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Abstract 

Architecture-Led Safety Analysis (ALSA) is a safety analysis method that uses early architecture 
knowledge to supplement traditional safety analysis techniques to identify faults as early as possi-
ble. The method begins by creating a definition of the operational environment within which the 
system under design will operate. ALSA uses the early architecture knowledge of the system and 
standardized error guide words to identify hazards in the system. These hazards are analyzed us-
ing knowledge of the architecture and safety requirements, intended to mitigate the hazards, that 
are added to the system’s requirements. ALSA continues its analysis down the full depth of the 
system implementation hierarchy. As additional implementation details are defined, the hazard 
analysis is applied to the subcomponents. ALSA also cuts across many of the phases in the devel-
opment lifecycle. The hazard analysis feeds the requirements definition, architecture definition, 
and verification and validation phases.  
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1 Introduction 

Architecture-Led Safety Analysis (ALSA) is a safety analysis method that uses early architecture 
knowledge to supplement traditional safety analysis techniques to identify faults as early as possi-
ble. The method begins by creating a definition of the operational environment within which the 
system under design will operate. ALSA uses the early architecture knowledge of the system and 
standardized error guide words to identify hazards in the system. These hazards are analyzed us-
ing knowledge of the architecture and safety requirements, intended to mitigate the hazards, that 
are added to the system’s requirements. ALSA continues its analysis down the full depth of the 
system implementation hierarchy. As additional implementation details are defined, the hazard 
analysis is applied to the subcomponents. ALSA also cuts across many of the phases in the devel-
opment lifecycle. The hazard analysis feeds the requirements definition, architecture definition, 
and verification and validation phases.  
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2 Architecture-Led Processes and ALSA 

The double V model shown in Figure 1 establishes the relationship between architecture-led de-
velopment and assurance processes, with Architecture-Led Processes as central to all engineering 
activities. Within Architecture-Led Processes, architecture modeling and analysis, coupled with 
automated code generation, are the foundation for the overall development and upgrade of soft-
ware-dependent systems. These processes encompass Architecture Led Requirements Specifica-
tion (ALRS), Architecture-Led Assurance practices, Architecture-Centric Virtual Integration 
Practice (ACVIP), and Architecture-Led Safety Analysis (ALSA) [Feiler 2015]. The ALRS draws 
on the requirements engineering management (REM) handbook [FAA 2009]. The ACVIP con-
sists of these steps: define the operational context, develop the requirement specification, and de-
velop and finalize the architecture specification.  

 

Figure 1: Double V Model of Development and Assurance 

The architecture-led processes use the architecture as a central source of information, including 
extracting patterns, given the premise that systems within a given domain often follow very simi-
lar architecture patterns. For example, most real-time control systems are based on the feedback 
control loop architectural style. The awareness and use of established patterns allows, even very 
early in requirements analysis, specific requirements to be associated with specific architecture 
features. This pattern knowledge supports mini-iterations between requirements and architecture 
activities (e.g., knowing that there is a need for sensing allows the definition of more detailed re-
quirements for sensing subsystems and the preliminary definition of architectural features to meet 
those requirements). A similar relationship exists between the architecture definition and imple-
mentation activities, in that code reuse is prefaced with architecture pattern reuse. Together these 
mini-iterations enable a rapid traverse from safety requirements through the architecture to imple-
mentation. 

Architecture-Led Safety Analysis (ALSA) processes span the entire spectrum of development and 
assurance activities. They begin with the identification of operational safety risks (hazards) as part 
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of defining the operational context for a system as a whole and continue as a top-down assessment 
that is conducted throughout subsystems, usually in layers of dependencies, that are aggregated 
into a system hierarchy. 

ALSA is performed considering a set of stakeholder and system requirement specifications as 
well as working within a socio-technical framework for hazard analysis. The socio-technical 
framework represents a new model of accident causation and is the basis for a new type of hazard 
analysis. Figure 2 illustrates a general model of socio-technical control, originally developed by 
Rasmussen and adapted by Nancy Leveson of MIT for the Systems-Theoretic Accident Model 
and Processes (STAMP) method of accident causality analysis [Rasmussen 2000, Leveson 2012]. 
The ALSA focuses on the operating processes within the System Theoretic Framework, as high-
lighted in Figure 2. 

The objective of the architecture-led safety analysis (ALSA) approach is to systematically identify 
hazards and hazard contributors in systems, in particular in embedded software systems. The im-
plementation of the ALSA process borrows from several methods as appropriate to the application 
system and the certifications required for that system.  

 

Figure 2: System Theoretic Framework for Accident Causality Analysis [Leveson 2012] 

These methods include the system safety analysis best practices (SAE ARP 4754A and ARP4761) 
as well as the System-Theoretical Process Analysis (STPA). The ARP 4754A and ARP4761 pro-
vide recommended practices within the aerospace industry for showing compliance with certifica-
tion regulations such as U.S. Federal Aviation Administration (FAA) airworthiness regulations for 
transport category aircraft and international airworthiness regulations [SAE 1996, 2010]. The 
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ARP 4754 and ARP4761 describe Functional Hazard Assessment (FHA), Failure Mode and Ef-
fect Analysis (FMEA), Fault Tree Analysis (FTA), and Common Cause Analysis (CCA) among 
others as tools to assess the safety of a system. The System-Theoretical Process Analysis (STPA) 
is a new approach to hazard analysis that is based upon the Systems-Theoretic Accident Model 
and Processes (STAMP) causality model [Leveson 2012, 2013, 2014]. 

The ARP 4754A and ARP4761 are established practices in the aircraft industry. While STPA 
shows promise [Leveson 2014, Procter 2014], it is in the research phases of development. STPA 
as well as the blended practices and processes described here are yet to be extensively evaluated 
by the aircraft safety industry. 

There are application- and discipline-specific perspectives on safety terminology. For our pur-
poses, we adopt a modification of the definition from Leveson that a hazard is a “system [or sub-
system] state or set of conditions that, together with a particular set of worst-case environmental 
conditions, will lead to an accident (loss)” [Leveson 2012]. Again from Leveson we define an ac-
cident as “an undesired or unplanned event that results in a loss, including loss of human life or 
human injury, property damage, environmental pollution, mission loss, etc.” [Leveson 2012]. We 
define a safety risk in the sense of a risk described by Gluch, where a risk is a value judgment 
(concern and likelihood) made upon the potential implications of current conditions that suggests 
a possible transition into an undesirable condition (consequence)” [Gluch 1994]. For a safety risk, 
current conditions are hazards and potential consequences are accidents. Appendix D presents ad-
ditional definitions for the safety related terms used in this report. 
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3 ALSA Practices 

Figure 3 highlights the ALSA safety and hazard analysis practices within the Architecture-Centric 
Virtual Integration Process. The ACVIP consists of these major steps:  

1. define the operational context 

2. develop the requirement specification 

3. develop the architecture specification 

4. finalize the architecture specification  

As shown in Figure 3, the ACVIP explicitly recognizes that the architecture development of a sys-
tem begins (at least implicitly) at the outset of a development effort, beginning concurrently with 
defining the operational context and continuing through to the development of a final architecture 
specification. Implicit assumptions and often explicit architecture decisions are made while defin-
ing such artifacts as mission drivers, stakeholder goals, and system requirements. Consequently, 
we have shown architecture design specification as concurrent with requirements development 
with an iterative interaction between them (i.e., requirements insight benefits architecture devel-
opment and architecture development provides additional perspective and insight for requirement 
definition). This interaction is indicated by the dotted line in Figure 3. As the system development 
matures, hazards, their contributors, and additional safety requirements are defined in concert with 
the development of the architecture specification.  

• Specification of functional and physical system architecture

• Decomposition of requirements

• Develop Safety Architecture Design

Develop Architecture Specification

Finalize 
Architecture 
Specification

Define Operational
Context

• System overview

• Critical mission drivers

• Concept of Operation

• Stakeholder goals for 
system

• Identify Operational  
Safety Risks

Develop Requirement Specification

• Model-based specification of concepts

• Role and boundary of system 

• System requirement specification and 
coverage

• Identify Operational Hazards 

& Hazard Contributors 

• Identify Safety Requirements

• Virtual Integration and 
Architecture Analysis

 

Figure 3: ACVIP ALRS/ALSA Process Steps ALSA Process Overview 

The ALSA process (as well as the ACVIP) is iterative and tightly coupled in that it is necessary to 
go back and make changes or additions to previous steps. As shown in Figure 4, the Creation of 
Safety Requirements and Developing Safety Architecture Design are shown concurrently with the 
identification steps. While in the earlier phases of development few safety requirements may be 
identified or design decisions made, as the hazard and contributor identification process contin-
ues, requirements are created to mitigate the hazards. This also presents the opportunity to capture 
safety architecture designs and design alternatives to address the hazards, especially as the archi-
tecture design matures. An advantage of considering the safety requirements and safety architec-
ture design alternatives early is that these can help to support (and, in safety-critical systems, to 
guide) the overall system architecture requirements generation and design effort. Overall, these 
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are incremental and iterative efforts throughout, requiring coordination among safety and general 
system development.  

The ALSA process is conducted throughout the system hierarchy. It begins with the identification 
of operational safety risks (hazards) as part of defining the operational context for a system. It 
continues through lower subsystems down to the component level of the architecture. This pro-
cess is shown in Figure 4. There is interplay and feedback among the identification processes 
within various layers. The hazards, contributors, or requirements at a higher level are detailed in 
lower levels and hazards, contributors, or requirements identified at one level may prompt the re-
organization of a hazard, contributor, or requirement at a higher level. This can also occur such 
that the execution of the process at a lower level may prompt the identification of a safety risk at 
the top-level operational context.   

