

A PLATFORM FOR CONTEXTUAL MOBILE PRIVACY

INTERNATIONAL COMPUTER SCIENCE INSTITUTE

DECEMBER 2017

FINAL TECHNICAL REPORT

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

STINFO COPY

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE

AFRL-RI-RS-TR-2017-241

 UNITED STATES AIR FORCE ROME, NY 13441 AIR FORCE MATERIEL COMMAND

NOTICE AND SIGNATURE PAGE

Using Government drawings, specifications, or other data included in this document for any purpose
other than Government procurement does not in any way obligate the U.S. Government. The fact that
the Government formulated or supplied the drawings, specifications, or other data does not license the
holder or any other person or corporation; or convey any rights or permission to manufacture, use, or
sell any patented invention that may relate to them.

This report was cleared for public release by the 88th ABW, Wright-Patterson AFB Public Affairs Office and is
available to the general public, including foreign nationals. Copies may be obtained from the Defense Technical
Information Center (DTIC) (http://www.dtic.mil).

AFRL-RI-RS-TR-2017-241 HAS BEEN REVIEWED AND IS APPROVED FOR PUBLICATION IN
ACCORDANCE WITH ASSIGNED DISTRIBUTION STATEMENT.

FOR THE CHIEF ENGINEER:

 / S / / S /
FRANCES A. ROSE JOHN D. MATYJAS
Work Unit Manager Technical Advisor, Computer
 & Communications Division
 Information Directorate

This report is published in the interest of scientific and technical information exchange, and its
publication does not constitute the Government’s approval or disapproval of its ideas or findings.

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway,
Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of
information if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY)

DEC 2017
2. REPORT TYPE

FINAL TECHNICAL REPORT
3. DATES COVERED (From - To)

JUN 2016 – JUL 2017
4. TITLE AND SUBTITLE

A PLATFORM FOR CONTEXTUAL MOBILE PRIVACY

5a. CONTRACT NUMBER
N/A

5b. GRANT NUMBER
FA8750-16-C-0140

5c. PROGRAM ELEMENT NUMBER
DHS

6. AUTHOR(S)

Serge Egelman, Nathan Good

5d. PROJECT NUMBER
DHSB

5e. TASK NUMBER
IC

5f. WORK UNIT NUMBER
SI

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
International Computer Science Institute (ICSI)
1947 Center Street, Suite 600
Berkeley, CA 94127

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Air Force Research Laboratory/RITE
525 Brooks Road
Rome NY 13441-4505

10. SPONSOR/MONITOR'S ACRONYM(S)

AFRL/RI
11. SPONSOR/MONITOR’S REPORT NUMBER

AFRL-RI-RS-TR-2017-241
12. DISTRIBUTION AVAILABILITY STATEMENT

Approved for Public Release; Distribution Unlimited. PA# 88ABW-2017-5993
Date Cleared: 28 Nov 2017
13. SUPPLEMENTARY NOTES

14. ABSTRACT

We developed a system that balances the privacy needs of users and organizations when using personal devices in the
workplace-- "Bring Your Own Device" (BYOD) environments. In so doing, we performed qualitative interviews with
extreme users, to under- stand their privacy needs, the shortcomings of current systems, and their existing coping
mechanisms. Based on these interviews, we developed a system that applies machine-learning to automatically infer
when access to sensitive data is likely to be expected by the user. We performed a field study to collect real-world
training data to train the classifier offline. In parallel, we performed an online study to evaluate designs for a user
interface (i.e., a "privacy management dashboard"). Based on our study results, we implemented our designs into the
Android platform and performed a subsequent field study to validate our designs.

15. SUBJECT TERMS

Privacy, smartphones, BYOD, usability

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

UU

18. NUMBER
OF PAGES

19a. NAME OF RESPONSIBLE PERSON
FRANCES A. ROSE

a. REPORT
U

b. ABSTRACT
U

c. THIS PAGE
U

19b. TELEPHONE NUMBER (Include area code)
N/A

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39.18

90

i

TABLE OF CONTENTS
Section Page

List of Figures .. ii

List of Tables ... ii

Acknowledgements .. iii

1 SUMMARY .. 1

2 INTRODUCTION .. 2

3 METHODS, ASSUMPTIONS AND PROCEDURES .. 4
3.1 User Interviews .. 4
3.2 Initial Classifier Design... 6
3.3 Prototype and User Testing ... 9
3.4 System Implementation ... 9

3.4.1 A Local SVM Classifier ... 10
3.4.2 Bootstrapping ... 11
3.4.3 Feature Set .. 11
3.4.4 Sensitive Resources .. 11
3.4.5 Permission Denial .. 12
3.4.6 Contextually Aware Permission Manager .. 12

3.5 Validation Study Methodology ... 13
3.5.1 Participant’s Privacy Preferences ... 14
3.5.2 Recruitment .. 14
3.5.3 Exit Interview ... 15

4 RESULTS AND DISCUSSION .. 16
4.1 Status Quo Problems ... 17

4.1.1 AOFU User Expectations ... 18
4.2 Classifier Accuracy .. 19

4.2.1 Offline Learning ... 20
4.2.2 Decision Confidence .. 20

4.3 Impact on App Functionality .. 21
4.4 User Reactions to Prompts .. 22
4.5 User Reactions to Controls ... 22
4.6 Discussion ... 24

4.6.1 Consequential Denial ... 24
4.6.2 Ask on First Use ... 24
4.6.3 Implementation Limitations ... 24

ii

4.6.4 Purpose ... 25
4.6.5 Resource Denial ... 25

5 CONCLUSION .. 26

6 REFERENCES ... 27

Appendix A .. Android Permissions Remystified: A Study on Contextual Integrity
 .. 29

Appendix B The Feasbility of Dynamically Granted Permissions: Aligning
Mobile Privacy with User Preferences ... 53

Appendix C TurtleGuard: Helping Android Users Apply Contextual Privacy
Preferences .. 71

List of Symbols, Abbreviations and Acronyms .. 90

Glossary of Terminology .. 91

List of Figures

Figure Page
1 A screenshot of an ESM prompt. 7

2 A screenshot of a permission request prompt. ... 11

3 The recent-allowed app activity (left), a list of installed apps and their
associated permissions (center). Permissions can be always granted,
granted only when in use, or never granted (right). 14

List of Tables
Table Page

1 Participants in the first study received prompts when applications
attempted to use these permissions. 7

2 Instrumented events that form our feature set 8

iii

Acknowledgements
This work is a collective effort involving members of ICSI’s Usable Security and
Privacy Group, the Berkeley Laboratory for Usable and Experimental Security
(BLUES) and Good Research: PI Serge Egelman, Irwin Reyes, Joel Reardon, Primal
Wijesekera, Jennifer Chen, and Nathan Good. We would like to thank Program
Manager Anil John, along with Ryan Triplett and Frances Rose for their guidance and
support.

Approved for Public Release; Distribution Unlimited
1

1 SUMMARY
In this project, we sought to understand how users and organizations balance privacy
needs when using personal devices for both work and personal purposes— that is,
“Bring Your Own Device” (BYOD) environments. Our goal was to better understand
the challenges users and organizations faced so that we could develop a better privacy
management system that addresses their needs. Specifically, we performed qualitative
interviews among “extreme users” (those in environments who have particularly
complicated needs) to answer the following questions:

• What do users want control over with respect to privacy in an
organization?

• How should these controls be implemented?
• How can we build systems to make automated decisions in order to

reduce user burden and facilitate better choices in-line with users’
expectations?

In answering these questions, we interviewed 15 employees working in law
enforcement organizations (i.e., the California Department of Justice and Los Angeles
District Attorney’s offices). Interviewees were in a range of roles with very particular
privacy needs (e.g., prosecutors, investigators, and administrators). We found that users
had sophisticated privacy needs that were not being met, particularly surrounding the
access to personal information, location data, photos/media, and contact information,
when using their smartphones in the workplace.

In addressing these users’ needs, we developed a modified version of the Android
platform that allows users to control how information is collected by third-party
applications. The heart of our system is a trained classifier, which makes real-time
decisions about whether an application should have access to certain protected data.
Additionally, we provided specific functionality to address the areas that users found
most problematic:

• For contacts, we provided a separate public/private primitive, which
allows users to prevent applications from accessing professional or
personal contacts, when appropriate.

• When denying access to certain data types, our system instead
provides “fake” or less granular data, which allows privacy to be
preserved, while limiting negative impacts on application
functionality.

• For access to photos/media, we developed filters to identify and
optionally remove potentially-sensitive features, before that media
is shared with applications, in accordance with the end users’
wishes.

We performed an initial field study using a sample of 131 Android users. We applied

Approved for Public Release; Distribution Unlimited
2

the Experience Sampling Method (ESM) [11], wherein we periodically prompted
participants about third-party applications’ recent accesses to protected data. The
prompts asked participants whether they would have allowed or denied the access, if
given the choice. Alongside these prompts, we collected contextual data about what
applications had accessed data, the types of data, and other situational information. We
used the responses to these prompts to train a classifier using the contextual data as a
feature set. We showed that this classifier was able to make much better decisions about
access to sensitive data, reducing the error rate over the existing system by four-fold.

In parallel to this work, we developed a user interface. The theory behind the user
interface is that if machine-learning is being used to automatically infer users’ privacy
preferences and making decisions based on those inferences, an interface is needed to
show users what decisions have been previously made. This serves two purposes:
transparency and control. In addition to showing the users what decisions have been
made, it also allows them to alter those decisions, thereby retraining the classifier (and
further reducing its error rate). We evaluated this design using an online study, which
showed it to be usable.

Finally, we implemented both the classifier and the user interface into a working
version of the Android platform and performed another field study to validate our
designs. We gave instrumented phones running our system to 37 participants who used
it for a one-week period. We corroborated our previous findings, in that error rates were
reduced by 50-75% over the privacy management system.

In addition to our working system, the result of this work were three academic
publications [18, 19, 17], and an additional publication in submission. These
publications and the publication in submission address the research questions above,
covering findings from our interviews as well as innovations in the user experience,
and the technology to manage privacy requests at the OS-level, as well as
improvements and integration of our classifier.

These results demonstrate that when provided the technology we have developed, end-
users can effectively manage complex privacy decisions and trust the system to handle
their private information in-line with their expectations. The implications of this work
are that BYOD solutions that are end-user controlled can potentially increase adoption
of these systems while simultaneously addressing joint user-organizational concerns
around privacy and information security.

2 INTRODUCTION
Mobile phones are increasingly used as general purpose computers, with users taking
advantage of a great number of apps to help with communication, productivity,
organization, and diversion. Frequently these apps are nominally free, but the
developers make a profit through the collection of sensitive user data. For example,
Google Play’s current top two flashlight apps (i.e., apps that turn on and off a phone’s

Approved for Public Release; Distribution Unlimited
3

camera flash) require access to the user’s location, and previously requested address
book contacts. This access to private data is not needed to actually operate the app
itself, but instead is only used for monetization purposes.

These resources are highly sensitive. In interviews we conducted, we found that users,
particularly those in law enforcement professions find the idea of delivering your entire
address book to a third-party entity to be unacceptable. Such users are not alone. In fact,
both Android and iOS provide a permission system as a means to protect users’ private
data. Arbitrary apps cannot simply access all user data they must first request access
and the user then grants it. This is the application of a fundamental principle in security:
the principle of least privilege. This means that apps should only be given the power
and capabilities that they need to work and nothing more. This mitigates the damage
caused by malicious behavior, both accidental and intentional.

Originally, Android permissions were presented as install-time ultimatums that were
unsuccessful at achieving their goals [9, 6]. More recently, Android started using an
ask-on-first-use (AOFU) model. In AOFU, the user is explicitly asked— at runtime—
whether to grant or deny a permission via a dialog box, the first time an app attempts
to access the protected resource. This approach gives the user a little more contextual
information: e.g., it may be curious that a text messaging app needs to use the
microphone, but knowing that the request occurred after the user tried to use a speech-
to-text feature clarifies the likely rationale.

By design, however, AOFU takes the user’s decision at one moment and then uses it in
perpetuity for all future requests from that app for that permission, unless the user
navigates several layers of settings to change it. During the course of this project, we
showed that this method is highly error prone [19]: it mis-predicts the users’
preferences resulting in privacy violations. This is because AOFU is not a correct
model for user behavior and decision-making [18, 19]. AOFU fails to account for the
contexts in which future requests may arise. Users are nuanced and they vary their
decisions based on a variety of factors, such as the visibility of the requesting
application (i.e., whether it was actively in use when it requested a permission), what
the user was actually doing at the time, as well as a variety of other factors.

As part of this project, we implemented and evaluated the usability of a novel mobile
privacy management system that builds heavily on our prior theoretical work, as well
as the interviews with “extreme users”—those with very serious privacy concerns when
using their mobile devices in professional environments— that we conducted to better
understand the problems that users face. To resolve the longstanding challenges of
mobile privacy management, we applied machine-learning (ML) to dynamically
manage app permissions, and then we proposed a user interface design to help users
manage that system [17]. This work applies Nissenbaum’s theory of Privacy as
Contextual Integrity [14]. We then implemented these systems on the Android platform
and performed a field study to evaluate their effectiveness at aligning app privacy

Approved for Public Release; Distribution Unlimited
4

behaviors with users’ expectations. The machine-learning (ML) model runs entirely on
the device and uses infrequent user prompts to retrain and improve its accuracy over
time. When the ML model makes a mistake, the user interface is available to support
the user in reviewing and modifying privacy decisions, thereby retraining the ML.

We performed a 37-person field study to validate our new privacy management system,
measuring its efficacy and how it interacted with participants and third-party apps. We
issued each participant a smartphone running a custom Android OS with our
permission system that used an online classifier, which participants used as their
primary phones for a one-week study period. This produced real-world usage data from
253 unique apps, which corresponded to more than 1,100 permission decisions.
Overall, participants denied 24% of permission requests. Our data show that AOFU
matched participant privacy preferences only 80% of the time, while the new
contextual model matched preferences 95% of the time, reducing the error rate by 75%.

3 METHODS, ASSUMPTIONS AND PROCEDURES
Our approach was iterative, engaging end-users through user experience research
methodologies (using observational studies, interviews, and surveys) and evolving our
solution through system development (building user interfaces, the modified android
operating system, and a classifier). Each of the iterative cycles of our project was
divided into stages, with results from each stage feeding into both the research
directions and technical goals for the next stage. Stages of our iterative research
process, along with the methods employed at each stage are described below.

Stage 1 Understand user needs and requirements gathering
Interviews of Stakeholders and Extreme Users Develop Initial
Requirements from Privacy Concerns Development and test Lo-Fi
prototypes

Stage 2 Prototyping and Testing

Develop and survey of Hi-Fi Prototypes of user control dashboard
Implementation privacy controls
Interviews of Stakeholders and Extreme Users Refinement of
Classifier

Stage 3 Implementation and Field Testing

Implementation and refinement of the classifier
Implementation and refinement of the Android OS
Deployment and field test of devices Interviews of field test users

Below we describe the details of the methods we employed.

3.1 User Interviews

Approved for Public Release; Distribution Unlimited
5

We conducted a series of interviews of 15 users who had mobile devices and
experiences with either BYOD currently or in the past had both a personal and work
phone. For the initial interviews we focused on Extreme Users; users who represented
more sophistication and sensitivity to privacy concerns than the average consumer.
Focusing on Extreme Users is a methodology that is employed in User Experience
research, particularly when exploring issues such as privacy that are not typically on
most users mind. The Stanford Design School (D.SchooL) describes research on
Extreme Users as follows [15]:

Designers engage with users (people!) to understand their needs and gain insights about
their lives. They also draw inspiration from their work-arounds and frameworks. When
you speak with and observe extreme users, their needs are amplified and their work-
arounds are often more notable. This helps you pull out meaningful needs that may not
pop when engaging with the middle of the bell curve. However, the needs that are
uncovered through extreme users are often also needs of a wider population.

Using Extreme Users would allow us to uncover issues and concerns that would likely
overlap with end-user concerns of the larger population, but would be buried or difficult
to uncover in the course of interviewing laymen. For our methodology, we used Extreme
Users to uncover the issues that were most important; we used that knowledge, along
with our own experience and previous work, to motivate our system implementation;
and finally we went back to the larger population to verify and confirm our insights.

The Extreme Users that we recruited were from various government agencies
(California Department of Justice, Los Angeles District Attorney, etc.) and in roles as
either prosecutors (civil and criminal), investigators or law enforcement where the
separation of private and personal information was very important to their jobs and in
some cases personal safety and safety of the individuals that they worked with was of
great importance.

Each interview we conducted was either over the phone or in-person, and lasted
between 1-1.5 hours total. The initial interviews were semi-structured, with a script that
the moderator walked through with the users, with time for unscripted questions at the
end. These initial interviews focused on their current practices and concerns, and
explored ways in which these concerns could be addressed by technology.

The next iteration of interviews also focused on concerns, but for the later portion of the
interview they were shown a working prototype that incorporated some of the earlier
suggestions (e.g., location and address book controls), as well their understanding and
opinions on our user interface (the privacy “dashboard”).
The last round of interviews we performed on subjects who were not Extreme Users,
but from a larger population from our field study. We interviewed users initially about
their phone use, and again at the end of our field study about their experiences with our
devices and using the controls.

Approved for Public Release; Distribution Unlimited
6

3.2 Initial Classifier Design
Our goal was to collect a feature set that would allow the platform to automatically detect
the context surrounding each permission request, so that once trained, the platform can
use these features to infer whether a permission request is likely to be deemed
appropriate by the user. This entails determining the factors that define a context, as well
as the factors that are indicative of users’ privacy preferences. Defining context is
important because it scopes privacy decisions: whenever the context in which an
application requests access to a particular data type changes, the system needs to make
a decision about whether or not to grant access. Similarly, in order to make these
decisions automatically without prompting the user, this entails determining the factors
that predict users’ privacy preferences.

Our main objective was to explore the learnability of user privacy preferences over
prompting for every sensitive permission request; an effectively-trained permission
system should be able make decisions on behalf of the users accurately with minimal
user involvement. While prompting for every sensitive permission request gives the
user a finer degree of control over their privacy protection, we showed that it is
impractical due to the sheer volume of requests that would result [18]; we believed the
best way forward was to learn a users’ privacy preferences. Learning involves three
essential components:

• The platform needs to figure out which permission requests are
likely to defy user expectations.

• The platform also needs to figure out which permission types are
more sensitive on a per-user basis.

• The platform needs to learn what other observable factors are used in
users’ decision processes and how they can be used to infer users’
decision-making.

We used the Experience Sampling Method (ESM) to collect ground truth data about
users’ privacy preferences [11]. ESM involves repeatedly questioning participants in
situ about a recently observed event; in this case, we probabilistically asked them about
an application’s recent access to data on their phone, and whether they would have
permitted it if given the choice. We treated participants’ responses to these ESM probes
as our main dependent variable (Figure 1). We instrumented the Android platform so
that these prompts would periodically appear—no more than once per day—after
recent permissions requests (Table 1).

Approved for Public Release; Distribution Unlimited
7

Figure 1: A screenshot of an ESM prompt.

Table 1: Participants in the first study received prompts when applications at-
tempted to use these permissions

Permission Type Activity
ACCESS WIFI STATE View nearby SSIDs
NFC Communicate via NFC
READ HISTORY BOOKMARKS Read users’ browser history
ACCESS FINE LOCATION Read GPS location

ACCESS COARSE LOCATION
Read network-inferred location
(i.e., cell tower and/or WiFi)

LOCATION HARDWARE Directly access GPS data
READ CALL LOG Read call history
ADD VOICEMAIL Read call history
READ SMS Read sent/received/draft SMS
SEND SMS Send SMS
*INTERNET Access Internet when roaming

*WRITE SYNC SETTINGS
Change application sync
settings when roaming

We also instrumented participants’ smartphones to obtain data about their privacy-
related behaviors and the frequency with which applications accessed protected
resources. The instrumentation required a set of modifications to the Android operating

Approved for Public Release; Distribution Unlimited
8

system and flashing a custom Android version onto participants’ devices.

Table 2 contains the complete list of behavioral and runtime events our instrumentation
recorded. The behavioral data fell under several categories, all chosen based on several
hypotheses that we had about the types of behaviors that might correlate with privacy
preferences: web-browsing habits, screen locking behavior, third-party application
usage behavior, audio preferences, call habits, camera usage patterns, and behavior
related to security settings. For example, we hypothesized that someone who manually
locks their device screen are more privacy-conscious than someone who lets it time
out.

Table 2: Instrumented events that form our feature set

Type Event Recorded

Behavioral
Instrumentation

Changing developer options
Opening/Closing security settings
Changing security settings
Enabling/Disabling NFC
Changing location mode
Opening/Closing location settings
Changing screen-lock type
Use of two factor authentication
Log initial settings information
User locks the screen
Screen times out
App locks the screen
Audio mode changed
Enabling/Disabling speakerphone
Connecting/Disconnecting headphones
Muting the phone
Taking an audio call
Taking a picture (front- vs. rear-facing)
Visiting an HTTPS link in Chrome
Responding to a notification
Unlocking the phone

Runtime
Information

An application changing the visibility
Platform switches to a new activity

Permission
Requests

An app requests a sensitive permission
ESM prompt for a selected permission

The primary purpose of recording user behaviors was to observe how much time a user
voluntarily spends on making security and privacy related decisions by changing
default settings or re-visiting decisions they have made earlier (security settings,
location settings), because observing these behaviors could be indicative of their privacy

Approved for Public Release; Distribution Unlimited
9

preferences. For instance, the choices they had made about screen locks; how careful
they are with their web browsing habits, such as how often do they use Chrome
incognito tabs, how often they get warnings from visiting suspicious websites, and so
forth. We also collected other observable traits that could be indicative of privacy
preferences, such as how often they take pictures, their audio preferences, and how
active they are with audio calls using the phone.

Finally, we collected runtime information about the context of each permission request,
including the visibility of the requesting application at the time of request (i.e., whether
it was in the foreground or background), what the user was doing when the request was
made (i.e., the name of the foreground application), and the exact Android API function
invoked by the application to determine what information was requested. The visibility
of an application reflects the extent to which the user was likely aware that the
application was running; if the application was in the foreground, the user had cues that
the application was running, but if it was in the background, then the user was likely
not aware that the application was running and therefore might find the permission
request unexpected—some background services can still be visible to the user due to
on-screen notification or other cues that could be perceptible. We monitored processes’
memory priority levels to determine the visibility of all Android processes. We also
collected information about which Android Activity was active in the application,
which indicates the UI elements exposed to the user.

Further details on the results and methodology are described in the Appendix and in
[19].

3.3 Prototype and User Testing
We tested various stages of the user interface and the notification interaction with the
classifier, as part of our methodology. We performed remote user testing of the
classifier with a walk-through, talk aloud protocol on a small set of 10 initial users, and
then performed a large scale survey and test of the user interface on 400, and
subsequently 580 users. A detailed description of our test process and results are
included in the Appendix and in the paper [17].

3.4 System Implementation
We implemented a complete ML pipeline that includes: mechanisms to allow users to
review and redress their decisions based on the results of our UI proto typing study
[17]; ways to mask resource denial from apps so that apps continue to run, even when
permissions are denied (unless those permissions were critical to their functionality);
and finally, a classifier that takes surrounding contextual signals to predict user
preferences for each permission request. This means our usability study is a more
accurate assessment of how the system behaves in the wild than the previous
investigations, which relied on user expectations rather than consequential privacy
decisions. This final study validates that prior work.

Approved for Public Release; Distribution Unlimited
10

3.4.1 A Local SVM Classifier
We previously implemented an offline classifier at the onset of this project and
suggested this could be deployed as a remote web-accessible service in order to shift
compute costs from the mobile device to a more powerful dedicated server [19]. We note,
however, that this design required sending privacy-relevant data beyond the
smartphone, which creates a larger attack surface and increases system costs and
complexity. It also creates significant security risks if the server responsible for making
decisions is compromised or is trained with spurious data.

To mitigate these security and privacy issues, we implemented and integrated the full
SVM classifier into the Android operating system as a system service. We ported the
open-source implementation of libsvm to Android 6.0.1 (Marshmallow) [4], and built
two additional system-level services to interface with the SVM: the SVMTrainManager,
which trains the model using user-provided privacy preferences through prompts (See
Figure 2); and the PermissionService, which uses the SVM to regulate applications
accessing permission-protected resources and issues a prompt for the user for cases when
the model produces low-confidence predictions. The SVMTrainManager notifies the
PermissionService when the model is trained and ready for use. These two new services
are implemented into the core Android operating system, and neither are accessible to
third-party apps. On average, model training takes less than 5 seconds. We instrumented
all Android control flows responsible for sharing sensitive permission-protected data
types to pass through this new pipeline.

Figure 2: A screenshot of a permission request prompt.

Approved for Public Release; Distribution Unlimited
11

3.4.2 Bootstrapping
We deployed our trainable permission system along with a generic model that was pre-
trained with the real-world permission decisions of 131 users, shared with us from our
initial work [19]. This ensured that a new user has an initial model for making privacy
decisions. This initial model, however, is inadequate for accurately predicting any
particular individual user’s preferences, because it simply has no knowledge of that
particular user. Despite that, we previously showed that our model only needs 12
additional user-provided permission decisions before the model attains peak accuracy.
Given this, our implemented system requires that the user make 12 decisions early on
to train the initial model to that particular user’s preferences.
The initial 12 decisions are selected based on weighted reservoir sampling. We weigh
the combination of application:permission:visibility1 by the frequency that these are
observed; the most-frequent combinations are the likeliest to produce a permission
request prompt (Figure 1). The intuition behind this strategy is to focus more on the
frequently occurring permission requests over rarer ones. We used these same prompts
for validating our classifier during the field study.

3.4.3 Feature Set
Our model considers the name of the application requesting the permission, the
application in the foreground at the time of the request (if different than the application
making the request), the requested permission type (e.g., Location, Camera, Contacts),
and the visibility of the application making the request. In a pilot study, our system
implemented the full feature set we previously used [19].
This design, however, resulted in a noticeable reduction in device responsiveness as
reported by multiple study participants. We subsequently removed the “time of request”
feature for the second phase of our study. The removal of the time feature from the ML
enabled the platform to cache higher number of ML decisions saving reducing the
overhead stemming from running the ML for each different permission request.

3.4.4 Sensitive Resources
Previous work by Felt et al. argued that certain permissions should be presented as
runtime prompts, as those permissions guard sensitive resources whose use cases
typically impart contextual cues indicating why an app would need that resource [8].
Beginning with Android 6.0 (Marshmallow), the OS designated certain permissions as
“dangerous” [10], and prompts the user to grant or deny permission when an app tries
to use it for the first time. The user’s response to this prompt then carries forward to all
future uses of that resource by the requesting application.

Our experimental permission system uses both Felt’s set of recommended permissions
for runtime prompts and Android’s own “dangerous” ones. We did, however, opt to omit

1 “application” is the app requesting the permission, “permission” is the requested resource type, and
“visibility” denotes whether the user is made aware that the app is running on the device.

Approved for Public Release; Distribution Unlimited
12

a few permissions from the resulting set that we viewed as irrelevant to most users. The
INTERNET and WRITE SYNC SETTINGS permissions were discounted, as we did not
expect any participant (all recruited locally) to roam internationally during the 1-week
study period. We eliminated the NFC permission because previous work demonstrated
that very few apps operate on NFC tags. Our system ignores the READ HISTORY
BOOKMARKS permission, as this is no longer supported.

We extended our initial framework [18, 19] to monitor and regulate all attempts by apps
to resources protected by any of the 24 permissions we monitored. We avoid false
positives by monitoring both the requested permission and the returned data type.

3.4.5 Permission Denial
Making changes to the permission system carries the risk of app instability, as apps may
not expect to have their resource requests denied [7]. If denying permissions results in
frequent crashes, then users may become more permissive simply to improve app
stability. We therefore designed our implementation with this concern in mind: rather
than simply withholding sensitive information in the event of a denied permission, our
system supplies apps with well-formed but otherwise non-private “spoofed” data. This
enables apps to continue functioning unless access to the permission-protected resource
is critical to the app’s correct behavior.

For example, if an app requests access to the microphone, but our permission system
denies it, the app will still receive a valid audio stream: not an actual signal from the
microphone, but that of a pre-recorded generic sound. (In our implementation we used
a loop of a whale song). This design allows apps to operate on valid data while still
preserving user privacy.

Permission-protected databases (e.g., contact lists and calendars) require finer- grained
regulation under our permission system. For instance, an app may have a legitimate
need to access the contact list. Under the stock Android permission system, an app is
either able to read all contacts or no contacts. We improve upon this by adding a notion
of provenance to each entry: every contact list item contains a field that records the app
that created the entry. If our permission system denies an app access to the contact list,
the app is still able to write into the contacts database and read back any entries that it
previously created. Apps without these database permissions are effectively placed in
a sandbox, in which they can still carry out valid operations on their own versions of
the data. They neither produce an exception nor obtain all the information in the
database. We allow full access to the databases only to apps that are granted the
appropriate permission.

3.4.6 Contextually Aware Permission Manager
We recognize that our classifier is bound to make mistakes. Therefore, it is crucial to
provide a mechanism for users to review and amend decisions made by the permission
model on their behalf. Mobile operating systems have configuration panels to manage

Approved for Public Release; Distribution Unlimited
13

app permissions, but these fail to provide users key information or options to make
informed decisions. However, our study that examined user interface prototypes [17]
proposed a new interface to solve this problem [17]. In that study (still a part of this
project), we evaluated several designs using interactive online mock-ups and found that
the design significantly improved user experience over the stock configuration panel.
We followed those recommendations in the design that we built as part of this
implementation.

We built our contextual permission manager as a system-space app, similar to
Android’s Settings app (Figure 3). Our permission manager has three main objectives:
(i) to display all recent permission requests and the corresponding “allow” or “deny”
decisions from the ML model; (ii) to allow users to review and change app permissions;
and (iii) to display all the resources an app can access.

Figure 3: The recent-allowed app activity (left), a list of installed apps and their
associated permissions (center). Permissions can be always granted, granted only

when in use, or never granted (right).

When users set preferences(rules) in the permission manager, before making a ML
decision, platform checks to see if the user has set any rules for the current request; if a
match is found, rather than going to the ML, platform will use the current rule to respond
to the permission request accordingly. The system does not use these user-set rules to
train the ML model, it is hard to capture the contextuality behind these changes so the
platform cannot create any of the contextual features to train the ML.

3.5 Validation Study Methodology
We tested our implementation by performing a field study with 37 participants. Our
goals were to understand how third-party apps and end-users react to a more restrictive

Approved for Public Release; Distribution Unlimited
14

and selective permission model, as compared to the default AOFU model.

For a period of one week, each participant used a smartphone (Nexus 5X) running a
custom version of the Android OS (a variation of Android 6.0.1) built with the new
permission system detailed in the previous section. During the study period, all of a
participant’s sensitive data was protected by the new contextually-aware permission
model.

3.5.1 Participant’s Privacy Preferences
We used the Experience Sampling Method (ESM) to understand how participants want
to control certain sensitive resource accesses [11], similar to how we used it in our
earlier work [19]. ESM involves repeatedly questioning participants in situ about a
recently observed event; in our case, the event is an app requesting access to a sensitive
resource. We probabilistically asked them about an application’s recent request to
access to data on their phone, and how they want to control future similar requests
(Figure 1). We treated participants’ responses to these ESM prompts as our main
dependent variable, which we used to validate the accuracy of the decisions that the
classifier was automatically making.

Each participant during the study period responded to 4 prompts per day, and at most
one per hour. The prompting was divided into two phases. The first phase was the
bootstrapping phase, which we described earlier, to train the classifier. The second
phase was the validation phase, which was used to measure the accuracy of the ML
model. In addition to the validation phase prompts, participants might also have
occasional prompts for low-confidence decisions made by the ML; a detailed
discussion on low-confidence decisions is provided later. During our study period, only
4 participants ever experienced low-confidence prompts.

3.5.2 Recruitment
We recruited participants in two phases: a pilot in May 2017 and the full study in
August 2017. We placed a recruitment ad on Craigslist under “et cetera jobs” and
“domestic gigs.”2 The title of the advertisement was “Smartphone Research Study,” and
it stated that the study was about how people interact with their smartphones. We made
no mention of security or privacy. Interested participants downloaded a screening app
from the Google Play store, which asked for demographic information and collected
their smartphone make and model. We screened out applicants who were under 18 years
of age or used CDMA providers, since our experimental phones were only GSM-
compatible. We collected data on participants’ installed apps, so that we could pre-
install free apps prior to them visiting our laboratory. (We only encountered paid apps
for a few participants, and those apps were installed once we setup their Google account
on the test phone.)

We scheduled a time with participants who met the screening requirements to do the

2 The study was approved by our Institutional Review Board.

Approved for Public Release; Distribution Unlimited
15

initial setup. Overall, 63 people showed up to our laboratory, and of those, 61 qualified
(2 were rejected because our screening application did not identify some CDMA
carriers). The initial setup took roughly 30 minutes and involved transferring their SIM
cards, helping them set up their Google and other accounts, and making sure they had
all the applications they used. We compensated each participant with a $35 gift card for
showing up.

During the pilot phase, out of 20 people who were given phones, 14 participants had
technical issues with the phone preventing them from using it, leaving only 6
participants with usable data. During the main phase, out of 42 people who were given
phones, we had the following issues:

• 4 participants misinterpreted our ESM prompts so we filtered out
their prompt responses;

• 5 participants suffered from a bug in the code that inhibited the
validation phase of the ML;

• 2 participants performed factory resets on the phone before
returning it, which destroyed stored logs.

This left 31 participants with usable data from the main phase. We combined the 6
participants with usable data from the first phase with the 31 from the second phase to
produce our sample of 37 users, since we did not alter the study between phases. All
our results are drawn from log data and interview responses from those 37 users. Of
that population, 21 were female and 16 were male; ages ranged from 18 to 59 years old
(µ = 34.25, er = 9.92).

After initial setup, participants used the experimental phones for one week in lieu of
their normal phones. They were allowed to install, use, and uninstall any apps that they
wanted. Our logging framework kept track of every protected resource accessed by an
app, along with the contextual data surrounding each application request. All the
logged events were stored compressed in the local system.

3.5.3 Exit Interview
When participants returned to our laboratory, we first copied the log data from the
phones to make sure that they had actually used the phone during the study period. We
then administered a semi-structured exit interview, which had four components:

• New Permission Manager UI—We asked participants to show us
how they would use the UI (Figure 3) to block a given application from
accessing background location data, as well as how difficult they found
it. We also checked our data to see how they interacted with the UI
during the study period, and asked them about the circumstances for
those interactions. The objective of this task was to validate the design
objectives of the UI, including whether they use it to resolve issues
stemming from resource denial.

Approved for Public Release; Distribution Unlimited
16

• Permission Prompts—We asked participants questions about
permission prompts they had encountered during the study. We asked
why they allowed or denied permission requests and also how they felt
about the prompts. We asked them to rate their experience with the
prompts across 3 different categories: levels of surprise, feelings of
control, and to what extent they felt the new system had increased
transparency. The objective of this section was to understand the impact
of the runtime prompts.
• Permission Models—We asked participants questions about their
perspectives on the privacy protections in Android. We asked how much
they understood the current system. We then explained our new system,
and asked how they felt about letting ML act on their behalf. The
objective of this section was to understand how much participants
actually understood the new permission model.
• Privacy Concerns—Finally, we asked participants how they
usually make privacy decisions on their mobile devices, how serious
they are about privacy, and how much are they willing to pay for privacy.
We also asked demographic questions.

Three researchers independently coded 144 responses to the Permission Prompts and
Permission Model questions (the other questions involved either direct observations or
reporting participants’ responses verbatim without the need for coding). Prior to meeting
to achieve consensus, the three coders disagreed on 17 responses, which resulted in an
inter-rater agreement of 86.43% and Fleiss’ kappa yielded 0.747, indicating substantial
agreement.

