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1 SUMMARY 
In this project, we sought to understand how users and organizations balance privacy 
needs when using personal devices for both work and personal purposes— that is, 
“Bring Your Own Device” (BYOD) environments. Our goal was to better understand 
the challenges users and organizations faced so that we could develop a better privacy 
management system that addresses their needs. Specifically, we performed qualitative 
interviews among “extreme users” (those in environments who have particularly 
complicated needs) to answer the following questions: 

• What do users want control over with respect to privacy in an 
organization? 

• How should these controls be implemented? 
• How can we build systems to make automated decisions in order to 

reduce user burden and facilitate better choices in-line with users’ 
expectations? 

In answering these questions, we interviewed 15 employees working in law 
enforcement organizations (i.e., the California Department of Justice and Los Angeles 
District Attorney’s offices). Interviewees were in a range of roles with very particular 
privacy needs (e.g., prosecutors, investigators, and administrators). We found that users 
had sophisticated privacy needs that were not being met, particularly surrounding the 
access to personal information, location data, photos/media, and contact information, 
when using their smartphones in the workplace. 

In addressing these users’ needs, we developed a modified version of the Android 
platform that allows users to control how information is collected by third-party 
applications. The heart of our system is a trained classifier, which makes real-time 
decisions about whether an application should have access to certain protected data. 
Additionally, we provided specific functionality to address the areas that users found 
most problematic: 

• For contacts, we provided a separate public/private primitive, which 
allows users to prevent applications from accessing professional or 
personal contacts, when appropriate. 

• When denying access to certain data types, our system instead 
provides “fake” or less granular data, which allows privacy to be 
preserved, while limiting negative impacts on application 
functionality. 

• For access to photos/media, we developed filters to identify and 
optionally remove potentially-sensitive features, before that media 
is shared with applications, in accordance with the end users’ 
wishes. 

We performed an initial field study using a sample of 131 Android users. We applied 
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the Experience Sampling Method (ESM) [11], wherein we periodically prompted 
participants about third-party applications’ recent accesses to protected data. The 
prompts asked participants whether they would have allowed or denied the access, if 
given the choice. Alongside these prompts, we collected contextual data about what 
applications had accessed data, the types of data, and other situational information. We 
used the responses to these prompts to train a classifier using the contextual data as a 
feature set. We showed that this classifier was able to make much better decisions about 
access to sensitive data, reducing the error rate over the existing system by four-fold. 

In parallel to this work, we developed a user interface. The theory behind the user 
interface is that if machine-learning is being used to automatically infer users’ privacy 
preferences and making decisions based on those inferences, an interface is needed to 
show users what decisions have been previously made. This serves two purposes: 
transparency and control. In addition to showing the users what decisions have been 
made, it also allows them to alter those decisions, thereby retraining the classifier (and 
further reducing its error rate). We evaluated this design using an online study, which 
showed it to be usable. 

Finally, we implemented both the classifier and the user interface into a working 
version of the Android platform and performed another field study to validate our 
designs. We gave instrumented phones running our system to 37 participants who used 
it for a one-week period. We corroborated our previous findings, in that error rates were 
reduced by 50-75% over the privacy management system. 

In addition to our working system, the result of this work were three academic 
publications [18, 19, 17], and an additional publication in submission. These 
publications and the publication in submission address the research questions above, 
covering findings from our interviews as well as innovations in the user experience, 
and the technology to manage privacy requests at the OS-level, as well as 
improvements and integration of our classifier. 

These results demonstrate that when provided the technology we have developed, end-
users can effectively manage complex privacy decisions and trust the system to handle 
their private information in-line with their expectations. The implications of this work 
are that BYOD solutions that are end-user controlled can potentially increase adoption 
of these systems while simultaneously addressing joint user-organizational concerns 
around privacy and information security. 

2 INTRODUCTION 
Mobile phones are increasingly used as general purpose computers, with users taking 
advantage of a great number of apps to help with communication, productivity, 
organization, and diversion. Frequently these apps are nominally free, but the 
developers make a profit through the collection of sensitive user data. For example, 
Google Play’s current top two flashlight apps (i.e., apps that turn on and off a phone’s 
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camera flash) require access to the user’s location, and previously requested address 
book contacts. This access to private data is not needed to actually operate the app 
itself, but instead is only used for monetization purposes. 

These resources are highly sensitive. In interviews we conducted, we found that users, 
particularly those in law enforcement professions find the idea of delivering your entire 
address book to a third-party entity to be unacceptable. Such users are not alone. In fact, 
both Android and iOS provide a permission system as a means to protect users’ private 
data. Arbitrary apps cannot simply access all user data they must first request access 
and the user then grants it. This is the application of a fundamental principle in security: 
the principle of least privilege. This means that apps should only be given the power 
and capabilities that they need to work and nothing more. This mitigates the damage 
caused by malicious behavior, both accidental and intentional. 

Originally, Android permissions were presented as install-time ultimatums that were 
unsuccessful at achieving their goals [9, 6]. More recently, Android started using an 
ask-on-first-use (AOFU) model. In AOFU, the user is explicitly asked— at runtime—
whether to grant or deny a permission via a dialog box, the first time an app attempts 
to access the protected resource. This approach gives the user a little more contextual 
information: e.g., it may be curious that a text messaging app needs to use the 
microphone, but knowing that the request occurred after the user tried to use a speech-
to-text feature clarifies the likely rationale. 

By design, however, AOFU takes the user’s decision at one moment and then uses it in 
perpetuity for all future requests from that app for that permission, unless the user 
navigates several layers of settings to change it. During the course of this project, we 
showed that this method is highly error prone [19]: it mis-predicts the users’ 
preferences resulting in privacy violations.  This is because AOFU is not a correct 
model for user behavior and decision-making [18, 19]. AOFU fails to account for the 
contexts in which future requests may arise. Users are nuanced and they vary their 
decisions based on a variety of factors, such as the visibility of the requesting 
application (i.e., whether it was actively in use when it requested a permission), what 
the user was actually doing at the time, as well as a variety of other factors. 

As part of this project, we implemented and evaluated the usability of a novel mobile 
privacy management system that builds heavily on our prior theoretical work, as well 
as the interviews with “extreme users”—those with very serious privacy concerns when 
using their mobile devices in professional environments— that we conducted to better 
understand the problems that users face. To resolve the longstanding challenges of 
mobile privacy management, we applied machine-learning (ML) to dynamically 
manage app permissions, and then we proposed a user interface design to help users 
manage that system [17]. This work applies Nissenbaum’s theory of Privacy as 
Contextual Integrity [14]. We then implemented these systems on the Android platform 
and performed a field study to evaluate their effectiveness at aligning app privacy 
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behaviors with users’ expectations. The machine-learning (ML) model runs entirely on 
the device and uses infrequent user prompts to retrain and improve its accuracy over 
time. When the ML model makes a mistake, the user interface is available to support 
the user in reviewing and modifying privacy decisions, thereby retraining the ML. 

We performed a 37-person field study to validate our new privacy management system, 
measuring its efficacy and how it interacted with participants and third-party apps. We 
issued each participant a smartphone running a custom Android OS with our 
permission system that used an online classifier, which participants used as their 
primary phones for a one-week study period. This produced real-world usage data from 
253 unique apps, which corresponded to more than 1,100 permission decisions. 
Overall, participants denied 24% of permission requests. Our data show that AOFU 
matched participant privacy preferences only 80% of the time, while the new 
contextual model matched preferences 95% of the time, reducing the error rate by 75%. 

3 METHODS, ASSUMPTIONS AND PROCEDURES 
Our approach was iterative, engaging end-users through user experience research 
methodologies (using observational studies, interviews, and surveys) and evolving our 
solution through system development (building user interfaces, the modified android 
operating system, and a classifier). Each of the iterative cycles of our project was 
divided into stages, with results from each stage feeding into both the research 
directions and technical goals for the next stage. Stages of our iterative research 
process, along with the methods employed at each stage are described below. 
 

Stage 1 Understand user needs and requirements gathering 
Interviews of Stakeholders and Extreme Users Develop Initial 
Requirements from Privacy Concerns Development and test Lo-Fi 
prototypes 

 
Stage 2 Prototyping and Testing 

Develop and survey of Hi-Fi Prototypes of user control dashboard 
Implementation privacy controls 
Interviews of Stakeholders and Extreme Users Refinement of 
Classifier 

 
Stage 3 Implementation and Field Testing 

Implementation and refinement of the classifier 
Implementation and refinement of the Android OS 
Deployment and field test of devices Interviews of field test users 

Below we describe the details of the methods we employed. 

3.1 User Interviews 
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We conducted a series of interviews of 15 users who had mobile devices and 
experiences with either BYOD currently or in the past had both a personal and work 
phone. For the initial interviews we focused on Extreme Users; users who represented 
more sophistication and sensitivity to privacy concerns than the average consumer. 
Focusing on Extreme Users is a methodology that is employed in User Experience 
research, particularly when exploring issues such as privacy that are not typically on 
most users mind. The Stanford Design School (D.SchooL) describes research on 
Extreme Users as follows [15]: 

Designers engage with users (people!) to understand their needs and gain insights about 
their lives. They also draw inspiration from their work-arounds and frameworks. When 
you speak with and observe extreme users, their needs are amplified and their work-
arounds are often more notable. This helps you pull out meaningful needs that may not 
pop when engaging with the middle of the bell curve. However, the needs that are 
uncovered through extreme users are often also needs of a wider population. 

Using Extreme Users would allow us to uncover issues and concerns that would likely 
overlap with end-user concerns of the larger population, but would be buried or difficult 
to uncover in the course of interviewing laymen. For our methodology, we used Extreme 
Users to uncover the issues that were most important; we used that knowledge, along 
with our own experience and previous work, to motivate our system implementation; 
and finally we went back to the larger population to verify and confirm our insights. 

The Extreme Users that we recruited were from various government agencies 
(California Department of Justice, Los Angeles District Attorney, etc.) and in roles as 
either prosecutors (civil and criminal), investigators or law enforcement where the 
separation of private and personal information was very important to their jobs and in 
some cases personal safety and safety of the individuals that they worked with was of 
great importance. 

Each interview we conducted was either over the phone or in-person, and lasted 
between 1-1.5 hours total. The initial interviews were semi-structured, with a script that 
the moderator walked through with the users, with time for unscripted questions at the 
end. These initial interviews focused on their current practices and concerns, and 
explored ways in which these concerns could be addressed by technology. 

The next iteration of interviews also focused on concerns, but for the later portion of the 
interview they were shown a working prototype that incorporated some of the earlier 
suggestions (e.g., location and address book controls), as well their understanding and 
opinions on our user interface (the privacy “dashboard”). 
The last round of interviews we performed on subjects who were not Extreme Users, 
but from a larger population from our field study. We interviewed users initially about 
their phone use, and again at the end of our field study about their experiences with our 
devices and using the controls. 
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3.2 Initial Classifier Design 
Our goal was to collect a feature set that would allow the platform to automatically detect 
the context surrounding each permission request, so that once trained, the platform can 
use these features to infer whether a permission request is likely to be deemed 
appropriate by the user. This entails determining the factors that define a context, as well 
as the factors that are indicative of users’ privacy preferences. Defining context is 
important because it scopes privacy decisions: whenever the context in which an 
application requests access to a particular data type changes, the system needs to make 
a decision about whether or not to grant access. Similarly, in order to make these 
decisions automatically without prompting the user, this entails determining the factors 
that predict users’ privacy preferences. 

Our main objective was to explore the learnability of user privacy preferences over 
prompting for every sensitive permission request; an effectively-trained permission 
system should be able make decisions on behalf of the users accurately with minimal 
user involvement. While prompting for every sensitive permission request gives the 
user a finer degree of control over their privacy protection, we showed that it is 
impractical due to the sheer volume of requests that would result [18]; we believed the 
best way forward was to learn a users’ privacy preferences. Learning involves three 
essential components: 

• The platform needs to figure out which permission requests are 
likely to defy user expectations. 

• The platform also needs to figure out which permission types are 
more sensitive on a per-user basis. 

• The platform needs to learn what other observable factors are used in 
users’ decision processes and how they can be used to infer users’ 
decision-making. 

We used the Experience Sampling Method (ESM) to collect ground truth data about 
users’ privacy preferences [11]. ESM involves repeatedly questioning participants in 
situ about a recently observed event; in this case, we probabilistically asked them about 
an application’s recent access to data on their phone, and whether they would have 
permitted it if given the choice. We treated participants’ responses to these ESM probes 
as our main dependent variable (Figure 1). We instrumented the Android platform so 
that these prompts would periodically appear—no more than once per day—after 
recent permissions requests (Table 1). 
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Figure 1: A screenshot of an ESM prompt. 
 

Table 1: Participants in the first study received prompts when applications at- 
tempted to use these permissions 
 

Permission Type Activity 
ACCESS  WIFI STATE View nearby SSIDs 
NFC Communicate via NFC 
READ  HISTORY BOOKMARKS Read users’ browser history 
ACCESS  FINE LOCATION Read GPS location 

ACCESS COARSE LOCATION 
Read network-inferred location 
(i.e., cell tower and/or WiFi) 

LOCATION HARDWARE Directly access GPS data 
READ  CALL LOG Read call history 
ADD VOICEMAIL Read call history 
READ SMS Read sent/received/draft SMS 
SEND SMS Send SMS 
*INTERNET Access Internet when roaming 

*WRITE  SYNC SETTINGS 
Change application sync 
settings when roaming 

 

We also instrumented participants’ smartphones to obtain data about their privacy- 
related behaviors and the frequency with which applications accessed protected 
resources. The instrumentation required a set of modifications to the Android operating 
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system and flashing a custom Android version onto participants’ devices. 

Table 2 contains the complete list of behavioral and runtime events our instrumentation 
recorded. The behavioral data fell under several categories, all chosen based on several 
hypotheses that we had about the types of behaviors that might correlate with privacy 
preferences: web-browsing habits, screen locking behavior, third-party application 
usage behavior, audio preferences, call habits, camera usage patterns, and behavior 
related to security settings. For example, we hypothesized that someone who manually 
locks their device screen are more privacy-conscious than someone who lets it time 
out. 

 
Table 2: Instrumented events that form our feature set 

 
Type Event Recorded 

 
 
 
 
 
 
 
 
Behavioral 
Instrumentation 

Changing developer options 
Opening/Closing security settings 
Changing security settings 
Enabling/Disabling NFC 
Changing location mode 
Opening/Closing location settings 
Changing screen-lock type 
Use of two factor authentication 
Log initial settings information 
User locks the screen 
Screen times out 
App locks the screen 
Audio mode changed 
Enabling/Disabling speakerphone 
Connecting/Disconnecting headphones 
Muting the phone 
Taking an audio call 
Taking a picture (front- vs. rear-facing) 
Visiting an HTTPS link in Chrome 
Responding to a notification 
Unlocking the phone 

Runtime 
Information 

An application changing the visibility 
Platform switches to a new activity 

Permission 
Requests 

An app requests a sensitive permission 
ESM prompt for a selected permission 

 
The primary purpose of recording user behaviors was to observe how much time a user 
voluntarily spends on making security and privacy related decisions by changing 
default settings or re-visiting decisions they have made earlier (security settings, 
location settings), because observing these behaviors could be indicative of their privacy 
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preferences. For instance, the choices they had made about screen locks; how careful 
they are with their web browsing habits, such as how often do they use Chrome 
incognito tabs, how often they get warnings from visiting suspicious websites, and so 
forth. We also collected other observable traits that could be indicative of privacy 
preferences, such as how often they take pictures, their audio preferences, and how 
active they are with audio calls using the phone. 

Finally, we collected runtime information about the context of each permission request, 
including the visibility of the requesting application at the time of request (i.e., whether 
it was in the foreground or background), what the user was doing when the request was 
made (i.e., the name of the foreground application), and the exact Android API function 
invoked by the application to determine what information was requested. The visibility 
of an application reflects the extent to which the user was likely aware that the 
application was running; if the application was in the foreground, the user had cues that 
the application was running, but if it was in the background, then the user was likely 
not aware that the application was running and therefore might find the permission 
request unexpected—some background services can still be visible to the user due to 
on-screen notification or other cues that could be perceptible. We monitored processes’ 
memory priority levels to determine the visibility of all Android processes. We also 
collected information about which Android Activity was active in the application, 
which indicates the UI elements exposed to the user. 

Further details on the results and methodology are described in the Appendix and in 
[19]. 

3.3 Prototype and User Testing 
We tested various stages of the user interface and the notification interaction with the 
classifier, as part of our methodology. We performed remote user testing of the 
classifier with a walk-through, talk aloud protocol on a small set of 10 initial users, and 
then performed a large scale survey and test of the user interface on 400, and 
subsequently 580 users. A detailed description of our test process and results are 
included in the Appendix and in the paper [17]. 

3.4 System Implementation 
We implemented a complete ML pipeline that includes: mechanisms to allow users to 
review and redress their decisions based on the results of our UI proto typing study 
[17]; ways to mask resource denial from apps so that apps continue to run, even when 
permissions are denied (unless those permissions were critical to their functionality); 
and finally, a classifier that takes surrounding contextual signals to predict user 
preferences for each permission request. This means our usability study is a more 
accurate assessment of how the system behaves in the wild than the previous 
investigations, which relied on user expectations rather than consequential privacy 
decisions. This final study validates that prior work. 
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3.4.1 A Local SVM Classifier 
We previously implemented an offline classifier at the onset of this project and 
suggested this could be deployed as a remote web-accessible service in order to shift 
compute costs from the mobile device to a more powerful dedicated server [19]. We note, 
however, that this design required sending privacy-relevant data beyond the 
smartphone, which creates a larger attack surface and increases system costs and 
complexity. It also creates significant security risks if the server responsible for making 
decisions is compromised or is trained with spurious data. 

To mitigate these security and privacy issues, we implemented and integrated the full 
SVM classifier into the Android operating system as a system service. We ported the 
open-source implementation of libsvm to Android 6.0.1 (Marshmallow) [4], and built 
two additional system-level services to interface with the SVM: the SVMTrainManager, 
which trains the model using user-provided privacy preferences through prompts (See 
Figure 2); and the PermissionService, which uses the SVM to regulate applications 
accessing permission-protected resources and issues a prompt for the user for cases when 
the model produces low-confidence predictions. The SVMTrainManager notifies the 
PermissionService when the model is trained and ready for use. These two new services 
are implemented into the core Android operating system, and neither are accessible to 
third-party apps. On average, model training takes less than 5 seconds. We instrumented 
all Android control flows responsible for sharing sensitive permission-protected data 
types to pass through this new pipeline. 

  
Figure 2: A screenshot of a permission request prompt. 
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3.4.2 Bootstrapping 
We deployed our trainable permission system along with a generic model that was pre-
trained with the real-world permission decisions of 131 users, shared with us from our 
initial work [19]. This ensured that a new user has an initial model for making privacy 
decisions. This initial model, however, is inadequate for accurately predicting any 
particular individual user’s preferences, because it simply has no knowledge of that 
particular user. Despite that, we previously showed that our model only needs 12 
additional user-provided permission decisions before the model attains peak accuracy. 
Given this, our implemented system requires that the user make 12 decisions early on 
to train the initial model to that particular user’s preferences. 
The initial 12 decisions are selected based on weighted reservoir sampling. We weigh 
the combination of application:permission:visibility1 by the frequency that these are 
observed; the most-frequent combinations are the likeliest to produce a permission 
request prompt (Figure 1). The intuition behind this strategy is to focus more on the 
frequently occurring permission requests over rarer ones. We used these same prompts 
for validating our classifier during the field study.  

3.4.3 Feature Set 
Our model considers the name of the application requesting the permission, the 
application in the foreground at the time of the request (if different than the application 
making the request), the requested permission type (e.g., Location, Camera, Contacts), 
and the visibility of the application making the request. In a pilot study, our system 
implemented the full feature set we previously used [19].  
This design, however, resulted in a noticeable reduction in device responsiveness as 
reported by multiple study participants. We subsequently removed the “time of request” 
feature for the second phase of our study. The removal of the time feature from the ML 
enabled the platform to cache higher number of ML decisions saving reducing the 
overhead stemming from running the ML for each different permission request. 

3.4.4 Sensitive Resources 
Previous work by Felt et al. argued that certain permissions should be presented as 
runtime prompts, as those permissions guard sensitive resources whose use cases 
typically impart contextual cues indicating why an app would need that resource [8]. 
Beginning with Android 6.0 (Marshmallow), the OS designated certain permissions as 
“dangerous” [10], and prompts the user to grant or deny permission when an app tries 
to use it for the first time. The user’s response to this prompt then carries forward to all 
future uses of that resource by the requesting application. 

Our experimental permission system uses both Felt’s set of recommended permissions 
for runtime prompts and Android’s own “dangerous” ones. We did, however, opt to omit 

                                                      
1 “application” is the app requesting the permission, “permission” is the requested resource type, and 
“visibility” denotes whether the user is made aware that the app is running on the device. 
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a few permissions from the resulting set that we viewed as irrelevant to most users. The 
INTERNET and WRITE SYNC SETTINGS permissions were discounted, as we did not 
expect any participant (all recruited locally) to roam internationally during the 1-week 
study period. We eliminated the NFC permission because previous work demonstrated 
that very few apps operate on NFC tags. Our system ignores the READ HISTORY 
BOOKMARKS permission, as this is no longer supported. 

We extended our initial framework [18, 19] to monitor and regulate all attempts by apps 
to resources protected by any of the 24 permissions we monitored. We avoid false 
positives by monitoring both the requested permission and the returned data type. 

3.4.5 Permission Denial 
Making changes to the permission system carries the risk of app instability, as apps may 
not expect to have their resource requests denied [7]. If denying permissions results in 
frequent crashes, then users may become more permissive simply to improve app 
stability. We therefore designed our implementation with this concern in mind: rather 
than simply withholding sensitive information in the event of a denied permission, our 
system supplies apps with well-formed but otherwise non-private “spoofed” data. This 
enables apps to continue functioning unless access to the permission-protected resource 
is critical to the app’s correct behavior. 

For example, if an app requests access to the microphone, but our permission system 
denies it, the app will still receive a valid audio stream: not an actual signal from the 
microphone, but that of a pre-recorded generic sound. (In our implementation we used 
a loop of a whale song). This design allows apps to operate on valid data while still 
preserving user privacy. 

Permission-protected databases (e.g., contact lists and calendars) require finer- grained 
regulation under our permission system. For instance, an app may have a legitimate 
need to access the contact list. Under the stock Android permission system, an app is 
either able to read all contacts or no contacts. We improve upon this by adding a notion 
of provenance to each entry: every contact list item contains a field that records the app 
that created the entry. If our permission system denies an app access to the contact list, 
the app is still able to write into the contacts database and read back any entries that it 
previously created. Apps without these database permissions are effectively placed in 
a sandbox, in which they can still carry out valid operations on their own versions of 
the data. They neither produce an exception nor obtain all the information in the 
database. We allow full access to the databases only to apps that are granted the 
appropriate permission. 

3.4.6 Contextually Aware Permission Manager 
We recognize that our classifier is bound to make mistakes. Therefore, it is crucial to 
provide a mechanism for users to review and amend decisions made by the permission 
model on their behalf. Mobile operating systems have configuration panels to manage 
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app permissions, but these fail to provide users key information or options to make 
informed decisions. However, our study that examined user interface prototypes [17] 
proposed a new interface to solve this problem [17]. In that study (still a part of this 
project), we evaluated several designs using interactive online mock-ups and found that 
the design significantly improved user experience over the stock configuration panel. 
We followed those recommendations in the design that we built as part of this 
implementation. 

We built our contextual permission manager as a system-space app, similar to 
Android’s Settings app (Figure 3). Our permission manager has three main objectives: 
(i) to display all recent permission requests and the corresponding “allow” or “deny” 
decisions from the ML model; (ii) to allow users to review and change app permissions; 
and (iii) to display all the resources an app can access. 
 

 
Figure 3: The recent-allowed app activity (left), a list of installed apps and their 
associated permissions (center). Permissions can be always granted, granted only 

when in use, or never granted (right). 

When users set preferences(rules) in the permission manager, before making a ML 
decision, platform checks to see if the user has set any rules for the current request; if a 
match is found, rather than going to the ML, platform will use the current rule to respond 
to the permission request accordingly. The system does not use these user-set rules to 
train the ML model, it is hard to capture the contextuality behind these changes so the 
platform cannot create any of the contextual features to train the ML. 

3.5 Validation Study Methodology 
We tested our implementation by performing a field study with 37 participants. Our 
goals were to understand how third-party apps and end-users react to a more restrictive 
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and selective permission model, as compared to the default AOFU model. 

For a period of one week, each participant used a smartphone (Nexus 5X) running a 
custom version of the Android OS (a variation of Android 6.0.1) built with the new 
permission system detailed in the previous section. During the study period, all of a 
participant’s sensitive data was protected by the new contextually-aware permission 
model. 

3.5.1 Participant’s Privacy Preferences 
We used the Experience Sampling Method (ESM) to understand how participants want 
to control certain sensitive resource accesses [11], similar to how we used it in our 
earlier work [19]. ESM involves repeatedly questioning participants in situ about a 
recently observed event; in our case, the event is an app requesting access to a sensitive 
resource. We probabilistically asked them about an application’s recent request to 
access to data on their phone, and how they want to control future similar requests 
(Figure 1). We treated participants’ responses to these ESM prompts as our main 
dependent variable, which we used to validate the accuracy of the decisions that the 
classifier was automatically making. 

Each participant during the study period responded to 4 prompts per day, and at most 
one per hour. The prompting was divided into two phases. The first phase was the 
bootstrapping phase, which we described earlier, to train the classifier. The second 
phase was the validation phase, which was used to measure the accuracy of the ML 
model. In addition to the validation phase prompts, participants might also have 
occasional prompts for low-confidence decisions made by the ML; a detailed 
discussion on low-confidence decisions is provided later. During our study period, only 
4 participants ever experienced low-confidence prompts. 

3.5.2 Recruitment 
We recruited participants in two phases: a pilot in May 2017 and the full study in 
August 2017. We placed a recruitment ad on Craigslist under “et cetera jobs” and 
“domestic gigs.”2 The title of the advertisement was “Smartphone Research Study,” and 
it stated that the study was about how people interact with their smartphones. We made 
no mention of security or privacy. Interested participants downloaded a screening app 
from the Google Play store, which asked for demographic information and collected 
their smartphone make and model. We screened out applicants who were under 18 years 
of age or used CDMA providers, since our experimental phones were only GSM-
compatible. We collected data on participants’ installed apps, so that we could pre-
install free apps prior to them visiting our laboratory. (We only encountered paid apps 
for a few participants, and those apps were installed once we setup their Google account 
on the test phone.) 

We scheduled a time with participants who met the screening requirements to do the 
                                                      
2 The study was approved by our Institutional Review Board. 
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initial setup. Overall, 63 people showed up to our laboratory, and of those, 61 qualified 
(2 were rejected because our screening application did not identify some CDMA 
carriers). The initial setup took roughly 30 minutes and involved transferring their SIM 
cards, helping them set up their Google and other accounts, and making sure they had 
all the applications they used. We compensated each participant with a $35 gift card for 
showing up. 

During the pilot phase, out of 20 people who were given phones, 14 participants had 
technical issues with the phone preventing them from using it, leaving only 6 
participants with usable data. During the main phase, out of 42 people who were given 
phones, we had the following issues: 

• 4 participants misinterpreted our ESM prompts so we filtered out 
their prompt responses; 

• 5 participants suffered from a bug in the code that inhibited the 
validation phase of the ML; 

• 2 participants performed factory resets on the phone before 
returning it, which destroyed stored logs. 

This left 31 participants with usable data from the main phase. We combined the 6 
participants with usable data from the first phase with the 31 from the second phase to 
produce our sample of 37 users, since we did not alter the study between phases. All 
our results are drawn from log data and interview responses from those 37 users. Of 
that population, 21 were female and 16 were male; ages ranged from 18 to 59 years old 
(µ = 34.25, er = 9.92). 

After initial setup, participants used the experimental phones for one week in lieu of 
their normal phones. They were allowed to install, use, and uninstall any apps that they 
wanted. Our logging framework kept track of every protected resource accessed by an 
app, along with the contextual data surrounding each application request. All the 
logged events were stored compressed in the local system. 

3.5.3 Exit Interview 
When participants returned to our laboratory, we first copied the log data from the 
phones to make sure that they had actually used the phone during the study period. We 
then administered a semi-structured exit interview, which had four components: 

• New Permission Manager UI—We asked participants to show us 
how they would use the UI (Figure 3) to block a given application from 
accessing background location data, as well as how difficult they found 
it. We also checked our data to see how they interacted with the UI 
during the study period, and asked them about the circumstances for 
those interactions. The objective of this task was to validate the design 
objectives of the UI, including whether they use it to resolve issues 
stemming from resource denial. 
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• Permission Prompts—We asked participants questions about 
permission prompts they had encountered during the study. We asked 
why they allowed or denied permission requests and also how they felt 
about the prompts. We asked them to rate their experience with the 
prompts across 3 different categories: levels of surprise, feelings of 
control, and to what extent they felt the new system had increased 
transparency. The objective of this section was to understand the impact 
of the runtime prompts. 
• Permission Models—We asked participants questions about their 
perspectives on the privacy protections in Android. We asked how much 
they understood the current system. We then explained our new system, 
and asked how they felt about letting ML act on their behalf. The 
objective of this section was to understand how much participants 
actually understood the new permission model. 
• Privacy Concerns—Finally, we asked participants how they 
usually make privacy decisions on their mobile devices, how serious 
they are about privacy, and how much are they willing to pay for privacy. 
We also asked demographic questions. 

Three researchers independently coded 144 responses to the Permission Prompts and 
Permission Model questions (the other questions involved either direct observations or 
reporting participants’ responses verbatim without the need for coding). Prior to meeting 
to achieve consensus, the three coders disagreed on 17 responses, which resulted in an 
inter-rater agreement of 86.43% and Fleiss’ kappa yielded 0.747, indicating substantial 
agreement. 

After the exit survey, we answered any remaining questions, and then assisted them in 
transferring their SIM cards back into their personal phones. Finally, we compensated 
each participant with a $100 gift card. 

4 RESULTS AND DISCUSSION 
At the end of the study period, we collected 1,159 privacy decisions (prompt responses) 
from 37 participants. A total of 133 unique applications caused prompts for 17 different 
sensitive permission types. During the study period, 24.23% of all runtime prompts 
were denied by participants. Most (66%) of these prompts occurred when the 
requesting application was running visibly. Our instrumentation logged 5.4M sensitive 
permission requests originating from 253 unique applications for 17 different 
permission types. On average, a sensitive permission request occurred once every 4 
seconds. 

