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1. Introduction 

Code stylometry is a means of authorship attribution for source or binary code. 
Much like a person can be identified via their handwriting or an author identified 
by their style or prose, programmers can be identified by their code. Provided a 
labelled training set of code samples (example in Fig. 1), the techniques used in 
stylometry can identify the author of a piece of code or even a compiled binary by 
utilizing the underlying structure of the code contained in the abstract syntax tree 
(Fig. 2) produced by the code. This method of attribution does not rely on author 
comments or whitespace features, and thus the features cannot be easily obfuscated 
to protect the code author from de-anonymization. Furthermore, by recreating the 
abstract syntax tree of compiled code using forensic processes, even compiled 
binaries can be evaluated for characteristics of code structure. 

 

Fig. 1 Sample code listing from code-stylometry paper made possible by a US Army 
Research Office grant (Caliskan-Islam et al. 2015) 

 

 

Fig. 2 Corresponding abstract syntax tree from de-anonymizing programmers’ paper 
(Caliskan-Islam et al. 2015) 
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Stylometry research has proven that anonymous code contributors can be  
de-anonymized to reveal the original author, provided the author has published 
code before. This potential for de-anonymization must be considered both a tool 
and a threat, as stylometry is a technique that could be used by both friend and foe. 
As a tool, stylometry may be useful for identifying code contributions, including 
potentially identifying malware authorship. From an adversarial perspective, 
techniques to mitigate de-anonymization should be studied to reduce the risk to 
friendly authors. Other potential uses beyond de-anonymization include 
ghostwriting detection, software forensics, copyright investigation, and authorship 
verification. 

Previous collaboration between Drexel University’s Privacy and Security 
Laboratory and the Network Security Branch (NSB) of the US Army Research 
Laboratory (ARL) produced a number of published papers, informed research and 
transition efforts, and in general contributed to moving forward the state of the art. 
This prior work has demonstrated the overall feasibility of the technique, showing 
greater than 95% accuracy when attributing code from 1 author out of 250 (see Fig. 
3) and accuracy greater than 90% identifying code authorship from a domain of 
1600 authors in experimental datasets (Caliskan-Islam et al. 2015). In general, a 
larger author set will reduce accuracy while a smaller author set will increase 
accuracy. Inversely, more code samples per author increases accuracy, while fewer 
code samples per author decreases accuracy. 

 

Fig. 3 Large-scale de-anonymization of 250–1600 code authors (Caliskan-Islam et al. 2015) 

These results are for the closed-world case; that is to say, picking 1 author out of a 
known complete set. However, expanded open-world classification and  
multiauthor classification have also been examined (Caliskan-Islam et al. 2015; 
Stolerman et al. 2014). The research has been further expanded by considering 
binary stylometry (Rosenblum et al. 2011) with positive results from compiled code 
and encouraging results even when predicting attribution from obfuscating 
compiler-compiled code (Caliskan-Islam et al. 2015). 
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Table 1 Effect of obfuscation on de-anonymization from code-stylometry baseline paper 
(Caliskan-Islam et al. 2015) 

Obfuscator Programmers Language Results w/o 
obfuscation 

Results w/ 
obfuscation 

Stunnix 20 C++ 98.89% 100.00% 
Stunnix 20 C++ 98.89%a 98.89%a 
Tigress 20 C 93.65% 58.33% 
Tigress 20 C 95.91%a 67.22%a 

a Information gain features 

2. Motivation 

During collaboration between Drexel University and ARL, data processing for code 
stylometry has primarily been conducted by Drexel personnel on Drexel computers 
while learning and analysis research was conducted collaboratively by both parties. 
Thus, data-processing scripts resided primarily on Drexel hardware. Recently, a 
requirement emerged to transition or develop an ARL internal code-stylometry 
environment to demonstrate, share, and enhance or build upon the current state of 
the art in code stylometry to continue research and perform operational evaluations 
both individually and in conjunction with other available tools. In doing so, and to 
create the stand-alone environment, the entire process of code stylometry must be 
integrated, including data processing and learning and analysis. 