After the exit survey, we answered any remaining questions, and then assisted them in
transferring their SIM cards back into their personal phones. Finally, we compensated
each participant with a $100 gift card.

4 RESULTS AND DISCUSSION
At the end of the study period, we collected 1,159 privacy decisions (prompt responses)
from 37 participants. A total of 133 unique applications caused prompts for 17 different
sensitive permission types. During the study period, 24.23% of all runtime prompts
were denied by participants. Most (66%) of these prompts occurred when the
requesting application was running visibly. Our instrumentation logged 5.4M sensitive
permission requests originating from 253 unique applications for 17 different
permission types. On average, a sensitive permission request occurred once every 4
seconds.

In the remainder of the paper, we describe the shortcomings of the existing ask-on-
first-use permission model, both in accuracy and in aligning with users’ expectations;
we show how our proposed system has vastly greater accuracy in inferring users’ privacy
preferences and applying them towards regulating application permissions; and we

Approved for Public Release; Distribution Unlimited
17

show that is does this with minimal impact on app functionality. Finally, we present
results from the exit interviews regarding participants’ perceptions about the training
prompts and the privacy management user interface.

4.1 Status Quo Problems
In the “ask-on-first-use” (AOFU) model, the user is prompted only the first time an app
attempts to access a protected resource. Requesting these permissions at runtime allows
the user to infer the potential reason for the request, based on what they were doing at
the time (i.e., context). AOFU’s shortcoming, however, is that it naïvely reapplies the
user’s first-use decision in subsequent scenarios, without adapting to different contexts.
Our previous work showed that failing to account for changing contexts produces high
error rates (i.e., the user would have opted to deny permission if AOFU had not granted
it based on the first-use prompt) [18].

We note that our initial work on this project measured the accuracy of the AOFU model
by merely collecting users’ responses to runtime permission prompts, without actually
enforcing them by denying apps access to data [19]. Thus, the accuracy rates reported
by that study may not actually be valid, since users may elect to change their
permission-granting preferences, if they result in a loss of application functionality.
Thus, we evaluated the performance of the AOFU approach (in current use by Android
and iOS) by presenting participants with permission prompts that actually resulted in
the denial of application permissions.

During the study period, each participant responded to combinations of
application:permission more than once. As AOFU is deterministic, we can simulate it
by comparing a user’s first response to an application:permission combination to future
responses to the prompts for the same app and permission. We use this data to measure
how often AOFU matches the user’s preference in subsequent requests.

Our data show that the AOFU permission model has a median error rate3 of 20%: in
more than one-fifth of app requests for permission-protected resources, participants
changed their initial response for the same application:permission combination. Of the
37 participants, 64% had at least one such discrepancy between the first-use and
subsequent preferences. This refutes AOFU’s core assumption that only few users will
deviate from their initial preferences in future cases. This observation corroborates the
initial study [19], in which 79% of 131 participants were shown to deviate from their
initial responses in subsequent cases.

The errors shown in AOFU, could be either privacy violations or losses of functionality.
A privacy violation occurs when the system grants an app access to a protected
resource, contrary to the user’s preference, had she been prompted.
Loss of functionality occurs when the permission system denies access to a protected

3 We report medians because the error rate was not normally distributed among participants.

Approved for Public Release; Distribution Unlimited
18

⇡

resource, which the user would have otherwise permitted. We consider privacy
violations to be the more severe type of error, as the user is unable to take back sensitive
information once an app has acquired it and transmitted it to a remote server. However,
loss of functionality is still undesirable because those errors might incentivize the user
to be overly permissive in order to regain that functionality. From our data, we found
that 66.67% of AOFU errors were privacy violations; the remaining 33.33% were losses
in functionality.

4.1.1 AOFU User Expectations
Errors in permission systems could arise from a variety of reasons. Mismatched user
expectations and lack of comprehension are two critical ones, which could hamper any
permission model’s utility. User comprehension is critical because users may make
suboptimal decisions when they do not fully understand permission prompts, hindering
the ability of the permission system to protect sensitive system resources. Users must
be able to comprehend the decision they are making and the consequences of their
choices. Recent work on AOFU has examined the motives behind users’ decisions and
how it varies between categories of applications, as well as how people adapt their
behavior to the new model [3, 2, 1].

In our study, the participants had, on average, 5 years of experience with Android. This
indicates that most of our participants have experienced both install-time
permissions—the permission model prior to Android 6.0, released in 2015—and
runtime “ask-on-first-use” permission prompts. The majority of participants said they
noticed the shift to AOFU prompts, and they were aware that these prompts are a way
to ask the user for consent to share data with an app. A large minority of participants
(40%), however, had an inadequate understanding of how AOFU works, which could
substantially hinder that permission model’s effectiveness in protecting user data.

Four out of the 37 participants expressed doubts about the rationale behind the prompts.
Rather than seeing permission prompts as a way for users to regulate access to their
sensitive data, these participants viewed these prompts as a mechanism to extract more
information from them:

“When I see prompts, I feel like they want to know something about me, not that
they want to protect anything.” (P21)
One possible explanation is that some users grew accustomed to install-time prompts,
and subsequently perceived the change to runtime prompts as a new way for Android
to collect user data. Although it is impractical to project how prevalent this sentiment
is in the general population, we cannot reject its existence. Hence, more work is needed
to measure its impact and explore the potential solutions.

A third (31.4%) of our participants were not aware that responding to an AOFU prompt
results in a blanket approval (or denial) that carries forward to all the app’s future uses
of the requested resource. Most participants believed that responses were only valid for

Approved for Public Release; Distribution Unlimited
19

a certain amount of time, such as just for that session or just that single request. This
misconception significantly hinders AOFU’s ability to correctly anticipate the user’s
preferences in future occurrences. Again, this observation raises the question of
whether users would respond differently if they had a more accurate understanding of
how AOFU works:

“[I] didn’t know that granting a permission carries forward in the future until
otherwise changed. [I] expected permissions to be for just that one use.” (P25)

It is clear that granting blanket approval to sensitive resources is not what users expect
all the time. On the other hand, had our participants been asked for their input on every
permission request, they would have received a prompt once every 4 seconds—
involving the user more frequently has practical limitations. How, then, can we best
project users’ privacy preferences to future scenarios without overwhelming them with
prompts?

4.2 Classifier Accuracy
During the week-long study period, each participant was subject to two operational
phases of the contextual permission system: (a) the initial learning phase, where
participant responses to prompts were used to re-train the SVM classifier according to
each individual’s preferences, and (b) the steady-state validation phase, where
responses to prompts were collected to measure the accuracy of the classifier’s
decisions.

As previously discussed in our section on bootstrapping, we use weighted reservoir
sampling during the learning phase to prioritize prompting for the most commonly
observed instances of application:permission:visibility combinations. During the
validation phase, participants received the same prompts for random combinations of
features. This ensured that we collected validation results both for previously-
encountered and new combinations. We placed a maximum limit of 3 prompts per
combination in order to further improve prompt diversity and coverage. After
presenting participants with prompts, the instrumentation recorded the response and
the corresponding decision produced by the classifier. Using participant responses to
prompts as ground-truth, we measured the classifier’s accuracy during the validation
phase. From our sample of 37 participants, we had to exclude 6 of them due to a cache
coherency bug that was discovered after the pilot, which degraded classifier
performance. For the remainder of this section, our results are drawn from the
remaining sample of 31, unless otherwise noted.

Taken as a whole, these 31 participants responded to 640 total prompts in the validation
phase. Our contextual permission model produced a median accuracy of 90%,
compared to 80% under AOFU for the same population. The classifier reduced AOFU’s
error rate by 50%, with the majority of classifier errors consisting of privacy violations
(i.e., access granted when the user would have denied it).

Approved for Public Release; Distribution Unlimited
20

4.2.1 Offline Learning
We were curious whether the accuracy of our system could be improved through the
use of offline learning, which would require much more computing power. Using
participant responses to permission prompts, we analyzed how an offline SVM
classifier would perform. We implemented the SVM model using the KSVM module in
R. We performed this analysis on data from all 37 participants, using leave-one-out
cross-validation to evaluate how the offline classifier would perform for each participant.

The offline model had a median accuracy of 94.74% across the 37 participants. By
comparison, AOFU had an 80% accuracy for the same population. This represents a
75% error reduction in the offline contextual model compared to AOFU. These
numbers corroborate our prior findings [19]. We stress the significance of this
corroboration, because the results hold in the presence of actual resource denial, which
was not examined in the prior study. This suggests that users will continue to indicate
their true preferences in response to prompts, even when those preferences are
enforced, potentially resulting in unanticipated app behavior.

We note the accuracy difference between the SVM classifier we integrated into
Android and the R model (90% vs. 94.74%, respectively). This is due to how the
Android SVM implementation performs the bootstrapping. This issue is not inherent
to integrating an SVM classifier into Android. An updated implementation has the
potential to reach the maximum accuracy observed in the offline model.

4.2.2 Decision Confidence
In our initial investigation of classifier-based permission models, we proposed using
decision confidence to determine for which application: permission:visibility
combinations users should be prompted in the validation phase [19]. The rate of
decision confidence is also a measure of the extent to which the classifier has learned
the user’s preferences. The authors suggested that if this rate does not decrease over
time, then AOFU will likely be a better system for those users.

In addition to the prediction, our classifier also produced a class probability, which we
used as the measure of decision confidence. The classifier produced a binary result
(i.e., allow or deny) with a cutoff point of 0.5. A decision probability close to the cutoff
point is a less confident result than one far from it. We used the 95% confidence interval
as a threshold to determine which decisions were low-confidence and which ones were
not.

Only 4 of our field study participants experienced low-confidence classifier decisions
that caused a prompt to appear after the bootstrapping period. Each of these participants
had just one such low-confidence prompt appear. These prompts retrained the
classifier, so the lack of any subsequent low-confidence prompts indicates that the
classifier produced high-confidence predictions for the same
application:permission:visibility combination in future cases.

Approved for Public Release; Distribution Unlimited
21

The lack of additional training prompts also suggests that users are less likely to
become habituated to prompting. The 4 participants who each received one additional
prompt saw a total of 13 prompts (including the 12 prompts during the training phase).
The remaining 27 participants saw just the 12 training phase prompts. Had our
participants been subject to AOFU instead of our contextual permission system, they
would have received a median of 15 prompts each, with a quarter of the participants
receiving more than 17. Instead, we achieved a 75% error reduction (80% vs. 94.74%)
and reduced user involvement by 20% (12 prompts vs. 15) through the use of classifier-
driven permissions, compared to AOFU.

4.3 Impact on App Functionality
Previous research has shown that many applications do not properly handle cases where
they are denied permission to access a protected resource [7]. One core objective of our
work was to measure how apps responded to a stricter permission model than AOFU.
For example, the system will be unusable if it causes erratic application behavior,
through the use of dynamically granted permissions.

In the field study, our platform instrumentation recorded each application crash and its
corresponding exception message. This information allowed us to identify the possible
root cause of the crash and whether it was related to resource denial.

We observed 18 different exceptions classes, such as SecurityException,
RuntimeException, and NullPointerException. For the remainder of this
section, we focus on SecurityExceptions, which is directly related to resource
denials. Almost all (98.96%) of the recorded SecurityExceptions were observed
on the devices of just two participants. Each of the remaining participants
encountered, on average, 18 SecurityExceptions during the study period (i.e.,
roughly 3 SecurityExceptions per day per participant).

Almost all (99.93%) SecurityExceptions were from apps attempting to use the READ
PHONE STATE permission, which is used to obtain the phone number. In the event of a
READ PHONE STATE denial, we designed our implementation to not supply the app with
any phone number data. We had considered supplying a randomly-generated phone
number, but decided against it due to potential risks, if the generated number were a
valid phone number belonging to someone else.

For other denials, we opted to supply apps with generated data to ensure their continued
operation, without actually exposing private user data. During the study period, the
classifier denied 10.34% of all permission requests; more than 2,000 denials per
participant per day. Our implementation, however, only recorded an average of 3
SecurityExceptions per day per participant. This indicates that passing synthetic but
well-formed data to apps in lieu of actual private user data does satisfy app functionality
expectations to a great extent.

Our results are a positive sign for future permission systems more restrictive than the

Approved for Public Release; Distribution Unlimited
22

current AOFU model: permissions can be more restrictive without forcing the user to
trade off usability for improved privacy protection, as we will show in the next section.
If apps gracefully handle resource denials, then users are free to specify their privacy
preferences without risking functionality issues.

4.4 User Reactions to Prompts
The use of runtime prompts was initially proposed as a mechanism to obtain better-
informed consent from users. At the end of the study period, we conducted exit
interviews with each participant in order to determine the extent to which these
assumptions were met.

We measured how much participants were surprised to see the prompts during the
course of the study period (on a scale of 1=“not surprised” to 5=“very surprised”).
Participants expressed an average rating of 2.7. Almost half (44%) of the participants
indicated that the prompts surprised them, and among them, 70% were surprised at the
frequency with which the prompts appeared (up to 4 times per day), though few
participants expressed annoyance by that frequency (8.33%).

We asked participants to rate how much they felt that they were in control of resource
usage (on a scale of 1=“nothing changed compared to default Android” to 5=“very much
in control”). On average, our participants rated their experience as
3.44. Almost half (44%) of participants felt that they were in control of the system as a
result of the prompts. A small number (14%) still felt helpless, regardless of their
responses to the prompts. They felt resigned that applications would always obtain their
data.

Finally, we asked participants how they felt about the transparency provided by the
new system compared to their previous Android experiences (on a scale of 1=“nothing
changed” to 5=“improved system transparency”). On average, participants rated system
transparency in the middle (3). Almost half (47%) of them felt that the new system was
more transparent. A minority (14%) mentioned wanting to know why apps were
requesting particular sensitive data types.

From these observations, we believe that the new contextual permission system is a
positive step toward improving user awareness. We believe this enables users to make
better privacy decisions for themselves. Although additional work is needed to address
some negative sentiments about the current implementation, this system has shown to be
in the right direction overall.

4.5 User Reactions to Controls
Whenever an automated system makes decisions on a user’s behalf, there is the
inevitable risk that the system will make an incorrect decision. In our case this can
cause apps to be over-privileged and risk privacy violations, or be under-privileged and
risk app failure or reduced functionality. It is important to empower users so they can
easily audit the decisions that were made on their behalf and to amend those decisions

Approved for Public Release; Distribution Unlimited
23

that are not aligned with their preferences.

In our implementation, we built a user interface based on our prior validated prototypes
[17]. This system allowed our participants to view automated permissions decisions
made by the classifier, as well as set privacy preferences with respect to context (i.e.,
the visibility of the requesting app). We included this user interface as part of the
operating system, as a panel within the system settings app.

When we on-boarded our participants, we mentioned to them that there was a new
“permission manager” available, but to avoid priming them, we made sure not to
emphasize it in any particular way. Our instrumented platform logged every time
participants interacted with our permission manager to understand how they used it.

Fifteen of the 37 participants (40.5%) opened the permission manager during the study
period. Our implementation logged a total of 169 preference changes across these
participants. Only 6 out of 37 participants (16.2%) changed the settings to be more
restrictive. Of the adjustments made towards more restrictiveness, the majority were
for the GET ACCOUNTS permission, which prevents apps from reading the user’s stored
credential data (e.g., usernames linked to accounts on the device, such as for Google,
Twitter, etc.). In contrast, the most-common permission that participants adjusted to be
more permissive was READ CONTACTS. When asked for their motives behind these
changes, the majority of participants said that functionality was their main reason for
granting more access, and the sensitivity of data for restricting access.

We also asked participants to demonstrate how they would change the settings of a
familiar app to only be able to access their location when they are using that app. We
based this task off of one of the evaluation tasks we performed in the dashboard
evaluation experiment [17], where we performed an online study to evaluate a low-
fidelity prototype of the design on which we based our user interface. All but two of
our participants were able to correctly complete this task using the user interface.
Participants rated the average ease of the task as 1.15 (on a scale from 1=“very easy” to
5=“very hard”). We conclude that participants are able to understand the permission
interface after having used it for a week, and without special instructions.
The permission manager also enables users to diagnose application crashes that result
from a resource denial (a feature not present in the original design on which we based
it). In exit interviews, we examined how participants responded to app crashes in their
experiences with the device. The majority of participants reported that their first step
was to restart the app that had crashed. If that was unsuccessful, they would then restart
their phone. This informs the design of a future system: if an app crashes as a result of
a resource denial, the platform should clearly communicate this to users or otherwise
automatically adjust the permissions on their behalf. This could be communicated
through a dialog or in the notification bar.

Approved for Public Release; Distribution Unlimited
24

4.6 Discussion
The core objective of our 37-person field study was to analyze how a contextually-
aware, more-restrictive permission model performs in the wild, thereby validating the
work we had performed in this project. We examined how participants balanced their
privacy preferences with app functionality. This measures the real-world applicability
of predicting user privacy decisions with the help of contextual cues surrounding each
permission request.

4.6.1 Consequential Denial
Overall, participants denied 24% of all prompted permission requests. This is a 60%
reduction in denials compared to the results we attained at the onset of the project,
when evaluating an offline classifier [19], which did not enforce the user’s decision to
deny a permission and prompted the user using only hypothetical language: “given the
choice, would you have denied...?” The decreased denial rate we observed is therefore
unsurprising given that participants were now actually making a tradeoff between
functionality and privacy, instead of expressing the degree to which privacy is important
to them. Our results show that even in the presence of consequential resource denial,
contextual cues helped to predict users’ privacy decisions and better aligned permission
settings with their expectations, as compared to the status quo.

4.6.2 Ask on First Use
Our results corroborate our initial work [18, 19] in showing that AOFU’s inability to
capture the context surrounding users’ decisions is a cause of AOFU’s significant error
rate, and based on our qualitative interviews, provides serious concerns when used in
high-risk BYOD environments. We also found that a significant portion of participants
do not have an adequate understanding of how AOFU works, which further limits
AOFU’s utility: 11 participants did not realize that their prompt responses for AOFU
are taken as permanent decisions; and 4 participants interpreted the prompts as yet
another mechanism for collecting user data instead of as a privacy-protection
mechanism. While the actual impact of these inaccurate beliefs is yet to be explored,
we believe that these issues need to be fixed in the future, in order to increase Android’s
ability to predict and protect user data effectively.

4.6.3 Implementation Limitations
While our new permission model reduces the number of mis-predictions compared to
AOFU by 50%, our offline analysis shows that it has the potential to reduce mis-
predictions by 75%. A further examination revealed that the performance difference is
due to the bootstrapping of the training dataset in the implementation. We note that
difference is not inherent to running a classifier in Android, and so simply modifying
our implementation to use these improvements will allow it to achieve the same
performance.

Approved for Public Release; Distribution Unlimited
25

4.6.4 Purpose
While our new permission model outperforms AOFU, it still does not explain to the
user why an app needs to use a permission. In our exit interviews, we observed that 14%
of participants expressed the desire to know why apps made a request in the first place.
Previous work has shown that app functionality is a key factor in permission decisions
[3]. If users were properly informed of the functionality requirement behind a
permission request, then they might be better positioned to make decisions that meet
their privacy and functionality expectations.

We believe that there are ways to extend contextual permission systems by
incorporating the actual purpose of the request. For example, after introducing AOFU
permissions, Android started encouraging app developers to provide the reason behind
their permission requests so that the user can include that in the decision making
process [5]. Tan et al. [16] showed that similar prompts on iOS actually resulted in
users being more permissive about granting permissions to apps. Similarly, prior work
has attempted to use static analysis to automatically incorporate inferred purpose [13,
12].

4.6.5 Resource Denial
When deploying more-restrictive permission systems, it is important that apps continue
to run without entering into an error state that results from a resource denial. Users
should be able to select their privacy preferences with minimal disruption to their
experience; apps must not be able to force an ultimatum by simply not functioning if a
permission is denied. Indeed, some participants simply allow most permission requests
because that ensures their apps run properly.

The platform, therefore, is responsible to ensure that apps handle resource denials
gracefully. To their credit, when Android introduced AOFU, it implemented some
permission denials to appear like a lack of available data or the non-existence of
hardware, instead of throwing a SecurityException. In our implementation, we take
the extra step of supplying apps with generic but well-formed data in the event of a
denial. We observed that our participants tended to deny more permissions as they
progressed through the study period (on average 20% denial in the learning phase
versus a 26% denial rate during the validation phase). Those participants also
experienced a low rate of app failures due to resource denials. In the future, platforms
should implement measures to reduce functionality losses stemming from having
stricter privacy preferences. Failing to do so might otherwise compel users to
compromise on their privacy preferences for the sake of functionality.

4.6.6 Remedying Unexpected Behavior
Regardless of any mitigations to avoid app crashes, it is practical to assume that apps
will crash when they fail to receive expected data under certain circumstances. One
way to remedy this is to give users tools to adjust the behavior of the permission system,

Approved for Public Release; Distribution Unlimited
26

such as being able to be more permissive to certain applications in certain contexts.
This approach, however, assumes that (i) users accurately attribute a crash event to a
resource denial, which may not always be the case, and (ii) users are sufficiently
technical to identify which resource denial caused the crash. In our implementation of a
new permission manager, we address the latter assumption by providing users a
timeline of recent decisions made by the new permission system, which can be used to
deduce the cause of a crash.

Our exit interviews showed that few participants would think to check the permission
manager following an application crash, so clearly more work is needed here. With
proposals for more-accurate and more-restrictive permission models, it is necessary to
have usable mechanisms to deal with inevitable crashes due to resource denials. The
platform should provide mechanisms either to help the user diagnose and resolve such
crashes, or to automatically fix permissions on a temporary basis and give the user an
option to make the fix permanent.

5 CONCLUSION
Our validation study shows how applications and users respond to a real-world
deployment of a novel contextually-aware permission model, which we developed
based on: i) soliciting feedback from “extreme users” in BYOD environment, ii)
iterative prototyping on the user interface dashboard, and iii) the development of a
privacy preferences classifier using offline training. The new permission system based
on these components significantly reduced the error rate from that of the prevailing
“ask-on-first-use” model first deployed in Android 6.0. While prior work already
demonstrated ways to increase the protection provided by new permission models, we
believe our study provides opportunities to further improve performance and address
practical limitations in actual implementations.

Approved for Public Release; Distribution Unlimited
27

6 REFERENCES
[1] P. Andriotis, S. Li, T. Spyridopoulos, and G. Stringhini. A Comparative Study of Android

Users’ Privacy Preferences Under the Runtime Permission Model, pages 604–622.
Springer International Publishing, Cham, 2017.

[2] P. Andriotis, M. A. Sasse, and G. Stringhini. Permissions snapshots: Assessing users’
adaptation to the android runtime permission model. In 2016 IEEE International Workshop
on Information Forensics and Security (WIFS), pages 1–6, Dec 2016.

[3] B. Bonné, S. T. Peddinti, I. Bilogrevic, and N. Taft. Exploring decision making with
android’s runtime permission dialogs using in-context surveys. In Thirteenth Symposium
on Usable Privacy and Security (SOUPS 2017), pages 195–210, Santa Clara, CA, 2017.
USENIX Association.

[4] C.-C. Chang and C.-J. Lin. Libsvm – a library for support vector machines.
http://www.csie.ntu.edu.tw/˜cjlin/libsvm/. Accessed: September 11, 2017.

[5] G. Developer. Requesting permissions at run time.
https://developer.android.com/training/permissions/ requesting.html.
Accessed: September 16, 2017.

[6] S. Egelman, A. P. Felt, and D. Wagner. Choice architecture and smartphone privacy:
There’s a price for that. In The 2012 Workshop on the Economics of Information Security
(WEIS), 2012.

[7] Z. Fang, W. Han, D. Li, Z. Guo, D. Guo, X. S. Wang, Z. Qian, and H. Chen. revdroid: Code
analysis of the side effects after dynamic permission revocation of android apps. In
Proceedings of the 11th ACM Asia Conference on Computer and Communications Security
(ASIACCS 2016), Xi’an, China, 2016. ACM.

[8] A. P. Felt, S. Egelman, M. Finifter, D. Akhawe, and D. Wagner. How to ask for permission.
In Proceedings of the 7th USENIX conference on Hot Topics in Security, HotSec’12, pages
7–7, Berkeley, CA, USA, 2012. USENIX Association.

[9] A. P. Felt, E. Ha, S. Egelman, A. Haney, E. Chin, and D. Wagner. Android permissions:
user attention, comprehension, and behavior. In Proceedings of the Eighth Symposium on
Usable Privacy and Security, SOUPS ’12, New York, NY, USA, 2012. ACM.

[10] Google. Dangerous permissions. https://developer.android.
com/guide/topics/permissions/requesting.html# normal-dangerous.
Accessed: August 17, 2017.

[11] R. Larson and M. Csikszentmihalyi. New directions for naturalistic methods in the
behavioral sciences. In H. Reis, editor, The Experience Sampling Method, pages 41–56.
Jossey-Bass, San Francisco, 1983.

[12] J. Lin, N. Sadeh, S. Amini, J. Lindqvist, J. I. Hong, and J. Zhang. Expectation and purpose:
understanding users’ mental models of mobile app privacy through crowdsourcing. In

http://www.csie.ntu.edu.tw/

Approved for Public Release; Distribution Unlimited
28

Proceedings of the 2012 ACM Conference on Ubiquitous Computing, UbiComp ’12,
pages 501–510, New York, NY, USA, 2012. ACM.

[13] B. Liu, M. S. Andersen, F. Schaub, H. Almuhimedi, S. A. Zhang, N. Sadeh, Y. Agarwal,
and A. Acquisti. Follow my recommendations: A personalized assistant for mobile app
permissions. In Twelfth Symposium on Usable Privacy and Security (SOUPS 2016), 2016.

[14] H. Nissenbaum. Privacy in context: Technology, policy, and the integrity of social life.
Stanford University Press, 2009.

[15] Stanford Design School. Extreme users. https:// dschool-
old.stanford.edu/wp-content/themes/ dschool/method-
cards/extreme-users.pdf.

[16] J. Tan, K. Nguyen, M. Theodorides, H. Negron-Arroyo, C. Thompson, S. Egelman, and
D. Wagner. The effect of developer-specified explanations for permission requests on
smartphone user behavior. In Proceedings of the SIGCHI Conference on Human Factors
in Computing Systems, 2014.

[17] L. Tsai, P. Wijesekera, J. Reardon, I. Reyes, S. Egelman, D. Wagner, N. Good, and J.-W.
Chen. Turtle guard: Helping android users apply contextual privacy preferences. In
Thirteenth Symposium on Usable Privacy and Security (SOUPS 2017), pages 145–162,
Santa Clara, CA, 2017. USENIX Association.

[18] P. Wijesekera, A. Baokar, A. Hosseini, S. Egelman, D. Wagner, and Beznosov. Android
permissions remystified: A field study on contextual integrity. In 24th USENIX Security
Symposium (USENIX Security 15), pages 499–514, Washington, D.C., Aug. 2015.
USENIX Association.

[19] P. Wijesekera, A. Baokar, L. Tsai, J. Reardon, S. Egelman, D. Wagner, and Beznosov. The
feasability of dynamically granted permissions:aligning mobile privacy with user
preferences. In Proceedings of the 2017 IEEE Symposium on Security and Privacy,
Oakland ’17. IEEE Computer Society, 2017. To appear.

Approved for Public Release; Distribution Unlimited
29

Appendix A Android Permissions Remystified: A Study on Contextual
Integrity

{ }

Android Permissions Remystified:
A Field Study on Contextual Integrity

Primal Wijesekera1, Arjun Baokar2, Ashkan Hosseini2, Serge Egelman2,

David Wagner2, and Konstantin Beznosov1
1University of British Columbia, Vancouver, Canada,

primal,beznosov @ece.ubc.ca
2University of California, Berkeley, Berkeley, USA,

{arjunbaokar,ashkan}@berkeley.edu, {egelman,daw}@cs.berkeley.edu

Abstract time the data is actually requested, it is not clear whether
We instrumented the Android platform to collect data re-
garding how often and under what circumstances smart-
phone applications access protected resources regulated
by permissions. We performed a 36-person field study to
explore the notion of “contextual integrity,” i.e., how
often applications access protected resources when users
are not expecting it. Based on our collection of 27M data
points and exit interviews with participants, we exam-
ine the situations in which users would like the ability to
deny applications access to protected resources. At least
80% of our participants would have preferred to prevent
at least one permission request, and overall, they stated a
desire to block over a third of all requests. Our findings
pave the way for future systems to automatically deter-
mine the situations in which users would want to be con-
fronted with security decisions.

1 Introduction
Mobile platform permission models regulate how appli-
cations access certain resources, such as users’ personal
information or sensor data (e.g., camera, GPS, etc.). For
instance, previous versions of Android prompt the user
during application installation with a list of all the per-
missions that the application may use in the future; if the
user is uncomfortable granting any of these requests, her
only option is to discontinue installation [3]. On iOS and
Android M, the user is prompted at runtime the first time
an application requests any of a handful of data types,
such as location, address book contacts, or photos [34].

Research has shown that few people read the Android
install-time permission requests and even fewer compre-
hend them [16]. Another problem is habituation: on av-
erage, Android applications present the user with four
permission requests during the installation process [13].
While iOS users are likely to see fewer permission re-
quests than Android users, because there are fewer pos-
sible permissions and they are only displayed the first

or not users are being prompted about access to data that
they actually find concerning, or whether they would ap-
prove of subsequent requests [15].

Nissenbaum posited that the reason why most privacy
models fail to predict violations is that they fail to con-
sider contextual integrity [32]. That is, privacy violations
occur when personal information is used in ways that
defy users’ expectations. We believe that this notion of
“privacy as contextual integrity” can be applied to smart-
phone permission systems to yield more effective per-
missions by only prompting users when an application’s
access to sensitive data is likely to defy expectations. As
a first step down this path, we examined how applica-
tions are currently accessing this data and then examined
whether or not it complied with users’ expectations.

We modified Android to log whenever an application
accessed a permission-protected resource and then gave
these modified smartphones to 36 participants who used
them as their primary phones for one week. The pur-
pose of this was to perform dynamic analysis to deter-
mine how often various applications are actually access-
ing protected resources under realistic circumstances.
Afterwards, subjects returned the phones to our labora-
tory and completed exit surveys. We showed them vari-
ous instances over the past week where applications had
accessed certain types of data and asked whether those
instances were expected, and whether they would have
wanted to deny access. Participants wanted to block a
third of the requests. Their decisions were governed pri-
marily by two factors: whether they had privacy concerns
surrounding the specific data type and whether they un-
derstood why the application needed it.

We contribute the following:

To our knowledge, we performed the first field study
to quantify the permission usage by third-party ap-
plications under realistic circumstances.

•

APROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
30

We show that our participants wanted to block ac-
cess to protected resources a third of the time. This
suggests that some requests should be granted by
runtime consent dialogs, rather than Android’s pre-
vious all-or-nothing install-time approval approach.
We show that the visibility of the requesting appli-
cation and the frequency at which requests occur are
two important factors which need to be taken into
account in designing a runtime consent platform.

2 Related Work
While users are required to approve Android application
permission requests during installation, most do not pay
attention and fewer comprehend these requests [16, 26].
In fact, even developers are not fully knowledgeable
about permissions [40], and are given a lot of freedom
when posting an application to the Google Play Store [7].
Applications often do not follow the principle of least
privilege, intentionally or unintentionally [44]. Other
work has suggested improving the Android per- mission
model with better definitions and hierarchical
breakdowns [8]. Some researchers have experimented
with adding fine-grained access control to the Android
model [11]. Providing users with more privacy informa-
tion and personal examples has been shown to help users
in choosing applications with fewer permissions [21,27].

Previous work has examined the overuse of permissions
by applications [13, 20], and attempted to identify mali-
cious applications through their permission requests [36]
or through natural language processing of application de-
scriptions [35]. Researchers have also developed static
analysis tools to analyze Android permission specifica-
tions [6, 9, 13]. Our work complements this static anal-
ysis by applying dynamic analysis to permission us- age.
Other researchers have applied dynamic analysis to
native (non-Java) APIs among third-party mobile mar-
kets [39]; we apply it to the Java APIs available to devel-
opers in the Google Play Store.

Researchers examined user privacy expectations sur-
rounding application permissions, and found that users
were often surprised by the abilities of background ap-
plications to collect data [25, 42]. Their level of con- cern
varied from annoyance to seeking retribution when
presented with possible risks associated with permis-
sions [15]. Some studies employed crowdsourcing to
create a privacy model based on user expectations [30].

Researchers have designed systems to track or reduce
privacy violations by recommending applications based
on users’ security concerns [2, 12, 19, 24, 28, 46–48].
Other tools dynamically block runtime permission re-
quests [37]. Enck et al. found that a considerable number
of applications transmitted location or other user data to

third parties without requiring user consent [12]. Horny-
ack et al.’s AppFence system gave users the ability to
deny data to applications or substitute fake data [24].
However, this broke application functionality for one-
third of the applications tested.

Reducing the number of security decisions a user must
make is likely to decrease habituation, and therefore, it is
critical to identify which security decisions users should
be asked to make. Based on this theory, Felt et al. created
a decision tree to aid platform designers in determining
the most appropriate permission-granting mechanism for
a given resource (e.g., access to benign resources should
be granted automatically, whereas access to dangerous
resources should require approval) [14]. They concluded
that the majority of Android permissions can be automat-
ically granted, but 16% (corresponding to the 12 permis-
sions in Table 1) should be granted via runtime dialogs.

Nissenbaum’s theory of contextual integrity can help us
to analyze “the appropriateness of a flow” in the context
of permissions granted to Android applications [32].
There is ambiguity in defining when an application actu-
ally needs access to user data to run properly. It is quite
easy to see why a location-sharing application would
need access to GPS data, whereas that same request com-
ing from a game like Angry Birds is less obvious. “Con-
textual integrity is preserved if information flows accord-
ing to contextual norms” [32], however, the lack of thor-
ough documentation on the Android permission model
makes it easier for programmers to neglect these norms,
whether intentionally or accidentally [38]. Deciding on
whether an application is violating users’ privacy can be
quite complicated since “the scope of privacy is wide-
ranging” [32]. To that end, we performed dynamic analy-
sis to measure how often (and under what circumstances)
applications were accessing protected resources, whether
this complied with users’ expectations, as well as how
often they might be prompted if we adopt Felt et al.’s
proposal to require runtime user confirmation before ac-
cessing a subset of these resources [14]. Finally, we show
how it is possible to develop a classifier to automatically
determine whether or not to prompt the user based on
varying contextual factors.

3 Methodology
Our long-term research goal is to minimize habituation
by only confronting users with necessary security de-
cisions and avoiding showing them permission requests
that are either expected, reversible, or unconcerning. Se-
lecting which permissions to ask about requires under-
standing how often users would be confronted with each
type of request (to assess the risk of habituation) and user
reactions to these requests (to assess the benefit to users).
In this study, we explored the problem space in two parts:

•

•

APROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
31

we instrumented Android so that we could collect actual
usage data to understand how often access to various pro-
tected resources is requested by applications in practice,
and then we surveyed our participants to understand the
requests that they would not have granted, if given the
option. This field study involved 36 participants over the
course of one week of normal smartphone usage. In this
section, we describe the log data that we collected, our
recruitment procedure, and then our exit survey.

3.1 Tracking Access to Sensitive Data
In Android, when applications attempt to access pro-
tected resources (e.g., personal information, sensor data,
etc.) at runtime, the operating system checks to see
whether or not the requesting application was previously
granted access during installation. We modified the An-
droid platform to add a logging framework so that we
could determine every time one of these resources was
accessed by an application at runtime. Because our target
device was a Samsung Nexus S smartphone, we modified
Android 4.1.1 (Jellybean), which was the newest version
of Android supported by our hardware.

