responses covered in Section
3.4

translated from research into practice. Constraints can be technical, organi-
zational, governance, policy, regulatory, incentive, doctrine, or other cause.

Interviewee Groups

The SoS characterizations in this section are based on the interviews conducted with programs
from each of the three groups. The information from across SoS groups has been integrated to
provide general descriptions without revealing specifics of any actual system or development.

Commercial enterprise systems

The interviewees characterized these systems by “what the SoS platform does”: SoS will support
the business processes that create and use transactional data as well as support applications ac-
cessing the customer’s data for nontransactional uses such as analytics. Organizations that de-
velop and deliver such integrated applications most often build these systems of systems using
commercial platforms. Each platform targets a broad segment of the mission-critical business sys-
tem market, delivered in an internet-scale “platform as a service” model [Mell 2011], and is capa-
ble of supporting an ecosystem.

Large-scale command-and-control systems (government and industry)

The interviewees characterized these systems as providing integrated support for a variety of
warfighter processes. They may cover shipboard, ground-based, or airborne systems and may sup-
port interoperations among two or more of these categories. In practice, the DoD interviewees
consider these systems to be a type of SoS combining some number of sensor, intelligence, com-
mand, and weapons capabilities, all of which are provided by systems in their own right, through
communication channels [Frank 2008, McConnell 2010]. The individual systems may be built to
work together and therefore do not strictly qualify as composing a SoS in the Meier definition,
since they do not exhibit independence of operation. However, some elements may be built and
sustained independently.

Platform architecture development in the DoD

Platform support addresses a variety of mission areas: avionics, large-scale simulation systems,
and command and control. Across these areas, platform support comes in many forms, from ab-
stract models to direct implementations. When systematically reusing platform application models
as building blocks, elements of the SoS can immediately share information or other services. Im-
plementation of applications beyond the interfaces remains a system-specific activity, for the most
part. In contrast to the commercial enterprise SoS characterized by delivered capabilities—“what
it does”—DoD developments are characterized primarily by constituent elements—“what it is.”
They provide middleware—common software that all SoS users must link to for infrastructure
across the SoS—to support integration of independently managed and operated systems. An appli-
cation programming interface (API) makes messaging, object update, and other services available.
The infrastructure may be extended for individual system support at the application layer through
custom development or through shareable platform development. While infrastructure layer sup-
port has been achieved, another objective of these platforms has been to achieve strategic reuse of
infrastructure-layer software by SoS developers at the application layer to provide a variety of
goals: shorter time to field, higher quality, increased user familiarity with related systems, and

CMU/SEI-2015-TR-007 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 10

ease of integration. However, to date, these developments have not demonstrated strategic reuse at
the applications layer.

 Question Section 2: SoS Architecture Development

In this and the next two subsections, interview responses are organized according to questions in
Question Sections 2, 3, and 4 from Table 2. When a specific system in one of the three categories
is cited, the phrase “in one case” is used. General responses are provided first, and a table pro-
vides contrasting answers to the questions.

Most participants from the three organization types identified two development scenarios: crea-
tion of a new SoS composed primarily of new constituent systems or integration of existing sys-
tems to create a SoS. The first scenario applies primarily to directed systems of systems, in which
constituent systems goals and governance are aligned well with those of the SoS [Maier 1998]. In
this scenario, architecture design can begin either top-down, based on requirements with a plat-
form emerging as the design matures, or bottom-up, creating a platform first and then defining
systems that use the platform. In the second scenario, SoS architecture is constrained by the need
to integrate across diverse constituent systems. Consistency or conceptual integrity across the
SoS, as needed to develop a platform or even to efficiently sustain the SoS, may not be achievable
without substantial rework of constituents (and hence additional cost).

The variety of underlying system concepts results in many different approaches to address archi-
tecture drivers. Is a system with multi-mega lines of code (LOC) for a single entity under central-
ized development a SoS, or should it be considered a large single system? For the DoD, software
systems of a single aircraft, ship, vehicle, or command post may be regarded as a SoS. Large-
scale integration support efforts, such as Victory for vehicles and Navy Open Systems, are tar-
geted to SoS support. In other cases, the focus is on a bigger SoS—for example, multiple ships or
ship, aircraft, and ground-based systems in a cooperative engagement capability. The latter type is
more similar to commercial enterprise systems in linking diverse computing capabilities not ini-
tially built to interoperate. In either case, a SoS development may proceed as a clean-sheet, top-
down development, or the SoS may integrate existing systems, possibly with minimal modifica-
tion.

CMU/SEI-2015-TR-007 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 11

Table 3: Comparison of Answers to Questions in Section 2 – SoS Architecture Development

Questions Commercial SoS DoD SoS DoD Platform

2.a. Processes

Definition of the
term system of sys-
tems

General approach to
the architecture de-
sign (not documen-
tation) process

Bridge from SoS-
level to system-level
focus

Software treated as
part of or separate
from rest of SoS

Hierarchical vs. lay-
ered decomposition

Success depended on proper consideration of fu-
ture needs, defined through market analysis.

Organizations rely on deep domain experience to
determine platform scope decisions. In one case,
the initial platform architecture and implementa-
tion were factored out of an existing application
suite. In another, the platform was a new develop-
ment effort in a market space where the organiza-
tion is one of the market leaders. Both
organizations valued acquiring market share
higher than optimizing any technical or business
metric.

Elements may be introduced by users of the plat-
form in response to a corporate or mission need
that was not anticipated as part of the original de-
velopment.

Software was not an early concern—it was initially
treated like any other element of the SoS archi-
tecture, but as the architecture design matured,
concerns such as maximizing software develop-
ment efficiency, minimizing development cost,
and meeting development schedules were high
priorities that were balanced against overall SoS
measures of performance.

In a clean-sheet design, the solution may start as
top-down decomposition. Developers understand
and conform to a basic architecture approach.
When the solution is based on existing systems,
no consistent architecture approach exists across
the components.

Success depended on proper consideration of fu-
ture needs, informed by a science and technology
investment roadmap, to overcome lock-in through
nonproprietary platform solutions. May use large-
scale legacy systems as a starting point or may
mine for SoS support. Resulting platform architec-
ture contains elements of the infrastructure gener-
alized to address future SoS needs.

Limitations include
 lack of SoS architecture for integration with

other SoS products
 addressing 60 percent lifecycle cost of sustain-

ment exacerbated by contractor lock-in when
elements reach end-of-life obsolescence

 aligning platform ecosystem output with pro-
gram schedule needs

 existing systems engineering processes do not
meet high-level objectives for SoS platforms
To address the lack of off-the-shelf methods or
tools in one case, platform developers synthe-
sized key process areas to meet the highest
level goals: affordability and time to field.

2.b. Architecture
Tradeoff

How software con-
cerns interact with
other SoS concerns

How to balance con-
stituent system
needs in SoS con-
text

Time to market was the primary decision driver.
After a viable solution was identified, there was lit-
tle additional solution space exploration.

Decisions framed in a context that included both
functional and quality attribute requirements. They
did not explicitly distinguish between the two
types of requirements.

Downstream lifecycle costs and sustainment
costs were less important than SoS operational
performance. Extensive trade studies were per-
formed, with architecture decisions frequently
driven by development constraints.

The way software architecture concerns are
framed has changed over time. Earlier projects
framed decisions only in terms of functional re-
quirements, while more recent projects are fram-
ing decisions in terms of both functional and
quality attribute requirements.