The hazards and contributors at lower levels are manifested as safety hazards arising from interac-
tions among components at the system level. For example, hazards at an aircraft engine level, 
such as loss of thrust, contribute to hazards at the higher aircraft level. Similarly, hazards associ-
ated with engine components such as the fuel valve and fuel valve actuator contribute to the en-
gine-level hazard of loss of thrust. The hazard and hazard contributor identification processes (as 
well as any associated identification of safety requirements) are conducted iteratively through the 
architecture realization of the system hierarchy—detailing, identifying and correlating hazards 
and hazard contributors. These processes provide information for developing safety requirements, 
architecture design and architecture finalization. 

With this perspective, hazards can be identified at lower levels of a system. These can be consid-
ered as refinements of system-level hazards, may represent distinct hazardous conditions on their 
own, and may be useful in understanding system-level hazards.  

Note that it can be counterproductive to the effectiveness of the process to expend effort differen-
tiating between what is a hazard (e.g., a refinement of a higher level hazard or new lower level 
hazard) and what is a hazard contributor as one descends the system hierarchy. We do not offer a 
definitive differentiation, only that at some point there will be conditions that on their own are not 
clearly hazardous but contribute to hazardous conditions at a higher level of the system architec-
ture (e.g., a leaky fuel valve or a fuel fill cap not closed may be considered a hazard in that it can 
result in a fire or an explosion, whereas a stuck at zero temperature sensor may not be considered 
a priori hazardous except in the context of its functioning within a system).What is critical is the 
identification and analysis of the factors contributing to system-level catastrophic hazards, what-
ever term is used for them. 

In Figure 4, the identify operational safety risks step is shaded in the intermediate and lower lev-
els, indicating that the process is not explicitly conducted at those levels, since safety considera-
tions relate to the complete system. However, implicitly risks may be identified that contribute to 
system hazards at higher levels.  
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Figure 4: Iterations through the System Hierarchy.  

The artifacts created as part of the process are shown in Figure 5. Hazards and their contributing 
factors (contributors) at multiple levels of the system hierarchy are identified. These are used as 
the basis for defining safety requirements for the system.  These requirements are used to guide 
the overall system architecture design and may result in safety-specific architectural elements that 
are incorporated into the system architecture.  

While there are distinguishable identification steps within the process, as noted earlier, each of 
these identification steps can involve the development of safety requirements as well, as shown in 
Figure 5. For example, in identifying safety risks, it can be effective to define appropriate safety 
requirements to mitigate the identified risks. Similarly, as hazards and their contributors are iden-
tified, requirements can be defined to address them. If desired (e.g., when different personnel or 
expertise are needed), requirements generation can be deferred until after the identification of haz-
ard contributors. However, we encourage the creation of at least a few key safety requirements 
during hazard identification processes. These requirements can be reviewed and, as appropriate, 
integrated into later requirement generation activities.  

The hazard identification steps are distinguished by increasingly detailing hazards by the identifi-
cation and analysis of their contributing architectural factors. This is done throughout the architec-
ture levels of the system. As noted earlier, this incremental and iterative process has the flexibility 
to expand different subsystems to different levels.  For example, it can be advantageous to first 
pursue the hazard contributors of the flight and engine control systems and later to assess hazards 
on other aspects of aircraft. Similarly, the identification of a hazard contributor may result in re-
consideration of the system architecture design as well as a reconsideration of hazards at higher 
architecture levels. 
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The identification of hazards and hazard contributors is integral to the development of the archi-
tecture design.  As design decisions are made new hazards can be identified.  

system-level

hazards

safety 
requirements

system architecture
safety architecture 

elements

more detailed architectural levels

hazard
contributors

Finalize Safety 
Architecture 

Design

Develop Safety Architecture Design
Create Safety Requirements

Identify 
Operational  
Safety Risks

Identify 
Operational 

Hazards

Identify
Hazard 

Contributors
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Design
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Operational  
Safety Risks
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Operational 

Hazards

Identify
Hazard 
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derived from

results from

control flow

system architecture
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elements

system architecture
safety architecture 

elements

 

Figure 5 Process Artifacts 

3.1 Example System 

Within this report, a representative Full-Authority Digital Engine Controller (FADEC) system is 
used to demonstrate the application of the ALSA safety process. The focus in the example is the 
fuel flow control aspects of the system as shown in Figure 6 and taken from a report by Garg 
[Garg 2012]. The design presented here is illustrative, does not represent any specific or opera-
tional FADEC system, and is not intended for implementation.  
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* Power Lever Angle (PLA)

*

 

Figure 6: FADEC Fuel Flow Control Example [Garg 2012] 

We consider the focus of the problem (i.e., the system) to be the aircraft engine. Nominally, a 
safety analysis is conducted for the complete aircraft. This example is illustrative of the ALSA ap-
proach and is not intended to represent a comprehensive safety assessment. In practice, these tech-
niques are utilized by experts in the technical and safety aspects of the system being analyzed. 

In applying the ALSA process, we assume that you are familiar with the AADL and the AADL 
Error Model Annex and their application [SAE 2012a, Feiler 2012, SAE 2006, Delange 2014]. 
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4 Identify Operational Safety Risks 

This initial step identifies operational system-level accidents (losses), incidents, and contributory 
system-level hazards. It also establishes the system operational context. This step requires signifi-
cant stakeholder engagement, especially safety engineering, operational, and mission expertise.  

The specific procedures, techniques, and outputs of this step may take various forms depending 
on the preference and norms of an organization and or requisite certifications for a system. For ex-
ample, the ARP 4754A and ARP4761 provide guidance for this initial step employing techniques 
such as the FHA. Overall, the ARP 4754A and ARP4761 provide recommended practices within 
the aerospace industry for showing compliance with certification regulations, such as U.S. Federal 
Aviation Administration (FAA) airworthiness regulations for transport category aircraft and inter-
national airworthiness regulations [SAE 1996, 2010].  

In other domains, the certification agencies can provide guidance in this step (e.g., medical de-
vices: ASTM’s F2761 standard [ASTM 2013]). Similarly, the techniques from a new approach to 
hazard analysis, the System-Theoretical Process Analysis (STPA), can be used in this step. The 
STPA is based upon the Systems-Theoretic Accident Model and Processes (STAMP) causality 
model [Leveson 2012, 2013, 2014].   

The outcomes of this step are safety-specific risk findings (e.g., accidents, incidents, safety con-
cerns, and top-level system hazards) associated with the operation of the system in its environ-
ment.   

In the early sessions with stakeholders (e.g., developing mission drivers, concept of operation, and 
stakeholder goals), requirements and architecture options are discussed. These can come from 
business, technical, or pragmatic considerations (e.g., certification requirements). Our point is that 
early on in the development effort an architecture perspective can be important in identifying 
safety risks and hazards as well as facilitating requirements and design decisions. This initial rep-
resentation can be extended and detailed as requirements are developed and analyzed, and become 
the basis, using virtual integration practices, for conducting requirements analyses and design 
tradeoffs [Feiler 2009d]. 

Various techniques can be used for identifying system-level hazards in the ALSA process. For 
this example, we demonstrate the activities and results of two approaches.  

1. Section 4.1 shows an aircraft-level FHA [SAE 1996, 2010] 
2. Section 4.2 shows the system-level analysis beginning with accident identification, as de-

scribed in STPA [Leveson 2012]. The technique used is often based upon requirements 
for certification in a specific industry (e.g., aerospace applications).  

What is critical is to employ a comprehensive, systematic approach and include a broad represen-
tation of system stakeholders. 
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4.1 Top-Level Hazards (Functional Hazard Assessment) 

Within ARP 4761 practices, Functional Hazard Assessments (FHAs) are conducted for the com-
plete aircraft and system levels. The FHA is used to identify and classify the failure condition(s) 
associated with the aircraft functions and combinations of those functions. The failure condition 
classifications establish the safety objectives (i.e., the requisite failure probability levels). For this 
example, we focus on the hazard descriptions arising out of an FHA. 

The initial step of an aircraft FHA is to identify the aircraft functions. An example aircraft func-
tion tree from the ARP 4761 is shown in Figure 7. 

 

Figure 7: Aircraft Function Tree—First Level [SAE 1996] 

An output table for an FHA [SAE 1996] is shown in Table 1. For our purposes we consider only 
the hazards and descriptions for the control thrust function while the aircraft is in motion and do 
not specify other entries in the table.   

Table 1: An Output Table for an FHA (partial) 

Function 
Failure Condition 

(hazard description) 
Phase 

Effect of 
Failure 

Condition 
on Air-

craft/Crew 

Classifica-
tion 

Reference to 
supporting 

material 
Verification 

Control 
Thrust 

Engine provides no 
thrust 
 
Engine provides too 
little thrust 
 
Engine provides too 
much thrust 
 
Engine is slow to pro-
vide commanded 
thrust   (increase or de-
crease)  
 
Engine will not shut-
down when com-
manded 
 

Taxi, 

Takeoff, 

Landing, 

and 

Flight 
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Function 
Failure Condition 

(hazard description) 
Phase 

Effect of 
Failure 

Condition 
on Air-

craft/Crew 

Classifica-
tion 

Reference to 
supporting 

material 
Verification 

Engine cannot be con-
trolled—Loss of En-
gine Thrust Control 
(LOTC) 
 

 

4.2 Top-Level Accident and System-Level Hazards (STPA) 

In this section, we employ the foundational steps of the STPA [Leveson 2012, 2013], to identify 
system-level (engine) hazards. As before, we assume the operational conditions are that the en-
gine has started and the aircraft is in motion. We draw on STPA artifacts for documenting the re-
sults [Leveson 2013]. Table 2 lists some of the system-level hazards for an aircraft engine as con-
tributors to aircraft accidents. These align with the FHA control thrust hazards shown in Table 1. 
If an assessment of the FADEC is part of a larger safety assessment (e.g., an assessment of the air-
craft) engine hazards may already have been defined. 