3.1.1 Data Collection Architecture
Our goal was to collect as much data as possible about
each applications’ access to protected resources, while
minimizing our impact on system performance. Our data
collection framework consisted of two main com-
ponents: a series of “producers” that hooked various An-
droid API calls and a “consumer” embedded in the main
Android framework service that wrote the data to a log
file and uploaded it to our collection server.

We logged three kinds of permission requests. First, we
logged function calls checked by checkPermission()
in the Android Context implementation. Instru-
menting the Context implementation, instead of the
ActivityManagerService or PackageManager, al-
lowed us to also log the function name invoked by the
user-space application. Next, we logged access to the
ContentProvider class, which verifies the read and
write permissions of an application prior to it accessing
structured data (e.g., contacts or calendars) [5]. Finally,
we tracked permission checks during Intent transmis-
sion by instrumenting the ActivityManagerService
and BroadcastQueue. Intents allow an application to
pass messages to another application when an activity is
to be performed in that other application (e.g., opening a
URL in the web browser) [4].

We created a component called Producer that fetches
the data from the above instrumented points and sends it
back to the Consumer, which is responsible for logging
everything reported. Producers are scattered across
the Android Platform, since permission checks occur in

multiple places. The Producer that logged the most
data was in system server and recorded direct func-
tion calls to Android’s Java API. For a majority of priv-
ileged function calls, when a user application invokes the
function, it sends the request to system server via
Binder. Binder is the most prominent IPC mech-
anism implemented to communicate with the Android
Platform (whereas Intents communicate between ap-
plications). For requests that do not make IPC calls to the
system server,a Producer is placed in the user appli-
cation context (e.g., in the case of ContentProviders).

The Consumer class is responsible for logging data pro-
duced by each Producer. Additionally, the Consumer
also stores contextual information, which we describe in
Section 3.1.2. The Consumer syncs data with the filesys-
tem periodically to minimize impact on system perfor-
mance. All log data is written to the internal storage of
the device because the Android kernel is not allowed to
write to external storage for security reasons. Although
this protects our data from curious or careless users, it
also limits our storage capacity. Thus, we compressed
the log files once every two hours and upload them to our
collection servers whenever the phone had an active
Internet connection (the average uploaded and zipped log
file was around 108KB and contained 9,000 events).

Due to the high volume of permission checks we en-
countered and our goal of keeping system performance
at acceptable levels, we added rate-limiting logic to the
Consumer. Specifically, if it has logged permission
checks for a particular application/permission combina-
tion more than 10,000 times, it examines whether it did
so while exceeding an average rate of 1 permission check
every 2 seconds. If so, the Consumer will only record
10% of all future requests for this application/permission
combination. When this rate-limiting is enabled, the
Consumer tracks these application/permission combina-
tions and updates all the Producers so that they start
dropping these log entries. Finally, the Consumer makes
a note of whenever this occurs so that we can extrapolate
the true number of permission checks that occurred.

3.1.2 Data Collection
We hooked the permission-checking APIs so that every
time the system checked whether an application had been
granted a particular permission, we logged the name of
the permission, the name of the application, and the API
method that resulted in the check. In addition to times-
tamps, we collected the following contextual data:

Visibility—We categorized whether the requesting
application was visible to the user, using four cate-
gories: running (a) as a service with no user inter-
action; (b) as a service, but with user interaction via

•

APROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
32

•

•

•

•

notifications or sounds; (c) as a foreground process,
but in the background due to multitasking; or (d) as
a foreground process with direct user interaction.

• Screen Status—Whether the screen was on/off.
• Connectivity—The phone’s WiFi connection state.

Location—The user’s last known coordinates. In
order to preserve battery life, we collected cached
location data, rather than directly querying the GPS.
View—The UI elements in the requesting applica-
tion that were exposed to the user at the time that a
protected resource was accessed. Specifically, since
the UI is built from an XML file, we recorded the
name of the screen as defined in the DOM.
History—A list of applications with which the user
interacted prior to the requesting application.
Path—When access to a ContentProvider object
was requested, the path to the specific content.

Felt et al. proposed granting most Android permissions
without a priori user approval and granting 12 permis-
sions (Table 1) at runtime so that users have contextual
information to infer why the data might be needed [14].
The idea is that, if the user is asked to grant a permission
while using an application, she may have some under-
standing of why the application needs that permission
based on what she was doing. We initially wanted to
perform experience sampling by probabilistically ques-
tioning participants whenever any of these 12 permis-
sions were checked [29]. Our goal was to survey par-
ticipants about whether access to these resources was ex-
pected and whether it should proceed, but we were con-
cerned that this would prime them to the security focus
of our experiment, biasing their subsequent behaviors.
Instead, we instrumented the phones to probabilistically
take screenshots of what participants were doing when
these 12 permissions were checked so that we could ask
them about it during the exit survey. We used reservoir
sampling to minimize storage and performance impacts,
while also ensuring that the screenshots covered a broad
set of applications and permissions [43].

Figure 1 shows a screenshot captured during the study
along with its corresponding log entry. The user was
playing the Solitaire game while Spotify requested a
WiFi scan. Since this permission was of interest (Table
1), our instrumentation took a screenshot. Since Spotify
was not the application the participant was interacting
with, its visibility was set to false. The history shows that
prior to Spotify calling getScanResults(), the user

Permission Type Activity
WRITE SYNC
SETTINGS

Change application sync settings
when the user is roaming

ACCESS WIFI
STATE View nearby SSIDs

INTERNET Access Internet when roaming
NFC Communicate via NFC
READ HISTORY
BOOKMARKS Read users’ browser history

ACCESS FINE
LOCATION Read GPS location

ACCESS COARSE
LOCATION

Read network-inferred location
(i.e., cell tower and/or WiFi)

LOCATION
HARDWARE Directly access GPS data

READ CALL LOG Read call history
ADD VOICEMAIL Read call history
READ SMS Read sent/received/draft SMS
SEND SMS Send SMS

Table 1: The 12 permissions that Felt et al. recommend
be granted via runtime dialogs [14]. We randomly took
screenshots when these permissions were requested by
applications, and we asked about them in our exit survey.

3.2 Recruitment
We placed an online recruitment advertisement on
Craigslist in October of 2014, under the “et cetera jobs”
section.1 The title of the advertisement was “Research
Study on Android Smartphones,” and it stated that the
study was about how people interact with their smart-
phones. We made no mention of security or privacy.
Those interested in participating were directed to an on-
line consent form. Upon agreeing to the consent form,
potential participants were directed to a screening appli-
cation in the Google Play store. The screening applica-
tion asked for information about each potential partici-
pant’s age, gender, smartphone make and model. It also
collected data on their phones’ internal memory size and
the installed applications. We screened out applicants
who were under 18 years of age or used providers other
than T-Mobile, since our experimental phones could not
attain 3G speeds on other providers. We collected data on
participants’ installed applications so that we could pre-
install free applications prior to them visiting our labo-
ratory. (We copied paid applications from their phones,
since we could not download those ahead of time.)

We contacted participants who met our screening re-
quirements to schedule a time to do the initial setup.
Overall, 48 people showed up to our laboratory, and of
those, 40 qualified (8 were rejected because our screen-
ing application did not distinguish some Metro PCS users

had viewed Solitaire, the call screen, the launcher, and
the list of MMS conversations. 1Approved by the UC Berkeley IRB under protocol #2013-02-4992

APROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
33

(a) Screenshot

Name Log Data
Type API FUNC
Permission ACCESS WIFI STATE
App Name com.spotify.music
Timestamp 1412888326273
API Function getScanResults()
Visibility FALSE
Screen Status SCREEN ON
Connectivity NOT CONNECTED
Location Lat 37.XXX Long -122.XXX -

1412538686641 (Time it was updated)
View com.mobilityware.solitaire/.Solitaire

History

com.android.phone/.InCallScreen
com.android.launcher/com.android.-
launcher2.Launcher
com.android.mms/ConversationList

(b) Corresponding log entry

Figure 1: Screenshot (a) and corresponding log entry (b)
captured during the experiment.

from T-Mobile users). In the email, we noted that due to
the space constraints of our experimental phones, we
might not be able to install all the applications on their
existing phones, and therefore they needed to make a
note of the ones that they planned to use that week. The
initial setup took roughly 30 minutes and involved trans-
ferring their SIM cards, helping them set up their Google
and other accounts, and making sure they had all the ap-
plications they needed. We compensated each participant
with a $35 gift card for showing up at the setup session.
Out of 40 people who were given phones, 2 did not re-
turn them, and 2 did not regularly use them during the
study period. Of our 36 remaining participants who used
the phones regularly, 19 were male and 17 were female;
ages ranged from 20 to 63 years old (µ = 32, s = 11).

After the initial setup session, participants used the ex-
perimental phones for one week in lieu of their normal
phones. They were allowed to install and uninstall appli-

cations, and we instructed them to use these phones as
they would their normal phones. Our logging framework
kept track of every protected resource accessed by a user-
level application along with the previously-mentioned
contextual data. Due to storage constraints on the de-
vices, our software uploaded log files to our server every
two hours. However, to preserve participants’ privacy,
screenshots remained on the phones during the course of
the week. At the end of the week, each participant
returned to our laboratory, completed an exit survey, re-
turned the phone, and then received an additional $100
gift card (i.e., slightly more than the value of the phone).

3.3 Exit Survey
When participants returned to our laboratory, they com-
pleted an exit survey. The exit survey software ran on a
laptop in a private room so that it could ask questions
about what they were doing on their phones during the
course of the week without raising privacy concerns. We
did not view their screenshots until participants gave us
permission. The survey had three components:

Screenshots—Our software displayed a screenshot
taken after one of the 12 resources in Table 1 was
accessed. Next to the screenshot (Figure 2a), we
asked participants what they were doing on the
phone when the screenshot was taken (open-ended).
We also asked them to indicate which of several ac-
tions they believed the application was performing,
chosen from a multiple-choice list of permissions
presented in plain language (e.g., “reading browser
history,” “sending a SMS,” etc.). After answering
these questions, they proceeded to a second page of
questions (Figure 2b). We informed participants at
the top of this page of the resource that the appli-
cation had accessed when the screenshot was taken,
and asked them to indicate how much they expected
this (5-point Likert scale). Next, we asked, “if you
were given the choice, would you have prevented
the app from accessing this data,” and to explain
why or why not. Finally, we asked for permission
to view the screenshot. This phase of the exit survey
was repeated for 10-15 different screenshots per
participant, based on the number of screenshots
saved by our reservoir sampling algorithm.
Locked Screens—The second part of our survey
involved questions about the same protected re-
sources, though accessed while device screens were
off (i.e., participants were not using their phones).
Because there were no contextual cues (i.e., screen-
shots), we outright told participants which appli-
cations were accessing which resources and asked
them multiple choice questions about whether they
wanted to prevent this and the degree to which these

•

•

APROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
34

(a) On the first screen, participants answered questions to estab-
lish awareness of the permission request based on the screenshot.

(b) On the second screen, they saw the resource accessed, stated
whether it was expected, and whether it should have been blocked.

Figure 2: Exit Survey Interface

behaviors were expected. They answered these
questions for up to 10 requests, similarly chosen by
our reservoir sampling algorithm to yield a breadth
of application/permission combinations.
Personal Privacy Preferences—Finally, in order
to correlate survey responses with privacy prefer-
ences, participants completed two privacy scales.
Because of the numerous reliability problems with
the Westin index [45], we computed the average of
both Buchanan et al.’s Privacy Concerns Scale
(PCS) [10] and Malhotra et al.’s Internet Users’ In-
formation Privacy Concerns (IUIPC) scale [31].

After participants completed the exit survey, we re-
entered the room, answered any remaining questions,
and then assisted them in transferring their SIM cards
back into their personal phones. Finally, we compen-
sated each participant with a $100 gift card.

Three researchers independently coded 423 responses to
the open-ended question in the screenshot portion of the
survey. The number of responses per participant varied,
as they were randomly selected based on the number of
screenshots taken: participants who used their phones
more heavily had more screenshots, and thus answered
more questions. Prior to meeting to achieve consensus,
the three coders disagreed on 42 responses, which re-
sulted in an inter-rater agreement of 90%. Taking into
account the 9 possible codings for each response, Fleiss’
kappa yielded 0.61, indicating substantial agreement.

4 Application Behaviors
Over the week-long period, we logged 27M application
requests to protected resources governed by Android per-
missions. This translates to over 100,000 requests per
user/day. In this section, we quantify the circumstances
under which these resources were accessed. We focus on
the rate at which resources were accessed when partici-
pants were not actively using those applications (i.e., sit-
uations likely to defy users’ expectations), access to cer-
tain resources with particularly high frequency, and the
impact of replacing certain requests with runtime confir-
mation dialogs (as per Felt et al.’s suggestion [14]).

4.1 Invisible Permission Requests
In many cases, it is entirely expected that an application
might make frequent requests to resources protected by
permissions. For instance, the INTERNET permission is
used every time an application needs to open a socket,
ACCESS FINE LOCATION is used every time the
user’s location is checked by a mapping application, and
so on. However, in these cases, one expects users to have
certain contextual cues to help them understand that these
applications are running and making these requests.
Based on our log data, most requests occurred while par-
ticipants were not actually interacting with those appli-
cations, nor did they have any cues to indicate that the
applications were even running. When resources are ac-
cessed, applications can be in five different states, with
regard to their visibility to users:

1. Visible foreground application (12.04%): the user
is using the application requesting the resource.

2. Invisible background application (0.70%): due to
multitasking, the application is in the background.

3. Visible background service (12.86%): the appli-
cation is a background service, but the user may be
aware of its presence due to other cues (e.g., it is
playing music or is present in the notification bar).

4. Invisible background service (14.40%): the appli-
cation is a background service without visibility.

5. Screen off (60.00%): the application is running,
but the phone screen is off because it is not in use.

•

APROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
35

Table 2: The most frequently requested permissions by
applications with zero visibility to the user.

Combining the 3.3M (12.04% of 27M) requests that were
granted when the user was actively using the application
(Category 1) with the 3.5M (12.86% of 27M) requests
that were granted when the user had other contextual
cues to indicate that the application was running (Cat-
egory 3), we can see that fewer than one quarter of all
permission requests (24.90% of 27M) occurred when the
user had clear indications that those applications were
running. This suggests that during the vast majority of
the time, access to protected resources occurs opaquely
to users. We focus on these 20.3M “invisible” requests
(75.10% of 27M) in the remainder of this subsection.

Harbach et al. found that users’ phone screens are off
94% of the time on average [22]. We observed that 60%
of permission requests occurred while participants’
phone screens were off, which suggests that permission
requests occurred less frequently than when participants
were using their phones. At the same time, certain appli-
cations made more requests when participants were not
using their phones: “Brave Frontier Service,” “Microsoft
Sky Drive,” and “Tile game by UMoni.” Our study col-
lected data on over 300 applications, and therefore it is
possible that with a larger sample size, we would ob-
serve other applications engaging in this behavior. All of
the aforementioned applications primarily requested AC-
CESS WIFI STATE and INTERNET. While a definitive
explanation for this behavior requires examining source
code or the call stacks of these applications, we hypothe-
size that they were continuously updating local data from
remote servers. For instance, Sky Drive may have been
updating documents, whereas the other two applications
may have been checking the status of multiplayer games.

Table 2 shows the most frequently requested permis-
sions from applications running invisibly to the user (i.e.,
Categories 2, 4, and 5); Table 3 shows the applications
responsible for these requests (Appendix A lists the
permissions requested by these applications). We

Table 3: The applications making the most permission
requests while running invisibly to the user.

normalized the numbers to show requests per user/day.
ACCESS NETWORK STATE was most frequently re-
quested, averaging 31,206 times per user/day—roughly
once every 3 seconds. This is due to applications con-
stantly checking for Internet connectivity. However, the
5,562 requests/day to ACCESS FINE LOCATION and
1,277 requests/day to ACCESS COARSE LOCATION
are more concerning, as this could enable detailed track-
ing of the user’s movement throughout the day. Sim-
ilarly, a user’s location can be inferred by using AC-
CESS WIFI STATE to get data on nearby WiFi SSIDs.

Contextual integrity means ensuring that information
flows are appropriate, as determined by the user. Thus,
users need the ability to see information flows. Current
mobile platforms have done some work to let the user
know about location tracking. For instance, recent ver-
sions of Android allow users to see which applications
have used location data recently. While attribution is a
positive step towards contextual integrity, attribution is
most beneficial for actions that are reversible, whereas
the disclosure of location information is not something
that can be undone [14]. We observed that fewer than 1%
of location requests were made when the applications
were visible to the user or resulted in the displaying of a
GPS notification icon. Given that Thompson et al.
showed that most users do not understand that appli-
cations running in the background may have the same
abilities as applications running in the foreground [42],
it is likely that in the vast majority of cases, users do not
know when their locations are being disclosed.

This low visibility rate is because Android only shows a
notification icon when the GPS sensor is accessed, while
offering alternative ways of inferring location. In 66.1%
of applications’ location requests, they directly queried
the TelephonyManager, which can be used to deter-
mine location via cellular tower information. In 33.3%
of the cases, applications requested the SSIDs of nearby
WiFi networks. In the remaining 0.6% of cases, applica-

Permission Requests
ACCESS NETWORK STATE 31,206
WAKE LOCK 23,816
ACCESS FINE LOCATION 5,652
GET ACCOUNTS 3,411
ACCESS WIFI STATE 1,826
UPDATE DEVICE STATS 1,426
ACCESS COARSE LOCATION 1,277
AUTHENTICATE ACCOUNTS 644
READ SYNC SETTINGS 426
INTERNET 416

Application Requests
Facebook 36,346
Google Location Reporting 31,747
Facebook Messenger 22,008
Taptu DJ 10,662
Google Maps 5,483
Google Gapps 4,472
Foursquare 3,527
Yahoo Weather 2,659
Devexpert Weather 2,567
Tile Game(Umoni) 2,239

APROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
36

tions accessed location information using one of three
built-in location providers: GPS, network, or passive.
Applications accessed the GPS location provider only
6% of the time (which displayed a GPS notification). In
the other 94% of the time, 13% queried the network
provider (i.e., approximate location based on nearby cel-
lular towers and WiFi SSIDs) and 81% queried the pas-
sive location provider. The passive location provider
caches prior requests made to either the GPS or network
providers. Thus, across all requests for location data, the
GPS notification icon appeared 0.04% of the time.

While the alternatives to querying the GPS are less ac-
curate, users are still surprised by their accuracy [17].
This suggests a serious violation of contextual integrity,
since users likely have no idea their locations are being
requested in the vast majority of cases. Thus, runtime no-
tifications for location tracking need to be improved [18].

Apart from these invisible location requests, we also ob-
served applications reading stored SMS messages (125
times per user/day), reading browser history (5 times per
user/day), and accessing the camera (once per user/day).
Though the use of these permissions does not necessarily
lead to privacy violations, users have no contextual cues
to understand that these requests are occurring.

4.2 High Frequency Requests
Some permission requests occurred so frequently that a
few applications (i.e., Facebook, Facebook Messenger,
Google Location Reporting, Google Maps, Farm Heroes
Saga) had to be rate limited in our log files (see Section
3.1.1), so that the logs would not fill up users’ re-
maining storage or incur performance overhead. Table 4
shows the complete list of application/permission com-
binations that exceeded the threshold. For instance, the
most frequent requests came from Facebook requesting
ACCESS NETWORK STATE with an average interval
of 213.88 ms (i.e., almost 5 times per second).

With the exception of Google’s applications, all rate-
limited applications made excessive requests for the
connectivity state. We hypothesize that once these
applications lose connectivity, they continuously poll the
system until it is regained. Their use of the
getActiveNetworkInfo() method results in permis-
sion checks and returns NetworkInfo objects, which al-
low them to determine connection state (e.g., connected,
disconnected, etc.) and type (e.g., WiFi, Bluetooth, cel-
lular, etc.). Thus, these requests do not appear to be leak-
ing sensitive information per se, but their frequency may
have adverse effects on performance and battery life. It
is possible that using the ConnectivityManager’s
NetworkCallback method may be able to fulfill this
need with far fewer permission checks.

Application / Permission Peak (ms) Avg. (ms)
com.facebook.katana 213.88 956.97 ACCESS NETWORK STATE
com.facebook.orca 334.78 1146.05 ACCESS NETWORK STATE
com.google.android.apps.maps 247.89 624.61 ACCESS NETWORK STATE
com.google.process.gapps 315.31 315.31 AUTHENTICATE ACCOUNTS
com.google.process.gapps 898.94 1400.20 WAKE LOCK
com.google.process.location 176.11 991.46 WAKE LOCK
com.google.process.location 1387.26 1387.26 ACCESS FINE LOCATION
com.google.process.location 373.41 1878.88 GET ACCOUNTS
com.google.process.location 1901.91 1901.91 ACCESS WIFI STATE
com.king.farmheroessaga 284.02 731.27 ACCESS NETWORK STATE
com.pandora.android 541.37 541.37 ACCESS NETWORK STATE
com.taptu.streams 1746.36 1746.36 ACCESS NETWORK STATE

Table 4: The application/permission combinations that
needed to be rate limited during the study. The last two
columns show the fastest interval recorded and the aver-
age of all the intervals recorded before rate-limiting.

4.3 Frequency of Data Exposure
Felt et al. posited that while most permissions can be
granted automatically in order to not habituate users to
relatively benign risks, certain requests should require
runtime consent [14]. They advocated using runtime di-
alogs before the following actions should proceed:

1. Reading location information (e.g., using conven-
tional location APIs, scanning WiFi SSIDs, etc.).

2. Reading the user’s web browser history.
3. Reading saved SMS messages.
4. Sending SMS messages that incur charges, or inap-

propriately spamming the user’s contact list.

These four actions are governed by the 12 Android per-
missions listed in Table 1. Of the 300 applications that
we observed during the experiment, 91 (30.3%) per-
formed one of these actions. On average, these permis-
sions were requested 213 times per hour/user—roughly
every 20 seconds. However, permission checks occur un-
der a variety of circumstances, only a subset of which ex-
pose sensitive resources. As a result, platform develop-

APROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

37

⇡

Resource Visible Invisible Total
Data Exposed Requests Data Exposed Requests Data Exposed Requests

Location 758 2,205 3,881 8,755 4,639 10,960
Read SMS data 378 486 72 125 450 611
Sending SMS 7 7 1 1 8 8
Browser History 12 14 2 5 14 19
Total 1,155 2,712 3,956 8,886 5,111 11,598

Table 5: The sensitive permission requests (per user/day) when requesting applications were visible/invisible to users.
“Data exposed” reflects the subset of permission-protected requests that resulted in sensitive data being accessed.

ers may decide to only show runtime warnings to users
when protected data is read or modified. Thus, we at-
tempted to quantify the frequency with which permission
checks actually result in access to sensitive resources for
each of these four categories. Table 5 shows the number
of requests seen per user/day under each of these four
categories, separating the instances in which sensitive
data was exposed from the total permission requests ob-
served. Unlike Section 4.1, we include “visible” permis-
sion requests (i.e., those occurring while the user was ac-
tively using the application or had other contextual infor-
mation to indicate it was running). We didn’t observe any
uses of NFC, READ CALL LOG, ADD VOICEMAIL,
accessing WRITE SYNC SETTINGS or INTERNET
while roaming in our dataset.

Of the location permission checks, a majority were due
to requests for location provider information (e.g.,
getBestProvider() returns the best location
provider based on application requirements), or check-
ing WiFi state (e.g., getWifiState() only reveals
whether WiFi is enabled). Only a portion of the requests
actually exposed participants’ locations (e.g.,
getLastKnownLocation() or getScanResults()
exposed SSIDs of nearby WiFi networks).

Although a majority of requests for the READ SMS per-
mission exposed content in the SMS store (e.g., Query()
reads the contents of the SMS store), a considerable por-
tion simply read information about the SMS store (e.g.,
renewMmsConnectivity() resets an applications’ con-
nection to the MMS store). An exception to this is the use
of SEND SMS, which resulted in the transmission of an
SMS message every time the permission was requested.

Regarding browser history, both accessing visited URLs
(getAllVisitedUrls()) and reorganizing bookmark
folders (addFolderToCurrent()) result in the same
permission being checked. However, the latter does not
expose specific URLs to the invoking application.

Our analysis of the API calls indicated that on average,
only half of all permission checks granted applications
access to sensitive data. For instance, across both visible

and invisible requests, 5,111 of the 11,598 (44.3%) per-
mission checks involving the 12 permissions in Table 1
resulted in the exposure of sensitive data (Table 5).

While limiting runtime permission requests to only the
cases in which protected resources are exposed will
greatly decrease the number of user interruptions, the fre-
quency with which these requests occur is still too great.
Prompting the user on the first request is also not appro-
priate (e.g., à la iOS and Android M), because our data
show that in the vast majority of cases, the user has no
contextual cues to understand when protected resources
are being accessed. Thus, a user may grant a request the
first time an application asks, because it is appropriate in
that instance, but then she may be surprised to find that
the application continues to access that resource in other
contexts (e.g., when the application is not actively used).
As a result, a more intelligent method is needed to de-
termine when a given permission request is likely to be
deemed appropriate by the user.

5 User Expectations and Reactions
To identify when users might want to be prompted about
permission requests, our exit survey focused on
participants’ reactions to the 12 permissions in Table 1,
limiting the number of requests shown to each
participant based on our reservoir sampling algorithm,
which was designed to ask participants about a diverse
set of permission/application combinations. We col-
lected participants’ reactions to 673 permission requests
(19/participant). Of these, 423 included screenshots
because participants were actively using their phones
when the requests were made, whereas 250 permission
requests were performed while device screens were off.2

Of the former, 243 screenshots were taken while the re-
questing application was visible (Category 1 and 3 from
Section 4.1), whereas 180 were taken while the applica-
tion was invisible (Category 2 and 4 from Section 4.1). In
this section, we describe the situations in which requests

2Our first 11 participants did not answer questions about permission

requests occurring while not using their devices, and therefore the data
only corresponds to our last 25 participants.

APROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
38

•

defied users’ expectations. We present explanations for
why participants wanted to block certain requests, the
factors influencing those decisions, and how expectations
changed when devices were not in use.

5.1 Reasons for Blocking
When viewing screenshots of what they were doing
when an application requested a permission, 30 partic-
ipants (80% of 36) stated that they would have preferred
to block at least one request, whereas 6 stated a willing-
ness to allow all requests, regardless of resource type or
application. Across the entire study, participants wanted
to block 35% of these 423 permission requests. When we
asked participants to explain their rationales for these de-
cisions, two main themes emerged: the request did not—
in their minds—pertain to application functionality or it
involved information they were uncomfortable sharing.

5.1.1 Relevance to Application Functionality
When prompted for the reason behind blocking a permis-
sion request, 19 (53% of 36) participants did not believe
it was necessary for the application to perform its task.
Of the 149 (35% of 423) requests that participants would
have preferred to block, 79 (53%) were perceived as be-
ing irrelevant to the functionality of the application:

“It wasn’t doing anything that needed my current
location.” (P1)
“I don’t understand why this app would do anything
with SMS.” (P10)

Accordingly, functionality was the most common reason
for wanting a permission request to proceed. Out of the
274 permissible requests, 195 (71% of 274) were per-
ceived as necessary for the core functionality of the ap-

plication, as noted by thirty-one (86% of 36) participants:

“Because it’s a weather app and it needs to know
where you are to give you weather informa-
tion.”(P13)
“I think it needs to read the SMS to keep track of the
chat conversation.”(P12)

Beyond being necessary for core functionality, partici-
pants wanted 10% (27 of 274) of requests to proceed be-
cause they offered convenience; 90% of these requests
were for location data, and the majority of those appli-
cations were published under the Weather, Social, and
Travel & Local categories in the Google Play store:

“It selects the closest stop to me so I don’t have to
scroll through the whole list.” (P0)

• “This app should read my current location. I’d like

Thus, requests were allowed when they were expected:
when participants rated the extent to which each request
was expected on a 5-point Likert scale, allowable re-
quests averaged 3.2, whereas blocked requests averaged
2.3 (lower is less expected).

5.1.2 Privacy Concerns
Participants also wanted to deny permission requests that
involved data that they considered sensitive, regardless
of whether they believed the application actually needed
the data to function. Nineteen (53% of 36) participants
noted privacy as a concern while blocking a request, and
of the 149 requests that participants wanted to block, 49
(32% of 149) requests were blocked for this reason:

• “SMS messages are quite personal.” (P14)
• “It is part of a personal conversation.” (P11)

“Pictures could be very private and I wouldn’t like
for anybody to have access.” (P16)

Conversely, 24 participants (66% of 36) wanted requests
to proceed simply because they did not believe that the
data involved was particularly sensitive; this reasoning
accounted for 21% of the 274 allowable requests:

“I’m ok with my location being recorded, no con-
cerns.” (P3)

• “No personal info being shared.” (P29)

5.2 Influential Factors
Based on participants’ responses to the 423 permission
requests involving screenshots (i.e., requests occurring
while they were actively using their phones), we quan-
titatively examined how various factors influenced their
desire to block some of these requests.

Effects of Identifying Permissions on Blocking: In the
exit survey, we asked participants to guess the permis-
sion an application was requesting, based on the screen-
shot of what they were doing at the time. The real an-
swer was among four other incorrect answers. Of the 149
cases where participants wanted to block permission
requests, they were only able to correctly state what per-
mission was being requested 24% of the time; whereas
when wanting a request to proceed, they correctly iden-
tified the requested permission 44% (120 of 274) of the
time. However, Pearson’s product-moment test on the
average number of blocked requests per user and the av-
erage number of correct answers per user3 did not yield a
statistically significant correlation (r=-0.171, p<0.317).

Effects of Visibility on Expectations: We were particu-
larly interested in exploring if permission requests orig-
inating from foreground applications (i.e., visible to the

for it to, so I won’t have to manually enter in my zip
code / area.” (P4) 3Both measures were normally distributed.

•

•

•

•

•

•

APROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
39

-

user) were more expected than ones from background ap-
plications. Of the 243 visible permission requests that we
asked about in our exit survey, participants correctly
identified the requested permission 44% of the time, and
their average rating on our expectation scale was 3.4. On
the other hand, participants correctly identified the re-
sources accessed by background applications only 29%
of the time (52 of 180), and their average rating on our
expectation scale was 3.0. A Wilcoxon Signed-Rank test
with continuity correction revealed a statistically sig-
nificant difference in participants’ expectations between
these two groups (V=441.5, p<0.001).

Effects of Visibility on Blocking: Participants wanted
to block 71 (29% of 243) permission requests originat-
ing from applications running in the foreground, whereas
this increased by almost 50% when the applications were
in the background invisible to them (43% of 180). We
calculated the percentage of denials for each partici-
pant, for both visible and invisible requests. A Wilcoxon
Signed-Rank test with continuity correction revealed a
statistically significant difference (V=58, p<0.001).

Effects of Privacy Preferences on Blocking: Partici-
pants completed the Privacy Concerns Scale (PCS) [10]
and the Internet Users’ Information Privacy Concerns
(IUIPC) scale [31]. A Spearman’s rank test yielded no
statistically significant correlation between their privacy
preferences and their desire to block permission requests
(r = 0.156, p<0.364).

Effects of Expectations on Blocking: We examined
whether participants’ expectations surrounding requests
correlated with their desire to block them. For each par-
ticipant, we calculated their average Likert scores for
their expectations and the percentage of requests that
they wanted to block. Pearson’s product-moment test
showed a statistically significant correlation (r= 0.39,
p<0.018). The negative correlation shows that partici-
pants were more likely to deny unexpected requests.

5.3 User Inactivity and Resource Access
In the second part of the exit survey, participants an-
swered questions about 10 resource requests that oc-
curred when the screen was off (not in use). Overall,
they were more likely to expect resource requests to oc-
cur when using their devices (µ = 3.26 versus µ = 2.66).
They also stated a willingness to block almost half of
the permission requests (49.6% of 250) when not in use,
compared to a third of the requests that occurred when
using their phones (35.2% of 423). However, neither of
these differences was statistically significant.

6 Feasibility of Runtime Requests
Felt et al. posited that certain sensitive permissions (Ta-
ble 1) should require runtime consent [14], but in Section
4.3 we showed that the frequencies with which applica-
tions are requesting these permissions make it impracti-
cal to prompt the user each time a request occurs. In-
stead, the major mobile platforms have shifted towards a
model of prompting the user the first time an application
requests access to certain resources: iOS does this for a
selected set of resources, such as location and contacts,
and Android M does this for “dangerous” permissions.

How many prompts would users see, if we added runtime
prompts for the first use of these 12 permissions? We an-
alyzed a scheme where a runtime prompt is displayed at
most once for each unique triplet of (application, permis-
sion, application visibility), assuming the screen is on.
With a naïve scheme, our study data indicates our partic-
ipants would have seen an average of 34 runtime prompts
(ranging from 13 to 77, s =11). As a refinement, we pro-
pose that the user should be prompted only if sensitive
data will be exposed (Section 4.3), reducing the average
number of prompts to 29.

Of these 29 prompts, 21 (72%) are related to location.
Apple iOS already prompts users when an application ac-
cesses location for the first time, with no evidence of user
habituation or annoyance. Focusing on the remaining
prompts, we see that our policy would introduce an aver-
age of 8 new prompts per user: about 5 for reading SMS,
1 for sending SMS, and 2 for reading browser history.
Our data covers only the first week of use, but as we only
prompt on first use of a permission, we expect that the
number of prompts would decline greatly in subsequent
weeks, suggesting that this policy would likely not intro-
duce significant risk of habituation or annoyance. Thus,
our results suggest adding runtime prompts for reading
SMS, sending SMS, and reading browser history would
be useful given their sensitivity and low frequency.

Our data suggests that taking visibility into account is
important. If we ignore visibility and prompted only once
for each pair of (application, permission), users would
have no way to select a different policy for when the
application is visible or not visible. In contrast, “ask- on-
first-use” for the triple (application, permission, visi-
bility) gives users the option to vary their decision based
on the visibility of the requesting application. We evalu-
ated these two policies by analyzing the exit survey data
(limited to situations where the screen was on) for cases
where the same user was asked twice in the survey about
situations with the same (application, permission) pair or
the same (application, permission, visibility) triplet, to
see whether the user’s first decision to block or not
matched their subsequent decisions. For the former pol-

APROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
40

icy, we saw only 51.3% agreement; for the latter, agree-
ment increased to 83.5%. This suggests that the (applica-
tion, permission, visibility) triplet captures many of the
contextual factors that users care about, and thus it is rea-
sonable to prompt only once per unique triplet.

A complicating factor is that applications can also run
even when the user is not actively using the phone. In
addition to the 29 prompts mentioned above, our data
indicates applications would have triggered an average
of 7 more prompts while the user was not actively using
the phone: 6 for location and one for reading SMS. It is
not clear how to handle prompts when the user is not
available to respond to the prompt: attribution might be
helpful, but further research is needed.

6.1 Modeling Users’ Decisions
We constructed several statistical models to examine
whether users’ desire to block certain permission re-
quests could be predicted using the contextual data that
we collected. If such a relationship exists, a classifier
could determine when to deny potentially unexpected
permission requests without user intervention. Con-
versely, the classifier could be used to only prompt the
user about questionable data requests. Thus, the response
variable in our models is the user’s choice of whether to
block the given permission request. Our predictive vari-
ables consisted of the information that might be available
at runtime: permission type (with the restriction that the
invoked function exposes data), requesting application,
and visibility of that application. We constructed sev-
eral mixed effects binary logistic regression models to
account for both inter-subject and intra-subject effects.

6.1.1 Model Selection
In our mixed effects models, permission types and the
visibility of the requesting application were fixed effects,
because all possible values for each variable existed in
our data set. Visibility had two values: visible (the user
is interacting with the application or has other contextual
cues to know that it is running) and invisible. Permission
types were categorized based on Table 5. The application
name and the participant ID were included as random ef-
fects, because our survey data did not have an exhaustive
list of all possible applications a user could run, and the
participant has a non-systematic effect on the data.

