

 ARL-TR-8248 ● DEC 2017

 US Army Research Laboratory

Cloud Migration Experiment Configuration and
Results

by Michael De Lucia, Justin Wray, and Steven S Collmann

Approved for public release; distribution is unlimited.

NOTICES

Disclaimers

The findings in this report are not to be construed as an official Department of the
Army position unless so designated by other authorized documents.

Citation of manufacturer’s or trade names does not constitute an official
endorsement or approval of the use thereof.

DESTRUCTION NOTICE—For classified documents, follow the procedures in
DOD 5220.22-M, National Industrial Security Program Operating Manual, Chapter
5, Section 7, or DOD 5200.1-R, Information Security Program Regulation, C6.7.
For unclassified, limited documents, destroy by any method that will prevent
disclosure of contents or reconstruction of the document.

 ARL-TR-8248 ● DEC 2017

 US Army Research Laboratory

Cloud Migration Experiment Configuration and
Results

by Michael De Lucia
Computational and Information Sciences Directorate, ARL

Justin Wray and Steven S Collmann
ICF International, Columbia, MD

Approved for public release; distribution is unlimited.

ii

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the
data needed, and completing and reviewing the collection information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing the
burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302.
Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently
valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY)

December 2017
2. REPORT TYPE

Technical Report
3. DATES COVERED (From - To)

1 June 2017–10 Oct 2017
4. TITLE AND SUBTITLE

Cloud Migration Experiment Configuration and Results
5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)

Michael De Lucia, Justin Wray, and Steven S Collmann
5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

US Army Research Laboratory
Computational and Information Sciences Directorate (ATTN: RDRL-CIN-D)
Aberdeen Proving Ground, MD 21005

8. PERFORMING ORGANIZATION REPORT NUMBER

ARL-TR-8248

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

ASD(R&E)
Suite 17C08, 4800 Mark Center Drive, Alexandria, VA 22350
CERDEC
Bldg 6003 Combat Drive, APG, MD 21005

10. SPONSOR/MONITOR'S ACRONYM(S)

11. SPONSOR/MONITOR'S REPORT NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited.

13. SUPPLEMENTARY NOTES

14. ABSTRACT

The cloud environment leverages many fundamental technologies. One such technology is virtualization (hypervisor). At a
high level, the hypervisor allows for a number of virtual machines to share the physical resources of a single physical
machine. A large number of physical machines with hypervisors (host machines) could be networked together to form what is
known as a cloud environment. A virtual machine that is hosted on a hypervisor is often referred to as a guest virtual machine.
The increase of a number of organizations leveraging the same physical host hypervisor for guest virtual machines opens up
the opportunity for what is often referred to as side channel attacks. A technique that allows a virtual machine to accommodate
increased resource needs or possibly defend itself from side channel attacks is migration. Migration is the process of moving a
guest virtual machine from one physical host to another. This report discusses the different migration types and the results
from experimentation in the US Army Research Laboratory Cloud Testbed (Kraken).

15. SUBJECT TERMS

cloud migration, virtual machine migration, hypervisor, cloud environment, virtual machine

16. SECURITY CLASSIFICATION OF:
17. LIMITATION
 OF
 ABSTRACT

UU

18. NUMBER
 OF
 PAGES

30

19a. NAME OF RESPONSIBLE PERSON

Michael De Lucia
a. REPORT

Unclassified
b. ABSTRACT

Unclassified

c. THIS PAGE

Unclassified

19b. TELEPHONE NUMBER (Include area code)

(410) 278-6508
 Standard Form 298 (Rev. 8/98)

