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Abstract: Studies of probabilistic modeling and simulation focused on some special 
situations and behaviors, including rare events and scenarios, occurred in large scale and 
complex systems have been performed extensively. However, few studies have explored the 
modeling and simulation techniques to seamlessly cover multiple scopes including both 
major (frequent) and minor (rare) situations and behaviors embedded in a given large data 
set. A main obstacle to develop such techniques comes from the difficulty to capture the 
situations and the behaviors having highly contrasted probabilities in a unique model of the 
data distribution. Two technical issues must be addressed for overcoming this obstacle; (a) 
weighting instances in a given large data set and (b) selecting prototypes from a given large 
data set. Particularly, the latter is for the modeling from massive data to which the thorough 
access is not feasible. A method to address these two issues preserves the variety of 
instance distributions of the data set and provide the basis of the seamless simulations over 
the multiple scopes. In the first year, we performed a mathematical analysis to derive the 
required conditions on our targeting method and designed a principle of the method which 
largely alleviate the obstacle by efficiently sampling the required prototypes with their 
appropriate weights. In the second year, we implemented the designed principle of the 
targeting method to an algorithm in computers and evaluated its generic performance 
preserving the variety of instance distributions of the data set in the selected prototypes. 
The mathematical analysis, the designed principle, the implemented algorithm and its 
performance evaluation presented in this report is the first work in worldwide for the 
seamless and comprehensive probabilistic simulations of the large scale and complex 
systems. 

Introduction: Needs of probabilistic simulations of large scale and complex systems are 
rapidly increasing. Various situations and behaviors occur under very special conditions with 
some low probability in such systems because of their huge and complex structures. For 
example, a particular protein folding structure is known to occur under very limited 
conditions. A giant typhoon is also induced by special conditions consisting of various 
meteorological factors.  
    Accurate probabilistic simulations of all situations and behaviors of the large scale and 

complex systems are not usually tractable, because the systems and their behaviors are too 
complex to be well modeled and computed by using our background knowledge. State of the 
art to overcome this difficulty is to combine a divide and conquer approach and a 
data-driven approach. The divide and conquer approach limits the scope of the modeling 
and the simulations to our interested situations and behaviors. For example, we focus the 
simulations on a protein folding structure by limiting biological and physical conditions to 
make it occur. For the giant typhoon, we also limit the simulation to some specific rare 
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conditions. The data-driven approach introduces more empirical modeling based on the 
observed data. For example, probabilistic free energy models of the protein molecule include 
many empirical parameters. Some parts of a probabilistic typhoon model are also derived by 
empirically observed data. This framework reduces the difficulty of the system modeling and 
achieves the sufficient accuracy in the simulations with their tractability.  
    However, the divide and conquer approach provides the models and the simulations 

fragmented into the individual scope, and their interpretability are limited. This drawback of 
the current framework also reduces its applicability to practical problems including analysis, 
control and management of the systems across their multiple scopes. These difficulties will 
become more significant in near future, since the scale and the complexity of the systems 
and the problems are significantly increasing in our modern society. On the other hand, 
amount of data observed from the systems is rapidly increasing, and this provides “big data”. 
Since the big data is acquired under various situations and behaviors of the systems, it tends 
to cover their many scopes. Accordingly, we may obtain better models for the simulations in 
a data-driven manner. However, such models are not easily derived, since thorough access 
to all instances in the big data is not tractable.  

Aim and Goals 
In this study, we aim to overcome the drawbacks of the current probabilistic simulation 
framework and also to address the issue of the modeling which uses the big data. We target 
the following research goals under these aims: 
(1) We investigate the mathematical principle for the data-driven probabilistic modeling to 

capture variety of the instance distribution in a given data set for covering multiple 
scopes of our objective system in a seamless manner.  

(2) Based on the investigated mathematical principle, we characterize the required 
prototype distributions in a subsample data set selected from the given data set to 
provide such a seamless probabilistic model.  

(3) We develop an instance weighing and sub-sampling algorithm for the prototype 
selection preserving the variety of the instance distribution in a large data set. This 
enables highly tractable probabilistic modeling of the objective system over its multiple 
scopes by efficiently extracting instances representing each scope of the system from 
the big data. 

(4) Performance of the developed method for the instance weighing and the prototype 
selection is evaluated and confirmed through some simulation examples. 

In the first year, we theoretically investigated the goals (1) and (2). For the goal (1), 
we introduced our problem setting at first, and second, we defined some measures to 
characterize the optimal subsample distributions, and third, we seek some mathematical 
analysis method for the characterization. For the goal (2), by applying the mathematical 
analysis method, we characterize the required distributions of instances in a subsample data 
set of a given original large data set. The instances having the distributions in the subsample 
data set minimize these measures and preserve the varieties of the distribution of the 
original data set in a compact fashion by the nature of these measures.  

In the final year, we worked on the goals (3) and (4). For the goal (3), an algorithm 
which efficiently subsamples the instances as prototypes by following the required 
distribution from the large original data set while minimizing the measures were designed 
based on a principle of the instance weighting. Then, for the goal (4), the basic performance 
of the designed algorithm was evaluated through some generic simulations, and its 
promising performance was confirmed. 

Problem Setting: The population distribution of a very large data set is denoted as ( )f x , 
where x is a continuous variable on R, and the support of f(x) is limited to [xmin, xmax]. Let 

},1,=,{= Nixi X  with very large N be samples independently generated from ( )f x . 
An extra auxiliary distribution is defined as ( )g x , and another subsample set 

}~,,~{= 1 nxx Y  ( n << N ) is independently sampled from X according to their sampling 
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weights )~(/1)~( ii xx ωπ =  making the population distribution of Y be ( )g x . This )~( ixω  is 
given by 
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In Eq. (1), we assume ≠( ) 0g x  whenever ≠( ) 0f x . 

Let an estimator of ( )f x : ),),(|(ˆ YXxgxf  is the following weighted Kernel density
estimator using Y [1]. 
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Our problem is to derive an optimum auxiliary distribution )(xgopt , which minimizes a given 

error measure ),,( YXgM  between ( )f x  and ),),(|(ˆ YXxgxf  under the data set X
independently sampled from ( )f x . Note that )(xgopt  derived here defines the optimum 

)~( ixω  by Eq.(1). Our further problem is to design efficient algorithm for subsampling Y 
from X according to the weight )~(/1)~( ii xx ωπ = . 

Measures: Our candidate measures ),,( YXgM  chosen for preserving the varieties of 
the distribution of X in Y are Mean Integrated Square Percentage Error (MISPE) and Alpha 
Divergence. 

MISPE 
The simplest candidate measure is the following Mean Integrated Square Percentage Error 
(MISPE) [2]. 
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Because ( )f x  in the denominator weights the error between ( )f x  and ),),(|(ˆ YXxgxf ,

),),(|(ˆ YXxgxf  minimizing this measure reflects ( )f x  more when it is smaller. Hence,
the resultant Y and its )~( ixω  is supposed to capture the varieties of ( )f x .

Alpha Divergence 
A divergence has been considered as a dissimilarity measure. Some of its properties [3] 
allow us to minimize alpha-divergence to find the best approximating distribution. Firstly, 
alpha-divergence is zero if ˆf f=  and positive otherwise, so it satisfies the basic property
of an error measure. The property follows from the fact that alpha-divergences are convex 
with respect to f  and f̂  [4]. The alpha-divergence being used as an error measure has
the variant structure with different selection of parameter α . For example, the case with 

0.5α =  is known as Hellinger distance. The case with 1α = −  is considered as a measure
similar to the mean integrated squared percentage error (MISPE). The case with 0α →  or 
1  is defined as KL-divergence.  
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Let an alpha-divergence )),),(|(ˆ|)(()( YXxgxfxfD α  be an error measure

between ( )f x  and ),),(|(ˆ YXxgxf . In our analysis, we design ( )g x  to minimize this
divergence measure. The original definition of the alpha-divergence is 
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The case with 0α →  or 1  is defined as KL-divergence, which is given by 
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Eq. (4) can be reformulated to a simpler expression as 
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In Eq. (7), ( )f x  causes singularity of alpha divergence when =( ) 0f x . Therefore, without 
loss of generality, we exclude the area of =( ) 0f x  from the integral and assume ≠( ) 0f x  in 
the following analysis. ˆ( )f x  has the similar effect on the alpha divergence, and we assume
that ≠ˆ( ) 0f x  whenever ≠( ) 0f x .

