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1. Introduction 

Quantum mechanics and applications that rely on quantum principles to operate, 
such as quantum computing, quantum networking, and quantum cryptography, can 
be difficult to analyze computationally using commonly available software 
packages. One reason for this is the lack of native functions that are relevant to 
quantum problems. A second is that notational conventions in physics and 
computer science differ and can cause confusion. To facilitate the use of computers 
for the analysis of quantum operations, several software packages created solely for 
this purpose have recently been released. Some examples include Quantum Tools 
in Python (QuTiP) (Nation and Johansson 2017), Quantum Entanglement Theory 
Laboratory (QETLAB) (Johnston 2016), and Forest (Dekant 2017). 

In this technical report we will evaluate the utility of QuTiP for the simulation of 
quantum networking operations by digitally modeling quantum teleportation 
(Bennett et al. 1993). We will then use this model to reproduce published results 
related to quantum teleportation when imperfect resource states are used, as well as 
graph-related metrics, such as fidelity, average fidelity, concurrence, and purity. 
Specifically, we numerically model the situation where the shared resource is a  
2-qubit isotropic state. This scenario is especially interesting because isotropic 
states can be separable, entangled, or nonlocal, and each of these regimes has 
published results that can be verified. We further use our program to study the 
teleportation of mixed input states, which is closely related to entanglement 
swapping.   

This report is organized as follows. In Section 2 we review the quantum 
teleportation protocol as well as several related results. In Section 3 we describe 
some specific aspects of QuTiP, and how teleportation was implemented within it. 
We then use our teleportation program to teleport pure states in Section 4 and mixed 
states in Section 5.  

2. Quantum Teleportation 

Quantum teleportation has been a widely researched topic due to its applications in 
quantum information processing. Despite the colloquial definition, the word 
teleportation in this context means that the quantum state of one particle is being 
transferred to another particle, and not the transfer of the particle itself. As initially 
proposed by Bennett et al. (1993), the only resources required for the transfer of the 
quantum state from one party (“Alice”) to another (“Bob”) is a pre-shared Bell state 
between the 2 parties and a classical channel over which Alice can send 2 bits of 
classical information to Bob. An illustration of this protocol is provided in Fig. 1. 



 

Approved for public release; distribution is unlimited.  
2 

Interestingly, this protocol still functions when both users are unaware of what state 
is being teleported. 

 
Fig. 1 Diagram of the teleportation protocol 

As 2 classical bits are insufficient to determine the state of a qubit, it is clear that 
the shared Bell state plays an important role in the transfer of information. One way 
to investigate this is to determine how successful teleportation is when imperfectly 
entangled and mixed states are used as the shared resource instead of a Bell state. 
To compare these situations, a measure called fidelity is used (Popescu 1994), 
which is defined as follows: If Alice wishes to teleport state |𝜒𝜒⟩ and, after 
teleportation, Bob is left with a possibly mixed state 𝜌𝜌𝐵𝐵, then the fidelity of the 
teleportation is defined as 𝐹𝐹 = ⟨𝜒𝜒|𝜌𝜌𝐵𝐵|𝜒𝜒⟩. Since this expression will generally 
depend on the initial state |𝜒𝜒⟩, we define the average fidelity 𝐹𝐹, which is 𝐹𝐹 averaged 
uniformly over all possible pure input states.    

