

 ARL-TR-8247 ● DEC 2017

 US Army Research Laboratory

Generating Atomistic Slab Surfaces with
Adsorbates

by Joshua T Paul and Krista R Limmer

Approved for public release; distribution is unlimited.

NOTICES

Disclaimers

The findings in this report are not to be construed as an official Department of the
Army position unless so designated by other authorized documents.

Citation of manufacturer’s or trade names does not constitute an official
endorsement or approval of the use thereof.

Destroy this report when it is no longer needed. Do not return it to the originator.

 ARL-TR-8247 ● DEC 2017

 US Army Research Laboratory

Generating Atomistic Slab Surfaces with
Adsorbates

by Joshua T Paul
Oak Ridge Institute for Science and Education, Oak Ridge, TN

Krista R Limmer
Weapons and Materials Research Directorate, ARL

Approved for public release; distribution is unlimited.

ii

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the
data needed, and completing and reviewing the collection information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing the
burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302.
Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently
valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY)

December 2017
2. REPORT TYPE

Technical Report
3. DATES COVERED (From - To)

May 2017–August 2017
4. TITLE AND SUBTITLE

Generating Atomistic Slab Surfaces with Adsorbates
5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)

Joshua T Paul and Krista R Limmer
5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

US Army Research Laboratory
ATTN: RDRL-WMM-F
Aberdeen Proving Ground, MD 21005-5069

8. PERFORMING ORGANIZATION REPORT NUMBER

ARL-TR-8247

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

10. SPONSOR/MONITOR'S ACRONYM(S)

11. SPONSOR/MONITOR'S REPORT NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited.

13. SUPPLEMENTARY NOTES

14. ABSTRACT

This report details the high-throughput slab generation and molecular adsorption toolkit developed during the High
Performance Computing Modernization Program’s FY17 internship program under project number HIP-17-029. The toolkit
was developed to aid in corrosion-resistant magnesium alloy design and uses high-fidelity density functional theory
calculations to predict and evaluate the effect of potential secondary phases on the cathodic corrosion reaction
thermodynamics. The framework consolidates available open source tools such as genetic algorithms, crystal structure
databases, and slab generation tools in conjunction with a newly developed molecular adsorbate placement tool.

15. SUBJECT TERMS

high throughput, density functional theory, magnesium, corrosion, surface reaction, adsorption

16. SECURITY CLASSIFICATION OF:
17. LIMITATION
 OF
 ABSTRACT

UU

18. NUMBER
 OF
 PAGES

92

19a. NAME OF RESPONSIBLE PERSON

Krista R Limmer
a. REPORT

Unclassified
b. ABSTRACT

Unclassified

c. THIS PAGE

Unclassified

19b. TELEPHONE NUMBER (Include area code)

410-306-2039
 Standard Form 298 (Rev. 8/98)