Calculus of Constrained Variations and Characterization of Optimal Auxiliary 
Distributions: For deriving )~( ixω  of the instances in the subsample data set using Eq.(1), 
we need to know the optimum auxiliary distribution )(xgopt  minimizing ),,( YXgM . Since 

)(xgopt  is a probability density function which integral over the entire R is unity, this 
optimization problem of )(xg  with its integral constraints is generally falls into the following 
“Calculus of Constrained Variations” [5] and is represented as 
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where y(x) is to be optimized, and I is a known constant. To solve this problem, 
))('),(,( xyxyxL  is extended to ( , ( ), ( ), )L x y x y x λ′  which includes the Lagrange multiplier.  

))},('),(,({))('),(,())('),(,(~ xyxyxGIxyxyxLxyxyxL −+= λ                  (9)
Where λ  is a constant. Then, the optimization problem of ))('),(,( xyxyxL  is transformed 

to the following standard “Calculus of Variations” of the extended ( , ( ), ( ), )L x y x y x λ′  without 
any constraint [6] and [7]. 
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The optimium y(x) is known to be the solution of the following partial differential equation. 
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 In case of MISPE (See Appendix A), 
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with the integral constraint 1)( =∫
∞

∞−
dxxg  is to be minimized. By applying Eq.(9) and 

Eq.(11), we obtained the following solutions. 
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Algorithm to Select Prototypes: The optimal auxiliary distributions )(xgopt  given by the 
alpha divergence depends on f(X), and thus it is not easily computed because f(X) is 
unknown. In contrast, )(xgopt  based on the MISPE measure is uniquly given as the uniform 
distribution shown in Eq.(13). Accordingly, we focus on this simpler case in our further study. 
The sampling algorithm of Y from X must be designed to sample each instance from X which 
follows f(x) over R with a uniform probability density )(xgopt  over R by applying the 

sampling weight )~(/1)~( ii xx ωπ =  designated by Eq.(1), so that the samples in Y drawn 
from X are uniformly distributed everywhere in the support of f(x).  
      An issues to design this algorithm is the lackness of the infornation on true f(x) which 
is needed to directly compute correct )~(/1)~( ii xx ωπ = . We introduce an iterative 
approximation alogorithm named “Wang-Landau algorithm” [8] to derive the subsample set 
Y following the uniform distribution )~( iopt xg . The key idea of this algorithm is to use a 

histogram of the prototype set Y over ],[ maxmin xx  and gradually modify )~(/1)~( iii xx ωπ =  
at each bin of the histogram in iterative computations. Let ],[ maxminj xxX ⊂  

 ),1( B,...j = be a bin of the histogram of the subsample data set Y. The histogram consists 
of B bins partitioning ],[ maxmin xx . We define a weight of each bin as )(ˆ jXπ , and let the 

weight of each ix~  in Y be )(ˆ)~(ˆ ji Xx ππ =  subject to ji Xx ∈~ .  

Initially, we give a tentative arbitrary weight value to )(ˆ jXπ  of each bin. This is 

equivalent to assume some arbitrary density )~(ˆ
ixf  for ji Xx ∈~  as  

minmaxjj
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After each trial to draw x~  from X, we select x~  into Y as ix~  in probability which is 
proportional to the weight )(ˆ)~(ˆ jXx ππ =  subject to jXx ∈~  as 

∑
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where )( jXh  is a frequency of the instances included in a bin jX .  

Subsequently, )(ˆ jXπ  is lessen by multiplying a constant factor 0 <F < 1 to it. This 
procedure reduces the weight of the instance x~  belonging to a bin having a large 
frequency in the histogram of Y, i.e., the instance x~  frequently selected into Y from X. The 
instances more frequently sampled in Y become less sampled by their lowered weights, and 
the instances less frequently sampled in Y become more sampled by their relatively lifted 
weights. Accordingly, this procedure has an effcet to flatten the histogram’s shape.  

These instance selection and weight update are repeated and then posed when the 
histogram becomes almost flat. At this point, Y and the frequency )( jXh  of its all 

histogram bins are reset to empty while keeping their latest weights )(ˆ jXπ . In addition, 

the factor F is changed by FF ←  to make it closer to 1. This updated factor F enables 
finer tuning of the weights to more precisely flatten the histogram. Then, the instance 
selection into Y, the weight update and the factor update are further repeated until we 
obtain Y having a sufficiently flattened histogram, i.e., a uniform distribution.  
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This Wang-Landau algorithm indirectly reflects the population distribution of X, f(X), 
to the weights of the histogram bins, i.e., the weights of )(ˆ)~(ˆ ji Xx ππ =  subject to 

ji Xx ∈~ , by iteratively modify them while computing the frequencies of the bins, and 

achieves the sufficiently uniform )~( iopt xg  of Y. A strong advantage of this algorithm is that 
we can efficiently derive the prototype set Y having a sufficiently uniform distribution 
without assessing entire distribution of X, i.e., accessing the entire data set X which can be 
very huge.  

The following is a pseudo-code of this algorithm. Here, we use logarithmic weights 
)(ˆlog)( jj XXLP π=  in place of )(ˆ jXπ , and further we define logarithmic factor 

FLF log−=  (i.e., with a minus sign) in place of F. These are because the amplitudes of 
the weights can vary over many orders of magnitude.  
Wang-Landau algorithm: 

1. Initialize )( jXLP  and LF; set other parameters. 

– Set )( jXLP  = 0 for j = 1, . . . , B. 
– Set LF > 0 (e.g., LF = −log(1/e) = 1). 
– Set the maximum number of iterations Kmax (e.g., Kmax = 18). 
– Set the counter of iterations K to 0. 

2. Initialize a prototype set Y and its histogram H. 
– If K > Kmax, end. 
– Make the prototype set Y empty. 
– Set 0)( =jXh  for j = 1, . . . , B. 

3. Selection of an instance from X into Y. 
– Randomly sample x~  from X and select it into Y in probability proportional to  

))(exp()( jj XLPX =π  subject to jXx ∈~ . 

4. Modify )( jXLP  and update the histogram H. 

– LFXLPXLP jj −← )()( subject to jXx ∈~ .  

– 1)()( +← jj XhXh  subject to jXx ∈~ . 
5. Check whether H is “sufficiently flat.” 

– If so, 2/LFLF ← , K = K + 1 and go to Step 2. 
– Otherwise go to Step 3. 

 
      The application of this Wang-Landau algorithm is not limited to derive the prototype 
set Y having the uniform distribution. By changing the condition at the step 5; Check 
whether H is “sufficiently flat” to any target distribution, this algorithm can derive Y having 
the distribution. Accordingly, this is also applicable to Y given under the alpha-divergence 
measure, if Eq.(15), (16) and (17) are represented by some analytical forms or numerically 
solved. 
 
Experiment and Results: We applied the Wang-Landau algorithm with the MISPE 
measure to a virtual big data set X having the following Weibull distribution. 
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where λ=1.0 and k=1.5. This distribution is known as a typical example distribution having a 
significant long tail, i.e., a large portion of the probability belongs to a wide range of the 
probability variable with very low probability. Therefore, this distribution produces a data set 
X which large part consists of rare instances. The big data set X was not generated at the 
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step 3 of the pseudo-code in reality. Rather, the direct draw of each instance x~  
from ),;( kxf λ  was performed. This is equivalent to have an infinite data set X. We limited 
the range of x~ to a finite interval [0,5] for avoiding computational divergence. The initial 
values of the logarithmic weights )(ˆlog)( jj XXLP π=  and the logarithmic factor 

FLF log−=  were set at 0 and 1, respectively. Kmax=18 was used for the number of the 
factor updates and the histogram reconstructions. 