Recently, much work has been devoted to determining the bounds on the average 
fidelity for different resource states. The original quantum teleportation protocol 
has 𝐹𝐹 = 1, which means that the correspondence between the initial state to be 
teleported and the state remaining at the end of the protocol is perfect  
(Popescu 1994). However, if Alice and Bob cannot communicate at all, the best 
Bob can do is guess, which will result in an average fidelity between Alice’s and 
Bob’s states of 1/2 (Popescu 1994). Next, we ask what the average fidelity is if 
Alice and Bob are restricted to only the classical channel. This corresponds to the 
original teleportation protocol, but without the shared entangled resource state. In 
this case, the average fidelity achievable is 𝐹𝐹 = 2/3 and can be attained by having 
Alice measuring the state to be teleported along an arbitrary direction (but agreed 
upon with Bob) and Bob preparing a state in the corresponding direction  
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(Popescu 1994). From this, any shared resource state between Alice and Bob that 
results in an average fidelity of 𝐹𝐹 > 2/3 is considered to be “useful for 
teleportation” (Horodecki et al. 1996). It has been shown that any state that violates 
Bell’s inequality is a useful resource state for teleportation (Horodecki et al. 1996). 
Interestingly, the opposite is not necessarily true. Just because a state is useful for 
teleportation does not mean that it is nonclassical (Popescu 1994). In other words, 
states have been found which admit a local description, but still result in average 
teleportation fidelity above 2/3 (Popescu 1994, Gisin 1996, Barrett 2001). Many of 
these results will be reproduced using isotropic states in the following sections. 

We now discuss the teleportation scheme in more detail. Our presentation closely 
follows that of Rieffel and Polak (2011), but was originally introduced by Bennett 
et al. (1993). As mentioned above, the goal of quantum teleportation is to transfer 
a quantum state from one user (called Alice) to another (called Bob) using only a 
classical channel and a shared entangled resource state. In the original protocol, the 
shared resource state is a fully entangled Bell pair, which we will write as  

 |𝜙𝜙+⟩ = 1
√2

(|00⟩ + |11⟩), (1) 

where |0⟩ and |1⟩ form an orthonormal basis. In this same basis, we can express a 
general state to be teleported as 

 |𝜒𝜒⟩ = 𝑎𝑎|0⟩ + 𝑏𝑏|1⟩ , (2) 

with a and b complex numbers that satisfy |𝑎𝑎|2 + |𝑏𝑏|2 = 1. Together, the initial 
state of the entire system can then be expressed as 

 |𝜒𝜒⟩⨂|𝜙𝜙+⟩ = 1
√2

(𝑎𝑎|000⟩ + 𝑎𝑎|011⟩ + 𝑏𝑏|100⟩ + 𝑏𝑏|111⟩) , (3) 

where the notation has Alice’s 2 initial qubits first and Bob’s last in each bracket. 
The protocol then begins with Alice performing a Bell state measurement on her  
2 qubits and recording the result. A Bell state measurement is an entangling 
operation that projects the state of 2 qubits onto 1 of the 4 Bell states. In terms of 
basic quantum gates, this can be achieved using a controlled NOT gate (CNOT 
gate) followed by a Hadamard transformation and measurements in the standard 
basis. The Hadamard transformation is a single qubit operation that can be written 
as 

 𝐻𝐻 = 1
√2

(|0⟩⟨0| + |1⟩⟨0| + |0⟩⟨1| − |1⟩⟨1|) , (4) 

which operationally takes a single qubit to a superposition. A CNOT gate is a  
2-qubit gate and can be written as 
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 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 = |00⟩⟨00| + |01⟩⟨01| + |11⟩⟨10| + |10⟩⟨11| . (5) 

We see that this operator flips the state of a second qubit if the first qubit is in state 
1. The application of these 2 gates to Alice’s qubits can be written as 

 (𝐻𝐻⨂𝐼𝐼⨂𝐼𝐼)(𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶⨂𝐼𝐼)(|𝜒𝜒⟩⨂|𝜙𝜙+⟩) = 1
2
�|00⟩(𝑎𝑎|0⟩ + 𝑏𝑏|1⟩) + |01⟩(𝑎𝑎|1⟩ +

𝑏𝑏|0⟩) + |10⟩(𝑎𝑎|0⟩ − 𝑏𝑏|1⟩) + |11⟩(𝑎𝑎|1⟩ − 𝑏𝑏|0⟩)� , (6) 

where I is the identity. We can see from this that a projection of Alice’s 2 qubits 
onto the standard basis will project Bob’s state onto one of the four 2-qubit states 
shown in the first column of Table 1. 

