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1. Introduction and Summary 

The US Army Research Laboratory (ARL), US Army Tank Automotive Research 
Development and Engineering Center (TARDEC), DCS Corp., and Naval Surface 
Warfare Center Dahlgren Division (NSWCDD) worked together to advance the 
capabilities of a software-in-the-loop (SIL) simulation environment in support of 
the larger TARDEC–Wingman Joint Capabilities Technology Demonstration 
(JCTD). The Wingman program began in fiscal year 2014 to provide robotic 
technological advances and experimentation to increase the autonomous 
capabilities of manned and unmanned combat-support vehicles. A major goal of 
this program as a whole is to advance manned–unmanned teaming initiatives by 
iteratively defining and decreasing the gap between autonomous vehicle control 
and required level of human interaction. Outcomes of these joint research efforts 
for development of this SIL support the design of a robotic system user interface 
and enhance communication among manned–unmanned team members, which are 
critical to achieve Training and Doctrine Command 6+1-required capabilities for 
robotics and autonomous systems. 

This report describes the SIL, technical advances to integrate real-world 
environments within a virtual environment, how-to guidelines for setting up the 
SIL, and documentation for assessing and correcting integration issues. The setup 
and capabilities of the SIL provide advanced software development, rapid 
prototyping, and early assessment and training of Warfighter teaming within 
manned–unmanned gunnery operations (Schaefer et al. 2017). More specifically, 
real-world gunnery test courses were designed and integrated into the virtual 
environment in order to support a smooth transition from simulation to the real 
world. In addition, specific goals and technical challenges are discussed 
throughout. Specific guidelines for setting up and correcting potential errors or 
technical issues are included.   

2. Wingman Program Overview 

The Army’s Robotic Wingman program currently has a single manned M1151 High 
Mobility Multipurpose Wheeled Vehicle (HMMWV) working with a single 
unmanned robotic M1097 HMMWV operating in a joint gunnery task. The 
manned-vehicle crew comprises a driver, commander, gunner (also responsible for 
target detection and lasing for the unmanned vehicle), robot-vehicle operator to 
monitor or control mobility, and robot-vehicle gunner to monitor and assist with 
target acquisition and firing. Currently, the project’s main goal is to attain direct-
fire weapon proficiency by delivering fire on target(s) and qualifying under the 
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Table VI qualification guidelines on gunnery-target ranges as described in the US 
Army Training and Doctrine Command’s Training Circular 3-20.31 (TRADOC 
2015). Future advancements from this program foresee the single manned vehicle 
working cooperatively with multiple unmanned vehicles supporting manned–
unmanned teaming (MUM-T) initiatives in complex, uncertain environments. 

3. Wingman SIL Design and Goals 

The Wingman SIL was designed to use all of the same real-world vehicle software, 
with limited deviations in integration protocols, to create a means for successful 
software development, integration, and rapid prototype development. In addition, a 
second goal in the design of the SIL was for Warfighter-in-the-loop assessment and 
training to advance scientific understanding of future MUM-T operational needs, 
including but not limited to implications of design on performance, increasing 
shared situation awareness to support the Army “asymmetric vision” and “decide 
faster” initiatives, and calibrate appropriate trust in the unmanned weaponized 
vehicle.  

3.1  Software Integration 

The current software includes the Robotic Technology Kernel (RTK) for 
autonomous mobility, the Autonomous Remote Engagement System (ARES) 
supporting the autonomous targeting and weapons systems control, and the 
Wingman’s Warfighter Machine Interface (WMI) providing individualized, 
customized interactive displays for the Wingman commander, robot-vehicle driver, 
and robot-vehicle gunner. Figure 1 (adapted from Schaefer et al 2017) provides a 
visual depiction of the detailed software connections and required integration with 
2 simulation systems: the Unity3d Game Engine and Quantum Signal’s 
Autonomous Navigation and Virtual Environment Laboratory (ANVEL). 

ANVEL was developed as a simulation tool for studying robotic assets in various 
environments with a variety of sensors. Integration with the RTK vehicle-mobility 
software was achieved using ANVEL’s plugin interface and supports rapid testing 
of current and potential mobility capabilities with minimal integration effort. The 
Unity3D Game Engine was integrated into the SIL because it provides a 
customizable, realistic virtual environment that supports complex interactions 
with terrain and dynamic events that stimulate the ARES sensors (e.g., camera 
and LRF data), actuates ARES output (e.g., weapon commands), and simulates 
physical effects such as wind effects and bullet fly-outs. All software, including 
video output from the simulation systems, is used to update information on the 
different WMI displays.  
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The combination of simulation software allowed the SIL to utilize the strengths of 
each program without the need for developing additional capabilities. ANVEL’s 
main strength lies in its ability to accurately simulate the dynamics of the robotic 
vehicle and all of the robotic sensors in real time. Unity’s strength lies in its 
flexibility for adding elements and scenarios to a scene, its quality video rendering 
for target tracking and acquisition, and its ability to incorporate dynamic and 
customizable interactions with the virtual environment. ANVEL’s physics 
simulation would have required extensive modifications to add elements like 
weapon fire and the Unity simulation and would have required developing or 
integrating new systems to add the necessary robotic sensors and dynamics; hence, 
federation was the ideal approach. Figure 1 depicts the various software 
connections, including those to the RTK of the Robotic Operating System (ROS). 
The 2 Soldiers remotely controlling the unmanned vehicle’s operation and weapon 
are called “Mobility Operator” and “Robotic Gunner” (and later, “Robotic Vehicle 
Operator” and “Robotic Weapon Operator”). 

 

Fig. 1  Wingman SIL’s detailed software connections 

3.2  SIL Design vs. Real World  

There were 2 main deviations in this early version of the SIL from the real-world 
setup. First, the virtual environment provides all of the sensor-data input rather than 
the real-world environment. The benefit of using a virtual environment is the 
capability to control for and modify the environment systematically in order to 
assess the software under different environmental constraints. However, it is also 
necessary to have the capability in the virtual environment to match the real-world 
test environments in order to validate the SIL, train Warfighters, and test the 
software-integration capabilities. Section 4 discusses the technical integration 
efforts and challenges associated with developing this capability. The second 
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deviation was that the SIL does not require all 5 of the crew members to operate 
the system. At present, the key human-in-the-loop team members include the 
commander, robot vehicle operator, and robot vehicle gunner. For the current 
purposes of the SIL, the manned-vehicle driver and manned-vehicle gunner are 
simulated. The simulation environments support integration of these 2 roles at a 
later date.  