 Prescribed by ANSI Std. Z39.18

Approved for public release; distribution is unlimited.
iii

Contents

List of Figures iv

List of Tables iv

1. Introduction 1

2. Experiment Overview 1

3. Terraform Configuration: General 2

4. Experiment/Environment Deployment and Execution 3

5. Experiment Results 4

5.1 Clone Results 4

5.2 Offline Migration Results 5

5.3 Live Migration Results 7

5.4 Result Summary 10

5.4.1 Clone Migration 10

5.4.2 Offline Migration 10

5.4.3 Live Migration 10

6. Conclusion 11

Appendix A. General Terraform Configuration 13

Appendix B. Terraform Configuration: Migration Experiment 19

List of Symbols, Abbreviations, and Acronyms 23

Distribution List 24

Approved for public release; distribution is unlimited.
iv

List of Figures

Fig. 1 Experiment setup .. 2

Fig. 2 Clone migration time (s) ... 4

Fig. 3 Offline migration time (s) ... 6

Fig. 4 Live migration completion time (s) .. 8

Fig. 5 Live migration guest virtual machine down time (s) 8

List of Tables

Table 1 Statistical analysis ... 5

Table 2 Raw data.. 5

Table 3 Statistical Analysis .. 6

Table 4 Raw data.. 7

Table 5 Statistical analysis completion time .. 9

Table 6 Statistical analysis guest down time ... 9

Table 7 Raw data completion time .. 9

Table 8 Raw data guest down time .. 10

Approved for public release; distribution is unlimited.
1

1. Introduction

The cloud environment leverages many fundamental technologies. One such
technology is virtualization (hypervisor). At a high level, the hypervisor allows for
a number of virtual machines to share the physical resources of a single physical
machine. A large number of physical machines with hypervisors (host machines)
could be networked together to form what is known as a cloud environment.
Although there are many additional components that make up a cloud environment,
these are not relevant in this experiment. A virtual machine that is hosted on a
hypervisor is often referred to as a guest virtual machine. The increase of a number
of organizations leveraging the same physical host hypervisor for guest virtual
machines opens up the opportunity for what is often referred to as side channel
attacks. An example of a side channel attack within the cloud environment is the
observation of a program’s memory access patterns to the shared processor cache.
A technique that allows a virtual machine to accommodate increased resource needs
or possibly defend itself from side channel attacks is migration. Migration is the
process of moving a guest virtual machine from one physical host to another.

There are 3 migration types that will be considered for the purposes of this
experiment. The 3 types are offline migration, live migration, and cloning
migration. The purpose of the migration experiment was to demonstrate the
differences in migration types. In order to experiment with the different migration
types, a Denial of Service (DoS) scenario was created to increase the resource needs
of a host to cause a migration from one physical host to another. In this experiment,
the migrations were automatically initiated with an automation package called
Terraform. Although these migrations were automated with Terraform, they are
normally performed manually. However, the controller would evacuate the
underlying node, initiating a migration, if the performance suffered to an
unsustainable level.

2. Experiment Overview

This experiment was conducted in the US Army Research Laboratory (ARL) Cloud
Testbed (Kraken), which is composed of an OpenStack instantiation. OpenStack is
a prevailing cloud infrastructure management software that leverages Kernel
Virtual Machine (KVM) as the virtualization layer. The attacker guest virtual
machines were a default installation of Kali Linux, and the DoS target guest virtual
machine was a standard installation of Ubuntu 16.04 LTS Linux with Apache,
MySQL, and PHP, to emulate a real-world web server. The migration was initiated

Approved for public release; distribution is unlimited.
2

after the host performance was degraded as a result of the DoS. The environment
was set up and configured as shown in Fig. 1.

Fig. 1 Experiment setup

The configuration of the environment was built based on Terraform, to provide
repeatability of the initial deployment and to ensure an exact replication of the
environment for each migration type and test run. Terraform is a cloud management
(DevOps) framework that provides “infrastructure as code”. Essentially, Terraform
allows you to build configuration templates for environments. These templates can
easily be shared to allow for identical deployments in other environments such as
AWS or VMWare. Terraform is also capable of migration, within a cloud provider
or even across providers. All of the migration processes were coded in advance with
Terraform to provide repeatability of the process and remove human reaction time
from the resulting data collection. The migration process was triggered as the
resource consumption rose above a set threshold. As previously stated, the
experiment was set up to mimic a migration of a DoS victim virtual machine. The
cloud environment was composed of a total of 5 guest virtual machines, consisting
of a single DoS victim web server and 4 DoS attackers.