Table 1 Bob’s output states and the corresponding corrective local unitary operations 

𝝆𝝆𝑩𝑩 Corrective operation 

𝑎𝑎|0⟩ + 𝑏𝑏|1⟩ 𝐼𝐼 

𝑎𝑎|1⟩ + 𝑏𝑏|0⟩ 𝜎𝜎𝑋𝑋 

𝑎𝑎|0⟩ − 𝑏𝑏|1⟩ 𝜎𝜎𝑍𝑍 

𝑎𝑎|1⟩ − 𝑏𝑏|0⟩ 𝑖𝑖𝜎𝜎𝑌𝑌 

 

The second column of Table 1 lists what single qubit gate, if applied to Bob’s state, 
would transform it into |𝜒𝜒⟩. By performing this measurement Alice knows which 
of these 4 states is in Bob’s possession and uses the classical channel to send 2 bits 
of information to Bob letting him know which corrective operation he should apply 
to recover |𝜒𝜒⟩. It is noteworthy that Alice’s message qubit is now effectively 
destroyed and thus its reconstruction by Bob does not violate the No Cloning 
Principle.  

As described, the state Bob ends up with will be an exact duplicate of |𝜒𝜒⟩. However, 
any number of factors, such as the entanglement of the resource state and the purity 
of the inputted message, may cause Bob’s final “output” qubit to differ to an extent 
from Alice’s original “input.” We will numerically investigate these possibilities in 
later sections. 
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3. Implementation 

In this section we describe how we digitally simulated the quantum teleportation 
protocol using the QuTiP package for Python, and discuss some of the 
preprogrammed functions we found most useful. Operationally, our program 
functions as described in the previous section in the sense that it takes as an input 
state to be teleported (or generates its own randomly), applies the CNOT and 
Hadamard gates, performs a measurement, and finally applies the corrective unitary 
to the final qubit. For simplicity we often set the program to project onto a specific 
Bell measurement output so that Bob’s corrective operation was fixed. This was 
done to speed up the program and make it easier to check for errors; however, it is 
also experimentally motivated by the fact that with linear optics the 𝜓𝜓−projection 
can be implemented with only a beamsplitter and 2 detectors. 

Our teleportation model, as well as QuTiP itself, is built upon the quantum object 
class Qobj, a data type that includes the fields dimension, shape, and data in matrix 
representation. This structure is used as the basis of our program and all states and 
operators are built using this representation. Specific states were created using the 
following basic elements: the basis function, which allows for the creation of Fock 
states; the dag function, which finds the adjoint of a quantum object; and the tensor 
function, which finds the tensor product of 2 input operators. 

Since we are mostly interested in teleporting random input states, rather than a 
specific input state, it was important for us to be able to produce random pure and 
mixed density matrices. To accomplish this we can use Numpy’s random to choose 
vectors either along the surface of the Bloch sphere (for pure states) or throughout 
the entire sphere (for mixed states). While this method is straightforward, to 
improve performance we can also use the rand_dm(n) function, which creates a 
random density matrix of n dimensions. 

The gate operations are performed using the built-in functions cnot and hadamard-
_transform, which implement the CNOT gate and Hadamard gate, respectively. 
After these and the projections onto measurement states, the tracing out of the 
measured qubits is performed using ptrace.    

All of our numerical tests are performed with isotropic mixed states as the entangled 
state resource. These states, which are given by  

 𝑝𝑝|𝜙𝜙+⟩⟨𝜙𝜙+| + 1−𝑝𝑝
4
𝐼𝐼4 , (7) 