Table 6 shows two goodness-of-fit metrics: the Akaike
Information Criterion (AIC) and Bayesian Information
Criterion (BIC). Lower values for AIC and BIC repre-
sent better fit. Table 6 shows the different parameters
included in each model. We found no evidence of inter-
action effects and therefore did not include them. Visual
inspection of residual plots of each model did not reveal
obvious deviations from homoscedasticity or normality.

Predictors AIC BIC Screen State
UserCode 490.60 498.69 Screen On
Application 545.98 554.07 Screen On
Application
UserCode 491.86 503.99 Screen On

Permission
Application
UserCode

494.69

527.05

Screen On

Visibility
Application
UserCode

481.65

497.83

Screen On

Permission
Visibility
Application
UserCode

484.23

520.64

Screen On

UserCode 245.13 252.25 Screen Off
Application 349.38 356.50 Screen Off
Application
UserCode 238.84 249.52 Screen Off

Permission
Application
UserCode

235.48

263.97

Screen Off

Table 6: Goodness-of-fit metrics for various mixed ef-
fects logistic regression models on the exit survey data.

We initially included the phone’s screen state as another
variable. However, we found that creating two separate
models based on the screen state resulted in better fit than
using a single model that accounted for screen state as a
fixed effect. When the screen was on, the best fit was a
model including application visibility and appli- cation
name, while controlling for subject effects. Here, fit
improved once permission type was removed from the
model, which shows that the decision to block a permis-
sion request was based on contextual factors: users do
not categorically deny permission requests based solely
on the type of resource being accessed (i.e., they also ac-
count for their trust in the application, as well as whether
they happened to be actively using it). When the screen
was off, however, the effect of permission type was rela-
tively stronger. The strong subject effect in both models
indicates that these decisions vary from one user to the
next. As a result, any classifier developed to automati-
cally decide whether to block a permission at runtime (or
prompt the user) will need to be tailored to that particular
user’s needs.

6.1.2 Predicting User Reactions
Using these two models, we built two classifiers to make
decisions about whether to block any of the sensitive per-
mission requests listed in Table 5. We used our exit sur-
vey data as ground truth, and used 5-fold cross-validation
to evaluate model accuracy.

APROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

41

We calculated the receiver operating characteristic
(ROC) to capture the tradeoff between true-positive and
false-positive rate. The quality of the classifier can be
quantified with a single value by calculating the area un-
der its ROC curve (AUC) [23]. The closer the AUC gets
to 1.0, the better the classifier is. When screens were on,
the AUC was 0.7, which is 40% better than the random
baseline (0.5). When screens were off, the AUC was 0.8,
which is 60% better than a random baseline.

7 Discussion
During the study, 80% of our participants deemed at least
one permission request as inappropriate. This violates
Nissenbaum’s notion of “privacy as contextual integrity”
because applications were performing actions that defied
users’ expectations [33]. Felt et al. posited that users may
be able to better understand why permission requests are
needed if some of these requests are granted via runtime
consent dialogs, rather than Android’s previous install-
time notification approach [14]. By granting permissions
at runtime, users will have additional contextual infor-
mation; based on what they were doing at the time that
resources are requested, they may have a better idea of
why those resources are being requested.

We make two primary contributions that system design-
ers can use to make more usable permissions systems.
We show that the visibility of the requesting application
and the frequency at which requests occur are two
important factors in designing a runtime consent plat-
form. Also, we show that “prompt-on-first-use” per
triplet could be implemented for some sensitive permis-
sions without risking user habituation or annoyance.

Based on the frequency with which runtime permissions
are requested (Section 4), it is infeasible to prompt users
every time. Doing so would overwhelm them and lead to
habituation. At the same time, drawing user attention to
the situations in which users are likely to be concerned
will lead to greater control and awareness. Thus, the
challenge is in acquiring their preferences by confronting
them minimally and then automatically inferring when
users are likely to find a permission request unexpected,
and only prompting them in these cases. Our data sug-
gests that participants’ desires to block particular permis-
sions were heavily influenced by two main factors: their
understanding of the relevance of a permission request to
the functionality of the requesting application and their
individual privacy concerns.

Our models in Section 6.1 showed that individual char-
acteristics greatly explain the variance between what dif-
ferent users deem appropriate, in terms of access to pro-
tected resources. While responses to privacy scales failed
to explain these differences, this was not a surprise, as the

disconnect between stated privacy preferences and be-
haviors is well-documented (e.g., [1]). This means that
in order to accurately model user preferences, the sys-
tem will need to learn what a specific user deems in-
appropriate over time. Thus, a feedback loop is likely
needed: when devices are “new,” users will be required
to provide more input surrounding permission requests,
and then based on their responses, they will see fewer
requests in the future. Our data suggests that prompting
once for each unique (application, permission, applica-
tion visibility) triplet can serve as a practical mechanism
in acquiring users’ privacy preferences.

Beyond individual subject characteristics (i.e., personal
preferences), participants based their decisions to block
certain permission requests on the specific applications
making the requests and whether they had contextual
cues to indicate that the applications were running (and
therefore needed the data to function). Future systems
could take these factors into account when deciding
whether or not to draw user attention to a particular re-
quest. For example, when an application that a user is not
actively using requests access to a protected resource, she
should be shown a runtime prompt. Our data indicates
that, if the user decides to grant a request in this situation,
then with probability 0.84 the same decision will hold in
future situations where she is actively using that same
application, and therefore a subsequent prompt may not
be needed. At a minimum, platforms need to treat
permission requests from background applications
differently than those originating from foreground ap-
plications. Similarly, applications running in the back-
ground should use passive indicators to communicate
when they are accessing particular resources. Platforms
can also be designed to make decisions about whether or
not access to resources should be granted based on
whether contextual cues are present, or at its most basic,
whether the device screen is even on.

Finally, we built our models and analyzed our data within
the framework of what resources our participants be-
lieved were necessary for applications to correctly func-
tion. Obviously, their perceptions may have been incor-
rect: if they better understood why a particular resource
was necessary, they may have been more permissive.
Thus, it is incumbent on developers to adequately com-
municate why particular resources are needed, as this im-
pacts user notions of contextual integrity. Yet, no mecha-
nisms in Android exist for developers to do this as part of
the permission-granting process. For example, one could
imagine requiring metadata to be provided that explains
how each requested resource will be used, and then auto-
matically integrating this information into permission re-
quests. Tan et al. examined a similar feature on iOS that
allows developers to include free-form text in runtime

APROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
42

permission dialogs and observed that users were more
likely to grant requests that included this text [41]. Thus,
we believe that including succinct explanations in these
requests would help preserve contextual integrity by pro-
moting greater transparency.

In conclusion, we believe this study was instructive in
showing the circumstances in which Android permission
requests are made under real-world usage. While prior
work has already identified some limitations of deployed
mobile permissions systems, we believe our study can
benefit system designers by demonstrating several ways
in which contextual integrity can be improved, thereby
empowering users to make better security decisions.

Acknowledgments
This work was supported by NSF grant CNS-1318680,
by Intel through the ISTC for Secure Computing, and by
the AFOSR under MURI award FA9550-12-1-0040.

References
[1] ACQUISTI, A., AND GROSSKLAGS, J. Privacy and rationality in

individual decision making. IEEE Security & Privacy
(January/February 2005), 24–30. http://www.dtc.umn.edu/
weis2004/acquisti.pdf.

[2] ALMOHRI, H. M., YAO, D. D., AND KAFURA, D. Droidbarrier:
Know what is executing on your android. In Proc. of the 4th ACM
Conf. on Data and Application Security and Privacy (New York,
NY, USA, 2014), CODASPY ’14, ACM, pp. 257–264.

[3] ANDROID DEVELOPERS. System permissions.
http://developer.android.com/guide/topics/securi
ty/ permissions.html. Accessed: November 11, 2014.

[4] ANDROID DEVELOPERS. Common Intents.
https://developer.android.com/guide/components/i
ntents- common.html, 2014. Accessed: November 12, 2014.

[5] ANDROID DEVELOPERS. Content Providers.
http://developer.android.com/guide/topics/provid
ers/ content-providers.html, 2014. Accessed: Nov. 12,
2014.

[6] AU, K. W. Y., ZHOU, Y. F., HUANG, Z., AND LIE, D. Pscout:
Analyzing the android permission specification. In Proc. of the
2012 ACM Conf. on Computer and Communications Security
(New York, NY, USA, 2012), CCS ’12, ACM, pp. 217–228.

[7] BARRERA, D., CLARK, J., MCCARNEY, D., AND VAN OORSCHOT,
P. C. Understanding and improving app installation security
mechanisms through empirical analysis of android. In
Proceedings of the Second ACM Workshop on Security and Pri-
vacy in Smartphones and Mobile Devices (New York, NY, USA,
2012), SPSM ’12, ACM, pp. 81–92.

[8] BARRERA, D., KAYACIK, H. G. U. C., VAN OORSCHOT, P. C., AND
SOMAYAJI, A. A methodology for empirical analysis of
permission-based security models and its application to android.
In Proc. of the ACM Conf. on Comp. and Comm. Security (New
York, NY, USA, 2010), CCS ’10, ACM, pp. 73–84.

[9] BODDEN, E. Easily instrumenting android applications for secu-
rity purposes. In Proc. of the ACM Conf. on Comp. and Comm.
Sec. (NY, NY, USA, 2013), CCS ’13, ACM, pp. 1499–1502.

[10] BUCHANAN, T., PAINE, C., JOINSON, A. N., AND REIPS, U.-
D. Development of measures of online privacy concern and pro-
tection for use on the internet. Journal of the American Society
for Information Science and Technology 58, 2 (2007), 157–165.

[11] BUGIEL, S., HEUSER, S., AND SADEGHI, A.-R. Flexible and fine-
grained mandatory access control on android for diverse se-
curity and privacy policies. In Proc. of the 22nd USENIX Security
Symposium (Berkeley, CA, USA, 2013), SEC’13, USENIX As-
sociation, pp. 131–146.

[12] ENCK, W., GILBERT, P., CHUN, B.-G., COX, L. P., JUNG, J.,
MCDANIEL, P., AND SHETH, A. N. Taintdroid: an information-
flow tracking system for realtime privacy monitoring on smart-
phones. In Proceedings of the 9th USENIX Conference on Oper-
ating Systems Design and Implementation (Berkeley, CA, USA,
2010), OSDI’10, USENIX Association, pp. 1–6.

[13] FELT, A. P., CHIN, E., HANNA, S., SONG, D., AND WAGNER,
D. Android permissions demystified. In Proc. of the ACM Conf.
on Comp. and Comm. Sec. (New York, NY, USA, 2011), CCS
’11, ACM, pp. 627–638.

[14] FELT, A. P., EGELMAN, S., FINIFTER, M., AKHAWE, D., AND
WAGNER, D. How to ask for permission. In Proceedings of the
7th USENIX conference on Hot Topics in Security (Berkeley, CA,
USA, 2012), HotSec’12, USENIX Association, pp. 7–7.

[15] FELT, A. P., EGELMAN, S., AND WAGNER, D. I’ve got 99
problems, but vibration ain’t one: a survey of smartphone users’
concerns. In Proc. of the 2nd ACM workshop on Security and Pri-
vacy in Smartphones and Mobile devices (New York, NY, USA,
2012), SPSM ’12, ACM, pp. 33–44.

[16] FELT, A. P., HA, E., EGELMAN, S., HANEY, A., CHIN, E., AND
WAGNER, D. Android permissions: user attention, compre-
hension, and behavior. In Proceedings of the Eighth Symposium
on Usable Privacy and Security (New York, NY, USA, 2012),
SOUPS ’12, ACM, pp. 3:1–3:14.

[17] FU, H., AND LINDQVIST, J. General area or approximate loca-
tion?: How people understand location permissions. In Proceed-
ings of the 13th Workshop on Privacy in the Electronic Society
(2014), ACM, pp. 117–120.

[18] FU, H., YANG, Y., SHINGTE, N., LINDQVIST, J., AND GRUTESER,
M. A field study of run-time location access dis- closures on
android smartphones. Proc. USEC 14 (2014).

[19] GIBLER, C., CRUSSELL, J., ERICKSON, J., AND CHEN, H. An-
droidleaks: Automatically detecting potential privacy leaks in an-
droid applications on a large scale. In Proc. of the 5th Intl. Conf.
on Trust and Trustworthy Computing (Berlin, Heidelberg, 2012),
TRUST’12, Springer-Verlag, pp. 291–307.

[20] GORLA, A., TAVECCHIA, I., GROSS, F., AND ZELLER, A. Checking
app behavior against app descriptions. In Proceedings of the 36th
International Conference on Software Engineering (New York,
NY, USA, 2014), ICSE 2014, ACM, pp. 1025–1035.

[21] HARBACH, M., HETTIG, M., WEBER, S., AND SMITH, M. Using
personal examples to improve risk communication for security &
privacy decisions. In Proc. of the 32nd Annual ACM Conf. on
Human Factors in Computing Systems (New York, NY, USA,
2014), CHI ’14, ACM, pp. 2647–2656.

[22] HARBACH, M., VON ZEZSCHWITZ, E., FICHTNER, A., DE LUCA,
A., AND SMITH, M. It’sa hard lock life: A field study of
smartphone (un) locking behavior and risk perception. In
Symposium on Usable Privacy and Security (SOUPS) (2014).

[23] HASTIE, T., TIBSHIRANI, R., FRIEDMAN, J., AND FRANKLIN,
J. The elements of statistical learning: data mining, inference and
prediction. The Mathematical Intelligencer 27, 2 (2005), 83–85.

[24] HORNYACK, P., HAN, S., JUNG, J., SCHECHTER, S., AND
WETHERALL, D. These aren’t the droids you’re looking for:
retrofitting android to protect data from imperious applications.
In Proc. of the ACM Conf. on Comp. and Comm. Sec. (New York,
NY, USA, 2011), CCS ’11, ACM, pp. 639–652.

APROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
43

http://www.dtc.umn.edu/

•

•

[25] JUNG, J., HAN, S., AND WETHERALL, D. Short paper: Enhancing
mobile application permissions with runtime feedback and
constraints. In Proceedings of the Second ACM Workshop on
Security and Privacy in Smartphones and Mobile Devices (New
York, NY, USA, 2012), SPSM ’12, ACM, pp. 45–50.

[26] KELLEY, P. G., CONSOLVO, S., CRANOR, L. F., JUNG, J., SADEH,
N., AND WETHERALL, D. A conundrum of permissions: Installing
applications on an android smartphone. In Proc. of the 16th Intl.
Conf. on Financial Cryptography and Data Sec. (Berlin,
Heidelberg, 2012), FC’12, Springer-Verlag, pp. 68–79.

[27] KELLEY, P. G., CRANOR, L. F., AND SADEH, N. Privacy as part
of the app decision-making process. In Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems
(New York, NY, USA, 2013), CHI ’13, ACM, pp. 3393–3402.

[28] KLIEBER, W., FLYNN, L., BHOSALE, A., JIA, L., AND BAUER, L.
Android taint flow analysis for app sets. In Proceedings of the
3rd ACM SIGPLAN International Workshop on the State of the
Art in Java Program Analysis (New York, NY, USA, 2014),
SOAP ’14, ACM, pp. 1–6.

[29] LARSON, R., AND CSIKSZENTMIHALYI, M. New directions for
naturalistic methods in the behavioral sciences. In The Experi-
ence Sampling Method, H. Reis, Ed. Jossey-Bass, San Francisco,
1983, pp. 41–56.

[30] LIN, J., SADEH, N., AMINI, S., LINDQVIST, J., HONG, J. I., AND
ZHANG, J. Expectation and purpose: understanding users’ mental
models of mobile app privacy through crowdsourcing. In Proc.
of the 2012 ACM Conf. on Ubiquitous Computing (New York,
NY, USA, 2012), UbiComp ’12, ACM, pp. 501–510.

[31] MALHOTRA, N. K., KIM, S. S., AND AGARWAL, J. Internet Users’
Information Privacy Concerns (IUIPC): The Construct, The
Scale, and A Causal Model. Information Systems Research 15, 4
(December 2004), 336–355.

[32] NISSENBAUM, H. Privacy as contextual integrity. Washington
Law Review 79 (February 2004), 119.

[33] NISSENBAUM, H. Privacy in context: Technology, policy, and the
integrity of social life. Stanford University Press, 2009.

[34] O’GRADY, J. D. New privacy enhancements coming to ios
8 in the fall. http://www.zdnet.com/new-privacy-
enhancements-coming-to-ios-8-in-the-fall-
7000030903/, June 25 2014. Accessed: Nov. 11, 2014.

[35] PANDITA, R., XIAO, X., YANG, W., ENCK, W., AND XIE, T.
WHYPER: Towards Automating Risk Assessment of Mobile Ap-
plications. In Proc. of the 22nd USENIX Sec. Symp. (Berkeley,
CA, USA, 2013), SEC’13, USENIX Association, pp. 527–542.

[36] SARMA, B. P., LI, N., GATES, C., POTHARAJU, R., NITA- ROTARU,
C., AND MOLLOY, I. Android permissions: A perspective
combining risks and benefits. In Proceedings of the 17th ACM
Symposium on Access Control Models and Technologies (New
York, NY, USA, 2012), SACMAT ’12, ACM, pp. 13–22.

[37] SHEBARO, B., OLUWATIMI, O., MIDI, D., AND BERTINO, E.
Identidroid: Android can finally wear its anonymous suit. Trans.
Data Privacy 7, 1 (Apr. 2014), 27–50.

[38] SHKLOVSKI, I., MAINWARING, S. D., SKÚ LADÓ TTIR, H. H.,
AND BORGTHORSSON, H. Leakiness and creepiness in app space:
Perceptions of privacy and mobile app use. In Proc. of the 32nd
Ann. ACM Conf. on Human Factors in Computing Systems (New
York, NY, USA, 2014), CHI ’14, ACM, pp. 2347–2356.

[39] SPREITZENBARTH, M., FREILING, F., ECHTLER, F., SCHRECK, T.,
AND HOFFMANN, J. Mobile-sandbox: Having a deeper look into
android applications. In Proceedings of the 28th Annual ACM
Symposium on Applied Computing (New York, NY, USA, 2013),
SAC ’13, ACM, pp. 1808–1815.

[40] STEVENS, R., GANZ, J., FILKOV, V., DEVANBU, P., AND CHEN, H.
Asking for (and about) permissions used by android apps. In
Proc. of the 10th Working Conf. on Mining Soft- ware
Repositories (Piscataway, NJ, USA, 2013), MSR ’13, IEEE Press,
pp. 31–40.

[41] TAN, J., NGUYEN, K., THEODORIDES, M.,
NEGRON- ARROYO, H., THOMPSON, C., EGELMAN, S., AND
WAGNER, D. The effect of developer-specified explanations for
permission requests on smartphone user behavior. In Proc. of the
SIGCHI Conf. on Human Factors in Computing Systems (2014).

[42] THOMPSON, C., JOHNSON, M., EGELMAN, S., WAGNER, D., AND
KING, J. When it’s better to ask forgiveness than get per- mission:
Designing usable audit mechanisms for mobile permissions. In
Proceedings of the 2013 Symposium on Usable Privacy and
Security (SOUPS) (2013).

[43] VITTER, J. S. Random sampling with a reservoir. ACM Trans.
Math. Softw. 11, 1 (Mar. 1985), 37–57.

[44] WEI, X., GOMEZ, L., NEAMTIU, I., AND FALOUTSOS, M. Per-
mission evolution in the android ecosystem. In Proceedings of the
28th Annual Computer Security Applications Conference (New
York, NY, USA, 2012), ACSAC ’12, ACM, pp. 31–40.

[45] WOODRUFF, A., PIHUR, V., CONSOLVO, S., BRANDIMARTE, L.,
AND ACQUISTI, A. Would a privacy fundamentalist sell their dna
for $1000...if nothing bad happened as a result? the westin
categories, behavioral intentions, and consequences. In
Proceedings of the 2014 Symposium on Usable Privacy and Se-
curity (2014), USENIX Association, pp. 1–18.

[46] XU, R., SAÏDI, H., AND ANDERSON, R. Aurasium: Practical
policy enforcement for android applications. In Proc. of the 21st
USENIX Sec. Symp. (Berkeley, CA, USA, 2012), Security’12,
USENIX Association, pp. 27–27.

[47] ZHANG, Y., YANG, M., XU, B., YANG, Z., GU, G., NING, P.,
WANG, X. S., AND ZANG, B. Vetting undesirable behaviors in
android apps with permission use analysis. In Proc. of the ACM
Conf. on Comp. and Comm. Sec. (New York, NY, USA, 2013),
CCS ’13, ACM, pp. 611–622.

[48] ZHU, H., XIONG, H., GE, Y., AND CHEN, E. Mobile app
recommendations with security and privacy awareness. In Pro-
ceedings of the 20th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining (New York, NY, USA,
2014), KDD ’14, ACM, pp. 951–960.

A Invisible requests
Following list shows the set of applications that have requested the most
number of permissions while executing invisibly to the user and the
most requested permission types by each respective application.

Facebook App— ACCESS NETWORK STATE, ACCESS FINE
LOCATION, ACCESS WIFI STATE ,WAKE LOCK,
Google Location—WAKE LOCK, ACCESS FINE LOCATION,
GET ACCOUNTS, ACCESS COARSE LOCATION,
Facebook Messenger—ACCESS NETWORK STATE, ACCESS
WIFI STATE, WAKE LOCK, READ PHONE STATE,

• Taptu DJ—ACCESS NETWORK STATE, INTERNET, NFC
Google Maps—ACCESS NETWORK STATE, GET AC-
COUNTS, WAKE LOCK, ACCESS FINE LOCATION,
Google (Gapps)—WAKE LOCK, ACCESS FINE LOCA-
TION, AUTHENTICATE ACCOUNTS, ACCESS NETWORK
STATE,
Fouraquare—ACCESS WIFI STATE, WAKE LOCK, ACCESS
FINE LOCATION, INTERNET,
Yahoo Weather—ACCESS FINE LOCATION, ACCESS NET-
WORK STATE, INTERNET, ACCESS WIFI STATE,

•

•

•

•

•

APROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
44

http://www.zdnet.com/new-privacy-

Devexpert Weather—ACCESS NETWORK STATE, INTER-
NET, ACCESS FINE LOCATION,
Tile Game(Umoni)—ACCESS NETWORK STATE, WAKE
LOCK, INTERNET, ACCESS WIFI STATE,

Following is the most frequently requested permission type by appli-
cations while running invisibly to the user and the applications who
requested the respective permission type most.

ACCESS NETWORK STATE— Facebook App, Google Maps,
Facebook Messenger, Google (Gapps), Taptu - DJ
WAKE LOCK—Google (Location), Google (Gapps), Google
(GMS), Facebook App, GTalk.
ACCESS FINE LOCATION—Google (Location), Google
(Gapps), Facebook App, Yahoo Weather, Rhapsody (Music)
GET ACCOUNTS—Google (Location), Google (Gapps),
Google (Login), Google (GM), Google (Vending)
ACCESS WIFI STATE—Google (Location), Google (Gapps),
Facebook App, Foursqaure, Facebook Messenger
UPDATE DEVICE STATS—Google (SystemUI), Google (Loca-
tion), Google (Gapps)
ACCESS COARSE LOCATION—Google (Location), Google
(Gapps), Google (News), Facebook App, Google Maps
AUTHENTICATE ACCOUNTS—Google (Gapps), Google (Lo-
gin), Twitter, Yahoo Mail, Google (GMS)
READ SYNC SETTINGS—Google (GM), Google (GMS), an-
droid.process.acore, Google (Email), Google (Gapps)
INTERNET—Google (Vending), Google (Gapps), Google (GM),
Facebook App, Google (Location)

B Distribution of Requests
The following graph shows the distribution of requests throughout a
given day averaged across the data set.

5 10 15 20

Hour of the day

C Permission Type Breakdown
This table lists the most frequently used permissions during the study
period. (per user / per day)

Permission Type Requests
ACCESS NETWORK STATE 41077
WAKE LOCK 27030
ACCESS FINE LOCATION 7400
GET ACCOUNTS 4387
UPDATE DEVICE STATS 2873
ACCESS WIFI STATE 2092
ACCESS COARSE LOCATION 1468
AUTHENTICATE ACCOUNTS 1335
READ SYNC SETTINGS 836
VIBRATE 740
INTERNET 739
READ SMS 611
READ PHONE STATE 345
STATUS BAR 290
WRITE SYNC SETTINGS 206
CHANGE COMPONENT ENABLED STATE 197
CHANGE WIFI STATE 168
READ CALENDAR 166
ACCOUNT MANAGER 134
ACCESS ALL DOWNLOADS 127
READ EXTERNAL STORAGE 126
USE CREDENTIALS 101
READ LOGS 94

D User Application Breakdown
This table shows the applications that most frequently requested access
to protected resources during the study period. (per user / per day)

•

•

•

•

•

•

•

•

•

•

•

•

N
um

be
r o

f R
eq

ue
st

s

0
10

00

20
00

30

00

40
00

50

00

60
00

Application Name Requests
facebook.katana 40041
google.process.location 32426
facebook.orca 24702
taptu.streams 15188
google.android.apps.maps 6501
google.process.gapps 5340
yahoo.mobile.client.android.weather 5505
tumblr 4251
king.farmheroessaga 3862
joelapenna.foursquared 3729
telenav.app.android.scout us 3335
devexpert.weather 2909
ch.bitspin.timely 2549
umonistudio.tile 2478
king.candycrushsaga 2448
android.systemui 2376
bambuna.podcastaddict 2087
contapps.android 1662
handcent.nextsms 1543
foursquare.robin 1408
qisiemoji.inputmethod 1384
devian.tubemate.home 1296
lookout 1158

APROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
45

Appendix B The Feasbility of Dynamically Granted Permissions: Aligning
Mobile Privacy with User Preferences

APROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
46

The Feasibility of Dynamically Granted Permissions:
Aligning Mobile Privacy with User Preferences

Primal Wijesekera1, Arjun Baokar2, Lynn Tsai2, Joel Reardon2,
Serge Egelman2, David Wagner2, and Konstantin Beznosov1

1University of British Columbia, Vancouver, Canada,
{primal,beznosov}@ece.ubc.ca

2University of California, Berkeley, Berkeley, USA,
{arjunbaokar,lynntsai,joel.reardon}@berkeley.edu, {egelman,daw}@cs.berkeley.edu

Abstract—Current smartphone operating systems regulate ap-
plication permissions by prompting users on an ask-on-first-use
basis. Prior research has shown that this method is ineffective
because it fails to account for context: the circumstances under
which an application first requests access to data may be vastly
different than the circumstances under which it subsequently
requests access. We performed a longitudinal 131-person field
study to analyze the contextuality behind user privacy decisions to
regulate access to sensitive resources. We built a classifier to make
privacy decisions on the user’s behalf by detecting when context
has changed and, when necessary, inferring privacy preferences
based on the user’s past decisions and behavior. Our goal is to
automatically grant appropriate resource requests without
further user intervention, deny inappropriate requests, and only
prompt the user when the system is uncertain of the user’s
preferences. We show that our approach can accurately predict
users’ privacy decisions 96.8% of the time, which is a four-fold
reduction in error rate compared to current systems.

I. INTRODUCTION

One of the roles of a mobile application platform is to help
users avoid unexpected or unwanted use of their personal data
[12]. Mobile platforms currently use permission systems to
regulate access to sensitive resources, relying on user prompts
to determine whether a third-party application should be
granted or denied access to data and resources. One critical
caveat in this approach, however, is that mobile platforms seek
the consent of the user the first time a given application
attempts to access a certain data type and then enforce the user’s
decision for all subsequent cases, regardless of the
circumstances surrounding each access. For example, a user
may grant an application access to location data because she is
using location-based features, but by doing this, the ap-
plication can subsequently access location data for behavioral
advertising, which may violate the user’s preferences.

Earlier versions of Android (5.1 and below) asked users to
make privacy decisions during application installation as an all-
or-nothing ultimatum (ask-on-install): either all requested
permissions are approved or the application is not installed.
Previous research showed that few people read the requested
permissions at install-time and even fewer correctly under-
stood them [17]. Furthermore, install-time permissions do not
present users with the context in which those permission will

be exercised, which may cause users to make suboptimal de-
cisions not aligned with their actual preferences. For example,
Egelman et al. observed that when an application requests
access to location data without providing context, users are just
as likely to see this as a signal for desirable location-based
features as they are an invasion of privacy [11]. Asking users to
make permission decisions at runtime—at the moment when
the permission will actually be used by the application—
provides more context (i.e., what they were doing at the time
that data was requested) [15]. However, due to the high
frequency of permission requests, it is not feasible to prompt
the user every time data is accessed [43].

In iOS and Android M, the user is now prompted at runtime
the first time an application attempts to access one of a set of
“dangerous” permission types (e.g., location, contacts, etc.).
This ask-on-first-use (AOFU) model is an improvement over
ask-on-install (AOI). Prompting users the first time an applica-
tion uses one of the designated permissions gives users a better
sense of context: their knowledge of what they were doing
when the application first tried to access the data should help
them determine whether the request is appropriate. Despite that,
Wijesekera et al. showed that AOFU fails to meet user
expectations over half the time. This is because AOFU does not
account for the varying contexts of future requests [43].

The notion of contextual integrity suggests that many per-
mission models fail to protect user privacy because they fail to
account for the context surrounding data flows [34]. That is,
privacy violations occur when sensitive resources are used in
ways that defy users’ expectations. We posit that more effective
permission models must focus on whether resource accesses are
likely to defy users’ expectations in a given context—not
simply whether the application was authorized to receive data
the first time it asked for it. Thus, the challenge for system
designers is to correctly infer when the context surrounding a
data request has changed, and whether the new context is likely
to be deemed “appropriate” or “inappropriate” for the given
user. Dynamically regulating data access based on the context
requires more user involvement to understand users’ contextual
preferences. If users are asked to make privacy decisions too
frequently, or under circumstances that are seen as low-risk,
they may become habituated to future, more serious, privacy

APROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
47

decisions. On the other hand, if users are asked to make too few
privacy decisions, they may find that the system has acted
against their wishes. Thus, our goal is to automatically
determine when and under what circumstances the system
presents users with runtime prompts.

To this end, we collected real-world Android usage data in
order to explore whether we could infer users’ future privacy
decisions based on their past privacy decisions, contextual
circumstances surrounding applications’ data requests, and
users’ behavioral traits. We conducted a field study where 131
participants used Android phones that were instrumented to
gather data over an average of 32 days per participant. Also,
their phones periodically prompted them to make privacy
decisions when applications used sensitive permissions, and we
logged their decisions. Overall, participants wanted to block
60% of these requests. We found that AOFU yields 84%
accuracy, i.e., its policy agrees with participants’ prompted
responses 84% of the time. AOI achieves only 25% accuracy.
We designed new techniques that use machine learning to
automatically predict how users would respond to prompts, so
that we can avoid prompting them in most cases, thereby re-
ducing user burden. Our classifier uses the user’s past decisions
in similar situations to predict their response to a particular
permission request. The classifier outputs a prediction and a
confidence score; if the classifier is sufficiently confident,
we use its prediction, otherwise we prompt the user for their
decision. We also incorporate information about the user’s
behavior in other security and privacy situations to make
inferences about their preferences: whether they have a screen
lock activated, how often they visit HTTPS websites, and so
on. We show that our scheme achieves 96.8% accuracy (a 4
reduction in error rate over AOFU) with significantly less user
involvement than the status quo.

The specific contributions of our work are the following:
• We conducted the first known large-scale study on quan-

tifying the effectiveness of ask-on-first-use permissions.
• We show that a significant portion of the studied par-

ticipants make contextual decisions on permissions— the
foreground application and the visibility of the
permission-requesting application are strong cues partic-
ipants used to make contextual decisions.

• We show how a machine-learned model can incorporate
context and better predict users’ privacy decisions.

• To our knowledge, we are the first to use passively
observed traits to infer future privacy decisions on a case-
by-case basis at runtime.

II. RELATED WORK

There is a large body of work demonstrating that install- time
prompts fail because users do not understand or pay attention
to them [19], [23], [42]. When using install-time prompts, users
often do not understand which permission types correspond to
which sensitive resources and are surprised by the ability of
background applications to collect information [17], [22], [41].
Applications also transmit a large amount of location or other
sensitive data to third parties without

user consent [12]. When possible risks associated with these
requests are revealed to users, their concerns range from being
annoyed to wanting to seek retribution [16].

To mitigate some of these problems, systems have been
developed to track information flows across the Android
system [12], [18], [24] or introduce finer-grained permission
control into Android [2], [21], [39], but many of these solu-
tions increase user involvement significantly, which can lead to
habituation. Additionally, many of these proposals are useful
only to the most-motivated or technically savvy users. For
example, many such systems require users to configure com-
plicated control panels, which many are unlikely to do [45].
Other approaches involve static analysis in order to better
understand how applications could request information [4], [8],
[14], but these say little about how applications actually use
information. Dynamic analysis improves upon this by allowing
users to see how often this information is requested in real time
[12], [40], [43], but substantial work is likely needed to present
that information to average users in a meaningful way.
Solutions that require user interruptions need to also minimize
user intervention in order to prevent habituation.

Other researchers have developed recommendation systems
to recommend applications based on users’ privacy prefer-
ences [46], or detect privacy violations and suggest prefer-
ences based on crowdsourcing [1], [27], but such approaches
often do not take individual user differences into account
without significant user intervention. Systems have also been
developed to predict what users would share on mobile social
networks [7], which suggests that future systems could
potentially infer what information users would be willing to
share with third-party applications. By requiring users to self-
report privacy preferences, clustering algorithms have been
used to define user privacy profiles even in the face of diverse
preferences [26], [38]. However, researchers have found that
the order in which information is requested has an impact on
prediction accuracy [44], which could mean that such systems
are only likely to be accurate when they examine actual user
behavior over time (as opposed to one-time self-reports).

Liu et al. clustered users by privacy preferences and used ML
techniques to predict whether to allow or deny an ap-
plication’s request for sensitive user data [29]. Their dataset,
however, was collected from a set of highly privacy-conscious
individuals: those who choose to install a permission-control
mechanism. Furthermore, the researchers removed “conflict-
ing” user decisions, in which a user chose to deny a permission
for an application, and then later chose to allow it. These
conflicting decisions, however, do not represent noisy data.
They occur nearly 50% of the time in the real world [43], and
accurately reflect the nuances of user privacy preferences.
Models must therefore account for them. In fact, previous work
found that users commonly reassess privacy preferences after
usage [3]. Liu et al. also expect users to make 10% of permis-
sion decisions manually, which, based on field study results
from Wijesekera et al., would result in being prompted every
three minutes [43]. This is obviously impractical. Our goal is to
design a system that can automatically make decisions on

APROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
48

behalf of users, that accurately models their preferences, while
also not over-burdening them with repeated requests.

Closely related to this work, Liu et al. [28] performed a field
study to measure the effectiveness of a Privacy Assistant that
offers recommendations to users on privacy settings that they
could adopt based on each user’s privacy profile—the privacy
assistant predicts what the user might want based on the
inferred privacy profile and static analysis of the third-party
application. While this approach increased user awareness on
resource usage, the recommendations are static: they do not
consider each application’s access to sensitive data on a case-
by-case basis. Such a coarse-grained approach goes against
previous work suggesting that people do want to vary their
decisions based on contextual circumstances [43]. A blanket
approval or denial of a permission to a given application car-
ries a considerable risk of privacy violations or loss of desired
functionality. In contrast, our work uses dynamic analysis to
infer the appropriateness of each given request by considering
the surrounding contextual cues and how the user has behaved
in similar situations in the past. As with Liu et al., their dataset
was also collected from privacy-conscious and considerably
tech-savvy individuals, which may limit the generalization of
their results. The field study we conduct in our work uses a
more representative sample.