4. Integrating Real-World Test Courses as Virtual 
Environments 

In order to accurately test the Wingman system and transfer findings from 
simulation to the field, a goal of this SIL was to incorporate real-world Army 
gunnery training courses into the virtual environment. It was essential to integrate 
environmental features such as elevation, paths, objects, and obstacles as well as 
target locations and target types. Further, a number of technical challenges had to 
be overcome in order to have matching terrain databases in both ANVEL and 
Unity3d. Any divergence could directly impact the localization data required for 
the system to run effectively. This section of the report describes the process for 
matching real-world environments within the SIL. 

4.1 Integration of Geospatial Data into Unity3d 

Geospatial data for the desired area were found using the US Geological Survey’s 
EarthExplorer and were cropped, resized, and converted to a raw elevation data 
format using the Geospatial Data Abstraction Library (GDAL). Those raw 
elevation data were then imported into the Unity3d native terrain format. This 
provided the elevation requirements for the associated gunnery test range. In order 
to include ground-covering data, a matching satellite image of the area was also 
added to the Unity3d terrain by cropping the satellite image to the known extents 
(boundaries) of the terrain. Finally, vegetation and trees were added to the terrain 
by hand, using standard tools in the Unity3d editor to roughly match the satellite 
imagery. Appendix A has instructions for developing a terrain map for use by 
Unity3d. 

4.2 Matching Terrains in ANVEL and Unity3d  

A secondary technical challenge was to develop matching terrains in both ANVEL 
and Unity3d. This was a requirement since the localization data of the Wingman 
vehicle comes from ANVEL through the RTK to ARES. Accurate localization data 
are required since they directly support the gunnery controls within the Unity3d 
simulation as well as the camera feeds into the WMIs used by the commander, 
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robot-vehicle operator, and robot-vehicle gunner. In order to address this technical 
challenge, terrain files were exported from Unity as an .obj file; imported into 
Blender, where they were rotated, translated, and given a terrain texture using a UV 
map to create a new .obj file; and, finally, converted in ANVEL from the edited 
.obj file to an Object-Oriented Graphics Rendering Engine (OGRE) mesh file that 
could be read by ANVEL as an environment. The Blender rotations and translation 
were needed to insure the physics mesh imported with the correct orientation and 
position into ANVEL. The UV map was needed to provide a texture on the terrain 
for confirming matching terrains between Unity and ANVEL. (Appendix B has 
instructions for the modification of terrain data in Blender.) 

5. How-To Guidelines to Set up the SIL 

This section discusses specific criteria needed to set up and use the SIL. Base 
equipment criteria, as well as setup and integration needs, are discussed.  

5.1 Equipment 

As depicted in Fig. 1, the current desktop Wingman SIL uses 3 desktop computers 
to run ANVEL and RTK, ARES, and Unity. It also uses 3 tablet computers for the 
WMI displays. In the future, an additional machine will be used as a LRAS3 
operator station and will be a client to the Unity simulation and feed video and 
target position information to the Vehicle Commander’s WMI.  

There are currently 3 SIL setups located at ARL, NSWCDD, and TARDEC. This 
allows for continued updates, advancement of software, and effective team 
collaboration. The following subsections provide some guidelines and 
recommendations for hardware requirements. It is important to note that the SIL 
can be run on multiple hardware varieties.*  

5.1.1 Vehicle Mobility  

The current instance of the SIL uses a single computer for both ANVEL and RTK 
through the use of a virtual machine (VM). ANVEL is run on the host Windows 
operating system, and an Ubuntu 14.04 VMware Player virtual machine is used for 
running RTK. The virtual machine uses a bridged network connection to share data 
among the host operating system (OS) and the VM as well as external computers.  

                                                 
* The SIL setup at ARL includes 3 Alienware Area 51 desktop computers with Microsoft Windows 8.1, Intel 
Core i7-5820K central processing unit at 3.30 GHz and 3301 Mhz, 6 core(s), 12 logical processor(s), 16-GB 
random-access memory (RAM), and NVIDIA GeForce GT980 graphics card for the ANVEL/RTK, ARES, 
and Unity3d machines. Either 3 Surface Pro 3 tablets running Windows 8 OS or 3 Surface Pro 4 tablets running 
Windows 10 OS are able to successfully operate the WMIs.  
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As the VM uses a large portion of the RAM and processing cores of the computer, 
at least 8 GB of RAM and a Quad Core i7 processor are recommended. Some 
experimentation with the amount of memory and processor cores that should be 
assigned to the VM will be needed as the ideal amount will vary based on the 
specific hardware and software configuration of the computer. A graphics card is 
not required for either ANVEL or RTK, but can assist with ANVEL performance 
as light detection and ranging (LIDAR) devices can utilize a graphics card for 
improved performance. RTK normally uses 2 LIDARs for obstacle detection but 
with the VM setup this may need to be reduced to a single forward LIDAR to 
improve ANVEL performance. 

While this setup is a frequent method of running RTK with ANVEL, a more ideal 
method would be to run ANVEL and RTK on separate machines running the 
required OS for all systems that are networked together. This avoids performance 
and networking problems that can arise from using a VM and generally simplifies 
the integration and software-update process.  

5.1.2 ARES  

ARES uses machine learning for detecting and tracking targets and implements 
those algorithms on graphics processing units. For this reason, ARES requires both 
a great deal of general-purpose processing as well as graphics-processing hardware. 
ARES is built upon ROS, which requires the machine’s operating system to be 
Ubuntu Linux. The ARES software has been demonstrated to run effectively in the 
SIL setup with an i7 Quad Core processor and 16-GB RAM. However, the preferred 
ARES hardware comprises two 12-core IBM Xeon processors, 128 GB of RAM, 2 
NVIDIA Titan Black X video cards connected via NVIDIA’s Scalable Link 
Interface, and 4-gigabit Ethernet interfaces—matching the real-world system. The 
additional Ethernet interfaces will allow ARES to connect to the Picatinny Light 
Weight Remote Weapon Station, optics hardware, and Wingman networks as the 
SIL continues to be developed.  