where −1/3 ≤ 𝑝𝑝 ≤ 1 and 𝐼𝐼4 (Werner 1989; Horodecki and Paweł 1999) form the 
identity matrix of dimension 4. We note that these states are equivalent for 2 qubits, 
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up to local rotations, to the more familiar Werner states (Werner 1989). Also, in 
what follows we will restrict the range of the isotropic state to 0 ≤ 𝑝𝑝 ≤ 1 , since 
this captures the interesting regions of the function and allows us to more easily 
interface with published results. In QuTiP the isotropic state of 2 qubits can be 
easily created using functions already described. The reason we focus on these 
states is because they can range from separable, to entangled, to nonlocal, 
depending on the value of p. To demonstrate the ease at which we can increment 
the concurrence of these states we have created Fig. 2, which plots the concurrence 
of the state as a function of p. We note that when 0 ≤ 𝑝𝑝 ≤ 1/3, the concurrence of 
the isotropic state is 0 and the state is not entangled, and when 𝑝𝑝 > 1/3, it is 
entangled with a concurrence given by 𝐶𝐶 = (3/2)𝑝𝑝 − 1/2. The state also violates 
the Clauser, Horne, Shimony, and Holt (CHSH) equality (a form of the Bell 
inequality) when 𝑝𝑝 > 1/√2. The region between when the state becomes entangled 
and when it violates the CHSH inequality is less understood. When considering 
local projective measurements, it was shown by Werner (1989) that a local hidden 
variable model exists when 𝑝𝑝 ≤ 1/2, and this bound was subsequently extended to 
𝑝𝑝 ≲ 0.66 by Acin (2006). Therefore, there is a region between 1/3 < 𝑝𝑝 ≲
0.66 where the state is entangled but local. These 3 important values, 𝑝𝑝 = 1

3
,𝑝𝑝 ≈

0.66 and = 1/√2 , are marked by vertical lines in Fig. 2. For an overview of recent 
progress on bounding the value of p needed to reveal nonlocality see Brunner 
(2014). 

In order to generate graphs numerically, we use QuTiP’s metrics module. We use 
the concurrence function to find the concurrence of the isotropic resource state, and 
the fidelity function to measure the fidelity between the input state and the final 
state in Bob’s possession. We rounded these metrics to 5 decimal places as this 
sufficiently met our needs and eliminated incongruities due to rounding in earlier 
computations. We also note that, in order to match the conventional definition, we 
have to square the output of the fidelity function (Nielsen and Chuang 2002).   
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Fig. 2 Isotropic resource state parameter p vs. the concurrence of the isotropic state. The 
vertical lines are placed at 𝒑𝒑 = 𝟏𝟏

𝟑𝟑
,𝒑𝒑 ≈ 𝟎𝟎.𝟔𝟔𝟔𝟔 and 𝒑𝒑 = 𝟏𝟏/√𝟐𝟐. 

4. Teleporting Pure States 

We begin by investigating the teleportation fidelity as a function of the p parameter 
of an isotropic resource state by generating multiple instances of the teleportation 
protocol and creating a point plot. In this special case of a pure input state and an 
isotropic resource state, the fidelity and average fidelity are equivalent and hence 
we only need to plot 1 point for each p of the isotropic state (Bandyopadhyay and 
Sanders 2006). The resulting plot is shown in Fig. 3, and has 1 point for every .01 
change in p. For convenient comparison to Fig. 2, we have also included the vertical 
lines of Fig. 2, which demarcate the regions where the isotropic state is separable, 
entangled, and nonlocal. Additionally we have included 2 horizontal dashed lines, 
the green one at a fidelity of 1/2, representing the achievable fidelity if there were 
no channel between Alice and Bob, and the second red dashed line at a fidelity of 
2/3, the maximum achievable when Alice and Bob only share a classical channel. 
Further explanation for these fidelities is given in Section 2. 
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Fig. 3 Isotropic resource state parameter p vs. the fidelity of a teleported message. The 
vertical lines are placed at 𝒑𝒑 = 𝟏𝟏

𝟑𝟑
,𝒑𝒑 ≈ 𝟎𝟎.𝟔𝟔𝟔𝟔 and 𝒑𝒑 = 𝟏𝟏/√𝟐𝟐. The horizontal lines are given by 

𝑭𝑭 = 𝟏𝟏
𝟐𝟐
 and 𝑭𝑭 = 𝟐𝟐

𝟑𝟑
. 