3. Terraform Configuration: General

To facilitate this experiment on the Kraken infrastructure, a base configuration
template was created. Terraform uses a separate configuration for each deployment
environment. Configurations are textual and can be supplied to Terraform in a
number of ways. Primarily, Terraform leverages configuration files to build out an

Approved for public release; distribution is unlimited.
3

environment. Given the static nature of most Kraken-related configurations, it is
optimal to separate out the configuration into smaller configuration files to be
reused across various deployment environments.

When using multiple configuration files, the static files that do not change across
experiments can be linked to each environment/experiment configuration directory.
This linkage process ensures that if a Kraken-related parameter needs to be
modified, the change may be made once it is in the single file, which will impact
all of the Terraform configurations.

An important aspect about Terraform configurations is the ordering of the directives
(commands). Terraform sequentially processes the configuration files; therefore,
dependencies must be configured first. This configuration processing and ordering
becomes important when using multiple files. It is essential to name the
configuration files in a manner that allows processing in the correct order.
Terraform will use an alphanumerical sort to process the files. As such, only a
single Terraform configuration should be present in a given directory; therefore,
each experiment should have its own terraform configuration directory.

Terraform provides comprehensive documentation on their website, which can be
found at https://www.terraform.io/docs/index.html.

Specific Terraform configuration files to enable this experiment can be found in
Appendixes A and B.

4. Experiment/Environment Deployment and Execution

Once the environment configuration for the experiment is completed, the process
to deploy the experiment with Terraform is straightforward. First, execute
Terraform to build a “plan” of deployment. This portion of the process allows
Terraform to test the configuration, ensure that it can complete the task, and build
the plan of action. This planning process also provides an opportunity for the
experiment user to verify the configurations. The terraform plan command is used
to initiate the planning process. Second, if the configurations are valid and the plan
matches the expectations, it can be executed with the terraform apply command.
The terraform destroy command is used to terminate the entire experiment. The
following is a summary of the basic Terraform commands.

• terraform plan - Initiate the planning process

• terraform apply - Execute the experiment plan

• terraform destroy - Terminate the entire experiment plan

Approved for public release; distribution is unlimited.
4

It is important to note that Terraform maintains a state of the experiment
environment, and changes can be made to the environment without the need to first
terminate. Simply make the desired changes to the configuration files, re-execute
the plan, and apply the respective commands to update the existing deployment.

After the experiment was designed, developed, and configured, the test procedure
was automated in the following processes and repeated 10 times for each migration:

• Deploy Experiment Environment

• Initiate Migration Process

• Migration Completes

• Collect and Record Time Duration (using Kraken logs and Unix time tool)

• Destroy Experiment Environment

5. Experiment Results

5.1 Clone Results

The DoS victim guest virtual machine was cloned with the resulting time. For this
migration type, the completion time frame and guest virtual machine downtime are
the same. A plot of the migration time for 10 tests is shown in Fig. 2. Table 1
calculates a statistical analysis over all 10 test cases, while Table 2 displays the
actual migration times.

Fig. 2 Clone migration time (s)

Approved for public release; distribution is unlimited.
5

Table 1 Statistical analysis

 Time (s)

Average Deviation 0.95
Average (Mean) 48.20
Average (Median) 48.54
Average (Mode) 48.54
Range 44.59–49.55
Variance 1.86
Standard Deviation 1.36
Quartile (25%) 47.82
Quartile (50%) 48.54
Quartile (75%) 49.06

Table 2 Raw data

Test no. Time (s)

01 49.43
02 48.94
03 48.54
04 48.54
05 49.55
06 44.59
07 47.23
08 48.90
09 48.31
10 48.02

5.2 Offline Migration Results

The DoS victim guest virtual machine was migrated by the controller, by first being
taken offline (shutdown) and then being moved before being brought back online.
For this migration type, the completion time frame and guest system downtime are
the same. A plot of the migration time for 10 tests is shown in Fig. 3. Table 3
calculates a statistical analysis over all 10 test cases, while Table 4 displays the
actual migration times.