 Prescribed by ANSI Std. Z39.18

Approved for public release; distribution is unlimited.
iii

Contents

List of Figures v

Acknowledgments vi

1. Introduction 1

2. Methods of Surface Investigation 2

2.1 Bulk Phase Identification 2

2.2 Slab Generation 3

2.3 Slab Convergence 3

2.4 Adsorption and Binding Energy 4

3. Results and Discussion 5

3.1 Generating Slabs 6

3.1.1 Slab Convergence Testing 6

3.1.2 High-Throughput Slab Generation from Genetic Algorithms 7

3.1.3 High-Throughput Slab Generation from the Materials
Project Database 10

3.2 Performing Clean Slab Calculations 10

3.2.1 Selective Dynamics 10

3.2.2 Surface Energy Analysis 11

3.3 Molecule Adsorption on Surfaces 12

3.3.1 Defining Possible Adsorption Sites 12

3.3.2 Placing Adsorbates: Atop Sites 13

3.3.3 Placing Adsorbates: Bridge Sites 14

3.3.4 Placing Adsorbates: Interstitial Sites 15

3.3.5 Generating Adsorption Site List 16

3.4 Adsorption Analysis 16

4. Conclusions 17

5. References 18

Approved for public release; distribution is unlimited.
iv

Appendix A. Software Installation in a Virtual Environment 21

Appendix B. Genetic Algorithm for Structure Prediction (GASP) Input
Files 25

Appendix C. Vienna ab initio Simulation Package (VASP) Files 29

Appendix D. Adsorbates.py Software Variable Details 33

Appendix E. Python Script for Complete adsorbates.py Source 45

Appendix F. MPInterface Modification 73

Appendix G. Python Script for reciprocal.py to Generate KPOINT Files 79

List of Symbols, Abbreviations, and Acronyms 83

Distribution List 84

Approved for public release; distribution is unlimited.
v

List of Figures

Fig. 1 The phase diagrams generated for Mg-Al by a GA (left) and from the
Materials Project database (right). As shown, GAs can be used to
identify a much larger number of secondary phases than available in
the Materials Project database. ... 3

Fig. 2 Schematic of makeGA_slabs, makeMP_slabs, and makeLigSurface
directory and file organization. Directories generated by
makeGA_slabs and makeMP_slabs are filled solid blue and files are
white. Directories generated by makeLigSurface are filled solid green.
Black dashed lines indicate subdirectories and files generated through
these scripts. makeGA_slabs and makeMP_slabs are run from the
parent directory to generate the subsequent files and directories, while
makeLigSurface is run from inside the POSCAR_n directories. 9

Fig. 3 Side and top-down view of a structure file generated by
oneAtomAdsorb. The adsorbate (hydrogen atom, brown) adsorbed onto
the top of a material (aluminum slab, blue representing aluminum
atoms), specifically above a single atom. ... 14

Fig. 4 Side and top-down view of a structure file generated by
twoAtomAdsorb. The adsorbate (hydrogen atom, brown) adsorbed onto
the top of a material (aluminum slab, blue representing aluminum
atoms), specifically between 2 aluminum atoms. 15

Fig. 5 Side and top-down view of a structure file generated by
threeAtomAdsorb. The adsorbate (hydrogen atom, brown) adsorbed
onto the top of a material (aluminum slab, blue representing aluminum
atoms), specifically at the center of a triangle formed by 3 aluminum
atoms. .. 16

Approved for public release; distribution is unlimited.
vi

Acknowledgments

This work was supported in part by JT Paul’s appointment as a graduate research
participant at the US Army Research Laboratory (ARL) administered by the Oak
Ridge Institute for Science and Education through an interagency agreement
between the US Department of Energy and ARL.

This work was supported in part by a grant of computer time from the Department
of Defense (DOD) High Performance Computing Modernization Program
(HPCMP) at the US Air Force Research Laboratory DOD Supercomputing
Resource Center. The authors gratefully acknowledge both the grant of computing
resources as well as JT Paul’s support through the DOD HPCMP internship
program.

Approved for public release; distribution is unlimited.
1

1. Introduction

Due to its light weight and high strength, magnesium is a desirable material to use
in structural design; however, it is highly susceptible to corrosion. Though
ultrahigh-purity magnesium does not readily facilitate self-corrosion, chemical
defects often act as strong catalysts to the cathodic reaction and promote corrosion.1
Specifically, the cathodic reaction for magnesium corrosion is reduction of water
to OH– and H+ balanced by the evolution of H2 gas. Alloying is currently being
examined as a tool to reduce the cathodic reaction kinetics and thereby reduce the
overall corrosion rate.2–4 Because of the low solubility of most alloying additions
in magnesium, secondary phases and their influence on the cathodic reaction are of
primary interest for corrosion-resistant alloy design.

Design of a novel magnesium alloy based on the propensity for specific surface
reactions requires high-throughput, high-fidelity calculations. High-fidelity density
functional theory (DFT) calculations allow for accurate parameter-free evaluation
of the alloying effect on the critical surface reactions. Investigation of surface
reactions in a high-throughput manner requires a complex suite of tools that does
not currently exist. Because of the novel alloy chemistry aspect, the stability of
secondary phases is empirically unknown and may be addressed through a
combination of data mining current materials structure databases and prediction of
phases through genetic algorithms (GAs). To investigate the surface reactions on
these secondary phases, surfaces must be generated from the bulk crystal structures
of interest for an alloy system. Finally, surface reaction thermodynamics may be
considered, requiring the placement of reactants and products on the surfaces and
sampling multiple configurational spaces to determine the stable configurations.