In the remainder of the paper, we describe the shortcomings of the existing ask-on-
first-use permission model, both in accuracy and in aligning with users’ expectations; 
we show how our proposed system has vastly greater accuracy in inferring users’ privacy 
preferences and applying them towards regulating application permissions; and we 
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show that is does this with minimal impact on app functionality. Finally, we present 
results from the exit interviews regarding participants’ perceptions about the training 
prompts and the privacy management user interface. 

4.1 Status Quo Problems 
In the “ask-on-first-use” (AOFU) model, the user is prompted only the first time an app 
attempts to access a protected resource. Requesting these permissions at runtime allows 
the user to infer the potential reason for the request, based on what they were doing at 
the time (i.e., context). AOFU’s shortcoming, however, is that it naïvely reapplies the 
user’s first-use decision in subsequent scenarios, without adapting to different contexts. 
Our previous work showed that failing to account for changing contexts produces high 
error rates (i.e., the user would have opted to deny permission if AOFU had not granted 
it based on the first-use prompt) [18]. 

We note that our initial work on this project measured the accuracy of the AOFU model 
by merely collecting users’ responses to runtime permission prompts, without actually 
enforcing them by denying apps access to data [19]. Thus, the accuracy rates reported 
by that study may not actually be valid, since users may elect to change their 
permission-granting preferences, if they result in a loss of application functionality. 
Thus, we evaluated the performance of the AOFU approach (in current use by Android 
and iOS) by presenting participants with permission prompts that actually resulted in 
the denial of application permissions. 

During the study period, each participant responded to combinations of 
application:permission more than once. As AOFU is deterministic, we can simulate it 
by comparing a user’s first response to an application:permission combination to future 
responses to the prompts for the same app and permission. We use this data to measure 
how often AOFU matches the user’s preference in subsequent requests. 

Our data show that the AOFU permission model has a median error rate3 of 20%: in 
more than one-fifth of app requests for permission-protected resources, participants 
changed their initial response for the same application:permission combination. Of the 
37 participants, 64% had at least one such discrepancy between the first-use and 
subsequent preferences. This refutes AOFU’s core assumption that only few users will 
deviate from their initial preferences in future cases. This observation corroborates the 
initial study [19], in which 79% of 131 participants were shown to deviate from their 
initial responses in subsequent cases. 

The errors shown in AOFU, could be either privacy violations or losses of functionality. 
A privacy violation occurs when the system grants an app access to a protected 
resource, contrary to the user’s preference, had she been prompted. 
Loss of functionality occurs when the permission system denies access to a protected 

                                                      
3 We report medians because the error rate was not normally distributed among participants. 
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resource, which the user would have otherwise permitted. We consider privacy 
violations to be the more severe type of error, as the user is unable to take back sensitive 
information once an app has acquired it and transmitted it to a remote server. However, 
loss of functionality is still undesirable because those errors might incentivize the user 
to be overly permissive in order to regain that functionality. From our data, we found 
that 66.67% of AOFU errors were privacy violations; the remaining 33.33% were losses 
in functionality. 

4.1.1 AOFU User Expectations 
Errors in permission systems could arise from a variety of reasons. Mismatched user 
expectations and lack of comprehension are two critical ones, which could hamper any 
permission model’s utility. User comprehension is critical because users may make 
suboptimal decisions when they do not fully understand permission prompts, hindering 
the ability of the permission system to protect sensitive system resources. Users must 
be able to comprehend the decision they are making and the consequences of their 
choices. Recent work on AOFU has examined the motives behind users’ decisions and 
how it varies between categories of applications, as well as how people adapt their 
behavior to the new model [3, 2, 1]. 

In our study, the participants had, on average, 5 years of experience with Android. This 
indicates that most of our participants have experienced both install-time 
permissions—the permission model prior to Android 6.0, released in 2015—and 
runtime “ask-on-first-use” permission prompts. The majority of participants said they 
noticed the shift to AOFU prompts, and they were aware that these prompts are a way 
to ask the user for consent to share data with an app. A large minority of participants 
(40%), however, had an inadequate understanding of how AOFU works, which could 
substantially hinder that permission model’s effectiveness in protecting user data. 

Four out of the 37 participants expressed doubts about the rationale behind the prompts. 
Rather than seeing permission prompts as a way for users to regulate access to their 
sensitive data, these participants viewed these prompts as a mechanism to extract more 
information from them: 

“When I see prompts, I feel like they want to know something about me, not that 
they want to protect anything.” (P21) 
One possible explanation is that some users grew accustomed to install-time prompts, 
and subsequently perceived the change to runtime prompts as a new way for Android 
to collect user data. Although it is impractical to project how prevalent this sentiment 
is in the general population, we cannot reject its existence. Hence, more work is needed 
to measure its impact and explore the potential solutions. 

A third (31.4%) of our participants were not aware that responding to an AOFU prompt 
results in a blanket approval (or denial) that carries forward to all the app’s future uses 
of the requested resource. Most participants believed that responses were only valid for 
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a certain amount of time, such as just for that session or just that single request. This 
misconception significantly hinders AOFU’s ability to correctly anticipate the user’s 
preferences in future occurrences. Again, this observation raises the question of 
whether users would respond differently if they had a more accurate understanding of 
how AOFU works: 

“[I] didn’t know that granting a permission carries forward in the future until 
otherwise changed. [I] expected permissions to be for just that one use.” (P25) 

It is clear that granting blanket approval to sensitive resources is not what users expect 
all the time. On the other hand, had our participants been asked for their input on every 
permission request, they would have received a prompt once every 4 seconds—
involving the user more frequently has practical limitations. How, then, can we best 
project users’ privacy preferences to future scenarios without overwhelming them with 
prompts? 

4.2 Classifier Accuracy 
During the week-long study period, each participant was subject to two operational 
phases of the contextual permission system: (a) the initial learning phase, where 
participant responses to prompts were used to re-train the SVM classifier according to 
each individual’s preferences, and (b) the steady-state validation phase, where 
responses to prompts were collected to measure the accuracy of the classifier’s 
decisions. 

As previously discussed in our section on bootstrapping, we use weighted reservoir 
sampling during the learning phase to prioritize prompting for the most commonly 
observed instances of application:permission:visibility combinations. During the 
validation phase, participants received the same prompts for random combinations of 
features. This ensured that we collected validation results both for previously-
encountered and new combinations. We placed a maximum limit of 3 prompts per 
combination in order to further improve prompt diversity and coverage. After 
presenting participants with prompts, the instrumentation recorded the response and 
the corresponding decision produced by the classifier. Using participant responses to 
prompts as ground-truth, we measured the classifier’s accuracy during the validation 
phase. From our sample of 37 participants, we had to exclude 6 of them due to a cache 
coherency bug that was discovered after the pilot, which degraded classifier 
performance. For the remainder of this section, our results are drawn from the 
remaining sample of 31, unless otherwise noted. 

Taken as a whole, these 31 participants responded to 640 total prompts in the validation 
phase. Our contextual permission model produced a median accuracy of 90%, 
compared to 80% under AOFU for the same population. The classifier reduced AOFU’s 
error rate by 50%, with the majority of classifier errors consisting of privacy violations 
(i.e., access granted when the user would have denied it). 
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4.2.1 Offline Learning 
We were curious whether the accuracy of our system could be improved through the 
use of offline learning, which would require much more computing power. Using 
participant responses to permission prompts, we analyzed how an offline SVM 
classifier would perform. We implemented the SVM model using the KSVM module in 
R. We performed this analysis on data from all 37 participants, using leave-one-out 
cross-validation to evaluate how the offline classifier would perform for each participant. 

The offline model had a median accuracy of 94.74% across the 37 participants. By 
comparison, AOFU had an 80% accuracy for the same population. This represents a 
75% error reduction in the offline contextual model compared to AOFU. These 
numbers corroborate our prior findings [19]. We stress the significance of this 
corroboration, because the results hold in the presence of actual resource denial, which 
was not examined in the prior study. This suggests that users will continue to indicate 
their true preferences in response to prompts, even when those preferences are 
enforced, potentially resulting in unanticipated app behavior. 

We note the accuracy difference between the SVM classifier we integrated into 
Android and the R model (90% vs. 94.74%, respectively). This is due to how the 
Android SVM implementation performs the bootstrapping. This issue is not inherent 
to integrating an SVM classifier into Android. An updated implementation has the 
potential to reach the maximum accuracy observed in the offline model. 

4.2.2 Decision Confidence 
In our initial investigation of classifier-based permission models, we proposed using 
decision confidence to determine for which application: permission:visibility 
combinations users should be prompted in the validation phase [19].  The rate of 
decision confidence is also a measure of the extent to which the classifier has learned 
the user’s preferences. The authors suggested that if this rate does not decrease over 
time, then AOFU will likely be a better system for those users. 

In addition to the prediction, our classifier also produced a class probability, which we 
used as the measure of decision confidence. The classifier produced a binary result 
(i.e., allow or deny) with a cutoff point of 0.5. A decision probability close to the cutoff 
point is a less confident result than one far from it. We used the 95% confidence interval 
as a threshold to determine which decisions were low-confidence and which ones were 
not. 

Only 4 of our field study participants experienced low-confidence classifier decisions 
that caused a prompt to appear after the bootstrapping period. Each of these participants 
had just one such low-confidence prompt appear. These prompts retrained the 
classifier, so the lack of any subsequent low-confidence prompts indicates that the 
classifier produced high-confidence predictions for the same 
application:permission:visibility combination in future cases. 
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The lack of additional training prompts also suggests that users are less likely to 
become habituated to prompting. The 4 participants who each received one additional 
prompt saw a total of 13 prompts (including the 12 prompts during the training phase). 
The remaining 27 participants saw just the 12 training phase prompts. Had our 
participants been subject to AOFU instead of our contextual permission system, they 
would have received a median of 15 prompts each, with a quarter of the participants 
receiving more than 17. Instead, we achieved a 75% error reduction (80% vs. 94.74%) 
and reduced user involvement by 20% (12 prompts vs. 15) through the use of classifier-
driven permissions, compared to AOFU. 

4.3 Impact on App Functionality 
Previous research has shown that many applications do not properly handle cases where 
they are denied permission to access a protected resource [7]. One core objective of our 
work was to measure how apps responded to a stricter permission model than AOFU. 
For example, the system will be unusable if it causes erratic application behavior, 
through the use of dynamically granted permissions. 

In the field study, our platform instrumentation recorded each application crash and its 
corresponding exception message. This information allowed us to identify the possible 
root cause of the crash and whether it was related to resource denial. 

We observed 18 different exceptions classes, such as SecurityException, 
RuntimeException, and NullPointerException. For the remainder of this 
section, we focus on SecurityExceptions, which is directly related to resource 
denials. Almost all (98.96%) of the recorded SecurityExceptions were observed 
on the devices of just two participants. Each of the remaining participants 
encountered, on average, 18 SecurityExceptions during the study period (i.e., 
roughly 3 SecurityExceptions per day per participant). 

Almost all (99.93%) SecurityExceptions were from apps attempting to use the READ 
PHONE STATE permission, which is used to obtain the phone number. In the event of a 
READ PHONE STATE denial, we designed our implementation to not supply the app with 
any phone number data. We had considered supplying a randomly-generated phone 
number, but decided against it due to potential risks, if the generated number were a 
valid phone number belonging to someone else. 

For other denials, we opted to supply apps with generated data to ensure their continued 
operation, without actually exposing private user data. During the study period, the 
classifier denied 10.34% of all permission requests; more than 2,000 denials per 
participant per day. Our implementation, however, only recorded an average of 3 
SecurityExceptions per day per participant. This indicates that passing synthetic but 
well-formed data to apps in lieu of actual private user data does satisfy app functionality 
expectations to a great extent. 

Our results are a positive sign for future permission systems more restrictive than the 
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current AOFU model: permissions can be more restrictive without forcing the user to 
trade off usability for improved privacy protection, as we will show in the next section. 
If apps gracefully handle resource denials, then users are free to specify their privacy 
preferences without risking functionality issues. 

4.4 User Reactions to Prompts 
The use of runtime prompts was initially proposed as a mechanism to obtain better-
informed consent from users. At the end of the study period, we conducted exit 
interviews with each participant in order to determine the extent to which these 
assumptions were met. 

We measured how much participants were surprised to see the prompts during the 
course of the study period (on a scale of 1=“not surprised” to 5=“very surprised”). 
Participants expressed an average rating of 2.7. Almost half (44%) of the participants 
indicated that the prompts surprised them, and among them, 70% were surprised at the 
frequency with which the prompts appeared (up to 4 times per day), though few 
participants expressed annoyance by that frequency (8.33%). 

We asked participants to rate how much they felt that they were in control of resource 
usage (on a scale of 1=“nothing changed compared to default Android” to 5=“very much 
in control”). On average, our participants rated their experience as  
3.44. Almost half (44%) of participants felt that they were in control of the system as a 
result of the prompts. A small number (14%) still felt helpless, regardless of their 
responses to the prompts. They felt resigned that applications would always obtain their 
data. 

Finally, we asked participants how they felt about the transparency provided by the 
new system compared to their previous Android experiences (on a scale of 1=“nothing 
changed” to 5=“improved system transparency”). On average, participants rated system 
transparency in the middle (3). Almost half (47%) of them felt that the new system was 
more transparent. A minority (14%) mentioned wanting to know why apps were 
requesting particular sensitive data types. 

From these observations, we believe that the new contextual permission system is a 
positive step toward improving user awareness. We believe this enables users to make 
better privacy decisions for themselves. Although additional work is needed to address 
some negative sentiments about the current implementation, this system has shown to be 
in the right direction overall. 

4.5 User Reactions to Controls 
Whenever an automated system makes decisions on a user’s behalf, there is the 
inevitable risk that the system will make an incorrect decision.  In our case this can 
cause apps to be over-privileged and risk privacy violations, or be under-privileged and 
risk app failure or reduced functionality. It is important to empower users so they can 
easily audit the decisions that were made on their behalf and to amend those decisions 
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that are not aligned with their preferences. 

In our implementation, we built a user interface based on our prior validated prototypes 
[17]. This system allowed our participants to view automated permissions decisions 
made by the classifier, as well as set privacy preferences with respect to context (i.e., 
the visibility of the requesting app). We included this user interface as part of the 
operating system, as a panel within the system settings app. 

When we on-boarded our participants, we mentioned to them that there was a new 
“permission manager” available, but to avoid priming them, we made sure not to 
emphasize it in any particular way. Our instrumented platform logged every time 
participants interacted with our permission manager to understand how they used it. 

Fifteen of the 37 participants (40.5%) opened the permission manager during the study 
period. Our implementation logged a total of 169 preference changes across these 
participants. Only 6 out of 37 participants (16.2%) changed the settings to be more 
restrictive. Of the adjustments made towards more restrictiveness, the majority were 
for the GET ACCOUNTS permission, which prevents apps from reading the user’s stored 
credential data (e.g., usernames linked to accounts on the device, such as for Google, 
Twitter, etc.). In contrast, the most-common permission that participants adjusted to be 
more permissive was READ CONTACTS. When asked for their motives behind these 
changes, the majority of participants said that functionality was their main reason for 
granting more access, and the sensitivity of data for restricting access. 

We also asked participants to demonstrate how they would change the settings of a 
familiar app to only be able to access their location when they are using that app. We 
based this task off of one of the evaluation tasks we performed in the dashboard 
evaluation experiment [17], where we performed an online study to evaluate a low-
fidelity prototype of the design on which we based our user interface. All but two of 
our participants were able to correctly complete this task using the user interface. 
Participants rated the average ease of the task as 1.15 (on a scale from 1=“very easy” to 
5=“very hard”). We conclude that participants are able to understand the permission 
interface after having used it for a week, and without special instructions. 
The permission manager also enables users to diagnose application crashes that result 
from a resource denial (a feature not present in the original design on which we based 
it). In exit interviews, we examined how participants responded to app crashes in their 
experiences with the device. The majority of participants reported that their first step 
was to restart the app that had crashed. If that was unsuccessful, they would then restart 
their phone. This informs the design of a future system: if an app crashes as a result of 
a resource denial, the platform should clearly communicate this to users or otherwise 
automatically adjust the permissions on their behalf. This could be communicated 
through a dialog or in the notification bar. 
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4.6 Discussion 
The core objective of our 37-person field study was to analyze how a contextually- 
aware, more-restrictive permission model performs in the wild, thereby validating the 
work we had performed in this project. We examined how participants balanced their 
privacy preferences with app functionality. This measures the real-world applicability 
of predicting user privacy decisions with the help of contextual cues surrounding each 
permission request. 

4.6.1 Consequential Denial 
Overall, participants denied 24% of all prompted permission requests. This is a 60% 
reduction in denials compared to the results we attained at the onset of the project, 
when evaluating an offline classifier [19], which did not enforce the user’s decision to 
deny a permission and prompted the user using only hypothetical language: “given the 
choice, would you have denied...?” The decreased denial rate we observed is therefore 
unsurprising given that participants were now actually making a tradeoff between 
functionality and privacy, instead of expressing the degree to which privacy is important 
to them. Our results show that even in the presence of consequential resource denial, 
contextual cues helped to predict users’ privacy decisions and better aligned permission 
settings with their expectations, as compared to the status quo. 

4.6.2 Ask on First Use 
Our results corroborate our initial work [18, 19] in showing that AOFU’s inability to 
capture the context surrounding users’ decisions is a cause of AOFU’s significant error 
rate, and based on our qualitative interviews, provides serious concerns when used in 
high-risk BYOD environments. We also found that a significant portion of participants 
do not have an adequate understanding of how AOFU works, which further limits 
AOFU’s utility: 11 participants did not realize that their prompt responses for AOFU 
are taken as permanent decisions; and 4 participants interpreted the prompts as yet 
another mechanism for collecting user data instead of as a privacy-protection 
mechanism. While the actual impact of these inaccurate beliefs is yet to be explored, 
we believe that these issues need to be fixed in the future, in order to increase Android’s 
ability to predict and protect user data effectively. 

4.6.3 Implementation Limitations 
While our new permission model reduces the number of mis-predictions compared to 
AOFU by 50%, our offline analysis shows that it has the potential to reduce mis-
predictions by 75%. A further examination revealed that the performance difference is 
due to the bootstrapping of the training dataset in the implementation. We note that 
difference is not inherent to running a classifier in Android, and so simply modifying 
our implementation to use these improvements will allow it to achieve the same 
performance. 
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4.6.4 Purpose 
While our new permission model outperforms AOFU, it still does not explain to the 
user why an app needs to use a permission. In our exit interviews, we observed that 14% 
of participants expressed the desire to know why apps made a request in the first place. 
Previous work has shown that app functionality is a key factor in permission decisions 
[3]. If users were properly informed of the functionality requirement behind a 
permission request, then they might be better positioned to make decisions that meet 
their privacy and functionality expectations. 

We believe that there are ways to extend contextual permission systems by 
incorporating the actual purpose of the request.  For example, after introducing AOFU 
permissions, Android started encouraging app developers to provide the reason behind 
their permission requests so that the user can include that in the decision making 
process [5]. Tan et al. [16] showed that similar prompts on iOS actually resulted in 
users being more permissive about granting permissions to apps. Similarly, prior work 
has attempted to use static analysis to automatically incorporate inferred purpose [13, 
12]. 

4.6.5 Resource Denial 
When deploying more-restrictive permission systems, it is important that apps continue 
to run without entering into an error state that results from a resource denial. Users 
should be able to select their privacy preferences with minimal disruption to their 
experience; apps must not be able to force an ultimatum by simply not functioning if a 
permission is denied. Indeed, some participants simply allow most permission requests 
because that ensures their apps run properly. 

The platform, therefore, is responsible to ensure that apps handle resource denials 
gracefully. To their credit, when Android introduced AOFU, it implemented some 
permission denials to appear like a lack of available data or the non-existence of 
hardware, instead of throwing a SecurityException.  In our implementation, we take 
the extra step of supplying apps with generic but well-formed data in the event of a 
denial. We observed that our participants tended to deny more permissions as they 
progressed through the study period (on average 20% denial in the learning phase 
versus a 26% denial rate during the validation phase). Those participants also 
experienced a low rate of app failures due to resource denials. In the future, platforms 
should implement measures to reduce functionality losses stemming from having 
stricter privacy preferences. Failing to do so might otherwise compel users to 
compromise on their privacy preferences for the sake of functionality. 

4.6.6 Remedying Unexpected Behavior 
Regardless of any mitigations to avoid app crashes, it is practical to assume that apps 
will crash when they fail to receive expected data under certain circumstances. One 
way to remedy this is to give users tools to adjust the behavior of the permission system, 
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such as being able to be more permissive to certain applications in certain contexts. 
This approach, however, assumes that (i) users accurately attribute a crash event to a 
resource denial, which may not always be the case, and (ii) users are sufficiently 
technical to identify which resource denial caused the crash. In our implementation of a 
new permission manager, we address the latter assumption by providing users a 
timeline of recent decisions made by the new permission system, which can be used to 
deduce the cause of a crash. 

Our exit interviews showed that few participants would think to check the permission 
manager following an application crash, so clearly more work is needed here. With 
proposals for more-accurate and more-restrictive permission models, it is necessary to 
have usable mechanisms to deal with inevitable crashes due to resource denials. The 
platform should provide mechanisms either to help the user diagnose and resolve such 
crashes, or to automatically fix permissions on a temporary basis and give the user an 
option to make the fix permanent. 

5 CONCLUSION 
Our validation study shows how applications and users respond to a real-world 
deployment of a novel contextually-aware permission model, which we developed 
based on: i) soliciting feedback from “extreme users” in BYOD environment, ii) 
iterative prototyping on the user interface dashboard, and iii) the development of a 
privacy preferences classifier using offline training. The new permission system based 
on these components significantly reduced the error rate from that of the prevailing 
“ask-on-first-use” model first deployed in Android 6.0. While prior work already 
demonstrated ways to increase the protection provided by new permission models, we 
believe our study provides opportunities to further improve performance and address 
practical limitations in actual implementations. 
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Abstract time the data is actually requested, it is not clear whether
We instrumented the Android platform to collect data re- 
garding how often and under what circumstances smart- 
phone applications access protected resources regulated 
by permissions. We performed a 36-person field study to 
explore the notion of “contextual integrity,” i.e., how 
often applications access protected resources when users 
are not expecting it. Based on our collection of 27M data 
points and exit interviews with participants, we exam- 
ine the situations in which users would like the ability to 
deny applications access to protected resources. At least 
80% of our participants would have preferred to prevent 
at least one permission request, and overall, they stated a 
desire to block over a third of all requests. Our findings 
pave the way for future systems to automatically deter- 
mine the situations in which users would want to be con- 
fronted with security decisions. 

 
1 Introduction 
Mobile platform permission models regulate how appli- 
cations access certain resources, such as users’ personal 
information or sensor data (e.g., camera, GPS, etc.). For 
instance, previous versions of Android prompt the user 
during application installation with a list of all the per- 
missions that the application may use in the future; if the 
user is uncomfortable granting any of these requests, her 
only option is to discontinue installation [3]. On iOS and 
Android M, the user is prompted at runtime the first time 
an application requests any of a handful of data types, 
such as location, address book contacts, or photos [34]. 

Research has shown that few people read the Android 
install-time permission requests and even fewer compre- 
hend them [16]. Another problem is habituation: on av- 
erage, Android applications present the user with four 
permission requests during the installation process [13]. 
While iOS users are likely to see fewer permission re- 
quests than Android users, because there are fewer pos- 
sible permissions and they are only displayed the first 

or not users are being prompted about access to data that 
they actually find concerning, or whether they would ap- 
prove of subsequent requests [15]. 

Nissenbaum posited that the reason why most privacy 
models fail to predict violations is that they fail to con- 
sider contextual integrity [32]. That is, privacy violations 
occur when personal information is used in ways that 
defy users’ expectations. We believe that this notion of 
“privacy as contextual integrity” can be applied to smart- 
phone permission systems to yield more effective per- 
missions by only prompting users when an application’s 
access to sensitive data is likely to defy expectations. As 
a first step down this path, we examined how applica- 
tions are currently accessing this data and then examined 
whether or not it complied with users’ expectations. 

We modified Android to log whenever an application 
accessed a permission-protected resource and then gave 
these modified smartphones to 36 participants who used 
them as their primary phones for one week. The pur- 
pose of this was to perform dynamic analysis to deter- 
mine how often various applications are actually access- 
ing protected resources under realistic circumstances. 
Afterwards, subjects returned the phones to our labora- 
tory and completed exit surveys. We showed them vari- 
ous instances over the past week where applications had 
accessed certain types of data and asked whether those 
instances were expected, and whether they would have 
wanted to deny access. Participants wanted to block a 
third of the requests. Their decisions were governed pri- 
marily by two factors: whether they had privacy concerns 
surrounding the specific data type and whether they un- 
derstood why the application needed it. 

We contribute the following: 

To our knowledge, we performed the first field study 
to quantify the permission usage by third-party ap- 
plications under realistic circumstances.
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We show that our participants wanted to block ac- 
cess to protected resources a third of the time. This 
suggests that some requests should be granted by 
runtime consent dialogs, rather than Android’s pre- 
vious all-or-nothing install-time approval approach. 
We show that the visibility of the requesting appli- 
cation and the frequency at which requests occur are 
two important factors which need to be taken into 
account in designing a runtime consent platform. 

 
2 Related Work 
While users are required to approve Android application 
permission requests during installation, most do not pay 
attention and fewer comprehend these requests [16, 26]. 
In fact, even developers are not fully knowledgeable 
about permissions [40], and are given a lot of freedom 
when posting an application to the Google Play Store [7]. 
Applications often do not follow the principle of least 
privilege, intentionally or unintentionally [44]. Other 
work has suggested improving the Android per- mission 
model with better definitions and hierarchical 
breakdowns [8]. Some researchers have experimented 
with adding fine-grained access control to the Android 
model [11]. Providing users with more privacy informa- 
tion and personal examples has been shown to help users 
in choosing applications with fewer permissions [21,27]. 

Previous work has examined the overuse of permissions 
by applications [13, 20], and attempted to identify mali- 
cious applications through their permission requests [36] 
or through natural language processing of application de- 
scriptions [35]. Researchers have also developed static 
analysis tools to analyze Android permission specifica- 
tions [6, 9, 13]. Our work complements this static anal- 
ysis by applying dynamic analysis to permission us- age. 
Other researchers have applied dynamic analysis to 
native (non-Java) APIs among third-party mobile mar- 
kets [39]; we apply it to the Java APIs available to devel- 
opers in the Google Play Store. 

Researchers examined user privacy expectations sur- 
rounding application permissions, and found that users 
were often surprised by the abilities of background ap- 
plications to collect data [25, 42]. Their level of con- cern 
varied from annoyance to seeking retribution when 
presented with possible risks associated with permis- 
sions [15]. Some studies employed crowdsourcing to 
create a privacy model based on user expectations [30]. 

Researchers have designed systems to track or reduce 
privacy violations by recommending applications based 
on users’ security concerns [2, 12, 19, 24, 28, 46–48]. 
Other tools dynamically block runtime permission re- 
quests [37]. Enck et al. found that a considerable number 
of applications transmitted location or other user data to 

third parties without requiring user consent [12]. Horny- 
ack et al.’s AppFence system gave users the ability to 
deny data to applications or substitute fake data [24]. 
However, this broke application functionality for one- 
third of the applications tested. 

Reducing the number of security decisions a user must 
make is likely to decrease habituation, and therefore, it is 
critical to identify which security decisions users should 
be asked to make. Based on this theory, Felt et al. created 
a decision tree to aid platform designers in determining 
the most appropriate permission-granting mechanism for 
a given resource (e.g., access to benign resources should 
be granted automatically, whereas access to dangerous 
resources should require approval) [14]. They concluded 
that the majority of Android permissions can be automat- 
ically granted, but 16% (corresponding to the 12 permis- 
sions in Table 1) should be granted via runtime dialogs. 

Nissenbaum’s theory of contextual integrity can help us 
to analyze “the appropriateness of a flow” in the context 
of permissions granted to Android applications [32]. 
There is ambiguity in defining when an application actu- 
ally needs access to user data to run properly. It is quite 
easy to see why a location-sharing application would 
need access to GPS data, whereas that same request com- 
ing from a game like Angry Birds is less obvious. “Con- 
textual integrity is preserved if information flows accord- 
ing to contextual norms” [32], however, the lack of thor- 
ough documentation on the Android permission model 
makes it easier for programmers to neglect these norms, 
whether intentionally or accidentally [38]. Deciding on 
whether an application is violating users’ privacy can be 
quite complicated since “the scope of privacy is wide- 
ranging” [32]. To that end, we performed dynamic analy- 
sis to measure how often (and under what circumstances) 
applications were accessing protected resources, whether 
this complied with users’ expectations, as well as how 
often they might be prompted if we adopt Felt et al.’s 
proposal to require runtime user confirmation before ac- 
cessing a subset of these resources [14]. Finally, we show 
how it is possible to develop a classifier to automatically 
determine whether or not to prompt the user based on 
varying contextual factors. 

 
3 Methodology 
Our long-term research goal is to minimize habituation 
by only confronting users with necessary security de- 
cisions and avoiding showing them permission requests 
that are either expected, reversible, or unconcerning. Se- 
lecting which permissions to ask about requires under- 
standing how often users would be confronted with each 
type of request (to assess the risk of habituation) and user 
reactions to these requests (to assess the benefit to users). 
In this study, we explored the problem space in two parts: 
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we instrumented Android so that we could collect actual 
usage data to understand how often access to various pro- 
tected resources is requested by applications in practice, 
and then we surveyed our participants to understand the 
requests that they would not have granted, if given the 
option. This field study involved 36 participants over the 
course of one week of normal smartphone usage. In this 
section, we describe the log data that we collected, our 
recruitment procedure, and then our exit survey. 

 
3.1 Tracking Access to Sensitive Data 
In Android, when applications attempt to access pro- 
tected resources (e.g., personal information, sensor data, 
etc.) at runtime, the operating system checks to see 
whether or not the requesting application was previously 
granted access during installation. We modified the An- 
droid platform to add a logging framework so that we 
could determine every time one of these resources was 
accessed by an application at runtime. Because our target 
device was a Samsung Nexus S smartphone, we modified 
Android 4.1.1 (Jellybean), which was the newest version 
of Android supported by our hardware. 