Table 2: Accident and System-Level Hazards 

Accident System-Level (operational) Hazards 
A-1: Loss of life or serious 
injury due to aircraft engine  
 

A-2: Catastrophic damage to 
aircraft or other property due 
to aircraft engine 

  H0: Ineffective thrust to maintain controlled flight or safe taxi 
  H1: Engine provides no thrust 
  H2: Engine provides too little thrust 
  H3: Engine provides too much thrust 
  H4: Engine is slow to provide thrust (increase or decrease) 
  H5: Engine will not shutdown when commanded 
  H6: Complete Loss of Engine Thrust Control (LOTC) 

The operational system-level hazards in Table 2 establish the top-level hazards for the engine. 
These are detailed in subsequent steps. At this point, top-level safety requirements (termed safety 
constraints [Leveson 2012], i.e., requirements that prevent hazards or accidents) are identified. 
The top-level safety requirements for the engine hazards are shown in Table 3. In our example, 
safety requirements are defined in concert with hazard identification because it can be more effec-
tive to define the requirements when an experienced engineer (or engineers) with the requisite ex-
pertise is focused on the specific details of a hazard and immersed in the overall safety context, 
rather than another engineer defining requirements later. 

Safety requirements are integrated into a comprehensive set of system requirements for the sys-
tem. Safety requirements help guide the architecture and detailed design process. This integration 
with the overall system design is part of the Develop Safety Requirements step of the ALSA pro-
cess, which is conducted concurrently with the identification processes.  
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Table 3: Hazard-Safety Requirements Table (System-Level) 

Hazards Safety Requirements  
H1: Engine provides no thrust SC1: Thrust must be provided at all times when 

commanded  
H2: Engine provides too little thrust 
H3: Engine provides too much thrust 

SC2: Thrust level must be provided at the com-
manded level 

H4: Engine is slow to provide commanded 
thrust  

SC3: Engine must provide commanded thrust in 
xxx seconds  

H5: Engine will not shutdown when com-
manded 

(The relevant safety constraints arising out of this 
include SC2 and SC4.2) 

H6: Engine cannot be controlled - Loss of  
Engine Thrust Control (LOTC) 

SC4: Engine must respond to all commands 
SC4.1: Engine must start when commanded 
SC4.2: Engine must shutdown when commanded 

4.3 Architecture Models 

It is often the case that during the hazard identification activities of ALSA, requirements are im-
plicitly assumed or identified, and often implicit architecture assumptions or alternatives are iden-
tified or architecture decisions are made. For example, a requirement may be developed that a 
combat aircraft will include an ejection set for the pilot. It is at this point that a top-level system 
operational architecture model can begin to be developed and would include an ejection system 
(possibly with alternative design concepts identified).  

For our FADEC example, a possible top-level description for the aircraft system is shown in Fig-
ure 8. In the terms of STPA, this is a system-level control structure for the engine system. Control 
structures provide a partitioned safety perspective on the architecture. This perspective posits that 
a lack of safety is due to the inadequate enforcement of safety constraints on the system (i.e., 
safety is a control problem, not a failure problem) [Leveson 2012]. Control structures can be iden-
tified throughout the hierarchy, each defining a distinct perspective to assess hazards and hazard 
contributors. This enables a top-down analysis throughout the levels of the architecture hierarchy. 

Within ALSA, beginning at the system-level and continuing throughout the architecture hierar-
chy, distinct perspectives consisting of representations of components as interacting error state 
machine models are assessed to identify hazards and their contributors. One type of perspective is 
a control perspective of the STPA. This perspective is key to the system theoretical view of 
STPA, where control actions are assessed to establish unsafe control actions. 

Other perspectives include architecture styles that can be addressed in the ALSA approach, such 
as data flow, call-return, and repository [Clements 2011]. These define patterns that can be identi-
fied within an architecture and used to stratify the architecture hierarchy and guide hazard analy-
sis. Certain patterns are more prevalent in one application than in another (e.g., aircraft systems 
have significant numbers of control patterns; satellite systems will have some control as well as 
data flow and repository patterns).  

In the ALSA approach, critical function data flow paths (critical function paths) are assessed. Spe-
cifically, you assess the terminal interaction (last inter-component segment) of the flow against 
the error ontology, using a tabular format similar to that used to identify unsafe control actions in 
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STPA. This approach represents a generalization of the control perspective of STPA in that, in the 
case of a control signal flow, you first assess the final control command to the actuator. However, 
in other application architecture patterns (e.g., transaction processing), you consider the final in-
teraction of the critical control path. For example, consider a transaction processing that delivers 
an airline ticket to a customer.  You then use the complete critical function path to analyze (simi-
lar to step 2 in STPA and the analysis in CASE [Procter 2016]) the causes of an errant delivery 
interaction. 
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5 Identify Operational Hazards and Hazard Contributors 

In the closely coupled steps of “identify operational hazards” and “identify contributors,” you in-
crementally extend the hazard analysis into lower levels of the system architectural hierarchy. If 
you have identified top-level hazards as part of identifying operational safety risks (e.g., as in Sec-
tions 4.1 and 4.2), this step begins the identification of subsystem hazards or the refinement of the 
system-level hazards. If system-level hazards have not been defined, this step begins by identify-
ing the system-level hazards. In extending the analysis to lower levels, it is necessary that addi-
tional details or working assumptions about the architecture are available and possibly alternative 
architecture designs for consideration have been defined. 

Within the ACVIP, the architecture development is conducted concurrently and iteratively with 
hazard identification. Often, this is incremental as well, especially for large systems where a criti-
cal subsystem is engineered earlier in the overall development. As is the case with the identifica-
tion of safety risks, where top-level safety requirements can be identified, in this step additional 
safety requirements can be defined. It can be easier to clearly state a safety requirement while 
identifying and describing the hazard. In a safety-critical system, these steps are integral to and 
guide the requirement and design phases. 

Hazards analysis techniques (e.g., from ARP 4761, such as fault tree analysis, event tree analysis, 
and HAZOP) as well as the STPA can be used in these steps. 

Conducting this step involves three elements: 

1. Systematically identifying exceptional conditions and their propagation to other systems 
components that represent hazards.  You do this by considering the interfaces and interac-
tions between components and the error types that can be propagated through them. 

2. Systematically addressing how systems respond to incoming propagations (external influ-
ences). You do this by detailing incoming and outgoing component errors and specifying 
whether errors impact a component, whether they are passed through (perhaps transformed), 
and the paths that pass through the component interfaces and interactions.  

3. Systematically defining the error response of systems and components using error state models. 

In addition to external influences, two principal considerations in hazard analysis are exceptional 
conditions within architecture elements (characterized using the ALSA error ontology) and mis-
matched assumptions (mismatched assumption-guarantee contracts between systems) about their 
interactions. Exceptional conditions and mismatched assumptions can lead to hazardous (unde-
sired) states of a system.  

5.1 System Partitioning 

In the initial activities of this step, you clearly define and represent the boundaries of the system 
and its subsystems in an architecture model, identifying the types of errors that can propagate 
among them. Principal considerations in this step are the boundary between the system and its en-
vironment (i.e., external influences that can affect the system) and the interactions between archi-
tectural elements. This partitioning enables the identification of internal and external influences 
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for each element. You then use the system architecture (or architecture alternatives) to further de-
fine a subsystem hierarchically, explicitly including the interfaces between elements. 

For the FADEC example, we choose to partition the relevant system into cockpit (including the 
pilot), a separate autopilot, and the remainder of the physical aircraft. External elements in the en-
vironment may impact the system via sensors or other input (e.g., light entering the aircraft can 
cause electrical system disruption or damage within the aircraft).  

The system-level diagram shown in Figure 8 reflects an architecture where the pilot and autopilot 
commands to the aircraft’s FADEC are separate and parallel. Speed feedback (this is the turbine 
fan_speed shown in Figure 9) is provided to both the Pilot_Cockpit system and autopilot. Alterna-
tive architectures can be envisioned, for example, a serial architecture where the pilot inputs a 
command directly into the autopilot. In the alternative architecture, there may be a pilot controlled 
mode, where the pilot command is passed through to the FADEC.  

 

Figure 8: Top-Level System Partitioning 

The engine system within the aircraft system implementation is shown in Figure 9. For clarity, 
other internal aircraft components are not included. The FADEC within the engine system can be 
commanded by either a pilot or autopilot input and the FADEC does a signal selection based upon 
the operational mode. The engine receives a command from the FADEC and provides engine tur-
bine fan speed back to the FADEC.   
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Figure 9: Major Engine System Components 

5.2 Operational Context as a Control System 

A common way of viewing a system in its operational context is as a control system that involves 
interactions via Monitored and Controlled Variables. This approach—documented in the FAA 
Requirement Engineering Management Handbook [FAA 2009]—has its roots in a report by Par-
nas and Madey [Parnas 1991]. These variables can be used to represent states that characterize 
nominal and unsafe system conditions and interactions. To operationalize this view we introduce 
sensors and actuators to represent the monitored and controlled variables. This is illustrated in 
Figure 10 where there are systems under our control and others that, while they may affect the 
system, can only be observed (e.g., other aircraft, weather, and the terrain).  
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Figure 10: Monitored and Controlled Variables 

This control perspective is similar to the STPA approach and is appropriate for application sys-
tems that are predominantly control. The ALSA approach does not require a control loop. It is a 
layered hierarchical approach that focuses on analyzing interfaces between architecture elements 
within and between layers, beginning with the top level architectural abstraction and progressing 
through the hierarchy. These interfaces encompass data and control flow connections, inter-com-
ponent dependencies (including software-hardware and hardware-hardware) dependencies, and 
outside influences. Distinct interaction perspectives are based upon identifying architecture pat-
terns within the hierarchy. For example, one interaction pattern is closed loop control, as is the 
case for our example. As noted earlier, others such as data flow or repository patterns can also be 
identified and analyzed. 