5.1.3 Unity  

In order to stimulate ARES quickly enough to meet sensor-update requirements, 
Unity must be run on a machine with strong processing and graphics capabilities, 
though the OS can be either Microsoft Windows or Linux. A typical Unity machine 
is currently a seventh-generation IBM Core i7 Quad Core processor with 32-GB 
RAM, at least an NVIDIA GTX980 graphics processor, and at least one Ethernet 
interface.  
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5.1.4 WMI 

The preferred hardware specifications for the Wingman WMI are an Intel Core  
i7-6500U processor, 16-GB RAM, and 256-GB solid-state drive (SSD). The 
Wingman program is selecting new ruggedized tablets, which are likely to be 
Windows 10 multitouch enabled though subject to change. The Robotic Vehicle 
Operator typically has an Xbox controller, though most human interface device 
(HID)-compliant controllers are supported. 

5.1.5 Setup for Integration in a “Humvee”  

An eventual goal for the SIL is to package the simulation computers in a way that 
they can be placed in the trunk of the Command HMMWV and connected to the 
vehicle network and power supply. This would allow the JCTD team to run 
simulations using the real control stations rather than approximations. This would 
be valuable for assessing usability of the WMI in the space provided by the 
HMMWV, which will be noticeably different than the control stations currently 
used by the SIL. Some brief tests have been performed using an ANVEL station 
and have demonstrated that apart from form factor and computer power, integration 
work should be minimal. 

5.2 Setup and Integration  

Figure 2 depicts the layout for an experiment that sets the ARES, ANVEL, and 
Unity machines where only the investigator can see them. The WMI user stations 
are laid out in a similar fashion to where they would be sitting in the vehicle. There 
is also the possibility of putting each WMI station in a separate sound-proof room 
to focus on each station separately as opposed to the group setting.  
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Fig. 2 SIL configuration 

There is a process that needs to be followed for successful integration of multiple 
software systems with 2 simulation systems. The order of start-up events can 
directly affect the functionality of the system. While this process is still becoming 
streamlined, the current step-by-step guidelines are provided in Appendix C. These 
directions take into account that a user has all the approved and up-to-date software 
and has previously set up the software and ROS connections for the Wingman SIL. 
For example, the specific vehicle capabilities have already been added into an 
executable version of ANVEL. Similarly, the virtual environment and integration 
capabilities have already been built into an executable version of Unity3d. Specifics 
on how the RTK, ARES, and WMI interfaces work together through specific 
software solutions are also not discussed here. Only the order in which the 
developed applications are selected are provided in the step-by-step instructions.  

6. Addressing Potential Software-Integration Errors 

When setting up the SIL it is possible software-integration errors may occur. This 
section highlights some of these issues, what to look for to determine if an error did 
occur, and how to remedy the issue.  
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6.1 General Instructions 

Prior to launching any element of the SIL, it is important to test the network 
connectivity and settings of all components:  

1) Firewall: All of the machines should have their firewalls turned off as this 
can prevent traffic from passing properly between machines. With the 
firewalls down, every computer should be able to communicate with every 
other computer, including the VM. 

2) Check network compatibility: To test network capability open a terminal or 
command prompt window and type “ping” followed by each computer’s IP 
address. If you are unable to ping between any of the machines, double 
check that the network cables are seated properly, including adapters for the 
tablet computers, and that the IP addresses and subnets are correct. The 
Wingman SIL uses a 16-bit subnet mask. 

6.2 ANVEL 

In ANVEL, the best tool for debugging issues is the log window that opens in the 
lower left corner. Some errors are expected based on the models of the vehicles and 
sensors that are used for RTK. Figure 3 lists some of these possible errors. These 
errors will include messages indicating the meshes (e.g., terrain, vehicle, object, or 
sensor visual representations) being loaded are from older versions of OGRE, that 
a texture may be missing, or that a file could not be read properly. This log window 
will also be important for seeing details about environments and vehicles being 
loaded or other actions in ANVEL that are being executed. 

 

Fig. 3 List of potential errors within ANVEL and RTK 



 

Approved for public release; distribution is unlimited.  
10 

When starting ANVEL, the default viewpoint may not be positioned with the 
simulated vehicle in view; the camera may not be positioned where the vehicle is 
visible. To easily find the vehicle, select one of the MRZR all-terrain vehicle’s 
camera views from the drop-down menu in the upper left corner of the screen (see 
Fig. 4). These options will lock the camera to the vehicle. To allow for free camera 
movement again, click the button to the right of the camera-view drop-down menu. 

 

Fig. 4 Loading correct vehicle camera view in ANVEL 

Another potential issue that vehicle camera views are not showing up in the menu. 
Check the log menu for the specific message: Creating Vehicle from file 
PolarisMRZR4_withVelodyneHDL32E.master.vehicle.xml. If that message is not 
present, then there was an issue with loading the vehicle model. This could be due 
to an issue with the vehicle definition file or the VaneSimInit.xml file. 

6.2 RTK 

There are 2 main sections to look at to insure everything is running correctly with 
the RTK. First, when running the command “roslaunch anvel_sim.launch”, there 
should eventually be a cost map screen loaded in a window labeled mapviz.mvc 
(see Fig. 5). If the “roslaunch 1pANVEL2ROS.launch” command has not been 
executed or the ANVEL simulation has not been started, this cost map should be 
blank. If both ANVEL and ANVEL2ROS are running and the cost map is still 
blank, then something is not connecting correctly between the systems or there are 
no Velodyne data being generated in ANVEL. 
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Fig. 5 Cost map screen loaded from RTK 

After running “roslaunch 1pANVEL2ROS.launch”, there should be regular text 
output in the terminal of “Sending Teleop to ANVEL of” followed by 2 numbers. 
The first number is the commanded throttle value and the second number is the 
steering value (Fig. 6). 

 

Fig. 6 Example of output connecting RTK to ANVEL 

If the vehicle software is not running (i.e., anvel_sim.launch has not been started or 
something in the RTK software is not functioning correctly), then the throttle value 



 

Approved for public release; distribution is unlimited.  
12 

will default to 100 and the vehicle in ANVEL with drive at full speed. If the 
connection between ANVEL and RTK is not functioning correctly, the 
1pANVEL2ROS.launch window will not constantly output the current commanded 
values, as shown in Fig. 7. 