 
3.1.1 Data Collection Architecture 
Our goal was to collect as much data as possible about 
each applications’ access to protected resources, while 
minimizing our impact on system performance. Our data 
collection framework consisted of two main com- 
ponents: a series of “producers” that hooked various An- 
droid API calls and a “consumer” embedded in the main 
Android framework service that wrote the data to a log 
file and uploaded it to our collection server. 

We logged three kinds of permission requests. First, we 
logged function calls checked by checkPermission() 
in the Android Context implementation. Instru- 
menting the Context implementation, instead of the 
ActivityManagerService or PackageManager, al- 
lowed us to also log the function name invoked by the 
user-space application. Next, we logged access to the 
ContentProvider class, which verifies the read and 
write permissions of an application prior to it accessing 
structured data (e.g., contacts or calendars) [5]. Finally, 
we tracked permission checks during Intent transmis- 
sion by instrumenting the ActivityManagerService 
and BroadcastQueue. Intents allow an application to 
pass messages to another application when an activity is 
to be performed in that other application (e.g., opening a 
URL in the web browser) [4]. 

We created a component called Producer that fetches 
the data from the above instrumented points and sends it 
back to the Consumer, which is responsible for logging 
everything reported. Producers are scattered across 
the Android Platform, since permission checks occur in 

multiple places. The Producer that logged the most 
data was in system server and recorded direct func- 
tion calls to Android’s Java API. For a majority of priv- 
ileged function calls, when a user application invokes the 
function, it sends the request to system server via 
Binder. Binder is the most prominent IPC mech- 
anism implemented to communicate with the Android 
Platform (whereas Intents communicate between ap- 
plications). For requests that do not make IPC calls to the 
system server,a Producer is placed in the user appli- 
cation context (e.g., in the case of ContentProviders). 

The Consumer class is responsible for logging data pro- 
duced by each Producer. Additionally, the Consumer 
also stores contextual information, which we describe in 
Section 3.1.2. The Consumer syncs data with the filesys- 
tem periodically to minimize impact on system perfor- 
mance. All log data is written to the internal storage of 
the device because the Android kernel is not allowed to 
write to external storage for security reasons. Although 
this protects our data from curious or careless users, it 
also limits our storage capacity. Thus, we compressed 
the log files once every two hours and upload them to our 
collection servers whenever the phone had an active 
Internet connection (the average uploaded and zipped log 
file was around 108KB and contained 9,000 events). 

Due to the high volume of permission checks we en- 
countered and our goal of keeping system performance 
at acceptable levels, we added rate-limiting logic to the 
Consumer. Specifically, if it has logged permission 
checks for a particular application/permission combina- 
tion more than 10,000 times, it examines whether it did 
so while exceeding an average rate of 1 permission check 
every 2 seconds. If so, the Consumer will only record 
10% of all future requests for this application/permission 
combination. When this rate-limiting is enabled, the 
Consumer tracks these application/permission combina- 
tions and updates all the Producers so that they start 
dropping these log entries. Finally, the Consumer makes 
a note of whenever this occurs so that we can extrapolate 
the true number of permission checks that occurred. 

 
3.1.2 Data Collection 
We hooked the permission-checking APIs so that every 
time the system checked whether an application had been 
granted a particular permission, we logged the name of 
the permission, the name of the application, and the API 
method that resulted in the check. In addition to times- 
tamps, we collected the following contextual data: 

Visibility—We categorized whether the requesting 
application was visible to the user, using four cate- 
gories: running (a) as a service with no user inter- 
action; (b) as a service, but with user interaction via 
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notifications or sounds; (c) as a foreground process, 
but in the background due to multitasking; or (d) as 
a foreground process with direct user interaction. 

• Screen Status—Whether the screen was on/off. 
• Connectivity—The phone’s WiFi connection state. 

Location—The user’s last known coordinates. In 
order to preserve battery life, we collected cached 
location data, rather than directly querying the GPS. 
View—The UI elements in the requesting applica- 
tion that were exposed to the user at the time that a 
protected resource was accessed. Specifically, since 
the UI is built from an XML file, we recorded the 
name of the screen as defined in the DOM. 
History—A list of applications with which the user 
interacted prior to the requesting application. 
Path—When access to a ContentProvider object 
was requested, the path to the specific content. 

 
 

Felt et al. proposed granting most Android permissions 
without a priori user approval and granting 12 permis- 
sions (Table 1) at runtime so that users have contextual 
information to infer why the data might be needed [14]. 
The idea is that, if the user is asked to grant a permission 
while using an application, she may have some under- 
standing of why the application needs that permission 
based on what she was doing. We initially wanted to 
perform experience sampling by probabilistically ques- 
tioning participants whenever any of these 12 permis- 
sions were checked [29]. Our goal was to survey par- 
ticipants about whether access to these resources was ex- 
pected and whether it should proceed, but we were con- 
cerned that this would prime them to the security focus 
of our experiment, biasing their subsequent behaviors. 
Instead, we instrumented the phones to probabilistically 
take screenshots of what participants were doing when 
these 12 permissions were checked so that we could ask 
them about it during the exit survey. We used reservoir 
sampling to minimize storage and performance impacts, 
while also ensuring that the screenshots covered a broad 
set of applications and permissions [43]. 

 
 

Figure 1 shows a screenshot captured during the study 
along with its corresponding log entry. The user was 
playing the Solitaire game while Spotify requested a 
WiFi scan. Since this permission was of interest (Table 
1), our instrumentation took a screenshot. Since Spotify 
was not the application the participant was interacting 
with, its visibility was set to false. The history shows that 
prior to Spotify calling getScanResults(), the user

 

Permission Type Activity 
WRITE SYNC 
SETTINGS 

Change application sync settings 
when the user is roaming 

ACCESS WIFI 
STATE View nearby SSIDs 

INTERNET Access Internet when roaming 
NFC Communicate via NFC 
READ HISTORY 
BOOKMARKS Read users’ browser history 

ACCESS FINE 
LOCATION Read GPS location 

ACCESS COARSE 
LOCATION 

Read network-inferred location 
(i.e., cell tower and/or WiFi) 

LOCATION 
HARDWARE Directly access GPS data 

READ  CALL LOG Read call history 
ADD VOICEMAIL Read call history 
READ SMS Read sent/received/draft SMS 
SEND SMS Send SMS 

Table 1: The 12 permissions that Felt et al. recommend 
be granted via runtime dialogs [14]. We randomly took 
screenshots when these permissions were requested by 
applications, and we asked about them in our exit survey. 

 
 

3.2 Recruitment 
We placed an online recruitment advertisement on 
Craigslist in October of 2014, under the “et cetera jobs” 
section.1 The title of the advertisement was “Research 
Study on Android Smartphones,” and it stated that the 
study was about how people interact with their smart- 
phones. We made no mention of security or privacy. 
Those interested in participating were directed to an on- 
line consent form. Upon agreeing to the consent form, 
potential participants were directed to a screening appli- 
cation in the Google Play store. The screening applica- 
tion asked for information about each potential partici- 
pant’s age, gender, smartphone make and model. It also 
collected data on their phones’ internal memory size and 
the installed applications. We screened out applicants 
who were under 18 years of age or used providers other 
than T-Mobile, since our experimental phones could not 
attain 3G speeds on other providers. We collected data on 
participants’ installed applications so that we could pre- 
install free applications prior to them visiting our labo- 
ratory. (We copied paid applications from their phones, 
since we could not download those ahead of time.) 

We contacted participants who met our screening re- 
quirements to schedule a time to do the initial setup. 
Overall, 48 people showed up to our laboratory, and of 
those, 40 qualified (8 were rejected because our screen- 
ing application did not distinguish some Metro PCS users 

had viewed Solitaire,  the call screen,  the launcher, and    
the list of MMS conversations. 1Approved by the UC Berkeley IRB under protocol #2013-02-4992 
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(a) Screenshot 

 

Name Log Data 
Type API FUNC 
Permission ACCESS  WIFI STATE 
App Name com.spotify.music 
Timestamp 1412888326273 
API Function getScanResults() 
Visibility FALSE 
Screen Status SCREEN ON 
Connectivity NOT CONNECTED 
Location Lat    37.XXX    Long    -122.XXX    - 

1412538686641 (Time it was updated) 
View com.mobilityware.solitaire/.Solitaire 

 
History 

com.android.phone/.InCallScreen 
com.android.launcher/com.android.- 
launcher2.Launcher 
com.android.mms/ConversationList 

(b) Corresponding log entry 
 

Figure 1: Screenshot (a) and corresponding log entry (b) 
captured during the experiment. 

 

from T-Mobile users). In the email, we noted that due to 
the space constraints of our experimental phones, we 
might not be able to install all the applications on their 
existing phones, and therefore they needed to make a 
note of the ones that they planned to use that week. The 
initial setup took roughly 30 minutes and involved trans- 
ferring their SIM cards, helping them set up their Google 
and other accounts, and making sure they had all the ap- 
plications they needed. We compensated each participant 
with a $35 gift card for showing up at the setup session. 
Out of 40 people who were given phones, 2 did not re- 
turn them, and 2 did not regularly use them during the 
study period. Of our 36 remaining participants who used 
the phones regularly, 19 were male and 17 were female; 
ages ranged from 20 to 63 years old (µ = 32, s = 11). 

After the initial setup session, participants used the ex- 
perimental phones for one week in lieu of their normal 
phones. They were allowed to install and uninstall appli- 

cations, and we instructed them to use these phones as 
they would their normal phones. Our logging framework 
kept track of every protected resource accessed by a user- 
level application along with the previously-mentioned 
contextual data. Due to storage constraints on the de- 
vices, our software uploaded log files to our server every 
two hours. However, to preserve participants’ privacy, 
screenshots remained on the phones during the course of 
the week. At the end of the week, each participant 
returned to our laboratory, completed an exit survey, re- 
turned the phone, and then received an additional $100 
gift card (i.e., slightly more than the value of the phone). 

 
3.3 Exit Survey 
When participants returned to our laboratory, they com- 
pleted an exit survey.  The exit survey software ran on a 
laptop in a private room so that it could ask questions 
about what they were doing on their phones during the 
course of the week without raising privacy concerns. We 
did not view their screenshots until participants gave us 
permission. The survey had three components: 

Screenshots—Our software displayed a screenshot 
taken after one of the 12 resources in Table 1 was 
accessed. Next to the screenshot (Figure 2a), we 
asked participants what they were doing on the 
phone when the screenshot was taken (open-ended). 
We also asked them to indicate which of several ac- 
tions they believed the application was performing, 
chosen from a multiple-choice list of permissions 
presented in plain language (e.g., “reading browser 
history,” “sending a SMS,” etc.). After answering 
these questions, they proceeded to a second page of 
questions (Figure 2b). We informed participants at 
the top of this page of the resource that the appli- 
cation had accessed when the screenshot was taken, 
and asked them to indicate how much they expected 
this (5-point Likert scale). Next, we asked, “if you 
were given the choice, would you have prevented 
the app from accessing this data,” and to explain 
why or why not. Finally, we asked for permission 
to view the screenshot. This phase of the exit survey 
was repeated for 10-15 different screenshots per 
participant, based on the number of screenshots 
saved by our reservoir sampling algorithm. 
Locked Screens—The second part of our survey 
involved questions about the same protected re- 
sources, though accessed while device screens were 
off (i.e., participants were not using their phones). 
Because there were no contextual cues (i.e., screen- 
shots), we outright told participants which appli- 
cations were accessing which resources and asked 
them multiple choice questions about whether they 
wanted to prevent this and the degree to which these 

• 

• 
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(a) On the first screen, participants answered questions to estab- 
lish awareness of the permission request based on the screenshot. 

 

 
(b) On the second screen, they saw the resource accessed, stated 
whether it was expected, and whether it should have been blocked. 

Figure 2: Exit Survey Interface 
 
 

behaviors were expected. They answered these 
questions for up to 10 requests, similarly chosen by 
our reservoir sampling algorithm to yield a breadth 
of application/permission combinations. 
Personal Privacy Preferences—Finally, in order 
to correlate survey responses with privacy prefer- 
ences, participants completed two privacy scales. 
Because of the numerous reliability problems with 
the Westin index [45],  we computed the average of 
both Buchanan et al.’s Privacy Concerns Scale 
(PCS) [10] and Malhotra et al.’s Internet Users’ In- 
formation Privacy Concerns (IUIPC) scale [31]. 

After participants completed the exit survey, we re- 
entered the room, answered any remaining questions, 
and then assisted them in transferring their SIM cards 
back into their personal phones. Finally, we compen- 
sated each participant with a $100 gift card. 

Three researchers independently coded 423 responses to 
the open-ended question in the screenshot portion of the 
survey. The number of responses per participant varied, 
as they were randomly selected based on the number of 
screenshots taken: participants who used their phones 
more heavily had more screenshots, and thus answered 
more questions. Prior to meeting to achieve consensus, 
the three coders disagreed on 42 responses, which re- 
sulted in an inter-rater agreement of 90%. Taking into 
account the 9 possible codings for each response, Fleiss’ 
kappa yielded 0.61, indicating substantial agreement. 

 
4 Application Behaviors 
Over the week-long period, we logged 27M application 
requests to protected resources governed by Android per- 
missions. This translates to over 100,000 requests per 
user/day. In this section, we quantify the circumstances 
under which these resources were accessed. We focus on 
the rate at which resources were accessed when partici- 
pants were not actively using those applications (i.e., sit- 
uations likely to defy users’ expectations), access to cer- 
tain resources with particularly high frequency, and the 
impact of replacing certain requests with runtime confir- 
mation dialogs (as per Felt et al.’s suggestion [14]). 

 
4.1 Invisible Permission Requests 
In many cases, it is entirely expected that an application 
might make frequent requests to resources protected by 
permissions. For instance, the INTERNET permission is 
used every time an application needs to open a socket, 
ACCESS FINE LOCATION is used every time the 
user’s location is checked by a mapping application, and 
so on. However, in these cases, one expects users to have 
certain contextual cues to help them understand that these 
applications are running and making these requests. 
Based on our log data, most requests occurred while par- 
ticipants were not actually interacting with those appli- 
cations, nor did they have any cues to indicate that the 
applications were even running. When resources are ac- 
cessed, applications can be in five different states, with 
regard to their visibility to users: 

1. Visible foreground application (12.04%): the user 
is using the application requesting the resource. 

2. Invisible background application (0.70%): due to 
multitasking, the application is in the background. 

3. Visible background service (12.86%): the appli- 
cation is a background service, but the user may be 
aware of its presence due to other cues (e.g., it is 
playing music or is present in the notification bar). 

4. Invisible background service (14.40%): the appli- 
cation is a background service without visibility. 

5. Screen off (60.00%): the application is running, 
but the phone screen is off because it is not in use. 

 

• 
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Table 2: The most frequently requested permissions by 
applications with zero visibility to the user. 

 
 

Combining the 3.3M (12.04% of 27M) requests that were 
granted when the user was actively using the application 
(Category 1) with the 3.5M (12.86% of 27M) requests 
that were granted when the user had other contextual 
cues to indicate that the application was running (Cat- 
egory 3), we can see that fewer than one quarter of all 
permission requests (24.90% of 27M) occurred when the 
user had clear indications that those applications were 
running. This suggests that during the vast majority of 
the time, access to protected resources occurs opaquely 
to users. We focus on these 20.3M “invisible” requests 
(75.10% of 27M) in the remainder of this subsection. 

Harbach et al. found that users’ phone screens are off 
94% of the time on average [22]. We observed that 60% 
of permission requests occurred while participants’ 
phone screens were off, which suggests that permission 
requests occurred less frequently than when participants 
were using their phones. At the same time, certain appli- 
cations made more requests when participants were not 
using their phones: “Brave Frontier Service,” “Microsoft 
Sky Drive,” and “Tile game by UMoni.” Our study col- 
lected data on over 300 applications, and therefore it is 
possible that with a larger sample size, we would ob- 
serve other applications engaging in this behavior. All of 
the aforementioned applications primarily requested AC- 
CESS WIFI STATE and INTERNET. While a definitive 
explanation for this behavior requires examining source 
code or the call stacks of these applications, we hypothe- 
size that they were continuously updating local data from 
remote servers. For instance, Sky Drive may have been 
updating documents, whereas the other two applications 
may have been checking the status of multiplayer games. 

Table 2 shows the most frequently requested permis- 
sions from applications running invisibly to the user (i.e., 
Categories 2, 4, and 5); Table 3 shows the applications 
responsible for these requests (Appendix A lists the 
permissions requested by these applications). We 

Table 3: The applications making the most permission 
requests while running invisibly to the user. 

 

normalized the numbers to show requests per user/day. 
ACCESS NETWORK STATE was most frequently re- 
quested, averaging 31,206 times per user/day—roughly 
once every 3 seconds. This is due to applications con- 
stantly checking for Internet connectivity. However, the 
5,562 requests/day to ACCESS FINE LOCATION and 
1,277 requests/day to ACCESS COARSE LOCATION 
are more concerning, as this could enable detailed track- 
ing of the user’s movement throughout the day. Sim- 
ilarly, a user’s location can be inferred by using AC- 
CESS WIFI STATE to get data on nearby WiFi SSIDs. 

Contextual integrity means ensuring that information 
flows are appropriate, as determined by the user. Thus, 
users need the ability to see information flows. Current 
mobile platforms have done some work to let the user 
know about location tracking. For instance, recent ver- 
sions of Android allow users to see which applications 
have used location data recently. While attribution is a 
positive step towards contextual integrity, attribution is 
most beneficial for actions that are reversible, whereas 
the disclosure of location information is not something 
that can be undone [14]. We observed that fewer than 1% 
of location requests were made when the applications 
were visible to the user or resulted in the displaying of a 
GPS notification icon. Given that Thompson et al. 
showed that most users do not understand that appli- 
cations running in the background may have the same 
abilities as applications running in the foreground [42], 
it is likely that in the vast majority of cases, users do not 
know when their locations are being disclosed. 

This low visibility rate is because Android only shows a 
notification icon when the GPS sensor is accessed, while 
offering alternative ways of inferring location. In 66.1% 
of applications’ location requests, they directly queried 
the TelephonyManager, which can be used to deter- 
mine location via cellular tower information. In 33.3% 
of the cases, applications requested the SSIDs of nearby 
WiFi networks. In the remaining 0.6% of cases, applica- 

 

Permission Requests 
ACCESS NETWORK STATE 31,206 
WAKE LOCK 23,816 
ACCESS  FINE LOCATION 5,652 
GET ACCOUNTS 3,411 
ACCESS  WIFI STATE 1,826 
UPDATE  DEVICE STATS 1,426 
ACCESS COARSE LOCATION 1,277 
AUTHENTICATE ACCOUNTS 644 
READ  SYNC SETTINGS 426 
INTERNET 416 

 

Application Requests 
Facebook 36,346 
Google Location Reporting 31,747 
Facebook Messenger 22,008 
Taptu DJ 10,662 
Google Maps 5,483 
Google Gapps 4,472 
Foursquare 3,527 
Yahoo Weather 2,659 
Devexpert Weather 2,567 
Tile Game(Umoni) 2,239 

 

APROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 
36



 

tions accessed location information using one of three 
built-in location providers: GPS, network, or passive. 
Applications accessed the GPS location provider only 
6% of the time (which displayed a GPS notification).   In 
the other 94% of the time, 13% queried the network 
provider (i.e., approximate location based on nearby cel- 
lular towers and WiFi SSIDs) and 81% queried the pas- 
sive location provider. The passive location provider 
caches prior requests made to either the GPS or network 
providers. Thus, across all requests for location data, the 
GPS notification icon appeared 0.04% of the time. 

While the alternatives to querying the GPS are less ac- 
curate, users are still surprised by their accuracy [17]. 
This suggests a serious violation of contextual integrity, 
since users likely have no idea their locations are being 
requested in the vast majority of cases. Thus, runtime no- 
tifications for location tracking need to be improved [18]. 

Apart from these invisible location requests, we also ob- 
served applications reading stored SMS messages (125 
times per user/day), reading browser history (5 times per 
user/day), and accessing the camera (once per user/day). 
Though the use of these permissions does not necessarily 
lead to privacy violations, users have no contextual cues 
to understand that these requests are occurring. 

 
4.2 High Frequency Requests 
Some permission requests occurred so frequently that a 
few applications (i.e., Facebook, Facebook Messenger, 
Google Location Reporting, Google Maps, Farm Heroes 
Saga) had to be rate limited in our log files (see Section 
3.1.1), so that the logs would not fill up users’ re- 
maining storage or incur performance overhead. Table 4 
shows the complete list of application/permission com- 
binations that exceeded the threshold. For instance, the 
most frequent requests came from Facebook requesting 
ACCESS NETWORK STATE with an average interval 
of 213.88 ms (i.e., almost 5 times per second). 

With the exception of Google’s applications, all rate- 
limited applications made excessive requests for the 
connectivity state. We hypothesize that once these 
applications lose connectivity, they continuously poll the 
system until it is regained. Their use of the 
getActiveNetworkInfo() method results in permis- 
sion checks and returns NetworkInfo objects, which al- 
low them to determine connection state (e.g., connected, 
disconnected, etc.) and type (e.g., WiFi, Bluetooth, cel- 
lular, etc.). Thus, these requests do not appear to be leak- 
ing sensitive information per se, but their frequency may 
have adverse effects on performance and battery life.    It 
is possible that using the ConnectivityManager’s 
NetworkCallback method may be able to fulfill this 
need with far fewer permission checks. 

 

Application / Permission Peak (ms) Avg. (ms) 
com.facebook.katana 213.88 956.97 ACCESS NETWORK STATE 
com.facebook.orca 334.78 1146.05 ACCESS NETWORK STATE 
com.google.android.apps.maps 247.89 624.61 ACCESS NETWORK STATE 
com.google.process.gapps 315.31 315.31 AUTHENTICATE ACCOUNTS 
com.google.process.gapps 898.94 1400.20 WAKE LOCK 
com.google.process.location 176.11 991.46 WAKE LOCK 
com.google.process.location 1387.26 1387.26 ACCESS  FINE LOCATION 
com.google.process.location 373.41 1878.88 GET ACCOUNTS 
com.google.process.location 1901.91 1901.91 ACCESS  WIFI STATE 
com.king.farmheroessaga 284.02 731.27 ACCESS NETWORK STATE 
com.pandora.android 541.37 541.37 ACCESS NETWORK STATE 
com.taptu.streams 1746.36 1746.36 ACCESS NETWORK STATE 

Table 4: The application/permission combinations that 
needed to be rate limited during the study. The last two 
columns show the fastest interval recorded and the aver- 
age of all the intervals recorded before rate-limiting. 

 
 

4.3 Frequency of Data Exposure 
Felt et al. posited that while most permissions can be 
granted automatically in order to not habituate users to 
relatively benign risks, certain requests should require 
runtime consent [14]. They advocated using runtime di- 
alogs before the following actions should proceed: 

1. Reading location information (e.g., using conven- 
tional location APIs, scanning WiFi SSIDs, etc.). 

2. Reading the user’s web browser history. 
3. Reading saved SMS messages. 
4. Sending SMS messages that incur charges, or inap- 

propriately spamming the user’s contact list. 

These four actions are governed by the 12 Android per- 
missions listed in Table 1. Of the 300 applications that 
we observed during the experiment, 91 (30.3%) per- 
formed one of these actions. On average, these permis- 
sions were requested 213 times per hour/user—roughly 
every 20 seconds. However, permission checks occur un- 
der a variety of circumstances, only a subset of which ex- 
pose sensitive resources.  As a result, platform develop- 
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Resource Visible Invisible Total 
Data Exposed Requests Data Exposed Requests Data Exposed Requests 

Location 758 2,205 3,881 8,755 4,639 10,960 
Read SMS data 378 486 72 125 450 611 
Sending SMS 7 7 1 1 8 8 
Browser History 12 14 2 5 14 19 
Total 1,155 2,712 3,956 8,886 5,111 11,598 

 

Table 5: The sensitive permission requests (per user/day) when requesting applications were visible/invisible to users. 
“Data exposed” reflects the subset of permission-protected requests that resulted in sensitive data being accessed. 

 
 

ers may decide to only show runtime warnings to users 
when protected data is read or modified. Thus, we at- 
tempted to quantify the frequency with which permission 
checks actually result in access to sensitive resources for 
each of these four categories. Table 5 shows the number 
of requests seen per user/day under each of these four 
categories, separating the instances in which sensitive 
data was exposed from the total permission requests ob- 
served. Unlike Section 4.1, we include “visible” permis- 
sion requests (i.e., those occurring while the user was ac- 
tively using the application or had other contextual infor- 
mation to indicate it was running). We didn’t observe any 
uses of NFC, READ CALL LOG, ADD VOICEMAIL, 
accessing WRITE SYNC SETTINGS or INTERNET 
while roaming in our dataset. 

Of the location permission checks,  a  majority  were due 
to  requests  for  location  provider  information (e.g., 
getBestProvider() returns the best location 
provider based on application requirements), or check- 
ing WiFi state (e.g., getWifiState() only reveals 
whether WiFi is enabled). Only a portion of the requests 
actually exposed participants’ locations (e.g., 
getLastKnownLocation() or getScanResults() 
exposed SSIDs of nearby WiFi networks). 

Although a majority of requests for the READ SMS per- 
mission exposed content in the SMS store (e.g., Query() 
reads the contents of the SMS store), a considerable por- 
tion simply read information about the SMS store (e.g., 
renewMmsConnectivity() resets an applications’ con- 
nection to the MMS store). An exception to this is the use 
of SEND SMS, which resulted in the transmission of an 
SMS message every time the permission was requested. 

Regarding browser history, both accessing visited URLs 
(getAllVisitedUrls()) and reorganizing bookmark 
folders (addFolderToCurrent()) result in the same 
permission being checked. However, the latter does not 
expose specific URLs to the invoking application. 

Our analysis of the API calls indicated that on average, 
only half of all permission checks granted applications 
access to sensitive data. For instance, across both visible 

and invisible requests, 5,111 of the 11,598 (44.3%) per- 
mission checks involving the 12 permissions in Table 1 
resulted in the exposure of sensitive data (Table 5). 

While limiting runtime permission requests to only the 
cases in which protected resources are exposed will 
greatly decrease the number of user interruptions, the fre- 
quency with which these requests occur is still too great. 
Prompting the user on the first request is also not appro- 
priate (e.g., à la iOS and Android M), because our data 
show that in the vast majority of cases, the user has no 
contextual cues to understand when protected resources 
are being accessed. Thus, a user may grant a request the 
first time an application asks, because it is appropriate in 
that instance, but then she may be surprised to find that 
the application continues to access that resource in other 
contexts (e.g., when the application is not actively used). 
As a result, a more intelligent method is needed to de- 
termine when a given permission request is likely to be 
deemed appropriate by the user. 

 
5 User Expectations and Reactions 
To identify when users might want to be prompted about 
permission requests, our exit survey focused on 
participants’ reactions to the 12 permissions in Table 1, 
limiting the number of requests shown to each 
participant based on our reservoir sampling algorithm, 
which was designed to ask participants about a diverse 
set of permission/application combinations. We col- 
lected participants’ reactions to 673 permission requests 
( 19/participant). Of these, 423 included screenshots 
because participants were actively using their phones 
when the requests were made, whereas 250 permission 
requests were performed while device screens were off.2 

Of the former, 243 screenshots were taken while the re- 
questing application was visible (Category 1 and 3 from 
Section 4.1), whereas 180 were taken while the applica- 
tion was invisible (Category 2 and 4 from Section 4.1). In 
this section, we describe the situations in which requests 

 
2Our first 11 participants did not answer questions about permission 

requests occurring while not using their devices, and therefore the data 
only corresponds to our last 25 participants. 
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defied users’ expectations. We present explanations for 
why participants wanted to block certain requests, the 
factors influencing those decisions, and how expectations 
changed when devices were not in use. 

 
5.1 Reasons for Blocking 
When viewing screenshots of what they were doing 
when an application requested a permission, 30 partic- 
ipants (80% of 36) stated that they would have preferred 
to block at least one request, whereas 6 stated a willing- 
ness to allow all requests, regardless of resource type or 
application. Across the entire study, participants wanted 
to block 35% of these 423 permission requests. When we 
asked participants to explain their rationales for these de- 
cisions, two main themes emerged: the request did not— 
in their minds—pertain to application functionality or it 
involved information they were uncomfortable sharing. 

 
5.1.1 Relevance to Application Functionality 
When prompted for the reason behind blocking a permis- 
sion request, 19 (53% of 36) participants did not believe 
it was necessary for the application to perform its task. 
Of the 149 (35% of 423) requests that participants would 
have preferred to block, 79 (53%) were perceived as be- 
ing irrelevant to the functionality of the application: 

“It wasn’t doing anything that needed my current 
location.” (P1) 
“I don’t understand why this app would do anything 
with SMS.” (P10) 

Accordingly, functionality was the most common reason 
for wanting a permission request to proceed. Out of the 
274 permissible requests, 195 (71% of 274) were per- 
ceived as necessary for the core functionality of the ap- 

plication, as noted by thirty-one (86% of 36) participants: 

“Because it’s a weather app and it needs to know 
where you are to give you weather informa- 
tion.”(P13) 
“I think it needs to read the SMS to keep track of the 
chat conversation.”(P12) 

Beyond being necessary for core functionality, partici- 
pants wanted 10% (27 of 274) of requests to proceed be- 
cause they offered convenience; 90% of these requests 
were for location data, and the majority of those appli- 
cations were published under the Weather, Social, and 
Travel & Local categories in the Google Play store: 

“It selects the closest stop to me so I don’t have to 
scroll through the whole list.” (P0) 

• “This app should read my current location. I’d like 

Thus, requests were allowed when they were expected: 
when participants rated the extent to which each request 
was expected on a 5-point Likert scale, allowable re- 
quests averaged 3.2, whereas blocked requests averaged 
2.3 (lower is less expected). 

 
5.1.2 Privacy Concerns 
Participants also wanted to deny permission requests that 
involved data that they considered sensitive, regardless 
of whether they believed the application actually needed 
the data to function. Nineteen (53% of 36) participants 
noted privacy as a concern while blocking a request, and 
of the 149 requests that participants wanted to block, 49 
(32% of 149) requests were blocked for this reason: 

• “SMS messages are quite personal.” (P14) 
• “It is part of a personal conversation.” (P11) 

“Pictures could be very private and I wouldn’t like 
for anybody to have access.” (P16) 

Conversely, 24 participants (66% of 36) wanted requests 
to proceed simply because they did not believe that the 
data involved was particularly sensitive; this reasoning 
accounted for 21% of the 274 allowable requests: 

“I’m ok with my location being recorded, no con- 
cerns.” (P3) 

• “No personal info being shared.” (P29) 

5.2 Influential Factors 
Based on participants’ responses to the 423 permission 
requests involving screenshots (i.e., requests occurring 
while they were actively using their phones), we quan- 
titatively examined how various factors influenced their 
desire to block some of these requests. 