The values we see in Fig. 3 are in line with our expectations. While the isotropic 
state is separable (𝑝𝑝 ≤ 1/3), the fidelity is bounded by 2/3, which is the maximum 
possible with only a classical channel. More generally, this plot fits the predictions 
of Bandyopadhyay and Sanders (2006), which derived for the expression  

 𝐹𝐹 = 1
2

+ 𝑝𝑝
2
 (8) 

for the teleportation fidelity when an isotropic state is used as the resource. An 
intriguing aspect of this plot and the expression above is that we see there are 
regions where the isotropic state is useful for teleportation �𝐹𝐹 > 2

3
�, but that the 

isotropic state itself admits a local model (𝑝𝑝 ≲ 0.66). It is precisely this observation 
that indicates that nonlocality and usefulness for teleportation are not equivalent. 
We see that it is in fact entanglement which is necessary for teleportation fidelities 
greater than 2/3, but not necessarily nonlocality.   

To emphasize the importance of entanglement, but not necessarily nonlocality, to 
teleportation, we have also created Fig. 4. Here, we plot the teleportation fidelity as 
a function of the concurrence of the isotropic resource state. For emphasis, we have 
added the same green and red dashed lines as in Fig. 3. It is important to note that 
when the concurrence (C) is greater than zero, the isotropic resource state is 
entangled but not necessarily nonlocal. This fits with the conclusion found from 
Fig. 4 that entanglement is the essential ingredient for teleportation to be useful and 
not nonlocality.  

We will now connect Fig. 4 to results found in the literature. A direct application 
of the analysis found in Roa et al. (2016) to the isotropic state we are considering 
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here results in the following expression for the fidelity of a transported state when 
the concurrence (C) of the isotropic state is greater than zero (𝑝𝑝 > 1/3): 

 𝐹𝐹 = 2
3

+ 𝐶𝐶
3
 . (9) 

This matches up to the regions of Fig. 4, where 0 < 𝐶𝐶 ≤ 1. Additionally, it can be 
shown directly from the analysis by Roa et al. that for the region where C=0 (0 ≤
𝑝𝑝 ≤1/3), the fidelity is given by  

 𝐹𝐹′ = 2
3

+ 𝐶𝐶′
3

 , (10) 

where 𝐶𝐶′ = (3𝑝𝑝 − 1)/3. We note that when 𝑝𝑝 > 1/3,  𝐶𝐶 = 𝐶𝐶′.  

 

Fig. 4 Concurrence of an isotropic resource state vs. the fidelity of a teleported message. 
The horizontal lines are given by 𝑭𝑭 = 𝟏𝟏

𝟐𝟐
 and 𝑭𝑭 = 𝟐𝟐

𝟑𝟑
. 

5. Teleporting Mixed States 

More realistically, the state to be teleported will not be pure but mixed; we also 
modeled this scenario. This requires a more general definition of teleportation 
fidelity than the one introduced in Section 2, because now both states can be mixed, 
instead of just the output state as assumed in the original definition. Here we use 
the analogous definition where fidelity is calculated between 2 different density 
matrices 𝜌𝜌 and 𝜎𝜎 using  

 𝐹𝐹′ = 𝐶𝐶𝑇𝑇 ���𝜌𝜌𝜎𝜎�𝜌𝜌� (11) 

rather than between a density matrix and a pure state (Nielsen and Chuang 2002). 
The average fidelity is now averaged over all mixed input states as well as pure 
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input states. As with the previous section, we assume here that the shared resource 
state is an isotropic state. 

To begin with, we have produced Fig. 5 by plotting the output fidelity of the 
teleportation versus the concurrence of the isotropic resource state. The mixed input 
states are randomly generated by a QuTiP function as described in Section 3. For 
each of the 100 horizontal values of concurrence we have run the teleportation 
protocol 50 independent times and plotted each point. It is clear to see that the 
possible range of fidelities is bounded below by those of a pure state and above by 
F=1. In Fig. 6 we have generated a similar plot by averaging the values for each 
concurrence rather than drawing all points. Again, it is clear that the fidelity is 
higher on average than that which we saw when plotting for pure states. This can 
be interpreted as saying that the fidelity of a pure state input and its mixed state 
output is smaller than the fidelity of a mixed state input and its corresponding mixed 
state output.   