5.3 Interface Error Analysis 

Within ALSA, hazard and hazard contributor analysis is conducted by assessing interfaces, em-
ploying the error ontology as a guide to identifying potential interface errors, and characterizing 
the components involved with EMV2 models of the errors (types) propagated into and out of the 
components, based upon their interfacing errors. The assessment of these error types, their propa-
gations, and their impact on the states of the architecture are used to identify hazard contributors, 
detail aspects of previously identified hazards, and define new hazards. These analyses are done 
throughout all of the levels of the architecture through to the core executable components of the 
system, as shown in Figure 11.  

For non-control system applications, the critical function path (CFP) is used, where the analysis 
begins at the terminal interaction of the path. The CFP is based upon the dominant architecture 
pattern and system application. For example, in a client-server implementation of a transaction 
processing system, at the highest architecture level the terminal interaction might be the delivery 
of the service to client. At lower levels of the architecture (e.g., detailing the client architecture), 
the internal path of the client’s processing of data (services) provided by the terminal interaction 
is assessed. This begins at the terminal interaction of the detailed path within the server. This ap-
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proach is similar to the component-based assessment of SAFE [Procter 2016]. The analysis con-
tinues through the hierarchy and backwards through the critical function path as needed to assure 
the desired coverage. 

For our example, support in conducting these analyses is provided by the OSATE tool and the 
AADL and AADL error model annex (EMV2) languages. In Figure 11, we identify AADL error 
libraries and the AADL architecture model. Both of these are used to capture the results of the 
ALSA process. 

AADL
Error LibraryAADL

Error LibraryAADL
Error Library

System Level

Subsystems First Level
Subsystems First Level

Subsystems First Level

Core Component Level
Core Component Level

Core Component Level

Subsystems Second Level
Subsystems Second Level

Subsystems Second Level

Create/Update 
Libraries

Assess 
Interfaces

Characterize 
Components Update AADL 

Model
AADL Architecture

Model including
Error Models

 

Figure 11: Interface Error Analysis and Modeling 

The interaction analyses and component error models are developed at each hierarchical level as 
the architecture is detailed. For our example, we start with the top level as shown in Figure 8 and 
continue through each subcomponent (components within a layer), analyzing each subsystem 
through to the core executable components of the system. The analysis of component interactions 
and component error models are completed through the architecture hierarchy, in concert with the 
evolution of the architecture design. 

5.4 Top-Level Interaction Error Models 

As shown in Figure 8, the Pilot_Cockpit system provides control commands to the Autopilot and 
the Aircraft. We consider the port connections between the elements and choose the error types: 
no data is sent (service omission), bad data is sent, and data is sent late.  The assumption is that 
the data is a single content record sent on some schedule. As the details of the communication be-
tween the components are better defined, the amount of acceptable delay can be defined and the 
model adjusted to accommodate these details. This information is summarized in Table 4.  

The columns are labeled with the relevant error categories from the error ontology. The number of 
columns in an errors-hazard table will vary, depending upon the number of error types that are 
identified in the details associated with each hierarchical level. For example, the replication errors 
category is included since there is the possibility of asymmetric errors in the speed feedback to the 
pilot_cockpit and to the autopilot; whereas concurrency and access errors are not included. 
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Table 4: Top-Level Interface Errors and Hazards 

Component interface Service Errors Value Errors Timing Errors Replication Errors 

Pilot_Cockpit 

to 

AutoPilot 

No command to 
autopilot (may 
not be a hazard 
– need details 
on assumptions 
of the autopilot 
system) 

Bad Value input into 
Autopilot 

Late Delivery 

(since this is speci-
fied as a message, 
potential timing er-
rors require addi-
tional analysis) 

 

Pilot_Cockpit to Aircraft No command to 
aircraft  

Bad Value input into 
Aircraft 

Late Delivery 
 

Autopilot to Aircraft No command Bad Value Late Delivery 
 

Aircraft to Pilot_Cockpit No Data Bad Value Late Delivery Potential for asym-
metric missing, 
value, or timing Aircraft to Autopilot No Data Bad Value Late Delivery 

We use this table as a presentation format for error information, but in using the AADL and 
EMV2, we annotate the AADL specification with error and hazard information. The AADL speci-
fication is the authoritative engineering representation for the architecture, and reports in the form 
of Table 4 can be generated from that specification (e.g., Table 9). 

5.5 Component Error Definition and Propagations 

Within AADL, you address the errors associated with interfaces by defining the errors that may 
be propagated into or out of the components engaged through those interfaces. These errors can 
be based upon those that may contribute to (cause) the hazards that have been identified and/or 
may be based upon error (fault) models of the component. As shown in Figure 12, there are four 
categories of propagations: control/constraint inputs, functional inputs, resource dependencies, 
and functional outputs. For this approach, you define the error types associated with the compo-
nent and define the errors that are propagated out based upon the components role within the ar-
chitecture. In doing so, you use the error ontology guide tables shown in Table 14, Table 15, and 
Table 16. 

Incoming propagations
Input assumptions

Outgoing propagations
Output guarantees

Incoming propagations
Resource assumptions

Incoming propagations
Control assumptions

 

Figure 12: Error Behavior and State Interfaces and Interactions 
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Within the EMV2, you define the error types associated with a component by referencing the er-
ror libraries that define the relevant error types.  You may want to create a library, or you can add 
the error types to a library you have already defined. Within the component declaration, you iden-
tify the propagations for the component.  

The relevant portions of an AADL specification for the model of Figure 8 are shown in Table 5. 
Each of the components are annotated with EMV2 subclauses declaring the incoming and out-
going error propagations that are expected, based upon the error interaction assessment.  

Table 5: Error Propagations1 

system pilot_cockpit 
 extends Top_Level_Pkg::Pilot_Cockpit 
annex EMV2{** 
 use types FADEC_Error_Library; 
 error propagations 
 PLA_Cmd: out propagation {No_Data,Bad_Data,Late_Data}; 
 autopilot_control:  out propagation {No_Data,Bad_Data,Late_Data}; 
 speed_feedback: in propagation {No_Data,Bad_Data,Late_Data,Asymmet-
ricSpeedFeedback}; 
 end propagations; 
  
**}; 
end pilot_cockpit; 
 
system autopilot 
extends Top_Level_Pkg::Autopilot 
annex EMV2 {** 
  use types FADEC_Error_library; 
error propagations 
PLA_autoCmd: out propagation {No_Data,Bad_Data,Late_Data}; 
Speed_feedback: in propagation {No_Data,Bad_Data,Late_Data, Asymmet-
ricSpeedFeedback}; 
autopilot_control: in propagation {No_Data,Bad_Data,Late_Data}; 
end propagations; 
 
**}; 
end autopilot; 
 
system aircraft extends Top_Level_Pkg::Aircraft 
 annex EMV2 {** 
  use types FADEC_Error_library; 
error propagations 
autopilot_PLA_Cmd: in propagation {No_Data,Bad_Data,Late_Data}; 
Speed_feedback: out propagation {No_Data,Bad_Data,Late_Data,Asymmet-
ricSpeedFeedback}; 
pilot_PLA_Cmd: in propagation {No_Data,Bad_Data,Late_Data}; 
end propagations; 
 
**}; 

end aircraft; 

 

1 Since the EMV2 and associated tools (e.g., OSATE) are being revised and extended, some of the AADL-EMV2 
models may need modification to comply with syntax or other changes in future versions of the tools. 
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The FADEC_Error_Library contains the error declarations for our example. An excerpt from the 
library is shown in Table 6. The declarations in this library reference error types in the EMV2 Er-
rorLibrary within OSATE. 

Table 6: FADEC Error Library (excerpt) 

package FADEC_Error_Library 
public 
 
with ErrorLibrary; 
 
 annex EMV2{** 
 
error types extends ErrorLibrary with 
 
No_Flow_Cmd: type extends ServiceOmission; 
No_Data: type extends ItemOmission; 
Bad_Flow_Cmd: type extends BadValue; 
Bad_Data: type extends BadValue; 
Default_Data: type ; 
Late_data: type; 
 
-- type sets 
AsymmetricSpeedFeedback: type set {AsymmetricValue,AsymmetricOmission, 
AsymmetricTiming}; 
 
end types; 

5.6 Error Models and Hazards 

At this point we can begin to relate identified hazards to the AADL architecture model. In this 
step, we develop an error state machine model for the top-level system. In using the AADL, you 
define error state machines within error model libraries and associate them with architecture ele-
ments. Since we are focused on the engine system in our example, we start by defining an error 
state machine for the engine system. It can be advantageous to associate the error states of the en-
gine system with the identified hazards (i.e., those of Table 2). The AADL error states are shown 
in Table 7 for the error state machine model of the engine system. 