Organizations recognize that it is not possible to
address affordability, risk, or other concerns all at
once. The stakeholders collaborate on decisions
that will affect all SoS systems. Each PM imple-
ments the changes independently, and integra-
tions are tested. To address the tradeoffs,
 define components and interface standards,

and allow technology innovation within those
boundaries
This has been labeled “modular innovation.”

CMU/SEI-2015-TR-007 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 12

Questions Commercial SoS DoD SoS DoD Platform

Framing architec-
ture tradeoffs and
decision making

Factors (technical
and nontechnical)
influencing deci-
sions

Many constraints with the individual systems
make it hard to maintain architecture “purity.”
Those existing systems are not changeable and
the solution lives with what’s there, as is. It may
only be possible to manage interfaces.

 gather or synthesize data about the as-is archi-
tecture and technology to identify areas for
cross-cutting innovation

 modularize to raise levels of reuse; document
at all software levels (architecture views)

 assure future platform users that conformance
will also address performance and that funding
to get there exists

 base investments on middleware or on plat-
form feedback

CMU/SEI-2015-TR-007 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 13

 Question Section 3: SoS Success Patterns and Challenges

Software product line and platform-based engineering practices also promote the reuse of assets
other than software, such as tools, plans, templates, test equipment, test cases, and personnel train-
ing and skills. Architects of military SoS platforms included assets such as documentation, train-
ing materials, and user community collaboration repositories as part of their SoS platforms.

Nontechnical factors, rather than technology, dominate the challenges in developing and evolving
SoS architectures. These factors include

 misalignment of development organization and authority with the architecture

 misalignment of system and SoS goals

 reluctance to introduce dependence on the SoS platform into the constituent system architec-
tures

 regulatory and policy constraints (for systems acquired by the U.S. government) that diminish
the potential value of a SoS platform approach

 need to change the procurement approach, separating capability development from individual
aircraft, simulation, or other product development

These reported challenges are similar to those of developing, adopting, and sustaining software
product lines [Northrop 2012]. Experience from software product lines and platform-based engi-
neering provides insight into some of the challenges of platform-based systems of systems. Prac-
tices that are successful for single products need to change to achieve success in a product line
context. Similarly, practices focused on developing single systems must change to be successful
in the context of a platform-based SoS. Practices used for software product lines consider the rela-
tionships among development, organizational, and management concerns and recognize that ar-
chitecture and technology are just two contributors to overall product line success.

When developing or evolving systems to use the SoS platform, many participants reported chal-
lenges related to documentation of the constituent systems within the SoS. Although extensive ar-
chitecture and design documentation may exist for a constituent system, it is often focused on the
independent operation of the constituent system and does not adequately address concerns related
to the constituent system’s operation in the SoS. Examples included resource scheduling ap-
proaches and handling of interface errors or exceptions.

The large scale and complexity of the SoS architecture context create several challenges for the
initial instantiation of the SoS platform. In the DoD, platform development shifts responsibilities
from individual PMs to an open government or industry organization. Maintaining backward
compatibility for systems using the SoS platform was reported as a challenge in architecture evo-
lution.

CMU/SEI-2015-TR-007 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 14

Table 4: Comparison of Answers to Questions in Section 3 – Success Patterns and Challenges

Questions Commercial SoS DoD SoS DoD Platform

3.a. Development

On development of con-
stituent systems for the
SoS (with examples and
evidence of success)
and of SoS-related chal-
lenges in the develop-
ment of constituent
systems for use in a
SoS

The commercial SoS platform architects re-
ported several approaches to creating and de-
livering the initial instantiation of the platform.
From these, we have identified two “proto pat-
terns” [Wiki 2009]: an architecture evolution
proto pattern for evolving a new platform and a
proto pattern for deploying new platform fea-
tures. These and other patterns are reported in
Section 5.

Developers follow a classical systems engineer-
ing approach. They decompose requirements
from Operational Requirements or Capabilities
Description Documents (e.g., capabilities, en-
durance, number of operators, ordinance, and
communications) to technical system, operator,
safety, and security requirements. A final de-
composition allocates segment, element, com-
ponent, or configuration items (CIs) to computer
software components.

Architects use the “V-model” [Forsberg 1991] to
develop their systems of systems. The relatively
long period between architecture definition and
system integration allows some architecture er-
rors to remain undiscovered until late in the de-
velopment process. One product addressed this
challenge by shifting to an iterative agile ap-
proach during later phases of the development
cycle. This enabled faster feedback on the cor-
rectness of design decisions, but unresolved
questions remained: Is it practical to use an iter-
ative approach from the beginning of the pro-
ject? Should an initial base of functionality be in
place before beginning an iterative approach?
What is the best way to plan iteration contents
and duration?

Focus on environment rather than product con-
tributes to a platform that encompasses develop-
ment and testing considerations. The platform
architecture defines logical interfaces, user rela-
tionships, testability of components to achieve
one-time test at the component level, and support
for integrated component testing at the system
and SoS levels for any configuration. This plat-
form development is seen as a way to achieve af-
fordability. Another part of the platform
environment focuses on a software tool chain—
identifying tools to be provided as Government
Furnished Equipment (GFE) to complement the
platform. For one interviewee program, this is not
yet a specific toolkit but may include specific data
modeling tools.

3.b. Test, integration,
and assurance

Success and challenges
(technical and nontech-
nical with examples and
evidence of success) in
test, integration, and as-
surance of constituent
systems in the SoS

Nearly all testing was automated, with one or-
ganization reporting that it had “tens of thou-
sands” of automated tests, which allowed it to
maintain full compatibility back to systems de-
veloped for the first versions of the platform (the
platform is now almost 10 years old and is up-
dated three times per year).

Agile approaches test using stimulator/simulator
at all code levels before final integration. They
also use a test automation strategy to cover
syntax and semantics of interfaces. Modeling
and simulation become part of the test environ-
ment to extend test coverage beyond platform
interfaces.

Systems integrator identifies near-term capabil-
ity testing and downstream full-scale test
events, then develops simulations to play test

Currently, no process exists for one-time testing,
so that quality remains a long-term objective. To
advance new certification processes, one plat-
form development funds the certification authority
to work with the architecture team.

Platform developers set information assurance
(IA) certification improvements for constituent
systems/applications. This assumes that middle-
ware releases are aligned with those certification
plans.

CMU/SEI-2015-TR-007 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 15

Questions Commercial SoS DoD SoS DoD Platform

data through applications during test, before in-
tegration. High-level architecture and closed-
loop SoS simulations may be used during test
and integration. As new systems are introduced,
the risks of retiring operational, top-level pro-
grams must be identified. The SoS organization
must develop integration and testing capabilities
to assure that new and previous systems can
still operate within the SoS. A significant chal-
lenge is to maintain the budget in light of these
changes and maximize test efficiency to meet
schedules. Most developments invest to some
degree in test automation to overcome limita-
tions of systems previously tested with manual
integration processes. Developers also see au-
tomation as achieving conformance as a tested
quality rather than being a “best professional
judgment” issue.

Organizations that develop and deliver inte-
grated capabilities build and integrate these us-
ing a common infrastructure [OPEN 2013,
Raytheon 2006, U.S. Army 2012] or integration
platform. Each infrastructure targets a broad
segment of mission-critical system area, gener-
ally as defined by a specific DoD service. These
offer potential as common platforms for multiple
system or SoS development.