Approved for public release; distribution is unlimited.
6

Fig. 3 Offline migration time (s)

Table 3 Statistical Analysis

 Time (s)
Average Deviation 2.22
Average (Mean) 22.57
Average (Median) 21.29
Average (Mode) N/A
Range 20.73–33.66
Variance 13.82
Standard Deviation 3.72
Quartile (25%) 20.97
Quartile (50%) 21.29
Quartile (75%) 21.86

Approved for public release; distribution is unlimited.
7

Table 4 Raw data

Test no. Time (s)

01 22.11
02 21.27
03 20.89
04 21.78
05 21.31
06 20.73
07 21.68
08 33.66
09 21.00
10 21.26

5.3 Live Migration Results

The DoS victim guest virtual machine was migrated by the controller using block-
based live migration. The controller copied the DoS victim guest virtual machine
storage disk to the new node before moving the DoS victim guest virtual machine.
Once the DoS victim guest virtual machine was running on the new node, the copy
on the old node was destroyed. This provides near-zero downtime for the DoS
victim guest virtual machine. The resulting time before the guest system was fully
migrated was measured. Guest system downtime was also measured and provided
separately. A plot of the migration time and the guest down time for 10 tests is
shown in Figs. 4 and 5, respectively. Tables 5 and 6 calculate a statistical analysis
over all 10 test cases for the migration and guest down times, while Tables 7 and 8
display the actual migration times and guest down times.

Approved for public release; distribution is unlimited.
8

Fig. 4 Live migration completion time (s)

Fig. 5 Live migration guest virtual machine down time (s)

Approved for public release; distribution is unlimited.
9

Table 5 Statistical analysis completion time

 Time (s)
Average Deviation 15.10
Average (Mean) 38.36
Average (Median) 29.70
Average (Mode) N/A
Range 24.61–113.88
Variance 642.44
Standard Deviation 25.35
Quartile (25%) 28.13
Quartile (50%) 29.69
Quartile (75%) 34.63

Table 6 Statistical analysis guest down time

 Time (s)
Average Deviation 0.26
Average (Mean) 3.57
Average (Median) 3.44
Average (Mode) N/A
Range 3.17–4.04
Variance 0.078
Standard Deviation 0.28
Quartile (25%) 3.36
Quartile (50%) 3.44
Quartile (75%) 3.85

Table 7 Raw data completion time

Test no. Time (s)
01 113.88
02 31.52
03 34.56
04 27.28
05 30.17
06 29.06
07 28.42
08 24.61
09 29.21
10 34.86

Approved for public release; distribution is unlimited.
10

Table 8 Raw data guest down time

Test no. Time (s)

01 3.37

02 3.91

03 4.04

04 3.83

05 3.79

06 3.46

07 3.17

08 3.36

09 3.37

10 3.42

5.4 Result Summary

5.4.1 Clone Migration

Migration using the cloning methodology had the largest average (mean) time to
completion, but it also had the lowest variance. The cloning migration provides
more consistency across migration attempts compared to the other migration types.
An added benefit to the cloning migration type is the retention of the guest system
image at the point in time the migration was started. Although this type has a
distinct benefit that is not found in the other migration types, it is the slowest and
has the longest impact on the guest system with extended downtime.

5.4.2 Offline Migration

Migration using the offline methodology has the shortest average (mean) time to
complete. This offline migration type is also very consistent with a single outlier
increasing the variance and upper bound. Although this type is not as consistent as
the cloning methodology, it still provides a fairly predictable completion time.
Given the short time frame to get the system back online, this migration type offers
very little impact to the guest system with a short amount of downtime.

5.4.3 Live Migration

Migration using the live methodology has an average (mean) time to complete in-
between the cloning migration and offline migration types; however, live migration
provides the lowest amount of guest system downtime. In fact, live migration
provides a substantial improvement compared to the downtime experienced across
the other migration types. Similar to the offline migration type, live migration also

Approved for public release; distribution is unlimited.
11

has a single outlier that increases the upper bound and variance. When removing
the outlier, the variance is low and provides a consistent and predictable time to
completion; furthermore, the outlier did not impact downtime. As such, this live
migration type provides the least variance to overall guest system downtime.