 

Fig. 7 Example of output with a bad connection between ANVEL and RTK 

6.3 ARES 

After running the ARES launchscript by entering “roslaunch ares ares_sil.launch” 
in a terminal console, any errors encountered while running will manifest as an 
error message in the launchscript’s console window. ARES has no other direct user 
interface. The most common warning message is “No position data has been 
received”. If this message continues to be displayed, it indicates ARES is not 
communicating with RTK via the multimaster. Other indications of problems with 
ARES are generally seen when starting the Robotic Vehicle Gunner WMI. The 
most obvious indicator is if there is no ARES video after the ARES sensor has been 
sourced in the WMI. 

6.3 Unity3d 

Similar to ARES, Unity runs headless. That is, there is no display or user interface 
used once the Unity executable has started. For troubleshooting, log files are 
generated during the execution of the simulation. Execution errors are sent to the 
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log file “output.txt” in the Unity application data folder. A Unity application is an 
.exe executable, say WingmanSim.exe, and an associated data folder 
WingmanSim_Data. A second log file with standard output and warnings from the 
simulation can also be found in the “Logs” subdirectory of the data folder. Its 
default name is “defaultSimLog.txt”. Both logs can provide some insight into errors 
when they happen. If Unity delays about 30 s while starting, the first step in 
troubleshooting is to ensure “Mosquitto” is running on the ARES computer. 
Mosquitto is the message broker between Unity and ARES, passing video, zoom, 
and other messages between the 2. 

6.4 WMI 

Figure 8 illustrates the 3 Wingman WMI stations. The Commander display has 
access to map, sensor, and threat data that provide system situation awareness. The 
Robotic Vehicle Gunner WMI, in conjunction with its control handle, has the 
ability to fully control the Remote Weapon Station and monitor the lethality system 
status. The Robotic Vehicle Operator WMI, in conjunction with an HID or HID-
compliant controller, has the ability to fully control the robotic vehicle and monitor 
mobility system status.  

 

Fig. 8 Multiple WMI setup with Commander Display (left), Robotic Vehicle Gunner setup 
(center), and Robotic Vehicle Operator setup (right) 

WMI operators have several indications available to determine the system is 
operating properly. Valid vehicle communication is indicated by both a pop-up 
notification and vehicle icon changes. For example, the vehicle icon is covered by 
a large red “X” if vehicle communication is lost. Additional indicators are available 
on the “assets” screen. For example, if the RTK software is operating correctly, the 
vehicle should appear on the assets list and the user should be able to log into the 
vehicle. “Sensor” screen feeds are covered with a red transparent overlay after a 
configurable timeout period, and Wingman video feeds typically have dynamic 
embedded overlays in the form of a timestamp. Sensor fans will provide an 
additional check for WMI users to indicate that a sensor is still operating as desired.  

The WMI should be configured such that all systems are communicating upon 
launch of the respective scripts. If not, apply the following troubleshooting steps: 
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1) Verify the Platform Controller executables are properly communicating 
with the respective RTK nodes on the Robotic Vehicle Operator tablet. The 
console will report a “LivenessServer timeout” if not properly 
communicating. Verify network connectivity and proper launch of the RTK 
components. 

2) Verify the AssetControlLras3 (Commander) and AssetControlAres 
(Robotic Vehicle Gunner) processes are running on their respective stations. 
Verify network connectivity and relaunch corresponding Asset start scripts 
if necessary. 

3) Verify the “presentation.exe” executable is running on each respective 
station. Relaunch the WMI from the workstation-specific script if not 
present. 

7. Conclusion and Next Steps 

The Wingman SIL is undergoing an iterative process of research and development 
to meet the larger issues of the Army’s need for developing systems for manned–
unmanned teaming and addressing issues associated with asymmetric vision and 
decide-faster capabilities. The following is a list of future capabilities that are being 
integrated into the SIL.  

1) Adding additional roles and equipment: Current work aims to integrate a 
simulated LRAS3 operator station and Picatinny Light Weight Remote 
Weapon Station equipment into the SIL. This will allow the SIL to more 
accurately match the entire real-world system for accurately locating and 
identifying potential targets. 

2) Error mitigation: Current work is underway to create a configurable 
application-management dashboard for automatic network and workstation 
compatibility diagnosis and resolution, as well as cross-workstation 
application-status reporting and control. This will help reduce time and 
effort to diagnose and resolve potential errors with the SIL during setup and 
use. 

3) Assessment protocols: Test and evaluation and assessment procedures are 
an integral part of developing engineering technologies, as well as MUM-T 
evaluations. Therefore, current work focuses on identification and 
integration of appropriate performance-based assessments and metrics into 
the SIL. These types of assessments are in line with the performance metrics 
outlined in TRADOC’s TC 3-20.31. 
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4) Simulation fidelity: The level of fidelity of the SIL varies depending on the 
goals of the task for training, system development, and MUM-T 
assessments. Therefore, current work explores options for integration of 
SIL components into a HMMWV for more accurate use of the WMI in real-
world conditions.  

5) Gunnery missions: Currently, the SIL is based on a single scenario on the 
course at the Michigan National Guard’s Camp Grayling. Future iterations 
ideally would feature multiple target scenarios on multiple paths on the 
Grayling course to prevent operator memorization of the course. An 
additional course representing a Fort Benning, Georgia, range is currently 
being integrated into the SIL. Future work will also have the capability to 
integrate other real-world gunnery test courses or to assess future MUM-T 
mission operations. 

6) Capabilities of the SIL: One specific goal is for the SIL to be used as a 
training system for the real-world system. Therefore, development of a 
Wingman training system, derived from the Wingman SIL, is currently 
underway.  
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Appendix A. Instructions for Geospatial Terrain Data in Unity3d
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This appendix describes one way to import real-world terrain information into 
Unity to be made into a virtual ground plane. 

The Unity terrain is generated from a “raw” image consisting of 8- or 16-bit,  
single-channel color values. Essentially, a raw file is a grayscale image file in which 
each pixel has a single value between 0 and 255 (or 65535 for 16-bit) as opposed 
to color images that use a 3-channel (red, green, and blue) or 4-channel (red, green, 
blue, and alpha) format. Specifically for geospatial information, each pixel in the 
raw file is an elevation data point. For example, a 300 × 200 raw image would 
contain 300 rows of 200 elevation data points describing a uniform grid or matrix 
of ground heights.  