Nissenbaum’s theory of contextual integrity suggests that
permission models should focus on information flows that are
likely to defy user expectations [34]. There are three main
components involved in deciding the appropriateness of a flow
[6]: the context in which the resource request is made, the role
played by the requesting application under the current context,
and the type of resource being accessed. Neither previous nor
currently deployed permission models take all three factors into
account. This model could be used to improve permission
models by automatically granting access to data when the
system determines that it is appropriate, denying access when
it is inappropriate, and prompting the user only when a decision
cannot be made automatically, thereby reducing user burden.

Access Control Gadgets (ACGs) were proposed as a mech-
anism to tie sensitive resource access to certain UI elements
[32], [35]–[37]. Authors posit that such an approach will
increase user expectations, as a significant portion of partici-
pants expected a UI interaction before a sensitive resource us-
age, giving users an implicit mechanism to control access and
increasing awareness on resource usage. The biggest caveat in
this approach is that tying a UI interaction to each sensitive
resource access is impossible in practice because resources are
accessed at a high frequency [43], and because many legitimate
resource accesses occur without user initiation [15].
Wijesekera et al. performed a field study [43] to operationalize
the notion of “context,” to allow an operating system to dif-
ferentiate between appropriate and inappropriate data requests
by a single application for a single data type. They found that
users’ decisions to allow a permission request significantly
correlated with that application’s visibility. They posit that this
visibility is a strong contextual cue that influences users’

Permission Type Activity
ACCESS_WIFI_STATE View nearby SSIDs
NFC Communicate via NFC
READ_HISTORY_BOOKMARKS Read users’ browser history
ACCESS_FINE_LOCATION Read GPS location

ACCESS_COARSE_LOCATION
Read network-inferred location
(i.e., cell tower and/or WiFi)

LOCATION_HARDWARE Directly access GPS data
READ_CALL_LOG Read call history
ADD_VOICEMAIL Read call history
READ_SMS Read sent/received/draft SMS
SEND_SMS Send SMS
*INTERNET Access Internet when roaming
*WRITE_SYNC_SETTINGS

Change application sync
settings when roaming

TABLE I
FELT ET AL. PROPOSED GRANTING A SELECT SET OF 12 PERMISSIONS AT

RUNTIME SO THAT USERS HAVE CONTEXTUAL INFORMATION TO INFER WHY
THE DATA MIGHT BE NEEDED [15]. OUR INSTRUMENTATION OMITS THE LAST
TWO PERMISSION TYPES (INTERNET & WRITE_SYNC_SETTINGS) AND RECORDS

INFORMATION ABOUT THE OTHER 10.

responses to permission prompts. They also observed that
privacy decisions were highly nuanced, demonstrating that a
one-size-fits-all model is unlikely to be sufficient; a given
information flow may be deemed appropriate by one user but
not by another user. They recommended applying machine
learning in order to infer individual users’ privacy preferences.
To achieve this, research is needed to determine what factors
affect user privacy decisions and how to use those factors to
make privacy decisions on the user’s behalf. While we cannot
automatically capture everything involved in Nissenbaum’s
notion of context, we can try to detect when context has likely
changed (insofar as to decide whether a different privacy
decision should be made for the same application and data
type), by seeing whether the circumstances surrounding a data
request are similar to previous requests.

III. METHODOLOGY

We collected data from 131 participants to understand what
factors could be used to infer whether a permission request is
likely to be deemed appropriate by the user.

Previous work by Felt et al. made the argument that certain
permissions are appropriate for runtime prompts, because they
protect sensitive resources and because viewing the prompt at
runtime imparts additional contextual information about why
an application might need the permission [15]. Similarly,
Thompson et al. showed that other permission requests could
be replaced with audit mechanisms, because they represent
either reversible changes or are sufficiently low risk to not
warrant habituating the user to prompts [41]. We collected
information about 10 of the 12 permissions Felt et al. suggest
are best-suited for runtime prompts. We omitted INTERNET and
WRITE_SYNC_SETTINGS, because those permissions only
warrant runtime prompts if the user is roaming and we did not
expect any participant to be roaming during the study period,
and focused on the remaining 10 permission types (Table I).
While there are many other sensitive permissions beyond this

APROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
49

Fig. 1. A screenshot of an ESM prompt.

set, Felt et al. concluded that the others are best handled by
other mechanisms (e.g., install-time prompts, ACGs, etc.).

We used the Experience Sampling Method (ESM) to collect
ground truth data about users’ privacy preferences [20]. ESM
involves repeatedly questioning participants in situ about a
recently observed event; in this case, we probabilistically asked
them about an application’s recent access to data on their
phone, and whether they would have permitted it if given the
choice. We treated participants’ responses to these ESM probes
as our main dependent variable (Figure 1).

We also instrumented participants’ smartphones to obtain
data about their privacy-related behaviors and the frequency
with which applications accessed protected resources. The
instrumentation required a set of modifications to the Android
operating system and flashing a custom Android version onto
participants’ devices. To facilitate such experiments, the Uni-
versity of Buffalo offers non-affiliated academic researchers
access to the PhoneLab panel [33], which consists of more than
200 participants. All of these participants had LG Nexus 5
phones running Android 5.1.1 and the phones were periodi-
cally updated over-the-air (OTA) with custom modifications to
the Android operating system. Participants can decide when to
install the OTA update, which marks their entry into new ex-
periments. During our experiment period, different participants
installed the OTA update with our instrumentation at different
times, thus we have neither data on all PhoneLab participants
nor data for the entire period. Our OTA update was available to
participants for a period of six weeks, between February 2016
and March 2016. At the end of the study period, we emailed
participants a link to an exit survey to collect demographic

TABLE II
INSTRUMENTED EVENTS THAT FORM OUR FEATURE SET

information. Our study received institutional review board (IRB)
approval.1

A. Instrumentation
The goal of our instrumentation was to collect as much

runtime and behavioral data as could be observed from the An-
droid platform, with minimal performance cost. We collected
three categories of data: behavioral information, runtime infor-
mation, and user decisions. We made no modifications to any
third-party application code; our dynamic analysis techniques
could be used on any third-party Android application.

Table II contains the complete list of behavioral and runtime
events our instrumentation recorded. The behavioral data fell
under several categories, all chosen based on several hypothe-
ses that we had about the types of behaviors that might cor-
relate with privacy preferences: web-browsing habits, screen
locking behavior, third-party application usage behavior, audio
preferences, call habits, camera usage patterns, and behavior
related to security settings. For example, we hypothesized that
someone who manually locks their device screen are more
privacy-conscious than someone who lets it time out.

We also collected runtime information about the context of
each permission request, including the visibility of the request-
ing application at the time of request, what the user was doing
when the request was made (i.e., the name of the foreground
application), and the exact Android API function invoked by
the application to determine what information was requested.
The visibility of an application reflects the extent to which the

1Approved by the UC Berkeley IRB under protocol #2013-02-4992

Type Event Recorded

Behavioral
Instrumentation

Changing developer options
Opening/Closing security settings
Changing security settings
Enabling/Disabling NFC
Changing location mode
Opening/Closing location settings
Changing screen-lock type
Use of two factor authentication
Log initial settings information
User locks the screen
Screen times out
App locks the screen
Audio mode changed
Enabling/Disabling speakerphone
Connecting/Disconnecting headphones
Muting the phone
Taking an audio call
Taking a picture (front- vs. rear-facing)
Visiting an HTTPS link in Chrome
Responding to a notification
Unlocking the phone

Runtime
Information

An application changing the visibility
Platform switches to a new activity

Permission
Requests

An app requests a sensitive permission
ESM prompt for a selected permission

APROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
50

user was likely aware that the application was running; if the
application was in the foreground, the user had cues that the
application was running, but if it was in the background, then
the user was likely not aware that the application was running
and therefore might find the permission request unexpected—
some background services can still be visible to the user due to
on-screen notification or other cues that could be perceptible.
We monitored processes’ memory priority levels to determine
the visibility of all Android processes. We also collected
information about which Android Activity was active in the
application.2

Once per day we probabilistically selected one of these
permission requests and prompted the user about them at
runtime (Figure 1). We used weighted reservoir sampling to
select a permission request to prompt about. We weight the
combination of application, permission, visibility based on
their frequency of occurrence seen by the instrumentation; the
most-frequent combination has a higher probability of being
shown to participants using ESM. We prompted participants a
maximum of three times for each unique combination. We
tuned the wording of the prompt to make it clear that the request
had just occurred and their response would not affect the system
(a deny response would not actually deny data). These
responses serve as the ground truth for all the analysis
mentioned in the remainder of the paper.

The intuition behind using weighted reservoir sampling is to
focus more on the frequently occurring permission requests
over rare ones. Common permission requests contribute most
to user habituation due to their high frequency. Thus, it is more
important to learn about user privacy decisions on highly
frequent permission requests over the rare ones, which might
not risk user habituation or annoyance (and the context of rare
requests may be less likely to change).

B. Exit Survey
At the end of our data collection period, PhoneLab staff

emailed participants a link to our online exit survey, which they
were incentivized to complete with a raffle for two $100
Amazon gift cards. The survey gathered demographic informa-
tion and qualitative information on their privacy preferences.
Of the 203 participants in our experiment, 53 fully completed
the survey, and another 14 partially completed it. Of the 53
participants to fully complete the survey, 21 were male, 31 were
female, and 1 undisclosed. Participants ranged from 20 to 72
years of age (µ = 40.83, CJ = 14.32). Participants identified
themselves as 39.3% staff, 32.1% students, 19.6% faculty, and
9% other. Only 21% of the survey respondents had an academic
qualification in STEM, which suggests that the sample is
unlikely to be biased towards tech-savvy users.

C. Summary
We collected data from February 5 to March 17, 2016.

PhoneLab allows any participant to opt-out of an experiment at
any time. Thus, of the 203 participants who installed our

2An Android Activity represents the application screen and UI elements
currently exposed to the user.

custom Android build, there were 131 who used it for more than
20 days. During the study period, we collected 176M events
across all participants (31K events per participant/day). Our
dataset consists of 1,686 unique applications and 13K unique
activities. Participants also responded to 4,636 prompts during
the study period. We logged 96M sensitive permission requests,
which translates to roughly one sensitive permission request
every 6 seconds per participant. For the remainder of the paper,
we only consider the data from the 131 participants who used
the system for at least 20 days, which corresponds to 4,224
ESM prompts.

Of the 4,224 prompts, 55.3% were in response to AC-
CESS_WIFI_STATE, when trying to access WiFi SSID informa-
tion that could be used to infer the location of the smartphone;
21.0%, 17.3%, 5.08%, 0.78%, and 0.54% were from accessing
location directly, reading SMS, sending SMS, reading call
logs, and accessing browser history, respectively. A total of
137 unique applications triggered prompts during the study
period. Of the 4,224 prompts, participants wanted to deny
60.01% of them, and 57.65% of the prompts were shown when
the requesting application was running in the foreground or
the user had visual cues that the application was running (e.g.,
notifications). A Wilcoxon signed rank test with continuity
correction revealed a statistically significant difference in par-
ticipants’ desire to allow or deny a permission request based
on the visibility of the requesting application (p < 0.0152,
r = 0.221), which corroborates previous findings [43].

IV. TYPES OF USERS

We hypothesized that there may be different types of users
based on how they want to disclose their private information to
third parties. It is imperative to identify these different sub-
populations since different permission models affect users
differently based on their privacy preferences; performance
numbers averaged across a user population could be mislead-
ing since different sub-populations might react differently to
the same permission model.

While our study size was too small to effectively apply
clustering techniques to generate classes of users, we did find a
meaningful distinction using the denial rate (i.e., the percentage
of prompts to which users wanted to deny access). We
aggregated users by their denial rate in 10% increments and
examined how these different participants considered the
surrounding contextual circumstances in their decisions.

We discovered that application visibility was a significant
factor for users with a denial rate of 10–90%, but not for users
with a denial rate of 0–10% or 90–100%. We call the former
group Contextuals, as they seem to care about the surrounding
context (i.e., they make nuanced decisions, allowing or denying
a permission request based on whether they had contextual cues
that indicated that the requesting application was running), and
the latter group Defaulters, because they seem to simply always
allow or always deny requests, regardless of contextual cues.

Defaulters accounted for 53% of 131 participants and Con-
textuals accounted for 47%. A Wilcoxon signed-rank test with

APROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
51

N
um

be
r o

f P
ar

tic
ip

an
ts

15

10

5

0

0 25 50 75 100
Denial Rate

Category

Contextuals

Defaulters

to this prompt is thereafter applied whenever the same ap-
plication requests the same permission. As of March 2017, only
34.1% of Android users have Android Marshmallow or a higher
version [10], and among these Marshmallow users, those who
upgraded from a previous version only see runtime permission
prompts for freshly-installed applications.

For the remaining 65.9% of users, the system policy is ask-
on-install (AOI), which automatically allows all runtime
permission requests. During the study period, all of our partic-
ipants had AOI running as the default permission model. Be-
cause all runtime permission requests are allowed in AOI, any
of our ESM prompts that the user wanted to deny correspond to
mispredictions under the AOI model (i.e., the AOI model
granted access to the data against users’ actual preferences).

Fig. 2. Histogram of users based on their denial rate. Defaulters tended to
allow or deny almost all requests without regard for contextual cues, whereas
Contextuals considered the visibility of the requesting application.

Policy Contextuals Defaulters Overall Prompts
AOI 44.11% 6.00% 25.00% 0.00
AOFU-AP 64.49% 93.33% 84.61% 12.34
AOFU-APV 64.28% 92.85% 83.33% 15.79
AOFU-AF PV 66.67% 98.95% 84.61% 16.91
AOFU-VP 58.65% 94.44% 78.04% 6.43
AOFU-VA 63.39% 93.75% 84.21% 12.24
AOFU-A 64.27% 93.54% 83.33% 9.06
AOFU-P 57.95% 95.45% 82.14% 3.84
AOFU-V 52.27% 95.34% 81.48% 2.00

TABLE III
THE ACCURACY AND NUMBER OF DIFFERENT POSSIBLE ASK-ON-FIRST- USE

COMBINATIONS. A: APPLICATION REQUESTING THE PERMISSION, P:
PERMISSION TYPE REQUESTED, V: VISIBILITY OF THE APPLICATION REQUESTING
THE PERMISSION, AF : APPLICATION RUNNING IN THE FOREGROUND WHEN THE

REQUEST IS MADE. AOFU-AP IS THE POLICY USED IN ANDROID
MARSHMALLOW I.E., ASKING (PROMPTING) THE USER FOR EACH UNIQUE

APPLICATION, PERMISSION COMBINATION. THE TABLE ALSO DIFFERENTIATES
POLICY NUMBERS BASED ON THE SUBPOPULATION

OF Contextuals, Defaulters, AND ACROSS ALL USERS.

continuity correction revealed a statistically significant differ-
ence in Contextuals’ responses based on requesting application
visibility (p < 0.013, r = 0.312), while for Defaulters there
was no statistically significant difference (p = 0.227). That is,
Contextuals used visibility as a contextual cue, when deciding
the appropriateness of a given permission request, whereas
Defaulters did not vary their decisions based on this cue.
Figure 2 shows the distribution of users based on their denial
rate. Vertical lines indicate the borders between Contextuals
and Defaulters.

In the remainder of the paper, we use our Contextuals–
Defaulters categorization to measure how current and pro-
posed models affect these two sub-populations, issues unique
to these sub-populations, and ways to address these issues.

V. ASK-ON-FIRST-USE PERMISSIONS

Ask-on-first-use (AOFU) is the current Android permission
model, which was first adopted in Android 6.0 (Marshmallow).
AOFU prompts the user whenever an application requests a
dangerous permission for the first time [9]; the user’s response

Table III shows the expected median accuracy for AOI, as well
as several other possible variants that we discuss in this section.
The low median accuracy for Defaulters was due to the
significant number of people who simply denied most of the
prompts. The prompt count is zero for AOI because it does not
prompt the user during runtime; users are only shown
permission prompts at installation.

More users will have AOFU in the future, as they upgrade
to Android 6.0 and beyond. To the best of our knowledge,
no prior work has looked into quantifying the effectiveness of
AOFU systematically; this section presents analysis of AOFU
based on prompt responses collected from participants and cre-
ates a baseline against which to measure our system’s improve-
ment. We simulate how AOFU performs through our ESM
prompt responses. Because AOFU is deterministic, each user’s
response to the first prompt for each application:permission
combination tells us how the AOFU model would respond for
subsequent requests by that same combination. For participants
who responded to more than one prompt for each combination,
we can quantify how often AOFU would have been correct for
subsequent requests. Similarly, we also measure the accuracy
for other possible policies that the platform could use to decide
whether to prompt the user. For example, the status quo is
for the platform to prompt the user for each new applica-
tion:permission combination, but how would accuracy (and the
number of prompts shown) change if the policy were to prompt
on all new combinations of application:permission:visibility?
Table III shows the expected median accuracy3 for each policy
based on participants’ responses. For each policy, A represents
the application requesting the permission, P rep- resents the
requested permission, V represents the visibility of the
requesting application, and AF represents the application
running in the foreground when a sensitive permission
request was made. For instance, AOFU-AP is the policy where
the user will be prompted for each new instance of an
application:permission combination, which the Android
6.0 model employs. The last column shows the number of
runtime prompts a participant would see under each policy over
the duration of the study, if that policy were to be

3The presented numbers—except for average prompt count, which was nor-

mally distributed—are median values, because the distributions were skewed.

APROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
52

⇥
implemented. Both AOFU-AP and AOFU-AF PV show about
a 4.9 reduction in error rate compared to AOI; AOFU-AF PV
would require more prompts over AOFU-AP, though yields a
similar overall accuracy rate. 4 Moving forward, we focus our
analysis only on AOFU-AP (i.e., the current standard).

Instances where the user wants to deny a permission and the
policy instead allows it (false positives) are privacy violations,
because they expose more information to the application than
the user desires. Instances where the user wants to allow a
permission, but the policy denies it (false negatives) are
functionality losses. This is because the application is likely
to lose some functionality that the user desired when it is
incorrectly denied a permission. Privacy violations and func-
tionality losses were approximately evenly split between the
two categories for AOFU-AP: median privacy violations and
median functionality losses were 6.6% and 5.0%, respectively.
The AOFU policy works well for Defaulters because, by
definition, they tend to be consistent after their initial responses
for each combination. In contrast, the decisions of Contextuals
vary due to other factors beyond just the requesting application
and the requested permission type. Hence, the accuracy of
AOFU for Contextuals is significantly lower than the accuracy
for Defaulters. This distinction shows that learning privacy
preferences for a significant portion of users requires a deeper
understanding of factors affecting their decisions, such as
behavioral tendencies and contextual cues. As Table III sug-
gests, superficially adding more contextual variables (such as
visibility of the requesting application) does not necessarily
help to increase the accuracy of the AOFU policy.

The context in which users are prompted under AOFU might
be a factor affecting its ability to predict subsequent instances.
In previous work [43], we found that the visibility of the
requesting application is a strong contextual cue users use to
vary their decisions. During the study period, under the AOFU-
AP policy, 60% of the prompts could have occurred when the
requesting application was visible to the participant—these
prompts had an accuracy of 83.3% in predicting subsequent
instances. In instances where participants were prompted when
the requesting application was running invisibly to the user,
AOFU-AP had an accuracy of 93.7% in predicting subsequent
instances. A Wilcoxon signed-ranks test, however, did not
reveal a statistically significant difference (p< 0.3735).

Our estimated accuracy numbers for AOFU may be inflated
because AOFU in deployment (Android 6 and above) does not
filter permission requests that do not reveal any sensitive
information. For example, an application can request the
ACCESS_FINE_LOCATION permission to check whether the
phone has a specific location provider, which does not leak
sensitive information. Our AOFU simulation uses the invoked
function to determine if sensitive data was actually accessed,
and only prompts in those cases (in the interest of avoiding any
false positives), a distinction that AOFU in Android does not
make. Thus, an Android user would see a permission request

prompt when the application examines the list of location
providers, and if the permission is granted, would not subse-
quently see prompts when location data is actually captured.
Previous work found that 79% of first-time permission requests
do not reveal any sensitive information [43], and nearly 33.9%
of applications that request these sensitive permission types do
not access sensitive data at all. The majority of AOFU prompts
in Marshmallow are therefore effectively false positives, which
incorrectly serve as the basis for future decisions. Given this,
AOFU’s average accuracy is likely less than the numbers
presented in Table III. We therefore consider our estimates of
AOFU to be an upper bound.

VI. LEARNING PRIVACY PREFERENCES

Table III shows that a significant portion of users (the 47%
classified as Contextuals) make privacy decisions that depend
on factors other than the application requesting the permission,
the permission requested, and the visibility of the requesting
application. To make decisions on behalf of the user, we must
understand what other factors affect their privacy decisions. We
built a machine learning model trained and tested on our labeled
dataset of 4,224 prompts collected from 131 users over the
period of 42 days. This approach is equivalent to training a
model based on runtime prompts from hundreds of users and
using it to predict those users’ future decisions.

We focus the scope of this work by making the following as-
sumptions. We assume that the platform, i.e., the Android OS,
is trusted to manage and enforce permissions for applications.
We assume that applications must go through the platform’s
permission system to gain access to protected resources. We
assume that we are in a non-adversarial machine-learning
setting wherein the adversary does not attempt to circumvent
the machine-learned classifier by exploiting knowledge of its
decision-making process—though we do present a discussion
of this problem and potential solutions in Section IX.

A. Feature Selection
Using the behavioral, contextual, and aggregate features

shown in Table II, we constructed 16K candidate features,
formed by combinations of specific applications and actions.
We then selected 20 features by measuring Gini importance
through random forests [30], significance testing for corre-
lations, and singular value decomposition (SVD). SVD was
particularly helpful to address the sparsity and high dimension-
ality issues caused by features generated based on application
and activity usage. Table IV lists the 20 features used in the rest
of this work.

The behavioral features (B) that proved predictive relate to
browsing habits, audio/call traits, and locking behavior. All
behavioral features were normalized per day/user and were
scaled in the actual model. Features relating to browsing habits
included the number of websites visited, the proportion of
HTTPS-secured links visited, the number of downloads,

4While AOFU-AF faulters and Conte PV has greater median accuracy when examining De-
separately, because the distributions are skewed, the

and proportion of sites visited that requested location access.
Features relating to locking behavior included whether users

xtuals
median overall accuracy is identical to AOFU-AP when combining the groups. employed a passcode/PIN/pattern, the frequency of screen

APROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
53

Feature Set Contextuals Defaulters Overall
R1 69.30% 95.80% 83.71%
R2 + B 69.48% 95.92% 83.93%
R2 + A 75.45% 99.20% 92.24%

TABLE V
THE MEDIAN ACCURACY OF THE MACHINE LEARNING MODEL FOR

DIFFERENT FEATURE GROUPS ACROSS DIFFERENT SUB POPULATIONS.

TABLE IV
THE COMPLETE LIST OF FEATURES USED IN THE ML MODEL

EVALUATION. ALL THE NUMERICAL VALUES IN THE BEHAVIORAL GROUP
ARE NORMALIZED PER DAY. WE USE ONE-HOT ENCODING FOR

CATEGORICAL VARIABLES. WE NORMALIZED NUMERICAL VARIABLES BY
MAKING EACH ONE A Z-SCORE RELATIVE TO ITS OWN AVERAGE.

unlocking, the proportion of times they allowed the screen to
timeout instead of pressing the lock button, and the average
amount of time spent unlocking the screen. Features under the
audio and call category were the frequency of audio calls, the
amount of time they spend on audio calls, and the proportion of
time they spent on silent mode.

Our runtime features (R1/R2) include the requesting appli-
cation’s visibility, permission requested, and time of day of the
request. Initially, we included the user ID to account for user-
to-user variance, but as we discuss later, we subsequently
removed it. Surprisingly, the application requesting the per-
mission was not predictive, nor were other features based on
the requesting application, such as application popularity.

Different users may have different ways of perceiving
privacy threats posed by the same permission request. To
account for this, the learning algorithm should be able to
determine how each user perceives the appropriateness of a
given request in order to accurately predict future decisions. To
quantify the difference between users in how they perceive the
threat posed by the same set of permission requests, we
introduced a set of aggregate features that could be measured
at runtime and that may partly capture users’ privacy
preferences. We compute the average denial rate for each
unique combination of application:permission:visibility (A1)
and of applicationF 5:permission:visibility (A2). These
aggregate features indicate how the user responded to previous
prompts associated with that combination. As expected, after

5The application running in the foreground when the permission is re-

quested by another application.

we introduced the aggregate features, the relative importance of
the user ID variable diminished and so we removed it (i.e., users
no longer needed to be uniquely identified). We define R2 as
R1 without the user ID.

B. Inference Based on Behavior

One of our main hypotheses is that passively observing
users’ behaviors helps infer users’ future privacy decisions. To
this end, we instrumented Android to collect a wide array of
behavioral data, listed in Table II. We categorize our behavioral
instrumentation into interaction with Android privacy/security
settings, locking behavior, audio settings and call habits, web-
browsing habits, and application usage habits. After the feature
selection process (§VI-A), we found that only locking
behavior, audio habits, and web-browsing habits correlated
with privacy behaviors. Appendix B contains more information
on feature importance. All the numerical values under the
behavioral group were normalized per day.

We trained an SVM model with an RBF kernel on only the
behavioral and runtime features listed in Table IV, excluding
user ID. The 5-fold cross-validation accuracy (with random
splitting) was 83% across all users. This first setup assumes we
have prior knowledge of previous privacy decisions to a certain
extent from each user before inferring their future privacy
decisions, so it is primarily relevant after the user has been
using their phone for a while. However, the biggest advantage
of using behavioral data is that it can be observed passively
without any active user involvement (i.e., no prompting).

We use leave-one-out cross validation to measure the extent
to which we can infer user privacy decisions with absolutely no
user involvement (and without any prior data on a user). In this
second setup, when a new user starts using a smartphone, we
assume there is a ML model which is already trained with
behavioral data and privacy decisions collected from a selected
set of other users. We then measured the efficacy of such a
model to predict the privacy decisions of a new user, purely
based on passively observed behavior and runtime information
on the request, without ever prompting that new user. This is an
even stricter lower bound on user involvement, which
essentially mandates that a user has to make no effort to
indicate privacy preferences, something that no system
currently does.

We performed leave-one-out cross validation for each of our
131 participants, meaning we predicted a single user’s privacy
decisions using a model trained using the data from the other
130 users’ privacy decisions and behavioral data. The only
input for each test user was the passively observed

Feature
Group Feature Type

Behavioral
Features
(B)

Number of times a website is loaded to
the Chrome browser. Numerical
Out of all visited websites, the proportion
of HTTPS-secured websites. Numerical
The number of downloads through Chrome. Numerical
Proportion of websites requested location
through Chrome. Numerical
Number of times PIN/Password was used to
unlock the screen. Numerical
Amount of time spent unlocking the screen. Numerical
Proportion of times screen was timed out
instead of pressing the lock button. Numerical
Frequency of audio calls. Numerical
Amount of time spent on audio calls. Numerical
Proportion of time spent on silent mode. Numerical

Runtime
Features
(R1)

Application visibility (True/False) Categorical
Permission type Categorical
User ID Categorical
Time of day of permission request Numerical

Aggregated
Features
(A)

Average denial rate for (A1)
application:permission:visibility Numerical
Average denial rate for (A2)
applicationF :permission:visibility Numerical

APROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
54

⇥
behavioral data and runtime data surrounding each request. The
model yielded a median accuracy of 75%, which is a 3
improvement over AOI. Furthermore, AOI requires users to
make active decisions during the installation of an application,
which our second model does not require.

Examining only behavioral data with leave-one-group-out
cross validation yielded a median accuracy of 56% for Contex-
tuals, while for Defaulters it was 93.01%. Although, prediction
using solely behavioral data fell short of AOFU-AP for Con-
textuals, it yielded a similar median accuracy for Defaulters;
AOFU-AP required 12 prompts to reach this level of accuracy,
whereas our model would not have resulted in any prompts.
This relative success presents the significant observation that
behavioral features, observed passively without user involve-
ment, are useful in learning user privacy preferences. This
provides the potential to open entirely new avenues of user
learning and reduce the risk of habituation.

C. Inference Based on Contextual Cues

Our SVM model with an RBF kernel produced the best
accuracy. The results in the remainder of this section are trained
and tested with five-fold cross validation with random splitting
for an SVM model with an RBF kernel using the ksvm library
in R. In all instances, the training set was bootstrapped with an
equal number of allow and deny data points to avoid training a
biased model. For each feature group, all hyperparameters were
tuned through grid search to achieve highest accuracy. We used
one-hot encoding for categorical variables. We normalized
numerical variables by making each one a z-score relative to its
own average. Table V shows how the median accuracy changes
with different feature groups. As a minor note, the addition of
the mentioned behavioral features to runtime features
performed only marginally better; this could be due to the fact
that those two groups do not complement each other in
predictions. In this setup, we assume that there is a single
model across all the users of Android.

By incorporating user involvement in the form of prompts,
we can use our aggregate features to increase the accuracy for
Contextuals, slightly less so for Defaulters. The aggregate
features primarily capture how consistent users are for particu-
lar combinations (i.e., application:permission:visibility, appli-
cationF:permission:visibility), which greatly affects accuracy
for Contextuals. Defaulters have high accuracy with just run-
time features (R1), as they are likely to stick with a default
allow or deny policy regardless of the context surrounding a
permission. Thus, even without any aggregate features (which
do not impart any new information about this type of user), the
model can predict privacy preferences of Defaulters with a high
degree of accuracy. On the other hand, Contextuals are more
likely to vary their decision for a given permission request.
However, as the accuracy numbers in Table V suggest, this
variance is correlated with some contextual cues. The high
predictive power of aggregate features indicates that they may
be capturing the contextual cues, used by Contextuals to make
decisions, to a greater extent.

The fact that both application:permission:visibility and
applicationF:permission:visibility are highly predictive (Ap-
pendix A) indicates that user responses for these combinations
are consistent. The high consistency could relate to the notion
that the visibility and the foreground application (applicationF
6) are strong contextual cues people use to make their privacy
decisions; the only previously studied contextual cue was the
visibility of the application requesting the sensitive data [43].
We offer a hypothesis for why foreground application could be
significant: the sensitivity of the foreground application (i.e.,
high-sensitivity applications like banking, low-sensitivity
applications like games) might impact how users perceive
threats posed by requests. Irrespective of the application
requesting the data, users may be likely to deny the request
because of the elevated sense of risk. We discuss this further in
§IX.

The model trained on feature sets R2, A1, and A2 had the best
accuracy (and the fewest privacy violations). For the remainder
of the paper, we will refer to this model unless otherwise noted.
We now compare AOFU-AP (the status quo as of Android 6.0
and above, presented in Table III) and our model (Table V).
Across all users, our model reduced the error rate from 15.38%
to 7.76%, nearly a two-fold improvement.

Mispredictions (errors) in the ML model were split between
privacy violations and functionality losses (54% and 46%).
Deciding which error type is more acceptable is subjective and
depends on factors like the usability issues surrounding
functionality losses and gravity of privacy violations. However,
the (approximately) even split between the two error types
shows that the ML is not biased towards one particular deci-
sion (denying vs. allowing a request). Furthermore, the area
under the ROC curve (AUC), a metric used to measure the
fairness of a classifier, is also significantly better in the ML
model (0.936 as opposed to 0.796 for AOFU). This indicates
that the ML model is equally good at predicting when to both
allow and deny a permission request, while AOFU tends to lean
more towards one decision. In particular, with the AOFU
policy, users would experience privacy violations for 10.01%
of decisions, compared to just 4.2% with the ML model.
Privacy violations are likely more costly to the user than
functionality loss: denied data can always be granted at a later
time, but disclosed data cannot be taken back.

While increasing the number of prompts improves classifier
accuracy, it plateaus after reaching its maximum accuracy, at a

point we call the steady state. For some users, the classifier
might not be able to infer their privacy preferences effectively,

regardless of the number of prompts. As a metric to measure
the effectiveness of the ML model, we measure the confidence

of the model in the decisions it makes, based on prediction
class probabilities.7 In cases where the confidence of the model

6Even when the requesting application is running visible to the user, the
foreground application could still be different from the requesting application
since the only visible cue of the requesting application could be a notification
in the notification bar.

7To calculate the class probabilities, we used the KSVM library in R. It
employs a technique proposed by Platt et al. [25] to produce a numerical value
for each class’s probability.

APROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
55

10

is below a certain threshold, the system should use a runtime
prompt to ask the user to make an explicit decision. Thus, we
looked into the prevalence of low-confidence predictions
among the current predictions. With a 95% confidence inter-
val, on average across five folds, low-confidence predictions
accounted for less than 10% of all predictions. The remaining
high-confidence predictions (90% of all predictions) had an
average accuracy of 96.2%, whereas predictions with low
confidence were only predicted with an average accuracy of
72%. §VII-B goes into this aspect in detail and estimates the
rate at which users will see prompts in steady state.

The caveat in our ML model is that AOFU-AP only resulted
in 12 prompts on average per user during the study, while our
model averaged 24. The increased prompting stems from
multiple prompts for the same combination of appli-
cation:permission:visibility, whereas in AOFU, prompts are
shown only once for each application:permission combination.
During the study period, users on average saw 2.28 prompts per
unique combination. While multiple prompts per combination
help the ML model to capture user preferences under different
contextual circumstances, it risks habituation, which may
eventually reduce the reliability of the user responses.

The evaluation setup mentioned in the current section does
not have a specific strategy to select the training set. It
randomly splits the data set into the 5 folds and picks 4 out of 5
as the training set. In a real-world setup, the platform needs a
strategy to carefully select the training set so that the platform
can learn most of the user’s privacy preferences with a
minimum number of prompts. The next section presents an in-
depth analysis on possible ways to reduce the number of
prompts needed to train the ML model.

VII. LEARNING STRATEGY

This sections presents a strategy the platform can follow in
the learning phase of a new user. The key objective of the
learning strategy should be to learn the user’s privacy
preferences with minimal user involvement (prompts). Once
the model reaches adequate training, we can use model deci-
sion confidence to analyze how the ML model performs for
different users and examine the tradeoff between user involve-
ment and accuracy. We also utilize the model’s confidence on
decisions to present a strategy that can further reduce model
error through selective permission prompting.

A. Bootstrapping
The bootstrapping phase occurs when the ML model is

presented with a new user about whom the model has no prior
information. In this section, we analyze how the accuracy
improves as we prompt the user. Since the model presented in
§VI is a single model trained with data from all users, the ML
model can still predict a new user’s privacy decisions by
leveraging the data collected on other users’ preferences.

We measured the accuracy of the ML model as if it had to
predict each user’s prompt responses using a model trained
using other users’ data. Formally, this is called leave-one-out
cross-validation, where we remove all the prompt responses

from a single user. The training set contains all the prompt re-
sponses from 130 users and the test set is the prompt responses
collected from the single remaining user. The model had a
median accuracy of 66.6% (56.2% for Contextuals, 86.4% for
Defaulters). Although this approach does not prompt new
users, it falls short of AOFU. This no-prompt model behaves
close to random guessing for Contextuals and significantly
better for Defaulters. Furthermore, Wijesekera et al. found that
individuals’ privacy preferences varied a lot [43], suggesting
that utilizing other users’ decisions to predict decisions for a
new user has limited effectiveness, especially for Contextuals;
some level of prompting is necessary.