Effects of Identifying Permissions on Blocking: In the 
exit survey, we asked participants to guess the permis- 
sion an application was requesting, based on the screen- 
shot of what they were doing at the time. The real an- 
swer was among four other incorrect answers. Of the 149 
cases where participants wanted to block permission 
requests, they were only able to correctly state what per- 
mission was being requested 24% of the time; whereas 
when wanting a request to proceed, they correctly iden- 
tified the requested permission 44% (120 of 274) of the 
time. However, Pearson’s product-moment test on the 
average number of blocked requests per user and the av- 
erage number of correct answers per user3 did not yield a 
statistically significant correlation (r=-0.171,  p<0.317). 

Effects of Visibility on Expectations: We were particu- 
larly interested in exploring if permission requests orig- 
inating from foreground applications (i.e., visible to  the 

for it to, so I won’t have to manually enter in my zip    
code / area.” (P4) 3Both measures were normally distributed. 

• 

• 

• 

• 

• 
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user) were more expected than ones from background ap- 
plications. Of the 243 visible permission requests that we 
asked about in our exit survey, participants correctly 
identified the requested permission 44% of the time, and 
their average rating on our expectation scale was 3.4. On 
the other hand, participants correctly identified the re- 
sources accessed by background applications only 29% 
of the time (52 of 180), and their average rating on our 
expectation scale was 3.0. A Wilcoxon Signed-Rank test 
with continuity correction revealed a statistically sig- 
nificant difference in participants’ expectations between 
these two groups (V=441.5, p<0.001). 

 
Effects of Visibility on Blocking: Participants wanted 
to block 71 (29% of 243) permission requests originat- 
ing from applications running in the foreground, whereas 
this increased by almost 50% when the applications were 
in the background invisible to them (43% of 180). We 
calculated the percentage of denials for each partici- 
pant, for both visible and invisible requests. A Wilcoxon 
Signed-Rank test with continuity correction revealed a 
statistically significant difference (V=58, p<0.001). 

 
Effects of Privacy Preferences on Blocking: Partici- 
pants completed the Privacy Concerns Scale (PCS) [10] 
and the Internet Users’ Information Privacy Concerns 
(IUIPC) scale [31]. A Spearman’s rank test yielded no 
statistically significant correlation between their privacy 
preferences and their desire to block permission requests 
(r = 0.156, p<0.364). 

 
Effects of Expectations on Blocking: We examined 
whether participants’ expectations surrounding requests 
correlated with their desire to block them. For each par- 
ticipant, we calculated their average Likert scores for 
their expectations and the percentage of requests that 
they wanted to block. Pearson’s product-moment test 
showed a statistically significant correlation (r= 0.39, 
p<0.018). The negative correlation shows that partici- 
pants were more likely to deny unexpected requests. 

 
 

5.3 User Inactivity and Resource Access 
In the second part of the exit survey, participants an- 
swered questions about 10 resource requests that oc- 
curred when the screen was off (not in use). Overall, 
they were more likely to expect resource requests to oc- 
cur when using their devices (µ = 3.26 versus µ = 2.66). 
They also stated a willingness to block almost half of 
the permission requests (49.6% of 250) when not in use, 
compared to a third of the requests that occurred when 
using their phones (35.2% of 423). However, neither of 
these differences was statistically significant. 

6 Feasibility of Runtime Requests 
Felt et al. posited that certain sensitive permissions (Ta- 
ble 1) should require runtime consent [14], but in Section 
4.3 we showed that the frequencies with which applica- 
tions are requesting these permissions make it impracti- 
cal to prompt the user each time a request occurs. In- 
stead, the major mobile platforms have shifted towards a 
model of prompting the user the first time an application 
requests access to certain resources: iOS does this for a 
selected set of resources, such as location and contacts, 
and Android M does this for “dangerous” permissions. 

How many prompts would users see, if we added runtime 
prompts for the first use of these 12 permissions? We an- 
alyzed a scheme where a runtime prompt is displayed at 
most once for each unique triplet of (application, permis- 
sion, application visibility), assuming the screen is on. 
With a naïve scheme, our study data indicates our partic- 
ipants would have seen an average of 34 runtime prompts 
(ranging from 13 to 77, s =11). As a refinement, we pro- 
pose that the user should be prompted only if sensitive 
data will be exposed (Section 4.3), reducing the average 
number of prompts to 29. 

Of these 29 prompts, 21 (72%) are related to location. 
Apple iOS already prompts users when an application ac- 
cesses location for the first time, with no evidence of user 
habituation or annoyance. Focusing on the remaining 
prompts, we see that our policy would introduce an aver- 
age of 8 new prompts per user: about 5 for reading SMS, 
1 for sending SMS, and 2 for reading browser history. 
Our data covers only the first week of use, but as we only 
prompt on first use of a permission, we expect that the 
number of prompts would decline greatly in subsequent 
weeks, suggesting that this policy would likely not intro- 
duce significant risk of habituation or annoyance. Thus, 
our results suggest adding runtime prompts for reading 
SMS, sending SMS, and reading browser history would 
be useful given their sensitivity and low frequency. 

Our data suggests that taking visibility into account is 
important. If we ignore visibility and prompted only once 
for each pair of (application, permission), users would 
have no way to select a different policy for when the 
application is visible or not visible. In contrast, “ask- on-
first-use” for the triple (application, permission, visi- 
bility) gives users the option to vary their decision based 
on the visibility of the requesting application. We evalu- 
ated these two policies by analyzing the exit survey data 
(limited to situations where the screen was on) for cases 
where the same user was asked twice in the survey about 
situations with the same (application, permission) pair or 
the same (application, permission, visibility) triplet, to 
see whether the user’s first decision to block or not 
matched their subsequent decisions.  For the former pol- 
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icy, we saw only 51.3% agreement; for the latter, agree- 
ment increased to 83.5%. This suggests that the (applica- 
tion, permission, visibility) triplet captures many of the 
contextual factors that users care about, and thus it is rea- 
sonable to prompt only once per unique triplet. 

A complicating factor is that applications can also run 
even when the user is not actively using the phone. In 
addition to the 29 prompts mentioned above, our data 
indicates applications would have triggered an average 
of 7 more prompts while the user was not actively using 
the phone:  6 for location and one for reading SMS. It is 
not clear how to handle prompts when the user is not 
available to respond to the prompt: attribution might be 
helpful, but further research is needed. 

 
6.1 Modeling Users’ Decisions 
We constructed several statistical models to examine 
whether users’ desire to block certain permission re- 
quests could be predicted using the contextual data that 
we collected. If such a relationship exists, a classifier 
could determine when to deny potentially unexpected 
permission requests without user intervention. Con- 
versely, the classifier could be used to only prompt the 
user about questionable data requests. Thus, the response 
variable in our models is the user’s choice of whether to 
block the given permission request. Our predictive vari- 
ables consisted of the information that might be available 
at runtime: permission type (with the restriction that the 
invoked function exposes data), requesting application, 
and visibility of that application. We constructed sev- 
eral mixed effects binary logistic regression models to 
account for both inter-subject and intra-subject effects. 

 
6.1.1 Model Selection 
In our mixed effects models, permission types and the 
visibility of the requesting application were fixed effects, 
because all possible values for each variable existed in 
our data set. Visibility had two values: visible (the user 
is interacting with the application or has other contextual 
cues to know that it is running) and invisible. Permission 
types were categorized based on Table 5. The application 
name and the participant ID were included as random ef- 
fects, because our survey data did not have an exhaustive 
list of all possible applications a user could run, and the 
participant has a non-systematic effect on the data. 

Table 6 shows two goodness-of-fit metrics: the Akaike 
Information Criterion (AIC) and Bayesian Information 
Criterion (BIC). Lower values for AIC and BIC repre- 
sent better fit. Table 6 shows the different parameters 
included in each model. We found no evidence of inter- 
action effects and therefore did not include them. Visual 
inspection of residual plots of each model did not reveal 
obvious deviations from homoscedasticity or normality. 

 

Predictors AIC BIC Screen State 
UserCode 490.60 498.69 Screen On 
Application 545.98 554.07 Screen On 
Application 
UserCode 491.86 503.99 Screen On 

Permission 
Application 
UserCode 

 
494.69 

 
527.05 

 
Screen On 

Visibility 
Application 
UserCode 

 
481.65 

 
497.83 

 
Screen On 

Permission 
Visibility 
Application 
UserCode 

 
484.23 

 
520.64 

 
Screen On 

UserCode 245.13 252.25 Screen Off 
Application 349.38 356.50 Screen Off 
Application 
UserCode 238.84 249.52 Screen Off 

Permission 
Application 
UserCode 

 
235.48 

 
263.97 

 
Screen Off 

Table 6: Goodness-of-fit metrics for various mixed ef- 
fects logistic regression models on the exit survey data. 

 
 

We initially included the phone’s screen state as another 
variable. However, we found that creating two separate 
models based on the screen state resulted in better fit than 
using a single model that accounted for screen state as a 
fixed effect. When the screen was on, the best fit was a 
model including application visibility and appli- cation 
name, while controlling for subject effects. Here, fit 
improved once permission type was removed from the 
model, which shows that the decision to block a permis- 
sion request was based on contextual factors: users do 
not categorically deny permission requests based solely 
on the type of resource being accessed (i.e., they also ac- 
count for their trust in the application, as well as whether 
they happened to be actively using it). When the screen 
was off, however, the effect of permission type was rela- 
tively stronger. The strong subject effect in both models 
indicates that these decisions vary from one user to the 
next. As a result, any classifier developed to automati- 
cally decide whether to block a permission at runtime (or 
prompt the user) will need to be tailored to that particular 
user’s needs. 

 
6.1.2 Predicting User Reactions 
Using these two models, we built two classifiers to make 
decisions about whether to block any of the sensitive per- 
mission requests listed in Table 5. We used our exit sur- 
vey data as ground truth, and used 5-fold cross-validation 
to evaluate model accuracy. 
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We calculated the receiver operating characteristic 
(ROC) to capture the tradeoff between true-positive and 
false-positive rate. The quality of the classifier can be 
quantified with a single value by calculating the area un- 
der its ROC curve (AUC) [23]. The closer the AUC gets 
to 1.0, the better the classifier is. When screens were on, 
the AUC was 0.7, which is 40% better than the random 
baseline (0.5). When screens were off, the AUC was 0.8, 
which is 60% better than a random baseline. 

 
7 Discussion 
During the study, 80% of our participants deemed at least 
one permission request as inappropriate. This violates 
Nissenbaum’s notion of “privacy as contextual integrity” 
because applications were performing actions that defied 
users’ expectations [33]. Felt et al. posited that users may 
be able to better understand why permission requests are 
needed if some of these requests are granted via runtime 
consent dialogs, rather than Android’s previous install- 
time notification approach [14]. By granting permissions 
at runtime, users will have additional contextual infor- 
mation; based on what they were doing at the time that 
resources are requested, they may have a better idea of 
why those resources are being requested. 

We make two primary contributions that system design- 
ers can use to make more usable permissions systems. 
We show that the visibility of the requesting application 
and the frequency at which requests occur are two 
important factors in designing a runtime consent plat- 
form. Also, we show that “prompt-on-first-use” per 
triplet could be implemented for some sensitive permis- 
sions without risking user habituation or annoyance. 

Based on the frequency with which runtime permissions 
are requested (Section 4), it is infeasible to prompt users 
every time. Doing so would overwhelm them and lead to 
habituation. At the same time, drawing user attention to 
the situations in which users are likely to be concerned 
will lead to greater control and awareness. Thus, the 
challenge is in acquiring their preferences by confronting 
them minimally and then automatically inferring when 
users are likely to find a permission request unexpected, 
and only prompting them in these cases. Our data sug- 
gests that participants’ desires to block particular permis- 
sions were heavily influenced by two main factors: their 
understanding of the relevance of a permission request to 
the functionality of the requesting application and their 
individual privacy concerns. 

Our models in Section 6.1 showed that individual char- 
acteristics greatly explain the variance between what dif- 
ferent users deem appropriate, in terms of access to pro- 
tected resources. While responses to privacy scales failed 
to explain these differences, this was not a surprise, as the 

disconnect between stated privacy preferences and be- 
haviors is well-documented (e.g., [1]). This means that 
in order to accurately model user preferences, the sys- 
tem will need to learn what a specific user deems in- 
appropriate over time. Thus, a feedback loop is likely 
needed: when devices are “new,” users will be required 
to provide more input surrounding permission requests, 
and then based on their responses, they will see fewer 
requests in the future. Our data suggests that prompting 
once for each unique (application, permission, applica- 
tion visibility) triplet can serve as a practical mechanism 
in acquiring users’ privacy preferences. 

Beyond individual subject characteristics (i.e., personal 
preferences), participants based their decisions to block 
certain permission requests on the specific applications 
making the requests and whether they had contextual 
cues to indicate that the applications were running (and 
therefore needed the data to function). Future systems 
could take these factors into account when deciding 
whether or not to draw user attention to a particular re- 
quest. For example, when an application that a user is not 
actively using requests access to a protected resource, she 
should be shown a runtime prompt. Our data indicates 
that, if the user decides to grant a request in this situation, 
then with probability 0.84 the same decision will hold in 
future situations where she is actively using that same 
application, and therefore a subsequent prompt may not 
be needed. At a minimum, platforms need to treat 
permission requests from background applications 
differently than those originating from foreground ap- 
plications. Similarly, applications running in the back- 
ground should use passive indicators to communicate 
when they are accessing particular resources. Platforms 
can also be designed to make decisions about whether or 
not access to resources should be granted based on 
whether contextual cues are present, or at its most basic, 
whether the device screen is even on. 

Finally, we built our models and analyzed our data within 
the framework of what resources our participants be- 
lieved were necessary for applications to correctly func- 
tion. Obviously, their perceptions may have been incor- 
rect: if they better understood why a particular resource 
was necessary, they may have been more permissive. 
Thus, it is incumbent on developers to adequately com- 
municate why particular resources are needed, as this im- 
pacts user notions of contextual integrity. Yet, no mecha- 
nisms in Android exist for developers to do this as part of 
the permission-granting process. For example, one could 
imagine requiring metadata to be provided that explains 
how each requested resource will be used, and then auto- 
matically integrating this information into permission re- 
quests. Tan et al. examined a similar feature on iOS that 
allows developers to include free-form text in runtime 
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permission dialogs and observed that users were more 
likely to grant requests that included this text [41]. Thus, 
we believe that including succinct explanations in these 
requests would help preserve contextual integrity by pro- 
moting greater transparency. 

In conclusion, we believe this study was instructive in 
showing the circumstances in which Android permission 
requests are made under real-world usage. While prior 
work has already identified some limitations of deployed 
mobile permissions systems, we believe our study can 
benefit system designers by demonstrating several ways 
in which contextual integrity can be improved, thereby 
empowering users to make better security decisions. 
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[46] XU, R., SAÏDI, H., AND ANDERSON, R. Aurasium: Practical 
policy enforcement for android applications. In Proc. of the 21st 
USENIX Sec. Symp. (Berkeley, CA, USA, 2012), Security’12, 
USENIX Association, pp. 27–27. 

[47] ZHANG, Y., YANG, M., XU, B., YANG, Z., GU, G., NING, P., 
WANG, X. S., AND ZANG, B. Vetting undesirable behaviors in 
android apps with permission use analysis. In Proc. of the ACM 
Conf. on Comp. and Comm. Sec. (New York, NY, USA, 2013), 
CCS ’13, ACM, pp. 611–622. 

[48] ZHU, H., XIONG, H., GE, Y., AND CHEN, E. Mobile app 
recommendations with security and privacy awareness. In Pro- 
ceedings of the 20th ACM SIGKDD International Conference on 
Knowledge Discovery and Data Mining (New York, NY, USA, 
2014), KDD ’14, ACM, pp. 951–960. 

 
A Invisible requests 
Following list shows the set of applications that have requested the most 
number of permissions while executing invisibly to the user and the 
most requested permission types by each respective application. 

 
Facebook App— ACCESS NETWORK STATE, ACCESS FINE 
LOCATION,  ACCESS  WIFI  STATE  ,WAKE  LOCK, 
Google Location—WAKE LOCK, ACCESS FINE LOCATION, 
GET ACCOUNTS, ACCESS COARSE LOCATION, 
Facebook Messenger—ACCESS NETWORK STATE, ACCESS 
WIFI STATE, WAKE LOCK, READ PHONE STATE, 

• Taptu DJ—ACCESS NETWORK STATE, INTERNET, NFC 
Google Maps—ACCESS NETWORK STATE, GET AC- 
COUNTS, WAKE LOCK, ACCESS FINE LOCATION, 
Google (Gapps)—WAKE LOCK, ACCESS FINE LOCA- 
TION, AUTHENTICATE ACCOUNTS, ACCESS NETWORK 
STATE, 
Fouraquare—ACCESS WIFI STATE, WAKE LOCK, ACCESS 
FINE LOCATION, INTERNET, 
Yahoo Weather—ACCESS FINE LOCATION, ACCESS NET- 
WORK STATE, INTERNET, ACCESS WIFI STATE, 

• 

• 

• 

• 

• 
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Devexpert Weather—ACCESS NETWORK STATE, INTER- 
NET, ACCESS FINE LOCATION, 
Tile Game(Umoni)—ACCESS NETWORK STATE, WAKE 
LOCK, INTERNET, ACCESS WIFI STATE, 

 
Following is the most frequently requested permission type by appli- 
cations while running invisibly to the user and the applications who 
requested the respective permission type most. 

 
ACCESS NETWORK STATE— Facebook App, Google Maps, 
Facebook Messenger, Google (Gapps), Taptu - DJ 
WAKE LOCK—Google (Location), Google (Gapps), Google 
(GMS), Facebook App, GTalk. 
ACCESS FINE LOCATION—Google (Location), Google 
(Gapps), Facebook App, Yahoo Weather, Rhapsody (Music) 
GET ACCOUNTS—Google    (Location), Google    (Gapps), 
Google (Login), Google (GM), Google (Vending) 
ACCESS WIFI STATE—Google (Location), Google (Gapps), 
Facebook App, Foursqaure, Facebook Messenger 
UPDATE DEVICE STATS—Google (SystemUI), Google (Loca- 
tion), Google (Gapps) 
ACCESS COARSE LOCATION—Google (Location), Google 
(Gapps), Google (News), Facebook App, Google Maps 
AUTHENTICATE ACCOUNTS—Google (Gapps), Google (Lo- 
gin), Twitter, Yahoo Mail, Google (GMS) 
READ  SYNC  SETTINGS—Google (GM), Google ( GMS ), an- 
droid.process.acore, Google (Email), Google (Gapps) 
INTERNET—Google (Vending), Google (Gapps), Google (GM), 
Facebook App, Google (Location) 

 
B Distribution of Requests 
The following graph shows the distribution of requests throughout a 
given day averaged across the data set. 
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C Permission Type Breakdown 
This table lists the most frequently used permissions during the study 
period. (per user / per day) 

 

Permission Type Requests 
ACCESS NETWORK STATE 41077 
WAKE LOCK 27030 
ACCESS  FINE LOCATION 7400 
GET ACCOUNTS 4387 
UPDATE  DEVICE STATS 2873 
ACCESS  WIFI STATE 2092 
ACCESS COARSE LOCATION 1468 
AUTHENTICATE ACCOUNTS 1335 
READ  SYNC SETTINGS 836 
VIBRATE 740 
INTERNET 739 
READ SMS 611 
READ  PHONE STATE 345 
STATUS BAR 290 
WRITE  SYNC SETTINGS 206 
CHANGE COMPONENT ENABLED STATE 197 
CHANGE  WIFI STATE 168 
READ CALENDAR 166 
ACCOUNT MANAGER 134 
ACCESS ALL DOWNLOADS 127 
READ EXTERNAL STORAGE 126 
USE CREDENTIALS 101 
READ LOGS 94 

 

D User Application Breakdown 
This table shows the applications that most frequently requested access 
to protected resources during the study period. (per user / per day) 
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Application Name Requests 
facebook.katana 40041 
google.process.location 32426 
facebook.orca 24702 
taptu.streams 15188 
google.android.apps.maps 6501 
google.process.gapps 5340 
yahoo.mobile.client.android.weather 5505 
tumblr 4251 
king.farmheroessaga 3862 
joelapenna.foursquared 3729 
telenav.app.android.scout us 3335 
devexpert.weather 2909 
ch.bitspin.timely 2549 
umonistudio.tile 2478 
king.candycrushsaga 2448 
android.systemui 2376 
bambuna.podcastaddict 2087 
contapps.android 1662 
handcent.nextsms 1543 
foursquare.robin 1408 
qisiemoji.inputmethod 1384 
devian.tubemate.home 1296 
lookout 1158 
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Abstract—Current smartphone operating systems regulate ap- 
plication permissions by prompting users on an ask-on-first-use 
basis. Prior research has shown that this method is ineffective 
because it fails to account for context: the circumstances under 
which an application first requests access to data may be vastly 
different than the circumstances under which it subsequently 
requests access. We performed a longitudinal 131-person field 
study to analyze the contextuality behind user privacy decisions to 
regulate access to sensitive resources.  We built a classifier to make 
privacy decisions on the user’s behalf by detecting when context 
has changed and, when necessary, inferring privacy preferences 
based on the user’s past decisions and behavior.  Our goal is to 
automatically grant appropriate resource requests without 
further user intervention, deny inappropriate requests, and only 
prompt the user when the system is uncertain of the user’s 
preferences. We show that our approach can accurately predict 
users’ privacy decisions 96.8% of the time, which is a four-fold 
reduction in error rate compared to current systems. 

 
I. INTRODUCTION 

One of the roles of a mobile application platform is to help 
users avoid unexpected or unwanted use of their personal data 
[12]. Mobile platforms currently use permission systems to 
regulate access to sensitive resources, relying on user prompts 
to determine whether a third-party application should be 
granted or denied access to data and resources. One critical 
caveat in this approach, however, is that mobile platforms seek 
the consent of the user the first time a given application 
attempts to access a certain data type and then enforce the user’s 
decision for all subsequent cases, regardless of the 
circumstances surrounding each access. For example, a user 
may grant an application access to location data because she is 
using location-based features, but by doing this, the ap- 
plication can subsequently access location data for behavioral 
advertising, which may violate the user’s preferences. 

Earlier versions of Android (5.1 and below) asked users to 
make privacy decisions during application installation as an all-
or-nothing ultimatum (ask-on-install): either all requested 
permissions are approved or the application is not installed. 
Previous research showed that few people read the requested 
permissions at install-time and even fewer correctly under- 
stood them [17]. Furthermore, install-time permissions do not 
present users with the context in which those permission will 

be exercised, which may cause users to make suboptimal de- 
cisions not aligned with their actual preferences. For example, 
Egelman et al. observed that when an application requests 
access to location data without providing context, users are just 
as likely to see this as a signal for desirable location-based 
features as they are an invasion of privacy [11]. Asking users to 
make permission decisions at runtime—at the moment when 
the permission will actually be used by the application— 
provides more context (i.e., what they were doing at the time 
that data was requested) [15]. However, due to the high 
frequency of permission requests, it is not feasible to prompt 
the user every time data is accessed [43]. 

In iOS and Android M, the user is now prompted at runtime 
the first time an application attempts to access one of a set of 
“dangerous” permission types (e.g., location, contacts, etc.). 
This ask-on-first-use (AOFU) model is an improvement over 
ask-on-install (AOI). Prompting users the first time an applica- 
tion uses one of the designated permissions gives users a better 
sense of context: their knowledge of what they were doing 
when the application first tried to access the data should help 
them determine whether the request is appropriate. Despite that, 
Wijesekera et al. showed that AOFU fails to meet user 
expectations over half the time. This is because AOFU does not 
account for the varying contexts of future requests [43]. 

The notion of contextual integrity suggests that many per- 
mission models fail to protect user privacy because they fail   to 
account for the context surrounding data flows [34]. That is, 
privacy violations occur when sensitive resources are used in 
ways that defy users’ expectations. We posit that more effective 
permission models must focus on whether resource accesses are 
likely to defy users’ expectations in a given context—not 
simply whether the application was authorized to receive data 
the first time it asked for it. Thus, the challenge for system 
designers is to correctly infer when the context surrounding a 
data request has changed, and whether the new context is likely 
to be deemed “appropriate” or “inappropriate” for the given 
user. Dynamically regulating data access based on the context 
requires more user involvement to understand users’ contextual 
preferences. If users are asked to make privacy decisions too 
frequently, or under circumstances that are seen as low-risk, 
they may become habituated to future, more serious, privacy 
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decisions. On the other hand, if users are asked to make too few 
privacy decisions, they may find that the system has acted 
against their wishes. Thus, our goal is to automatically 
determine when and under what circumstances the system 
presents users with runtime prompts. 

To this end, we collected real-world Android usage data in 
order to explore whether we could infer users’ future privacy 
decisions based on their past privacy decisions, contextual 
circumstances surrounding applications’ data requests, and 
users’ behavioral traits. We conducted a field study where 131 
participants used Android phones that were instrumented to 
gather data over an average of 32 days per participant. Also, 
their phones periodically prompted them to make privacy 
decisions when applications used sensitive permissions, and we 
logged their decisions. Overall, participants wanted to block 
60% of these requests. We found that AOFU yields 84% 
accuracy, i.e., its policy agrees with participants’ prompted 
responses 84% of the time. AOI achieves only 25% accuracy. 
We designed new techniques that use machine learning to 
automatically predict how users would respond to prompts, so 
that we can avoid prompting them in most cases, thereby re- 
ducing user burden. Our classifier uses the user’s past decisions 
in similar situations to predict their response to a particular 
permission request.  The classifier outputs a prediction and a 
confidence score; if the classifier is sufficiently confident, 
we use its prediction, otherwise we prompt the user for their 
decision. We also incorporate information about the user’s 
behavior in other security and privacy situations to make 
inferences about their preferences: whether they have a screen 
lock activated, how often they visit HTTPS websites, and so 
on. We show that our scheme achieves 96.8% accuracy (a 4 
reduction in error rate over AOFU) with significantly less user 
involvement than the status quo. 

The specific contributions of our work are the following: 
• We conducted the first known large-scale study on quan- 

tifying the effectiveness of ask-on-first-use permissions. 
• We show that a significant portion of the studied par- 

ticipants make contextual decisions on  permissions—  the 
foreground application and the visibility of the 
permission-requesting application are strong cues partic- 
ipants used to make contextual decisions. 

• We show how a machine-learned model can incorporate 
context and better predict users’ privacy decisions. 

• To our knowledge, we are the first to use passively 
observed traits to infer future privacy decisions on a case- 
by-case basis at runtime. 

II. RELATED WORK 

There is a large body of work demonstrating that install- time 
prompts fail because users do not understand or pay attention 
to them [19], [23], [42]. When using install-time prompts, users 
often do not understand which permission types correspond to 
which sensitive resources and are surprised by the ability of 
background applications to collect information [17], [22], [41]. 
Applications also transmit a large amount of location or other  
sensitive data to third parties without 

user consent [12]. When possible risks associated with these 
requests are revealed to users, their concerns range from being 
annoyed to wanting to seek retribution [16]. 

To mitigate some of these problems, systems have been 
developed to track information flows across the Android 
system [12], [18], [24] or introduce finer-grained permission 
control into Android [2], [21], [39], but many of these solu- 
tions increase user involvement significantly, which can lead to 
habituation. Additionally, many of these proposals are useful 
only to the most-motivated or technically savvy users. For 
example, many such systems require users to configure com- 
plicated control panels, which many are unlikely to do [45]. 
Other approaches involve static analysis in order to better 
understand how applications could request information [4], [8], 
[14], but these say little about how applications actually use 
information. Dynamic analysis improves upon this by allowing 
users to see how often this information is requested in real time 
[12], [40], [43], but substantial work is likely needed to present 
that information to average users in a meaningful way. 
Solutions that require user interruptions need to also minimize 
user intervention in order to prevent habituation. 

Other researchers have developed recommendation systems 
to recommend applications based on users’ privacy prefer- 
ences [46], or detect privacy violations and suggest prefer- 
ences based on crowdsourcing [1], [27], but such approaches 
often do not take individual user differences into account 
without significant user intervention. Systems have also been 
developed to predict what users would share on mobile social 
networks [7], which suggests that future systems could 
potentially infer what information users would be willing to 
share with third-party applications. By requiring users to self- 
report privacy preferences, clustering algorithms have been 
used to define user privacy profiles even in the face of diverse 
preferences [26], [38]. However, researchers have found that 
the order in which information is requested has an impact on 
prediction accuracy [44], which could mean that such systems 
are only likely to be accurate when they examine actual user 
behavior over time (as opposed to one-time self-reports). 

Liu et al. clustered users by privacy preferences and used ML 
techniques to predict whether to allow or deny an ap- 
plication’s request for sensitive user data [29]. Their dataset, 
however, was collected from a set of highly privacy-conscious 
individuals: those who choose to install a permission-control 
mechanism. Furthermore, the researchers removed “conflict- 
ing” user decisions, in which a user chose to deny a permission 
for an application, and then later chose to allow it. These 
conflicting decisions, however, do not represent noisy data. 
They occur nearly 50% of the time in the real world [43], and 
accurately reflect the nuances of user privacy preferences. 
Models must therefore account for them. In fact, previous work 
found that users commonly reassess privacy preferences after 
usage [3]. Liu et al. also expect users to make 10% of permis- 
sion decisions manually, which, based on field study results 
from Wijesekera et al., would result in being prompted every 
three minutes [43]. This is obviously impractical. Our goal is to 
design a system that can automatically make decisions on 
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behalf of users, that accurately models their preferences, while 
also not over-burdening them with repeated requests. 