Table 7: Error States of the Engine System 

error behavior Engine_System_esm
use types ErrorLibrary, FADEC_Error_Library; 
events 
failure_event: error event; 
repair_event: repair event; 
states 
nominal: initial state; 
ineffective_thrust: state; 
no_thrust: state; 
too_little: state; 
too_much: state; 
cmd_response_errors: state; 
LOTC: state; 
end behavior; 

Within an AADL representation, we connect the hazards to the model using a hazards property. 
Within OSATE there are three pre-declared hazard properties, one within each property set: 
EMV2, ARP4761, and MILSTD882. We use the EMV2 Hazards property, using only a few of the 
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properties’ attributes, as shown in Table 8. The cross reference attribute is used to provide an ex-
plicit connection to the hazard H0 identified in Table 2, as well as a short description and severity 
level value (level 1 signifies very critical).  There are other attributes that can be included in the 
Hazards property [SAE 2012b].  

Table 8: Hazards Property 

 EMV2::hazards => 
 ( 
  [ 
   CrossReference => "Hazard H0"; 
  Description => "Ineffective thrust to maintain controlled flight 
or safe taxi"; 
  Severity => 1; 
     ]  
 ) applies to Engine_System.ineffective_thrust; 

As noted previously, the most effective approach is to maintain all information within an AADL 
model and to generate the hazard tables, and so on, from the model. Table 9 shows an example 
table generated from the AADL error model. It shows that the engine system is a subcomponent 
of the aircraft and links the hazards to the engine system component. 

Table 9: Hazard Table Generated from AADL Model 

Component  Hazard Description  Crossreference  Severity
aircraft/Engine_System  "Ineffective thrust to maintain controlled flight or safe taxi"  "Hazard H0" 1
aircraft/Engine_System  "No thrust is provided when required."  "Hazard H1" 1
aircraft/Engine_System  "Too little thrust is provided when required."  "Hazard H2" 1
aircraft/Engine_System  "Too much thrust is provided when required."  "Hazard H3" 1
aircraft/Engine_System  "Engine is slow to provide thrust (increase or decrease)."  "Hazard H4" 1
aircraft/Engine_System  "Engine will not shutdown when commanded."  "Hazard H5" 1
aircraft/Engine_System  "Complete Loss of  Engine Thrust Control (LOTC)."  "Hazard H6" 1  

5.7 Engine System Error Models 

Next, we delve into more of the details of the engine system implementation. For the purposes of 
our example, we defer annotating the interfaces associated with the aircraft implementation, since 
the three external data interfaces for the engine system and aircraft are the same. (See Figure 9.) 
Later, for additional analyses (e.g., error flow path analysis), error propagations can be added and 
the dependency of the engine system on the external data bus can be addressed. 

Figure 13 expands on Figure 9 by including the buses that support the communication between 
the FADEC system and engine. In developing the Error-Hazard table for the interfaces, we in-
clude the fact that the communication paths are bound to the hardware buses. For example, the 
command to the engine from the FADEC and the fan speed back to the FADEC are carried by the 
engine system data bus (ES_data_bus). This dependency between components requires considera-
tion in analyzing hazards.  



 

CMU/SEI-2016-TR-012 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY  24 

Distribution Statement A: Approved for Public Release; Distribution is Unlimited 

 

Figure 13: Engine System Implementation 

First, we annotate the FADEC and engine specifications with error propagations, as shown in Ta-
ble 10. 

Table 10: FADEC and Engine Type Specifications with Error Propagations 

system FADEC extends Top_Level_Pkg::FADEC 
 
annex EMV2 {** 
  use types FADEC_Error_library; 
error propagations 
autopilot_PLA_Cmd: in propagation {No_Data,Bad_Data,Late_Data}; 
fan_speed: in propagation {No_Data,Bad_Data,Late_Data,AsymmetricSpeedFeed-
back}; 
pilot_PLA_Cmd: in propagation {No_Data,Bad_Data,Late_Data}; 
cmd_to_engine: out propagation {No_Data,Bad_Data,Late_Data}; 
end propagations;  
**};  
end FADEC; 
 
device engine extends Top_Level_Pkg::engine 
 annex EMV2 {** 
  use types FADEC_Error_library; 
error propagations 
engine_cmd: in propagation {No_Data,Bad_Data,Late_Data}; 
fan_speed: out propagation {No_Data,Bad_Data,Late_Data,AsymmetricSpeed-
Feedback}; 
end propagations;  
**}; 

 end engine; 

Since the connections between the FADEC and engine are bound to the physical bus 
ES_data_bus, there is a possibility that the bus will fail in some way and adversely impact the 
connection. This is modeled in an EMV2 annex clause within the Engine_System implementation 
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specification, as shown in Table 11 in the communication error section. The transformation 
es_data_bus_etrans is defined in the FADEC_Error_Library. This declaration is shown in the 
lower portion of Table 11, where a total failure of the bus results in a No_Data error on the re-
ceiving port of the connection bound to the bus. You can define additional transformations (e.g., a 
partial bus failure may result in Late Data or Bad Data). The first portion of the subclause defines 
the error propagations for the Engine_System.  Note that in the type declaration for the 
ES_data_bus, the binding are declared as an out propagation for the failures of the bus, as shown 
in Table 13. 

Table 11: Engine System EMV2 Declarations 

annex EMV2 {** 
  use types FADEC_Error_library; 
 
error propagations 
autopilot_PLA_Cmd: in propagation {No_Data,Bad_Data,Late_Data}; 
Speed_feedback: out propagation {No_Data,Bad_Data,Late_Data,Asymmet-
ricSpeedFeedback}; 
pilot_PLA_Cmd: in propagation {No_Data,Bad_Data,Late_Data}; 
end propagations;  
 
connection error 
use transformations FADEC_Error_library::es_data_bus_etrans; 
cmd_to_engine_conn_error: error source  cmd_conn {No_Data} when "total bus 
failure occurs"; 
fan_conn_error: error source fan_conn {No_Data} when "total bus failure 
occurs"; 
end connection; 

**}; 
-- excerpt from the FADEC_Error_library  
type transformations es_data_bus_etrans 
use types FADEC_Error_Library; 
all  -[{busfailure}]-> {No_Data}; 
end transformations; 

A tabular summary for the engine system interface errors is shown in Table 12. These can be cap-
tured as hazards or hazard contributors. Note that one contributor revealed by this analysis the po-
tential for asymmetric contributors to hazardous states. As result, a safety requirement to handle 
asymmetric reporting of the fan speed can be identified. 

Table 12: Engine System Interface Errors 

Component interface Service Errors Value Errors Timing Errors Replication Errors 

FADEC to engine No Data 

(bus failure) 

Bad Value Late Delivery  

Engine to FADEC No Data 

(bus failure) 

Bad Value Late Delivery 
Potential for asym-

metric missing, 
value, or timing 

 
Engine to aircraft No Data 

(bus failure) 

Bad Value Late Delivery 
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5.8 FADEC Software 

At this point, we look at a detailed design of the FADEC. Since “FADEC systems are usually im-
plemented as dual redundant channels with identical FADEC computers and dual redundant sen-
sors and actuators,” [DEC 2016] we extend the architecture shown in Figure 14. In this, we create 
a dual redundant system architecture with inputs from both the pilot and autopilot, as shown in 
Figure 14. In this architecture, there is a signal selection of the input and conversion to PLA lev-
els, the PLA level is broadcast to each of the duel redundant fuel control channels, and the output 
is sent to a command manager component that provides error detection and signal selection. The 
redundancy management policy is such that one channel is primary. Internal error detection is 
done via self-checking within both channels and via checking of the output values of each channel 
by the command manager. Figure 14 is an Architecture Analysis and Design Language (AADL) 
graphical representation of the software design. The limits unit is modeled as a device. Each re-
dundant fuel control component and each self-checking component is modeled as a process. The 
signal selection and command manager are modeled as separate processes that are bound to a sep-
arate processor from the fuel control functions. The fuel controller and self-checking software for 
each channel are bound to a dedicated core processor and there is a dedicated data bus for each of 
the redundant channels. For clarity, only the bindings to the redundancy management processor 
are shown in the graphic. The limits unit and redundancy management processor require access to 
both redundant buses. 

 

Figure 14: Dual Redundant FADEC Fuel Flow Control Architecture 

In assessing the interfaces and interactions for the FADEC fuel flow control architecture, there are 
data interactions through ports, software to hardware bindings, and physical connections between 
processors and buses. We have discussed modeling the hazards and errors associated with port 
connections and software bindings. Table 13 shows an excerpt from an AADL error model ad-
dressing the physical connection hazards between the core processor and data bus for each chan-
nel of the dual redundant control architecture of Figure 14.  

The type declaration for the FADEC processor includes an error annex subclause that identifies 
the requires bus access feature Data_Bus as an in propagation point for a bus_short error type. 
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This is declaring that a bus short is expected to propagate into the processor (in propagation dec-
laration) and result in a processor failure on all out propagation points of the processor (the error 
path flows declaration). 

The type declaration for the data bus includes the access out propagation declaration of the error 
type bus_short, indicating that the out propagation is through the bus access connection to the 
processor. The bindings declaration indicates that the three error types associated with the bus are 
expected to be propagated out along any of the bindings to the bus: for example, via the connec-
tions between the processors and the command manager. The hazards include the occurrence and 
propagation of a bus short to other components. 