Geospatial data are sometimes available in raw format but more often the data 
covering a desired data will be found in other formats. Georeferenced Tagged 
Image File Formats (GeoTIFFs), for example, are often a 4-channel format where 
the first 3 channels represent color and the fourth channel, which is normally 
reserved for alpha (transparency) values, is used for elevation data similar to those 
in the raw file format. Therefore, some manipulations must be done to crop large 
data sets down to our area of interest and change the file format. 

There are several methods and many tools with which to build a virtual terrain; this 
appendix describes the specific process that was used to build the Wingman 
terrains. The overall approach follows: 

• Find the desired place on earth to be built in the virtual environment. 

• Find and retrieve appropriate geospatial data for that place of interest. 

• Manipulate those data into an appropriate size and format for import into 
Unity. 

• Find or create an appropriate satellite image corresponding to the 
manipulated data. 

• Import the data and imagery into Unity to be made into a Unity Terrain 
object. 

The tools used to perform these actions are, in general, a mapping tool, a geospatial 
data repository, geospatial data-manipulation software and, of course, the Unity 
Editor software. For the process described here, these tools were used: 

• Google Earth (https://www.google.com/earth/) 

• US Geological Survey EarthExplorer (https://earthexplorer.usgs.gov/) 

https://www.google.com/earth/
https://earthexplorer.usgs.gov/
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• Geospatial Data Abstraction Library (GDAL) (http://www.gdal.org/); 
specifically, a Windows x64 installation by Tamas Szekeres implementing 
GDAL version 2.1.2, dated 10/24/2016 (http://www.gisinternals.com/)  

1) Find the Area of Interest Extents, Capture Image 
a. In Google Earth, enter the general area of interest in the search bar, 

either by name (e.g., Fort Benning, GA) or by latitude and longitude 
(e.g., 32.38150N–84.953890E) if known.  

b. Zoom and pan the map until the specific area of interest takes up most 
of the screen space. This will help in getting the best resolution of 
coordinates later. 

c. Place 4 markers denoting the corners of the area of interest. These will 
give you the coordinates at the corners of the terrain and also give a 
visual reference (Fig A-1). 

 

Fig. A-1 Google Earth with place markers 

d. Record the corner coordinates. If they are not already in degree.decimal 
format (23.278889N versus N23° 16’ 44”), convert them. One online 
for conversions is hosted by the Federal Communications Commission 
(FCC) at https://www.fcc.gov/media/radio/dms-decimal. Also 
determine the midpoint of the area to be used later. 

e. Find the height and width of the area of interest in meters by using 
another online FCC tool (https://www.fcc.gov/media/radio/distance-
and-azimuths#block-menu-block-4).  

http://www.gdal.org/
http://www.gisinternals.com/
https://www.fcc.gov/media/radio/dms-decimal
https://www.fcc.gov/media/radio/distance-and-azimuths#block-menu-block-4
https://www.fcc.gov/media/radio/distance-and-azimuths#block-menu-block-4
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f. GeoTIFF geospatial formats often include imagery embedded in the 
elevation data as described above. Still, it is helpful to capture an image 
from Google Earth.  

g. Ensure the map is in 2-D mode (to avoid distortion based on terrain 
elevation) 

1) Ensure it is oriented in the north-up configuration. 

2) On the keyboard, simultaneously press Alt and PrtScrn. This will 
copy the current window (Google Earth) to the clipboard. 

3) Open a drawing program such as Paint, Photoshop, or GIMP; paste 
the image into a new file; and save the image as a PNG or JPG. 

2) Find Appropriate Geospatial Data 

a. To download data from EarthExplorer, one must have an account and 
be logged in. Guests and unregistered users can browse the catalog. 

b. In the EarthExplorer home page, click on the “Add Coordinates” button, 
which will open a dialog box. In the dialog box, enter the latitude and 
longitude of the midpoint of the region of interest (Fig A-2). This will 
add the coordinates in the box below the Coordinates tab and place a 
marker on the map. 

 

Fig. A-2 EarthExplorer home page 
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c. Click on the “Data Sets >>” button (Fig A-3). 

 

Fig. A-3 EarthExplorer Data Sets page example 

d. In the hierarchical Data Set tree, expand the “Digital Elevation” and 
select appropriate types of data sets. “ASTER GLOBAL DEM” and 
“SRTM Void Filled” are recommended to be included. 

e. Click the “Results>>” button, which will load the Search Results page 
(Fig A-4).  
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Fig. A-4 EarthExplorer Results page example 

f. Under the “Data Set” title, there is a drop-down box that can be used to 
display the different types of data sets. 

g. For each result, a panel displays several icons. Of note are the footprint, 
the metadata, and download icons. The footprint button will place a box 
on the map designating the area of the map covered by the data. The 
metadata and download icons are straightforward. 

h. Download each desired data set by clicking on its download icon and 
choosing a format. GeoTIFF is recommended. 

3) Resize, Crop, and Format the Geospatial Data 

Using GDAL in a console window, get information on the geospatial data by 
entering where “filename” 

 
gdal info filename 
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is the name of the data file (if a GeoTIFF, it probably has a .tif extension). This will 
tell you how many data points in each direction x and y, corresponding to east and 
north, respectively (usually 3601 × 3601 for a 1° × 1° block for SRTM and ASTER 
data). It will also tell you the corners of the area covered by the data. Ensure the 
corners of the area of interest are within the boundaries of the covered data. 

 

a. Use gdalwarp to crop, resize, and interpolate the value. Type 
where 

1) x and y mins and maxes refer to the extents (longitude and latitude, 
respectively) 

2) width and height are the desired number of data points in each 
dimension (see Note 1) 

3) srcFile is the geospatial datafile  

4) destFile is a filename to be created holding the new, cropped dataset. 

Note 1: Depending on the size of the source data file and the size of the 
desired area of interest, the number of values in the cropped data file 
may be relatively small (for example a 1° × 1° sample might have 3601 
× 3601 while the cropped 2km x 2km area may only have 125x125 
values). For this reason, gdalwarp will also interpolate those few data 
points into an appropriate number. Unity requires that raw files used for 
importing elevation data have dimensions that conform to size = 2n + 1. 
A recommended target size is 1025 × 1025.  