3.c. Runtime configu-
ration and
management

Success and challenges
(technical and nontech-
nical with examples and
evidence of success) in
runtime configuration
and management of the
SoS

Organizations instrument their platforms to pro-
vide visibility into how platform features and ser-
vices are used by customers. The
instrumentation supports both reactive activities,
such as help desk support, as well as proactive
activities, such as optimizing commonly used
transactions within the platform.

Focus is on runtime environment rather than
product. This focus may still lead to systems un-
der control of a single integrator for both infra-
structure and most constituent systems but also
offers a path to a SoS platform. In some cases,
as many as a dozen systems that need to inter-
act are integrated in this fashion.

When new capabilities are identified—for exam-
ple, a fused track assembled from multiple sen-
sor tracks—multiple stakeholders with systems

For continuous runtime support, the organizations
behind platform development recognize the im-
portance of a diverse inner team—all with back-
ground in the mission area and specific expertise
as systems architects, systems engineers, mod-
elers, SoS architects, and standards experts, with
reach back to others working on as-is systems.
An outer team includes the usual stakeholders
such as representatives from a program execu-
tive office or equivalent governance body, current

CMU/SEI-2015-TR-007 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 16

Questions Commercial SoS DoD SoS DoD Platform

architected for autonomous operations must col-
laborate. This level of collaboration requires
agreement on mechanisms for integration of ex-
isting systems, possibly based on a pub-sub or
other information exchange, built into the infra-
structure.

and future system PMs, and product managers
(in some cases, from industry).

3.d. Sustainment and
evolution

Success and challenges
(technical and nontech-
nical with examples and
evidence of success) in
sustainment and evolu-
tion of the SoS

New platform features frequently duplicate ex-
isting features provided by existing applications
within the SoS. An organization wants applica-
tions to use the platform-provided version of the
feature and promotes the value propositions
that the short-term expense of migrating to the
platform-provided version of the feature will be
offset in the long term by increased stability and
scalability resulting from use in multiple systems
and configurations and that integrating with the
platform will provide lower cost access to other
desirable features, such as analytics or security
features. The organization prefers this long-term
value proposition approach as an incentive to
motivate migration, rather than providing direct
economic incentives (e.g., subsidies) or punitive
actions (e.g., prohibiting applications that do not
use certain platform features).

Also encounters challenge of justifying short-
term cost of migrating constituent systems to
use of SoS platform. Military organizations tend
to rely on top-down mandates or direct funding
incentives.

Command-and-control SoS architects reported
issues in maintaining compatibility among con-
stituent systems as the architecture underwent
evolution throughout the initial SoS development
iterations.

The DoD has made frequent attempts to expand
the infrastructure through applications as pro-
grams evolve, but this has proven harder to ac-
complish due to programmatic constraints—on
the programmatic level, this involves expanding
up, but too many decisions had already been
made in these structural elements, with specifi-
cations set, that were in conflict. Data modeling
has proven one area of common influence
across multiple systems in a SoS.

IA certification and, possibly, mission assurance
certification may serve as incentives to encour-
age air-, ship-, or ground-based systems of sys-
tems to conform to use of the infrastructure. The
emphasis is to shift from standalone legacy com-
ponents to conformance via the platform.

In one case, the ecosystem is organized under
the auspices of an international standards body,
with participation from across all services, indus-
try, and academia.

Technology roadmaps address affordability dur-
ing sustainment by breaking unique hardware
constraints, working with industry and subject-
matter experts in other services, and creating
consensus-based open standards.

CMU/SEI-2015-TR-007 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 17

3.4 Question Section 4: Solution Constraints

Participants identified constraints that must be satisfied by any new approaches or methods to ad-
dress patterns and challenges discussed in the previous section. These may be generalized as a
need either to integrate with existing tools or to align with assurance or certification processes.

The first constraint is that any new approach or method should be integrated with existing tools,
including tools used for architecture modeling, analysis, and documentation and tools used for
project or program management. The need for integration with architecture tools was expected—
adoption of new approaches and methods is facilitated if there is no need for acquiring or learning
new tools. The need for integration with project or program management tools indicates the strate-
gic importance of architecture decisions; the necessity of efficiently translating decisions about
technical approaches into cost, schedule, and other metrics relevant to program executives; and
the significance of reflecting program constraints as architecture drivers.

The second constraint was that any new approach or method must align with assurance and certi-
fication processes. A significant benefit of a SoS platform lies in reducing the cost and time to
perform assurance and certification of the SoS, but this benefit likely can be accrued only if the
features included in the platform, the analysis of the platform architecture, and documentation
provided for the platform are aligned with the assurance and certification requirements of the SoS.

In the DoD context, acquisition policy, guidance, and governance pose at least a perceived con-
straint. Developments are tied to programs. The acquisition of an independent platform that spans
programs is a stated DoD goal. But the ecosystem to use and sustain the platform has not materi-
alized on its own and is not incorporated into current program policy and governance. These poli-
cies limit the ability of programs to create effective incentives for acquirers and suppliers to join
or participate in an ecosystem. Political priorities, leadership changes, and contractor relationships
add additional constraints.

The responses in this question section did not exhibit the same degree of variety as those in the
other sections, hence the sparse nature of the matrix.

CMU/SEI-2015-TR-007 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 18

Table 5: Comparison of Answers to Questions in Section 4 – Solution Constraints

Questions Commercial SoS DoD SoS DoD Platform

4.a. Development

On development of
constituent systems
for the SoS (with ex-
amples and evi-
dence of success)
and of SoS-related
challenges in the
development of con-
stituent systems for
use in a SoS

Define a platform in terms of creating network ef-
fects that support an ecosystem rather than in
terms of technology characteristics such as APIs
and programming languages or in terms of services
provided.

Key drivers of the SoS are development con-
straints: maximize development efficiency, mini-
mize development cost, and achieve schedule.
Balancing SoS performance requirements against
constraints is a common theme, and full lifecycle
engineering through sustainment is a lower priority.

Constraints on creating an ecosystem:
 must reduce SoS acquisition costs by enabling

modular substitution of SoS elements and creat-
ing competition among suppliers of the elements

 need for increased innovation from a broader
community of contributors to new and improved
SoS capabilities

 U.S. government acquisition policies that limit
ability to create effective incentives for acquirers
and suppliers to join or participate in the ecosys-
tem

Roadmaps include both technical and nontechnical
drivers, with technical roadmaps regarded as the
easy part. Obtaining mandatory conformance to the
architecture from PMs and reflecting that mandate
in roadmaps are the primary nontechnical chal-
lenges. Once conformance is the standard, organi-
zations can use the roadmap milestones to
estimate costs and the ability to meet long-term
needs.

Creation of shared resources for use of the plat-
form. These resources include training courses that
provide information about the platform and its use.
Others include repositories or Wiki support.

4.b. Test, integra-
tion, and assurance

Success and chal-
lenges

(No responses in this category) (No responses in this category) Platforms leverage software other than code within
middleware elements. Can no longer use traditional
LOC metrics to measure progress—more integra-
tion and test with platform than traditional code and
test.

4.c. Runtime con-
figuration and
management

Success and
challenges

(No responses in this category) Developers establish specific design constraints for
these CIs. An example is certain message classes
that are safety critical and must use a specific com-
mon service. In contrast to what we found in the en-
terprise platforms, SoS infrastructures tend to be
defined via standards in terms of technology char-
acteristics such as APIs and programming lan-
guages. Similarly, connections within the SoS and
to other existing programs are accomplished via in-
terface requirements. Implementers have very little
freedom—application developers are given require-
ments and interface specs to maintain consistency
across the SoS.