Table 13: Processor to Bus Access Error Declarations 

processor FADEC_Processor 
    features 
    Data_Bus: requires bus access Data_Bus.Basic; 
  
annex EMV2 {** 
  use types FADEC_Error_Library; 
  error propagations 
  Data_Bus: in propagation {bus_short}; 
  flows 
   bus_short_error: error path Data_Bus {bus_short} ->  
      all {processor_failure}; 
  end propagations; 
 **}; 
  end FADEC_Processor;  
 
bus Data_Bus 
   annex EMV2{** 
    use types FADEC_Error_Library; 
    use behavior FADEC_Error_Library::simple_two_state; 
    error propagations 
    bindings: out propagation {busfailure, partial_failure, 
bus_short}; 
    access: out propagation {bus_short}; 
 flows 
  bus_fail_short: error source access {bus_short}; 
  binding_impact_error: error source bindings {busfailure, par-
tial_failure,bus_short}; 
--       bus_fail_short: error source bus_connection_point {bus_short}; 
    end propagations; 
 
   propagation paths 
 bus_connection_point: propagation point; 
  end paths; 
   **}; 

  end Data_Bus; 

 

5.9 Fault Behaviors of Components 

We have focused on the identification of interactions hazards (i.e., where errors originate and their 
propagation among components).  
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You represent the states of the error state machine based upon internal error conditions and transi-
tions among them based upon internal and external influences. You generally define an error state 
machine model for each element in the architecture (identified generically as a system). In doing 
so, it is useful to consider the interaction perspective across well-defined boundaries for each sys-
tem, as shown in Figure 12. Hazards can result from internal exceptional conditions (AKA fault 
and errors) or from external influences. The external influences can be anticipated or unexpected. 
The anticipated external influences are identified in Figure 12 as incoming propagations and as 
constraints and controls imposed upon the system. Errors can propagate out of a system via output 
propagation (e.g., output via data ports), interactions with supporting resources (e.g., processor 
supporting software execution), or via interactions with controlling or constraining elements. In 
using the ALSA approach, you can model the state error behavior of the element and the antici-
pated influences. You can also model unanticipated influences (e.g., a cosmic ray entering the 
system and changing the state of a bit in a register or heat propagating into a component).   

While a comprehensive safety engineering effort would encompass all elements of the aircraft, for 
our purposes we are focused on the engine system consisting of the FADEC and the engine to il-
lustrate the use of ALSA.  

The lower portion of Figure 9 is a graphical representation of an AADL model of the engine sys-
tem. In developing the error state machines and overall error model, we use the AADL Error 
Model Annex (EMV2) and include the error model in the larger AADL system architecture 
model. 

First we define the error types that can occur and the error states for system elements. We use the 
AADL Error Model error type ontology as a guide (reference ALSA Error Ontology tables in the 
appendix). For this system, we focus on service, value, and timing errors. For example, we recog-
nize that the FADEC may fail completely providing no output (service) or may provide bad val-
ues and initially include these types and define a three state error model for the FADEC. We also 
show that a repair event can occur. The three state model AADL model and associated state dia-
gram are shown in Figure 15. The transitions are labeled with events.  

error behavior Basic_Three_State 
use types ErrorLibrary, FADEC_Error_Library; 
 
events  
Bad_Data: error event {Bad_Data} if "occurrences resulting in bad values 
being computed"; 
No_Data: error event {No_Data} if "occurrences resulting in no data com-
puted"; 
Repairs: error event if "repairs are made"; 
  
states 
nominal: initial state; -- component is operating normally 
B_Data: state ; -- component is computing and outputting bad values 
Failed: state ; -- component is not outputting data 
 
transitions 
Data_Bad: nominal -[Bad_Data]-> B_Data; 
Major_Fail: nominal -[No_Data]-> Failed; 
Fault2: B_Data -[No_Data]-> Failed; 
Recovery1: Failed -[Repairs]-> nominal; 
Recovery2: B_Data -[Repairs]-> nominal; 
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end behavior; 

nominal

Failed B_data

Bad_DataNo_Data

Repairs

 

Figure 15: Three State Error Machine 

This is an iterative, incremental, and flexible process. For example, we may find that a transient or 
a timing error may occur. In this case, we can define a new state machine adding additional states. 
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6 Identify Safety Requirements 

Operational safety hazards and errors sources and other contributors to those hazards are used to 
establish safety requirements—statements about the desired operation and capabilities of a system 
that address safety hazards. Leveson uses the term safety constraints to specify system behaviors 
that prevent accidents and hazards [Leveson 2014]. As we have shown, safety requirements can 
be identified throughout the ALSA process and arise out of hazards and hazard contributors. Con-
sider the example in Table 13, the identification of the hazard that bus short can occur and can 
propagate to the processor. This leads to a requirement to provide electrical isolation of the data 
bus from the processor to prevent damage to the processor.  In the event of a data bus short the 
processor can continue to function providing services through other channels (perhaps redundant 
channels) as shown in Figure 14. 

Note that the realization of the occurrence and impact of data bus electrical shorts would prompt 
design consideration across the entire architecture. This is often the case in these efforts. For ex-
ample, we see such realization when the identification of an asymmetrical transfer hazard, as with 
the fan speed feedback in Table 4, prompts investigations and identifications of other potential 
asymmetrical hazards (e.g., Table 12 and Figure 14 where sensor values are delivered to two pro-
cessors). These may generate a global requirement to avoid (e.g., through redesign) or mitigate 
asymmetrical transfer hazards across the architecture. Thus, there is an extensive interplay among 
hazard identification, requirement definitions, and architectural and detailed design. This interplay 
extends within and between architecture layers (i.e., for all of the process iterations shown in Fig-
ure 4).  
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7 Develop Safety Architecture Design 

This step establishes architectural elements that address safety requirements (safety constraints). It 
encompasses defining mitigations for hazards and detectable and reportable exceptional condi-
tions and the identification of isolation enforcement, mitigation, and recovery mechanisms. Espe-
cially for safety-critical systems, the safety requirements (constraints) identified in earlier steps in 
the process guide the engineering of the system. They significantly influence (often dictating) ar-
chitecture and detailed design tradeoff decisions and overall system assurance activities.  

In ALSA, the development of a safety architecture is synergistic with the hazard analysis process 
and the general architecture design efforts. Consequently, this aspect of the ALSA process encom-
passes detailing detectable and reportable exceptional conditions and identifying isolation en-
forcement, mitigation, and recovery mechanisms as appropriate. For example, the dual-redundant 
architecture of the FADEC system represents a mitigation of the safety hazards associated with 
the loss or malfunction of thrust control for the aircraft.  
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8 Summary 

Beginning with the identification of operational safety risks (hazards), the Architecture-Led 
Safety Analysis (ALSA) process spans the entire spectrum of development and assurance activi-
ties. The initial phases are part of defining the operational context for a system as a whole and 
consider the set of stakeholder and system requirement specifications. The process continues as a 
top-down assessment conducted throughout subsystems, usually in layers of dependencies that are 
aggregated into a system hierarchy.  

ALSA involves assessing the interaction paths between architecture components through increas-
ingly detailed levels of the architecture hierarchy, considering the potential EMV2 errors that may 
apply to the interconnections. The critical function path through a system identifies the interac-
tions that are assessed for hazards using the EMV2 ontology and beginning with the terminal in-
teraction of the path. The assessment is conducted throughout the system architecture hierarchy. 

Within ALSA, you consider system interaction scenarios where each component representation is 
based upon an assumed architecture model of the system and assumed operational paradigms (al-
gorithms) that are premised upon that model. Collectively these dictate the component’s operation 
(e.g., the algorithms and process model for the controller in STPA). For some components this 
may be quite simple (e.g., a sensor is premised on providing a 12-bit digital value of a single ana-
log physical attribute). Similarly, the assumed architecture model establishes assume-guarantee 
relationships for component interactions (e.g., a sensor is guaranteed to output a 12-bit digital 
value and the receiving control component assumes a 12-bit digital value will be delivered).  

Each component interaction can be affected by one of the EMV2 error types via its interaction 
with other components. Note that the EMV2 ontology is not a compendium of faults that arise 
within a component (i.e., is not a component internal fault model). These are errors output by or 
received by a component that result in violations of assume-guarantee contracts across an interac-
tion.  The impact on the receipt of one of these error types may be faulty (erroneous) component 
behavior and the potential transmission of errors from the impacted component.  

ALSA practices are most effectively employed within a comprehensive safety-guided (safety-
driven) design approach. In this design approach, safety requirements (safety constraints) are the 
principal consideration for the system, driving the overall architecture development and defining 
safety-specific architecture elements (e.g., redundant hardware, highly reliable communication, 
and low workload interface designs). 

The process described in this technical report is a subject of continuing research. We expect to re-
vise and extend this work based upon the application and evaluation of the approach. 
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Appendix A Background on Safety Process Techniques 

This appendix provides an overview of the SAE aerospace recommended practices 4754A and 
ARP 4761 and the System-Theoretical Process Analysis (STPA). 

8.1 ARP 4754A and ARP 4761 

The document summary shown in Figure 16 provides an overview of the relationships between 
the various SAE Aerospace Recommended Practice (ARP) documents that provide guidelines for 
safety assessment, electronic hardware, and software lifecycle processes, and the system develop-
ment process as described in ARP 4754A. 

 

Figure 16: ARP Guideline Documents Relevant to Safety [SAE 2010] 

ARP 4754A provides Guidelines for the Development of Civil Aircraft and Systems. Figure 17 
shows the iterative development lifecycle taken from Figure 3 in Guidelines for Development of 
Civil Aircraft and Systems [SAE 2010].  
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Figure 17: Development Life Cycle from ARP 4754A [SAE 2010] 

The interaction of safety processes with the development process is shown in Figure 18, which is 
taken from Figure 5 in Guidelines for Development of Civil Aircraft and Systems [SAE 2010].  