Closely related to this work, Liu et al. [28] performed a field 
study to measure the effectiveness of a Privacy Assistant that 
offers recommendations to users on privacy settings that they 
could adopt based on each user’s privacy profile—the privacy 
assistant predicts what the user might want based on the 
inferred privacy profile and static analysis of the third-party 
application. While this approach increased user awareness on 
resource usage, the recommendations are static: they do not 
consider each application’s access to sensitive data on a case- 
by-case basis. Such a coarse-grained approach goes against 
previous work suggesting that people do want to vary their 
decisions based on contextual circumstances [43]. A blanket 
approval or denial of a permission to a given application car- 
ries a considerable risk of privacy violations or loss of desired 
functionality. In contrast, our work uses dynamic analysis to 
infer the appropriateness of each given request by considering 
the surrounding contextual cues and how the user has behaved 
in similar situations in the past. As with Liu et al., their dataset 
was also collected from privacy-conscious and considerably 
tech-savvy individuals, which may limit the generalization of 
their results. The field study we conduct in our work uses a 
more representative sample. 

Nissenbaum’s theory of contextual integrity suggests that 
permission models should focus on information flows that are 
likely to defy user expectations [34]. There are three main 
components involved in deciding the appropriateness of a flow 
[6]: the context in which the resource request is made, the role 
played by the requesting application under the current context, 
and the type of resource being accessed. Neither previous nor 
currently deployed permission models take all three factors into 
account. This model could be used to improve permission 
models by automatically granting access to data when the 
system determines that it is appropriate, denying access when 
it is inappropriate, and prompting the user only when a decision 
cannot be made automatically, thereby reducing user burden. 

Access Control Gadgets (ACGs) were proposed as a mech- 
anism to tie sensitive resource access to certain UI elements 
[32], [35]–[37]. Authors posit that such an approach will 
increase user expectations, as a significant portion of partici- 
pants expected a UI interaction before a sensitive resource us- 
age, giving users an implicit mechanism to control access and 
increasing awareness on resource usage. The biggest caveat in 
this approach is that tying a UI interaction to each sensitive 
resource access is impossible in practice because resources are 
accessed at a high frequency [43], and because many legitimate 
resource accesses occur without user initiation [15]. 
Wijesekera et al. performed a field study [43] to operationalize 
the notion of “context,” to allow an operating system to dif- 
ferentiate between appropriate and inappropriate data requests 
by a single application for a single data type. They found that 
users’ decisions to allow a permission request significantly 
correlated with that application’s visibility. They posit that this 
visibility is a strong contextual cue that influences users’ 

 

Permission Type Activity 
ACCESS_WIFI_STATE View  nearby SSIDs 
NFC Communicate  via NFC 
READ_HISTORY_BOOKMARKS Read users’ browser history 
ACCESS_FINE_LOCATION Read  GPS location 

ACCESS_COARSE_LOCATION 
Read network-inferred location 
(i.e., cell tower and/or  WiFi) 

LOCATION_HARDWARE Directly access GPS  data 
READ_CALL_LOG Read  call history 
ADD_VOICEMAIL Read  call history 
READ_SMS Read sent/received/draft SMS 
SEND_SMS Send SMS 
*INTERNET Access Internet when roaming 
*WRITE_SYNC_SETTINGS 

Change  application sync 
settings  when roaming 

TABLE I 
FELT ET AL. PROPOSED GRANTING A SELECT SET OF 12 PERMISSIONS AT 

RUNTIME  SO  THAT  USERS  HAVE  CONTEXTUAL  INFORMATION  TO  INFER WHY 
THE DATA  MIGHT  BE  NEEDED [15]. OUR  INSTRUMENTATION  OMITS THE LAST 
TWO PERMISSION TYPES (INTERNET & WRITE_SYNC_SETTINGS) AND  RECORDS  

INFORMATION  ABOUT  THE OTHER 10. 
 
 
 

responses to permission prompts. They also observed that 
privacy decisions were highly nuanced, demonstrating that a 
one-size-fits-all model is unlikely to be sufficient; a given 
information flow may be deemed appropriate by one user but 
not by another user. They recommended applying machine 
learning in order to infer individual users’ privacy preferences. 
To achieve this, research is needed to determine what factors 
affect user privacy decisions and how to use those factors to 
make privacy decisions on the user’s behalf. While we cannot 
automatically capture everything involved in Nissenbaum’s 
notion of context, we can try to detect when context  has likely 
changed (insofar as to decide whether a different privacy 
decision should be made for the same application and data 
type), by seeing whether the circumstances surrounding a data 
request are similar to previous  requests. 

III. METHODOLOGY 

We collected data from 131 participants to understand what 
factors could be used to infer whether a permission request is 
likely to be deemed appropriate by the user. 

Previous work by Felt et al. made the argument that certain 
permissions are appropriate for runtime prompts, because they 
protect sensitive resources and because viewing the prompt at 
runtime imparts additional contextual information about why 
an application might need the permission [15]. Similarly, 
Thompson et al. showed that other permission requests could 
be replaced with audit mechanisms, because they represent 
either reversible changes or are sufficiently low risk to not 
warrant habituating the user to prompts [41]. We collected 
information about 10 of the 12 permissions Felt et al. suggest 
are best-suited for runtime prompts. We omitted INTERNET and 
WRITE_SYNC_SETTINGS, because those permissions only 
warrant runtime prompts if the user is roaming and we did not 
expect any participant to be roaming during the study period, 
and focused on the remaining 10 permission types (Table I). 
While there are many other sensitive permissions beyond this 
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Fig. 1.  A screenshot of an ESM prompt. 
 
 

set, Felt et al. concluded that the others are best handled by 
other mechanisms (e.g., install-time prompts, ACGs, etc.). 

We used the Experience Sampling Method (ESM) to collect 
ground truth data about users’ privacy preferences [20]. ESM 
involves repeatedly questioning participants in situ about a 
recently observed event; in this case, we probabilistically asked 
them about an application’s recent access to data on their 
phone, and whether they would have permitted it if given the 
choice. We treated participants’ responses to these ESM probes 
as our main dependent variable (Figure 1). 

We also instrumented participants’ smartphones to obtain 
data about their privacy-related behaviors and the frequency 
with which applications accessed protected resources. The 
instrumentation required a set of modifications to the Android 
operating system and flashing a custom Android version onto 
participants’ devices. To facilitate such experiments, the Uni- 
versity of Buffalo offers non-affiliated academic researchers 
access to the PhoneLab panel [33], which consists of more than 
200 participants. All of these participants had LG Nexus 5 
phones running Android 5.1.1 and the phones were periodi- 
cally updated over-the-air (OTA) with custom modifications to 
the Android operating system. Participants can decide when to 
install the OTA update, which marks their entry into new ex- 
periments. During our experiment period, different participants 
installed the OTA update with our instrumentation at different 
times, thus we have neither data on all PhoneLab participants 
nor data for the entire period. Our OTA update was available to 
participants for a period of six weeks, between February 2016 
and March 2016. At the end of the study period, we emailed 
participants a link to an exit survey to collect demographic 

TABLE II 
INSTRUMENTED EVENTS THAT  FORM  OUR  FEATURE  SET 

 
 
 

information. Our study received institutional review board (IRB) 
approval.1 

A. Instrumentation 
The goal of our instrumentation was to collect as much 

runtime and behavioral data as could be observed from the An- 
droid platform, with minimal performance cost. We collected 
three categories of data: behavioral information, runtime infor- 
mation, and user decisions. We made no modifications to any 
third-party application code; our dynamic analysis techniques 
could be used on any third-party Android application. 

Table II contains the complete list of behavioral and runtime 
events our instrumentation recorded. The behavioral data fell 
under several categories, all chosen based on several hypothe- 
ses that we had about the types of behaviors that might cor- 
relate with privacy preferences: web-browsing habits, screen 
locking behavior, third-party application usage behavior, audio 
preferences, call habits, camera usage patterns, and behavior 
related to security settings. For example, we hypothesized that 
someone who manually locks their device screen are more 
privacy-conscious than someone who lets it time out. 

We also collected runtime information about the context of 
each permission request, including the visibility of the request- 
ing application at the time of request, what the user was doing 
when the request was made (i.e., the name of the foreground 
application), and the exact Android API function invoked by 
the application to determine what information was requested. 
The visibility of an application reflects the extent to which the 

1Approved by the UC Berkeley IRB under protocol #2013-02-4992 

Type Event Recorded 
 
 
 
 
 
 
 

Behavioral 
Instrumentation 

Changing developer options 
Opening/Closing security settings 
Changing  security settings 
Enabling/Disabling NFC 
Changing  location mode 
Opening/Closing location settings 
Changing  screen-lock type 
Use of two factor  authentication 
Log initial settings information 
User locks the  screen 
Screen  times out 
App locks the  screen 
Audio  mode changed 
Enabling/Disabling speakerphone 
Connecting/Disconnecting headphones 
Muting  the phone 
Taking  an audio call 
Taking  a picture (front- vs. rear-facing) 
Visiting an HTTPS link in  Chrome 
Responding to a notification 
Unlocking  the phone 

Runtime 
Information 

An application changing the  visibility 
Platform switches to a new  activity 

Permission 
Requests 

An app requests a sensitive  permission 
ESM prompt for a selected permission 
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user was likely aware that the application was running; if the 
application was in the foreground, the user had cues that the 
application was running, but if it was in the background, then 
the user was likely not aware that the application was running 
and therefore might find the permission request unexpected— 
some background services can still be visible to the user due to 
on-screen notification or other cues that could be perceptible. 
We monitored processes’ memory priority levels to determine 
the visibility of all Android processes. We also collected 
information about which Android Activity was active in the 
application.2 

Once per day we probabilistically selected one of these 
permission requests and prompted the user about them at 
runtime (Figure 1). We used weighted reservoir sampling to 
select a permission request to prompt about. We weight the 
combination of application, permission, visibility based on 
their frequency of occurrence seen by the instrumentation; the 
most-frequent combination has a higher probability of being 
shown to participants using ESM. We prompted participants   a 
maximum of three times for each unique combination. We 
tuned the wording of the prompt to make it clear that the request 
had just occurred and their response would not affect the system 
(a deny response would not actually deny data). These 
responses serve as the ground truth for all the analysis 
mentioned in the remainder of the paper. 

The intuition behind using weighted reservoir sampling is to 
focus more on the frequently occurring permission requests 
over rare ones. Common permission requests contribute most 
to user habituation due to their high frequency. Thus, it is more 
important to learn about user privacy decisions on highly 
frequent permission requests over the rare ones, which might 
not risk user habituation or annoyance (and the context of rare 
requests may be less likely to change). 

B. Exit Survey 
At the end of our data collection period, PhoneLab staff 

emailed participants a link to our online exit survey, which they 
were incentivized to complete with a raffle for two $100 
Amazon gift cards. The survey gathered demographic informa- 
tion and qualitative information on their privacy preferences. 
Of the 203 participants in our experiment, 53 fully completed 
the survey, and another 14 partially completed it. Of the 53 
participants to fully complete the survey, 21 were male, 31 were 
female, and 1 undisclosed. Participants ranged from 20 to 72 
years of age (µ = 40.83, CJ = 14.32). Participants identified 
themselves as 39.3% staff, 32.1% students, 19.6% faculty, and 
9% other. Only 21% of the survey respondents had an academic 
qualification in STEM, which suggests that the sample is 
unlikely to be biased towards tech-savvy users. 

C. Summary 
We collected data from February 5 to March 17, 2016. 

PhoneLab allows any participant to opt-out of an experiment at 
any time. Thus, of the 203 participants who installed our 

2An Android Activity represents the application screen and UI elements 
currently exposed to the user. 

custom Android build, there were 131 who used it for more than 
20 days. During the study period, we collected 176M events 
across all participants (31K events per participant/day). Our 
dataset consists of 1,686 unique applications and 13K unique 
activities. Participants also responded to 4,636 prompts during 
the study period. We logged 96M sensitive permission requests, 
which translates to roughly one sensitive permission request 
every 6 seconds per participant. For the remainder of the paper, 
we only consider the data from the 131 participants who used 
the system for at least 20 days, which corresponds to 4,224 
ESM prompts. 

Of the 4,224 prompts, 55.3% were in response to AC- 
CESS_WIFI_STATE, when trying to access WiFi SSID informa- 
tion that could be used to infer the location of the smartphone; 
21.0%, 17.3%, 5.08%, 0.78%, and 0.54% were from accessing 
location directly, reading SMS, sending SMS, reading call 
logs, and accessing browser history, respectively. A total of 
137 unique applications triggered prompts during the study 
period. Of the 4,224 prompts, participants wanted to deny 
60.01% of them, and 57.65% of the prompts were shown when 
the requesting application was running in the foreground or 
the user had visual cues that the application was running (e.g., 
notifications). A Wilcoxon signed rank test with continuity 
correction revealed a statistically significant difference in par- 
ticipants’ desire to allow or deny a permission request based 
on the visibility of the requesting application (p < 0.0152, 
r = 0.221), which corroborates previous findings [43]. 

IV. TYPES  OF USERS 

We hypothesized that there may be different types of users 
based on how they want to disclose their private information to 
third parties. It is imperative to identify these different sub-
populations since different permission models affect users 
differently based on their privacy preferences; performance 
numbers averaged across a user population could be mislead- 
ing since different sub-populations might react differently to 
the same permission  model. 

While our study size was too small to effectively apply 
clustering techniques to generate classes of users, we did find a 
meaningful distinction using the denial rate (i.e., the percentage 
of prompts to which users wanted to deny access). We 
aggregated users by their denial rate in 10% increments and 
examined how these different participants considered the 
surrounding contextual circumstances in their decisions. 

We discovered that application visibility was a significant 
factor for users with a denial rate of 10–90%, but not for users 
with a denial rate of 0–10% or 90–100%.  We call the former 
group Contextuals, as they seem to care about the surrounding 
context (i.e., they make nuanced decisions, allowing or denying 
a permission request based on whether they had contextual cues 
that indicated that the requesting application was running), and 
the latter group Defaulters, because they seem to simply always 
allow or always deny requests, regardless of contextual cues. 

Defaulters accounted for 53% of 131 participants and Con- 
textuals accounted for 47%. A Wilcoxon signed-rank test with 
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to this prompt is thereafter applied whenever the same ap- 
plication requests the same permission. As of March 2017, only 
34.1% of Android users have Android Marshmallow or a higher 
version [10], and among these Marshmallow users, those who 
upgraded from a previous version only see runtime permission 
prompts for freshly-installed applications. 

For the remaining 65.9% of users, the system policy is ask-
on-install (AOI), which automatically allows all runtime 
permission requests. During the study period, all of our partic- 
ipants had AOI running as the default permission model. Be- 
cause all runtime permission requests are allowed in AOI, any 
of our ESM prompts that the user wanted to deny correspond to 
mispredictions under the AOI model (i.e., the AOI model 
granted access to the data against users’ actual preferences). 

Fig. 2.   Histogram of users based on their denial rate. Defaulters tended to 
allow or deny almost all requests without regard for contextual cues, whereas 
Contextuals considered the visibility of the requesting application. 

 
Policy Contextuals Defaulters Overall Prompts 
AOI 44.11% 6.00% 25.00% 0.00 
AOFU-AP 64.49% 93.33% 84.61% 12.34 
AOFU-APV 64.28% 92.85% 83.33% 15.79 
AOFU-AF PV 66.67% 98.95% 84.61% 16.91 
AOFU-VP 58.65% 94.44% 78.04% 6.43 
AOFU-VA 63.39% 93.75% 84.21% 12.24 
AOFU-A 64.27% 93.54% 83.33% 9.06 
AOFU-P 57.95% 95.45% 82.14% 3.84 
AOFU-V 52.27% 95.34% 81.48% 2.00 

TABLE III 
THE  ACCURACY  AND  NUMBER  OF  DIFFERENT  POSSIBLE  ASK-ON-FIRST- USE 

COMBINATIONS. A: APPLICATION REQUESTING THE PERMISSION, P: 
PERMISSION TYPE REQUESTED, V: VISIBILITY OF THE APPLICATION REQUESTING 
THE PERMISSION, AF : APPLICATION RUNNING IN THE FOREGROUND WHEN THE 

REQUEST IS  MADE. AOFU-AP IS  THE  POLICY USED IN ANDROID 
MARSHMALLOW I.E., ASKING (PROMPTING) THE USER FOR EACH UNIQUE 

APPLICATION, PERMISSION COMBINATION. THE TABLE ALSO  DIFFERENTIATES  
POLICY NUMBERS BASED  ON  THE  SUBPOPULATION 

OF Contextuals, Defaulters, AND ACROSS ALL USERS. 
 
 
 

continuity correction revealed a statistically significant differ- 
ence in Contextuals’ responses based on requesting application 
visibility (p < 0.013, r = 0.312), while for Defaulters there 
was no statistically significant difference (p = 0.227). That is, 
Contextuals used visibility as a contextual cue, when deciding 
the appropriateness of a given permission request, whereas 
Defaulters did not vary their decisions based on this cue. 
Figure 2 shows the distribution of users based on their denial 
rate. Vertical lines indicate the borders between Contextuals 
and Defaulters. 

In the remainder of the paper, we use our Contextuals– 
Defaulters categorization to measure how current and pro- 
posed models affect these two sub-populations, issues unique 
to these sub-populations, and ways to address these issues. 

V. ASK-ON-FIRST-USE PERMISSIONS 

Ask-on-first-use (AOFU) is the current Android permission 
model, which was first adopted in Android 6.0 (Marshmallow). 
AOFU prompts the user whenever an application requests a 
dangerous permission for the first time [9]; the user’s response 

Table III shows the expected median accuracy for AOI, as well 
as several other possible variants that we discuss in this section. 
The low median accuracy for Defaulters was due to the 
significant number of people who simply denied most of the 
prompts. The prompt count is zero for AOI because it does not 
prompt the user during runtime; users are only shown 
permission prompts at installation. 

More users will have AOFU in the future, as they upgrade 
to Android 6.0 and beyond. To the best of our knowledge, 
no prior work has looked into quantifying the effectiveness of 
AOFU systematically; this section presents analysis of AOFU 
based on prompt responses collected from participants and cre- 
ates a baseline against which to measure our system’s improve- 
ment. We simulate how AOFU performs through our ESM 
prompt responses. Because AOFU is deterministic, each user’s 
response to the first prompt for each application:permission 
combination tells us how the AOFU model would respond for 
subsequent requests by that same combination. For participants 
who responded to more than one prompt for each combination, 
we can quantify how often AOFU would have been correct for 
subsequent requests. Similarly, we also measure the accuracy 
for other possible policies that the platform could use to decide 
whether to prompt the user. For example, the status quo is 
for the platform to prompt the user for each new applica- 
tion:permission combination, but how would accuracy (and the 
number of prompts shown) change if the policy were to prompt 
on all new combinations of application:permission:visibility? 
Table III shows the expected median accuracy3 for each policy 
based on participants’ responses. For each policy, A represents 
the application requesting the permission, P rep- resents the 
requested permission, V represents the visibility of the 
requesting application, and AF represents the application 
running in the foreground when a sensitive permission 
request was made. For instance, AOFU-AP is the policy where 
the user will be prompted for each new instance of an 
application:permission combination, which the Android 
6.0 model employs. The last column shows the number of 
runtime prompts a participant would see under each policy over 
the duration of the study, if that policy were to be 

 
3The presented numbers—except for average prompt count, which was nor- 

mally distributed—are median values, because the distributions were skewed. 
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implemented. Both AOFU-AP and AOFU-AF PV show about 
a 4.9 reduction in error rate compared to AOI; AOFU-AF PV 
would require more prompts over AOFU-AP, though yields a 
similar overall accuracy rate. 4 Moving forward, we focus our 
analysis only on AOFU-AP (i.e., the current standard). 

Instances where the user wants to deny a permission and the 
policy instead allows it (false positives) are privacy violations, 
because they expose more information to the application than 
the user desires.  Instances where the user wants to allow a 
permission, but the policy denies it (false negatives) are 
functionality losses. This is because the application is likely 
to lose some functionality that the user desired when it is 
incorrectly denied a permission. Privacy violations and func- 
tionality losses were approximately evenly split between the 
two categories for AOFU-AP: median privacy violations and 
median functionality losses were 6.6% and 5.0%, respectively. 
The AOFU policy works well for Defaulters because, by 
definition, they tend to be consistent after their initial responses 
for each combination. In contrast, the decisions of Contextuals 
vary due to other factors beyond just the requesting application 
and the requested permission type. Hence, the accuracy of 
AOFU for Contextuals is significantly lower than the accuracy 
for Defaulters. This distinction shows that learning privacy 
preferences for a significant portion of users requires a deeper 
understanding of factors affecting their decisions, such as 
behavioral tendencies and contextual cues. As Table III sug- 
gests, superficially adding more contextual variables (such as 
visibility of the requesting application) does not necessarily 
help to increase the accuracy of the AOFU policy. 

The context in which users are prompted under AOFU might 
be a factor affecting its ability to predict subsequent instances. 
In previous work [43], we found that the visibility of the 
requesting application is a strong contextual cue users use to 
vary their decisions. During the study period, under the AOFU- 
AP policy, 60% of the prompts could have occurred when    the 
requesting application was visible to the participant—these 
prompts had an accuracy of 83.3% in predicting subsequent 
instances. In instances where participants were prompted when 
the requesting application was running invisibly to the user, 
AOFU-AP had an accuracy of 93.7% in predicting subsequent 
instances. A Wilcoxon signed-ranks test, however, did not 
reveal a statistically significant difference (p< 0.3735). 

Our estimated accuracy numbers for AOFU may be inflated 
because AOFU in deployment (Android 6 and above) does not 
filter permission requests that do not reveal any sensitive 
information. For example, an application can request the 
ACCESS_FINE_LOCATION permission to check whether the 
phone has a specific location provider, which does not leak 
sensitive information. Our AOFU simulation uses the invoked 
function to determine if sensitive data was actually accessed, 
and only prompts in those cases (in the interest of avoiding any 
false positives), a distinction that AOFU in Android does not 
make. Thus, an Android user would see a permission request 

prompt when the application examines the list of location 
providers, and if the permission is granted, would not subse- 
quently see prompts when location data is actually captured. 
Previous work found that 79% of first-time permission requests 
do not reveal any sensitive information [43], and nearly 33.9% 
of applications that request these sensitive permission types do 
not access sensitive data at all. The majority of AOFU prompts 
in Marshmallow are therefore effectively false positives, which 
incorrectly serve as the basis for future decisions. Given this, 
AOFU’s average accuracy is likely less than the numbers 
presented in Table III. We therefore consider our estimates of 
AOFU to be an upper bound. 

VI. LEARNING PRIVACY PREFERENCES 

Table III shows that a significant portion of users (the 47% 
classified as Contextuals) make privacy decisions that depend 
on factors other than the application requesting the permission, 
the permission requested, and the visibility of the requesting 
application. To make decisions on behalf of the user, we must 
understand what other factors affect their privacy decisions. We 
built a machine learning model trained and tested on our labeled 
dataset of 4,224 prompts collected from 131 users over the 
period of 42 days. This approach is equivalent to training a 
model based on runtime prompts from hundreds of users and 
using it to predict those users’ future decisions. 

We focus the scope of this work by making the following as- 
sumptions. We assume that the platform, i.e., the Android OS, 
is trusted to manage and enforce permissions for applications. 
We assume that applications must go through the platform’s 
permission system to gain access to protected resources. We 
assume that we are in a non-adversarial machine-learning 
setting wherein the adversary does not attempt to circumvent 
the machine-learned classifier by exploiting knowledge of its 
decision-making process—though we do present a discussion 
of this problem and potential solutions in Section IX. 

A. Feature Selection 
Using the behavioral, contextual, and aggregate features 

shown in Table II, we constructed 16K candidate features, 
formed by combinations of specific applications and actions. 
We then selected 20 features by measuring Gini importance 
through random forests [30], significance testing for corre- 
lations, and singular value decomposition (SVD). SVD was 
particularly helpful to address the sparsity and high dimension- 
ality issues caused by features generated based on application 
and activity usage. Table IV lists the 20 features used in the rest 
of this work. 

The behavioral features (B) that proved predictive relate to 
browsing habits, audio/call traits, and locking behavior. All 
behavioral features were normalized per day/user and were 
scaled in the actual model. Features relating to browsing habits 
included the number of websites visited, the proportion of 
HTTPS-secured links visited, the number of downloads,  

4While AOFU-AF faulters and Conte PV has greater median accuracy when examining De- 
separately, because the distributions are skewed,  the 

and proportion of sites visited that requested location access. 
Features relating to locking behavior included whether users 

xtuals 
median overall accuracy is identical to AOFU-AP when combining the groups. employed  a  passcode/PIN/pattern,  the  frequency  of   screen 
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Feature Set Contextuals Defaulters Overall 
R1 69.30% 95.80% 83.71% 
R2  + B 69.48% 95.92% 83.93% 
R2  + A 75.45% 99.20% 92.24% 

TABLE V 
THE MEDIAN ACCURACY OF THE MACHINE LEARNING MODEL FOR 

DIFFERENT  FEATURE  GROUPS  ACROSS  DIFFERENT  SUB POPULATIONS. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

TABLE IV 
THE  COMPLETE  LIST  OF  FEATURES  USED  IN  THE ML MODEL 

EVALUATION. ALL THE NUMERICAL VALUES IN THE BEHAVIORAL GROUP  
ARE NORMALIZED PER  DAY.  WE  USE  ONE-HOT  ENCODING  FOR 

CATEGORICAL VARIABLES. WE NORMALIZED NUMERICAL VARIABLES BY 
MAKING EACH  ONE  A  Z-SCORE RELATIVE  TO  ITS  OWN AVERAGE. 

 
 
 

unlocking, the proportion of times they allowed the screen to 
timeout instead of pressing the lock button, and the average 
amount of time spent unlocking the screen. Features under the 
audio and call category were the frequency of audio calls, the 
amount of time they spend on audio calls, and the proportion of 
time they spent on silent mode. 

Our runtime features (R1/R2) include the requesting appli- 
cation’s visibility, permission requested, and time of day of the 
request. Initially, we included the user ID to account for user-
to-user variance, but as we discuss later, we subsequently 
removed it. Surprisingly, the application requesting the per- 
mission was not predictive, nor were other features based on 
the requesting application, such as application popularity. 

Different users may have different ways of perceiving 
privacy threats posed by the same permission request. To 
account for this, the learning algorithm should be able to 
determine how each user perceives the appropriateness of a 
given request in order to accurately predict future decisions. To 
quantify the difference between users in how they perceive the 
threat posed by the same set of permission requests, we 
introduced a set of aggregate features that could be measured 
at runtime and that may partly capture users’ privacy 
preferences. We compute the average denial rate for each 
unique combination of application:permission:visibility (A1) 
and of applicationF 5:permission:visibility (A2). These 
aggregate features indicate how the user responded to previous 
prompts associated with that combination. As expected, after 

 
5The application running in the foreground when the permission is re- 

quested by another application. 

we introduced the aggregate features, the relative importance of 
the user ID variable diminished and so we removed it (i.e., users 
no longer needed to be uniquely identified). We define R2 as 
R1 without the user ID. 

B. Inference Based on Behavior 

One of our main hypotheses is that passively observing 
users’ behaviors helps infer users’ future privacy decisions.  To 
this end, we instrumented Android to collect a wide array of 
behavioral data, listed in Table II.  We categorize our behavioral 
instrumentation into interaction with Android privacy/security 
settings, locking behavior, audio settings and call habits, web-
browsing habits, and application usage habits. After the feature 
selection process (§VI-A), we found that only locking 
behavior, audio habits, and web-browsing habits correlated 
with privacy behaviors. Appendix B contains more information 
on feature importance. All the numerical values under the 
behavioral group were normalized per day. 

We trained an SVM model with an RBF kernel on only the 
behavioral and runtime features listed in Table IV, excluding 
user ID. The 5-fold cross-validation accuracy (with random 
splitting) was 83% across all users. This first setup assumes we 
have prior knowledge of previous privacy decisions to a certain 
extent from each user before inferring their future privacy 
decisions, so it is primarily relevant after the user has been 
using their phone for a while. However, the biggest advantage 
of using behavioral data is that it can be observed passively 
without any active user involvement (i.e., no prompting). 

We use leave-one-out cross validation to measure the extent 
to which we can infer user privacy decisions with absolutely no 
user involvement (and without any prior data on a user). In this 
second setup, when a new user starts using a smartphone, we 
assume there is a ML model which is already trained with 
behavioral data and privacy decisions collected from a selected 
set of other users. We then measured the efficacy of such a 
model to predict the privacy decisions of a new user, purely 
based on passively observed behavior and runtime information 
on the request, without ever prompting that new user. This is an 
even stricter lower bound on user involvement, which 
essentially mandates that a user has to make no effort   to 
indicate privacy preferences, something that no system 
currently does. 

We performed leave-one-out cross validation for each of  our 
131 participants, meaning we predicted a single user’s privacy 
decisions using a model trained using the data from the other 
130 users’ privacy decisions and behavioral data. The only 
input for each test user was the passively observed 

Feature 
Group Feature Type 

 
 
 

Behavioral 
Features 
(B) 

Number of times a website is loaded to 
the Chrome browser. Numerical 
Out of all visited websites, the proportion 
of  HTTPS-secured websites. Numerical 
The number of downloads through  Chrome. Numerical 
Proportion of websites requested  location 
through Chrome. Numerical 
Number of times PIN/Password was used to 
unlock  the screen. Numerical 
Amount of time spent unlocking the screen. Numerical 
Proportion of times screen was timed out 
instead of pressing the lock  button. Numerical 
Frequency of audio calls. Numerical 
Amount of time spent on audio calls. Numerical 
Proportion of time spent on silent mode. Numerical 

Runtime 
Features 
(R1) 

Application visibility (True/False) Categorical 
Permission type Categorical 
User ID Categorical 
Time of day of permission  request Numerical 

Aggregated 
Features 
(A) 

Average  denial rate for (A1) 
application:permission:visibility Numerical 
Average  denial rate for (A2) 
applicationF :permission:visibility Numerical 
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behavioral data and runtime data surrounding each request. The 
model yielded a median accuracy of 75%, which is a 3 
improvement over AOI. Furthermore, AOI requires users to 
make active decisions during the installation of an application, 
which our second model does not require. 

Examining only behavioral data with leave-one-group-out 
cross validation yielded a median accuracy of 56% for Contex- 
tuals, while for Defaulters it was 93.01%. Although, prediction 
using solely behavioral data fell short of AOFU-AP for Con- 
textuals, it yielded a similar median accuracy for Defaulters; 
AOFU-AP required 12 prompts to reach this level of accuracy, 
whereas our model would not have resulted in any prompts. 
This relative success presents the significant observation that 
behavioral features, observed passively without user involve- 
ment, are useful in learning user privacy preferences. This 
provides the potential to open entirely new avenues of user 
learning and reduce the risk of habituation. 