We assessed the performance of our proposed method by checking if such rare 
instances are efficiently sampled over the long tail of the distribution. Figure 1 shows the 
histogram of the samples in the prototype set Y together with the plot of the Weibull 
distribution having λ=1.0 and k=1.5. This clearly shows that Y almost uniformly includes 
variety of samples over the entire range of x~ , and the rare prototypes in the range [4,5] 
having almost negligible probability f(x) form a significant portion of Y. The similar prototype 
set can be obtained by accessing the entire data set X and selectively acquiring the rare 
prototypes. However, the efficiency of this approach depends on the sizes of X and Y. For 
example, if the size of given X is 160,000 and the required size of Y is 100, its efficiency to 
obtatin an prototype in Y is 100/160,000=6.25×10-4. This efficiency is comparable with that 
of our proposed prototype sampling, 6.48×10-4, which is the ratio of the sample population 
acquired in Y over the total number of the draws from X, i.e., ),;( kxf λ . On the other hand, 
if the size of given X is 16,000,000 and the required size of Y is 100, its efficiency 
100/16,000,000=6.25×10-6 is far worse than the efficiency of our method. In other words, 
our approach is more efficient than the thorough access to X to acquire 100 prototypes in Y, 
if the size of X is more than 160,000. This comparison demonstrates the advantage of our 
proposed approach for the prototype sampling from a big data set. 

  
Figure 1. Weibull distribution f(x;λ,k) having λ=1.0 and k=1.5 and histogram of Y. 

 
Next, we compared MISPE and MISE between our approach and the standard random 

sampling. In our approach, the probability density f(x;λ,k) of the Weibull distribution is 
estimated by using Eq.(1) as  
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,~ subject to 
)(ˆ
)(

)(ˆ)(),;~(ˆ
j

j

jh
jjh Xx

X
Xg

XXgkxf ∈==
π

ωλ  

where )( jh Xg  and )(ˆ jXπ  are the normalized frequency and the weight of the 

histogram bin jX , respectively. In the standard random sampling, ),;~(ˆ kxf λ  is simply 

computed by the histogram of the randomly sampled prototype set Y. Once ),;~(ˆ kxf λ  is 
estimated in the both methods, their MIPSE are computed by Eq.(3), and their MISE are 
computed by the standard mean integrated square error between ),;~(ˆ kxf λ  and f(x;λ,k). 
Figure 2 show the comparison of their MIPSE. By repeating the factor updates and the 
histogram reconstruction in our approach, its MIPSE got far smaller than that of the 
standard random sampling. Figure 3 depicts the comparison of their MISE. Though the MISE 
of our approach reduces along the iterations, it does not reach the level of the MISE of the 
standard method. These results are consistent with our theoretical analysis presented 
earlier. 
 
Discussion and Conclusion: In this study, we have theoretically investigated principles of 
data-driven probabilistic modeling to capture variety of the instance distribution in a given 
data set for covering multiple scopes of our objective system in a seamless manner. We 
analyzed two error measures, MISPE and alpha-divergence, to derive the required 
distributions of instances in a subsample data set of a given original large data set, and we 
presented a mathematical principle to derive the optimal distributions of the instances in the 
subsample data set required to minimize these measures. The instances in these subsample 
data sets are expected to minimize these measures and preserve the varieties of the 
distribution of the original data set in compact fashions by the nature of these measures.  
 

  
Figure 2. Change of MIPSE over the iterations of the factor updates and the histogram 
reconstructions in our approach and comparison with MIPSE provided by the standard 
random sampling. 
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Figure 3. Change of MISE over the iterations of the factor updates and the histogram 
reconstructions in our approach and comparison with MISE provided by the standard 
random sampling. 
 
      We further investigated an instance weighing and sub-sampling algorithm named 
“Wang-Landau Algorithm” for the prototype selection preserving the variety of the instance 
distribution in a large data set. This enables highly tractable probabilistic modeling of the 
objective system over its multiple scopes by efficiently extracting instances representing 
each scope of the system from the big data. 
      Finally, we evaluated the performance of the developed method for the instance 
weighing and the prototype selection through some simulation examples. The achievement 
of the prototype selection preserving the variety of the instance distribution in a large data 
set has been demonstrated with its efficiency. The approach can be used for the efficient 
prototype selection from the big data set. Moreover, the superior accuracy of the proposed 
prototype selection method in terms of the MIPSE measure has been confirmed. 
      An issue remained for future work is the implementation of the prototype selection 
algorithm using the alpha-divergence measure. Since the distributions of the prototypes 
meeting with this measure have not been solved in analytical manner yet, more extensive 
studies to clarify the characteritics of the solutions and to develop some numerical method 
for their implemenation to the computational algorithm are needed. 
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Appendix A: Analysis on Optimal g(x) for MISPE 
We design ( )g x  to minimize the error measure ˆ( | ( ), , )MISPE f x g x S D    between ( )f x  and 
ˆ( | ( ), , )f x g x S D . Assume the support of ( )f x  is [ _min, _max]x x  where =( ) 0f x  in its 

outside. Then ˆ( | ( ), , )MISPE f x g x S D    is expressed by 

( )

  
  − =      

  − =      
 = −  

=

∫

∫

∫

2
_max

_min

2
_max

_min

2_max

2_min

_min

ˆ( | ( ), , )

ˆ( ) ( | ( ), , )
d

( )

ˆ( ) ( | ( ), , )
d

( )

1 ˆ( ) ( | ( ), , ) d
( )

( , ( ))d

x
g x

x
gx

x
gx

x

MISPE f x g x S D

f x f x g x S D
E x

f x

f x f x g x S D
E x

f x

E f x f x g x S D x
f x

x g x xL∫
_max

,
x

                           (20) 

where ( ) = −  

2

2

1 ˆ( , ( )) ( ) ( | ( ), , )
( ) gx g x E f x f x g x S D

f x
L . According to Eq. (9), ( , ( ))x g xL  is set 

as λ= +( , ( )) ( , ( )) ( )x g x x g x g xL L . By the constraint =∫
_max

_min
( ) 1

x

x
g x dx ,  

ˆ( | ( ), , )MISPE f x g x S D    is written by 

  = =  ∫ ∫_max _max

_min _min
ˆ( | ( ), , ) ( , ( ))d , . . ( ) 1.

x x

x x
MISPE f x g x S D x g x x s t g x dxL             (21) 

Our target is to obtain the optimal ( )g x  by minimizing ˆ( | ( ), , )MISPE f x g x S D    as 

 = = =  ∫ ∫_max _max

_min _min( ) ( )
ˆ( ) arg min ( | ( ), , ) arg min ( , ( ))d , . . ( ) 1,

x x
opt x xg x g x

g x MISPE f x g x S D x g x x s t g x dxL  (22) 

where ( )optg x  is the optimal solution. To achieve this goal, the calculus of variation is 

applied. If we want to obtain the optimal ( )g x  by minimizing ˆ( | ( ), , )MISPE f x g x S D   , 

then this problem is called calculus of variation with integral constraint. In our problem,  

y(x)=g(x) and there is no g'(x). Thus Eq. (11) is reduced to 0)(/~ =∂∂ xyL which is Eq. (23). 
The optimal g(x) should be obtained by solving the following equations by 

( )
λ λ

  ∂ −  ∂ ∂  = + = + =
∂ ∂ ∂


=

∫


2

2

_max

_min

ˆ( ) ( | ( ), , )( , ( )) ( , ( )) 1
0

( ) ( ) ( )( )

( ) 1.

g

x

x

E f x f x g x S Dx g x x g x
g x g x g xf x

g x dx

L L
        (23) 