(No responses in this category)

CMU/SEI-2015-TR-007 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 19

Questions Commercial SoS DoD SoS DoD Platform

4.d. Sustainment
and evolution

Success and chal-
lenges

These platforms should support two-sided markets
where user groups provide each other with platform
benefits [Rochet 2006]. At the heart of the platforms
is a repository that stores a platform customer’s
business data and provides support for the busi-
ness processes mentioned above.

Software development is constrained by system
perspective that software is implementation, so de-
cisions are often deferred; this can have impact on
the overall architecture. Also, working across exist-
ing systems requires a higher degree of cross-or-
ganization cooperation, on both the customer and
supplier sides. Even when individual systems start
from a clean slate, maintaining the vision and con-
sistency in approach throughout the development is
a challenge to all developers, especially as cost
and schedule become primary drivers.

DoD systems of systems tend to be directed or
acknowledged—most of the constituent systems
are developed or redeveloped for a specific SoS.
They are rarely greenfield designs but integrate leg-
acy systems that may go through parallel reengi-
neering processes to bring them into alignment.
Alternatively, reengineering may take place during
planned upgrades to legacy systems. As part of the
reengineering, developers will balance commonality
for reuse of infrastructure services and specific
needs. Rather than an ecosystem, stakeholder rep-
resentatives are under one primary contractor for
the complete SoS with authority over the work of an
integrated product team.

Platform developments may be constrained to ad-
dress existing system program “decision points” so
that technology roadmaps align with those points.

While software reuse at the mission processor level
across mission systems is achievable, the reality is
that Programs of Record (PoRs) and PMs see the
systems they control as unique, and unique ap-
proaches are still considered the path to perfor-
mance and size/mass reduction. Users and prime
developers collaborate on revision, versions, ver-
sion checking, and regression testing across sys-
tems and during release.

Identify emergent behavior and determine whether
innovation through composition can provide new,
unanticipated capabilities.

CMU/SEI-2015-TR-007 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 20

4 Results

This section identifies challenges and sensitivity points that the DoD should address to success-
fully develop systems of systems using platform-based approaches. One mechanism to address the
gaps could be the gradual movement of PoR systems within DoD shipboard, ground-based, or air-
borne systems to SoS platform approaches. However, even within platform developments, legacy
and near-term product requirements may challenge management, operations, and environment-
vs.-product independence.

Ties to existing programs may impede creation of platforms or other solutions that are in a posi-
tion to address emergent behavior. For example, dealing with a new threat may require the ability
to integrate multiple sensor streams across constituent components. The sensor streams are within
scope of the SoS, and each component could build a real-time integrated view from existing and
new streams, which is the desired emergent capability. But the specific components that own the
streams currently process them and then can only distribute data via messaging rather than in real
time. As an alternative, platform-based services could accept and distribute the streams as re-
quired by the individual components for the real-time views. The current message-based limita-
tion imposed by processing at the component level, or similar limitations on addressing desired
emergent behavior, comes from the legacy constraints of many SoS projects. Addressing the
breadth of new requirements means building in longer term flexibility either to make changes at
the component level to satisfy emergent needs or to build platforms that support the desired be-
havior and then integrate components to take advantage of support provided by the platform.

This section addresses challenges in the following areas, divided into technical and nontechnical
concerns, following SoS issues raised by Maier [Maier 1998] and others identified in the inter-
view process:

 dependence on central management and operations

 evolving needs and sustainment

 emergent behavior

 binding decisions to physical sea, ground, or airborne systems

 assurance and certification needs

The accumulated comments from interviews are encapsulated in the coverage of these areas.

 Dependency

Independence for the SoS in operation and management requires constituent system strategies that
are not currently in sync with most DoD program strategies. True independence requires sepa-
rately acquired and sustained constituent systems. In operation, these constituent systems are not
dependent on each other for needed capabilities—they continue “to operate to fulfill [their indi-
vidual] purposes if disassembled from the overall system” [Maier 1998] but will rely on platform
capabilities. When integrated, each constituent contributes its own capabilities to the operation of
the SoS. To achieve independence, SoS planners in the DoD must find ways to overcome current
procurement approaches of constituent systems that tie them to a resulting SoS.

CMU/SEI-2015-TR-007 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 21

Technical Concerns

While programmatic challenges dominate in the system area, technical methods established for
DoD systems can scale up to meet these demands for the SoS. Current approaches tend to build in
dependencies to address budgetary, schedule, or other constraints. To overcome these constraints,
the platform approach should build into the platform those capabilities on which multiple systems
are likely to depend, but this requires early attention to SoS-wide concerns captured in early sys-
tem artifacts. The DoD appears to have made progress at the individual system level. It will now
have to apply this thinking to the SoS.

Across constituent systems, developers already attempt to identify commonalities and isolate
these via components in appropriate architecture layers. Among these components may be ser-
vices such as runtime startup, register, close out, and other functional identification capabilities.
Scaling this to the scope of the SoS will factor out dependencies to the platform, allow greater in-
dependence among constituent systems, and allow a single point of sustainment and evolution for
platform dependencies. While reuse may be a factor outside of the infrastructure layer, the appli-
cation layer reuse is usually of the clone-and-own variety, perpetuating some degree of depend-
ence.

While common technology or standards receive attention, interface interactions and impact on
systems at either end of that interface require at least as much attention. Performance modeling
and simulation can assess the impact of proposed design decisions early in the lifecycle and avoid
costly modifications during SoS integration. The use of simulations as an element of integration
and test (see Question 3.b in Table 4) demonstrates that simulation and modeling can be applied
across the development lifecycle. The “sim-stim” approach provides another check on dependen-
cies that might affect performance or even correctness of constituent systems once integrated and
can deliver schedule and cost savings.

Agile development and continuous integration may assist in this arena through frequent sharing of
constituent system component developments, rather than relying on late-stage integration. Regu-
larly performed trade studies with options can also support cross-system work within the SoS.

Nontechnical Concerns

Addressing the technical concerns of the SoS will require non-program-specific funding. This
funding will address commonality and built-in variations at the level of cross-constituent SoS sys-
tems or SoS-wide concerns such as the platform. Reserve funding that management holds for con-
tingency planning or targeted budgeting would be needed to support these non-program-specific
efforts. These efforts have been attempted, especially in the large-scale training area, where com-
mon architecture and implementation efforts have provided support for multiple programs. Again,
success in addressing system-level concerns could be broadened to the SoS.

Multiple management and funding streams for systems that must interoperate are another non-
technical concern. The success of the SoS requires balancing the priorities and goals both on the
customer and supplier sides. SoS planning must build anticipated changes into funding profiles
and system needs, to avoid excessive SoS replanning and restructuring when aligning new plans
across organizations.

CMU/SEI-2015-TR-007 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 22

One difficulty that programs encounter is diminishing adherence to long-term goal setting and
maintenance as a program matures. In early stages, maintaining the SoS vision is easier to accom-
plish than later when cost and schedule become stronger priorities for individual systems. Large-
system developments have benefited from maintaining a cross-SoS team to address high-priority
or essential integration concerns with authority and focus on big architecture issues. This ap-
proach requires “surrender” of some autonomy by individual system development teams to
broader SoS needs, but it may be necessary to maintain the independence of those systems that
will collaborate in the SoS and retain integrability. To sustain the drive to meet initial program
goals, programs must demonstrate the value of the cross-SoS approach early on, maintaining the
long-term vision as the SoS evolves.