 
C. Inference Based on Contextual  Cues 

Our SVM model with an RBF kernel produced the best 
accuracy. The results in the remainder of this section are trained 
and tested with five-fold cross validation with random splitting 
for an SVM model with an RBF kernel using the ksvm library 
in R. In all instances, the training set was bootstrapped with an 
equal number of allow and deny data points to avoid training a 
biased model. For each feature group, all hyperparameters were 
tuned through grid search to achieve highest accuracy. We used 
one-hot encoding for categorical variables. We normalized 
numerical variables by making each one a z-score relative to its 
own average. Table V shows how the median accuracy changes 
with different feature groups.  As a minor note, the addition of 
the mentioned behavioral features to runtime features 
performed only marginally better; this could be due to the fact 
that those two groups do not complement each other in 
predictions. In this setup, we assume that there is a single 
model across all the users of Android. 

By incorporating user involvement in the form of prompts, 
we can use our aggregate features to increase the accuracy    for 
Contextuals, slightly less so for Defaulters. The aggregate 
features primarily capture how consistent users are for particu- 
lar combinations (i.e., application:permission:visibility, appli- 
cationF:permission:visibility), which greatly affects accuracy 
for Contextuals. Defaulters have high accuracy with just run- 
time features (R1), as they are likely to stick with a default 
allow or deny policy regardless of the context surrounding a 
permission. Thus, even without any aggregate features (which 
do not impart any new information about this type of user), the 
model can predict privacy preferences of Defaulters with a high 
degree of accuracy. On the other hand, Contextuals are more 
likely to vary their decision for a given permission request. 
However, as the accuracy numbers in Table V suggest, this 
variance is correlated with some contextual cues. The high 
predictive power of aggregate features indicates that they may 
be capturing the contextual cues, used by Contextuals to make 
decisions, to a greater extent. 

The fact that both application:permission:visibility and 
applicationF:permission:visibility are highly predictive (Ap- 
pendix A) indicates that user responses for these combinations 
are consistent. The high consistency could relate to the notion 
that the visibility and the foreground application (applicationF 
6) are strong contextual cues people use to make their privacy 
decisions; the only previously studied contextual cue was the 
visibility of the application requesting the sensitive data [43]. 
We offer a hypothesis for why foreground application could be 
significant: the sensitivity of the foreground application (i.e., 
high-sensitivity applications like banking, low-sensitivity 
applications like games) might impact how users perceive 
threats posed by requests. Irrespective of the application 
requesting the data, users may be likely to deny the request 
because of the elevated sense of risk. We discuss this further in 
§IX. 

The model trained on feature sets R2, A1, and A2 had the best 
accuracy (and the fewest privacy violations). For the remainder 
of the paper, we will refer to this model unless otherwise noted. 
We now compare AOFU-AP (the status quo as of Android 6.0 
and above, presented in Table III) and our model (Table V). 
Across all users, our model reduced the error rate from 15.38% 
to 7.76%, nearly a two-fold improvement. 

Mispredictions (errors) in the ML model were split between 
privacy violations and functionality losses (54% and 46%). 
Deciding which error type is more acceptable is subjective and 
depends on factors like the usability issues surrounding 
functionality losses and gravity of privacy violations. However, 
the (approximately) even split between the two error types 
shows that the ML is not biased towards one particular deci- 
sion (denying vs. allowing a request). Furthermore, the area 
under the ROC curve (AUC), a metric used to measure the 
fairness of a classifier, is also significantly better in the ML 
model (0.936 as opposed to 0.796 for AOFU). This indicates 
that the ML model is equally good at predicting when to both 
allow and deny a permission request, while AOFU tends to lean 
more towards one decision. In particular, with the AOFU 
policy, users would experience privacy violations for 10.01% 
of decisions, compared to just 4.2% with the ML model. 
Privacy violations are likely more costly to the user than 
functionality loss: denied data can always be granted at    a later 
time, but disclosed data cannot be taken back. 

While increasing the number of prompts improves classifier 
accuracy, it plateaus after reaching its maximum accuracy, at a 

point we call the steady state. For some users, the classifier 
might not be able to infer their privacy preferences effectively, 

regardless of the number of prompts. As a metric to measure 
the effectiveness of the ML model, we measure the confidence 

of the model in the decisions it makes, based on prediction 
class probabilities.7 In cases where the confidence of the model 

6Even when the requesting application is running visible to the user, the 
foreground application could still be different from the requesting application 
since the only visible cue of the requesting application could be a notification 
in the notification bar. 

7To calculate the class probabilities, we used the KSVM library in R. It 
employs a technique proposed by Platt et al. [25] to produce a numerical  value 
for each class’s probability. 
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is below a certain threshold, the system should use a runtime 
prompt to ask the user to  make an  explicit decision.  Thus, we 
looked into the prevalence of low-confidence predictions 
among the current predictions. With a 95% confidence inter- 
val, on average across five folds, low-confidence predictions 
accounted for less than 10% of all predictions. The remaining 
high-confidence predictions (90% of all predictions) had an 
average accuracy of 96.2%, whereas predictions with low 
confidence were only predicted with an average accuracy of 
72%. §VII-B goes into this aspect in detail and estimates the 
rate at which users will see prompts in steady state. 

The caveat in our ML model is that AOFU-AP only resulted 
in 12 prompts on average per user during the study, while our 
model averaged 24. The increased prompting stems from 
multiple prompts for the same combination of appli- 
cation:permission:visibility, whereas in AOFU, prompts are 
shown only once for each application:permission combination. 
During the study period, users on average saw 2.28 prompts per 
unique combination. While multiple prompts per combination 
help the ML model to capture user preferences under different 
contextual circumstances, it risks habituation, which may 
eventually reduce the reliability of the user responses. 

The evaluation setup mentioned in the current section does 
not have a specific strategy to select the training set. It 
randomly splits the data set into the 5 folds and picks 4 out of 5 
as the training set. In a real-world setup, the platform needs a 
strategy to carefully select the training set so that the platform 
can learn most of the user’s privacy preferences with a 
minimum number of prompts. The next section presents an in-
depth analysis on possible ways to reduce the number of 
prompts needed to train the ML model. 

VII. LEARNING STRATEGY

This sections presents a strategy the platform can follow in 
the learning phase of a new user.  The key objective of the 
learning strategy should be to learn the user’s privacy 
preferences with minimal user involvement (prompts). Once 
the model reaches adequate training, we can use model deci- 
sion confidence to analyze how the ML model performs for 
different users and examine the tradeoff between user involve- 
ment and accuracy. We also utilize the model’s confidence on 
decisions to present a strategy that can further reduce model 
error through selective permission prompting. 

A. Bootstrapping 
The bootstrapping phase occurs when the ML model is 

presented with a new user about whom the model has no prior 
information. In this section, we analyze how the accuracy 
improves as we prompt the user.  Since the model presented in 
§VI is a single model trained with data from all users, the ML
model can still predict a new user’s privacy decisions by 
leveraging the data collected on other users’ preferences. 

We measured the accuracy of the ML model as if it had to 
predict each user’s prompt responses using a model trained 
using other users’ data. Formally, this is called leave-one-out 
cross-validation, where we remove all the prompt responses 

from a single user. The training set contains all the prompt re- 
sponses from 130 users and the test set is the prompt responses 
collected from the single remaining user. The model had a 
median accuracy of 66.6% (56.2% for Contextuals,  86.4% for 
Defaulters). Although this approach does not prompt new 
users, it falls short of AOFU. This no-prompt model behaves 
close to random guessing for Contextuals and significantly 
better for Defaulters. Furthermore, Wijesekera et al. found that 
individuals’ privacy preferences varied a lot [43], suggesting 
that utilizing other users’ decisions to predict decisions for a 
new user has limited effectiveness, especially for Contextuals; 
some level of prompting is  necessary. 

There are a few interesting avenues to explore when 
determining the optimal way to prompt the user in the learning 
phase. One option would be to follow the same weighted-
reservoir sampling algorithm mentioned in §III-A. The 
algorithm is weighted by the frequency of each appli- 
cation:permission:visibility combination. The most frequent 
combination will have the highest probability of creating a 
permission prompt and after the given combination reaches a 
maximum of three prompts, the algorithm will no longer 
consider that combination for prompting, giving the second 
most frequent combination the new highest probability. Due   to 
frequency-weighting and multiple prompts per combination, 
the weighted-reservoir sampling approach requires more 
prompts to cover a broader set of combinations. However, 
AOFU prompts only once per combination without frequency- 
weighting. This may be a useful strategy initially for a new user 
since it allows the platform to learn about the users’ privacy 
preferences for a wide array of combinations with minimal user 
interaction. 

To simulate such an approach, we extend the aforemen- 
tioned no-prompt model (leave-one-out validation). In the no- 
prompt model, there was no overlap of users in the train and 
test set. In the new approach, the training set includes the data 
from other users as well as the new user’s responses to the first 
occurrence of each unique combination of applica- 
tion:permission:visibility. The first occurrence of each unique 
combination simulates the AOFU-APV policy. That is, this 
model is bootstrapped using data from other users and then 
adopts the AOFU-APV policy to further learn the current user’s 
preferences. The experiment was conducted using the same set 
of features mentioned in §VI-A (R2 + A1 + A2 and an SVM 
with a RBF kernel). The test set only contained prompt 
responses collected after the last AOFU prompt to ensure 
chronological consistency. 

Figure 3 shows how accuracy changes with the varying 
number of AOFU prompts for Contextuals and Defaulters. For 
each of the 131 users, we ran the experiment varying the AOFU 
prompts from 1 to 12. We chose this upper bound because, on 
average, a participant saw 12 different unique ap- 
plication:permission combinations during the study period— 
the current permission model in Android. AOFU relies on user 
prompts for each new combination. The proposed ML model, 
however, has the advantage of leveraging data collected from 
other users to predict a combination not seen by the user; it can 
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find a way to differentiate between Defaulters and Contextuals 
early in the bootstrapping phase to determine which users 
require fewer prompts. The analysis of our hybrid approach 
addresses the concern of a high number of permission prompts 
initially for an ML approach. Over time, accuracy can always 
be improved with more prompts. 

Our new hybrid approach of using AOFU-style permission 
prompts in the bootstrapping phase to train our model can 
achieve higher accuracy than AOFU, with significantly fewer 
prompts. Having a learning strategy (use of AOFU) over ran- 
dom selection helped to minimize user involvement (24 vs. 9) 
while significantly reducing the error rate (7.6% vs. 3.2%) over 
a random selection of the training set. 

Fig. 3.  How the median accuracy varies with the number of seen prompts 

significantly reduce user involvement in the learning phase. 
After 12 prompts, accuracy reached 96.8% across all users. 

Each new user starts off with a single model shared by all 
new users and then moves onto a separate model trained with 
AOFU prompt responses. We analyze its performance for 
Defaulters and Contextuals separately, finding that it improves 
accuracy while reducing user involvement in both cases, com- 
pared to the status quo. 

We first examine how our model performs for Defaulters, 
53% of our sample. Figure 3 shows that our model trained with 
AOFU permission-prompt responses outperforms AOFU from 
the very beginning. The model starts off with 96.6% accuracy 
(before it reaches close to 100% after 6 prompts), handily 
exceeding AOFU’s 93.33%. This is a 83.3% reduction in 
permission prompts compared to AOFU-AP (the status quo). 
Even with such a significant reduction in user involvement, the 
new approach cuts the prediction error rate in half. 

Contextuals needed more prompts to outperform the AOFU 
policy; the hybrid approach matches AOFU-AP with just 7 
prompts, a 42% reduction in prompts. With 12 permission 
prompts, same as needed for AOFU-AP, the new approach had 
reduced the error rate by 43% over AOFU-AP (the status quo). 
The number of prompts needed to reach this level of accuracy 
in the new approach is 25% less than what is needed for AOFU-
APV. We also observed that as the number of prompts 
increased, the AUC of our predictions also similarly increased. 
Overall, the proposed learning strategy reduced the error rate 
by 80% after 12 user prompts over AOFU-AP. Given, 
Defaulters plateau early in their learning cycle (after only 6 
prompts), the proposed learning strategy, on average, needs 9 
prompts to reach its maximum capacity, which is a 25% 
reduction in user involvement over AOFU-AP. 

Contextuals have a higher need for user involvement than 
Defaulters, primarily because it is easy to learn about De- 
faulters, as they are more likely to be consistent with early 
decisions. On the other hand, Contextuals vary their decisions 
based on different contextual cues and require more user 
involvement for the model to learn the cues used by each user 
and how do they affect their decisions. Thus, it is important to 

B. Decision Confidence 
In the previous section, we looked into how we can optimize 

the learning phase by merging AOFU and the ML model to 
reach higher accuracy with minimal user prompts. However, for 
a small set of users, more permission prompts will not increase 
accuracy, regardless of user involvement in the boot- strapping 
phase. This could be due to the fact that a portion   of users in 
our dataset are making random decisions, or that the features 
that our ML model takes into account are not predictive of those 
users’ decision processes. While we do   not have the data to 
support either explanation, we examine how we can measure 
whether the ML model will perform well for a particular user 
and quantify how often it does not. We present a method to 
identify difficult-to-predict users and reduce permission 
prompting for those users. 

While running the experiment in §VII-A, we also measured 
how confident the ML model was for each decision it made. To 
measure the ML model’s confidence, we record the probability 
for each decision; since it is a binary classification (deny or 
allow), the closer the probability is to 0.5, the less confident it 
is. We then chose a class probability threshold above which a 
decision would be considered a high-confidence decision.  In 
our analysis, we choose a class probability threshold of 0.6, 
since this value resulted in >96% accuracy for our fully- trained 
model (25 prompts per user) for high-confidence decisions, but
this is a tunable threshold. Thus, in the remainder of our 
analysis, decisions that the ML model made with a probability 
of >0.60 were labeled as high-confidence decisions, while those 
made with a probability of <0.60 were labeled as low-
confidence decisions. 

Since the most accurate version of AOFU uses 12 prompts, 
we also evaluate the confidence of our model after 12 AOFU- 
style prompts. This setup is identical to the bootstrapping 
approach; the model we evaluate here is trained on responses 
from other users and the first 12 prompts chosen by AOFU. 
With this scheme, we found that 10 users (7.63% of 131 users) 
had at least one decision predicted with low confidence. The 
remaining 92.37% of users had all privacy decisions predicted 
with high confidence. Among those users whose decisions 
were predicted with low confidence, the proportion of low-
confidence decisions on average accounted for 17.63% (median 
= 16.67%) out of all their predicted decisions. With 
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a sensitive permission request once every 15 seconds [43], 
prompting even for 17.63% of predictions is not practical. 
Users who had low-confidence predictions had a median accu- 
racy of 60.17%, compared to 98% accuracy for the remaining 
set of users with only high-confidence predictions. Out of the 
10 users who had low-confidence predictions, there were no 
Defaulters. This further supports the observation in Figure 3 
that Defaulters require a shorter learning period. 

In a real-world scenario, after the platform (ML model) 
prompts the user for the first 12 AOFU prompts, the platform 
can measure the confidence of predicting unlabeled data 
(sensitive permission requests for which the platform did not 
prompt the user). If the proportion of low-confidence 
predictions is below some threshold, the ML model can be 
deemed to have successfully learned user privacy preferences 
and the platform should keep on using the regular permission-
prompting strategy. Otherwise, the platform may choose to 
limit prompts (i.e., two per unique applica- 
tion:permission:visibility combination). It should also be noted 
that rather than having a fixed number of prompts (e.g., 12) to 
measure the low-confidence proportion, the platform can keep 
track of the low-confidence proportion as it prompts the user 
according to any heuristic (i.e., unique combinations). If the 
proportion does not decrease with the number of prompts, we 
can infer that the ML model is not learning user preferences 
effectively or the user is making random decisions, indicating 
that limiting prompts and accepting lower accuracy could be a 
better option for that specific user, to avoid excessive 
prompting. However, depending on which group the user is in 
(Contextual or Defaulter), the point at which the platform could 
make the decision to continue or limit prompting could change. 
In general, the platform should be able to reach this deciding 
point relatively quickly for Defaulters. 

Among participants with no low-confidence predictions, we 
had a median error rate of 2% (using the new hybrid approach 
after 12 AOFU prompts); for the same set of users, AOFU  
could only reach a median error rate of 13.3%. However, using 
AOFU, a user in that set would have needed an average of 
15.11 prompts to reach that accuracy. Using the ML model, a 
user would need just 9 prompts on average (Defaulters require 
far fewer prompts, dropping the average); the model only 
requires 60% of the prompts that AOFU requires. Even with far 
fewer prompts in the learning phase, the ML model achieves a 
84.61% reduction in error rate relative to AOFU. 

While our model may not perform well for all users, it does 
seem to work quite well for the majority of users (92.37% of 
our sample). We provide a way of quickly identifying users for 
whom our system does not perform well, and propose limiting 
prompts to avoid excessive user burden for those users, at the 
cost of reduced efficacy. In the worst case, we could simply 
employ the AOFU model for users our system does not work 
well for, resulting in a multifaceted approach that is at least   as 
good as the status quo for all users. 

C. Online Model 
Our proposed system relies on training models on a trusted 

server, sending it to client phones (i.e., as a weight vector), and 
having phones make classifications. By utilizing an online 
learning model, we can train models incrementally as users 
respond to prompts over time. There are two key advantages to 
this: (i) this model adapts to changing user preferences over 
time; (ii) it distributes the overhead of training increasing the 
practicality of locally training the classifier on the phone itself. 
Our scheme requires two components: a feature extraction and 
storage mechanism on the phone (a small extension to our 
existing instrumentation) and a machine learning pipeline on a 
trusted server. The phone sends feature vectors to the server 
every few prompts, and the server responds with a weight vector 
representing the newly trained classifier. To bootstrap the 
process, the server’s models can be initialized with a model 
trained on a few hundred users, such as our single model across 
all users. Since each user contributes data points over time, the 
online model adapts to changing privacy preferences even if 
they conflict with previous data. When using this scheme, each 
model takes less than 10 KB to store. With our current model, 
each feature and weight vector are at most 3 KB each, resulting 
in at most 6 KB of data transfer per day. 

To evaluate the accuracy of our online model, we trained a 
classifier using stochastic gradient descent (SGD) with five- 
fold cross validation on our 4,224-point data set. This served as 
the bootstrapping phase. We then simulated receiving the 
remaining data one-at-a-time in timestamp order. Any features 
that changed with time (e.g., running averages for aggregate 
features, event counts) were computed with each incoming data 
point, creating a snapshot of features as the phone would see it. 
We then tested accuracy on the chronologically last 20% of our 
dataset. Our SGD classifier had 93.8% accuracy (AUC=0.929). 
We attribute the drop in accuracy (compared   to our offline 
model) to the fact that running averages take multiple data 
points to reach steady-state, causing some earlier predictions to 
be incorrect. 

A natural concern with a trusted server is compromise. To 
address this concern, we do not send any personally- 
identifiable data to the server, and any features sent to the server 
are scaled; they are reported in standard deviations from the 
mean, not in raw values. Furthermore, using an online model 
with incremental training allows us to periodically train the 
model on the phone (i.e., nightly, when the user is charging her 
device) to eliminate the need for a trusted server. 

VIII. CONTEXTUAL INTEGRITY

Contextual integrity is a conceptual framework that helps 
explain why most permission models fail to protect user 
privacy—they often do not take the context surrounding pri- 
vacy decisions into account. In addressing this issue, we 
propose an ML model that infers when context has changed. 
We believe that this is an important first step towards opera- 
tionalizing the notion of contextual integrity. In this section, we 
explain the observations that we made in §VI-C based on the 
contextual integrity framework proposed by Barth et al. [6]. 
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Contextual integrity provides a conceptual framework to 
better understand how users make privacy decisions; we use 
Barth et al.’s formalized model [6] as a framework in which to 
view Android permission models. Barth et al. model parties as 
communicating agents (P) knowing information represented 
as attributes (T ). A knowledge state is defined as a subset 
of P P T . We use = (p, q, t) to mean that agent p knows 
attribute t of agent q. Agents play roles (R) in contexts (C). 
For example, an agent can be a game application, and 
have the role of a game provider in an entertainment context. 
Knowledge transfer happens when information is communi- 
cated between agents; all communications can be represented 
through a series of traces ( , (p, r), a), which are combinations 
of a knowledge state , a role state (p, r), and a communi- 
cation action a (information sent). The role an agent plays 
in a given context helps determine whether an information 
flow is acceptable for a user. The relationship between the 
agent sending the information and the role of the agent ((p, r)) 
receiving the information must follow these contextual norms. 
With the Android permission model, the same framework 
can be applied. Both the user and the third-party applica- 
tion are communicating agents, and the information to be 
transferred is the sensitive data requested by the applica- 
tion. When a third-party application requests permission to 
access a guarded resource (e.g., location), knowledge of the 
guarded resource is transferred from the one agent (i.e., the 
user/platform) to another agent (i.e., the third-party applica- 
tion). The extent to which a user expects a given request 
depends not on the agent (the application requesting the data), 
but on the role that agent is playing in that context. This 
explains why the application as a feature itself (i.e., application 
name) was not predictive in our models: this feature does not 
represent the role when determining whether it is unexpected. 
While it is difficult for the platform to determine the exact role 
an application is playing, the visibility of the application hints 
at its role. For instance, when the user is using Google Maps to 
navigate, it is playing a different role from when Google Maps 
is running in the background without the user’s knowledge. 
We believe that this is the reason why the visibility of the 
requesting application is significant: it helps the user to infer 
the role played by the application requesting the permission. 
The user expects applications in certain roles to access 
resources depending on the context in which the request is 
made. We believe that the foreground application sets this 
context. Thus a combination of the role and the context 
decides whether an information flow is expected to occur or 
not. Automatically inferring the exact context of a request is 
likely an intractable problem. For our purposes, however, it is 
possible that we need to only infer when context has changed, 
or rather, when data is being requested in a context that is no 
longer acceptable to the user. Based on our data, we believe 
that features based on foreground application and visibility are 
most useful for this purpose, from our collected dataset. 

We now combine all of this into a concrete example within 
the contextual integrity framework: If a user is using Google 
Maps to reach a destination, the application can play the 

role of a navigator in a geolocation context, whereby the user 
feels comfortable sharing her location. In contrast, if the same 
application requests location while running as a service 
invisible to the user, the user may not want to provide the same 
information. Background applications play the role of “passive 
listeners” in most contexts; this role as perceived by the user 
may be why background applications are likelier to violate 
privacy expectations and consequently be denied by users. 

AOFU primarily focuses on controlling access through rules 
for application:permission combinations. Thus, AOFU 
neglects the role played by the application (visibility) and relies 
purely on the agent (the application) and the information 
subject (permission type). This explains why AOFU is wrong 
in nearly one-fifth of cases. Based on Table III, both AOFU- VA 
(possibly identifying the role played by the application) and 
AOFU-AF PV (possibly identifying the current context because 
of the current foreground application-AF ) have higher accuracy 
than the other AOFU combinations. However, as the contextual 
integrity framework suggests, the permission model has to take 
both the role and the current context into account before making 
an accurate decision. AOFU (and other models that neglect 
context) only makes it possible to consider a single aspect, a 
limitation that does not apply to our model. 

While the data presented in this work suggest the impor- 
tance of capturing context to better protect user privacy, more 
work is needed along these lines to fully understand how peo- 
ple use context to make decisions in the Android permission 
model. Nevertheless, we believe we contribute a significant 
initial step towards applying contextual integrity to improve 
smartphone privacy by dynamically regulating permissions. 

IX. DISCUSSION 

The primary goal of this research was to improve the 
accuracy of the Android permission system so that it more 
correctly aligns with user privacy preferences. We began with 
four hypotheses: (i) that the currently deployed AOFU policy 
frequently violates user privacy; (ii) that the contextual infor- 
mation it ignores is useful; (iii) that a ML-based classifier can 
account for this contextual information and thus improve on the 
status quo; and (iv) that passively observable behavioral traits 
can be used to infer privacy preferences. 

To test these hypotheses, we performed the first large-scale 
study on the effectiveness of AOFU permission systems in the 
wild, which showed that hypotheses (i) and (ii) hold.  We 
further built an ML classifier that took user permission 
decisions along with observations of user behaviors and the 
context surrounding those decisions to show that (iii) and (iv) 
hold. Our results show that existing systems have significant 
room for improvement, and other permission-granting systems 
may benefit from applying our results. 

A. Limitations of Permission Models 
Our field study confirms that users care about their privacy 

and are wary of permission requests that violate their expec- 
tations. We observed that 95% of participants chose to block at 
least one permission request; in fact, the average denial rate was 
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60%—a staggering amount given that the AOI model permits 
all permission requests for an installed application. 

While AOFU improves over the AOI model, it still violates 
user privacy around one in seven times, as users deviate from 
their initial responses to permission requests. This amount is 
significant because of the high frequency of sensitive permis- 
sion requests: a 15% error rate yields thousands of privacy 
violations per user—based on the latest dataset, this amounts to 
a potential privacy violation every minute. It further shows that 
AOFU’s correctness assumption—that users make binary deci- 
sions based only on the application:permission combination— 
is incorrect. Users take a richer space of information into 
account when making decisions about permission requests. 

B. Our  ML-Based Model 
We show that ML techniques are effective at learning from 

both the user’s previous decisions and the current environmen- 
tal context in order to predict whether to grant permissions on 
the user’s behalf. In fact, our techniques achieve better results 
than the methods currently deployed on millions of phones 
worldwide—while imposing significantly less user burden. 

Our work incorporates elements of the surrounding context 
into a machine-learning model. This better approximates user 
decisions by finding factors relevant for users that are not 
encapsulated by the AOFU model. In fact, our ML model 
reduces the errors made by the AOFU model by 75%. Our ML 
model’s 97% accuracy is a substantial improvement over 
AOFU’s 85% and AOI’s 25%; the latter two of which comprise 
the status quo in the Android ecosystem. 

Our research shows that many users make neither random 
nor fixed decisions: the environmental context plays a signif- 
icant role in user decision-making. Automatically detecting the 
precise context surrounding a request for sensitive data is an 
incredibly difficult problem (e.g., inferring how data will be 
used), and is potentially intractable. However, to better support 
user privacy, that problem does not need to be solved; instead, 
we show that systems can be improved by using environmental 
data to infer when context has changed. We found that the most 
predictive factors in the environmental context were whether 
the application requesting the permission is visible, and what 
the foreground application the user is engaged with. These are 
both strong contextual cues used by users, insofar as they 
allowed us to better predict changes       in context. Our results 
show that ML techniques have great potential in improving user 
privacy, by allowing us to infer when context has changed, and 
therefore when users would want data requests to be brought 
to their attention. 

C. Reducing the User Burden 
Our work is also novel in using passively observable data to  

infer privacy decisions: we show that we can predict a user’s 
preferences without any permission prompts. Our model 
trained solely on behavioral traits yields a three-fold 
improvement over AOI; for Defaulters—who account for 53% 
of our sample—it was as accurate as AOFU-AP. These results 
demonstrate that we can match the status quo without any 

active user involvement (i.e., the need for obtrusive prompts). 
These results imply that learning privacy preferences may be 
done entirely passively, which, to our knowledge, has not yet 
been attempted in this domain.  Our behavioral feature set 
provides a promising new direction to guide research in 
creating permission models that minimize user burden. 

The ML model trained with contextual data and past 
decisions also significantly reduced the user burden while 
achieving higher accuracy than AOFU.  The model yielded an 
81% reduction in prediction errors while reducing user 
involvement by 25%. The significance of this observation is 
that by reducing the risk of habituation, it increases reliability 
when user input is needed. 

 
D. User- and Permission-Tailored  Models 

Our ML-based model incorporates data from all users into a 
single predictive model. It may be the case, however, that a 
collection of models tailored to particular types of users 
outperforms our general-purpose model—provided that the 
correct model is used for the particular user and permission.  To 
determine if this is true, we clustered users into groups based 
first on their behavioral features, and then their denial rate, to 
see if we could build superior cluster-tailored ML models. 
Having data for only 131 users, however, resulted in clusters 
too small to carry out an effective analysis. We note that we also 
created a separate model for each sensitive permission type, 
using data only for that permission. Our experiments 
determined, however, that these models were no better (and 
often worse) than our general model. It is possible that such 
tailored models may be more useful when our system is 
implemented at scale. 

 
E. Attacking the ML Model 

Attacking the ML model to get access to users’ data without 
prompting is a legitimate concern [5]. There are multiple ways 
an adversary can influence the proposed permission model: (i) 
imposing an adversarial ML environment [31]; (ii) polluting the 
training set to bias the model to accept permissions; and (iii) 
manipulating input features in order to get access without user 
notification. We assume in this work that the platform is not 
compromised; a compromised platform will degrade any 
permission model’s ability to protect resources. 

A thorough analysis on this topic is outside of our scope. 
Despite that, we looked at the possibility of manipulating 
features to get access to resources without user consent. None 
of the behavioral features used in the model can be influenced, 
since that would require compromising the platform. An 
adversary can control the runtime features for a given 
permission request by specifically choosing when to request the 
permission. We generated feature vectors manipulating every 
adversary-controlled value and combination from our dataset, 
and tested them on our model. We did not find any conclusive 
evidence that the adversary can exploit the ML model by 
manipulating the input features to get access to resources 
without user consent. 
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As this is not a comprehensive analysis on attack vectors, it 
is possible that a scenario exists where the adversary is able to 
access sensitive resources without prompting the user first. Our 
preliminary analysis suggests that such attacks may be non-
trivial, but more work is needed to study and prevent such 
attacks, particularly examining adversarial ML techniques and 
feature brittleness. 

F. Experimental Caveat 
We repeat a caveat about our experimental data: users were 

free to deny permissions without any consequences. We 
explicitly informed participants in our study that their decisions 
to deny permission requests would have no impact on the actual 
behavior of their applications. This is important to note because 
if an application is denied a permission, it may exhibit 
undefined behavior or lose important functionality. In fact, 
researchers have noted that many applications crash when 
permissions are denied [13]. If these consequences are imposed 
on users, they may decide that the functionality is more 
important than their privacy decision. 

If we actually denied permissions, users’ decisions may skew 
towards a decreased denial rate.  The denial rates in our 
experiments therefore represent the actual privacy preferences 
of users and their expectations of reasonable application 
behavior—not the result of choosing between application func- 
tionality and privacy. We believe that how people react when 
choosing between functionality and privacy preferences is an 
important research question beyond the scope of this paper. 
Such a change, however, will not limit this contribution, since 
our proposed model was effective in guarding resources of the 
users who are selective in their decision making—the proposed 
classifier reduced the error rate of Contextuals by 44%. 