Eq. (23) is written in another form by 
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( )2

2

_max

_min

ˆ( ) ( | ( ), , )
( )

( )

( ) 1.

g

x

x

E f x f x g x S D
f x

g x

g x dx

λ

  ∂ −    = −
 ∂


=∫

                (24) 

( )2ˆ( ) ( | ( ), , )

( )

gE f x f x g x S D

g x

 ∂ −  
∂

 is written by 

( ) ∂ −  
∂

   ∂ ∂   = −
∂ ∂

2

2

ˆ( ) ( | ( ), , )

( )
ˆ ˆ( | ( ), , ) ( | ( ), , )

2 ( ) .
( ) ( )

g

g g

E f x f x g x S D

g x

E f x g x S D E f x g x S D
f x

g x g x

            (25) 

By substituting Eq. (25) to Eq. (24), we obtain  

2
2

_max

_min

ˆ ˆ( | ( ), , ) ( | ( ), , )
2 ( ) ( )

( ) ( )

( ) 1.

g g

x

x

E f x g x S D E f x g x S D
f x f x

g x g x

g x dx

λ
    ∂ ∂    − = − ∂ ∂


=∫
          (26) 

Here, kernel estimator is employed with the points in the weighted sample set to estimate 
ˆ( | ( ), , )f x g x S D  as 

 
  (27) 

 

where , 1, ,iX i n=   are samples from the weighted sample set D  . The expectation of 
ˆ( | ( ), , )f x g x S D  is  

_max

_min

_max

_min

( ) ( )ˆ( | ( ), , ) ( )
( ) ( )

( ) .

n x
i i

g g x
i i

x

x

f X x X n f y x y
E f x g x S D E K K g y dy

h g X h h g y h

n x y
f y K dy

h h

=

  − −   = =         
− =  

 

∑ ∫

∫

 

1

1

    (28) 

So we obtain 
ˆ( | ( ), , )

0
( )

gE f x g x S D

g x

 ∂   =
∂

, because the expectation of ˆ( | ( ), , )f x g x S D  does not 

contain ( )g x  term. 

)(
)(
)(1),),(|(

1
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= =

  −−  =         
      − −− = +            

 
= 



∑∑
  

 

   

 

2
2

1 1

22

2 2

2

( )( )1ˆ ( | ( ), , ) ( ) ( )
( ) ( )

( ) ( )( 1)
( ) ( )

( ) ( )

( )
( )

n n
j ji i

g g
i j i j

i i i i
g g

i i

f X x Xf X x X
E f x g x S D E K K

h g X h g X h

f X x X f X x Xn n n
E K E K

h g X h h g X h

n f y
h g y

( )
−

=

 − − −   +     
     

 − − −   = +     
    

−
=

−

∫ ∫

∫ ∫

22
_max _max2

2_min _min

22_max _max2
2 2_min _min

2
2

_min

( 1) ( )
( ) ( )

( )

( ) ( 1)
( )

( )

( )
( )

x x

x x

x x

x x

x yt
h

x

x y n n f y x y
K g y dy K g y dy

h h g y h

n f y x y n n x y
K dy f y K dy

h g y h h h

n f x ht
K t dt

h g x ht

( )

( )

 − − +   
  

 ′   − −  ≈ − +           

  − −
= + 

 

∫ ∫

∫ ∫

∫

2
_max _max

2 _min

22 2_max _max2
2_min _min

2 _max 2
2_min

( 1)
( )

( ) ( ) ( 1)
( )

( ) ( )

( ) ( 1)
( )

( )

x x

x

x x

x x

x

x

n n x y
f y K dy

h h

n f x f x n n x y
K t ht dt f y K dy

h g x g x h h

n f x n n x y
K t dt f y K

h g x h

σ

  
  

  

 − − = +   
  

∫

∫

2
_max

_min

22 _max

2 _min

( ) ( 1)
( ) ,

( )

x

x

xt

x

dy
h

n f x n n x y
f y K dy

h g x h h

        (29) 

where ( )K t  is assumed to be symmetric and ( )σ = ∫
_max 2

_min

x

t x
K t dt . Then we obtain 

2ˆ ( | ( ), , )

( )
gE f x g x S D

g x

 ∂  
∂

 by 

σ ∂   = −
∂

2 2

2

ˆ ( | ( ), , ) ( )
.

( ) ( )
g t

E f x g x S D n f x
g x h g x

                        (30) 

Then 
( )2ˆ( ) ( | ( ), , )

( )

gE f x f x g x S D

g x

 ∂ −  
∂

 in Eq. (25) is written by 

( )

σ
λ

 ∂ −  
∂

   ∂ ∂   = −
∂ ∂

= − = −

2

2

2
2

2

ˆ( ) ( | ( ), , )

( )
ˆ ˆ( | ( ), , ) ( | ( ), , )

2 ( )
( ) ( )

( )
( ).

( )

g

g g

t

E f x f x g x S D

g x

E f x g x S D E f x g x S D
f x

g x g x
n f x

f x
h g x

            (31) 

The expression of ( )g x  is obtained by 
σ
λ

=( ) .tn
g x

h
                                     (32) 
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The following the constraint should be used to fix the constant λ  in Eq. (32) 
_max

_min
( ) 1.

x

x
g x dx =∫                                   (33) 

By substituting Eq. (32) into 
_max

_min
( ) 1

x

x
g x dx =∫ , we obtain 

_max _max

_min _min
( ) 1.

x xt

x x

n
g x dx dx

h
σ
λ

= =∫ ∫                           (34) 

Since we obtain λ  by 

( )
( )

2_max

_min

2_max _min .

xt

x

t

n
dx

h
n

x x
h

σ
λ

σ

=

= −

∫
                         (35) 

By substituting Eq. (35) into Eq. (33), we obtain ( )g x  by 
1

( ) .
_max _min

tn
g x

h x x
σ
λ

= =
−

                          (36) 

 
Appendix B: Analysis on Optimal g(x) for α -divergence 
Let alpha-divergence )),),(|(ˆ|)(()( DSxgxfxfD α  be an error measure ( ,S,D)gM  

between ( )f x  and ˆ( | ( ), , )f x g x S D . In our analysis, we want to design ( )g x  to minimize 
this divergence measure. The original definition of the alpha-divergence is 

.1,0,
)1(

)),),(|()1()(),),(|()((
)),),(|(ˆ|)((

1
)( ≠

−

−+−
= ∫

∞

∞−

−

α
αα

αααα
α

dxYXxgxfxfYXxgxfxf
YXxgxfxfD



 (37) 

The case with 0α →  or 1  is defined as KL-divergence, which is given by 

))(|),),(|(ˆ()),),(|(ˆ|)((lim )(

0
xfYXxgxfKLYXxgxfxfD =

→

α

α
,         (38) 

)),),(|(ˆ|)(()),),(|(ˆ|)((lim )(

1
YXxgxfxfKLYXxgxfxfD =

→

α

α
.          (39) 

Eq. (37) can be reformulated to a simple expression by 

.0)(,1,0,
)1(

),),(|()(1
)),),(|(ˆ|)((

1
)( ≠≠

−

+
= ∫

∞

∞−

−

xf
dxYXxgxfxf

YXxgxfxfD α
αα

αα
α



 (40) 

In Eq. (40), ( )f x  causes singularity of alpha divergence when =( ) 0f x . Therefore, without 
loss of generality, we exclude the area of =( ) 0f x  from the integral and assume ≠( ) 0f x  in 
the following analysis. ˆ( )f x  has the similar effect on the alpha divergence, and we assume 
that ≠ˆ( ) 0f x  whenever ≠( ) 0f x . 
1. For the case 0,1α ≠  

Since ˆ( | ( ), , )f x g x S D  is a function having a probability distribution according to the statistics 
of D sampled from S and D  follows g(x), we take the expectation of alpha-divergence to 
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measure the difference between ( )f x  and ˆ( | ( ), , )f x g x S D  over ( )g x  as 

( )

[ ]( ) .