In this work, several algorithms have been developed to facilitate high-throughput
investigations of surface reaction thermodynamics for magnesium alloys. These
algorithms are united in a single Python file (adsorbates.py). The algorithms
include facilitation of slab generation, slab convergence tests, and adsorbate
placement on surfaces. The adsorbates framework enables a user to evaluate the
cathodic reaction thermodynamics on possible secondary phases for a specified
alloy system, thereby informing the user of the impact of the secondary phase on
cathodic reaction stability. This is accomplished for a user-specified alloy system
of interest by 1) importing possible secondary phases from a database or genetic
algorithm search, 2) cleaving slabs of various orientations from each bulk structure,
3) generating a grid of possible adsorption sites at and near the slab surface, and 4)
calculating the adsorption energy of a molecule as a function of spatial orientation
on the possible adsorption sites. This framework was developed to coordinate the
passing of structure information throughout the process and it can be easily tailored

Approved for public release; distribution is unlimited.
2

to other application spaces as well. The details of the algorithms, as well as
installation of the necessary tools and initial detail on the operation of GAs to
explore magnesium alloys systems is described herein. Appendixes are included to
guide users through the software installation process (Appendix A), installation and
use of a genetic algorithm (Appendix B), recommended Vienna ab initio Simulation
Package (VASP) parameters (Appendix C), and the details of the developed code
(Appendix D). The full Python script of adsorbates is included as Appendix E, with
Appendixes F and G further providing modified versions of 2 existing Python
scripts for adsorption schemes k-point grid generation.

2. Methods of Surface Investigation

2.1 Bulk Phase Identification

Stable and metastable compounds that may exist in the alloy of interest have the
potential to impact the corrosion-relevant surface reactions. To identify the known
and unknown stable and metastable compounds, 2 approaches may be used
independently or in combination. The first approach is to use structures from known
databases such as the Materials Project5 that may include experimentally observed
compounds as well as computationally derived compounds. The second approach
is to explore a composition space for stable and metastable compounds using GAs.
In a combined approach, stable and metastable compounds from a database can also
be used to “seed” a GA.

The framework developed here has been built to accommodate input from both the
Materials Project database as well as searches conducted with the genetic algorithm
for structure prediction (GASP)6. Additional databases and GAs may also be used
with the framework but have not been included at this time. Stable compounds, the
compounds used to generate the thermodynamic hull as shown in Fig. 1, should
generally be considered as possible phases. Bulk metastable compounds may also
be considered and are identified by a negative enthalpy of formation (more stable
than its isolated pure components) but a positive hull distance (not as stable as other
known compounds in the system). These metastable compounds can appear in
experimental samples if processing conditions are modified to favor the formation
of this phase. These conditions include creating kinetic restriction (e.g., quenching)
or changing the pressure of the synthesis environment. When choosing compounds
from which to generate slabs, consideration must be given to whether metastable
phases should be included, and if so, how unstable the metastable phases are
allowed to be. It is recommended that the metastability not exceed 50 meV/atom
for bulk compounds, as higher levels of instability are unlikely to not only be
synthesized but also remain stable.7

Approved for public release; distribution is unlimited.
3

Fig. 1 The phase diagrams generated for Mg-Al by a GA (left) and from the Materials
Project database (right). As shown, GAs can be used to identify a much larger number of
secondary phases than available in the Materials Project database.

2.2 Slab Generation

Slabs may be generated from any given bulk structure for a range of surface
orientations. As described in Section 2.1, 2 approaches exist for identifying bulk
compounds from which to generate slabs: using structures from known databases,
such as the Materials Project, and using structures identified by a GA. Scripts were
created for both approaches and are named makeMP_slabs and makeGA_slabs,
respectively.