The first path examined was a transition of code from the existing processing 
framework onto ARL systems. This initially was considered the fastest and easiest 
path. However, a number of compatibility issues were discovered during the effort 
to transition existing code, including significant challenges in finding obsolete 
versions of needed software dependencies, performance issues, and low readability 
of the research code. As a result of these challenges, the possibility was examined 
of simplifying and rewriting the code-stylometry software in Python on an ARL 
platform.  Because ARL collaborates with Drexel University in researching code 
stylometry, the intent is to share the Python stylometry software with Drexel once 
the initial development is completed and provide updates as necessary as the project 
progresses. 

3. Purpose 

The new code-stylometry software aims to preserve the functionality of the original 
software while accomplishing the objectives of increased performance, increased 
readability, and better compatibility with existing operational and research 
platforms. All newly written code is in the Python programming language to 
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improve readability and interoperability. The number of dependencies required by 
the tool has been reduced from 5 to 3 for source-code stylometry, improving 
portability and ease of maintenance. All dependencies on nonpublically available 
code have been removed. Performance in terms of data-processing time has been 
improved by an estimated factor of 5 to 10 times by using a single initialization of 
the database server rather than multiple initializations throughout the experiment, 
reducing the amount of time required to process code. 

The aim of the new software is to act as a base for new ARL internal research on 
code stylometry and facilitate greater control over potential updates, patches, and 
upgrades to the software. An independent codebase will allow greater flexibility in 
designing experiments and enhanced interoperability with other applications as 
needed. Additionally, the reduced dependency set and more interoperable design 
allows for easier installation on computers within the ARL environment. 
Transitions to other ARL branches or other organizations should also be 
significantly easier with the new software compared to the old software. 

4. Tool Components 

The code-stylometry tool is composed of several parts that constitute a general 
workflow for code or binary processing, feature extraction, and learning/prediction. 

4.1 Dataset Definition  

The first step of the tool workflow is the extraction of samples from a labelled 
dataset. Notionally, this extraction could include the entire dataset or any smaller 
portion of it. In the current build of the Python version of the stylometry tool, the 
extraction is handled via a script that accepts as input constraints on which and/or 
how many authors and/or files should be drawn from a larger dataset for use in a 
smaller subset of the dataset. 

The required dataset format is indexed as follows: 

1) Dataset main directory 

a. Author directories 

i. Individual files 

The script iterates through the dataset’s top-level directory and selects a subset of 
authors that matches the input criteria for number of authors and required problems 
per author. It then creates a new directory in the same format as the original dataset 
directory, containing only the authors and problems of interest. 
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4.2 Feature Extraction  

The next step is to create a feature set from all of the samples within the given 
dataset. The feature set must capture enough information about the code to be 
informative in terms of authorship attribution, but should not be so large as to make 
machine learning on the feature set computationally infeasible. 

In general, there are 3 types of features that can be drawn from source code: 1) 
Lexical features deal with the word vocabulary used in the source code, 2) layout 
features deal with whitespace formatting, and 3) syntactic features are drawn from 
the layout and content of the abstract syntax tree. Syntactic features are the most 
resilient to obfuscation, whereas layout can be trivially altered and both layout and 
lexical features do not survive the compilation process. For lexical and layout 
features, the source code is read directly and processed by a function within the 
processing script. For syntactic features related to the abstract syntax tree, a more 
complex process is needed to parse the code. Both the original research code and 
this Python implementation use a tool called “Joern”, a fuzzy parser designed 
specifically for processing code that may be incomplete (Yamaguchi et al. 2014). 

Joern inserts the abstract syntax-tree layout of the code sample set into a “Neo4j” 
graph database. In essence, the structure of the graph in the database is a large tree, 
with a root node of the main data directory, ascending through author directory and, 
finally, an abstract syntax tree for each individual problem. The abstract syntax tree 
(as shown in Fig. 2) decomposes complex operations into smaller parts, finally 
resulting in leaf nodes. This syntactic structure information can be drawn from the 
Neo4j database through queries using the Python library “Py2Neo” as an interface.  

For the validation experiment later in this technical note (Section 6), we used the 
following: 

 • source-code word unigram’s term frequency,  

• source-code word unigram’s average position within the document 
(measured as 0 at start, 1 at end), 

• abstract syntax-tree-node types’ term frequency, 

• abstract syntax-tree-node types’ average depth (depth within 
abstract syntax tree hierarchy), and  

• abstract syntax-tree-node bigrams’ term frequency. 