ˆ






 −

−
=












−

−
=

∫

∫
∞

∞−

−

∞

∞−

−

dxDSxgxfxf

dxDSxgxfxfE

DSxgxfxfDE

g

g

),),(|()E(1
)(1

1

),),(|()(1
)(1

1
))],),(|(|)(([

1
g

1

)(

αα

αα

α

αα

βα


           (41) 

Our research target is to obtain the optimal ( )g x  to minimize 

)]),),(|(ˆ|)(([ )( YXxgxfxfDEg
α  by 

∫
∞

∞
==

-
)( 1)( ..D))],),(|(|)(([ dxxgtsSxgxfxfDE g

ˆα

)(
)(

xg
opt minargxg       (42) 

By substituting Eq. (41) into Eq. (42), the following expression is derived 

( )
∞ ∞

−∞ −∞
= =∫ ∫( )

( ) arg min ( , ( )) . . ( ) 1,opt g x
g x x g x dx s t g x dxL            (43) 

where 11 ˆ( , ( )) ( ) ( | ( ), , )
(1 ) gx g x f x E f x g x S Dα α

α α
− = −  −

L . According to Eq. (9), ( , ( ))x g xL  

is set as λ= +( , ( )) ( , ( )) ( )x g x x g x g xL L . Correspondingly, Eq. (10) is written by 

α
α

λ

λ
α α

−
∞

−∞

∂ ∂
= +

∂ ∂

 ∂  = − + = =
− ∂ ∫



1

( , ( )) ( , ( ))
( ) ( )

ˆ ( | ( ), , )1
( ) 0 . . ( ) 1.

(1 ) ( )
g

x g x x g x
g x g x

E f x g x S D
f x s t g x dx

g x

L L

  (44) 

Then 
α− ∂  
∂

1ˆ ( | ( ), , )

( )
gE f x g x S D

g x
 is written by 

α
αα α λ

−
−

 ∂   = −
∂

1ˆ ( | ( ), , )
(1 ) ( ).

( )
gE f x g x S D

f x
g x

                 (45) 

Here, we consider to employ kernel estimator to estimate ˆ( | ( ), , )f x g x S D  by 

1

1ˆ( | ( ), , ) ( ) ( ),
n

i
i

i

x X
f x g x S D w X K

h h=

−
= ∑


                     (46) 

where , 1, ,iX i n=   are samples in the weighted sample set D  and ( )g x  should be 
≠( ) 0g x  whenever ≠( ) 0f x . w(x) is unknown since f(x) is not given in practice. However, 

we assume that w(x) is given by Eq.(11) from f(x) and g(x) in our current problem setting as 
noted earlier in the general problem description. Now, we want to calculate 

1ˆ ( | ( ), , )gE f x g x S Dα−   , which is written by 
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α

α

α

α

α

−

−

=

−

=

−
∞ ∞

− −∞ −∞
=

  
  −

=   
   
  −
 =  
   

 −
=  

 

∑

∑

∑∫ ∫




 



  

1

1

1

1

1

1

1 11
1

ˆ ( | ( ), , )

1
( ) ( )

( )1
( )

( )

( )1
( ) ( , , ) .

( )

g

n
i

g i
i

n
i i

g
i i

n
i i

n n
i i

E f x g x S D

x X
E w X K

h h

f X x X
E K

h g X h

f y x y
K g y y dy dy

h g y h

        (47) 

Since 1, , nX X  are i.i.d. sampled from (x)g , we take the form 1 1( , , ) ( ) ( )n ng y y g y g y=  . 
Eq. (47) is written by 

α

α

α

α

α

−

−
∞ ∞

− −∞ −∞
= =

− −=
∞ ∞

− −∞ −∞
= =

  

 −
=  

 

 −
= − − 

∑ ∏∫ ∫

∑ ∏∫ ∫

 

 

1

1

11
1 1

1

11
1 1

ˆ ( | ( ), , )

( )1
( ) ( )

( )

( )
( ) ( ) .

( )

i
i

g

nn
i i

j n
i ji

x y
t n nnh

i
i j n

i ji

E f x g x S D

f y x y
K g y dy dy

h g y h

f x hth
K t g x ht dt dt

h g x ht

         (48) 

Set [ ]
1

1
1

( )
( ) ( , , ) ( )

( )

n
T i

n i
i i

f x ht
s x, s x, t t K t

g x ht

α−

=

 −
= =  − 

∑t . By applying Taylor's expansion for 

multivariate 1 , , nt t to ( , )s x t . Then, ( )s x,t  is written by 

1

1

0 | |

| |

0 | | 1

| |1

0 | | 1

1

( , )
( ) ( )

!

1 ( , )
( )

!

1 ( , )
( )

!

( , )
( , ) ,

n

n

j j

j j n

j j n

n

i
i i

s x
s x,

s x
t t

s x
t t

s x
s x t

t

β
β

β

β
β

β β
β

β
β

β β
β

β

β

β

∞

= =

∞

= = =

= = =

= =

∇
= −

∂
= −

∂ ∂

∂
≈ −

∂ ∂

∂
= +

∂

∑∑

∑∑

∑∑

∑

0

0

0

0
0

0

0

0





t

t

t

t t

t
t

t
t

t

                       (49) 

for the first order approximation, where 1( , , )nβ β β=  , 1| | nβ β β= + + , 1! ! !nβ β β=  , 

and ( ) ( ) ( )1

1
n

nt tβ β β= t , in which the term ( )s x,t  at the point = 0t  is expressed by 
1 1

0
1

0

( ) ( )
( ) ( ) (0) .

( ) ( )

n
i

i
i i

f x ht f x
s x, K t n K

g x ht g x

α α− −

=
=

=

 −  
= =   −   
∑t

t

t              (50) 

Also, the term ∂
∂
( , )

i

s x
t

t  is written by 

1

( ) ( ) ( )( , )
(1 ) ( ) ( ) ( ) .

( ) ( ) ( )

n
i i i

i i i
ii i i i

f x ht f x ht f x hts x
K t h K t K t

t g x ht g x ht g x ht

α

α
−

=

 ′   − − −∂  ′= − − +    ∂ − − −    
∑t

     (51) 

DISTRIBUTION A. Approved for public release: distribution unlimited.



Then at the point = 0t , Eq. (27) is expressed by 

( , ) ( ) ( ) ( )
(1 ) (0) (0) (0) .

( ) ( ) ( )i

s x f x f x f x
n K h K K

t g x g x g x

α

α
−

=

 ′∂     ′= − − +    ∂     0t

t         (52) 

By substituting Eq. (49), Eq. (50) and Eq. (52) into Eq.(48), we obtain 
α

α

α α

α

−

∞ ∞

− −∞ −∞
= ==

∞ ∞ ∞ ∞

− −−∞ −∞ −∞ −∞
== ==

−
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1
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g
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n
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h h t

h
n

h
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0
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0

t

t

t

t
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α α

α

α αα α

α

α
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−      = − −            





1

1 1

1

( ) 1 ( ) ( ) ( )
(0) (1 ) (0) (0) (0) [ ]

( ) ( ) ( ) ( )

1 ( ) 1 ( )
(0) [ ] (0)

( ) ( )

n

gn n

g

f x h f x f x f x n
K n K h K K x E X

g x h h g x g x g x h

n f x n f x
K x E X K

h h g x h h g x

 ′ ′  −    

( ) (0) ( )
.

( ) (0) ( )
f x K f x
g x hK g x

   (53) 

From Eq. (53), the partial derivative of 1ˆ ( | ( ), , )gE f x g x S Dα−    with respect of ( )g x  is given 

by 
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α
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  ′ ′ ′−       = − − + −               



  (54) 

By substituting Eq. (30) into Eq. (21), the following equation is derived by 

( ) 2

( ) 1 1 ( ) ( ) (0) 1
(0) [ ] (1 ) ( ).