 Evolution and Sustainment

With the SoS in transition to greater independence among constituent systems, the nature of evo-
lution and sustainment will change. The architecture drivers for many older, large-scale systems
included constraints such as minimizing memory footprint or dealing with proprietary hardware.
These specific constraints are generally not valid today or are less significant with use of commer-
cial hardware and, for non-mobile systems, availability of virtual memory and server-based archi-
tectures. Over the years, different parts of such systems have evolved in different directions, for
example, toward openness or toward ease in adding new capability, and drivers reflect those sys-
tem goals. Even in current systems that have achieved openness or ease in evolution, different ap-
proaches to these drivers may become a part of long-term sustainment. In addition, the need for
enhanced connectedness has resulted in increased complexity, and previous methods may not
scale.

Technical Concerns

Across a related set of system products, or product line, a common source code repository with
branches may exist for the entire product line. Configuration management (CM) accounts for vari-
ations across the products or systems. However, this approach is not currently applied to deal with
multiple versions of releases. For example, the subsystem elements of all ships in a product line
will be managed through CM at the subsystem level. But the individual tracking systems across a
set of ships, though closely related, will not each evolve under the same CM. Within these legacy
systems are many distinct baselines that have originated due to differences in ship equipment.
Adding to the current level of complexity is the scheduling of rollout for a release to the entire
fleet—there is overlap in deployed baselines. The challenge is that a fix may apply in different
ways to multiple configurations.

Still another factor in evolving the existing breed of large-scale systems is the need to interoperate
with externally provided Government Furnished Equipment (GFE). These GFE products go
through their own major evolutions and only afterward does the large-scale system have visibility
into the changes that are coming. The organization must determine whether to extend itself to ad-
dress interoperation with the GFE through evolution or to rebuild the affected parts.

A similar paradigm exists to integrate SoS to weapons platforms. The design of SoS software
platforms should permit ease of system integration over current approaches by isolating changes
that occur in a specific weapon platform and by creating a common means of SoS interoperation

CMU/SEI-2015-TR-007 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 23

with the weapon platform. In some cases, interoperation enabled by having a SoS platform simpli-
fies the current demands of system-to-system integrations in the absence of such a SoS platform.
The systems integrate through the platform, a many-to-one problem, in contrast to direct system-
to-system integration, a many-to-many problem.

While platform approaches cannot address all of these issues, they are seen as primary drivers.
Model-based methods as part of the platform are also seen as useful tools for evolution, if models
are developed and maintained over time. Models aid traceability to gauge the impact of internal
system changes or of changes brought about by external interoperations. Maintaining models
gives programs the ability to easily perform impact analysis when change is requested and can
provide guidance to external developments to direct their implementation. It can also support up-
grades that are outside the control of the system. Knowledge of change and predictions of impact
may also help limit the coverage of test events to specific system activities, not requiring total sys-
tem retest. Without this approach, the impact on testing is hard to predict.

Product variations may also be accommodated in the platform. For example, a product line of ship
systems will vary by different collections of sensor, weapons, command systems, and human–ma-
chine interfaces. The platform can build these into its models and provide the architecture or even
components and interfaces across the product line. Once systems are fielded, upgrades may pro-
ceed between release cycles to both the shared platform and the individual systems. While main-
taining test alignment and interoperability is still a challenge, the platform affords more flexibility
in evolving each system and minimizing the impact of change across the product line.

Nontechnical Concerns

Scaling from the system to the SoS involves issues that are more programmatic than technical.
These include managing interfaces across systems, planning and executing integrated test events,
and sustaining the underlying infrastructure. For system independence across the SoS, the constit-
uent systems must have operations-level agreements to make sure that the needs of one system
that must come from an external source are provided by another in the SoS, that test engagements
can be coordinated, and that all elements can share access to data to build and compare impact
analysis. Tooling must include SoS-wide data modeling and interface management tools along
with common infrastructure tools to coordinate communications, data management, and security
across the SoS.

 Emergent Behavior

At the system level, particularly in a directed or acknowledged SoS, the organization views emer-
gent behavior as providing a means to deal with new requirements within the SoS. The emergent
behavior can be realized through integrating capabilities across component systems or by utilizing
platform capabilities in combination with those of the constituent elements. The identification of
new capabilities and the ability to address new requirements are part of engineering change. The
collaborative or virtual SoS should be designed to recognize the potential for new capabilities
emerging from those already built and even respond to an unanticipated threat. The capabilities of
the constituent components support a breadth of scope within SoS projects that can be exploited to
address unanticipated requirements. Such innovation involves weighing the risk of investing in a
potential that may never be realized (the ability to easily exploit emergent behavior through archi-
tecture or other means) against the opportunity that emergent behavior can support.

CMU/SEI-2015-TR-007 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 24

Technical Concerns

The architecture of the SoS platform should look forward to anticipate technology discontinuities.
The method used to reduce or eliminate dependencies should support incorporation of new behav-
ior without significant change to individual systems and certainly with minimal change to the
platform. Successful strides in SoS platform development to address the potential for emergent
behavior include the ability to rapidly create exploratory prototypes. These prototypes can demon-
strate innovative capability that can be fed back into mainline development. The platform can ena-
ble SoS benefits from specific categories of emergent behavior:

 operations across new networks with existing or new data exchanges

 interoperations with new systems supported by interoperability tactics (e.g., capability discov-
ery or workflow management) within the SoS architecture

 identification of innovative capabilities that exploit the ease of harvesting design and code
and building into the baseline

 Deployment and Binding Decisions to Physical Systems

Leaders still think about physical products (tanks, ships, aircraft, etc.), and their perspective of
SoS tends to be hardware oriented. However, a greater degree of software awareness is emerging
through the leadership ranks along with recognition of the need for engineering discipline and the
need to enforce that discipline on the process for developing software. The moves to complex
software systems and to the SoS have engendered a refocus on the software running on these
products. These leaders understand the commercial example of a Google search engine running
on a desktop, laptop, tablet, or mobile product as the same software on a variety of physical prod-
ucts. They want to achieve the ability to field a limited number of instances or versions of com-
mon software with ease of test and integration and to avoid major cost impacts. But they still
perceive development as targeted to a specific physical system.

Technical Concerns

The integration of systems into a SoS exposes fragility in system designs and deployment issues
that may not be as apparent in stand-alone operation. Release of capabilities into systems and the
interactions between programs to realize SoS capabilities require coordination—of the data model
semantics, data link quality of service, and other decisions. The complexity of coordinating
among multiple systems and suppliers has, in the past, led to a sole-source approach for the life of
a system. An open infrastructure with multiple suppliers requires an architecture approach that
supports late binding of the implementation to the physical product and independence among indi-
vidual systems. Ideally, this approach limits the role of the system integrator to final deployment
to avoid dependence on the experience of a single company throughout the development.

Nontechnical Concerns

The DoD is not perceived as having market influences such as the need to respond to competition.
However, the DoD does recognize the need to separate or isolate deployment decisions from the
development. This change is reflected in the goal of limiting or eliminating contractor lock-in,
lengthy test and integration cycles, and costly sustainment. The common platform approach that
can separate deployment from development makes buy-in at the highest levels critical, since there
is no easy objective measure of strategy correctness. Such change is not well received without

CMU/SEI-2015-TR-007 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 25

concrete ways to defend or justify the change. Compared to the commercial context where show-
ing bottom-line results is feasible, the picture in the DoD requires careful management to avoid
the perception that such change is a threat.