6. Conclusion

Each migration type provides different benefits, guest system downtime, and total
time to completion; as such, the specific migration chosen will vary depending on
the goals of the migration. However, given the results, we can draw the following
conclusions.

If the lowest impact to the guest systems availability is the primary concern during
migration, the “Live Migration” type offers the best results. In this case, the guest
system remains online for the majority of the migration process, experiencing only
a brief lapse in availability.

If retaining a copy of the guest system’s state before migration is the primary
concern, the “Clone Migration” type offers the only solution. In this case, the guest
system experiences the greatest impact to availability, but a copy of the guest
system is retained permanently.

Under no circumstances does an “Offline Migration” type provide superior results
to either of the other migration types tested. Although the “Offline Migration”
provides less impact to the guest system’s availability compared with the “Cloning
Migration” type, it does so without retaining a copy of the guest system’s state and
at a substantial increase to availability compared with the “Live Migration”; that is,
the “Offline Migration” provides no benefit when compared with “Live Migration”.
In conclusion, it is likely that the “Live Migration” and “Clone Migration” types
are the most beneficial and practical migration types.

Approved for public release; distribution is unlimited.
12

INTENTIONALLY LEFT BLANK.

Approved for public release; distribution is unlimited.
13

Appendix A. General Terraform Configuration

Approved for public release; distribution is unlimited.
14

Authentication Configuration: C01_auth.tf

This file should be named C01_auth.tf.

The first configuration file provides Terraform with authentication variables that
will be used in future configuration parameters.

For this authentication configuration file, the only values that must be changed,
based on the current Kraken environment, would be the username and password of
the user performing the experiment. These authentication values would be based on
the OpenStack credentials the experiment user commonly uses, or the global
administrator credentials. If the API endpoint or services change in the future, the
openstack_auth_url would need to be updated to the new values.

Tenant/Project Configuration: C02_tenant.tf

This file should be named C02_tenant.tf.

The second configuration file provides Terraform with project (tenant), network,
and availability zone variables that will be used in future configuration parameters.

Approved for public release; distribution is unlimited.
15

Given the current Kraken configuration the only value that must be changed within
this configuration file would be the tenant_network parameter. However, if in the
future multiple projects/tenants or availability zones are created within the Kraken
environment the other options may also need to be changed.

It should be noted that the openstack_tenant_name variable is synonymous with the
project names within OpenStack. In the case that you need to deploy cloud guests
to multiple networks or availability zones you can duplicate the above variables
and use a different name, such as “tenant_network_02”.

Key Authentication Configuration: C03_keys.tf

This file should be named C03_keys.tf.

The third configuration file provides Terraform with the key-pair information to
use when deploying cloud guests within the infrastructure. This configuration
option sets the keys used for SSH authentication to the guest or the key used to
retrieve the Windows password for Windows-based guests. It should be noted that
the key-pair must already exist within the underlying hypervisor, in this case
OpenStack.

Approved for public release; distribution is unlimited.
16

If the use of a different key is desired, the key name variable must be updated.
Similar to other configuration options, if multiple key usage is desired, the
parameter can be duplicated with a different name.

Provider/OpenStack Configuration: P01_openstack.tf

This file should be named P01_openstack.tf.

The fourth configuration file provides Terraform with information on which
provider (cloud hypervisor) to use for the deployment. In our case, the Kraken
infrastructure uses OpenStack.

Given the previous configuration files, the contents within this file should never
change when using OpenStack.

If other cloud providers are used in the future, even in combination with OpenStack,
this file can be duplicated with the relevant information configured for the other
provider. Terraform provides extensive documentation and lists of the
available providers within their online documentation, found at
https://www.terraform.io/docs/providers/index.html.