( ) ( ) ( ) ( ) (0) ( )( )g
n f x f x g x K

K x E X f x
h h g x g x f x g x h K g xg x

αα
αα α α α α α λ

α

−−
−

  ′ ′ ′−       − − + − = −               

     (55) 

Eq. (55) is rewritten by 

( ) ( )
21 1 ( ) 1 (0)

( ) ( ) (0) ( ).
1 1 ( ) (0) 1[ ] [ ]g g

f x K h n
g x g x K g x

f x h K hx E X x E X

α
αα α λ

α α α
− +

 ′ ′  ′  = + − +  − − −− −    
 

  (56) 

where ( )f x  is assumed to satisfy ≠( ) 0f x  and Eq. (56) doesn't involve any singularity by 

this assumption. Since 
′( )
( )

f x
f x

 is included as the coefficient of ( )g x , Eq. (56) is referred as 

ordinary differential equation(ODE) with variable coefficient. When α ≠ 2 , this special form 
of Eq. (32) is called as Bernoulli equation and that has general solution as shown later in 
Theorem 1. Besides, when 2α = , Bernoulli equation in Eq. (56) is changed to a first order 
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differential equation as shown later in Theorem 2. Thus, the optimal solution of ( )g x  is 
discussed in the following selection of α : 
(1) Whenα ≠ 2 , a Bernoulli equation is analyzed. 
(2) When 2α = , a first order differential equation is analyzed. 
(1) For the case 2α ≠   
Theorem 1. The Bernoulli equation is given by 

1 2( ) ( ) ( ) ( ) ( ), 0,1,p x a x p x a x p xβ β′ = + ≠                           (57) 

where β  can be any real number other than 0 or 1. The general solution in [4] is given by 
β β β− −= − = −∫ ∫1 ( ) ( )

2 1( ) (1 ) ( ) , ( ) (1 ) ( ) ,u x u xp x e e a x dx where u x a x dx     (58) 

where the function [ ]exp ( )u x  is called as an integrating factor.                         
Proof. 
Set 1( ) ( )x p xβω −=  for changing the Eq. (57) to a general form, the derivative of ( )xω  is 

1 2

1 2

( ) (1 ) ( ) ( )

(1 ) ( ) ( ) ( ) ( ) ( )

(1 ) ( ) ( ) (1 ) ( ),

x p x p x

p x a x p x a x p x

a x x a x

β

β β

ω β

β

β ω β

−

−

′ ′= −

 = − + 
= − + −

                  (59) 

which leads to nonhomogeneous first order differential equation. Eq. (59) can be written in 
another form by 

ω β ω β′ − − = −1 2( ) (1 ) ( ) ( ) (1 ) ( ).x a x x a x                        (60) 

A new function ( )q x  is introduced to Eq. (60) to make the left hand side of Eq. (60) have 

the form like 
ω ′ 
 
 

( )
( )

( )
x

q x
q x

. Eq. (60) is rewritten by 

ω β ωω β
′ ′ − − 
= = − 

 
1 2

2

( ) ( ) (1 ) ( ) ( ) ( ) ( )( )
(1 ) .

( ) ( ) ( )
x q x a x x q x a xx

q x q x q x
        (61) 

By comparing with 2

( ) ( ) ( ) ( ) ( )
( ) ( )
x x q x x q x

q x q x
ω ω ω′ ′ ′− 

= 
 

, the following equation is derived 

1( ) (1 ) ( ) ( ),q x a x q xβ′ = −                             (62) 

where ( )q x  is solved by 

1( ) exp (1 ) ( ) .q x a x dxβ = − ∫                        (63) 

Moreover, Eq. (61) provides another form as follows by ( )q x  of Eq. (63) 

2( )( )
(1 ) .

( ) ( )
a xx

q x q x
ω β

′ 
= − 

 
                           (64) 

Then, ( )xω  can be solved by 

ω β= − ∫ 2( )
( ) (1 ) ( ) .

( )
a x

x q x dx
q x

                         (65) 
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By substituting Eq. (63) into Eq.(65), the following equation is derived 
( ) ( )ω β β β= − − ≠ = −∫ ∫2 1( ) (1 )exp ( ) ( )exp ( ) , 0,1 ( ) (1 ) ( ) ,x u x a x u x dx where u x a x dx  (66) 

which is the general solution of Eq.(57).                                             □ 
                                                                                        
We employ the Theorem 1 to obtain the solution Eq. (32). Corresponding to the definition 
formulas of Bernoulli equation in Theorem 1, we have 

( )1
1 1 ( ) 1 (0)

( )
1 1 ( ) (0)[ ]g

f x K
a x

f x h Kx E X
α

α α

 ′ ′
 = + −

− − −  


, ( )
αα λ

α
 =  − −  2( ) (0)

1 [ ]g

h n
a x K

hx E X
 and 

2+−= αβ  where 2≠α in Eq.(55). Note that 1=β  is automatically excluded, since 
1,0≠α  originally hold. The expression of ( )u x  is obtained by 

( )
( ) ( )

1( ) (1 ) ( )

1 1 ( ) 1 (0)
(1 2)

1 1 ( ) (0)[ ]

(0)
ln ( ) ln [ ] .

1 (0)

g

g

u x a x dx

f x K
dx

f x h Kx E X

K
f x x E X dx

h K

β

αα
α α

α αα
α

= −

 ′ ′
 = + − + −

− − −  
′

= + − −
−

∫

∫

∫





         (67) 

The general solution of Eq. (56) is given by 

( ) ( )
( )

1 exp ( )
( ) (0) exp ( ) ,

[ ]g

u xn
g x h K u x dx

h x E X

α
α αλ− − =   −  ∫ 

             (68) 

where ( ) ( ) (0)
( ) ln ( ) ln [ ]

1 (0)g
K

u x f x x E X dx
h K

α αα
α

′
= + − −

− ∫  and ( )
( )
exp ( )

[ ]g

u x
dx

x E X
−

−∫ 
 is an 

indefinite integral, which is a function of x. λ  is Lagrange multiplier. To express ( )g x , Eq. 
(68) is rewritten by 

( ) ( )
( )

α αα

αλ
−−∞ ∞

−∞ −∞

   − = =    −       
∫ ∫ ∫ 

11
11 exp ( )

( ) (0) exp ( ) 1.
[ ]g

u xn
g x dx h K u x dx dx

h x E X
  (69) 

Then, 
α

αλ  
 
 

(0)
n

h K
h

 is expressed by 

( ) ( )
( )

α

α

α

αλ −

−
∞

−∞

  = 
   

 − 
  

−   
 
∫ ∫ 

11
1

1
(0) .

exp ( )
exp ( )

[ ]g

n
h K

h
u x

u x dx dx
x E X

          (70) 

By substituting Eq.(70) into Eq.(68), 1( )g xα−  is given by 
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( ) ( )
( )

( ) ( )
( )

α
α

α

α−
−

−∞

−∞

−

−
= ≠
 

 − 
  

−   
 

∫

∫ ∫





1
11

1

exp ( )
exp ( )

[ ]
( ) , 2.

exp ( )
exp ( )

[ ]

g

g

u x
u x dx

x E X
g x

u x
u x dx dx

x E X

         (71) 

Eq.(71) is written in another form as  

( )

( )

α

α

δ
α

δ

−

∞
−

−∞

  = ≠
  ∫

1
1

1
1

exp ( ) ( )
( ) , 2,

exp ( ) ( )

u x x
g x

u x x dx
                  (72) 

where ( ) ( )α αα
α

′
= + − −

− ∫ (0)
( ) ln ( ) ln [ ]

1 (0)g
K

u x f x x E X dx
h K

 and ( )
( )
exp ( )

( )
[ ]g

u x
x dx

x E X
δ

−
=

−∫ 
. 