 Information Assurance and Certification

For many legacy systems, even large-scale systems, information assurance (IA) was not a require-
ment at the outset. IA is being added as a “new” requirement now, even where security was not a
factor in the original architecture. Even where IA and other safety or security requirements are
part of a system specification, acquisition processes often do not push IA concerns early enough
in the design process.

Technical Concerns

In one case, IA concerns were addressed in-process for a system-wide infrastructure. These ap-
proaches could be applicable to the SoS platform:

 Instead of waiting until all development is complete and ready for end-product certification,
the system conducts software IA certification on early releases.

 The system flows IA controls down in initial decomposition. The system achieves a certifica-
tion board decision within elements before IA involves all stakeholders across elements.

 With external organizations identifying testing requirements and methods, decomposition
must proceed to responsibilities at the lowest CI level.

Commonality at an infrastructure level can be independently certified and, if used as-is and in an
intended way, should not trigger recertification. Changes to infrastructure or to accepted methods
of using the infrastructure might also trigger recertification. More effective assurance practices
will become drivers for the SoS and for SoS platforms. But lack of sufficient a priori architecture
experience for IA in the systems area will contribute to uncertainty in how much IA is sufficient
for a SoS. Within the SoS, boundaries between constituent systems are fuzzy and there is duplica-
tive effort. Often, issues emerge in addressing assurance due to a lack of understanding of SoS ar-
chitecture and operation, rather than lack of understanding of the specific IA requirements.
Addressing emergent behavior may come at the expense of opening a SoS to new IA challenges.

CMU/SEI-2015-TR-007 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 26

5 Conclusions

This study interviewed 12 experts to characterize the state of the practice of SoS architecture de-
velopment, with a focus on architectures that include SoS platforms. Our goal was to address the
following questions:

1. What processes are used to develop SoS architectures, and how are constituent software ele-
ments of the architecture designed?

2. What challenges do SoS programs face in developing architectures; performing test, integra-
tion, and assurance; managing runtime configuration and operation; and evolving the SoS?
What approaches have been used in successful programs to overcome these challenges?

3. What are the constraints on new approaches to developing, using, and evolving these SoS ar-
chitectures?

4. What are the important differences between practices used to create commercial SoS architec-
tures and DoD SoS architectures?

The first three goals are addressed by the responses summarized in Section 3, and the tables offer
contrasts between categories of organizations—commercial, large-scale command and control
SoS for the DoD, and SoS platforms for the DoD. Section 4 offered challenges that the DoD faces
in addressing Question 4. This section recommends further research to address the challenges.

 Common Practices in Commercial SoS for DoD Consideration

The interviews uncovered four sets of common practices that we label proto patterns [Wiki 2009].
The first three are elements of commercial development that the DoD could adopt. The fourth is
an aspect of some DoD developments that could provide assistance across the DoD in evolution to
SoS platform adoption.

1. An architecture evolution proto pattern for evolving a new platform. This pattern begins by
first defining and implementing atomic message types and schemas, with no concept of work-
flow (i.e., sequences of messages related to a business task or process). Initially, all workflow
is organically built into the systems and applications using the platform. Later, workflow or-
chestration is added to the platform, with the platform providing versioned workflow defini-
tions that include endpoint roles (endpoint cardinality, supported message sets, and other
workflows in which the endpoint can participate), workflow sequence definitions, and trans-
action support. This proto pattern allows an initial version of the platform to be deployed
quickly and allows incremental definition of workflows based on actual platform use.

2. A proto pattern related to the evolution pattern described above. Workflow execution scala-
bility and availability is achieved by maintaining the workflow state only in the participating
endpoints, not in the platform infrastructure. This “stateless platform” approach is a refine-
ment of stateless services in service-oriented architectures.

3. A three-step approach to address the problem of how to deploy new platform features. Com-
mercial SoS platform architects also reported a proto pattern for deploying new platform fea-
tures. This three-step pattern begins by piloting a new feature with selected customers, with
special IT operations processes used to carefully monitor usage and quality attributes such as

CMU/SEI-2015-TR-007 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 27

performance. In a second release, the feature is stabilized with those customers, and IT opera-
tions processes are similar to standard production processes. Finally, in a third release, the
feature is generally available to all customers in production. (In the organization using this
proto pattern, the time from pilot to general availability of a feature was four to eight months.)

4. Architecture practices evolving from “backing into” SoS architecture. More developments
emphasize quality attributes early in the development, recognizing that they cannot be easily
addressed later in the lifecycle. Organizations are using an Architecture Tradeoff and Analy-
sis Method (ATAM®) evaluation proto pattern to identify sensitivity points, issues in ad-
dressing quality attributes, and potential architectural gaps. The evaluation may be coupled
with software infrastructure standards such as TSCE-I (Total Ship Computing Environment –
Infrastructure), CANES (Consolidated Afloat Network Enterprise Services), SWFTS (Subma-
rine Warfare Federated Tactical System), and the COE to provide an open infrastructure for
developer support across the SoS.

 DoD Achieving the Successes of the Commercial World

Many factors exist, or are perceived to exist, that prevent the DoD from duplicating the successes
in the commercial world:

 Leadership in the DoD experiences more rapid turnover. Industry has longer leadership ten-
ure.

 The political situation at any particular time—“the surge” one year, sequestration the next—
becomes the current hot-button issue and replaces a long-term agenda.

 Suppliers to the DoD cannot be easily replaced due to legal issues and high contract cancella-
tion costs.

 In Title 10 and Title 40, governance restricts the ability to create an “app store” ecosystem.
Many developments bypass standard development procedures through Urgent Operational
Need (UON) statements. The urgency of a current need can trump a good design.

Existing DoD platform architecture initiatives place priority on enabling quality attributes. These
include interoperation among applications and a broad range of requirements for performance and
availability across the platform-supported SoS that require dependable and efficient support. Still,
the platform developments have brought forth specific challenges:

 Struggle with interoperability. Examples include poor data modeling and semantic mismatch
on shared data elements.

 Defining the platform based on warfighter context rather than technical need. Examples in-
clude computing infrastructure for a submarine or a missile cruiser. Both are “real-time” sys-
tems, but sensors work at different time scales (speed of sound in water and torpedo velocity
vs. radar and missile velocity). Each community thinks that there can’t be commonality, but a
single scalable platform could serve both.

 Bridging from system concerns to SoS concerns. System designers don’t know SoS concerns;
their focus is on their own products. Systems are tightly aligned with warfighter missions,
while the SoS is “someone else’s problem.”

 Architecture Tradeoff and Analysis Method and ATAM are registered in the U.S. Patent and Trademark Office

by Carnegie Mellon University.

CMU/SEI-2015-TR-007 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 28

 Diversity of behaviors in making tradeoffs. Generally, short-term interests have a higher pri-
ority than long-term interests. Programs will invest in local capabilities, system behavior, or
performance over SoS concerns.

The DoD does hope to achieve true competition for acquiring not just the infrastructure but also
the capability development—“third-party product integration.” The apps store concept, as an ex-
ample for attracting new players, looks attractive, but, as yet, the DoD apps market remains rela-
tively small, with no incentive to enter. Today, many programs advocate openness as a
mechanism to encourage competition, but openness is defined differently for different systems.
Without qualification, that is, openness with respect to system, SoS, or platform integration, the
term does not adequately define a particular quality.

 Recommendations for Further Study

This study identified several areas where additional research is needed.