Instance/Guest Configuration: Z01_instances.tf

This file should be named Z01_instances.tf.

The fifth and final base configuration file provides Terraform with information on
what instances to deploy and how to deploy them, within the cloud infrastructure.

Approved for public release; distribution is unlimited.
17

This configuration file is the most important to the actual experiment or test being
conducted, because this file defines the virtual environment you are deploying. As
such, this configuration file is subject to the most change or even duplication, and
it should never be linked from a global file.

The first parameter that needs to be changed is the instance name. This must be
unique within the configuration and is actually found twice within the
configuration: first as the Terraform name on the initial line and second as the name
to use within the provider infrastructure (OpenStack, in this case).

The next parameter is extremely important because it defines the image to be
deployed. The image_name value should be identical to what is found within the
provider infrastructure. It should also be noted that the image needs to have already
been created for your experiment.

The availability_zone, key_pair, and network name options should not need to be
changed unless duplicates were created in the preceding configuration files.

The flavor_name option defines the instance resource settings and is based on the
naming scheme and configuration of the underlying cloud provider. If your image
requires a different resource allocation, this value should be updated accordingly.

The security_groups value defines the network access control settings to use for the
instance and is again based on the naming scheme and configuration of the
underlying cloud provider. These security groups should already be defined within
the cloud infrastructure. Should you wish to use the non-default group, which is
wide-open/non-filtering, then this value should be updated accordingly.

Finally, the user_data parameter allows for a script file to be executed post-
deployment. This file should exist in the same directory as the Terraform
configuration files and can provide the automation necessary to begin any
experimentation processes on the cloud guests.

Global Files/Linking

The following files are likely to be global configuration files and therefore can be
configured once and linked (symlink) to the various experimentation directories:

• C01_auth.tf

• C02_tenant.tf

• C03_keys.tf

• P01_openstack.tf

Approved for public release; distribution is unlimited.
18

In the case that one, or any, of these files needs to be modified in a specific
experiment, that file can be overwritten (non-symlink) with the experiment-specific
configuration file. If other providers are configured in the future, those
configuration files should also be considered global and linked to the various
experiment directories.

Approved for public release; distribution is unlimited.
19

Appendix B. Terraform Configuration: Migration Experiment

Approved for public release; distribution is unlimited.
20

Although the base configuration was created to rapidly deploy experiments, the vast
majority of the Migration Experiment uses the global configurations provided
above. The 2 primary configuration files for the migration experiment are the
instance configurations: Z01_instances_victim.tf and Z02_instances_attacker.tf.

Victim Instances: Z01_instances_victim.tf

Attacker Instances: Z02_instances_attacker.tf

Approved for public release; distribution is unlimited.
21

Approved for public release; distribution is unlimited.
22

INTENTIONALLY LEFT BLANK.

Approved for public release; distribution is unlimited.
23

List of Symbols, Abbreviations, and Acronyms

API application programming interface

ARL US Army Research Laboratory

DoS Denial of Service

KVM Kernel Virtual Machine

Approved for public release; distribution is unlimited.
24

 1 DEFENSE TECHNICAL
 (PDF) INFORMATION CTR
 DTIC OCA

 2 DIR ARL
 (PDF) IMAL HRA
 RECORDS MGMT
 RDRL DCL
 TECH LIB

 1 GOVT PRINTG OFC
 (PDF) A MALHOTRA

 1 DIR ARL
 (PDF) RDRL CIN D
 M DE LUCIA

	Contents
	List of Figures
	List of Tables
	1. Introduction
	2. Experiment Overview
	3. Terraform Configuration: General
	4. Experiment/Environment Deployment and Execution
	5. Experiment Results
	5.1 Clone Results
	5.2 Offline Migration Results
	5.3 Live Migration Results
	5.4 Result Summary
	5.4.1 Clone Migration
	5.4.2 Offline Migration
	5.4.3 Live Migration

	6. Conclusion
	Appendix A. General Terraform Configuration
	Appendix B. Terraform Configuration: Migration Experiment
	List of Symbols, Abbreviations, and Acronyms