We believe that there are important unanswered questions 
about how to solve the technical hurdles surrounding enforcing 
restrictive preferences with minimal usability issues. As a first 
step towards building a platform that does not force users to 
choose between their privacy preferences and required func- 
tionality, we must develop an environment where permissions 
appear—to the application—to be allowed, but in reality only 
spurious or artificial data is provided. 

G. Types  of Users 
We presented a categorization of users based on the sig- 

nificance that the application’s visibility played towards their 
individual privacy decisions. We believe that in an actual 
permission denial setting, the distribution will be different from 
what was observed in our study. Our categorization’s 
significance, however, motivates a deeper analysis on under- 
standing the factors that divide Contextuals and Defaulters. 
While visibility was an important factor in this division, there 
may be others that are significant and relevant. More work 
needs to be done to explore how Contextuals make decisions 
and which behaviors correlate with their decisions. 

H. User  Interface Panel 
Any model that predicts user decisions has the risk of making 

incorrect predictions. Making predictions on a user’s behalf, 

however, is necessary because permissions are re- quested by 
applications with too high a frequency for manual examination. 
While we do not expect any system to be able to obtain perfect 
accuracy, we do expect that our 97% accuracy can be improved 
upon. 

One plausible way of improving the accuracy of the per- 
mission model is to empower the user to review and make 
changes on how the ML model makes decisions through a user 
feedback panel. This gives users recourse to correct undesirable 
decisions. The UI panel could also be used to reduce the 
usability issues and functionality loss stemming from 
permission denial. The panel should help the user figure out 
which rule incurred the functionality loss and to change it 
accordingly. A user may also use this to adjust their settings as 
their privacy preferences evolve over time. 

I. The Cost of Greater  Control 
A more restrictive platform means users will have greater 

control over the data being shared with third parties. Applica- 
tions that generate revenue based on user data, however, could 
be cut off from their primary revenue source. Such an effect 
could disrupt the current eco-system and force app developers 
to degrade app functionality based on the availability of the 
data. We believe the current eco-system is unfairly biased 
against users and tighter control will make the user an equal 
stakeholder. While more work is needed to understand the ef- 
fects of a more restrictive platform, we believe it is imperative 
to let the user have greater control over their own data. 

J. Conclusions 
We have shown a number of important results. Users care 

about their privacy: they deny a significant number of requests 
to access sensitive data. Existing permission models for An- 
droid phones still result in significant privacy violations. Users 
may allow permissions sometimes, while denying them at 
others, implying that there are more factors that go into the 
decision-making process than simply the application name and 
the permission type. We collected real-world data from 131 
users and found that application visibility and the current fore- 
ground application were important factors in user decisions. We 
used the data we collected to build a machine-learning model 
to make automatic permission decisions. One of our models had 
a comparable error rate to AOFU and benefited from not 
requiring any user prompting. Another of our models required 
some user prompts—less than is required by AOFU— and 
achieved a reduction of AOFU’s error rate by 81%. 
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Feature Importance 
Amount of time spent on audio calls 0.327647825 
Frequency of audio calls 0.321291184 
Proportion of times screen was timed out 
instead of pressing the lock  button 0.317631096 
Number of times PIN was used to 
unlock  the screen. 0.305287288 
Number of screen unlock  attempts 0.299564131 
Amount of time spent unlocking the screen 0.29930659 
Proportion of time spent on loud mode 0.163166296 
Proportion of time spent on silent mode 0.138469725 
Number of times a website is loaded to 
the Chrome browser 0.094996437 
Out of all visited websites, the proportion 
of  HTTPS-secured websites. 0.071096898 
Number of times Password was used to 
unlock  the screen 0.067999523 
Proportion of websites requested  location 
through Chrome 0.028404167 
Time 0.019799623 
The number of downloads through  Chrome 0.014619351 
Permission 0.001461635 
Visibility 0.000162166 

TABLE VII 
FEATURE  IMPORTANCE  OF  BEHAVIORAL FEATURES 

 Contextuals Defaulters Overall 
A1 0.4839 0.6444 0.5717 
A2 0.4558 0.6395 0.5605 
Permission 0.0040 0.0038 0.0050 
Time 0.0487 0.1391 0.0130 
Visibility 0.0015 0.0007 0.0010 
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Current mobile platforms provide privacy management in- 
terfaces to regulate how applications access sensitive data. 
Prior research has shown how these interfaces are insufficient 
from a usability standpoint: they do not account for context. 
In allowing for more contextual decisions, machine-learning 
techniques have shown great promise for designing systems 
that automatically make privacy decisions on behalf of the 
user. However, if such decisions are made automatically, then 
feedback mechanisms are needed to empower users to both 
audit those decisions and correct any errors. 

In this paper, we describe our user-centered approach to- 
wards designing a fully functional privacy feedback interface 
for the Android platform. We performed two large-scale user 
studies to research the usability of our design. Our second, 
580-person validation study showed that users of our new 
interface were significantly more likely to both understand 
and control the selected set of circumstances under which 
applications could access sensitive data when compared to 
the default Android privacy settings interface. 

1. INTRODUCTION 
Smartphones store a great deal of personal information, such 
as the user’s contacts, location, and call history. Mobile op- 
erating systems use permission systems to control access to 
this data and prevent potentially malicious third-party ap- 
plications (“apps”) from obtaining sensitive user data. Part of 
the purpose of these permission systems is to inform and 
empower users to make appropriate decisions about which 
apps have access to which pieces of personal information. 

The popular open-source Android mobile platform has used 
two general approaches to give users control over permis- 
sions. Initially, permissions were presented as an install- 
time ultimatum, or ask-on-install (AOI): at installation, an 
application would disclose the full list of sensitive resources 
it wished to access. Users could either grant access to all re- 
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quested permissions or abort the installation entirely. Prior 
research has shown that most users do not pay attention to or 
do not these prompts when shown at install-time [12]. 

Recently, an ask-on-first-use (AOFU) permission system re- 
placed install-time disclosures on Android. Under AOFU, 
the user is prompted when an application requests a sensi- 
tive permission for the first time. The user’s response to this 
permission request carries forward to all future requests by 
that application for that permission. The AOFU approach, 
however, fails to consider that the user’s preferences may 
change in different contexts. It only learns the user’s prefer- 
ences once under a certain set of contextual circumstances: 
the first time an application tries to access a particular data 
type. This system does not account for the fact that subse- 
quent requests may occur under different contextual circum- 
stances and therefore may be deemed less appropriate. For 
instance, a user might feel comfortable with an application 
requesting location data to deliver desirable location-based 
functionality. The same user, however, might find it unac- 
ceptable for the same application to access location for the 
purposes of behavioral advertising, possibly when the appli- 
cation is not even being used. 

The contextual integrity framework can explain why AOFU 
is insufficient: it fails to protect user privacy because it 
does not account for the context surrounding data flows [25]. 
That is, privacy violations occur when a data flow (e.g., an 
app’s access to a sensitive resource) defies user expectations. 
In recent work [38, 39], we showed that mobile users do make 
contextual privacy decisions: decisions to allow or deny ac- 
cess are based on what they were doing on their mobile de- 
vices at the time that data was requested. 

In theory, asking the user to make a decision for every re- 
quest is optimal, as the user will be able to account for the 
surrounding context and can then make decisions on a case- 
by-case basis. In practice, however, this results in unusable 
privacy controls, as the frequency of these requests could 
overwhelm the user [38]. Consequently, automating these 
decisions with machine learning yields a balance between 

APROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 
65

mailto:jreardon@berkeley.edu
mailto:primal@ece.ubc.ca


 

accurately implementing users’ privacy preferences and not 
overburdening them with too many decisions [39]. Such au- 
tomation requires the platform to have feedback mechanisms 
so that automated decisions can be reviewed and errors can 
be corrected, thereby yielding fewer future errors. 

To this end, we designed a novel permission manager, Turtle- 
Guard, which helps users to vary their privacy preferences 
based on a few selected contextual circumstances. It also 
provides information about the apps that they use, by pro- 
viding a feedback loop for them to audit and modify how 
automated decisions are made.  TurtleGuard allows users to 
(i) vary their decisions based on the visibility of the request- 
ing application – our previous work showed that the visibil- 
ity of the requesting application is a critical factor used by 
users when making mobile app privacy decisions  [38], and 
(ii) have an improved understanding of how third-party ap- 
plications access resources in the real world and under vary- 
ing contextual circumstances. 

We conducted an initial 400-person experiment to evaluate 
our preliminary design. Based on our analysis of this data, 
we then iterated on our design, conducting a 580-person vali- 
dation study to demonstrate our design’s effectiveness. Both 
experiments had four tasks: three tasks that involved using 
the system to locate information about current application 
permissions, and one task that involved modifying settings. 
We observed that participants who used TurtleGuard were 
significantly more likely to vary their privacy preferences 
based on surrounding circumstances than the control group. 
We believe that these results are a critical contribution to- 
wards empowering mobile users to make privacy decisions on 
mobile phone platforms. Our contributions are as follows: 

 
We present the first contextually-aware permission man- 
ager for third-party applications in Android. 
We show that when using our new interface (compared 
to the existing Android interface) participants were 
significantly more likely to both understand when ap- 
plications had foreground versus background access to 
sensitive data and how to correctly control it. 
We show that our proposed interface has a minimal 
learning curve. Participants, who had never used Turtle- 
Guard before, were as successful at accomplishing in- 
formation retrieval tasks as those who used the existing 
Android interface. 

 
2. RELATED WORK 
The Android OS has thus far used two different permission 
models: ask-on-install (AOI) permissions, and ask-on-first- 
use (AOFU) permissions. Versions of Android before ver- 
sion 6.0 (Marshmallow) implemented ask-on-install permis- 
sions. Under this model, applications request that the user 
grant all permissions to the application at install time. The 
user must consent to all requested permissions in order to 
complete installation. Otherwise, if the user wishes to deny 
any permission, the only option available is to abort the in- 
stallation entirely. Research has shown that few users read 
install time permissions, and fewer still correctly understand 
their meaning [12, 18]. 

These prompts protect access to a set of 24 “dangerous 
permissions,” including geolocation data, contact lists, and 
SMS. Prompts appear when the application attempts to re- 
quest protected resources for the first time. This has the 
advantage of giving users contextual clues about why an ap- 
plication requires a protected resource: users can consider 
what they are doing when the prompt appears to help de- 
termine whether to approve the request. Although AOFU 
offers an improvement over the install-time model in this 
regard, first-use prompts insufficiently capture a user’s pri- 
vacy preferences [39]. That is, the AOFU model does not 
consider scenarios where an application requests access to 
data under varying contexts. 

Research on permission models has found that users are of- 
ten unaware how apps access protected resources and how 
access may be regulated [12, 8, 11, 36, 34]. Shih et al. showed 
that users are more likely to disclose privacy information 
when the purpose is unclear [35]. Prior work has specifically 
analyzed location data: Benisch et al. show that a vast num- 
ber of factors (time, day, location) contribute to disclosure 
preferences [5]; Reilly et al. show that users want minimal 
interaction with their technology [31]. Additionally, Patil et 
al. takes into consideration context: they suggest making 
feedback actionable and allowing for selective control re- 
garding location data [29]. They also show that users have 
difficulty articulating location access controls, and suggest an 
interface that includes contextual factors as a potential 
solution [28]. Almuhimedi et al. studied AppOps, a per- 
mission manager introduced in Android 4.3 but removed in 
Version 4.4.2 [1]. AppOps allowed users to review and mod- 
ify application permissions once installed, as well as set de- 
fault permissions that newly installed applications must fol- 
low. They examined privacy nudges that were designed to 
increase user awareness of privacy risks and facilitate the use 
of AppOps. They concluded that Android users benefit from 
the use of a permission manager, and that privacy nudges are 
an effective method of increasing user awareness [1]. 

Although AppOps was removed from Android, Android 6.0 
(Marshmallow) reintroduced permission management. It— 
and subsequent versions as of this writing—include an up- 
dated interface that allows the user to view all of the per- 
missions that a particular app has been granted, as well as all 
of the apps that have been granted a particular permission 
(Figure 1). Unfortunately, these controls are buried deep 
within the Settings app, and it is therefore unlikely that users 
are aware of them. For instance, viewing a particular app’s 
permissions requires navigating four levels of sub-panels, 
whereas viewing all the apps that have requested a particular 
permission requires navigating five levels. By comparison, 
TurtleGuard is one click from the main Settings panel and 
explicitly presents the relationships between ap- plications, 
permissions, and controls. 

XPrivacy [6], DonkeyGuard [7], Permission Master [23], and 
LineageOS’s1 Privacy Guard [24] are examples of other third- 
party permission management software. These utilities re- 
quire additional privileges and techniques to install because 
Android provides no official mechanisms for third-party pro- 
grams to modify the permission system. For instance, Pri- 
vacy Guard is built into the LineageOS custom ROM [24]; 

Versions of Android from 6.0 (Marshmallow) onward use    
the AOFU permission model instead. Under AOFU, appli- 
cations prompt users for sensitive permissions at runtime. 

1LineageOS is a recent fork of CyanogenMod after the lat- 
ter’s discontinuation. 

• 

• 

• 
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Figure 1: After navigating four and five levels of sub-panels 
within the Android Settings app, respectively, users can limit 
a specific app’s access to specific permissions (left) or limit 
the apps that can access a particular permission (right). 

 
 
 

others use the Xposed Framework [32], which requires an 
unlocked bootloader and a custom recovery partition. Such 
restrictions are necessary to prevent malicious software from 
interfering with the existing permission system. 

Third-party permission managers offer users a variety of fea- 
tures to fine-tune access to sensitive resources on their de- 
vices. XPrivacy has the option to pass fake data to applica- 
tions that have been denied access to protected resources [2]. 
Hornyack et al.’s AppFence similarly allows users to deny 
permissions to applications by providing fake data [16]. Pro- 
viding fake data is more desirable than simply failing to pro- 
vide any data at all, as the latter may cause functionality loss 
or application failures. 

These managers follow an Identity Based Access Control 
model (IBAC), where individual permissions can be set for 
each app. Although this model allows users to specify fine- 
grained permission preferences, this may be ineffective in 
practice for two reasons. First, users may be overwhelmed by 
the number of settings available to them, some of which are 
only tangentially relevant to privacy. This security de- sign 
failure is known as the wall of checkboxes [14]. XPrivacy and 
Permission Master show controls for resources whose direct 
effects on user privacy are unclear, such as keeping a device 
awake. TurtleGuard improves usability by showing only 
controls for resources deemed “dangerous” in the Android 
platform [15] and others that previous research has shown are 
conducive to using run-time prompts [10]. Second, none of 
the existing permission managers display the context in 
which protected resources were accessed. XPrivacy, Donkey 
Guard, and LineageOS’s Privacy Guard pro- vide timestamps 
for resource accesses, but the user does not receive important 
information about the app’s state, such as whether it was 
actively being used when it requested access 

to sensitive data. Permission Master offers no historical in- 
formation at all. TurtleGuard partially addresses this prob- 
lem by listing recently allowed and denied permission access 
requests, along with the state and visibility of the requesting 
application at the time the permission was requested. 

Apple’s iOS platform offers visibility-sensitive location pri- 
vacy settings: “Never” and “Always” (the two settings anal- 
ogous to Android’s permission on/o↵ toggles), and a “While 
using the app” option, which only permits an application to 
access location data while the application is active on the 
screen. TurtleGuard uses the same options, but our design is 
novel in both the extent of these settings and in who controls 
them. Apple’s iOS allows developers to control which of the 
three options are available to users to select [3]. Application 
developers have faced criticism for removing the “While us- 
ing the app” option, forcing users to choose between reduced 
functionality and granting the application unrestricted ac- 
cess to sensitive location data [26]. Our design, by contrast, 
gives users all three of these options for all sensitive permis- 
sions (Table 5, Appendix). Furthermore, developers cannot 
restrict user choice with these settings, as TurtleGuard is 
implemented in the operating system. 

Wijesekera et al. show that although AOFU improves on 
install-time permissions, AOFU is insufficient because it does 
not account for the context of the requests [39]. They exam- 
ined this by instrumenting the Android platform to log all 
instances of apps accessing sensitive resources. In addition to 
their instrumentation, the platform randomly prompted users 
about the appropriateness of various permission re- quests as 
those requests occurred. Participant responses to these 
prompts were treated as the dependent variable for a training 
set. Their study showed that 95% of participants would have 
chosen to block at least one access request had the system 
notified them. On average, participants would have preferred 
to block 60% of permission requests. Indeed, other work 
suggests that contextual cues are key in detecting privacy 
violations [25, 4]. 

A natural extension of AOFU is “ask on every use”: rather 
than extrapolating the user’s first-time preference to all fu- 
ture accesses to a given resource, each access instead requires 
user input. Such a model would conceivably allow users to 
accurately specify their contextual preferences because they 
know exactly which app attempted to gain access to what re- 
source under which circumstance. This approach, however, 
is unusable in practice. Research has shown that applica- 
tions request access to permission-protected resources with 
great frequency: on an average smartphone, roughly once 
every 15 seconds [38]. Such a high frequency not only risks 
habituation, but would render the device inoperable. 

Recent research on permission models has turned towards 
using machine learning (ML) [39, 20, 21, 19]. One advan- 
tage is ML’s ability to incorporate nuanced contextual data 
to predict user preferences; the approach has shown signif- 
icantly lower error rates over the status quo, i.e., AOFU. 
Wijesekera et al. [39] also showed that ML reduces user in- 
volvement, thereby minimizing habituation. They empha- 
size, however, the importance of having a user interface that 
functions as a feedback-loop to the classifier, since no prac- 
tical classifier will ever be 100% accurate. Users can use the 
interface to audit the decisions made by the classifier and 
correct any decisions that do not match their preferences. 
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Such a mechanism not only ensures that the classifier im- 
proves its accuracy over time, it also keeps users aware of de- 
cisions that were made on their behalves and informs them 
of how third-party apps are accessing sensitive resources un- 
der various circumstances. 

TurtleGuard provides two core components necessary for us- 
ability under such contextual privacy models: we provide 
users with key contextual information when regulating ac- 
cess to sensitive resources, and we provide a method for users 
to audit and correct the decisions that have been automati- 
cally made by the system. 

 

3. DESIGN OBJECTIVES 
TurtleGuard’s primary function is to inform users about the 
decisions that have been automatically made on their be- 
half, while allowing them to easily correct errors (thereby 
improving the accuracy of future decisions). These errors can 
be either false positives—an app is denied a permission that 
it actually needs to function—or false negatives—an app is 
granted access to data against the user’s preferences. 

Thompson et al. showed how attribution mechanisms can help 
users better understand smartphone application resource 
accesses [37]. They found that users expect this information 
to be found in the device’s Settings app. In our initial ex- 
periment, we evaluated TurtleGuard as a standalone app, 
though for this reason we ultimately moved it within the 
Android Settings panel prior to our validation experiment. 

 

3.1 Incorporating Context 
In prior work, researchers observed that only 22% of partic- 
ipants understood that applications continue to run when not 
visible and that they have the same access to sensitive user 
data that they do when actively being used [37]. This means 
that the majority of users incorrectly believe that applications 
either stop running when in the background or lose the ability 
to access sensitive data altogether. Wijesekera et al. 
corroborated this observation in a field study of users’ 
privacy expectations: users are more likely to deem 
permission requests from background applications as being 
inappropriate or unexpected, and indicate a desire to regu- 
late applications’ access to sensitive data based on whether 
or not those applications are in use [38]. 

In the default permission manager, users cannot vary their 
decisions based on the visibility of the requesting applica- 
tion, or any other contextual factors. Our overarching goal is 
to empower users to make contextual decisions (i.e., based on 
what they were doing on the device) and to apply these 
decisions to future use cases, so that fewer decisions need to 
be explicitly made overall. As a first step towards allowing 
users to make contextual decisions, TurtleGuard makes de- 
cisions about whether or not to allow or deny access based 
on whether the requesting application is actively being used. 
While this is but one contextual factor amongst many, it is 
likely one of the most important factors [38]. 

Moving one step beyond the all-or-nothing approach of al- 
lowing or denying an application’s access to a particular data 
type, our new design gives the user a third option: allowing 
applications to access protected data only when in use 
(Table 1 and Figure 2). When the when in use option is se- 
lected, the platform only allows an application to access a 
resource if the application is running in such a way that it 

 

option meaning 
 

 

always The permission is always granted to the re- 
questing application, regardless of whether 
the application is running in the fore- 
ground or background. 

when in use  The permission is granted to the requesting 
application only when there are cues that 
the application is running, and denied when 
the application is running invisibly in the 
background. 

never The permission is never granted to  the re- 
questing application. 

 
 

 
Table 1: The three possible permission settings under 
TurtleGuard. The when in use option accounts for the visi- 
bility of the requesting app, which is a strong contextual cue. 

 
 

is conspicuous to the user of the device. We consider the 
following behaviors conspicuous: (i) the application is run- 
ning in the foreground (i.e., the user is actively using it), (ii) 
the application has a notification on the screen, (iii) the ap- 
plication is in the background but is producing audio while 
the device is unmuted. If these conditions do not hold, then 
access to the resource is denied. 

 

3.2 Auditing Automatic Decisions 
Although Android currently provides an interface to list the 
applications that recently accessed location data, similar in- 
formation is unavailable for other protected resources. The 
existing Android interface also does not differentiate be- 
tween actions that applications take when in use and when 
not in use. TurtleGuard’s main design objective is therefore 
to communicate the types of sensitive data that have been 
accessed by applications and under what circumstances. 

Our initial design of TurtleGuard can be seen in Figure 2. 
The first tab (activity) shows all of the recently allowed or 
denied permission requests, including when those requests 
occurred and whether the application was in use at the time. 
TurtleGuard presents this information as a running 
timeline—a log sorted chronologically. A second tab lists all 
of the apps installed on the phone in alphabetical order, al- 
lowing the user to examine what decisions have been made 
for all permissions requested by a particular app. The user 
can expand a log entry to change future behavior, if the plat- 
form’s automated decision to allow or deny a permission did 
not align with the user’s preferences. When the user uses this 
interface to change a setting, the classifier is retrained based 
on the updated information. 

 

3.3 Permission Families 
Android uses over 100 permissions and a given resource can 
have more than one related permission. Felt et al. found that 
not all the permission types warrant a runtime prompt—it 
depends on the nature of the resource and the severity of the 
threat [9]. Consequently, TurtleGuard only manages a subset 
of permissions (Table 5, Appendix) based on those deemed 
sensitive by prior work and by the latest Android version. In 
the first prototype of TurtleGuard, we had listed the original 
names of the permissions, ungrouped. One of the changes we 
made as we iterated on our design after our pilot experiment 
was to implement permission “families”. For  
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Figure 2: The pilot design of TurtleGuard listed recent app 
activity (top left), a list of installed apps and their associated 
permissions (top right). Permissions can be always granted, 
granted only when in use, or never granted (bottom). 

 
 

example, read contacts and write contacts are grouped 
into a single contacts permission family. This means that 
within TurtleGuard, users only see the human- readable 
resource type and not the underlying permissions the 
family manages. Any changes that a user makes about 
granting a resource therefore affects all permissions in the 
same family. For example, there is no longer a distinction 
between coarse and fine location data; both are either al- 
lowed or denied by a location settings change made using 
the TurtleGuard interface. 

4. METHODOLOGY 
We conducted two online experiments to evaluate the effec- 
tiveness of TurtleGuard at providing users with information 
and control over app permissions, as compared to Android’s 
default permission manager (as of versions 6.0). We designed 

the first experiment to examine our initial prototype, as de- 
scribed in the previous section. Based on the analysis of our 
first experiment, we made changes to our design, and then 
validated those changes through a second experiment. In 
both experiments, we asked participants to perform four 
different tasks using an interactive Android simulation. 
These tasks involved either retrieving information about an 
appli- cation’s prior access to sensitive resources or 
preventing ac- cess in the future (i.e., modifying settings). 
Our study was approved by our IRB (#2013-02-4992). 

In both experiments, we randomly assigned participants to 
either the control or experimental conditions. We presented 
control participants with an interactive HTML5 simulation 
of the default permission manager, which is accessible from 
within the Settings app. We presented experimental partic- 
ipants with an interactive HTML5 simulation of our novel 
permission manager, TurtleGuard. During our pilot exper- 
iment, TurtleGuard was accessible through an icon on the 
home screen labeled “Privacy Manager,” though we added it 
as a sub-panel to the Settings app prior to the validation 
experiment (Figure 6 in the Appendix). The questions and 
tasks for participants were identical for the two conditions 
and both experiments. 

 
 
 
4.1 Tasks 
We presented participants with four tasks to complete using 
the interactive Android simulations: three tasks to retrieve 
information about permission settings, and one task to mod- 
ify permission settings. Some of these tasks required partic- 
ipants to find information about a specific app’s abilities.   In 
order to avoid biases from participants’ prior experiences and 
knowledge of specific real-world apps, these questions 
instead focused on a fictitious app, ZvW. While we random- 
ized the order of the tasks, we ensured that Task 3 always 
came before Task 4 (i.e., we never asked them to prevent 
background location data collection prior to asking them 
whether background location data was even possible). After 
each task, we asked participants to rate the difficulty of the 
task using a 5-point Likert scale (“very easy” to “very dif- 
ficult”). Finally, upon completing all tasks, we asked them 
several demographic questions and then compensated them 
$2.  We now describe the four tasks in detail. 

 

Task 1: What were the two most recent applications 
that accessed this device’s location? 
In this task, we asked participants to use the Android sim- 
ulation and identify the two applications that most-recently 
accessed location data. Participants used two open-ended 
fields to answer this question. In the control condition, this 
task was correctly accomplished by navigating to the “loca- 
tion” screen from within the Settings application (Figure 3). 
This screen presents information about applications that re- 
cently requested location data. 

In the experimental condition, this task was accomplished by 
simply studying the “activity” screen, which was displayed 
immediately upon opening TurtleGuard (Figure 2). Given 
that this task was already supported by the default permis- 
sion manager, we wanted to verify that TurtleGuard per- 
formed at least as well. 
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Task 2: Currently, which of the following data types 
can be accessed by the ZvW application? 
In the control condition, this was accomplished by perform- 
ing the four steps to access the screen in Figure 4 (right): 
selecting the“Apps”panel within the Settings app (Figure 3, 
left), selecting the ZvW application, and then selecting the 
“Permissions.” This screen depicted a list of permissions 
available to the application based on what the application 
declares as its required permissions; the user is able to fine- 
tune this by selectively disabling certain permissions using 
the sliders on this screen. We wanted participants to iden- 
tify the permissions that were enabled, rather than all of 
those that could be enabled in the future. 

In the experimental condition, participants could accomplish 
this task by selecting the “Apps” tab from within Turtle- 
Guard and then expanding the ZvW application to view its 
requested permissions (Figure 2, top right). In both condi- 
tions, the correct answer to the question was that “location” 
is the only data type that can be accessed by the ZvW ap- 
plication. Again, given that this task was already supported 
by the default permission manager, we wanted to verify that 
TurtleGuard performed at least as well. 

 

Task 3: Is the ZvW application able to access location 
data when it is not being actively used? 
We designed this task to determine whether TurtleGuard 
was effective at communicating to participants in the ex- 
perimental condition the difference between foreground and 
background data access. Similarly, we wanted to examine 
whether participants in the control condition understood 
that once granted a permission, an application may access 
data while not in use. Based on the settings of the simula- 
tions, the correct answer across both conditions was “yes.” 

Participants in the control group must navigate to Settings, 
then the “Apps” panel, and view the list of permissions cor- 
responding to the ZvW application, similar to Task 2. Lo- 
cation is turned on, and so participants must be able to 
understand that this means that the permission is granted even 
when it is not actively being used. Participants in the 
experimental condition can use TurtleGuard’s “Apps” tab to 
view the requested permissions for the ZvW application. This 
shows that the location permission is listed as “always” 
(Figure 2, top right) and that “when in use” is an unselected 
option (Figure 2, bottom). 

 

Task 4: Using the simulation, prevent ZvW from being 
able to access your location when you aren’t actively 
using ZvW (i.e., it can still access location data when 
it is being used). Please describe the steps you took to 
accomplish this below, or explain whether you believe 
this is even possible. 
As a follow-up to the third task, the fourth task involved 
participants explaining the steps that they went through in 
order to limit background location access, or to explain that 
it is not possible. 

Those in the experimental condition could locate and change 
this permission setting either through the activity timeline or 
by locating ZvW from the “Apps” tab (Figure 2). We marked 
answers correct that specifically mentioned changing the 
setting to “when in use.” 

Those in the control condition could not prevent this access. 
We marked responses correct if they indicated that this task 
was impossible to complete. Two coders independently re- 
viewed the responses to this task (Cohen’s = 0.903). The 
objective of this task was to see TurtleGuard’s success at 
allowing participants to vary settings based on application 
use (a strong contextual cue) and to examine whether par- 
ticipants knew that this was not possible when using the 
default permission manager. 

4.2 UI Instrumentation 
We built an interactive HTML5 simulation of the UI designs 
described in the previous section using proto.io. We instru- 
mented the simulations to log all interactions (e.g., panels 
visited, buttons clicked, etc.). This data allowed us to ana- 
lyze how participants navigated the UI to perform each task. 

4.3 Qualitative Data 
In addition to analyzing the participants’ responses to the 
four tasks, their perceived difficulty of each of the tasks, and 
their demographic information, we also collected responses 
to two open-ended questions: 

 

Thinking about the tasks that you performed in this sur- 
vey, have you ever wanted to find similar information 
about the apps running on your smartphone? 
We coded participants’ responses as a binary value. Re- 
sponses indicating sentiments such as “yes” and “I always 
wanted that”were coded as true. Clear negative answers and 
weak affirmative answers such as “sometimes” and “maybe” 
were coded as false. The purpose of this question is to see 
how prevalent seeking information is in the real world. 

 
 
Thinking about the simulation that you just used, what 
could be done to make it easier to find information 
about how apps access sensitive information? 
We coded participants’ responses in multiple ways. First, 
as binary values indicating contentment with the presented 
design. Responses that affirmed that the user would change 
nothing about the presented design were coded as true. Any 
complaints or suggestions were coded as false, as well as re- 
sponses with uncertainty, confusion, or ambivalence (e.g., “I 
don’t know”). We further coded responses that had specific 
suggestions, using tags for the different themes. 