There are a few interesting avenues to explore when
determining the optimal way to prompt the user in the learning
phase. One option would be to follow the same weighted-
reservoir sampling algorithm mentioned in §III-A. The
algorithm is weighted by the frequency of each appli-
cation:permission:visibility combination. The most frequent
combination will have the highest probability of creating a
permission prompt and after the given combination reaches a
maximum of three prompts, the algorithm will no longer
consider that combination for prompting, giving the second
most frequent combination the new highest probability. Due to
frequency-weighting and multiple prompts per combination,
the weighted-reservoir sampling approach requires more
prompts to cover a broader set of combinations. However,
AOFU prompts only once per combination without frequency-
weighting. This may be a useful strategy initially for a new user
since it allows the platform to learn about the users’ privacy
preferences for a wide array of combinations with minimal user
interaction.

To simulate such an approach, we extend the aforemen-
tioned no-prompt model (leave-one-out validation). In the no-
prompt model, there was no overlap of users in the train and
test set. In the new approach, the training set includes the data
from other users as well as the new user’s responses to the first
occurrence of each unique combination of applica-
tion:permission:visibility. The first occurrence of each unique
combination simulates the AOFU-APV policy. That is, this
model is bootstrapped using data from other users and then
adopts the AOFU-APV policy to further learn the current user’s
preferences. The experiment was conducted using the same set
of features mentioned in §VI-A (R2 + A1 + A2 and an SVM
with a RBF kernel). The test set only contained prompt
responses collected after the last AOFU prompt to ensure
chronological consistency.

Figure 3 shows how accuracy changes with the varying
number of AOFU prompts for Contextuals and Defaulters. For
each of the 131 users, we ran the experiment varying the AOFU
prompts from 1 to 12. We chose this upper bound because, on
average, a participant saw 12 different unique ap-
plication:permission combinations during the study period—
the current permission model in Android. AOFU relies on user
prompts for each new combination. The proposed ML model,
however, has the advantage of leveraging data collected from
other users to predict a combination not seen by the user; it can

APROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
56

⇡

A
cc

ur
ac

y
1.0

0.9

0.8

0.7

0.6

1 2 3 4 5 6 7 8 9 10 11 12
Prompt Count

Population

Contextuals

Defaulters

Overall

find a way to differentiate between Defaulters and Contextuals
early in the bootstrapping phase to determine which users
require fewer prompts. The analysis of our hybrid approach
addresses the concern of a high number of permission prompts
initially for an ML approach. Over time, accuracy can always
be improved with more prompts.

Our new hybrid approach of using AOFU-style permission
prompts in the bootstrapping phase to train our model can
achieve higher accuracy than AOFU, with significantly fewer
prompts. Having a learning strategy (use of AOFU) over ran-
dom selection helped to minimize user involvement (24 vs. 9)
while significantly reducing the error rate (7.6% vs. 3.2%) over
a random selection of the training set.

Fig. 3. How the median accuracy varies with the number of seen prompts

significantly reduce user involvement in the learning phase.
After 12 prompts, accuracy reached 96.8% across all users.

Each new user starts off with a single model shared by all
new users and then moves onto a separate model trained with
AOFU prompt responses. We analyze its performance for
Defaulters and Contextuals separately, finding that it improves
accuracy while reducing user involvement in both cases, com-
pared to the status quo.

We first examine how our model performs for Defaulters,
53% of our sample. Figure 3 shows that our model trained with
AOFU permission-prompt responses outperforms AOFU from
the very beginning. The model starts off with 96.6% accuracy
(before it reaches close to 100% after 6 prompts), handily
exceeding AOFU’s 93.33%. This is a 83.3% reduction in
permission prompts compared to AOFU-AP (the status quo).
Even with such a significant reduction in user involvement, the
new approach cuts the prediction error rate in half.

Contextuals needed more prompts to outperform the AOFU
policy; the hybrid approach matches AOFU-AP with just 7
prompts, a 42% reduction in prompts. With 12 permission
prompts, same as needed for AOFU-AP, the new approach had
reduced the error rate by 43% over AOFU-AP (the status quo).
The number of prompts needed to reach this level of accuracy
in the new approach is 25% less than what is needed for AOFU-
APV. We also observed that as the number of prompts
increased, the AUC of our predictions also similarly increased.
Overall, the proposed learning strategy reduced the error rate
by 80% after 12 user prompts over AOFU-AP. Given,
Defaulters plateau early in their learning cycle (after only 6
prompts), the proposed learning strategy, on average, needs 9
prompts to reach its maximum capacity, which is a 25%
reduction in user involvement over AOFU-AP.

Contextuals have a higher need for user involvement than
Defaulters, primarily because it is easy to learn about De-
faulters, as they are more likely to be consistent with early
decisions. On the other hand, Contextuals vary their decisions
based on different contextual cues and require more user
involvement for the model to learn the cues used by each user
and how do they affect their decisions. Thus, it is important to

B. Decision Confidence
In the previous section, we looked into how we can optimize

the learning phase by merging AOFU and the ML model to
reach higher accuracy with minimal user prompts. However, for
a small set of users, more permission prompts will not increase
accuracy, regardless of user involvement in the boot- strapping
phase. This could be due to the fact that a portion of users in
our dataset are making random decisions, or that the features
that our ML model takes into account are not predictive of those
users’ decision processes. While we do not have the data to
support either explanation, we examine how we can measure
whether the ML model will perform well for a particular user
and quantify how often it does not. We present a method to
identify difficult-to-predict users and reduce permission
prompting for those users.

While running the experiment in §VII-A, we also measured
how confident the ML model was for each decision it made. To
measure the ML model’s confidence, we record the probability
for each decision; since it is a binary classification (deny or
allow), the closer the probability is to 0.5, the less confident it
is. We then chose a class probability threshold above which a
decision would be considered a high-confidence decision. In
our analysis, we choose a class probability threshold of 0.6,
since this value resulted in >96% accuracy for our fully- trained
model (25 prompts per user) for high-confidence decisions, but
this is a tunable threshold. Thus, in the remainder of our
analysis, decisions that the ML model made with a probability
of >0.60 were labeled as high-confidence decisions, while those
made with a probability of <0.60 were labeled as low-
confidence decisions.

Since the most accurate version of AOFU uses 12 prompts,
we also evaluate the confidence of our model after 12 AOFU-
style prompts. This setup is identical to the bootstrapping
approach; the model we evaluate here is trained on responses
from other users and the first 12 prompts chosen by AOFU.
With this scheme, we found that 10 users (7.63% of 131 users)
had at least one decision predicted with low confidence. The
remaining 92.37% of users had all privacy decisions predicted
with high confidence. Among those users whose decisions
were predicted with low confidence, the proportion of low-
confidence decisions on average accounted for 17.63% (median
= 16.67%) out of all their predicted decisions. With

x x x x x x x

+++

xxx

ooo

APROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
57

a sensitive permission request once every 15 seconds [43],
prompting even for 17.63% of predictions is not practical.
Users who had low-confidence predictions had a median accu-
racy of 60.17%, compared to 98% accuracy for the remaining
set of users with only high-confidence predictions. Out of the
10 users who had low-confidence predictions, there were no
Defaulters. This further supports the observation in Figure 3
that Defaulters require a shorter learning period.

In a real-world scenario, after the platform (ML model)
prompts the user for the first 12 AOFU prompts, the platform
can measure the confidence of predicting unlabeled data
(sensitive permission requests for which the platform did not
prompt the user). If the proportion of low-confidence
predictions is below some threshold, the ML model can be
deemed to have successfully learned user privacy preferences
and the platform should keep on using the regular permission-
prompting strategy. Otherwise, the platform may choose to
limit prompts (i.e., two per unique applica-
tion:permission:visibility combination). It should also be noted
that rather than having a fixed number of prompts (e.g., 12) to
measure the low-confidence proportion, the platform can keep
track of the low-confidence proportion as it prompts the user
according to any heuristic (i.e., unique combinations). If the
proportion does not decrease with the number of prompts, we
can infer that the ML model is not learning user preferences
effectively or the user is making random decisions, indicating
that limiting prompts and accepting lower accuracy could be a
better option for that specific user, to avoid excessive
prompting. However, depending on which group the user is in
(Contextual or Defaulter), the point at which the platform could
make the decision to continue or limit prompting could change.
In general, the platform should be able to reach this deciding
point relatively quickly for Defaulters.

Among participants with no low-confidence predictions, we
had a median error rate of 2% (using the new hybrid approach
after 12 AOFU prompts); for the same set of users, AOFU
could only reach a median error rate of 13.3%. However, using
AOFU, a user in that set would have needed an average of
15.11 prompts to reach that accuracy. Using the ML model, a
user would need just 9 prompts on average (Defaulters require
far fewer prompts, dropping the average); the model only
requires 60% of the prompts that AOFU requires. Even with far
fewer prompts in the learning phase, the ML model achieves a
84.61% reduction in error rate relative to AOFU.

While our model may not perform well for all users, it does
seem to work quite well for the majority of users (92.37% of
our sample). We provide a way of quickly identifying users for
whom our system does not perform well, and propose limiting
prompts to avoid excessive user burden for those users, at the
cost of reduced efficacy. In the worst case, we could simply
employ the AOFU model for users our system does not work
well for, resulting in a multifaceted approach that is at least as
good as the status quo for all users.

C. Online Model
Our proposed system relies on training models on a trusted

server, sending it to client phones (i.e., as a weight vector), and
having phones make classifications. By utilizing an online
learning model, we can train models incrementally as users
respond to prompts over time. There are two key advantages to
this: (i) this model adapts to changing user preferences over
time; (ii) it distributes the overhead of training increasing the
practicality of locally training the classifier on the phone itself.
Our scheme requires two components: a feature extraction and
storage mechanism on the phone (a small extension to our
existing instrumentation) and a machine learning pipeline on a
trusted server. The phone sends feature vectors to the server
every few prompts, and the server responds with a weight vector
representing the newly trained classifier. To bootstrap the
process, the server’s models can be initialized with a model
trained on a few hundred users, such as our single model across
all users. Since each user contributes data points over time, the
online model adapts to changing privacy preferences even if
they conflict with previous data. When using this scheme, each
model takes less than 10 KB to store. With our current model,
each feature and weight vector are at most 3 KB each, resulting
in at most 6 KB of data transfer per day.

To evaluate the accuracy of our online model, we trained a
classifier using stochastic gradient descent (SGD) with five-
fold cross validation on our 4,224-point data set. This served as
the bootstrapping phase. We then simulated receiving the
remaining data one-at-a-time in timestamp order. Any features
that changed with time (e.g., running averages for aggregate
features, event counts) were computed with each incoming data
point, creating a snapshot of features as the phone would see it.
We then tested accuracy on the chronologically last 20% of our
dataset. Our SGD classifier had 93.8% accuracy (AUC=0.929).
We attribute the drop in accuracy (compared to our offline
model) to the fact that running averages take multiple data
points to reach steady-state, causing some earlier predictions to
be incorrect.

A natural concern with a trusted server is compromise. To
address this concern, we do not send any personally-
identifiable data to the server, and any features sent to the server
are scaled; they are reported in standard deviations from the
mean, not in raw values. Furthermore, using an online model
with incremental training allows us to periodically train the
model on the phone (i.e., nightly, when the user is charging her
device) to eliminate the need for a trusted server.

VIII. CONTEXTUAL INTEGRITY

Contextual integrity is a conceptual framework that helps
explain why most permission models fail to protect user
privacy—they often do not take the context surrounding pri-
vacy decisions into account. In addressing this issue, we
propose an ML model that infers when context has changed.
We believe that this is an important first step towards opera-
tionalizing the notion of contextual integrity. In this section, we
explain the observations that we made in §VI-C based on the
contextual integrity framework proposed by Barth et al. [6].

APROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
58

⇥ ⇥

Contextual integrity provides a conceptual framework to
better understand how users make privacy decisions; we use
Barth et al.’s formalized model [6] as a framework in which to
view Android permission models. Barth et al. model parties as
communicating agents (P) knowing information represented
as attributes (T). A knowledge state is defined as a subset
of P P T . We use = (p, q, t) to mean that agent p knows
attribute t of agent q. Agents play roles (R) in contexts (C).
For example, an agent can be a game application, and
have the role of a game provider in an entertainment context.
Knowledge transfer happens when information is communi-
cated between agents; all communications can be represented
through a series of traces (, (p, r), a), which are combinations
of a knowledge state , a role state (p, r), and a communi-
cation action a (information sent). The role an agent plays
in a given context helps determine whether an information
flow is acceptable for a user. The relationship between the
agent sending the information and the role of the agent ((p, r))
receiving the information must follow these contextual norms.
With the Android permission model, the same framework
can be applied. Both the user and the third-party applica-
tion are communicating agents, and the information to be
transferred is the sensitive data requested by the applica-
tion. When a third-party application requests permission to
access a guarded resource (e.g., location), knowledge of the
guarded resource is transferred from the one agent (i.e., the
user/platform) to another agent (i.e., the third-party applica-
tion). The extent to which a user expects a given request
depends not on the agent (the application requesting the data),
but on the role that agent is playing in that context. This
explains why the application as a feature itself (i.e., application
name) was not predictive in our models: this feature does not
represent the role when determining whether it is unexpected.
While it is difficult for the platform to determine the exact role
an application is playing, the visibility of the application hints
at its role. For instance, when the user is using Google Maps to
navigate, it is playing a different role from when Google Maps
is running in the background without the user’s knowledge.
We believe that this is the reason why the visibility of the
requesting application is significant: it helps the user to infer
the role played by the application requesting the permission.
The user expects applications in certain roles to access
resources depending on the context in which the request is
made. We believe that the foreground application sets this
context. Thus a combination of the role and the context
decides whether an information flow is expected to occur or
not. Automatically inferring the exact context of a request is
likely an intractable problem. For our purposes, however, it is
possible that we need to only infer when context has changed,
or rather, when data is being requested in a context that is no
longer acceptable to the user. Based on our data, we believe
that features based on foreground application and visibility are
most useful for this purpose, from our collected dataset.

We now combine all of this into a concrete example within
the contextual integrity framework: If a user is using Google
Maps to reach a destination, the application can play the

role of a navigator in a geolocation context, whereby the user
feels comfortable sharing her location. In contrast, if the same
application requests location while running as a service
invisible to the user, the user may not want to provide the same
information. Background applications play the role of “passive
listeners” in most contexts; this role as perceived by the user
may be why background applications are likelier to violate
privacy expectations and consequently be denied by users.

AOFU primarily focuses on controlling access through rules
for application:permission combinations. Thus, AOFU
neglects the role played by the application (visibility) and relies
purely on the agent (the application) and the information
subject (permission type). This explains why AOFU is wrong
in nearly one-fifth of cases. Based on Table III, both AOFU- VA
(possibly identifying the role played by the application) and
AOFU-AF PV (possibly identifying the current context because
of the current foreground application-AF) have higher accuracy
than the other AOFU combinations. However, as the contextual
integrity framework suggests, the permission model has to take
both the role and the current context into account before making
an accurate decision. AOFU (and other models that neglect
context) only makes it possible to consider a single aspect, a
limitation that does not apply to our model.

While the data presented in this work suggest the impor-
tance of capturing context to better protect user privacy, more
work is needed along these lines to fully understand how peo-
ple use context to make decisions in the Android permission
model. Nevertheless, we believe we contribute a significant
initial step towards applying contextual integrity to improve
smartphone privacy by dynamically regulating permissions.

IX. DISCUSSION

The primary goal of this research was to improve the
accuracy of the Android permission system so that it more
correctly aligns with user privacy preferences. We began with
four hypotheses: (i) that the currently deployed AOFU policy
frequently violates user privacy; (ii) that the contextual infor-
mation it ignores is useful; (iii) that a ML-based classifier can
account for this contextual information and thus improve on the
status quo; and (iv) that passively observable behavioral traits
can be used to infer privacy preferences.

To test these hypotheses, we performed the first large-scale
study on the effectiveness of AOFU permission systems in the
wild, which showed that hypotheses (i) and (ii) hold. We
further built an ML classifier that took user permission
decisions along with observations of user behaviors and the
context surrounding those decisions to show that (iii) and (iv)
hold. Our results show that existing systems have significant
room for improvement, and other permission-granting systems
may benefit from applying our results.

A. Limitations of Permission Models
Our field study confirms that users care about their privacy

and are wary of permission requests that violate their expec-
tations. We observed that 95% of participants chose to block at
least one permission request; in fact, the average denial rate was

APROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
59

60%—a staggering amount given that the AOI model permits
all permission requests for an installed application.

While AOFU improves over the AOI model, it still violates
user privacy around one in seven times, as users deviate from
their initial responses to permission requests. This amount is
significant because of the high frequency of sensitive permis-
sion requests: a 15% error rate yields thousands of privacy
violations per user—based on the latest dataset, this amounts to
a potential privacy violation every minute. It further shows that
AOFU’s correctness assumption—that users make binary deci-
sions based only on the application:permission combination—
is incorrect. Users take a richer space of information into
account when making decisions about permission requests.

B. Our ML-Based Model
We show that ML techniques are effective at learning from

both the user’s previous decisions and the current environmen-
tal context in order to predict whether to grant permissions on
the user’s behalf. In fact, our techniques achieve better results
than the methods currently deployed on millions of phones
worldwide—while imposing significantly less user burden.

Our work incorporates elements of the surrounding context
into a machine-learning model. This better approximates user
decisions by finding factors relevant for users that are not
encapsulated by the AOFU model. In fact, our ML model
reduces the errors made by the AOFU model by 75%. Our ML
model’s 97% accuracy is a substantial improvement over
AOFU’s 85% and AOI’s 25%; the latter two of which comprise
the status quo in the Android ecosystem.

Our research shows that many users make neither random
nor fixed decisions: the environmental context plays a signif-
icant role in user decision-making. Automatically detecting the
precise context surrounding a request for sensitive data is an
incredibly difficult problem (e.g., inferring how data will be
used), and is potentially intractable. However, to better support
user privacy, that problem does not need to be solved; instead,
we show that systems can be improved by using environmental
data to infer when context has changed. We found that the most
predictive factors in the environmental context were whether
the application requesting the permission is visible, and what
the foreground application the user is engaged with. These are
both strong contextual cues used by users, insofar as they
allowed us to better predict changes in context. Our results
show that ML techniques have great potential in improving user
privacy, by allowing us to infer when context has changed, and
therefore when users would want data requests to be brought
to their attention.

C. Reducing the User Burden
Our work is also novel in using passively observable data to

infer privacy decisions: we show that we can predict a user’s
preferences without any permission prompts. Our model
trained solely on behavioral traits yields a three-fold
improvement over AOI; for Defaulters—who account for 53%
of our sample—it was as accurate as AOFU-AP. These results
demonstrate that we can match the status quo without any

active user involvement (i.e., the need for obtrusive prompts).
These results imply that learning privacy preferences may be
done entirely passively, which, to our knowledge, has not yet
been attempted in this domain. Our behavioral feature set
provides a promising new direction to guide research in
creating permission models that minimize user burden.

The ML model trained with contextual data and past
decisions also significantly reduced the user burden while
achieving higher accuracy than AOFU. The model yielded an
81% reduction in prediction errors while reducing user
involvement by 25%. The significance of this observation is
that by reducing the risk of habituation, it increases reliability
when user input is needed.

D. User- and Permission-Tailored Models

Our ML-based model incorporates data from all users into a
single predictive model. It may be the case, however, that a
collection of models tailored to particular types of users
outperforms our general-purpose model—provided that the
correct model is used for the particular user and permission. To
determine if this is true, we clustered users into groups based
first on their behavioral features, and then their denial rate, to
see if we could build superior cluster-tailored ML models.
Having data for only 131 users, however, resulted in clusters
too small to carry out an effective analysis. We note that we also
created a separate model for each sensitive permission type,
using data only for that permission. Our experiments
determined, however, that these models were no better (and
often worse) than our general model. It is possible that such
tailored models may be more useful when our system is
implemented at scale.

E. Attacking the ML Model

Attacking the ML model to get access to users’ data without
prompting is a legitimate concern [5]. There are multiple ways
an adversary can influence the proposed permission model: (i)
imposing an adversarial ML environment [31]; (ii) polluting the
training set to bias the model to accept permissions; and (iii)
manipulating input features in order to get access without user
notification. We assume in this work that the platform is not
compromised; a compromised platform will degrade any
permission model’s ability to protect resources.

A thorough analysis on this topic is outside of our scope.
Despite that, we looked at the possibility of manipulating
features to get access to resources without user consent. None
of the behavioral features used in the model can be influenced,
since that would require compromising the platform. An
adversary can control the runtime features for a given
permission request by specifically choosing when to request the
permission. We generated feature vectors manipulating every
adversary-controlled value and combination from our dataset,
and tested them on our model. We did not find any conclusive
evidence that the adversary can exploit the ML model by
manipulating the input features to get access to resources
without user consent.

APROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
60

As this is not a comprehensive analysis on attack vectors, it
is possible that a scenario exists where the adversary is able to
access sensitive resources without prompting the user first. Our
preliminary analysis suggests that such attacks may be non-
trivial, but more work is needed to study and prevent such
attacks, particularly examining adversarial ML techniques and
feature brittleness.

F. Experimental Caveat
We repeat a caveat about our experimental data: users were

free to deny permissions without any consequences. We
explicitly informed participants in our study that their decisions
to deny permission requests would have no impact on the actual
behavior of their applications. This is important to note because
if an application is denied a permission, it may exhibit
undefined behavior or lose important functionality. In fact,
researchers have noted that many applications crash when
permissions are denied [13]. If these consequences are imposed
on users, they may decide that the functionality is more
important than their privacy decision.

If we actually denied permissions, users’ decisions may skew
towards a decreased denial rate. The denial rates in our
experiments therefore represent the actual privacy preferences
of users and their expectations of reasonable application
behavior—not the result of choosing between application func-
tionality and privacy. We believe that how people react when
choosing between functionality and privacy preferences is an
important research question beyond the scope of this paper.
Such a change, however, will not limit this contribution, since
our proposed model was effective in guarding resources of the
users who are selective in their decision making—the proposed
classifier reduced the error rate of Contextuals by 44%.

We believe that there are important unanswered questions
about how to solve the technical hurdles surrounding enforcing
restrictive preferences with minimal usability issues. As a first
step towards building a platform that does not force users to
choose between their privacy preferences and required func-
tionality, we must develop an environment where permissions
appear—to the application—to be allowed, but in reality only
spurious or artificial data is provided.

G. Types of Users
We presented a categorization of users based on the sig-

nificance that the application’s visibility played towards their
individual privacy decisions. We believe that in an actual
permission denial setting, the distribution will be different from
what was observed in our study. Our categorization’s
significance, however, motivates a deeper analysis on under-
standing the factors that divide Contextuals and Defaulters.
While visibility was an important factor in this division, there
may be others that are significant and relevant. More work
needs to be done to explore how Contextuals make decisions
and which behaviors correlate with their decisions.

H. User Interface Panel
Any model that predicts user decisions has the risk of making

incorrect predictions. Making predictions on a user’s behalf,

however, is necessary because permissions are re- quested by
applications with too high a frequency for manual examination.
While we do not expect any system to be able to obtain perfect
accuracy, we do expect that our 97% accuracy can be improved
upon.

One plausible way of improving the accuracy of the per-
mission model is to empower the user to review and make
changes on how the ML model makes decisions through a user
feedback panel. This gives users recourse to correct undesirable
decisions. The UI panel could also be used to reduce the
usability issues and functionality loss stemming from
permission denial. The panel should help the user figure out
which rule incurred the functionality loss and to change it
accordingly. A user may also use this to adjust their settings as
their privacy preferences evolve over time.

I. The Cost of Greater Control
A more restrictive platform means users will have greater

control over the data being shared with third parties. Applica-
tions that generate revenue based on user data, however, could
be cut off from their primary revenue source. Such an effect
could disrupt the current eco-system and force app developers
to degrade app functionality based on the availability of the
data. We believe the current eco-system is unfairly biased
against users and tighter control will make the user an equal
stakeholder. While more work is needed to understand the ef-
fects of a more restrictive platform, we believe it is imperative
to let the user have greater control over their own data.

J. Conclusions
We have shown a number of important results. Users care

about their privacy: they deny a significant number of requests
to access sensitive data. Existing permission models for An-
droid phones still result in significant privacy violations. Users
may allow permissions sometimes, while denying them at
others, implying that there are more factors that go into the
decision-making process than simply the application name and
the permission type. We collected real-world data from 131
users and found that application visibility and the current fore-
ground application were important factors in user decisions. We
used the data we collected to build a machine-learning model
to make automatic permission decisions. One of our models had
a comparable error rate to AOFU and benefited from not
requiring any user prompting. Another of our models required
some user prompts—less than is required by AOFU— and
achieved a reduction of AOFU’s error rate by 81%.

ACKNOWLEDGMENTS

This research was supported by the United States De-
partment of Homeland Security’s Science and Technology
Directorate under contract FA8750-16-C-0140, the Center for
Long-Term Cybersecurity (CLTC) at UC Berkeley, the Na-
tional Science Foundation under grant CNS-1318680, and Intel
through the ISTC for Secure Computing. The content of this
document does not necessarily reflect the position or the policy
of the U.S. Government and no official endorsement should be
inferred.

APROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
61

REFERENCES

[1] Y. Agarwal and M. Hall, “Protectmyprivacy: Detecting and mitigating
privacy leaks on ios devices using crowdsourcing,” in Proceeding of the
11th Annual International Conference on Mobile Systems, Applications,
and Services, ser. MobiSys ’13. New York, NY, USA: ACM, 2013, pp.
97–110. [Online]. Available: http://doi.acm.org/10.1145/2462456.
2464460

[2] H. M. Almohri, D. D. Yao, and D. Kafura, “Droidbarrier: Know what
is executing on your android,” in Proc. of the 4th ACM Conf. on Data
and Application Security and Privacy, ser. CODASPY ’14. New York,
NY, USA: ACM, 2014, pp. 257–264. [Online]. Available:
http://doi.acm.org/10.1145/2557547.2557571

[3] H. Almuhimedi, F. Schaub, N. Sadeh, I. Adjerid, A. Acquisti, J. Gluck,
L. F. Cranor, and Y. Agarwal, “Your location has been shared 5,398
times!: A field study on mobile app privacy nudging,” in Proc. of the 33rd
Annual ACM Conference on Human Factors in Computing Systems.
ACM, 2015, pp. 787–796.

[4] K. W. Y. Au, Y. F. Zhou, Z. Huang, and D. Lie, “Pscout: Analyzing the
android permission specification,” in Proc. of the 2012 ACM Conf. on
Computer and Communications Security, ser. CCS ’12. New York,
NY, USA: ACM, 2012, pp. 217–228. [Online]. Available:
http://doi.acm.org/10.1145/2382196.2382222

[5] M. Barreno, B. Nelson, R. Sears, A. D. Joseph, and J. D. Tygar, “Can
machine learning be secure?” in Proceedings of the 2006 ACM
Symposium on Information, computer and communications security.
ACM, 2006, pp. 16–25.

[6] A. Barth, A. Datta, J. C. Mitchell, and H. Nissenbaum, “Privacy and
contextual integrity: Framework and applications,” in Proc. of the 2006
IEEE Symposium on Security and Privacy, ser. SP ’06. Washington, DC,
USA: IEEE Computer Society, 2006. [Online].
Available: http://dx.doi.org/10.1109/SP.2006.32

[7] I. Bilogrevic, K. Huguenin, B. Agir, M. Jadliwala, and J.-P. Hubaux,
“Adaptive information-sharing for privacy-aware mobile social
networks,” in Proceedings of the 2013 ACM International Joint
Conference on Pervasive and Ubiquitous Computing, ser. UbiComp ’13.
New York, NY, USA: ACM, 2013, pp. 657–666. [Online].
Available: http://doi.acm.org/10.1145/2493432.2493510

[8] E. Bodden, “Easily instrumenting android applications for security
purposes,” in Proc. of the ACM Conf. on Comp. and Comm. Sec., ser.
CCS ’13. NY, NY, USA: ACM, 2013, pp. 1499–1502. [Online].
Available: http://doi.acm.org/10.1145/2508859.2516759

[9] A. Developer, “Requesting permissions,” https://developer.android.com/
guide/topics/permissions/requesting.html, accessed: March 18, 2017.

[10] G. Developer, “Distribution of android versions,” http://developer.
android.com/about/dashboards/index.html, accessed: March 15, 2017.

[11] S. Egelman, A. P. Felt, and D. Wagner, “Choice architecture and
smartphone privacy: There’s a price for that,” in The 2012 Workshop on
the Economics of Information Security (WEIS), 2012.

[12] W. Enck, P. Gilbert, B.-G. Chun, L. P. Cox, J. Jung, P. McDaniel, and
A. N. Sheth, “Taintdroid: an information-flow tracking system for
realtime privacy monitoring on smartphones,” in Proceedings of the 9th
USENIX Conference on Operating Systems Design and Implementation,
ser. OSDI’10. Berkeley, CA, USA: USENIX Association, 2010, pp.
1–6. [Online]. Available: http://dl.acm.org/citation.cfm?id=1924943.
1924971

[13] Z. Fang, W. Han, D. Li, Z. Guo, D. Guo, X. S. Wang, Z. Qian, and
H. Chen, “revdroid: Code analysis of the side effects after dynamic
permission revocation of android apps,” in Proceedings of the 11th ACM
Asia Conference on Computer and Communications Security (ASIACCS
2016). Xi’an, China: ACM, 2016.

[14] A. P. Felt, E. Chin, S. Hanna, D. Song, and D. Wagner, “Android
permissions demystified,” in Proc. of the ACM Conf. on Comp. and
Comm. Sec., ser. CCS ’11. New York, NY, USA: ACM, 2011, pp. 627–
638. [Online]. Available: http://doi.acm.org/10.1145/2046707.2046779

[15] A. P. Felt, S. Egelman, M. Finifter, D. Akhawe, and D. Wagner, “How to
ask for permission,” in Proc. of the 7th USENIX conference on Hot Topics
in Security. Berkeley, CA, USA: USENIX Association, 2012. [Online].
Available: http://dl.acm.org/citation.cfm?id=2372387.2372394

[16] A. P. Felt, S. Egelman, and D. Wagner, “I’ve got 99 problems, but
vibration ain’t one: a survey of smartphone users’ concerns,” in
Proc. of the 2nd ACM workshop on Security and Privacy in
Smartphones and Mobile devices, ser. SPSM ’12. New York,

NY, USA: ACM, 2012, pp. 33–44. [Online]. Available: http:
//doi.acm.org/10.1145/2381934.2381943

[17] A. P. Felt, E. Ha, S. Egelman, A. Haney, E. Chin, and D. Wagner,
“Android permissions: user attention, comprehension, and behavior,” in
Proc. of the Eighth Symposium on Usable Privacy and Security, ser.
SOUPS ’12. New York, NY, USA: ACM, 2012. [Online]. Available:
http://doi.acm.org/10.1145/2335356.2335360

[18] C. Gibler, J. Crussell, J. Erickson, and H. Chen, “Androidleaks:
Automatically detecting potential privacy leaks in android applications
on a large scale,” in Proc. of the 5th Intl. Conf. on Trust and Trustworthy
Computing, ser. TRUST’12. Berlin, Heidelberg: Springer- Verlag, 2012,
pp. 291–307. [Online]. Available: http://dx.doi.org/10. 1007/978-3-642-
30921-2_17

[19] A. Gorla, I. Tavecchia, F. Gross, and A. Zeller, “Checking app behavior
against app descriptions,” in Proceedings of the 36th International
Conference on Software Engineering, ser. ICSE 2014. New York, NY,
USA: ACM, 2014, pp. 1025–1035. [Online]. Available:
http://doi.acm.org/10.1145/2568225.2568276

[20] S. E. Hormuth, “The sampling of experiences in situ,” Journal of
personality, vol. 54, no. 1, pp. 262–293, 1986.

[21] P. Hornyack, S. Han, J. Jung, S. Schechter, and D. Wetherall, “These
aren’t the droids you’re looking for: retrofitting android to protect data
from imperious applications,” in Proc. of the ACM Conf. on Comp. and
Comm. Sec., ser. CCS ’11. New York, NY, USA: ACM, 2011, pp. 639–
652. [Online]. Available: http://doi.acm.org/10.1145/2046707.2046780

[22] J. Jung, S. Han, and D. Wetherall, “Short paper: Enhancing mobile
application permissions with runtime feedback and constraints,” in
Proceedings of the Second ACM Workshop on Security and Privacy in
Smartphones and Mobile Devices, ser. SPSM ’12. New York, NY, USA:
ACM, 2012, pp. 45–50. [Online]. Available:
http://doi.acm.org/10.1145/2381934.2381944

[23] P. G. Kelley, S. Consolvo, L. F. Cranor, J. Jung, N. Sadeh, and
D. Wetherall, “A conundrum of permissions: Installing applications on
an android smartphone,” in Proc. of the 16th Intl. Conf. on
Financial Cryptography and Data Sec., ser. FC’12. Berlin, Heidelberg:
Springer-Verlag, 2012, pp. 68–79. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-34638-5_6

[24] W. Klieber, L. Flynn, A. Bhosale, L. Jia, and L. Bauer, “Android taint
flow analysis for app sets,” in Proceedings of the 3rd ACM SIGPLAN
International Workshop on the State of the Art in Java Program Analysis,
ser. SOAP ’14, New York, NY, USA, 2014. [Online].
Available: http://doi.acm.org/10.1145/2614628.2614633

[25] H.-T. Lin, C.-J. Lin, and R. C. Weng, “A note on platt’s probabilistic
outputs for support vector machines,” Machine learning, vol. 68, no. 3,
pp. 267–276, 2007.

[26] J. Lin, B. Liu, N. Sadeh, and J. I. Hong, “Modeling users’ mobile app
privacy preferences: Restoring usability in a sea of permission settings,”
in Symposium On Usable Privacy and Security (SOUPS 2014). Menlo
Park, CA: USENIX Association, 2014, pp. 199–
212. [Online]. Available: https://www.usenix.org/conference/soups2014/
proceedings/presentation/lin

[27] J. Lin, N. Sadeh, S. Amini, J. Lindqvist, J. I. Hong, and J. Zhang,
“Expectation and purpose: understanding users’ mental models of mobile
app privacy through crowdsourcing,” in Proc. of the 2012 ACM Conf.
on Ubiquitous Computing, ser. UbiComp ’12. New York, NY, USA:
ACM, 2012, pp. 501–510. [Online]. Available:
http://doi.acm.org/10.1145/2370216.2370290

[28] B. Liu, M. S. Andersen, F. Schaub, H. Almuhimedi, S. A. Zhang,
N. Sadeh, Y. Agarwal, and A. Acquisti, “Follow my recommendations: A
personalized assistant for mobile app permissions,” in Twelfth Sym-
posium on Usable Privacy and Security (SOUPS 2016), 2016.

[29] B. Liu, J. Lin, and N. Sadeh, “Reconciling mobile app privacy and
usability on smartphones: Could user privacy profiles help?” in
Proceedings of the 23rd International Conference on World Wide Web,
ser. WWW ’14. New York, NY, USA: ACM, 2014, pp. 201–212. [Online].
Available: http://doi.acm.org/10.1145/2566486.2568035

[30] G. Louppe, L. Wehenkel, A. Sutera, and P. Geurts, “Understanding
variable importances in forests of randomized trees,” in Advances in
Neural Information Processing Systems 26, C. J. C. Burges, L. Bottou,
M. Welling, Z. Ghahramani, and K. Q. Weinberger, Eds. Curran
Associates, Inc., 2013. [Online]. Available: http://papers.nips.cc/paper/
4928-understanding-variable-importances-in-forests-of-randomized-trees.
pdf

APROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
62

http://doi.acm.org/10.1145/2462456
http://doi.acm.org/10.1145/2557547.2557571
http://doi.acm.org/10.1145/2382196.2382222
http://dx.doi.org/10.1109/SP.2006.32
http://doi.acm.org/10.1145/2493432.2493510
http://doi.acm.org/10.1145/2508859.2516759
http://developer/
http://dl.acm.org/citation.cfm?id=1924943
http://doi.acm.org/10.1145/2046707.2046779
http://dl.acm.org/citation.cfm?id=2372387.2372394
http://doi.acm.org/10.1145/2335356.2335360
http://dx.doi.org/10
http://doi.acm.org/10.1145/2568225.2568276
http://doi.acm.org/10.1145/2046707.2046780
http://doi.acm.org/10.1145/2381934.2381944
http://dx.doi.org/10.1007/978-3-642-34638-5_6
http://doi.acm.org/10.1145/2614628.2614633
http://www.usenix.org/conference/soups2014/
http://doi.acm.org/10.1145/2370216.2370290
http://doi.acm.org/10.1145/2566486.2568035
http://papers.nips.cc/paper/

[31] D. Lowd and C. Meek, “Adversarial learning,” in Proceedings of the
eleventh ACM SIGKDD international conference on Knowledge discov-
ery in data mining. ACM, 2005, pp. 641–647.