4.3 Feature Mapping  

Next, the processing script maps features on a per-sample basis to form a feature-
to-sample mapping. Each code sample has feature information collected from both 
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the original source file (for lexical and layout features, if any) and the 
corresponding abstract syntax tree for that sample file (for syntactic features). The 
unique features for each sample are also added to an experiment-wide corpus 
aggregator. This aggregator collects all unique features from each sample to create 
a single, unified, experiment feature set that includes all features arising from 
samples in the dataset. This unified feature set will be used to create and format the 
data for the machine-learning model. 

The experiment feature set can be reduced depending on experiment parameters. 
For example, features that appear only once in a corpus are useless for prediction, 
as these features could never correlate 2 separate samples within the corpus; 
accordingly, in the validation experiment in Section 6, the final feature set includes 
only features that appeared more than once in the overall corpus. 

After feature reduction, the samples are assigned a feature data array based on 
which features they possess from the overall corpus-feature dataset.  Features from 
the corpus-feature set that do not exist in the sample features are filled in with zeros 
in the feature data for each sample. 

4.4 Learning and Prediction  

Finally, the script applies a random forest classifier—implemented in the Python 
machine-learning library’s Scikit-learn (Pedregosa et al. 2011)—to create a model 
of how the mapped features per sample are associated with author labels. Once a 
model has been created, the script can attempt to predict the authorship of new 
samples whose authorship is unknown, provided we know the author is within the 
known set of authors. So long as the features used for stylometry are informative 
as to authorship attribution, prediction of unknown authors within a set should be 
possible. We can validate the results of the prediction using a technique called 
cross-validation (discussed in Section 6). 

The random forest classifier is an ensemble learner built from a collection of 
decision trees. Each decision tree is created by randomly sampling training samples 
with replacement from the sample set. During classification, each test example is 
classified by each of the trained decision trees and the results are subsequently 
aggregated. In essence, the trees “vote” on the overall classification of each sample, 
with the eventual label being the most popular classification from the individual 
trees. The random forest model as used by the learning script uses 500 decision 
trees as estimators to form an ensemble classifier. 
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5. Specific improvements 

Compared to the original research code in which the Joern tool was run on each file 
individually, only 1 instantiation of Joern is needed to process all of the sample files 
using the new methodology. This reduces the amount of time needed for 
processing, and allows for a single Neo4j database to be used rather than repeatedly 
creating new databases. 

Similar to Improvement 1, the new methodology only requires 1 instantiation of 
Neo4j during the entire experiment, rather than 1 instantiation per file. This is 
achieved by reading in all Joern data at the beginning of the experiment, then 
searching for specific subtrees within the database as the author files are iterated 
over. This vastly reduces the amount of time needed for server startup and 
shutdown. 

The Python source-code stylometry rewrite reduced the number of dependencies 
from 5 to 3. This was accomplished by using the native functionality of Py2Neo to 
read from the Neo4j database rather than a collection of 3rd-party Python and shell 
scripts. In addition, the dependencies it does require are the newest public versions 
of the dependencies, rather than old versions. This should make the code more 
flexible and more easily movable to different platforms. 

The new data-processing methodology preserves dataset integrity by not writing 
any new files to the experimental dataset. The research code wrote several files to 
the dataset for each sample problem examined. This ensures the dataset has not 
been altered in any way and can be used again without cleanup for subsequent 
experiments with new processing methods. It also reduces the file input/output 
overhead, leading to reduced time to process files. 

The new Python stylometry code significantly streamlines the overall codebase by 
deleting out-of-date functions and functions that may have been used for research 
but are now deprecated. Only 3 key scripts are required for the entire Python source-
code stylometry workflow. This should help ensure the codebase is more readable 
and more easily maintained. 

The migration to Python language scripts improves compatibility with the ARL 
environment. We faced many challenges setting up an environment with the 
requisite dependencies of the research code. This upgrade to code stylometry 
should not only serve as an enhancement but ensures future research and 
development on stylometry integrates more smoothly with other efforts. 
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6. Validation 

As with the original research in code stylometry, the validation experiments for this 
work will use the Google Code Jam dataset, a collection of C, C++, and Python 
source-code samples labelled by author and problem number. This dataset 
originates from the Google Code Jam challenge, a programming competition to 
write code to solve a series of programming problems. 