Note 2: Typing “gdalwarp” alone will display the command syntax and 
briefly explain all options. For further information on syntax and 
options, see the GDAL documentation 
(http://www.gdal.org/gdalwarp.html).  

b. Use gdal_translate to convert the new file from its original file type to the 
raw file type. To convert the srcFile into a 16-bit raw file stored as 

 

destFile, type 

1) When choosing a filename for the new dataset, destFile, be sure to 
use the .raw extension. 

2) Optionally, entering  

gdalwarp –te xmin ymin xmax ymax –ts width height –ot Float32 –r cubicspline srcFile destFile 

gdal_translate –ot UInt16 –of ENVI –scale srcFile destFile 

http://www.gdal.org/gdalwarp.html
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will generate an intermediate ASCII format datafile that can be 
easily read in any text editor such as Microsoft Notepad or Wordpad 
or Notepad++ (preferably). The altitude at the lower left corner can 
be =used as the height at the origin of the terrain. The difference 
between the highest and lowest points of the data can be determined 
from this action. 

4) Import the Raw File into a Unity Scene 

a. With a scene open in the Unity Editor, select “Terrain” from the Hierarchy 
“Create” drop-down menu. This creates a default flat ground plane (Fig. A-
5). 

 

Fig. A-5 New default terrain 

b. Click on the new Terrain Object in the Hierarchy panel to bring its 
properties up in the Inspector panel and click on the “Import Raw…” button 
in the Inspector panel, which will bring up a normal Windows file browse 
dialog. Browse to the .raw file you created and click the “Open” button. 

c. Next, the Import Heightmap dialog box will appear with several input boxes 
to be filled in. When finished, click on the “Import” button. The result will 
be a terrain with varied elevation displayed in the “Scene” window (Fig A-
6). 

gdal_translate –ot UInt16 –of AAIGrid srcFile destFile 
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Fig. A-6 Import Heightmap dialog 

1) Depth: Dropdown menu with 8- or 16-bit pixel depth. A 16-bit was 
used in this example (“-ot UInt16”) 

2) Width: Number of Columns in the raw data file 

3) Height: Number of Rows in the raw data file 

4) Byte Order: Endianness of the values. Leave this as “Windows”  

5) Flip Vertically: Leave this unchecked 

6) Terrain Size: From the distances found earlier (in Step 1.e) in 
meters, x is width of the area of interest, z is the height of the area. 
The difference between the highest and lowest elevations (found in 
Step 3.b.2) is used for the y value. 

d. To add a texture to the terrain (Fig A-7),  
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Fig. A-7 Add Texture dialog 

1) Import the terrain image (either the one provided as part of a 
GeoTIFF or the one created in Step 1g) into the Unity project. 

2) Click on the Terrain game Object in the Hierarchy panel. 

3) Click on the new Terrain Object in the Hierarchy panel to bring its 
properties up in the Inspector panel. 

4) In the Terrain component, a bar of icons can be seen. Click on the 
paintbrush. This will open the Textures section of the properties 
panel below the Brushes. 

5) Click on the “Edit Texture…” button. From the resulting pop-up 
menu, select “Add Texture”. This will open the Add Texture dialog 
box. 

6) From the Project panel, drag the terrain texture imported in Step 1 
into the box labeled “Albedo (RGB) Smoothness (A)”. 

7) In the “Size” boxes, enter the width and height of the terrain in 
meters in the “x” and “y” boxes, respectively. These values should 
be the same as those used in the “x” and “z” boxes of the “Import 
Heightmap” dialog from Step 4c. 

8) Click “Add” to apply the texture to the terrain. 
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5) The Result 

 

Fig. A-8 The resulting terrain 
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INTENTIONALLY LEFT BLANK.
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Appendix B. Instructions for Modifying Terrain Data in Blender
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The following instructions describe the final steps taken to convert the  
Unity3d-generated .obj file for the Camp Grayling, Michigan, course into an 
environment for the Autonomous Navigation and Virtual Environment Laboratory 
(ANVEL). The specific steps taken were based on some trial and error in generating 
environments and making corrections after running the environment and comparing 
the location of the vehicle between ANVEL and Unity3d. Specific values for 
translation and rotation will likely be different for environments at other locations. 
These values are dependent on the specific terrain of the environment and the 
location for the center of the map. 

1) Start by importing the model into Blender by selecting the “Import” button 
from the file menu. Then select the “Wavefront (.obj)” option and the 
Unity3d-generated .obj file (Fig. B-1). 

 

Fig. B-1 Blender menu for importing .obj file 

2) Since ANVEL and Unity3d use different coordinate systems, the imported 
terrain mesh will need to be rotated by 180° after importing; otherwise, the 
mesh will be facing the wrong direction in ANVEL. This is achieved by 
right-clicking on the mesh to select it and then entering 180° in the Z 
rotation section of the “Transform” panel. Once rotated, apply the change 
by pressing “Crtl + A” and select rotation from the Apply menu. This will 
permanently apply the rotation and reset all of the rotation values back to 
0°. 

3) The next step was to apply the texture to the terrain by applying a UV map. 
The following steps are a high-level guide to generating the texture and 
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assumes some familiarity with basic Blender controls. (For more detailed 
instructions, find a dedicated Blender UV guide.) 

a. First, open “UV/Image Editor” in one of the panels while leaving 
the 3-D view editor open in the main panel (Fig. B-2). 

 

Fig. B-2 Blender menu for UV/Image Editor panel 

b. In the main 3-D view panel, switch to edit mode (either with the tab 
key or by selecting it from the mode menu). Within the 3-D view 
panel, select the entire mesh by pressing the “A” key.  

c. Press 7 on the number pad to change the view to a top–down view 
and confirm the view is currently orthogonal and not perspective. 
The orthogonal view is preferred because editing the mesh in the 
perspective view could cause some small distortions in the texture. 
If needed, press 5 on the number pad to toggle between perspective 
and orthogonal. With an orthogonal top view, press the U key to 
bring up the “UV Mapping” menu and select “Project from View”. 
This should cause the mesh to appear in the UV/Image Editor panel 
(Fig. B-3). 
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Fig. B-3 Blender menu selection for UV projection from view 

d. In the UV/Image Editor panel, click the “Open” button and select 
the terrain texture photo provided with the mesh from Unity (Fig. B-
4).  