[32] K. Micinski, D. Votipka, R. Stevens, N. Kofinas, J. S. Foster, and M. L.
Mazurek, “User interactions and permission use on android,” in CHI

APPENDIX A
INFORMATION GAIN OF CONTEXTUAL FEATURES

2017, 2017.
[33] A. Nandugudi,

A. Maiti, T. Ki, F. Bulut, M. Demirbas, T. Kosar, C. Qiao,

S. Y. Ko, and G. Challen, “Phonelab: A large programmable smartphone
testbed,” in Proceedings of First International Workshop on Sensing and
Big Data Mining. ACM, 2013, pp. 1–6.

[34] H. Nissenbaum, “Privacy as contextual integrity,” Washington Law
Review, vol. 79, p. 119, February 2004.

[35] T. Ringer, D. Grossman, and F. Roesner, “Audacious: User-driven access
control with unmodified operating systems,” in Proceedings of the 2016
ACM SIGSAC Conference on Computer and Communications Security.
ACM, 2016, pp. 204–216.

[36] F. Roesner and T. Kohno, “Securing embedded user interfaces: Android
and beyond,” in Presented as part of the 22nd USENIX Security Sym-
posium (USENIX Security 13), 2013, pp. 97–112.

[37] F. Roesner, T. Kohno, A. Moshchuk, B. Parno, H. J. Wang, and

TABLE VI
FEATURE IMPORTANCE OF CONTEXTUAL FEATURES

APPENDIX B
INFORMATION GAIN OF BEHAVIORAL FEATURES

C. Cowan, “User-driven access control: Rethinking permission granting
in modern operating systems,” in 2012 IEEE Symposium on Security and
Privacy. IEEE, 2012, pp. 224–238.

[38] J. L. B. L. N. Sadeh and J. I. Hong, “Modeling users’ mobile app privacy
preferences: Restoring usability in a sea of permission settings,” in
Symposium on Usable Privacy and Security (SOUPS), 2014.

[39] B. Shebaro, O. Oluwatimi, D. Midi, and E. Bertino, “Identidroid: Android
can finally wear its anonymous suit,” Trans. Data Privacy, vol. 7, no.
1, pp. 27–50, Apr. 2014. [Online]. Available: http:
//dl.acm.org/citation.cfm?id=2612163.2612165

[40] M. Spreitzenbarth, F. Freiling, F. Echtler, T. Schreck, and J. Hoffmann,
“Mobile-sandbox: Having a deeper look into android applications,” in
Proceedings of the 28th Annual ACM Symposium on Applied Computing,
ser. SAC ’13. New York, NY, USA: ACM, 2013. [Online]. Available:
http://doi.acm.org/10.1145/2480362.2480701

[41] C. Thompson, M. Johnson, S. Egelman, D. Wagner, and J. King, “When
it’s better to ask forgiveness than get permission: Designing usable audit
mechanisms for mobile permissions,” in Proc. of the 2013 Symposium on
Usable Privacy and Security (SOUPS), 2013.

[42] X. Wei, L. Gomez, I. Neamtiu, and M. Faloutsos, “Permission evolution
in the android ecosystem,” in Proceedings of the 28th Annual Computer
Security Applications Conference, ser. ACSAC ’12. New York, NY, USA:
ACM, 2012, pp. 31–40. [Online]. Available:
http://doi.acm.org/10.1145/2420950.2420956

[43] P. Wijesekera, A. Baokar, A. Hosseini, S. Egelman, D. Wagner, and
K. Beznosov, “Android permissions remystified: A field study on
contextual integrity,” in 24th USENIX Security Symposium (USENIX
Security 15). Washington, D.C.: USENIX Association, Aug. 2015, pp.
499–514. [Online]. Available: https://www.usenix.org/conference/
usenixsecurity15/technical-sessions/presentation/wijesekera

[44] H. Wu, B. P. Knijnenburg, and A. Kobsa, “Improving the prediction of
users’ disclosure behavior by making them disclose more predictably?”
in Symposium on Usable Privacy and Security (SOUPS), 2014.

[45] K.-P. Yee, “Guidelines and strategies for secure interaction design,”
Security and Usability: Designing Secure Systems That People Can Use,
vol. 247, 2005.

[46] H. Zhu, H. Xiong, Y. Ge, and E. Chen, “Mobile app recommendations
with security and privacy awareness,” in Proc. of the 20th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining.
New York, NY, USA: ACM, 2014. [Online]. Available:
http://doi.acm.org/10.1145/2623330.2623705

Feature Importance
Amount of time spent on audio calls 0.327647825
Frequency of audio calls 0.321291184
Proportion of times screen was timed out
instead of pressing the lock button 0.317631096
Number of times PIN was used to
unlock the screen. 0.305287288
Number of screen unlock attempts 0.299564131
Amount of time spent unlocking the screen 0.29930659
Proportion of time spent on loud mode 0.163166296
Proportion of time spent on silent mode 0.138469725
Number of times a website is loaded to
the Chrome browser 0.094996437
Out of all visited websites, the proportion
of HTTPS-secured websites. 0.071096898
Number of times Password was used to
unlock the screen 0.067999523
Proportion of websites requested location
through Chrome 0.028404167
Time 0.019799623
The number of downloads through Chrome 0.014619351
Permission 0.001461635
Visibility 0.000162166

TABLE VII
FEATURE IMPORTANCE OF BEHAVIORAL FEATURES

 Contextuals Defaulters Overall
A1 0.4839 0.6444 0.5717
A2 0.4558 0.6395 0.5605
Permission 0.0040 0.0038 0.0050
Time 0.0487 0.1391 0.0130
Visibility 0.0015 0.0007 0.0010

APROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
63

http://doi.acm.org/10.1145/2480362.2480701
http://doi.acm.org/10.1145/2420950.2420956
http://www.usenix.org/conference/
http://doi.acm.org/10.1145/2623330.2623705

Appendix C TurtleGuard: Helping Android Users Apply Contextual Privacy
Preferences

APROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
64

TurtleGuard: Helping Android Users Apply Contextual
Privacy Preferences

Lynn Tsai1, Primal Wijesekera2, Joel Reardon1, Irwin Reyes3, Jung-Wei Chen4,

Nathan Good4, Serge Egelman1,3, and David Wagner1

1University of California, Berkeley, Berkeley, CA
{lynntsai,daw}@cs.berkeley.edu, jreardon@berkeley.edu

2University of British Columbia, Vancouver, BC
primal@ece.ubc.ca

3International Computer Science Institute, Berkeley, CA
{ioreyes,egelman}@icsi.berkeley.edu

ABSTRACT

4Good Research, Inc., El Cerrito, CA
{jennifer,nathan}@goodresearch.com

Current mobile platforms provide privacy management in-
terfaces to regulate how applications access sensitive data.
Prior research has shown how these interfaces are insufficient
from a usability standpoint: they do not account for context.
In allowing for more contextual decisions, machine-learning
techniques have shown great promise for designing systems
that automatically make privacy decisions on behalf of the
user. However, if such decisions are made automatically, then
feedback mechanisms are needed to empower users to both
audit those decisions and correct any errors.

In this paper, we describe our user-centered approach to-
wards designing a fully functional privacy feedback interface
for the Android platform. We performed two large-scale user
studies to research the usability of our design. Our second,
580-person validation study showed that users of our new
interface were significantly more likely to both understand
and control the selected set of circumstances under which
applications could access sensitive data when compared to
the default Android privacy settings interface.

1. INTRODUCTION
Smartphones store a great deal of personal information, such
as the user’s contacts, location, and call history. Mobile op-
erating systems use permission systems to control access to
this data and prevent potentially malicious third-party ap-
plications (“apps”) from obtaining sensitive user data. Part of
the purpose of these permission systems is to inform and
empower users to make appropriate decisions about which
apps have access to which pieces of personal information.

The popular open-source Android mobile platform has used
two general approaches to give users control over permis-
sions. Initially, permissions were presented as an install-
time ultimatum, or ask-on-install (AOI): at installation, an
application would disclose the full list of sensitive resources
it wished to access. Users could either grant access to all re-

Copyright is held by the author/owner. Permission to make digital or hard
copies of all or part of this work for personal or classroom use is granted
without fee.
Symposium on Usable Privacy and Security (SOUPS) 2017, July 12–14,
2017, Santa Clara, California.

quested permissions or abort the installation entirely. Prior
research has shown that most users do not pay attention to or
do not these prompts when shown at install-time [12].

Recently, an ask-on-first-use (AOFU) permission system re-
placed install-time disclosures on Android. Under AOFU,
the user is prompted when an application requests a sensi-
tive permission for the first time. The user’s response to this
permission request carries forward to all future requests by
that application for that permission. The AOFU approach,
however, fails to consider that the user’s preferences may
change in different contexts. It only learns the user’s prefer-
ences once under a certain set of contextual circumstances:
the first time an application tries to access a particular data
type. This system does not account for the fact that subse-
quent requests may occur under different contextual circum-
stances and therefore may be deemed less appropriate. For
instance, a user might feel comfortable with an application
requesting location data to deliver desirable location-based
functionality. The same user, however, might find it unac-
ceptable for the same application to access location for the
purposes of behavioral advertising, possibly when the appli-
cation is not even being used.

The contextual integrity framework can explain why AOFU
is insufficient: it fails to protect user privacy because it
does not account for the context surrounding data flows [25].
That is, privacy violations occur when a data flow (e.g., an
app’s access to a sensitive resource) defies user expectations.
In recent work [38, 39], we showed that mobile users do make
contextual privacy decisions: decisions to allow or deny ac-
cess are based on what they were doing on their mobile de-
vices at the time that data was requested.

In theory, asking the user to make a decision for every re-
quest is optimal, as the user will be able to account for the
surrounding context and can then make decisions on a case-
by-case basis. In practice, however, this results in unusable
privacy controls, as the frequency of these requests could
overwhelm the user [38]. Consequently, automating these
decisions with machine learning yields a balance between

APROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
65

mailto:jreardon@berkeley.edu
mailto:primal@ece.ubc.ca

accurately implementing users’ privacy preferences and not
overburdening them with too many decisions [39]. Such au-
tomation requires the platform to have feedback mechanisms
so that automated decisions can be reviewed and errors can
be corrected, thereby yielding fewer future errors.

To this end, we designed a novel permission manager, Turtle-
Guard, which helps users to vary their privacy preferences
based on a few selected contextual circumstances. It also
provides information about the apps that they use, by pro-
viding a feedback loop for them to audit and modify how
automated decisions are made. TurtleGuard allows users to
(i) vary their decisions based on the visibility of the request-
ing application – our previous work showed that the visibil-
ity of the requesting application is a critical factor used by
users when making mobile app privacy decisions [38], and
(ii) have an improved understanding of how third-party ap-
plications access resources in the real world and under vary-
ing contextual circumstances.

We conducted an initial 400-person experiment to evaluate
our preliminary design. Based on our analysis of this data,
we then iterated on our design, conducting a 580-person vali-
dation study to demonstrate our design’s effectiveness. Both
experiments had four tasks: three tasks that involved using
the system to locate information about current application
permissions, and one task that involved modifying settings.
We observed that participants who used TurtleGuard were
significantly more likely to vary their privacy preferences
based on surrounding circumstances than the control group.
We believe that these results are a critical contribution to-
wards empowering mobile users to make privacy decisions on
mobile phone platforms. Our contributions are as follows:

We present the first contextually-aware permission man-
ager for third-party applications in Android.
We show that when using our new interface (compared
to the existing Android interface) participants were
significantly more likely to both understand when ap-
plications had foreground versus background access to
sensitive data and how to correctly control it.
We show that our proposed interface has a minimal
learning curve. Participants, who had never used Turtle-
Guard before, were as successful at accomplishing in-
formation retrieval tasks as those who used the existing
Android interface.

2. RELATED WORK
The Android OS has thus far used two different permission
models: ask-on-install (AOI) permissions, and ask-on-first-
use (AOFU) permissions. Versions of Android before ver-
sion 6.0 (Marshmallow) implemented ask-on-install permis-
sions. Under this model, applications request that the user
grant all permissions to the application at install time. The
user must consent to all requested permissions in order to
complete installation. Otherwise, if the user wishes to deny
any permission, the only option available is to abort the in-
stallation entirely. Research has shown that few users read
install time permissions, and fewer still correctly understand
their meaning [12, 18].

These prompts protect access to a set of 24 “dangerous
permissions,” including geolocation data, contact lists, and
SMS. Prompts appear when the application attempts to re-
quest protected resources for the first time. This has the
advantage of giving users contextual clues about why an ap-
plication requires a protected resource: users can consider
what they are doing when the prompt appears to help de-
termine whether to approve the request. Although AOFU
offers an improvement over the install-time model in this
regard, first-use prompts insufficiently capture a user’s pri-
vacy preferences [39]. That is, the AOFU model does not
consider scenarios where an application requests access to
data under varying contexts.

Research on permission models has found that users are of-
ten unaware how apps access protected resources and how
access may be regulated [12, 8, 11, 36, 34]. Shih et al. showed
that users are more likely to disclose privacy information
when the purpose is unclear [35]. Prior work has specifically
analyzed location data: Benisch et al. show that a vast num-
ber of factors (time, day, location) contribute to disclosure
preferences [5]; Reilly et al. show that users want minimal
interaction with their technology [31]. Additionally, Patil et
al. takes into consideration context: they suggest making
feedback actionable and allowing for selective control re-
garding location data [29]. They also show that users have
difficulty articulating location access controls, and suggest an
interface that includes contextual factors as a potential
solution [28]. Almuhimedi et al. studied AppOps, a per-
mission manager introduced in Android 4.3 but removed in
Version 4.4.2 [1]. AppOps allowed users to review and mod-
ify application permissions once installed, as well as set de-
fault permissions that newly installed applications must fol-
low. They examined privacy nudges that were designed to
increase user awareness of privacy risks and facilitate the use
of AppOps. They concluded that Android users benefit from
the use of a permission manager, and that privacy nudges are
an effective method of increasing user awareness [1].

Although AppOps was removed from Android, Android 6.0
(Marshmallow) reintroduced permission management. It—
and subsequent versions as of this writing—include an up-
dated interface that allows the user to view all of the per-
missions that a particular app has been granted, as well as all
of the apps that have been granted a particular permission
(Figure 1). Unfortunately, these controls are buried deep
within the Settings app, and it is therefore unlikely that users
are aware of them. For instance, viewing a particular app’s
permissions requires navigating four levels of sub-panels,
whereas viewing all the apps that have requested a particular
permission requires navigating five levels. By comparison,
TurtleGuard is one click from the main Settings panel and
explicitly presents the relationships between ap- plications,
permissions, and controls.

XPrivacy [6], DonkeyGuard [7], Permission Master [23], and
LineageOS’s1 Privacy Guard [24] are examples of other third-
party permission management software. These utilities re-
quire additional privileges and techniques to install because
Android provides no official mechanisms for third-party pro-
grams to modify the permission system. For instance, Pri-
vacy Guard is built into the LineageOS custom ROM [24];

Versions of Android from 6.0 (Marshmallow) onward use
the AOFU permission model instead. Under AOFU, appli-
cations prompt users for sensitive permissions at runtime.

1LineageOS is a recent fork of CyanogenMod after the lat-
ter’s discontinuation.

•

•

•

APROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
66

Figure 1: After navigating four and five levels of sub-panels
within the Android Settings app, respectively, users can limit
a specific app’s access to specific permissions (left) or limit
the apps that can access a particular permission (right).

others use the Xposed Framework [32], which requires an
unlocked bootloader and a custom recovery partition. Such
restrictions are necessary to prevent malicious software from
interfering with the existing permission system.

Third-party permission managers offer users a variety of fea-
tures to fine-tune access to sensitive resources on their de-
vices. XPrivacy has the option to pass fake data to applica-
tions that have been denied access to protected resources [2].
Hornyack et al.’s AppFence similarly allows users to deny
permissions to applications by providing fake data [16]. Pro-
viding fake data is more desirable than simply failing to pro-
vide any data at all, as the latter may cause functionality loss
or application failures.

These managers follow an Identity Based Access Control
model (IBAC), where individual permissions can be set for
each app. Although this model allows users to specify fine-
grained permission preferences, this may be ineffective in
practice for two reasons. First, users may be overwhelmed by
the number of settings available to them, some of which are
only tangentially relevant to privacy. This security de- sign
failure is known as the wall of checkboxes [14]. XPrivacy and
Permission Master show controls for resources whose direct
effects on user privacy are unclear, such as keeping a device
awake. TurtleGuard improves usability by showing only
controls for resources deemed “dangerous” in the Android
platform [15] and others that previous research has shown are
conducive to using run-time prompts [10]. Second, none of
the existing permission managers display the context in
which protected resources were accessed. XPrivacy, Donkey
Guard, and LineageOS’s Privacy Guard pro- vide timestamps
for resource accesses, but the user does not receive important
information about the app’s state, such as whether it was
actively being used when it requested access

to sensitive data. Permission Master offers no historical in-
formation at all. TurtleGuard partially addresses this prob-
lem by listing recently allowed and denied permission access
requests, along with the state and visibility of the requesting
application at the time the permission was requested.

Apple’s iOS platform offers visibility-sensitive location pri-
vacy settings: “Never” and “Always” (the two settings anal-
ogous to Android’s permission on/o↵ toggles), and a “While
using the app” option, which only permits an application to
access location data while the application is active on the
screen. TurtleGuard uses the same options, but our design is
novel in both the extent of these settings and in who controls
them. Apple’s iOS allows developers to control which of the
three options are available to users to select [3]. Application
developers have faced criticism for removing the “While us-
ing the app” option, forcing users to choose between reduced
functionality and granting the application unrestricted ac-
cess to sensitive location data [26]. Our design, by contrast,
gives users all three of these options for all sensitive permis-
sions (Table 5, Appendix). Furthermore, developers cannot
restrict user choice with these settings, as TurtleGuard is
implemented in the operating system.

Wijesekera et al. show that although AOFU improves on
install-time permissions, AOFU is insufficient because it does
not account for the context of the requests [39]. They exam-
ined this by instrumenting the Android platform to log all
instances of apps accessing sensitive resources. In addition to
their instrumentation, the platform randomly prompted users
about the appropriateness of various permission re- quests as
those requests occurred. Participant responses to these
prompts were treated as the dependent variable for a training
set. Their study showed that 95% of participants would have
chosen to block at least one access request had the system
notified them. On average, participants would have preferred
to block 60% of permission requests. Indeed, other work
suggests that contextual cues are key in detecting privacy
violations [25, 4].

A natural extension of AOFU is “ask on every use”: rather
than extrapolating the user’s first-time preference to all fu-
ture accesses to a given resource, each access instead requires
user input. Such a model would conceivably allow users to
accurately specify their contextual preferences because they
know exactly which app attempted to gain access to what re-
source under which circumstance. This approach, however,
is unusable in practice. Research has shown that applica-
tions request access to permission-protected resources with
great frequency: on an average smartphone, roughly once
every 15 seconds [38]. Such a high frequency not only risks
habituation, but would render the device inoperable.

Recent research on permission models has turned towards
using machine learning (ML) [39, 20, 21, 19]. One advan-
tage is ML’s ability to incorporate nuanced contextual data
to predict user preferences; the approach has shown signif-
icantly lower error rates over the status quo, i.e., AOFU.
Wijesekera et al. [39] also showed that ML reduces user in-
volvement, thereby minimizing habituation. They empha-
size, however, the importance of having a user interface that
functions as a feedback-loop to the classifier, since no prac-
tical classifier will ever be 100% accurate. Users can use the
interface to audit the decisions made by the classifier and
correct any decisions that do not match their preferences.

APROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
67

Such a mechanism not only ensures that the classifier im-
proves its accuracy over time, it also keeps users aware of de-
cisions that were made on their behalves and informs them
of how third-party apps are accessing sensitive resources un-
der various circumstances.

TurtleGuard provides two core components necessary for us-
ability under such contextual privacy models: we provide
users with key contextual information when regulating ac-
cess to sensitive resources, and we provide a method for users
to audit and correct the decisions that have been automati-
cally made by the system.

3. DESIGN OBJECTIVES
TurtleGuard’s primary function is to inform users about the
decisions that have been automatically made on their be-
half, while allowing them to easily correct errors (thereby
improving the accuracy of future decisions). These errors can
be either false positives—an app is denied a permission that
it actually needs to function—or false negatives—an app is
granted access to data against the user’s preferences.

Thompson et al. showed how attribution mechanisms can help
users better understand smartphone application resource
accesses [37]. They found that users expect this information
to be found in the device’s Settings app. In our initial ex-
periment, we evaluated TurtleGuard as a standalone app,
though for this reason we ultimately moved it within the
Android Settings panel prior to our validation experiment.

3.1 Incorporating Context
In prior work, researchers observed that only 22% of partic-
ipants understood that applications continue to run when not
visible and that they have the same access to sensitive user
data that they do when actively being used [37]. This means
that the majority of users incorrectly believe that applications
either stop running when in the background or lose the ability
to access sensitive data altogether. Wijesekera et al.
corroborated this observation in a field study of users’
privacy expectations: users are more likely to deem
permission requests from background applications as being
inappropriate or unexpected, and indicate a desire to regu-
late applications’ access to sensitive data based on whether
or not those applications are in use [38].

In the default permission manager, users cannot vary their
decisions based on the visibility of the requesting applica-
tion, or any other contextual factors. Our overarching goal is
to empower users to make contextual decisions (i.e., based on
what they were doing on the device) and to apply these
decisions to future use cases, so that fewer decisions need to
be explicitly made overall. As a first step towards allowing
users to make contextual decisions, TurtleGuard makes de-
cisions about whether or not to allow or deny access based
on whether the requesting application is actively being used.
While this is but one contextual factor amongst many, it is
likely one of the most important factors [38].

Moving one step beyond the all-or-nothing approach of al-
lowing or denying an application’s access to a particular data
type, our new design gives the user a third option: allowing
applications to access protected data only when in use
(Table 1 and Figure 2). When the when in use option is se-
lected, the platform only allows an application to access a
resource if the application is running in such a way that it

option meaning

always The permission is always granted to the re-
questing application, regardless of whether
the application is running in the fore-
ground or background.

when in use The permission is granted to the requesting
application only when there are cues that
the application is running, and denied when
the application is running invisibly in the
background.

never The permission is never granted to the re-
questing application.

Table 1: The three possible permission settings under
TurtleGuard. The when in use option accounts for the visi-
bility of the requesting app, which is a strong contextual cue.

is conspicuous to the user of the device. We consider the
following behaviors conspicuous: (i) the application is run-
ning in the foreground (i.e., the user is actively using it), (ii)
the application has a notification on the screen, (iii) the ap-
plication is in the background but is producing audio while
the device is unmuted. If these conditions do not hold, then
access to the resource is denied.

3.2 Auditing Automatic Decisions
Although Android currently provides an interface to list the
applications that recently accessed location data, similar in-
formation is unavailable for other protected resources. The
existing Android interface also does not differentiate be-
tween actions that applications take when in use and when
not in use. TurtleGuard’s main design objective is therefore
to communicate the types of sensitive data that have been
accessed by applications and under what circumstances.

Our initial design of TurtleGuard can be seen in Figure 2.
The first tab (activity) shows all of the recently allowed or
denied permission requests, including when those requests
occurred and whether the application was in use at the time.
TurtleGuard presents this information as a running
timeline—a log sorted chronologically. A second tab lists all
of the apps installed on the phone in alphabetical order, al-
lowing the user to examine what decisions have been made
for all permissions requested by a particular app. The user
can expand a log entry to change future behavior, if the plat-
form’s automated decision to allow or deny a permission did
not align with the user’s preferences. When the user uses this
interface to change a setting, the classifier is retrained based
on the updated information.

3.3 Permission Families
Android uses over 100 permissions and a given resource can
have more than one related permission. Felt et al. found that
not all the permission types warrant a runtime prompt—it
depends on the nature of the resource and the severity of the
threat [9]. Consequently, TurtleGuard only manages a subset
of permissions (Table 5, Appendix) based on those deemed
sensitive by prior work and by the latest Android version. In
the first prototype of TurtleGuard, we had listed the original
names of the permissions, ungrouped. One of the changes we
made as we iterated on our design after our pilot experiment
was to implement permission “families”. For

APROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
68

Figure 2: The pilot design of TurtleGuard listed recent app
activity (top left), a list of installed apps and their associated
permissions (top right). Permissions can be always granted,
granted only when in use, or never granted (bottom).

example, read contacts and write contacts are grouped
into a single contacts permission family. This means that
within TurtleGuard, users only see the human- readable
resource type and not the underlying permissions the
family manages. Any changes that a user makes about
granting a resource therefore affects all permissions in the
same family. For example, there is no longer a distinction
between coarse and fine location data; both are either al-
lowed or denied by a location settings change made using
the TurtleGuard interface.

4. METHODOLOGY
We conducted two online experiments to evaluate the effec-
tiveness of TurtleGuard at providing users with information
and control over app permissions, as compared to Android’s
default permission manager (as of versions 6.0). We designed

the first experiment to examine our initial prototype, as de-
scribed in the previous section. Based on the analysis of our
first experiment, we made changes to our design, and then
validated those changes through a second experiment. In
both experiments, we asked participants to perform four
different tasks using an interactive Android simulation.
These tasks involved either retrieving information about an
appli- cation’s prior access to sensitive resources or
preventing ac- cess in the future (i.e., modifying settings).
Our study was approved by our IRB (#2013-02-4992).

In both experiments, we randomly assigned participants to
either the control or experimental conditions. We presented
control participants with an interactive HTML5 simulation
of the default permission manager, which is accessible from
within the Settings app. We presented experimental partic-
ipants with an interactive HTML5 simulation of our novel
permission manager, TurtleGuard. During our pilot exper-
iment, TurtleGuard was accessible through an icon on the
home screen labeled “Privacy Manager,” though we added it
as a sub-panel to the Settings app prior to the validation
experiment (Figure 6 in the Appendix). The questions and
tasks for participants were identical for the two conditions
and both experiments.

4.1 Tasks
We presented participants with four tasks to complete using
the interactive Android simulations: three tasks to retrieve
information about permission settings, and one task to mod-
ify permission settings. Some of these tasks required partic-
ipants to find information about a specific app’s abilities. In
order to avoid biases from participants’ prior experiences and
knowledge of specific real-world apps, these questions
instead focused on a fictitious app, ZvW. While we random-
ized the order of the tasks, we ensured that Task 3 always
came before Task 4 (i.e., we never asked them to prevent
background location data collection prior to asking them
whether background location data was even possible). After
each task, we asked participants to rate the difficulty of the
task using a 5-point Likert scale (“very easy” to “very dif-
ficult”). Finally, upon completing all tasks, we asked them
several demographic questions and then compensated them
$2. We now describe the four tasks in detail.

Task 1: What were the two most recent applications
that accessed this device’s location?
In this task, we asked participants to use the Android sim-
ulation and identify the two applications that most-recently
accessed location data. Participants used two open-ended
fields to answer this question. In the control condition, this
task was correctly accomplished by navigating to the “loca-
tion” screen from within the Settings application (Figure 3).
This screen presents information about applications that re-
cently requested location data.

In the experimental condition, this task was accomplished by
simply studying the “activity” screen, which was displayed
immediately upon opening TurtleGuard (Figure 2). Given
that this task was already supported by the default permis-
sion manager, we wanted to verify that TurtleGuard per-
formed at least as well.

APROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
69

Task 2: Currently, which of the following data types
can be accessed by the ZvW application?
In the control condition, this was accomplished by perform-
ing the four steps to access the screen in Figure 4 (right):
selecting the“Apps”panel within the Settings app (Figure 3,
left), selecting the ZvW application, and then selecting the
“Permissions.” This screen depicted a list of permissions
available to the application based on what the application
declares as its required permissions; the user is able to fine-
tune this by selectively disabling certain permissions using
the sliders on this screen. We wanted participants to iden-
tify the permissions that were enabled, rather than all of
those that could be enabled in the future.

In the experimental condition, participants could accomplish
this task by selecting the “Apps” tab from within Turtle-
Guard and then expanding the ZvW application to view its
requested permissions (Figure 2, top right). In both condi-
tions, the correct answer to the question was that “location”
is the only data type that can be accessed by the ZvW ap-
plication. Again, given that this task was already supported
by the default permission manager, we wanted to verify that
TurtleGuard performed at least as well.

Task 3: Is the ZvW application able to access location
data when it is not being actively used?
We designed this task to determine whether TurtleGuard
was effective at communicating to participants in the ex-
perimental condition the difference between foreground and
background data access. Similarly, we wanted to examine
whether participants in the control condition understood
that once granted a permission, an application may access
data while not in use. Based on the settings of the simula-
tions, the correct answer across both conditions was “yes.”

Participants in the control group must navigate to Settings,
then the “Apps” panel, and view the list of permissions cor-
responding to the ZvW application, similar to Task 2. Lo-
cation is turned on, and so participants must be able to
understand that this means that the permission is granted even
when it is not actively being used. Participants in the
experimental condition can use TurtleGuard’s “Apps” tab to
view the requested permissions for the ZvW application. This
shows that the location permission is listed as “always”
(Figure 2, top right) and that “when in use” is an unselected
option (Figure 2, bottom).

Task 4: Using the simulation, prevent ZvW from being
able to access your location when you aren’t actively
using ZvW (i.e., it can still access location data when
it is being used). Please describe the steps you took to
accomplish this below, or explain whether you believe
this is even possible.
As a follow-up to the third task, the fourth task involved
participants explaining the steps that they went through in
order to limit background location access, or to explain that
it is not possible.

Those in the experimental condition could locate and change
this permission setting either through the activity timeline or
by locating ZvW from the “Apps” tab (Figure 2). We marked
answers correct that specifically mentioned changing the
setting to “when in use.”

Those in the control condition could not prevent this access.
We marked responses correct if they indicated that this task
was impossible to complete. Two coders independently re-
viewed the responses to this task (Cohen’s = 0.903). The
objective of this task was to see TurtleGuard’s success at
allowing participants to vary settings based on application
use (a strong contextual cue) and to examine whether par-
ticipants knew that this was not possible when using the
default permission manager.

4.2 UI Instrumentation
We built an interactive HTML5 simulation of the UI designs
described in the previous section using proto.io. We instru-
mented the simulations to log all interactions (e.g., panels
visited, buttons clicked, etc.). This data allowed us to ana-
lyze how participants navigated the UI to perform each task.

4.3 Qualitative Data
In addition to analyzing the participants’ responses to the
four tasks, their perceived difficulty of each of the tasks, and
their demographic information, we also collected responses
to two open-ended questions:

Thinking about the tasks that you performed in this sur-
vey, have you ever wanted to find similar information
about the apps running on your smartphone?
We coded participants’ responses as a binary value. Re-
sponses indicating sentiments such as “yes” and “I always
wanted that”were coded as true. Clear negative answers and
weak affirmative answers such as “sometimes” and “maybe”
were coded as false. The purpose of this question is to see
how prevalent seeking information is in the real world.

Thinking about the simulation that you just used, what
could be done to make it easier to find information
about how apps access sensitive information?
We coded participants’ responses in multiple ways. First,
as binary values indicating contentment with the presented
design. Responses that affirmed that the user would change
nothing about the presented design were coded as true. Any
complaints or suggestions were coded as false, as well as re-
sponses with uncertainty, confusion, or ambivalence (e.g., “I
don’t know”). We further coded responses that had specific
suggestions, using tags for the different themes.

Each response was coded by two experienced coders working
independently, who then compared responses and recorded
their coding conflicts. The coders discussed and reconciled
the differences using their mutually agreed upon stricter in-
terpretation given the nature of the tasks. This produced the
final coding of the data, which is used in our analysis.

5. PILOT EXPERIMENT
Using the methodology outlined in the previous section, we
recruited 400 participants from Amazon’s Mechanical Turk
for a pilot experiment. We discarded 8 incomplete sets of
responses, leaving us with 392 participants. Our sample was
biased towards male respondents (65% of 392), however, a
chi-square test indicated no significant differences between
genders with regard to successfully completing each task.
Disclosed ages ranged from 19 to 69, with an average age of
33. In the remainder of this section, we describe our results
for each task, and then describe changes we made to

APROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
70

Condition Correct Incorrect
Task 1
control 167 (84%) 31 (15%)
experimental 132 (68%) 62 (32%)
Task 2
control 140 (70%) 58 (29%)
experimental 116 (59%) 78 (40%)
Task 3
control 86 (43%) 112 (56%)
experimental 153 (78%) 41 (21%)
Task 4
control 47 (23%) 151 (76%)
experimental 144 (75%) 49 (25%)

Table 2: Participants in each condition who performed each
task correctly during the pilot experiment.

Figure 3: In Task 1, participants in the control condition
could identify the most recent applications that requested
location data from within the Settings application. This was
also a valid method for Task 1 in the experimental condition
for the validation study.

TurtleGuard’s interface as a result of this initial experiment.
We note that in our simulation, Settings can only be reached
by tapping on the icon from the home screen. In all of our
tasks, we also asked participants to evaluate perceived
difficulty using a 5-point Likert scale.

5.1 Task 1: Recent Location Access
In the control condition, 84% of participants (167 out of 198)
correctly completed this task, whereas only 68% (132 out of
194) completed it correctly in the experimental condition.
This difference was statistically significant (x2 = 14.391, p
< 0.0005), though with a small-to-medium effect size (c/
= 0.192). In both cases, answers were marked correct if
they mentioned both the Browser and ZvW applications
(Table 2). Of the 49 participants in the experimental group
who tried but failed, 13 never opened TurtleGuard, and over
73% (36 of 49) entered“Browser”and“Contacts”, which were
the first two applications listed in the activity tab of the Per-
mission Manager. The activity tab showed recent resource
accesses in a chronological order—“Browser” had been de-
nied a location request and “Contact” had successfully ac-
cessed call logs.

Participants did not seem to understand that the activity log
presented entries related to all sensitive data types, not just
location data. This confusion might also stem from their fa-
miliarity with the location access panel in stock Android, in
which location access requests are presented in chronologi-
cal order. We hypothesize that this confusion is addressable
by redesigning the activity log to better distinguish between
data types and allowed-versus-denied permission requests.
One possible way of implementing this is to create separate
tabs for allowed and denied requests, as well as to group
similar data types together (rather than presenting all per-
mission request activity in chronological order).

Figure 4: In Task 2, participants in the control condition
could identify the permissions granted to the ZvW applica-
tion by selecting the “Apps” panel from within the Settings
application, and then selecting the application, followed by
the “Permissions” panel.