 

Figure 18: Integration of Safety Processes with the Development Processes [SAE 2010] 

The safety assessment process model taken from ARP 4754A is shown in Figure 19 [SAE 2010].  
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Figure 19: Safety Assessment Process Model [SAE 2010] 

ARP 4761 provides Guidelines and Methods for Conducting the Safety Assessment Process on 
Civil Airborne Systems and Equipment. An overview of the safety process and its connection to 
the development cycle are shown in Figure 20, which is taken from ARP4761 [SAE 1996]. 
Within ARP 4761 practices, a safety assessment process involves conducting a functional hazard 
assessment (FHA), Preliminary System Safety Assessment (PSSA), and a System Safety Assess-
ment (SSA). The process includes requirements generation and verification. FHAs are conducted 
for the complete aircraft and aircraft systems. The FHA is used to identify and classify the failure 
condition(s) associated with the aircraft functions and their combinations. The failure condition 
classifications establish the safety objectives (i.e., the requisite failure probability levels). The 
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PSSA entails systematically examining proposed and possibly alternative system architectures to 
determine how failures can cause the functional hazards identified in the FHA. It usually includes 
a Fault Tree Analysis (FTA) or similar method (e.g., Markov or dependence diagram) and a com-
mon cause analyses. The System Safety Assessment (SSA) is a systematic, comprehensive evalu-
ation of the implemented system to show that the safety objectives from the FHA and derived 
safety requirements from the PSSA are met [SAE 1996]. 

 

Figure 20: Overview of the Safety Assessment [SAE 1996] 
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8.2 The System-Theoretical Process Analysis (STPA) 

Within the System-Theoretical Process Analysis (STPA), potential accidents and associated haz-
ards are identified for a system. 

A summary of the STPA practices is shown in Figure 21. The practices are evolving and the sum-
mary is a composite drawn from a number of sources [Leveson 2012, 2013, 2014]. The approach 
is based upon the Systems-Theoretic Accident Model and Processes (STAMP) causality model, 
where safety is viewed as an issue of the control and enforcement of safety constraints. With this 
perspective, accidents result from inadequate control or enforcement of safety constraints 
[Leveson 2012, 2013, 2014].   

The initial steps entail defining the system, top-level hazards and safety constraints and establish-
ing the engineering foundations for the implementation of the method. The core of the method 
consists of two principal steps of identifying unsafe control actions and identifying their causes 
(causal factors). The completion of these steps establishes how potentially hazardous control ac-
tions can occur. An outcome of the process is the definition of the safety requirements (safety 
constraints). Thus, the method can be used as part of a comprehensive safety-guided design prac-
tice [Leveson 2012]. 

STPA Practices

Identify unsafe 
control actions

Identify causal factors/scenarios
• Identify controller process models 
• Analyze controller, control path,

feedback path, process 

System Level Analysis
Identify 
• accidents
• hazards
• safety constraints

Define Control Structures
• system level
• iterative & hierarchical 

Unsafe Control Actions (tables)
• Not Providing Causes Hazard
• Providing Causes Hazard
• Incorrect Timing/Order
• Stopped Too Soon/Applied Too Long

• Control Structures

Establishing the System and 
engineering foundations 

Identifying 
• Unsafe Control Actions
• Causes of Unsafe Control Actions
• How potentially hazardous

control actions could occur

process
output
artifact

Legend

Safety Requirements
(safety constraints) 

• accidents
• hazards

• Causal Scenarios 
(causal factors)

reference
artifact

Control Flaws-
Causal Factors

Generic Safety
Control Structure

Process is iterative

Control Actions Contexts 
(tables)

 

Figure 21: Summary of STPA Practices 

The generic safety control structures are shown in Figure 22. This is used as a reference to define 
the broad safety control environment for a specific application.  
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Figure 22: Generic Safety Control Structure [Leveson 2013] 

The dashed outline shown in Figure 22 identifies the focus for an operational safety/hazard analy-
sis—the operating process (e.g., pilots and aircraft). The analysis of the operating process is not 
completely independent of the broader considerations, as evidenced by the interfaces with other 
elements of the system development and systems operations, shown in Figure 22.  

The potential control flaws-causal factors diagram, shown in Figure 23, is used to guide the 
safety/hazard analysis. It provides a framework but the annotations in the diagram should not be 
taken as “guidewords.” The goal of using the diagram is to find scenarios and combinations of 
problems that could lead to unsafe control as well as failures or inadequate operation of individual 
components [Leveson 2013]. 
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Figure 23: Potential Control Flaws-Causal Factors: from Leveson [Leveson 2012] and modified accord-
ing to Leveson [Leveson 2013] 
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Appendix B ALSA (EMV2) Error Ontology 

The major error types used in the ALSA process and taken from the error ontology described in 
the SAE Architecture Analysis and Design Language (AADL) Annex Volume 3: Annex E: Error 
Model Language (EMV2) [SAE 2012b] are summarized in Table 14.  

Table 14: Error Ontology Major Error Types 

Error Type Description 

Service Errors 

Service errors are anomalies in the number of items delivered by a 
service. These are partitioned into item delivered unexpected (com-
mission errors) of items and expected items not delivered (omission 
errors). 

Value Errors 

Value errors are anomalies in the content (value) of individual ser-
vice items, of a sequence of services items, and of a service as a 
whole. 

Timing Errors 
Timing errors are anomalies in the timing of individual service 
items, of a sequence of service items, and the service as a whole. 

Replication Errors 
Replication errors are anomalies in the delivery of replicated ser-
vices. 

Concurrency Errors 
Concurrency errors are anomalies in the behavior of concurrent 
systems (e.g., race conditions, deadlock, and starvation). 

Access Control 
Errors 

Access control errors are anomalies in the operation of access con-
trol services (e.g., authorization, authentication).  

Table 15 and Table 16 present a tabular format for identifying and documenting hazards using the 
ALSA (EMV2) error ontology as guidance. Reference Appendix C AADL Error Model Lan-
guage Ontology for additional descriptions of these error types. 

Table 15: Service, Value, and Timing Errors 

Errors IDs Hazard Description 

Service 
Errors 

Commission 
 Unexpected services provided 
 Unexpected service item(s) provided 
 Sequence Commission  
o Early service start 
o Late service termination 

Omission 
 No service items Delivered 
 One service Item Not Delivered 
 Sequence Omission 
o Late service start 
o Early service termination 
o Transient service omission 
o Bounded Omission Interval 
o Bounded Omission Sequence - not in tree 
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Errors IDs Hazard Description 

Value 
Errors 

Item Value Error (incorrect value, value cor-
ruption) 
 Detectable error 
o Out of range 
 Below range 
 Above range 

o Out of bounds (outside acceptable set) 
 Undetectable value error  

Sequence value error 
 Bounded value change 
 Stuck value 
 Out of order 

Service value error  
 Out of calibration 

  

Timing 
Errors 

Item timing 
 Early item delivery 
 Late item delivery  

Sequence Timing (Rate Error) 
 High rate 
 Low rate 
 Rate jitter 

Service Timing 
 Early service 
 Delayed service 

  

 

Table 16: Replication, Concurrency, and Access Control Errors 

Errors IDs Hazard Description 

Replication 
Errors 

Asymmetric Replication Error 
 Asymmetric timing (inconsistent timing) 
 Asymmetric value (inconsistent value) 
o Approximate value error 
o Exact value error 

 Asymmetric Omission (inconsistent omission) 
o Service omission 
o Item omission 

Symmetric Replication Error 
 Symmetric value error 
 Symmetric omission error 
 Symmetric timing error 

  

Concurrency 
Errors 

 Race Condition 
o Read-Write 
o Write-Write 

 Mutual Exclusion Errors 
o Deadlock 
o Starvation 

  

Access  
Control 
Errors 

Authorization Error 
Authentication Error   
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8.3 Relationship of ALSA and STPA 

In general, we agree with Procter and Hatcliff in that port connections provide a path for control 
actions, described by Leveson, that can impact the state of interconnected architecture elements 
[Procter 2014, Leveson 2012]. We also include the impact on the state machines of elements in-
terconnected via non-port interactions such as access connections, bindings, and other non-archi-
tecture specified interactions (e.g., heat radiation).  

Similar to that noted by Procter, the EMV2 error ontology provides a set of types for describing 
and detailing the unsafe control action causal categories described by Leveson [Procter 2014, 
Leveson 2012]. This is shown in Table 17, where EMV2 error ontology types are mapped into the 
STPA unsafe control action table. We can consider these as detailed guide words to facilitate haz-
ard identification under each unsafe control action category.  

Table 17: EMV2 Error Types and STPA Control Action Hazard Guide 

Control 

Action 

Not providing 

causes hazard 

Providing causes  

hazard 

Too early/too 

late causes 

hazard 

Stopping too 

soon/applying 

too long 

causes hazard 

  Service Omission 
Item Omission 
Sequence Omis-
sion (late/transi-
ent/early termina-
tion/bounded 
omission/bounded 
Omission Se-
quence) 

Item Commission 
Service Commission 
Service Value Error (out of cal-
ibration) 
Item Value Error (out of 
bounds, out of range (be-
low/above) ) 
Sequence Value Error (Stuck 
Value, Out of Order, Bounded 
Value Change) 

Service Timing 
Error  
(early/delayed) 
Item Timing Error 
(early/late) 

Sequence Commis-
sion (early start, 
transient, late termi-
nation) 
Sequence Timing 
Error (high, low, jit-
ter) 
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Appendix C AADL Error Model Language Ontology  

This is a listing of the Annex E: Error Model Language (EMV2) error types with their descrip-
tions [SAE 2012b].  

Service Errors 

Service Omissions are errors where no service items are delivered.  

Item Omissions are errors where one service item is not delivered.  

Sequence Omissions are errors associated with the delivery or timing of a sequence of service 
items. They include the following:  

 Late Service Start is an error where no service items are provided for a period of time at the 
beginning of the service. 

 Early Service Termination is an error where no service items are provided after at least one 
service item has been delivered. 