1. Selection of features for a SoS platform. The study identified a number of critical stakeholder
concerns, including time to market, cost reduction, ease of adoption, support for future capa-
bilities, and alignment with SoS assurance and certification processes. Feature selection re-
quires consideration of both the problem space, to identify candidate platform features and
assess their value, and the solution space, to assess costs to implement and maintain each fea-
ture. Systematic approaches to analyze the problem space might combine techniques such as
mission thread analysis [Kazman 2012] with domain analysis [Northrop 2012]. Solution
space analysis might include economic models and models that consider alignment of the ar-
chitecture with constraints such as acquisition strategy, organizational structures, and other
socio-technical factors. These analyses would be facilitated by catalogs of architecture
knowledge, such as pattern handbooks, to provide a repertoire of solutions that exhibit partic-
ular functional and quality attribute properties. Finally, a systematic approach, such as eco-
nomic modeling, is needed to prioritize and select features for inclusion in the platform from
a set of candidates.

2. Agile development methods for platform-based systems of systems. Approaches for architec-
ture-led incremental development have focused primarily on the software and system level
[Bachmann 2012, Bellomo 2013]. Further work is needed to model the more complicated de-
pendencies in a SoS architecture and to develop iteration planning strategies that accommo-
date the managerial independence of the constituent systems.

3. Approaches to characterize and document constituent systems to support their use in systems
of systems. Systematic approaches are needed to identify the relevant concerns and collect
and present the information to efficiently satisfy those concerns. An approach such as the cre-
ation of an ISO 42010-style architecture description viewpoint may be appropriate.

CMU/SEI-2015-TR-007 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 29

Appendix Interview Outline

1. Demographics

1.1. Years of professional experience

1.2. Years of SoS experience

1.3. Number and names of SoS projects and programs worked on

2. SoS Architecture Development

We are looking here for the architecture design process, not the documentation process (e.g.,
DoDAF).

For each question, ask interviewee specifically about software, as appropriate.

Try to be as specific as possible.

2.1. In your experience, how are SoS architectures defined? Is software treated separately or
differently from the rest of the SoS?

2.2. What is the architecture design process? How do you bridge from SoS-level focus to
system-level focus?

2.3. How are architecture design tradeoffs defined or framed? How do you balance SoS con-
text with system context?

2.4. How are architecture design tradeoff decisions made? What factors (technical and non-
technical) influence decisions? How do you balance SoS context with system context?

3. SoS Success Patterns and Challenges

Ask interviewee to refer to a specific system, SoS, or program in answering these questions and to
be as specific as possible in describing the success or challenge.

We do not want to dig into root-cause analysis—we are looking for the observable events.

When the interviewee identifies a system or program that went well, probe into how he or she de-
fined success—e.g., on budget, on schedule, exceeded requirements, provided a platform that
other programs could build upon, or high benefit for cost.

Challenges could include complying with standards, not complying with standards, silos, not-in-
vented-here syndrome, legacy constraints, etc.

3.1. In developing constituent systems for use in a SoS, was there a system or program that
went well or was more successful than others? Why? (i.e., what evidence is there?)

3.2. What SoS-related challenges have you seen in the development of constituent systems
for use in a SoS?

3.3. In the test, integration, and assurance of constituent systems into a SoS, was there a sys-
tem or program that went well or was more successful than others? Why? (i.e., what evi-
dence is there?)

3.4. What SoS-related challenges have you seen in the test, integration, and assurance of con-
stituent systems into a SoS?

CMU/SEI-2015-TR-007 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 30

3.5. In the configuration and management of a SoS, was there a system or program that went
well or was more successful than others? Why? (i.e., what evidence is there?)

3.6. What SoS-related challenges have you seen in the configuration and management of a
SoS?

For the next two questions, include issues about evolution of a constituent system within the
overall SoS.

3.7. In the post-deployment sustainment and evolution of a SoS, was there a system or pro-
gram that went well or was more successful than others? Why? (i.e., what evidence is
there?)

3.8. What SoS-related challenges have you seen in the post-deployment sustainment and
evolution of a SoS?

4. Solution Constraints

“Solution” is used in a very general sense here and refers to something that would address one of
the challenges identified above.

Constraints can be technical, organization, governance, policy, regulatory, incentive, doctrine, or
other cause.

4.1. What constraints do you see for a solution that improves the development of constituent
systems for use in a SoS?

4.2. What constraints do you see for a solution that improves the test, integration, and assur-
ance of constituent systems for use in a SoS?

4.3. What constraints do you see for a solution that improves the configuration and manage-
ment of a SoS?

CMU/SEI-2015-TR-007 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 31

References

URLs are valid as of the publication date of this document.

[Bachmann 2012]
Bachmann, F., Nord, R. L., & Ozkaya, I. “Architectural Tactics to Support Rapid and Agile Sta-
bility.” CrossTalk 25, 3 (May/June 2012): 2025.

[Bellomo 2013]
Bellomo, S., Nord, R., & Ozkaya, I. “A Study of Enabling Factors for Rapid Fielding: Combined
Practices to Balance Speed and Stability,” 982–991. Proceedings of the 35th International Con-
ference on Software Engineering (ICSE 2013). San Francisco, CA, May 2013. IEEE, 2013.

[Clark 2008]
Clark, J. O. “System of Systems Engineering and Family of Systems Engineering from a Stand-
ards Perspective,” 414–419. Proceedings of the IEEE International Conference on System of Sys-
tems Engineering (S0SE 08). Monterey, CA, June 2008. IEEE, 2008.

[Cusumano 2010a]
Cusumano, M. “The Evolution of Platform Thinking.” Communications of the ACM 53, 1 (Janu-
ary 2010): 32–34.

[Cusumano 2010b]
Cusumano, M. “Staying Power: Six Enduring Principles for Managing Strategy & Innovation in
an Uncertain World.” Presented at the MIT Research and Development Conference. Cambridge,
MA, November 2010. http://ilp.mit.edu/images/conferences/2010/RD/Cusumano.pdf

[Dahmann 2011a]
Dahmann, J. & Baldwin, K. “Implications of Systems of Systems on System Design and Engi-
neering,” 131–136. Proceedings of the 2011 6th International Conference on System of Systems
Engineering. Albuquerque, NM, June 2011. IEEE, 2011.

[Dahmann 2011b]
Dahmann, J., Rebovich, G., Lane, J., Lowry, R., & Baldwin, K. “An Implementers’ View of Sys-
tems Engineering for Systems of Systems,” 212–217. Proceedings of the IEEE Systems Confer-
ence (SysCon 2011). Albuquerque, NM, April 2011. IEEE, 2011.

[Forsberg 1991]
Forsberg, K. & Mooz, H. “The Relationship of System Engineering to the Project Cycle,” 57–65.
Proceedings of the First Annual Symposium of National Council on System Engineering, Chatta-
nooga, TN, October 1991. Wiley, 1991.

[Frank 2008]
Frank, G., Evens, N., Hubal, R., & Whiteford, B. “Automated, Interactive AARs: A Positive
Spin,” Paper 8258. Proceedings of the Interservice/Industry Training, Simulation, and Education

http://ilp.mit.edu/images/conferences/2010/RD/Cusumano.pdf

CMU/SEI-2015-TR-007 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 32

Conference (I/ITSEC). Orlando, FL, December 2008. RTI International, 2008.
http://www.rvht.net/pubs/8258.pdf

[Gorod 2008]
Gorod, A., Sauser, B., & Boardman, J. “System-of-Systems Engineering Management: A Review
of Modern History and a Path Forward.” IEEE Systems Journal 2, 4 (December 2008): 484–499.