5.2 Task 2: Finding Granted Permissions
In the second task, we asked participants to list all of the data
types that the ZvW application currently had access to. We
observed that 140 participants in the control condition
(70.7% of 198) and 116 participants in the experimental
condition (59.8% of 194) performed this task correctly. After
correcting for multiple testing, this difference was not
statistically significant (x2 = 5.151, p < 0.023).
However, despite the lack of statistical significance, we were
surprised that not more people in the experimental condi-
tion answered correctly. Upon investigating further, we no-
ticed several confounding factors that might have made this
task more difficult for people in this condition. First, while
the control condition displays the currently-allowed permis-
sions as grayed-out text on the “App Info” page (Figure 4),
the experimental condition lists all requested permissions—

APROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
71

which is a superset of the allowed permissions (top-right of
Figure 2). Second, we noticed that due to an experimental
design error, the permissions requested by the ZvW app in
the experimental condition included several that were not in-
cluded in the options presented to participants (e.g., “Write
Contacts” and “Read Call Log”). This may have made this
task confusing for these participants.

5.3 Task 3: Finding Background Activity
In the third task, we asked participants whether the ZvW
application had the ability to access location data while not
actively being used. We observed that 86 participants in the
control condition (43% of 198) correctly answered this
question, as compared to 153 participants in the experimen-
tal condition (78% of 194). This difference was statistically
significant (x2 = 51.695, p < 0.0005) with a medium effect
size (c/ = 0.363). Thus, the new dashboard interface suc-
cessfully differentiated between foreground and background
permission usage.

5.4 Task 4: Limiting Background Activity
We observed that only 47 participants in the control con-
dition (23% of 198) correctly stated that this task was im-
possible. In the experimental condition, 144 (74% of 193)2

clearly articulated the steps that they would go through us-
ing the privacy dashboard to change location access from
“always” to “when in use.” This difference was statistically
significant (x2 = 101.234, p < 0.0005) with a large effect size
(c/ = 0.509).

5.5 Design Changes
Based on the results of our first two tasks, in which partici-
pants in the control condition were more likely to correctly
locate information about recent app activities and the per-
missions that apps had requested, we made several design
changes to the TurtleGuard interface. First, we split the ac-
tivity timeline into two separate tabs: recently allowed per-
mission requests, and recently denied permission requests.
Second, rather than showing all activity in chronological
order, the activity timeline is now categorized by resource
type, with the events for each resource type sorted chrono-
logically. These changes can be seen in the top of Figure 5.

In addition to these changes, we also modified the apps tab
to show grayed-out allowed permissions for each app, similar
to the App Info panel in the default permission manager. Due
to the error we noted in the experimental condition in Task
2, we made sure that all app permissions were the same in
both conditions.

Finally, we moved TurtleGuard to be within the Settings app,
so that it appears as a panel labeled “Permissions Man- ager”
(Figure 6, Appendix). For consistency, when participants in
the experimental condition select the “Permissions” sub-
panel from within the “App Info” panel (Figure 4, left), they
are now redirected to TurtleGuard’s “Apps” panel, pre-
opened to the app in question (Figure 5, bottom right).

6. VALIDATION EXPERIMENT
Following our pilot experiment and subsequent design changes,
we performed a validation experiment. In the remainder of
this section, we discuss our results (Table 3).

2One person could not load the iframe containing the sim-
ulation during this task.

Figure 5: TurtleGuard separates recently allowed (top left)
and denied (top right) permissions. The “Apps” tab lists the
allowed permissions of all apps (bottom left). Expanding an
app allows the user to make changes (bottom right).

6.1 Participants
Because of several known biases in Mechanical Turk’s de-
mographics [27, 33, 22], we decided to compare a sample of
298 Mechanical Turk participants to a sample of 300 Pro-
lific Academic participants. Peer et al. recently performed
several studies on various crowdsourcing platforms and con-
cluded that the latter yields more diverse participants [30].
We limited both groups to participants based in the U.S., over
18, owning an Android phone, and having a 95% approval
rating on their respective platform. After removing 18
incomplete responses, we were left with a combined sample
of 580 participants. We analyzed the results from the two
groups, and discovered that the high-level findings (i.e.,

APROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
72

-

Condition Correct Incorrect

Task 1
control 237 (82.6%) 50 (17.4%)
experimental 241 (82.5%) 52 (17.5%)

Task 2
control 232 (77.1%) 55 (22.9%)
experimental 226 (80.8%) 67 (19.2%)

Task 3
control 108 (37.6%) 179 (62.4%)
experimental 230 (78.5%) 63 (21.5%)

Task 4
control 79 (27.5%) 208 (72.5%)
experimental 224 (76.5%) 69 (23.5%)

Table 3: Participants in each condition who performed each
task correctly during the validation experiment.

task performance) did not observably differ. For the remain-
der of our study, we therefore discuss the combined results.
Our sample was biased towards male respondents (63% of
580), however, a chi-square test indicated no significant dif-
ferences between genders with regard to successfully com-
pleting each task. Disclosed ages ranged from 19 to 74, with
an average age of 33. Participants performed the same tasks
as those in the pilot experiment and took on average 9 min-
utes and 17 seconds to complete the experiment.

6.2 Task 1: Recent Location Access
Recall that in this task, we asked participants to identify the
two most recent applications that accessed location data. For
the experimental condition, in addition to using the same
method as the control (navigating to the “Location” sub-panel
of the Settings app), participants could navigate to the
“Allowed” tab within TurtleGuard, and then examine
the“Location”permission to see the two most recent accesses
(top left of Figure 5). In the control condition, 237 partici-
pants (82.6% of 287) correctly completed this task, whereas
241 (82.5% of 293) completed it correctly in the experimental
condition. A chi-square test revealed that this difference
was not statistically significant (x2 = 0.011, p < 0.918).

We observed that most of the participants in both conditions
used the default method of accomplishing this task (i.e.,
accessing the Location sub-panel): 80.1% of those who
answered correctly in the experimental condition and 92.8%
of those in the control condition. Fifteen participants in the
control condition answered correctly despite not accessing
the panel—likely by random guessing, and two who an-
swered correctly by exhaustively searching the “App Info”
panels of installed apps, to see which had been granted the
location permission; 48 participants in the experimental con-
dition used TurtleGuard to yield the correct answer.

A total of 102 participants incorrectly answered the question
in Task 1. Of the incorrect responses, five participants failed
to properly navigate the simulation and wrote that it was
broken or the buttons did not work; 9 participants did not
respond or wrote that they did not know. Of the other 88
participants, 38 (43%) listed “App Store” as one of their
selections, making it the most common error.

More specifically, 18 participants listed their answers as both
“App Store” and “Browser.” We believe that this is because
both the stock Android Apps Manager and TurtleGuard’s
“Apps” tab (Figure 5, bottom) sort the entries alphabetically,
and by looking at the permissions available to both of these
apps, participants would see that both have location access.
Nevertheless, they are not the most recent apps to access
location data.

Overall, these results suggest that the changes we made af-
ter our pilot experiment resulted in marked improvements.
We further investigated this by examining participants’ per-
ceived ease-of-use, as measured using the 5-point Likert scale
(“very easy (1)” to “very difficult (5)”). In the experimen-
tal condition, 84 participants accessed TurtleGuard to com-
plete this task (regardless of whether or not they answered
correctly). We compared these 84 responses with the 463
responses from participants who only used the default Set-
tings panel (i.e., 195 in the experimental group and 268
in the control group). The median responses from both
groups was “easy” (2), however there was a statistically sig-
nificant difference between the groups (Wilcoxon Rank-Sum
test: Z = 3.9605, p < 0.0005), with a small effect size (r
= 0.17)—participants who used TurtleGuard found it more
difficult compared to the default Settings panel. This
difference appears to be due to those who performed the task
incorrectly: the median response for TurtleGuard users who
answered incorrectly was “difficult (4),” whereas it was “neu-
tral (3)” for other participants. This may actually be a good
thing: participants who confidently answered incorrectly are
at greater risk due to over confidence, whereas those who had
difficulty may be more likely to seek out more information.

6.3 Task 2: Finding Granted Permissions
In this task, participants had to locate the app’s allowed
permissions to discover that “location” was the only allowed
permission in both the experimental and control conditions.
This could be accomplished by viewing TurtleGuard’s Apps
tab (bottom of Figure 5) for those in the experimental con-
dition, or by viewing an app’s App Info panel from within
the Settings app (Figure 4), which was available to those in
either condition.

In total, 458 participants correctly performed this task (79%
of 580). Table 3 displays the breakdown of the results by
condition. A chi-square test did not yield statistically sig-
nificant results between the two conditions in terms of task
completion (x2 = 0.984, p < 0.321).

Of the 226 experimental condition participants who per-
formed the task correctly, 127 (56.2%) did so by using Turtle-
Guard. In total, 145 experimental condition participants ac-
cessed TurtleGuard, and reported a median task difficulty of
“easy (2).” This did not significantly differ from the 375 other
participants in both conditions who only examined the
default Settings panels to perform the task and also reported
a median difficulty of “easy” (Z = 1.808, p < 0.238); 60 par-
ticipants never opened Settings (10 of whom answered the
question correctly, likely due to random guessing).

6.4 Task 3: Finding Background Activity
To perform this task, participants in the control group had to
navigate to Settings, then the “Apps” panel, and view the list
of permissions corresponding to the ZvW application

APROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
73

-

(Figure 4). However, performing this sequence of steps still
did not guarantee they would answer the question correctly:
they needed to observe that location data was allowed, as
well as understand that this meant that location data could be
accessed by the app even when it is not actively being used.
Participants in the experimental condition answered this
question through TurtleGuard, which shows that the lo-
cation permission was listed as “Always” (Figure 5), thereby
eliminating the ambiguity.

We observed that 230 experimental condition participants
answered this question correctly (78.5% of 293), as com-
pared to only 108 control participants (37.6% of 287). A
chi-square test showed that this difference was significant
(x = 97.914, p < 0.0005) with a medium-to-large effect size
(c/ = 0.414). This observation corroborates Thompson et
al.’s findings [37] that users are largely unaware that apps
can access sensitive data when not in use. TurtleGuard,
however, was more effective at communicating this informa-
tion to participants. Among the participants in the experi-
mental condition, 24.57% took the extra step to click on the
location entry (bottom right of Figure 5) to see the other op-
tions available (Figure 2): always, when in use, and never.

We found that 129 participants used TurtleGuard to per- form
this task, which suggests that 101 (34.5% of experimental
condition participants) still got it correct either based on prior
knowledge—a proportion consistent with Thompson et al.’s
findings [37]—or after having used TurtleGuard in pre-
ceding tasks. There were 383 participants who completed the
task by examining existing areas of the Settings app, whereas
68 participants never bothered to open Settings to complete
this task. The median ease of use for those who used
TurtleGuard was “easy (2)”, while the median ease of use for
those who used the default permission manager was “neutral
(3)”. This difference was statistically significant (Z = 2.885,
p < 0.004) with a small effect size (r = 0.13). Participants in
the control condition also took significantly longer to
complete the task: 49.63 seconds versus 26.65 seconds. A
Wilcoxon Rank-Sum test found this difference to be
statistically significant (Z = -5.239, p < 0.0005, r = 0.22).

6.5 Task 4: Limiting Background Activity
Task 4 asked participants to describe the steps to prevent an
application from accessing location data while the applica-
tion was not in use, or to state that it is not possible to pre-
vent it. It is only possible to prevent it using TurtleGuard.

In the experimental condition, 224 (76.5% of 293) explic- itly
stated how they would use TurtleGuard to change the
permission to “when in use”,3 whereas only 79 (27.5% of
287) control group participants correctly stated that this task
was impossible using the default permission manager. This
difference was statistically significant (x2 = 137.14, p <
0.0005) with a large effect size (c/ = 0.49).

A majority of the participants (72.5%) in the control group
incorrectly believed that they could vary their decisions based
on the visibility of the application. The most common re-
sponses involved disabling location data altogether, prevent-
ing the app from running, or restricting “background data”:

3We used a very conservative rubric: 11 participants who
described using TurtleGuard, but did not explicitly use the
phrase “when in use,” were coded as being incorrect.

• Settings > Apps > ZvW > Toggle Location O↵
• Disable or Force Stop the Application

Settings > Location > ZvW > Permissions > Toggle
Location O↵
Settings > Apps > ZvW > Data Usage > Restrict
Background Data

• Settings > Location > Toggle Location O↵

A considerable portion (14%) chose to “restrict background
data,” which does something else entirely: it prevents data
surcharges while roaming on foreign networks. This is an-
other example of a disconnect between users’ mental models
and the true meaning of these configuration options. That
said, a small number of participants in the control condition
correctly stated that they would need to disable the app’s
location permission, and then re-enable it every time they
wanted to use that app, a tedious process that is prone to
forgetfulness—we treated this response as correct. Another
substantial portion among the default permission manager
condition (46%) wanted to block the location globally (from
the default location panel) or block the location access from
ZvW app entirely. While this is an overly restrictive option
compared to when in use, this is the closest option provided
in Android—we treated this as an incorrect response.
As expected, participants in the control condition rated the
difficulty of this task as “neutral (3)”, whereas the median
Likert score from those in the experimental condition was
“easy (2)”. This difference was statistically significant with a
large effect size (p < 0.0005, c/ = 0.49). The participants in
the control condition who successfully completed the task
(e.g., by acknowledging it was impossible) struggled
immensely with it, evaluating it as “difficult (4)”.

7. USER PERCEPTIONS
After completing the four tasks, participants answered two
open-ended questions about whether they have looked for
this type of permission information in the past, and whether
they have any suggestions to offer us about the design of the
interface they had just used. Two researchers independently
coded each question and then resolved conflicts. We provide
Cohen’s inter-rater reliability statistic () for each coding.

7.1 Prior Experiences
Our first question asked: Thinking about the tasks that you
performed in this survey, have you ever wanted to find simi-
lar information about the apps running on your smartphone?

Our goal was to determine whether participants had pre-
viously thought about resource access or configuring pri-
vacy preferences, and whether having these features would
be beneficial. On average, 63.1% of participants stated that
they had thought about this (Cohen’s = 0.792), and the
experimental condition they were in proved to be insignif-
icant. We did, however, observe a positive correlation be-
tween performance on the four tasks (i.e., number of tasks
performed correctly) and reporting having previously thought
about these issues (p < 0.007511, r = 0.155).

Among the people who chose to be more detailed in their
responses, several themes emerged. A large portion men-
tioned that the reason they had tried these tasks before is that
they wanted to be able to exert more control over their
installed apps:

•

•

APROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
74

Changes No Changes

control 245 (85.4%) 42 (14.6%)
experimental 187 (63.8%) 106 (36.3%)

Table 4: Whether participants believed changes were needed
to the interfaces they used during the validation study.

“I was somewhat familiar with these menus already be-
fore starting this task. I like to have control over my
app permissions including location and data manage-
ment.”
“Yes, I’ve often wanted a little more control over what
my apps get to access”

A minority of participants expressed their frustrations on
how the current default user interfaces in Android were con-
fusing and did not let them set privacy preferences the way
they wanted:

“Yes but usually can’t find anything on there either like
these. So I gave up trying.”
“Yes. I want to know what they collect, although it gets
tedious to try to figure it all out. Sometimes I’d rather
just ignore it.”

These comments highlight the fact that many users want to
have control over resource usage by applications, and that
many feel helpless to do so, given the options offered by
current privacy management interfaces. These observations
further strengthen the need for a more usable interface that
will help people to feel more empowered.

7.2 Suggestions
In our second exit survey question, we asked: Thinking about the
simulation that you just used, what could be done to make it
easier to find information about how apps access sensitive
information?

This question had two purposes: (i) to gather specific design
recommendations from participants who used TurtleGuard;
(ii) to get general suggestions from participants who used the
default permission manager.

In total, 66.03% participants (383 of 580) suggested at least
some change or improvement (Cohen’s = 0.896). Table 4
shows the breakdown of how many participants in each con-
dition prefer a change in the dashboard within their condi-
tion. A chi-square test shows a statistically significant as-
sociation between a participant’s condition and whether the
participant wants changes in the dashboard (p < 0.00005, c/ =
0.237). This suggests the participants in the experimental
condition are more satisfied with the controls provided by the
new design than those in the control condition. Our work
aims to fill the need users have regarding control over
permissions and their personal privacy.

The most common suggestion (32.24% of all suggestions)
was to reduce the number of layers to the actual permis-
sion interface (Cohen’s = 0.603). Participants complained
about number of different interfaces they had to traverse
before reaching the actual permission interface. Many par-
ticipants suggested that they would prefer to reach a per-

mission control interface directly through the application—
either as part of the application or by pressing the app icon.
TurtleGuard addresses this concern by providing a path to
permission management that involves fewer clicks and cen-
tralizes all permission management functionality.

“Streamline the interface to require less touches to find
the information about permissions and make it explicit
as to what type of data would be collected if allowed.”
“Perhaps have an easier way to access the app’s set-
tings, such as holding onto an app’s icon will bring up
its specific settings.”
“Make each app itself have the option to find that infor-
mation instead of going to the general phone settings.”
“There should be one centralized location, or maybe an
app for that. Just to toggle with these very important
settings.”

Seven participants thought having a log of recent resource
usage by applications would be useful. Some went further,
mentioning that the log should also provide contextual cues,
such as the visibility of the application at the time it makes
the request. This finding provides evidence in support of Liu
et al. [20], that recent statistics help users make better de-
cisions. TurtleGuard provides this functionality by showing
all the recent resource requests along with (i) the decision
that platform took on behalf of the users, (ii) the time that the
decision was made, and (iii) the visibility of the requesting
application.

“It would be useful to have a dashboard which shows
which apps are accessing what and when. Being able
to see a log of the actual data that was accessed would
also be useful.”
“A log could be provided as an option in the settings
that shows all times an app accessed sensitive infor-
mation.”

A few participants (14.6%) also suggested that there should
be a tutorial, wizard style guide, or a FAQ to explain how
to manage permissions (Cohen’s = 0.651). Some wanted
the applications to explain why they need access to certain
resources. Some even suggested runtime prompts for every
sensitive request access. One participant suggested that app
developers hold a YouTube Q&A session on resource usage
after each release:

“As the app is being introduced to the users, they should
make a youtube q&a to answer any simple questions
like this.”

Prior work has already shown that having runtime prompts
on every sensitive request is not feasible [38]—we believe
that a log of recent resource accesses with surrounding con-
text is the closest practical solution.

8. DISCUSSION
Our primary goal is to empower users to make privacy de-
cisions better aligned with their preferences and to keep them
informed about how third-party applications exercise granted
permissions, and under what circumstances. We

•

•

•

•

•

•

•

•

•

•

•

APROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
75

performed iterative user-centered design on a new permis-
sion management interface, TurtleGuard, which offers users
significant improvements in their ability to control permis-
sions when compared to the default permission manager.

8.1 Auditing Automated Decision Making
Recent research uses machine-learning techniques to auto-
matically predict users’ permission preferences [39, 20, 19,
21]. While machine-learning (ML) techniques have been
shown to be better at predicting users’ preferences [39], they
are still prone to errors.

If systems are going to use ML in the future, there must be
mechanisms for users to audit the decisions made on their
behalves. We believe that the design we present in our study
is a critical first step towards achieving that goal. Partici-
pants using TurtleGuard were better able to understand and
control when apps have access to sensitive data than partic-
ipants using the default permission manager. A substantial
proportion of participants mentioned the desire to have a log
that they could use to see how each application accesses
sensitive resources—functionality that is missing in the de-
fault permission manager, but is provided by TurtleGuard.

8.2 Correcting Mental Models
In Task 4, we asked participants to disable access to loca-
tion data when the example app, ZvW, was not actively be-
ing used, or to explain that this was not possible. We found
that 72.5% of the participants in the control condition in-
correctly believed that this was possible. Analyzing the dif-
ferent paths that participants in the control condition took
while using the Android simulation, it was evident that the
majority of participants did not understand the limits of the
permission interface’s provided functionality. This mis-
match between users’ mental models and actual functional-
ity may lead to users incorrectly believing that they have
denied access to certain requests for sensitive data.

8.3 Privacy Nudges
Previous work investigated ways to nudge users to config-
ure their privacy settings and make them aware of how ap-
plications access their data [20, 13, 17]. While helping mo-
tivate users to use TurtleGuard (and other privacy man-
agement interfaces) is important, it is out of scope for this
work. Nevertheless, our survey results showed that 63.1% of
participants—independent of condition—previously searched
for permission information on their smartphones. This shows
that users are keen to understand how applications use their
sensitive resources, and interfaces similar to the one we present
in this study fill a critical need.

8.4 Limitations
In our proposed interface, TurtleGuard, we allow users to
vary their decisions based on the visibility of the requesting
application. We believe this is a significant first step to-
wards enabling users to make contextual privacy decisions.
The full extent of the impact of the surrounding context,
however, goes beyond the mere visibility of the requesting
application. More work is needed to understand different
contextual factors and their respective impact on users’ pri-
vacy decisions. We hope the results of this study will pave the
path for future work on implementing fully contextually
aware permission managers.

Additionally, we acknowledge the limitations in our screen-
ing process: participants who selected Android as their mo-
bile device may have varying levels of usage and knowledge
regarding the platform. Prior experience may have rendered
the default permission manager as being easier to use for
some participants in the control condition. This suggests that
for new Android users, the usability improvements of
TurtleGuard may be even greater than what we observed.

We also acknowledge that irregularities in the simulation
may have had an impact towards participants’ comprehen-
sion and completion rates. These confounding factors intro-
duced by the UI, however, would have impacted both con-
ditions equally, because the control condition was simulated
using the same infrastructure and development environment.
Finally, for users in the control condition, Task 4 may have
been deceptively tricky due to its impossibility. Neverthe-
less, the incorrect answers underscore a very real problem:
Android users are not aware that they are unable to deny
resources to applications that they are not using.

8.5 Conclusion
Android’s existing permission models, ask-on-install (AOI)
and ask-on-first-use (AOFU), are insufficient at fulfilling users’
privacy desires and needs. Neither of the existing models
account for contextual factors in their decisions to allow or
deny access to sensitive data. Users want to protect their
sensitive information, but have a hard time understanding
when access to data is and is not being allowed. TurtleGuard
adds both ease of use and functionality, including the ability to
consider application visibility when specifying privacy
preferences, which has been shown to be a strong contextual
cue. In our study of TurtleGuard, we had participants
perform permission-related tasks and compared their perfor-
mance TurtleGuard with a control group using the default
permission manager. Based on our results, we iterated on
TurtleGuard’s design, and then performed a validation ex-
periment to confirm the validity of our changes. Our results
show that users are significantly better at performing per-
mission management tasks with TurtleGuard than the de- fault
permission manager.

Acknowledgements
This research was supported by the United States Depart-
ment of Homeland Security’s Science and Technology Di-
rectorate under contract FA8750-16-C-0140, the Center for
Long-Term Cybersecurity (CLTC) at UC Berkeley, the Na-
tional Science Foundation under grants CNS-1318680 and
CNS-1514457, Intel through the ISTC for Secure Comput-
ing, and the AFOSR under MURI award FA9550-12-1-0040.
The content of this document does not necessarily reflect the
position or the policy of the U.S. Government and no official
endorsement should be inferred.

9. REFERENCES
[1] H. Almuhimedi, F. Schaub, N. Sadeh, I. Adjerid,

A. Acquisti, J. Gluck, L. F. Cranor, and Y. Agarwal.
Your location has been shared 5,398 times!: A field
study on mobile app privacy nudging. In Proc. of the
33rd Annual ACM Conference on Human Factors in
Computing Systems, pages 787–796. ACM, 2015.

[2] P. Andriotis and T. Tryfonas. Impact of user data
privacy management controls on mobile device

APROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
76

investigations. In IFIP International Conference on
Digital Forensics, pages 89–105. Springer, 2016.

[3] Apple. About privacy and location services for ios 8 and
later. https://support.apple.com/en-us/HT203033.
Accessed: March 4, 2017.

[4] A. Barth, A. Datta, J. C. Mitchell, and
H. Nissenbaum. Privacy and contextual integrity:
Framework and applications. In Proc. of the 2006
IEEE Symposium on Security and Privacy, SP ’06,
Washington, DC, USA, 2006. IEEE Computer Society.

[5] M. Benisch, P. G. Kelley, N. Sadeh, and L. F. Cranor.
Capturing location-privacy preferences: Quantifying
accuracy and user-burden tradeo↵s. Personal
Ubiquitous Comput., 15(7):679–694, Oct. 2011.

[6] M. Bokhorst. Xprivacy.
https://github.com/M66B/XPrivacy, 2015.

[7] CollegeDev. Donkeyguard. https://play.google.
com/store/apps/details?id=eu.donkeyguard, 2014.

[8] S. Egelman, A. P. Felt, and D. Wagner. Choice
architecture and smartphone privacy: There’s a price for
that. In The 2012 Workshop on the Economics of
Information Security (WEIS), 2012.

[9] A. P. Felt, E. Chin, S. Hanna, D. Song, and
D. Wagner. Android permissions demystified. In Proc. of
the ACM Conf. on Comp. and Comm. Sec., CCS ’11,
pages 627–638, New York, NY, USA, 2011. ACM.

[10] A. P. Felt, S. Egelman, M. Finifter, D. Akhawe, and
D. Wagner. How to ask for permission. In Proc. of the
7th USENIX conference on Hot Topics in Security,
Berkeley, CA, USA, 2012. USENIX Association.

[11] A. P. Felt, S. Egelman, and D. Wagner. I’ve got 99
problems, but vibration ain’t one: a survey of
smartphone users’ concerns. In Proc. of the 2nd ACM
workshop on Security and Privacy in Smartphones and
Mobile devices, SPSM ’12, pages 33–44, New York,
NY, USA, 2012. ACM.

[12] A. P. Felt, E. Ha, S. Egelman, A. Haney, E. Chin, and
D. Wagner. Android permissions: user attention,
comprehension, and behavior. In Proc. of the Eighth
Symposium on Usable Privacy and Security, SOUPS
’12, New York, NY, USA, 2012. ACM.

[13] H. Fu, Y. Yang, N. Shingte, J. Lindqvist, and
M. Gruteser. A field study of run-time location access
disclosures on android smartphones. Proc. USEC, 14,
2014.

[14] N. Good. The Deadly Sins of Security User Interfaces.
In M. Jakobsson, editor, The Death of the Internet,
chapter 7.5, pages 398–415. John Wiley & Sons, 2012.

[15] Google. Normal and dangerous permissions.
https://developer.android.com/guide/topics/
permissions/requesting.html#normal-dangerous.

[16] P. Hornyack, S. Han, J. Jung, S. Schechter, and
D. Wetherall. These aren’t the droids you’re looking for:
retrofitting android to protect data from imperious
applications. In Proc. of the ACM Conf. on Comp.
and Comm. Sec., CCS ’11, pages 639–652, New York,
NY, USA, 2011. ACM.

[17] L. Jedrzejczyk, B. A. Price, A. K. Bandara, and
B. Nuseibeh. On the impact of real-time feedback on users’
behaviour in mobile location-sharing applications. In
Proceedings of the Sixth Symposium on Usable
Privacy and Security, page 14. ACM, 2010.

[18] P. G. Kelley, S. Consolvo, L. F. Cranor, J. Jung,
N. Sadeh, and D. Wetherall. A conundrum of
permissions: Installing applications on an android
smartphone. In Proc. of the 16th Intl. Conf. on
Financial Cryptography and Data Sec., FC’12, pages
68–79, Berlin, Heidelberg, 2012. Springer-Verlag.

[19] H. Lee and A. Kobsa. Privacy Preference Modeling and
Prediction in a Simulated Campuswide IoT
Environment. In IEEE International Conference on
Pervasive Computing and Communications, 2017.

[20] B. Liu, M. S. Andersen, F. Schaub, H. Almuhimedi,
S. A. Zhang, N. Sadeh, Y. Agarwal, and A. Acquisti.
Follow my recommendations: A personalized assistant for
mobile app permissions. In Twelfth Symposium on
Usable Privacy and Security (SOUPS 2016), 2016.

[21] B. Liu, J. Lin, and N. Sadeh. Reconciling mobile app
privacy and usability on smartphones: Could user privacy
profiles help? In Proceedings of the 23rd International
Conference on World Wide Web, WWW ’14, pages
201–212, New York, NY, USA, 2014. ACM.

[22] W. Mason and S. Suri. Conducting behavioral
research on amazon’s mechanical turk. Behavior
Research Methods, 44(1):1–23, 2012.

[23] D. Mate. Permission master.
https://play.google.com/store/apps/details?id=
com.droidmate.permaster, 2014.

[24] M. McLaughlin. What is lineageos. https:
//www.lifewire.com/what-is-cyanogenmod-121679,
2017.

[25] H. Nissenbaum. Privacy as contextual integrity.
Washington Law Review, 79:119, February 2004.

[26] K. Opsahl. Uber should restore user control to location
privacy. https://www.eff.org/deeplinks/2016/12/
uber-should-restore-user-control-location-privacy,
12 2016.

[27] G. Paolacci and J. Chandler. Inside the turk. Current
Directions in Psychological Science, 23(3):184–188,
2014.

[28] S. Patil, Y. Le Gall, A. J. Lee, and A. Kapadia. My
privacy policy: Exploring end-user specification of
free-form location access rules. In Proceedings of the
16th International Conference on Financial
Cryptography and Data Security, FC’12, pages 86–97,
Berlin, Heidelberg, 2012. Springer-Verlag.

[29] S. Patil, R. Schlegel, A. Kapadia, and A. J. Lee.
Reflection or action?: How feedback and control a↵ect
location sharing decisions. In Proceedings of the
SIGCHI Conference on Human Factors in Computing
Systems, CHI ’14, pages 101–110, New York, NY, USA,
2014. ACM.

[30] E. Peer, L. Brandimarte, S. Samat, and A. Acquisti.
Beyond the turk: Alternative platforms for
crowdsourcing behavioral research. Journal of
Experimental Social Psychology, 70:153–163, May 2016.

[31] D. Reilly, D. Dearman, V. Ha, I. Smith, and
K. Inkpen. “need to know”: Examining information
need in location discourse. In Proceedings of the 4th
International Conference on Pervasive Computing,
PERVASIVE’06, pages 33–49, Berlin, Heidelberg,
2006. Springer-Verlag.

[32] X. M. Repository. http://repo.xposed.info/,
http://repo.xposed.info/.

APROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
77

http://www.lifewire.com/what-is-cyanogenmod-121679
http://www.eff.org/deeplinks/2016/12/
http://repo.xposed.info/
http://repo.xposed.info/
http://repo.xposed.info/

[33] J. Ross, L. Irani, M. S. Silberman, A. Zaldivar, and APPENDIX

B. Tomlinson. Who are the crowdworkers?: Shifting
demographics in mechanical turk. In CHI ’10 Permission Explanation

Extended Abstracts on Human Factors in Computing
Systems, CHI EA ’10, pages 2863–2872, New York,
NY, USA, 2010. ACM.

[34] J. L. B. L. N. Sadeh and J. I. Hong. Modeling users’
mobile app privacy preferences: Restoring usability in

call phone
process outgoing calls
read phone
read call log
add voicemail
write call log

Make and process calls as well
as read information about call
status, network information and
previously made phone calls

a sea of permission settings. In Symposium on Usable
Privacy and Security (SOUPS), 2014.

[35] F. Shih, I. Liccardi, and D. Weitzner. Privacy tipping
camera Access camera devices

get accounts Access to list of accounts

points in smartphones privacy preferences. In
Proceedings of the 33rd Annual ACM Conference on
Human Factors in Computing Systems, CHI ’15, pages
807–816, New York, NY, USA, 2015. ACM.

[36] I. Shklovski, S. D. Mainwaring, H. H. Skúladóttir, and
H. Borgthorsson. Leakiness and creepiness in app space:
Perceptions of privacy and mobile app use. In

read calendar
write calendar

read contacts
write contacts

read external storage
write external storage

Read and write events to the
user’s calendar

Read and write to user’s con-
tacts

Read and write files to the user’s
external storage

Proc. of the 32nd Ann. ACM Conf. on Human Factors record audio Record audio

in Computing Systems, CHI ’14, pages 2347–2356, New
York, NY, USA, 2014. ACM.

[37] C. Thompson, M. Johnson, S. Egelman, D. Wagner, and
J. King. When it’s better to ask forgiveness than get
permission: Designing usable audit mechanisms for
mobile permissions. In Proc. of the 2013 Symposium
on Usable Privacy and Security (SOUPS), 2013.

access coarse location
access fine location
access wifi state

read sms
send sms
receive sms

Read location information in
various ways including network
SSID-based location

Read SMS messages from the de-
vice (including drafts) as well as
send and receive new ones SMS

[38] P. Wijesekera, A. Baokar, A. Hosseini, S. Egelman,
D. Wagner, and K. Beznosov. Android permissions
remystified: A field study on contextual integrity. In
Proceedings of the 24th USENIX Conference on
Security Symposium, SEC’15, pages 499–514, Berkeley,
CA, USA, 2015. USENIX Association.

[39] P. Wijesekera, A. Baokar, L. Tsai, J. Reardon,
S. Egelman, D. Wagner, and K. Beznosov. The
feasibility of dynamically granted permissions:
Aligning mobile privacy with user preferences. arXiv
preprint 1703.02090, 2017.

Table 5: Sensitive permissions managed by TurtleGuard.
Permissions grouped by a single explanation form the fam-
ilies used in our system to reduce the number of managed
permission as discussed in Section 3.

APROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
78

Condition Correct Incorrect All
Task 1
control 2 3 2
experimental 2 4 2
Task 2
control 2 3 3
experimental 2 3 2
Task 3
control 2 4 3
experimental 2 3 2
Task 4
control 4 2 3
experimental 2 2 2

Table 6: Median ease-of-use Likert scores for all tasks, condi-
tions, and correctness in the validation experiment. Higher
scores indicate more difficulty.

Figure 6: In the pilot experiment, TurtleGuard was launched
via the icon labeled “Privacy Manager” (top left), but then
added as a sub-panel to the Settings app, labeled “Permis-
sions Manager,” for the validation experiment (top right). In
the control condition in the pilot experiment and both con-
ditions in the validation experiment, the Settings app was
accessible from the home screen (bottom).

APROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
79

Figure 7: Ease of use histograms for each task (validation
experiment)

Figure 8: Ease of use histogram for Task 1 (validation ex-
periment)

APROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
80

Figure 9: Ease of use histogram for Task 2 (validation ex-
periment)

Figure 10: Ease of use histogram for Task 3 (validation ex-
periment)

APROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
81

Figure 11: Ease of use histogram for Task 4 (validation ex-
periment)

APROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
82

List of Symbols, Abbreviations and Acronyms

AOFU Ask On First Use

API Application Programming Interface

BYOD Bring Your Own Device

CDMA Code Division Multiple Access

ESM Experience Sampling Method

GPS Global Positioning System

GSM Global System for Mobiles

HTTPS Hyper Text Transfer Protocol Secure

ML Machine-learning

NFC Near field communication

OS Operating System

SSID Service Set Identifier

SMS Short Message Service

SVM Support Vector Machines

UI User Interface

APROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
83

Glossary of Terminology

BYOD Bring Your Own Device Practice where employees and workers can
bring their own mobile devices into the workplace to be used for both work and personal
purposes.

Background Application Application that is running on a mobile device but is
not readily visible to the end user.

Classifier The Classifier is a system that looks at user preferences (privacy
preferences in the case of this report) and then recommends actions to perform on the
behalf of the end user (e.g. deny access to a specific application for contact information).
Over time, the classifier learns how to correctly classify user preferences and associate
these with actions that it should perform for the end user.

Android The operating system at the time of this writing that is developed by
Google used on mobile phones.

Dashboard The user interface we provided for allowing users to have control over
the privacy settings for their applications on the Android phones

Lo-Fidelity prototypes Lo-Fidelity prototypes are prototypes created for user
testing that display minimal information and are not entirely implemented.

Hi-Fidelity prototypes Hi-Fidelity prototypes are prototypes created for user
testing that look and in some cases act as if they are implemented, however they still
lack certain functionality that would make them actual implementations.

APROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
84