 Transient Service Omission is an error where a certain number of consecutive service item 
omissions occur before delivery of service items resumes.  

 Bounded Omission Interval is an error where a service item omission is followed by a second 
service item omission before k correct service items are delivered. A parameter k specifies the 
expected minimum interval between two item omissions.   

Bounded Omission Sequence is an error where a certain number of consecutive service item 
omissions occur. A parameter k specifies the number of consecutive item omissions.  For exam-
ple, cyclic redundancy check (CRC) on satellite transmission allows some lost packets, but be-
yond the limit of the CRC, further packet loss causes loss of communication. 

Item Commission is an error where an extra service item is provided that is not expected.  

Service Commission errors involve delivery of services that are not expected. 

Sequence Commission Errors involve service errors associated with the timing of the delivery of a 
sequence of service items. 

 Early Service Start is an error where extra service items are provided for a time interval be-
fore the beginning of the expected service.   

 Transient Service Commission represents an error where a certain number of consecutive 
service item omissions occur before delivery of service items resumes. This represents tran-
sient item omission sequences.  

 Late Service Termination is an error where extra service items are provided after the service 
end time.  

Service Value Errors 

Service Value Errors are value errors related to the service as a whole (e.g., Out Of Calibration). 
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 Out Of Calibration is an error where the actual values of a sequence differ by more than a 
tolerance but roughly constant offset C from the correct value.   

Item Value Error is any type of erroneous value for an individual service item. 

 Out Of Bounds (detectable) is an error where a service item value falls outside an acceptable 
set of values as determined by an application domain function (e.g., the stable control bounds 
of a control algorithm).  

 Out of Range (detectable) is an error where a service item value falls outside the range of ex-
pected values for the service. There are two types 

 Above Range error 

 Below Range error 

 Value Error (undetectable) 

Sequence Value Error (Stuck Value, Out of Order, Bounded Value Change) Sequence Value Er-
ror are value errors related to the sequence of service items. 

 Stuck Value is an error where a service delivers service items whose value stays constant 
starting with a given service item. 

 Out Of Order are errors where a service delivers a service item in a time slot other than its 
expected time-slot. 

 Bounded Value Change is an error where a service delivers service items whose value 
changes by more than an expected value. 

Timing Related Errors 

Service Timing Errors are timing errors relating to the service as a whole. 

 Early Service are errors where a service delivers all service items early with a constant time 
shift, but otherwise correctly.   

 Delayed Service are errors where a service delivers all service items late with a constant time 
delay, but otherwise correctly. 

Item Timing Error are errors where a service item is delivered outside its expected time range  

 Early Delivery are errors where a service item is delivered before the expected time range.  

 Late Delivery are errors where a service item is delivered after the expected time range.  

Sequence Timing Error (Rate Error) are errors associated with the inter-arrival time of service 
items (i.e., the time interval between deliveries of successive service items). 

 High Rate errors are when the inter-arrival time of all service items is less than the expected 
inter-arrival time. 

 Low Rate errors are when the inter-arrival time of all service items is greater than the ex-
pected inter-arrival time. 

 Rate Jitter are errors where a service delivers service items at a rate that varies from the ex-
pected rate by more than an acceptable tolerance. 
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The hierarchical structure of the error types is shown in Figure 24 through Figure 26. 

 

Figure 24: Service Type Errors [SAE 2009] 

 

Figure 25: Value Related Errors [SAE 2009] 

 

Figure 26: Timing Related Errors [SAE 2012b] 
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Appendix D Terminology 

Throughout this document we use the relevant terminology as defined in the AADL Error Annex 
standard [SAE 2012b] as well as the definitions included below.  

 Accident: An undesired or unplanned event that results in a loss, including loss of human life 
or human injury, property damage, environmental pollution, mission loss, etc. [Leveson 
2012]. 

 Safety Risk: a value judgment (concern and likelihood) made upon the potential implications 
of current conditions (hazard) that suggests a possible transition into an undesirable condi-
tion (accident or harm). 

A comparative compilation of definitions for safety and reliability related terms is presented in 
Table 18. 
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Table 18: Comparative Table of Safety and Reliability Terms 

Term 
ALISA (AADL Error 
Model) [SAE 2012b] 

ARP 4761
[SAE 1996] 

STPA (STAMP) 
[Leveson 2012] 

IEEE 24765
 

accident 

reference the STPA definition. 
 An undesired or unplanned event 

that results in a loss, including 
loss of human life or human in-
jury, property damage, environ-
mental pollution, mission loss, 
etc. 

an unplanned event or series of events that results 
in death, injury, illness, environmental damage, or 
damage to or loss of equipment or property. IEEE 
Std 1228-1994 (R2002) IEEE Standard for Soft-
ware Safety Plans.3.1.1 

hazard 

any exceptional system state or 
exceptional condition on inter-
acting system components or el-
ements of the operational envi-
ronment that potentially result in 
harm.  

In EMV2 hazards are repre-
sented by a multi-valued prop-
erty that can be associated with 
the error source, error state, and 
error propagation. 

A potentially unsafe con-
dition resulting from fail-
ures, malfunctions, exter-
nal events, errors, or a 
combination thereof. 

A system state or set of conditions 
that, together with a particular set 
of worst-case environment condi-
tions, will lead to an accident 
(loss).  

 

1. an intrinsic property or condition that has the 
potential to cause harm or damage. IEEE Std 
1012-2004 IEEE Standard for Software Verifica-
tion and Validation.3.1.11.  

2. a source of potential harm or a situation with a 
potential for harm in terms of human injury, dam-
age to health, property, or the environment, or 
some combination of these. IEEE Std 1012-2004 
IEEE Standard for Software Verification and Val-
idation.3.1.11 

error 

The term error encompasses 
mistakes by humans resulting in 
incorrect design or code, defects 
in a process that can lead to in-
correct design or operational 
system, the effect of incorrect 
system behavior, and a charac-
terization of incorrect behavior 
as an indication of a failure. In 
other words, error is the most 
general and comprehensive term 
for dealing with architecture er-
ror modeling.—based upon 
ISO/IEC/IEEE 24765:2010 

1. An occurrence arising 
as a result of an incorrect 
action or decision by per-
sonnel operating or main-
taining a system. (JAA 
AMJ 25.1309)  

2. A mistake in specifica-
tion, design, or implemen-
tation. 

 1. a human action that produces an incorrect re-
sult, such as software containing a fault.  

2. an incorrect step, process, or data definition.  

3. an incorrect result. 

4. the difference between a computed, observed, 
or measured value or condition and the true, spec-
ified, or theoretically correct value or condition 
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Term 
ALISA (AADL Error 
Model) [SAE 2012b] 

ARP 4761
[SAE 1996] 

STPA (STAMP) 
[Leveson 2012] 

IEEE 24765
 

fault 

A fault is a root (phenomenolog-
ical) cause of an error that can 
potentially result in a failure, 
i.e., an anomalous undesired 
change in the structure or data 
within a component. A fault may 
cause that component to eventu-
ally not perform according to its 
nominal specification and result 
in malfunction or loss of func-
tion, i.e., result in a failure.   

EMV2v represents different 
types of faults as error types. In 
the error propagation abstrac-
tion, the presence of the fault in 
a component is expressed as an 
error source with the appropriate 
error type as the origin. In a 
component error behavior ab-
straction, a fault is expressed as 
an error event with an error type. 
An instance of an error event 
represents the activation of a 
fault, i.e., a failure.—based upon 
ISO/IEC/IEEE 24765:2010 

An undesired anomaly in 
an item or system. 

 1. a manifestation of an error in software. 2. an in-
correct step, process, or data definition in a com-
puter program. 3. a defect in a hardware device or 
component. Syn: bug --- NOTE: A fault, if en-
countered, may cause a failure. 

failure 

is a deviation in behavior from a 
nominal specification resulting 
in malfunction and loss of func-
tion, i.e., a component no longer 
functions as intended. This may 
be due to an activated fault 
within the component, due to er-
ror propagation from another 
component, or due to excep-
tional conditions when interact-
ing with other components. The 

A loss of function or a 
malfunction of a system or 
a part thereof. Note: This 
differs from the ARP 4754 
definition and conforms to 
the AC/AMJ 25.1309 defi-
nition. 

the non-performance or inability 
of a component (or system) to 
perform its intended function. In-
tended function (and thus failure) 
is defined with respect to the 
component’s behavior require-
ments.  

Alternatively, a change to the sys-
tem or a part in it (e.g., a crack) 

1. termination of the ability of a product to per-
form a required function or its inability to perform 
within previously specified limits. ISO/IEC 
25000:2005, Software Engineering — Software 
product Quality Requirements and Evaluation 
(SQuaRE) — Guide to SQuaRE.4.20.  

2. an event in which a system or system compo-
nent does not perform a required function within 
specified limits 
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Term 
ALISA (AADL Error 
Model) [SAE 2012b] 

ARP 4761
[SAE 1996] 

STPA (STAMP) 
[Leveson 2012] 

IEEE 24765
 

deviation can be characterized 
by type of failure, persistence, 
and degree of severity. The de-
gree to which a failure affects 
nominal behavior is referred to 
as severity of the failure.   

In EMV2, failures are repre-
sented as occurrence instances of 
error sources and instances of er-
ror events. Error event instances 
cause transitions to an error 
state, which represents the com-
ponent failure mode. An error 
source identifies an outgoing er-
ror propagation including error 
type, reflecting that the failure 
mode of a component (error 
state) can affect components it 
interacts with. The propagation 
paths are determined by the 
AADL core model—based upon 
ISO/IEC/IEEE 24765:2010 

such that it no longer meets its re-
quirements. 
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