 

Fig. 5 Output fidelity vs. concurrence of isotropic resource state. Input states are randomly 
generated mixed states. The horizontal lines are given by 𝑭𝑭 = 𝟏𝟏

𝟐𝟐
 and 𝑭𝑭 = 𝟐𝟐

𝟑𝟑
. 
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Fig. 6 Average output fidelity vs. concurrence of isotropic resource state. Input states are 
randomly generated mixed states. The horizontal lines are given by 𝑭𝑭 = 𝟏𝟏

𝟐𝟐
 and 𝑭𝑭 = 𝟐𝟐

𝟑𝟑
. 

To investigate this phenomenon in a more controlled fashion we define a single 
qubit state, which is parameterized as follows 

 𝜌𝜌𝑞𝑞 = 𝑞𝑞(|𝜔𝜔⟩⟨𝜔𝜔|) + (1 − 𝑞𝑞)(𝐼𝐼2) , (12) 

where 𝐼𝐼2 is the identity matrix of dimension 2 and  

 |𝜔𝜔⟩ = 1
√2

(|0⟩ + |1⟩) . (13) 

We see that when q=1, the state is a totally pure superposition of the basis vectors 
and when q=0, it is in a totally mixed state. Using this state, we have created  
Fig. 7, which plots the teleportation fidelity as a function of the isotropic states p 
parameter for 100 horizontal values of p and 10 different values of q.  

We conclude from this short investigation into the teleportation of mixed states that, 
since it would generally be expected that the quality of teleportation will decline as 
the purity of the input state decreases, fidelity may not be the appropriate metric to 
study this scenario. This notion merits further investigation. 
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Fig. 7 Fidelity vs. p parameter of isotropic resource states for mixed input states 𝝆𝝆𝒒𝒒. The 
vertical lines are placed at 𝒑𝒑 = 𝟏𝟏

𝟑𝟑
,𝒑𝒑 ≈ 𝟎𝟎.𝟔𝟔𝟔𝟔 and 𝒑𝒑 = 𝟏𝟏/√𝟐𝟐. The horizontal lines are given by 

𝑭𝑭 = 𝟏𝟏
𝟐𝟐
 and 𝑭𝑭 = 𝟐𝟐

𝟑𝟑
. 

6. Conclusion and Discussion 

Modern technologies such as QuTiP make it possible to model fundamental aspects 
of quantum mechanics, including quantum teleportation. The conclusions derived 
can widely span fields including quantum networking, quantum information, and 
quantum computing, and can directly influence experimental work, such as the 
ongoing construction of our quantum networking test-bed at the US Army Research 
Laboratory (ARL), pictured in Fig. 8. With a simple Python program built using 
the Quantum Tools in Python package, we were able to reproduce several published 
theoretical results. Thus, QuTiP proved useful and reliable for modeling quantum 
phenomena. We also found QuTiP to significantly reduce the time required to 
design and implement quantum protocols due to the large number of 
preprogrammed functions and the fact that the notation used in these functions is 
that of quantum mechanics. We chose QuTiP for our modeling because it is one of 
the largest and best maintained quantum software packages; however, it is not 
necessarily optimized for the application we chose, since its main purpose is the 
modeling of open quantum systems. We note this because, although it is not 
advertised to have this feature, we found the lack of an analytical solver to be 
inconvenient. The authors think that QuTiP is a useful tool and hope that such 
techniques as described here will continue to be used to advance our knowledge of 
quantum behaviors. 
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Fig. 8 Summer intern Mary Grace Hager teams up with midshipman Drew Weninger to 
learn how to operate the ARL quantum network test-bed 
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List of Symbols, Abbreviations, and Acronyms 

ARL  US Army Research Laboratory  

CHSH  Clauser, Horne, Shimony, and Holt 

CNOT  controlled NOT 

QETLAB Quantum Entanglement Theory Laboratory   

QuTiP  Quantum Tools in Python 
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