Each response was coded by two experienced coders working 
independently, who then compared responses and recorded 
their coding conflicts. The coders discussed and reconciled 
the differences using their mutually agreed upon stricter in- 
terpretation given the nature of the tasks.  This produced the 
final coding of the data, which is used in our analysis. 

5. PILOT EXPERIMENT 
Using the methodology outlined in the previous section, we 
recruited 400 participants from Amazon’s Mechanical Turk 
for a pilot experiment. We discarded 8 incomplete sets of 
responses, leaving us with 392 participants. Our sample was 
biased towards male respondents (65% of 392), however, a 
chi-square test indicated no significant differences between 
genders with regard to successfully completing each task. 
Disclosed ages ranged from 19 to 69, with an average age of 
33. In the remainder of this section, we describe our results 
for each task, and then describe changes we made to 
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Condition Correct Incorrect 
Task 1   
control 167 (84%) 31 (15%) 
experimental 132 (68%) 62 (32%) 
Task 2   
control 140 (70%) 58 (29%) 
experimental 116 (59%) 78 (40%) 
Task 3   
control 86 (43%) 112 (56%) 
experimental 153 (78%) 41 (21%) 
Task 4   
control 47 (23%) 151 (76%) 
experimental 144 (75%) 49 (25%) 

 

Table 2: Participants in each condition who performed each 
task correctly during the pilot experiment. 

 
 
 

Figure 3: In Task 1, participants in the control condition 
could identify the most recent applications that requested 
location data from within the Settings application. This was 
also a valid method for Task 1 in the experimental condition 
for the validation study. 

 
 

TurtleGuard’s interface as a result of this initial experiment. 
We note that in our simulation, Settings can only be reached 
by tapping on the icon from the home screen. In all of our 
tasks, we also asked participants to evaluate perceived 
difficulty using a 5-point Likert scale. 

 
5.1 Task 1: Recent Location Access 
In the control condition, 84% of participants (167 out of 198) 
correctly completed this task, whereas only 68% (132 out of 
194) completed it correctly in the experimental condition. 
This difference was statistically significant (x2 = 14.391, p 
< 0.0005), though with a small-to-medium effect size (c/ 
= 0.192). In both cases, answers were marked correct if 
they mentioned both the Browser and ZvW applications 
(Table 2). Of the 49 participants in the experimental group 
who tried but failed, 13 never opened TurtleGuard, and over 
73% (36 of 49) entered“Browser”and“Contacts”, which were 
the first two applications listed in the activity tab of the Per- 
mission Manager. The activity tab showed recent resource 
accesses in a chronological order—“Browser” had been de- 
nied a location request and “Contact” had successfully ac- 
cessed call logs. 

Participants did not seem to understand that the activity log 
presented entries related to all sensitive data types, not just 
location data. This confusion might also stem from their fa- 
miliarity with the location access panel in stock Android, in 
which location access requests are presented in chronologi- 
cal order. We hypothesize that this confusion is addressable 
by redesigning the activity log to better distinguish between 
data types and allowed-versus-denied permission requests. 
One possible way of implementing this is to create separate 
tabs for allowed and denied requests, as well as to group 
similar data types together (rather than presenting all per- 
mission request activity in chronological order). 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 4: In Task 2, participants in the control condition 
could identify the permissions granted to the ZvW applica- 
tion by selecting the “Apps” panel from within the Settings 
application, and then selecting the application, followed by 
the “Permissions” panel. 

 
 

5.2 Task 2: Finding Granted Permissions 
In the second task, we asked participants to list all of the data 
types that the ZvW application currently had access to. We 
observed that 140 participants in the control condition 
(70.7% of 198) and 116 participants in the experimental 
condition (59.8% of 194) performed this task correctly.  After 
correcting for multiple testing, this difference was not 
statistically significant (x2  = 5.151, p < 0.023). 
However, despite the lack of statistical significance, we were 
surprised that not more people in the experimental condi- 
tion answered correctly. Upon investigating further, we no- 
ticed several confounding factors that might have made this 
task more difficult for people in this condition. First, while 
the control condition displays the currently-allowed permis- 
sions as grayed-out text on the “App Info” page (Figure 4), 
the experimental condition lists all requested permissions— 
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which is a superset of the allowed permissions (top-right of 
Figure 2). Second, we noticed that due to an experimental 
design error, the permissions requested by the ZvW app in 
the experimental condition included several that were not in- 
cluded in the options presented to participants (e.g., “Write 
Contacts” and “Read Call Log”). This may have made this 
task confusing for these participants. 

5.3 Task 3: Finding Background Activity 
In the third task, we asked participants whether the ZvW 
application had the ability to access location data while not 
actively being used.  We observed that 86 participants in  the 
control condition (43% of 198) correctly answered this 
question, as compared to 153 participants in the experimen- 
tal condition (78% of 194).  This difference was statistically 
significant (x2 = 51.695, p < 0.0005) with a medium effect 
size (c/ = 0.363). Thus, the new dashboard interface suc- 
cessfully differentiated between foreground and background 
permission usage. 

5.4 Task 4: Limiting Background Activity 
We observed that only 47 participants in the control con- 
dition (23% of 198) correctly stated that this task was im- 
possible. In the experimental condition, 144 (74% of 193)2 

clearly articulated the steps that they would go through us- 
ing the privacy dashboard to change location access from 
“always” to “when in use.” This difference was statistically 
significant (x2 = 101.234, p < 0.0005) with a large effect size 
(c/ = 0.509). 

 

5.5 Design Changes 
Based on the results of our first two tasks, in which partici- 
pants in the control condition were more likely to correctly 
locate information about recent app activities and the per- 
missions that apps had requested, we made several design 
changes to the TurtleGuard interface. First, we split the ac- 
tivity timeline into two separate tabs: recently allowed per- 
mission requests, and recently denied permission requests. 
Second, rather than showing all activity in chronological 
order, the activity timeline is now categorized by resource 
type, with the events for each resource type sorted chrono- 
logically.  These changes can be seen in the top of Figure 5. 

In addition to these changes, we also modified the apps tab 
to show grayed-out allowed permissions for each app, similar 
to the App Info panel in the default permission manager. Due 
to the error we noted in the experimental condition in Task 
2, we made sure that all app permissions were the same in 
both conditions. 

Finally, we moved TurtleGuard to be within the Settings app, 
so that it appears as a panel labeled “Permissions Man- ager” 
(Figure 6, Appendix). For consistency, when participants in 
the experimental condition select the “Permissions” sub-
panel from within the “App Info” panel (Figure 4, left), they 
are now redirected to TurtleGuard’s “Apps” panel, pre- 
opened to the app in question (Figure 5, bottom right). 

6. VALIDATION EXPERIMENT 
Following our pilot experiment and subsequent design changes, 
we performed a validation experiment. In the remainder of 
this section, we discuss our results (Table 3). 

 
 

2One person could not load the iframe containing the sim- 
ulation during this task. 

 

 
 
 

 
 

Figure 5: TurtleGuard separates recently allowed (top left) 
and denied (top right) permissions. The “Apps” tab lists the 
allowed permissions of all apps (bottom left). Expanding an 
app allows the user to make changes (bottom right). 

 
 
6.1 Participants 
Because of several known biases in Mechanical Turk’s de- 
mographics [27, 33, 22], we decided to compare a sample of 
298 Mechanical Turk participants to a sample of 300 Pro- 
lific Academic participants. Peer et al. recently performed 
several studies on various crowdsourcing platforms and con- 
cluded that the latter yields more diverse participants [30]. 
We limited both groups to participants based in the U.S., over 
18, owning an Android phone, and having a 95% approval 
rating on their respective platform. After removing 18 
incomplete responses, we were left with a combined sample 
of 580 participants. We analyzed the results from the two 
groups, and discovered that the high-level findings (i.e., 
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Condition Correct Incorrect 
 

 

Task 1 
control 237 (82.6%) 50 (17.4%) 
experimental 241 (82.5%) 52 (17.5%) 

 
 

Task 2 
control 232 (77.1%) 55 (22.9%) 
experimental 226 (80.8%) 67 (19.2%) 

 
 

Task 3 
control 108 (37.6%) 179 (62.4%) 
experimental 230 (78.5%) 63 (21.5%) 

 
 

Task 4 
control 79 (27.5%) 208 (72.5%) 
experimental 224 (76.5%) 69 (23.5%) 

 
 

 
Table 3: Participants in each condition who performed each 
task correctly during the validation experiment. 

 
 

task performance) did not observably differ. For the remain- 
der of our study, we therefore discuss the combined results. 
Our sample was biased towards male respondents (63% of 
580), however, a chi-square test indicated no significant dif- 
ferences between genders with regard to successfully com- 
pleting each task. Disclosed ages ranged from 19 to 74, with 
an average age of 33. Participants performed the same tasks 
as those in the pilot experiment and took on average 9 min- 
utes and 17 seconds to complete the experiment. 

 
6.2 Task 1: Recent Location Access 
Recall that in this task, we asked participants to identify the 
two most recent applications that accessed location data. For 
the experimental condition, in addition to using the same 
method as the control (navigating to the “Location” sub-panel 
of the Settings app), participants could navigate to the 
“Allowed” tab within TurtleGuard, and then examine 
the“Location”permission to see the two most recent accesses 
(top left of Figure 5). In the control condition, 237 partici- 
pants (82.6% of 287) correctly completed this task, whereas 
241 (82.5% of 293) completed it correctly in the experimental 
condition. A chi-square test revealed that this difference 
was not statistically significant (x2 = 0.011, p < 0.918). 

We observed that most of the participants in both conditions 
used the default method of accomplishing this task (i.e., 
accessing the Location sub-panel): 80.1% of those who 
answered correctly in the experimental condition and 92.8% 
of those in the control condition.  Fifteen participants in the 
control condition answered correctly despite not accessing 
the panel—likely by random guessing, and two who an- 
swered correctly by exhaustively searching the “App Info” 
panels of installed apps, to see which had been granted the 
location permission; 48 participants in the experimental con- 
dition used TurtleGuard to yield the correct answer. 

A total of 102 participants incorrectly answered the question 
in Task 1. Of the incorrect responses, five participants failed 
to properly navigate the simulation and wrote that it was 
broken or the buttons did not work; 9 participants did not 
respond or wrote that they did not know. Of the other 88 
participants, 38 (43%) listed “App Store” as one of their 
selections, making it the most common error. 

More specifically, 18 participants listed their answers as both 
“App Store” and “Browser.” We believe that this is because 
both the stock Android Apps Manager and TurtleGuard’s 
“Apps” tab (Figure 5, bottom) sort the entries alphabetically, 
and by looking at the permissions available to both of these 
apps, participants would see that both have location access. 
Nevertheless, they are not the most recent apps to access 
location data. 

Overall, these results suggest that the changes we made af- 
ter our pilot experiment resulted in marked improvements. 
We further investigated this by examining participants’ per- 
ceived ease-of-use, as measured using the 5-point Likert scale 
(“very easy (1)” to “very difficult (5)”). In the experimen- 
tal condition, 84 participants accessed TurtleGuard to com- 
plete this task (regardless of whether or not they answered 
correctly). We compared these 84 responses with the 463 
responses from participants who only used the default Set- 
tings panel (i.e., 195 in the experimental group and 268 
in the control group). The median responses from both 
groups was “easy” (2), however there was a statistically sig- 
nificant difference between the groups (Wilcoxon Rank-Sum 
test:  Z  =  3.9605, p  < 0.0005), with a small effect size (r 
= 0.17)—participants who used TurtleGuard found it more 
difficult compared to the default Settings panel. This 
difference appears to be due to those who performed the task 
incorrectly: the median response for TurtleGuard users who 
answered incorrectly was “difficult (4),” whereas it was “neu- 
tral (3)” for other participants. This may actually be a good 
thing: participants who confidently answered incorrectly are 
at greater risk due to over confidence, whereas those who had 
difficulty may be more likely to seek out more information. 

 
6.3 Task 2: Finding Granted Permissions 
In this task, participants had to locate the app’s allowed 
permissions to discover that “location” was the only allowed 
permission in both the experimental and control conditions. 
This could be accomplished by viewing TurtleGuard’s Apps 
tab (bottom of Figure 5) for those in the experimental con- 
dition, or by viewing an app’s App Info panel from within 
the Settings app (Figure 4), which was available to those in 
either condition. 

In total, 458 participants correctly performed this task (79% 
of 580). Table 3 displays the breakdown of the results by 
condition. A chi-square test did not yield statistically sig- 
nificant results between the two conditions in terms of task 
completion (x2 = 0.984, p < 0.321). 

Of the 226 experimental condition participants who per- 
formed the task correctly, 127 (56.2%) did so by using Turtle- 
Guard. In total, 145 experimental condition participants ac- 
cessed TurtleGuard, and reported a median task difficulty of 
“easy (2).” This did not significantly differ from the 375 other 
participants in both conditions who only examined the 
default Settings panels to perform the task and also reported 
a median difficulty of “easy” (Z = 1.808, p < 0.238); 60 par- 
ticipants never opened Settings (10 of whom answered the 
question correctly, likely due to random guessing). 

 
6.4 Task 3: Finding Background Activity 
To perform this task, participants in the control group had to 
navigate to Settings, then the “Apps” panel, and view the list 
of permissions corresponding to the ZvW application 
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(Figure 4). However, performing this sequence of steps still 
did not guarantee they would answer the question correctly: 
they needed to observe that location data was allowed, as 
well as understand that this meant that location data could be 
accessed by the app even when it is not actively being used. 
Participants in the experimental condition answered this 
question through TurtleGuard, which shows that the lo- 
cation permission was listed as “Always” (Figure 5), thereby 
eliminating  the ambiguity. 

We observed that 230 experimental condition participants 
answered this question correctly (78.5% of 293), as com- 
pared to only 108 control participants (37.6% of 287). A 
chi-square test showed that this difference was significant 
(x = 97.914, p < 0.0005) with a medium-to-large effect size 
(c/ = 0.414). This observation corroborates Thompson et 
al.’s findings [37] that users are largely unaware that apps 
can access sensitive data when not in use. TurtleGuard, 
however, was more effective at communicating this informa- 
tion to participants. Among the participants in the experi- 
mental condition, 24.57% took the extra step to click on the 
location entry (bottom right of Figure 5) to see the other op- 
tions available (Figure 2): always, when in use, and never. 

We found that 129 participants used TurtleGuard to per- form 
this task, which suggests that 101 (34.5% of experimental 
condition participants) still got it correct either based on prior 
knowledge—a proportion consistent with Thompson et al.’s 
findings [37]—or after having used TurtleGuard in pre- 
ceding tasks. There were 383 participants who completed the 
task by examining existing areas of the Settings app, whereas 
68 participants never bothered to open Settings to complete 
this task. The median ease of use for those who used 
TurtleGuard was “easy (2)”, while the median ease of use for 
those who used the default permission manager was “neutral 
(3)”.  This difference was statistically significant (Z = 2.885, 
p < 0.004) with a small effect size (r = 0.13). Participants in 
the control condition also took significantly longer to 
complete the task: 49.63 seconds versus 26.65 seconds. A 
Wilcoxon Rank-Sum test found this difference to be 
statistically significant (Z = -5.239, p < 0.0005, r = 0.22). 

6.5 Task 4: Limiting Background Activity 
Task 4 asked participants to describe the steps to prevent an 
application from accessing location data while the applica- 
tion was not in use, or to state that it is not possible to pre- 
vent it. It is only possible to prevent it using TurtleGuard. 

In the experimental condition, 224 (76.5% of 293) explic- itly 
stated how they would use TurtleGuard to change the 
permission to “when in use”,3  whereas only 79 (27.5% of 
287) control group participants correctly stated that this task 
was impossible using the default permission manager. This 
difference was statistically significant (x2  =  137.14,  p < 
0.0005) with a large effect size (c/ = 0.49). 

A majority of the participants (72.5%) in the control group 
incorrectly believed that they could vary their decisions based 
on the visibility of the application. The most common re- 
sponses involved disabling location data altogether, prevent- 
ing the app from running, or restricting “background data”: 

 
3We used a very conservative rubric: 11 participants who 
described using TurtleGuard, but did not explicitly use the 
phrase “when in use,” were coded as being incorrect. 

• Settings > Apps > ZvW > Toggle Location O↵ 
• Disable or Force  Stop the Application 

Settings > Location > ZvW > Permissions > Toggle 
Location O↵ 
Settings > Apps > ZvW > Data Usage > Restrict 
Background Data 

• Settings > Location > Toggle Location O↵ 

 
A considerable portion (14%) chose to “restrict background 
data,” which does something else entirely: it prevents data 
surcharges while roaming on foreign networks. This is an- 
other example of a disconnect between users’ mental models 
and the true meaning of these configuration options. That 
said, a small number of participants in the control condition 
correctly stated that they would need to disable the app’s 
location permission, and then re-enable it every time they 
wanted to use that app, a tedious process that is prone to 
forgetfulness—we treated this response as correct. Another 
substantial portion among the default permission manager 
condition (46%) wanted to block the location globally (from 
the default location panel) or block the location access from 
ZvW app entirely. While this is an overly restrictive option 
compared to when in use, this is the closest option provided 
in Android—we treated this as an incorrect response. 
As expected, participants in the control condition rated the 
difficulty of this task as “neutral (3)”, whereas the median 
Likert score from those in the experimental condition was 
“easy (2)”. This difference was statistically significant with a 
large effect size (p < 0.0005, c/ = 0.49). The participants in 
the control condition who successfully completed the task 
(e.g., by acknowledging it was impossible) struggled 
immensely with it, evaluating it as “difficult (4)”. 

7. USER PERCEPTIONS 
After completing the four tasks, participants answered two 
open-ended questions about whether they have looked for 
this type of permission information in the past, and whether 
they have any suggestions to offer us about the design of the 
interface they had just used. Two researchers independently 
coded each question and then resolved conflicts. We provide 
Cohen’s inter-rater reliability statistic (  ) for each coding. 

 

7.1 Prior Experiences 
Our first question asked: Thinking about the tasks that you 
performed in this survey, have you ever wanted to find simi- 
lar information about the apps running on your smartphone? 

Our goal was to determine whether participants had pre- 
viously thought about resource access or configuring pri- 
vacy preferences, and whether having these features would 
be beneficial. On average, 63.1% of participants stated that 
they had thought about this (Cohen’s = 0.792), and the 
experimental condition they were in proved to be insignif- 
icant. We did, however, observe a positive correlation be- 
tween performance on the four tasks (i.e., number of tasks 
performed correctly) and reporting having previously thought 
about these issues (p < 0.007511, r = 0.155). 

Among the people who chose to be more detailed in their 
responses, several themes emerged. A large portion men- 
tioned that the reason they had tried these tasks before is that 
they wanted to be able to exert more control over their 
installed apps: 

• 

• 
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Changes No Changes 
 

 

control 245 (85.4%) 42 (14.6%) 
experimental 187 (63.8%) 106 (36.3%) 

 
 

 
Table 4: Whether participants believed changes were needed 
to the interfaces they used during the validation study. 

 
 

“I was somewhat familiar with these menus already be- 
fore starting this task. I like to have control over my 
app permissions including location and data manage- 
ment.” 
“Yes, I’ve often wanted a little more control over what 
my apps get to access” 

 
A minority of participants expressed their frustrations on 
how the current default user interfaces in Android were con- 
fusing and did not let them set privacy preferences the way 
they wanted: 

 
“Yes but usually can’t find anything on there either like 
these. So I gave up trying.” 
“Yes. I want to know what they collect, although it gets 
tedious to try to figure it all out. Sometimes I’d rather 
just ignore it.” 

 
These comments highlight the fact that many users want to 
have control over resource usage by applications, and that 
many feel helpless to do so, given the options offered by 
current privacy management interfaces. These observations 
further strengthen the need for a more usable interface that 
will help people to feel more empowered. 

7.2 Suggestions 
In our second exit survey question, we asked: Thinking about the 
simulation that you just used, what could be done to make it 
easier to find information about how apps access sensitive 
information? 

This question had two purposes: (i) to gather specific design 
recommendations from participants who used TurtleGuard; 
(ii) to get general suggestions from participants who used the 
default permission manager. 

In total, 66.03% participants (383 of 580) suggested at least 
some change or improvement (Cohen’s = 0.896).  Table 4 
shows the breakdown of how many participants in each con- 
dition prefer a change in the dashboard within their condi- 
tion. A chi-square test shows a statistically significant as- 
sociation between a participant’s condition and whether the 
participant wants changes in the dashboard (p < 0.00005, c/ = 
0.237). This suggests the participants in the experimental 
condition are more satisfied with the controls provided by the 
new design than those in the control condition.  Our work 
aims to fill the need users have regarding control over 
permissions and their personal privacy. 

The most common suggestion (32.24% of all suggestions) 
was to reduce the number of layers to the actual permis- 
sion interface (Cohen’s = 0.603). Participants complained 
about number of different interfaces they had to traverse 
before reaching the actual permission interface. Many par- 
ticipants suggested that they would prefer to reach a per- 

mission control interface directly through the application— 
either as part of the application or by pressing the app icon. 
TurtleGuard addresses this concern by providing a path to 
permission management that involves fewer clicks and cen- 
tralizes all permission management functionality. 

 
“Streamline the interface to require less touches to find 
the information about permissions and make it explicit 
as to what type of data would be collected if allowed.” 
“Perhaps have an easier way to access the app’s set- 
tings, such as holding onto an app’s icon will bring up 
its specific settings.” 
“Make each app itself have the option to find that infor- 
mation instead of going to the general phone settings.” 
“There should be one centralized location, or maybe an 
app for that. Just to toggle with these very important 
settings.” 

 
Seven participants thought having a log of recent resource 
usage by applications would be useful. Some went further, 
mentioning that the log should also provide contextual cues, 
such as the visibility of the application at the time it makes 
the request. This finding provides evidence in support of Liu 
et al. [20], that recent statistics help users make better de- 
cisions. TurtleGuard provides this functionality by showing 
all the recent resource requests along with (i) the decision 
that platform took on behalf of the users, (ii) the time that the 
decision was made, and (iii) the visibility of the requesting 
application. 

 
“It would be useful to have a dashboard which shows 
which apps are accessing what and when. Being able 
to see a log of the actual data that was accessed would 
also be useful.” 
“A log could be provided as an option in the settings 
that shows all times an app accessed sensitive infor- 
mation.” 

 
A few participants (14.6%) also suggested that there should 
be a tutorial, wizard style guide, or a FAQ to explain how 
to manage permissions (Cohen’s = 0.651). Some wanted 
the applications to explain why they need access to certain 
resources. Some even suggested runtime prompts for every 
sensitive request access. One participant suggested that app 
developers hold a YouTube Q&A session on resource usage 
after each release: 

 
“As the app is being introduced to the users, they should 
make a youtube q&a to answer any simple questions 
like this.” 

 
Prior work has already shown that having runtime prompts 
on every sensitive request is not feasible [38]—we believe 
that a log of recent resource accesses with surrounding con- 
text is the closest practical solution. 

8. DISCUSSION 
Our primary goal is to empower users to make privacy de- 
cisions better aligned with their preferences and to keep them 
informed about how third-party applications exercise granted  
permissions,  and  under  what  circumstances.  We 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 
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performed iterative user-centered design on a new permis- 
sion management interface, TurtleGuard, which offers users 
significant improvements in their ability to control permis- 
sions when compared to the default permission  manager. 

 
8.1 Auditing Automated Decision Making 
Recent research uses machine-learning techniques to auto- 
matically predict users’ permission preferences [39, 20, 19, 
21]. While machine-learning (ML) techniques have been 
shown to be better at predicting users’ preferences [39], they 
are still prone to errors. 

If systems are going to use ML in the future, there must be 
mechanisms for users to audit the decisions made on their 
behalves. We believe that the design we present in our study 
is a critical first step towards achieving that goal. Partici- 
pants using TurtleGuard were better able to understand and 
control when apps have access to sensitive data than partic- 
ipants using the default permission manager. A substantial 
proportion of participants mentioned the desire to have a log 
that they could use to see how each application accesses 
sensitive resources—functionality that is missing in the de- 
fault permission manager, but is provided  by  TurtleGuard. 

 
8.2 Correcting Mental Models 
In Task 4, we asked participants to disable access to loca- 
tion data when the example app, ZvW, was not actively be- 
ing used, or to explain that this was not possible. We found 
that 72.5% of the participants in the control condition in- 
correctly believed that this was possible. Analyzing the dif- 
ferent paths that participants in the control condition took 
while using the Android simulation, it was evident that the 
majority of participants did not understand the limits of the 
permission interface’s provided functionality. This mis- 
match between users’ mental models and actual functional- 
ity may lead to users incorrectly believing that they have 
denied access to certain requests for sensitive data. 

 
8.3 Privacy Nudges 
Previous work investigated ways to nudge users to config- 
ure their privacy settings and make them aware of how ap- 
plications access their data [20, 13, 17]. While helping mo- 
tivate users to use TurtleGuard (and other privacy man- 
agement interfaces) is important, it is out of scope for this 
work. Nevertheless, our survey results showed that 63.1% of 
participants—independent of condition—previously searched 
for permission information on their smartphones. This shows 
that users are keen to understand how applications use their 
sensitive resources, and interfaces similar to the one we present 
in this study fill a critical need. 

 
8.4 Limitations 
In our proposed interface, TurtleGuard, we allow users to 
vary their decisions based on the visibility of the requesting 
application. We believe this is a significant first step to- 
wards enabling users to make contextual privacy decisions. 
The full extent of the impact of the surrounding context, 
however, goes beyond the mere visibility of the requesting 
application. More work is needed to understand different 
contextual factors and their respective impact on users’ pri- 
vacy decisions. We hope the results of this study will pave the 
path for future work on implementing fully contextually 
aware permission managers. 

Additionally, we acknowledge the limitations in our screen- 
ing process: participants who selected Android as their mo- 
bile device may have varying levels of usage and knowledge 
regarding the platform. Prior experience may have rendered 
the default permission manager as being easier to use for 
some participants in the control condition. This suggests that 
for new Android users, the usability improvements of 
TurtleGuard may be even greater than what we observed. 

We also acknowledge that irregularities in the simulation 
may have had an impact towards participants’ comprehen- 
sion and completion rates. These confounding factors intro- 
duced by the UI, however, would have impacted both con- 
ditions equally, because the control condition was simulated 
using the same infrastructure and development environment. 
Finally, for users in the control condition, Task 4 may have 
been deceptively tricky due to its impossibility. Neverthe- 
less, the incorrect answers underscore a very real problem: 
Android users are not aware that they are unable to deny 
resources to applications that they are not using. 

8.5 Conclusion 
Android’s existing permission models, ask-on-install (AOI) 
and ask-on-first-use (AOFU), are insufficient at fulfilling users’ 
privacy desires and needs. Neither of the existing models 
account for contextual factors in their decisions to allow or 
deny access to sensitive data. Users want to protect their 
sensitive information, but have a hard time understanding 
when access to data is and is not being allowed. TurtleGuard 
adds both ease of use and functionality, including the ability to 
consider application visibility when specifying privacy 
preferences, which has been shown to be a strong contextual 
cue. In our study of TurtleGuard, we had participants 
perform permission-related tasks and compared their perfor- 
mance TurtleGuard with a control group using the default 
permission manager. Based on our results, we iterated on 
TurtleGuard’s design, and then performed a validation ex- 
periment to confirm the validity of our changes. Our results 
show that users are significantly better at performing per- 
mission management tasks with TurtleGuard than the de- fault 
permission manager. 
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Table  5:   Sensitive  permissions  managed  by TurtleGuard. 
Permissions grouped by a single explanation form the fam- 
ilies used in our system to reduce the number of managed 
permission as discussed in Section 3. 
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Condition Correct Incorrect All 
Task 1    
control 2 3 2 
experimental 2 4 2 
Task 2    
control 2 3 3 
experimental 2 3 2 
Task 3    
control 2 4 3 
experimental 2 3 2 
Task 4    
control 4 2 3 
experimental 2 2 2 

 
Table 6: Median ease-of-use Likert scores for all tasks, condi- 
tions, and correctness in the validation experiment. Higher 
scores indicate more difficulty. 

 
 
 
 
 

 

 
Figure 6: In the pilot experiment, TurtleGuard was launched 
via the icon labeled “Privacy Manager” (top left), but then 
added as a sub-panel to the Settings app, labeled “Permis- 
sions Manager,” for the validation experiment (top right). In 
the control condition in the pilot experiment and both con- 
ditions in the validation experiment, the Settings app was 
accessible from the home screen (bottom). 
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Figure 7: Ease of use histograms for each task (validation 
experiment) 

 
 
 
 

Figure 8: Ease of use histogram for Task 1 (validation ex- 
periment) 
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Figure 9: Ease of use histogram for Task 2 (validation ex- 
periment) 

Figure 10: Ease of use histogram for Task 3 (validation ex- 
periment) 
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Figure 11: Ease of use histogram for Task 4 (validation ex- 
periment) 
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List of Symbols, Abbreviations and Acronyms 

 
AOFU Ask On First Use 

API Application Programming Interface 

BYOD Bring Your Own Device 

CDMA Code Division Multiple Access 

ESM Experience Sampling Method 

GPS Global Positioning System 

GSM Global System for Mobiles 

HTTPS Hyper Text Transfer Protocol Secure 

ML Machine-learning 

NFC Near field communication 

OS Operating System 

SSID Service Set Identifier 

SMS Short Message Service 

SVM Support Vector Machines 

UI User Interface 
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Glossary of Terminology 

 
BYOD Bring Your Own Device Practice where employees and workers can 
bring their own mobile devices into the workplace to be used for both work and personal 
purposes. 

Background Application Application that is running on a mobile device but is 
not readily visible to the end user. 

Classifier The Classifier is a system that looks at user preferences (privacy 
preferences in the case of this report) and then recommends actions to perform on the 
behalf of the end user (e.g. deny access to a specific application for contact information). 
Over time, the classifier learns how to correctly classify user preferences and associate 
these with actions that it should perform for the end user. 

Android The operating system at the time of this writing that is developed by 
Google used on mobile phones. 

Dashboard The user interface we provided for allowing users to have control over 
the privacy settings for their applications on the Android phones 

Lo-Fidelity prototypes Lo-Fidelity prototypes are prototypes created for user 
testing that display minimal information and are not entirely implemented. 

 

Hi-Fidelity prototypes Hi-Fidelity prototypes are prototypes created for user 
testing that look and in some cases act as if they are implemented, however they still 
lack certain functionality that would make them actual implementations. 
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