[Greenert 2012]
Greenert, J. W. “Payloads over Platforms: Charting a New Course.” U.S. Naval Institute Proceed-
ings Magazine 138, 7 (July 2012): 16–23.

[INCOSE 2006]
International Council on Systems Engineering. “Definition of a System.” A Consensus of the
INCOSE Fellows. INCOSE, 2006. http://www.incose.org/practice/fellowsconsensus.aspx

[INCOSE 2011]
International Council on Systems Engineering. INCOSE Systems Engineering Handbook v. 3.2.2
(INCOSE-TP-2003-002-03.2.2). INCOSE, 2011.

[Kazman 2012]
Kazman, R., Gagliardi, M., & Wood, W. “Scaling up Software Architecture Analysis,” Journal of
Systems and Software 85, 7 (July 2012): 1511–1519.

[Klein 2012]
Klein, J., Chastek, G., Cohen, S., Kazman, R., & McGregor, J. “An Early Look at Defining Varia-
bility Requirements for System of Systems Platforms,” 30–33. Proceedings of the Second Inter-
national Workshop on Requirements Engineering for Systems and Systems-of-Systems (RESS
2012). Chicago, IL, September 2012. IEEE, 2012.

[Klein 2013]
Klein, J., Cohen, S., & Kazman, R. “Common Software Platforms in System-of-Systems Archi-
tectures: The State of the Practice,” 135–140. Proceedings of the 8th International Conference on
System of Systems Engineering. Maui, HI, June 2013. IEEE, 2013.

[Maier 1998]
Maier, M. “Architecting Principles for Systems-of-Systems.” Systems Engineering 1, 4 (1998):
267–284.

[Maier 2005]
Maier, M. “Research Challenges for Systems-of-Systems,” 3149–3154. Proceedings of the IEEE
International Conference on Systems, Man, and Cybernetics (SMC 2005). Waikoloa Village, HI,
October 2005. IEEE, 2005.

[McConnell 2010]
McConnell, J. H. & Jordan, L. L. Naval Integrated Fire Control–Counter Air Capability-Based
System of Systems Engineering. Naval Integrated Fire Control – Counter Air (NIFC-CA), 2010.
http://www.acq.osd.mil/se/webinars/20100930-Leading-Edge-Input_NIFC-CA.pdf

http://www.rvht.net/pubs/8258.pdf
http://www.incose.org/practice/fellowsconsensus.aspx
http://www.acq.osd.mil/se/webinars/20100930-Leading-Edge-Input_NIFC-CA.pdf

CMU/SEI-2015-TR-007 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 33

[Mell 2011]
Mell, P. & Grance, T. The NIST Definition of Cloud Computing (Special Publication 800-145).
National Institute of Standards and Technology, 2011.

[Northrop 2012]
Northrop, L. M. & Clements, P. C. A Framework for Software Product Line Practice, Version
5.0. Software Engineering Institute, Carnegie Mellon University, 2012.
http://www.sei.cmu.edu/productlines/frame_report/index.html

[NRC 2010]
National Research Council Committee for Advancing Software Intensive Systems Producibility.
Critical Code: Software Producibility for Defense. National Academies Press, 2010.

[OPEN 2013]
The Open Group. The Future Airborne Capability Environment (FACE) Consortium.
https://www.opengroup.us/face (2013).

[OUSD 2008]
Office of the Deputy Under Secretary of Defense for Acquisition and Technology, Systems and
Software Engineering. Systems Engineering Guide for Systems of Systems, Version 1.0.
ODUSD(A&T)SSE, 2008. http://www.acq.osd.mil/se/docs/SE-Guide-for-SoS.pdf

[Raytheon 2006]
Raytheon. Raytheon Selects RTI Real-Time Middleware for U.S. Navy Destroyer Program.
http://www.rti.com/company/news/raytheon.html (2006).

[Rochet 2006]
Rochet, J.-C. & Tirole, J. “Two-Sided Markets: A Progress Report.” RAND Journal of Economics
37, 3 (2006): 645–667.

[U.S. Army 2012]
U.S. Army. Army Releases Common Operating Environment Release Plan.
http://www.army.mil/article/71710/TSCE-I (2012).

[Wiki 2009]
Portland Pattern Repository Wiki. Proto Pattern. Cunningham & Cunningham Inc., 2009.
http://c2.com/cgi/wiki?ProtoPattern

http://www.sei.cmu.edu/productlines/frame_report/index.html
https://www.opengroup.us/face
http://www.acq.osd.mil/se/docs/SE-Guide-for-SoS.pdf
http://www.rti.com/company/news/raytheon.html
http://www.army.mil/article/71710/TSCE-I
http://c2.com/cgi/wiki?ProtoPattern

CMU/SEI-2015-TR-007 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 34

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, search-
ing existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regard-
ing this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters
Services, Directorate for information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of
Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY

(Leave Blank)

2. REPORT DATE

April 2015

3. REPORT TYPE AND DATES
COVERED

Final

4. TITLE AND SUBTITLE

State of Practice Report: Essential Technical and Nontechnical Issues Related to Designing
SoS Platform Architectures

5. FUNDING NUMBERS

FA8721-05-C-0003

6. AUTHOR(S)

Sholom Cohen, John Klein

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213

8. PERFORMING ORGANIZATION
REPORT NUMBER

 CMU/SEI-2015-TR-007

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

AFLCMC/PZE/Hanscom

Enterprise Acquisition Division

20 Schilling Circle

Building 1305

Hanscom AFB, MA 01731-2116

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

12A DISTRIBUTION/AVAILABILITY STATEMENT

Unclassified/Unlimited, DTIC, NTIS

12B DISTRIBUTION CODE

13. ABSTRACT (MAXIMUM 200 WORDS)

This report presents an analysis of the state of the practice in system-of-systems (SoS) development. SoS architectures, or blueprints for
integrating multiple systems based on common software platforms, have been successful in many commercial environments. The report
discusses technical issues related to SoS common platform development and adoption in the Department of Defense (DoD) and the
nontechnical constraints that must be satisfied. The analysis is based on information captured from 12 interviews of leading SoS devel-
opers in the DoD and industry, applying a SoS definition from the literature to identify gaps between the current state and the desired
end state. The results of the study show that while commercial and DoD developers follow different approaches, all organizations report
nontechnical constraints as more challenging than technical issues. For the DoD, these include leadership changes, shifting political
priorities, and difficulty in replacing suppliers. The report recommends further study of SoS planning and agile approaches that better
support incremental development; bridging the gap from SoS to system concerns so that system designers understand SoS concerns
and can focus on their products in the context of the SoS; and documenting the platform at all software levels, including architecture
views and component integration strategies.

14. SUBJECT TERMS

system of systems, SoS, platform, architecture, nontechnical constraints

15. NUMBER OF PAGES

45

16. PRICE CODE

17. SECURITY CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY CLASSIFICATION
OF THIS PAGE

Unclassified

19. SECURITY CLASSIFICATION
OF ABSTRACT

Unclassified

20. LIMITATION OF
ABSTRACT

UL
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89) Prescribed by ANSI Std. Z39-18

298-102

	Acknowledgments
	Abstract
	1 Introduction
	2 Research Method
	3 Interview Responses
	4 Results
	5 Conclusions
	Appendix Interview Outline
	References