All accuracy evaluations for both the original work and new work use the k-fold 
cross-validation method, where data were split into training and test sets stratified 
by class (in this case, author). The number of code samples per author in the training 
and test sets was identical for all authors. The parameter k is the number of 
segments the data are split into, with k-1 segments used for training and the 
remaining segment tested upon. 

A baseline demonstration used earlier in the stylometry project uses a small subset 
of the larger Google Code Jam dataset containing 10 specified authors with 9 files 
each. Using this dataset, 9-fold cross validation is performed to obtain a score from 
the machine-learning classifier, meaning that for each author class 8 samples will 
be used for training the model and 1 sample will be used for testing. This process 
will be repeated until all combinations (or folds) of the dataset have been tested. 

The feature set for the original and Python stylometry versions is different as are 
the exact parameters of the learning mechanism. Thus, results are not anticipated 
to be exactly the same; however, they should be similar enough for comparison. 
For the initial validation, we will only examine closed-world source-code 
stylometry rather than binary stylometry or open-world attribution situations. 

In testing, the original code stylometry demo obtained a 9-fold cross-validation 
accuracy of 92.9% averaged over 5 runs. (See Table 2.) The new code-stylometry 
tool using the same data obtained a 9-fold cross-validation accuracy of 93.6% 
averaged over 5 runs. This suggests that for the basic authorship-attribution task, 
the Python-based implementation is capable of achieving comparable results. 

To further validate the reproduction of results, we used a dataset of 250 authors 
who had completed at least 9 problems from the 2012 Google Code Jam problem 
set. Each author has exactly 9 of their completed problems from the 2012 problem 
set assigned to them as samples. From the de-anonymizing programmers’ paper the 
best result obtained for this dataset was 96.83% (Caliskan-Islam et al. 2015, table 
5) after information gain was applied. The average (3 repeated runs) result from the 
Python version of the stylometry tool using the same data without information gain 
features was 96.77%. 
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Table 2 Results of the validation experiment; time to complete depends on the hardware 
used to run the processing 

 
10 authors’ 9 
files (demo 

dataset) 

250 authors’ 9 files CPPa 
2012 from Google Code 

Jam dataset 

250 authors’ 9 files 
CPPa 2014 from Google 

Code Jam dataset 
Target 9-fold cross-
validation accuracy 

(from Caliskan-
Islam et al. 2015) 

92.9% 96.83% 95.07% 

Python 9-fold 
stratified cross-

validation accuracy 
93.6% 96.77% 97.56% 

Time to create 
experiment dataset 1.0 s ~12.0 s ~12.0 s 

Time to process 
code and extract 

features 
548.8 s  

(9 min 8.8 s) 17151 s (4 h 45 min 51 s) 17739 s  
(4 h 55 min 39 s) 

Time to run learning 
and evaluation 24.8 s 3587.1 s (59 min 47.1 s) 3503.9 s (58 min 23.9 s) 

a C Plus: C++ 

It appears 9-fold cross-validation accuracy is similar between the original work and 
the Python implementation. This is somewhat surprising considering the relative 
simplicity of the initial feature set used by the Python implementation for source-
code stylometry. The original paper (Caliskan-Islam et al. 2015) remarks that in 
many cases the abstract syntax-tree bigram’s features are enough to achieve similar 
results to the full feature set. It may be the case that for these datasets this simpler 
feature set is sufficient. We also note the random forest model used for this 
validation experiment used a higher number of classifiers, 500 rather than 300, 
which may have allowed for more precise model creation. 

7. Conclusion 

It is intended that the improvements listed here to the code-stylometry tool will be 
used by ARL researchers to further research in the code-stylometry field. 
Additionally, the tool may form the basis of an operational prototype for code 
stylometry. By rewriting the tool in Python and revising the workflow for certain 
aspects of data processing, we obtained a 5–80-times reduction in data-processing 
time, reduced the number of dependencies for source-code stylometry from 5 to 3, 
reduced the number of external dependencies, and streamlined the existing research 
code into a straightforward tool. We anticipate continued development to integrate 
features such as attribution from binaries via binary disassembly and recompilation, 
open-world case handling, and multi-author handling.  
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