 

Fig. B-4 Blender menu button to import image for UV map 

e. In the UV/Image Editor panel, select the entire mesh with the A key. 
Then scale (S key) and translate (G key) the mesh until it fills the 
entire texture and the corners align (Fig. B-5). 
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Fig. B-5 Before and after scaling UV map to image 

4) Following some initial testing of the SIL, it was necessary to shift the origin 
and rotation of the mesh in Blender to more accurately align the ANVEL 
and Unity3d environments. The translation of –1368.75 in the X direction 
and –1010.5 in the Y direction was applied to the mesh to set the origin at 
a point near the center of the path the vehicle would drive. After the 
translation, we found a rotation of 1.5° around the Z axis also helped align 
the simulation environments. 

5) With the texture applied and the mesh in the correct position, confirm that 
the previous changes have been applied by checking that the translation and 
rotation values in the Transform panel are all 0. If not, use “Ctrl + A” to 
apply the necessary transform. Then in the file menu, select “Export” and 
then “Wavefront (.obj)”. In the file menu, select your file location and enter 
the name for the .obj file to be generated. Before exporting, in the lower left 
corner the “forward” and “up” axes need to be changed. For ANVEL to 
register the environments correctly, the Z axis should be set for “up” and Y 
for “forward”. Then select “Export .obj” and wait for the file to be 
generated.  

6) In ANVEL 2 file conversions will be made to generate the appropriate files 
for the environment. First, in the “Sim” tab select the “Physics” menu and 
click “Export VPM File…” (Fig. B-6). In the “Mesh Name” section, browse 
and find the .obj exported from Blender. In the “VPM Name” section 
browse for the location where you want the .vpm file generated and what it 
should be named. Then click “OK” and wait for the conversion, which may 
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take several minutes. The mesh generated in this step is used to generate the 
physics mesh the vehicle will be driving. 

 
Fig. B-6 ANVEL menu for converting to VPM file 

7) The second conversion will be done the using the “Convert Object to Xml 
Mesh…” option in the “Ogre” tab (Fig. B-7). Browse and find the .obj 
exported from Blender and then click “OK” to start the conversion. This 
will likely take a significant amount of time to convert. (With the SIL station 
at ARL it took up to 45 min to convert the file each time; on some attempts, 
the conversion failed and needed to be restarted.) The .mesh file generated 
in this step is used by the Object-Oriented Graphics Rendering Engine 
(OGRE) to generate the visual representation of the terrain, including the 
texture. 

 
Fig. B-7 ANVEL menu for converting to OGRE mesh file 
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8) The final step to open the environment in ANVEL is to generate the .env 
file that will be opened by the simulation. The easiest way to create this file 
is to use an existing .env file as a template and to modify the necessary 
sections, mainly the terrain section. Inside the terrain tag, the “<mesh 
file="FILE.vpm" upAxis="z">” portion should be modified to use the file 
name of the .vpm file that was generated. The mesh file parameter inside 
the “ogre3d” tag should also be modified to use the .mesh file that was 
generated earlier. If all the transformations were executed correctly in 
Blender, no position or orientation elements will be needed for the terrain 
to appear correctly.  

The only other change to make in the .env is to the location tag, where the 
latitude, longitude, and elevation should be modified based on the terrain. 
These values should correspond to the origin location chosen earlier. At this 
point the .env file should be ready to open in ANVEL. And additional 
adjustment to the .env that is useful is to the viewpoints section, where you 
can add or adjust the viewpoints that are selectable in the ANVEL screen.  

9) Notes on determining translation and rotation values for ANVEL and Unity 
meshes to align: 

a. The values used in Step 4 were found through trial and error of 
generating an environment in ANVEL based on the Unity terrain 
and then comparing the positions in the simulation. This required 
going through the mesh generation and conversion process multiple 
times.  

b. One of the main ways we checked if the terrains align is to simply 
run the SIL and observe the vehicle behavior in the Unity simulation 
while driving a path in ANVEL. If the terrains did not align, either 
due to rotation or translation, the vehicle would appear to go into the 
ground or would be floating in the air. We would also check to see 
if the vehicle appeared to be located on the correct section of 
map/terrain when looking at the vehicle from a top–down 
perspective. 

c. To align the origin locations, one method was to place the vehicle in 
at the desired origin in ANVEL and look at the location in Unity and 
determine the approximate distance between the Unity vehicle and 
the desired vehicle location. This distance in the X and Y directions 
was used to adjust the translation values when positioning the mesh 
in Step 4. 
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d. When comparing paths traveled and positions between the 
simulations, we found some discrepancies that could be mostly 
corrected by rotating the ANVEL mesh slightly to better align with 
the Unity terrain. However, the farther the vehicle was from the 
origin of the terrains, the larger the misalignment. To reduce the 
effects of this misalignment, we placed our origin at the center of 
the path to keep the maximum distance the vehicle would ever be 
from the origin to a minimum, which would in theory reduce the 
maximum effect we would see from any misalignment. 

e. The rotation amount was determined by placing the vehicle at 
various points along the desired path in ANVEL and comparing 
locations to their position in the Unity simulation. The rotation value 
was adjusted until the positions were aligned along the entire path. 
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Appendix C. Software-in-the-Loop (SIL) Setup Instructions 
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This appendix includes instructions for setting up the SIL with 3 Warfighter 
Machine Interface (WMI) displays. 

General Instructions 

1) Check IP addresses and network connections on all computers. 

a. RTK:   192.168.1.8 

b. ARES:  192.168.3.45 

c. Unity:   192.168.3.33 

d. ANVEL:  192.168.1.6 

e. WMI1:  192.168.1.90 

f. WMI2:  192.168.1.91 

g. WMI3:  192.168.1.92 

2) In case of errors, check network cables, capability to ping between 
machines, and subnet mask. 

a. Subnet mask:  255.255.0.0 

Step 1: Set-up Autonomous Navigation and Virtual Environment Laboratory 
(ANVEL) and Robotic Technology Kernel (RTK) 

1) Start ANVEL 

a. Open ANVEL. It is currently set to upload the Camp Grayling, 
Michigan, gunnery mission and map and load the vehicle (Polaris 
MRZR). 

b. If the MRZR vehicle is not visible in the ANVEL display, selection 
of the MRZR from the drop-down menu located under the “Play” 
button on the upper left of the screen will center the MRZR in the 
viewpoint.  

c. In order to link the autonomous capabilities of the vehicle to the 
simulation, right mouse-click on the MRZR vehicle. Then select 
“vehicle” and “autodrive”. 

d. Resume simulation. 