(2) For the case 2α =   
Theorem 2. If the equations have the form 

1 2( ) ( ) ( ) ( ),p x a x p x a x′ = +                               (73) 

which is called as first order differential equation, the general solution is given by 
( ) ( )= −∫ 2( ) exp ( ) exp ( ) ( ) ,p x u x u x a x dx                    (74) 

where = ∫ 1( ) ( )u x a x dx  and the function [ ]exp ( )u x  is called as an integrating factor.                 

Proof. 
Eq. (73) is rewritten as 

1 2( ) ( ) ( ) ( ).p x a x p x a x′ − =                               (75) 

We assume the existence of a new function ( )q x . Both sides of Eq.(75) are multiplied by 
( )q x , which is given by 

1 2( ) ( ) ( ) ( ) ( ) ( ) ( ).p x q x a x q x p x a x q x′ − =                      (76) 

We assume ( )q x  satisfy the following 

1( ) ( ) ( ).a x q x q x′− =                                (77) 

So Eq.(76) is rewritten by 

( ) 2( ) ( ) ( ) ( ).p x q x a x q x′ =                            (78) 

From Eq.(78), ( )p x  is obtained by 

2
1

( ) ( ) ( ) .
( )

p x a x q x dx
q x

= ∫                          (79) 

Since ( )q x  should satisfy Eq.(77), ( )q x  can be solved by 

( )1( ) exp ( ) .q x a x dx= −∫                            (80) 

By substituting Eq.(80) into Eq.(79), ( )p x  is obtained by 
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( ) ( )1 1 2( ) exp ( ) exp ( ) ( ) ,p x a x dx a x dx a x dx= −∫ ∫ ∫               (81) 

which can be written in another form by 
( ) ( ) 2( ) exp ( ) exp ( ) ( ) ,p x u x u x a x dx= −∫                   (82) 

where = ∫ 1( ) ( )u x a x dx .                                                            □ 

When α =2 , the expression of Eq. (56) is changed to 

( ) ( )
21 ( ) 1 (0) 2

( ) 2 ( ) (0) .
( ) (0)[ ] [ ]g g

f x K h n
g x g x K

f x h K hx E X x E X
λ ′ ′  ′  = + − +  − −    

 
      (83) 

Corresponding to the definition formulas in Theorem 2, we have 

( )1
1 ( ) 1 (0)

( ) 2
( ) (0)[ ]g

f x K
a x

f x h Kx E X

 ′ ′
 = + −

−  


, ( )
λ  =  −  

2

2
2

( ) (0)
[ ]g

h n
a x K

hx E X
. The expression of 

( )u x  is obtained by substituting 1( )a x  into ∫ 1( )a x dx  by 

( )
( ) ( )

1( ) ( )

1 ( ) 1 (0)
2

( ) (0)[ ]

2 (0)
2ln ( ) 2ln [ ] .

(0)

g

g

u x a x dx

f x K
dx

f x h Kx E X

K
f x x E X dx

h K

=

 ′ ′
 = + −

−  
′

= + − −

∫

∫

∫





                   (84) 

By applying Theorem 2, the solution of ( )g x  is given by 

( ) ( )
( )

2 exp ( )
( ) 2 (0) exp ( )

[ ]g

u xn
g x h K u x dx,

h x E X
λ

− =   −  ∫ 
u                   (85) 

where ( ) ( ) ′
= − + − ∫ 2 (0)

( ) 2ln [ ] 2ln ( )
(0)g

K
u x x E X f x dx

h K
. By the constraint 

∞

−∞
=∫ ( ) 1g x dx  and 

Eq.(84), 
∞

−∞∫ ( )g x dx  is written by  

( ) ( )
( )

λ
∞ ∞

−∞ −∞

 −   =   −    
∫ ∫ ∫ 

2 exp ( )
( ) 2 (0) exp ( ) = 1,

[ ]g

u xn
g x dx h K u x dx dx

h x E X
u       (86) 

From Eq.(86), λ  
 
 

2

2 (0)
n

h K
h

 is expressed by 

( ) ( )
( )

λ
∞

−∞

 
     −

 
−  

∫ ∫ 

2 1
2 (0) = ,

exp ( )
exp ( )

[ ]g

n
h K

h u x
u x dx dx

x E X
u

                  (87) 

By substituting λ  
 
 

2

2 (0)
n

h K
h

 into (85), ( )g x  is written by 

DISTRIBUTION A. Approved for public release: distribution unlimited.



( )
( )

δ

δ
∞

−∞

=
  ∫
exp ( ) ( )

( ) ,
exp ( ) ( )

u x x
g x

u x x dx

u

u
                            (88) 

where ( ) ( ) 2 (0)
( ) 2ln ( ) 2ln [ ]

(0)g
K

u x f x x E X dx
h K

′
= + − − ∫  and ( )

( )
exp ( )

( )
[ ]g

u x
x dx

x E X
δ

−
=

−∫ 
. 

2. For the case 0α →  or 1 

If 0α →  or 1, Eq. (4) is known to converge to KL-divergence given by 

( ) ∞

−∞

∞ ∞

−∞ −∞

 
=  

 

= −

∫

∫ ∫


( )ˆ( ) ( | ( ), , ) ( )ln ˆ( | ( ), , )

ˆ( )ln ( ) ( )ln ( | ( ), , ) .

f x
KL f x f x g x S D f x dx

f x g x S D

f x f x dx f x f x g x S D dx

    (89) 

The expectation of ( )ˆ( ) ( | ( ), , )KL f x f x g x S D  is applied to measure the difference between 

( )f x  and ˆ( | ( ), , )f x g x S D  over ( )g x  as 

( ) ∞ ∞

−∞ −∞
   = −    ∫ ∫ ˆ ˆ( ) ( | ( ), , ) ( )ln ( ) ( ) ln ( | ( ), , ) .g gE KL f x f x g x S D f x f x dx f x E f x g x S D dx    (90) 

Our research target is to obtain the optimal ( )g x  to minimize ( )ˆ( ) ( | ( ), , )gE KL f x f x g x S D 
   

as 

( ) ∞

−∞
 = =  ∫

( )
ˆ( ) arg min ( ) ( | ( ), , ) . . ( ) 1.opt gg x

g x E KL f x f x g x S D s t g x dx      (91) 

By substituting Eq.(89) into Eq.(90), the following expression is derived 

( )
∞ ∞

−∞ −∞
= =∫ ∫( )

( ) arg min ( , ( )) . . ( ) 1,opt g x
g x x g x dx s t g x dxL                (92) 

where ˆ( , ( )) ( ) ln ( | ( ), , )gx g x f x E f x g x S D = −  L . According to Eq. (9), ( , ( ))x g xL  is set as 

λ= +( , ( )) ( , ( )) ( )x g x x g x g xL L . Correspondingly, Eq. (11) is written by 

λ

λ
∞

−∞

∂ ∂
= +

∂ ∂

 ∂  = − + = =
∂ ∫

( , ( )) ( , ( ))
( ) ( )

ˆln ( | ( ), , )
( ) 0 . . ( ) 1.

( )
g

x g x x g x
g x g x

E f x g x S D
f x s t g x dx

g x

L L

       (93) 

Then 
ˆln ( | ( ), , )

( )
gE f x g x S D

g x

 ∂  
∂

 is written by 

λ ∂   =
∂

ˆln ( | ( ), , )
.

( ) ( )
gE f x g x S D

g x f x
                          (94) 

Here, we consider to employ kernel estimator to estimate ˆ( | ( ), , )f x g x S D  by 
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1

1ˆ( | ( ), , ) ( ) ( ),
n

i
i

i

x X
f x g x S D w X K

h h=

−
= ∑


                      (95) 

where , 1, ,iX i n=   are samples in the weighted sample set D  and ( )g x  should be 
≠( ) 0g x  whenever ≠( ) 0f x . w(x) is unknown since f(x) is not given in practice. However, 

we assume that w(x) is given by Eq.(11) from f(x) and g(x) in our current problem setting as 
noted earlier in the general problem description. Now, we want to calculate 

ˆln ( | ( ), , )gE f x g x S D   , which is written by 

=

=

∞ ∞

−∞ −∞
=

  
  −

=   
  

  −
=   

  
 −

=  
 

∑

∑

∑∫ ∫




 



  

1

1

1 1
1

ˆln ( | ( ), , )

1
ln ( ) ( )

( )1
ln ( )

( )

( )1
ln ( ) ( , , ) .