2) Start RTK  

a. Open VMware. 
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b. Select “TARDECwingman” and insert password. A white box may 
open showing errors. If this happens, close the white box. 

c. Open 3 terminals to form the Robotic Operating System (ROS) links 
among ANVEL, RTK, and Autonomous Remote Engagement 
System (ARES). The keyboard command “Ctrl+Alt+t” or the 
middle mouse button can be used to open multiple terminals. 

d. In Terminal 1, type “roscd anvel_sim/launch” and press “Enter” on 
the keyboard. 

e. In Terminal 2, type “roscd anvel_to_ros/launch” and press “Enter”. 

f. In Terminal 1, type “roslaunch anvel_sim.launch” and press 
“Enter”. At this point Mapviz will open. It is OK to minimize 
Mapviz. 

g. In Terminal 2, type “roslaunch 1pANVEL2ROS.launch” and press 
“Enter”.  

h. In Terminal 3, set up connection to ARES by typing “roslaunch 
multimaster: Master.launch master:=”. This command should also 
include the ARES machine’s IP address or machine’s name directly 
following the equal sign. The terminal will keep reporting that is 
waiting on foreign master until ARES is connected.   

Step 2: Setting up ARES 

1) Open VMware. 

2) In order to connect ARES to Unity, open a new terminal. Type “mosquitto” 
and press “Enter”. Mosquitto is the MQ Telemetry Transport broker that 
routes messages between Unity and ARES. Three lines of output will be 
given listing the IP address and port to which Mosquitto is bound. Leave 
Mosquitto running in this terminal. It does not need to be restarted, even 
when restarting other components of the simulation. 

3) Type “roslaunch ares ares.launch” and select “Enter”.  

Step 3: Setting up Unity 

1) Start the PLWRWS emulator: Double click on the PLWRSW shortcut on 
the desktop. 

2) Start Unity executables: Double click the Unity shortcut on the desktop. 

3) Choose the ARES + RTK icon. 
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4) Select Video Server 

5) Select Start 

 

Fig. C-1 Unity start screen 

Step 4: Start 3 WMI displays 

1) Start the Robotic Vehicle Operator WMI. 

a. Open C:\RVCA\scripts 

b. Launch “start-dsat-platform-controller-gator”. This is only run on 
this WMI and is only run once. To make sure the software is loaded 
correctly, look at the output to make sure that the “liveness” error 
did not occur.  

c. Launch “start-presentation-wingman-rbtc”. This is the default WMI 
for the Wingman Robotic Vehicle Operator. 

d. If a controller is to be used with this WMI, open C:\RVCA\scripts 
and run “start-handle-auto.bat”. 

2) Start the Robotic Vehicle Gunner WMI 

a. Open C:\RVCA\scripts 
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b. Launch “start-ares-mrzr.bat” 

c. Launch “start-presentation-wingman-ares.bat” 

d. Launch “ares_joystick.bat” 

3) Start the Commander WMI. 

a. Open C:\RVCA\scripts. 

b. Launch “start-presentation-wingman-cmdr”. 

Step 5: Set Up System Connections 

1) Set up vehicle localization and path plan in the Robotic Vehicle Operator 
WMI. 

a. In order to set up a waypoint plan to move the vehicle from the 
WMI, select the “plan” button (right side of screen”, select “point” 
to place waypoints, and “close” to exit out of the planning mode. 

b. Select “load into vehicle” button located halfway down the right side 
of the screen to connect the path to the vehicle. 

c. Select the “assets” button on the bottom left of screen and “log in” 
to the vehicle (located on the middle screen, top button). 

d. Select the “mobility” button at the bottom of the screen and select 
“plan” (looks like a “play” button symbol).  

e. To move under teleoperation, select assets button and select the 
vehicle, log in to the vehicle, go to the mobility screen, and select 
“idle”. Select the steering-wheel icon and drag up to the 
teleoperation box.  

f. To move under a preplanned path, select “File” on the map screen. 
Select the preplanned path (e.g., Grayling wpt xml demo/open). 
Select “load” button on right side of the screen and the steering 
wheel. To start the vehicle on the path, select the “WPT” button. To 
stop, select “pause”.  

2) After the Unity simulation and Robotic Vehicle Gunner WMI are started, 
confirm that ARES is “talking” with the virtual Picatinny Light Weight 
Remote Weapon Station. To do this, click on the “Keyboard Input” window 
on the ARES machine and press “p” on the keyboard. In the Robotic 
Vehicle Gunner WMI, the weapon should begin to be raised to the 
“surveillance mode” position (roughly 45° above the horizon). Next press 
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“a” in the “Keyboard Input” window. This will arm the weapon and lower 
it to its original position.  

3) Check the Robotic Vehicle Gunner gamepad controller functionality: 

a. Left bumper with the right joystick moves the weapon system. 

b. Right bumper is the laser range finder. 

c. The “a” button cycles the gun slew rate. 

d. The “x” button selects a target with a green box. 

e. The “y” button removes the target selection box. 

f. The dpad “up” button zooms out.  

g. The dpad “down” button zooms in.  
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List of Symbols, Abbreviations, and Acronyms 

2-D 2-dimensional 

3-D 3-dimensional 

ANVEL Autonomous Navigation and Virtual Environment Laboratory 

ARES Autonomous Remote Engagement System 

ARL US Army Research Laboratory 

FCC  Federal Communications Commission 

GB gigabyte 

GDAL Geospatial Data Abstraction Library 

GeoTIFF  Georeferenced Tagged Image File Format 

HID Human Interface Device 

HMMWV High Mobility Multipurpose Wheeled Vehicle 

IP Internet Protocol 

JCTD Joint Capabilities Technology Demonstration 

LIDAR light detection and ranging 

MHz megahertz 

MUM-T manned-unmanned teaming 

NSWCDD Naval Surface Warfare Center Dahlgren Division 

OGRE Object-Oriented Graphics Rendering Engine 

OS operating system 

RAM random-access memory 

ROS Robotic Operating System 

RTK Robotic Technology Kernel 

SIL software-in-the-loop 

SSD solid-state drive 

TARDEC Tank Automotive Research, Development and Engineering 
Center 



 

Approved for public release; distribution is unlimited.  
44 

VM virtual machine 

WMI Warfighter Machine Interface 
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