( )

g

n
i

g i
i

n
i i

g
i i

n
i i

n n
i i

E f x g x S D

x X
E w X K

h h

f X x X
E K

h g X h

f y x y
K g y y dy dy

h g y h

     (96) 

Since 1, , nX X  are i.i.d. sampled from (x)g , we take the form 1 1( , , ) ( ) ( )n ng y y g y g y=  . 
Eq.(96) is written by 

∞ ∞

−∞ −∞
= =

−
=

∞ ∞

−∞ −∞
= =

  
 −

=  
 

 −
= − − 

∑ ∏∫ ∫

∑ ∏∫ ∫

 

 

1
1 1

1
1 1

ˆln ( | ( ), , )

( )1
ln ( ) ( )

( )

( )1
ln ( ) ( ) .

( )

i
i

g

nn
i i

j n
i ji

x y
t nnh

n i
i j n

i ji

E f x g x S D

f y x y
K g y dy dy

h g y h

f x ht
h K t g x ht dt dt

h g x ht

    (97) 

Set [ ]1
1

( )1
( ) ( , , ) ln ( )

( )

n
T i

n i
i i

f x ht
s x, s x, t t K t

h g x ht=

 −
= =  − 

∑t . By applying Taylor's expansion for 

multivariate 1 , , nt t to ( , )s x t . Then, ( )s x,t  is written by 

1

1

0 | |

| |

0 | | 1

| |1

0 | | 1

1

( , )
( ) ( )

!

1 ( , )
( )

!

1 ( , )
( )

!

( , )
( , ) ,

n

n

j j

j j n

j j n

n

i
i i

s x
s x,

s x
t t

s x
t t

s x
s x t

t

β
β

β

β
β

β β
β

β
β

β β
β

β

β

β

∞

= =

∞

= = =

= = =

= =

∇
= −

∂
= −

∂ ∂

∂
≈ −

∂ ∂

∂
= +

∂

∑∑

∑∑

∑∑

∑

0

0

0

0
0

0

0

0





t

t

t

t t

t
t

t
t

t

                  (98) 

for the first order approximation, where 1( , , )nβ β β=  , 1| | nβ β β= + + , 1! ! !nβ β β=  , 

and ( ) ( ) ( )1

1
n

nt tβ β β= t , in which the term ( )s x,t  at the point = 0t  is expressed by 
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0
1 0

( )1 ( )
( ) ln ( ) ln (0) .

( ) ( )

n
i

i
i i

f x ht n f x
s x, K t K

h g x ht h g x=
= =

 −  
= =   −   

∑t
t

t            (99) 

Also, the term ∂
∂
( , )

i

s x
t

t  is written by 

1

1

( ) ( ) ( )( , )
( ) ( ) ( ) .

( ) ( ) ( )

n
i i i

i i i
ii i i i

f x ht f x ht f x hts x
K t h K t K t

t g x ht g x ht g x ht

−

=

 ′   − − −∂  ′= − +    ∂ − − −    
∑t

  (100) 

Then at the point = 0t , Eq.(100) is expressed by 
1

( , ) ( ) ( ) ( )
(0) (0) (0) .

( ) ( ) ( )i

s x f x f x f x
n K h K K

t g x g x g x

−

=

 ′∂     ′= − +    ∂     0t

t                  (101) 

By substituting Eq.(98), Eq.(99), Eq.(100) into Eq.(101), we obtain 

∞ ∞

−∞ −∞
= ==

∞ ∞ ∞ ∞

−∞ −∞ −∞ −∞
== ==

  
 ∂

≈ + −  ∂ 

∂
= − + −

∂


= 



∑ ∏∫ ∫

∑∏ ∏∫ ∫ ∫ ∫

 

   

1
1 1

1 1
11 1

ˆln ( | ( ), , )

( , )
( , ) ( ) .

( , )
( , ) ( ) ( )

( )
ln (0)

( )

g

nn
n

i j n
i ji

n nn
n n

j n i j n
ij ji

E f x g x S D

s x
h s x t g x ht dt dt

t

s x
h s x g x ht dt dt h t g x ht dt dt

t

n f x
K

h g x

0

0

0

0

t

t

t

t

( )

( )

−

+

  ′      ′+ − + −            
′ ′ ′   

= − − − −   
   





1

1

( ) ( ) ( )
(0) (0) (0) [ ]

( ) ( ) ( )

( ) ( ) ( ) (0)
ln (0) [ ] .

( ) ( ) ( ) (0)

n
gn

g

f x f x f x n
h n K h K K x E X

g x g x g x h

n f x f x g x K
K x E X

h g x f x g x hK

 (102) 

Then, by taking the derivative of Eq.(102), we obtain 

( )
 ∂ ′  = − − −

∂


2

ˆln ( | ( ), , ) 1 ( )
[ ]

( ) ( ) ( )
g

g

E f x g x S D g x
x E X

g x g x g x
                (103) 

By substituting Eq.(103) into Eq.(93), the following equation is derived by 

( ) λ′
− − − =

2

1 ( )
[ ] .

( ) ( )( )g
g x

x E X
g x f xg x

                       (104) 

Eq.(102) is transformed by 

( ) ( )
λ′ = − −

− − 
2( )

( ) ( ).
[ ] [ ] ( )g g

g x
g x g x

x E X x E X f x
             (105) 

Eq.(103) can be solved by Theorem 1. We have ( )1
1

( )
[ ]g

a x
x E X

= −
− 

, 

( )
λ

= −
− 2( )

[ ] ( )g

a x
x E X f x

 and 2β = . The expression of ( )u x  is obtained by 
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( )
( )

β= −

=
−

= − +

∫
∫ 



1( ) (1 ) ( )

1
[ ]

ln [ ] ,

g

g

u x a x dx

dx
x E X

x E X C

                         (106) 

where C  is a constant. The general solution of Eq.(105) is 

( ) ( )
( )

λ− −
=

−∫ 
1 exp ( ) 1
( ) exp ( )

( )[ ]g

u x
g x u x dx,

f xx E X
u                    (107) 

where ( )= − +( ) ln [ ]gu x x E X C . To express ( )g x , Eq.(107) is rewritten by 

( ) ( )
( )

λ

−

−
 −
 =

−  
∫ 

1

1 exp ( ) 1
( ) exp ( ) .

( )[ ]g

u x
g x u x dx

f xx E X
u                 (108) 

By the constraint 
∞

−∞
=∫ ( ) 1g x dx  and Eq.(108), ( )g x  must satisfy the following condition 

( ) ( )
( )

λ
−

∞ ∞−

−∞ −∞

 −
= = 

−  
∫ ∫ ∫ 

1

1 exp ( ) 1
( ) exp ( ) 1.

( )[ ]g

u x
g x dx u x dx dx

f xx E X
u     (109) 

Then λ−1  is expressed by 

( ) ( )
( )

λ−
−

∞

−∞

=
 −
 

−  
∫ ∫ 

1
1

1
.

exp ( ) 1exp ( )
( )[ ]g

u x
u x dx dx

f xx E X
u

               (110) 

By substituting Eq.(110) into Eq.(108), ( )g x  is written by 

( )
( )

δ

δ

−

∞ −

−∞

  =
  ∫

1

1

exp ( ) ( )
( ) ,

exp ( ) ( )

u x x
g x

u x x dx

u

u
                         (111) 

where ( )= − +( ) ln [ ]gu x x E X C  and 
( )

( )
exp ( ) 1

( )
( )[ ]g

u x
x dx

f xx E X
δ

−
=

−∫ 
. 
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