Some surface orientations may have more than one unique surface termination.
Depending on the surface termination, slabs with varying surface energies can be
created. The ability to automatically discern multiple surface termination options
for a given orientation is not incorporated at this time. Users are encouraged to use
prior knowledge of the systems being investigated when manually adjusting this
option.

2.3 Slab Convergence

Prior to investigating adsorbates on surfaces, several steps must occur to prepare
the surface. The slab thickness and vacuum spacing must be converged for the
simulation model to be relevant. As slab thickness is increased, the surface energy
decreases until the inner atoms behave identically to bulk and do not increase the
normalized energy of the system. Further increasing the slab thickness does not
cause the inner atoms to change in behavior; thus the number of atoms simulated
can be minimized, saving computational expense, by identifying the slab thickness

Approved for public release; distribution is unlimited.
4

at which this occurs. In addition, some minimum vacuum spacing is required to
prevent spurious stabilization. If there is not enough vacuum spacing, the surfaces
of the slab interact with each other through the periodic boundary condition,
resulting in an incorrect lower system energy. For plane-wave based DFT codes,
such as VASP8 or Quantum ESPRESSO,9 large vacuum spaces are computationally
expensive and should be minimized when possible.

To determine the minimum slab and vacuum thickness, the surface energy is
converged. The surface energy is calculated by Eq. 1

 𝐸𝐸𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = (𝐸𝐸𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 − 𝑁𝑁𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ∗ 𝐸𝐸𝑠𝑠𝑠𝑠𝑠𝑠𝑏𝑏)/2 , (1)

where 𝐸𝐸𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 is the energy of the slab, 𝑁𝑁𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 is the number of atoms in the slab, and
𝐸𝐸𝑠𝑠𝑠𝑠𝑠𝑠𝑏𝑏 is the energy of the bulk material. The division by 2 is a result of there being
2 surfaces on a slab. This value can be normalized by dividing by the surface area
of the slab, which is necessary for comparing the energy of different surfaces, and
is performed by this algorithm when more than one surface orientation is compared.
An additional optional complexity to the creation of surfaces is the option to use
selective dynamics to constrain the bottom half of the slab and only optimize the
top half of the slab, which is available in this code.

For the purposes of slab convergence, slabs of various thickness and with various
vacuum spacing need be calculated. This can occur in serial or simultaneously. If
performed in serial, the vacuum spacing should be converged before the slab
thickness. If a dipole is present in a material, then the surface energy will diverge.
Preliminary results for a fully optimized slab (no selective dynamics) indicate that
a slab approximately 19 Å thick (constructed from approximately 10 close-packed
layers of atoms) and a vacuum spacing of 15 Å is sufficient for obtaining reasonable
energy convergence values of 0.1 meV. Since these thicknesses are system
dependent, some systems may give converged results at lower or higher values. In
general, the minimum vacuum spacing is more system agnostic.

2.4 Adsorption and Binding Energy

After calculating the surface energies, adsorption simulations can be performed on
all of the surfaces generated through makeMP_slabs or makeGA_slabs, or only
those with low surface energy. Adsorbates are placed on the surface of a slab using
the makeLigSurface function. The adsorption energies of these adsorbates is given
in Eq. 2 as

 𝐸𝐸𝑠𝑠𝑎𝑎𝑠𝑠𝑎𝑎𝑠𝑠𝑝𝑝𝑝𝑝𝑝𝑝𝑎𝑎𝑝𝑝 = (𝐸𝐸𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠+𝑠𝑠𝑎𝑎𝑠𝑠𝑎𝑎𝑠𝑠𝑠𝑠𝑠𝑠𝑝𝑝𝑠𝑠 − 𝐸𝐸𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 − 𝐸𝐸𝑠𝑠𝑎𝑎𝑠𝑠𝑎𝑎𝑠𝑠𝑠𝑠𝑠𝑠𝑝𝑝𝑠𝑠) , (2)

Approved for public release; distribution is unlimited.
5

where 𝐸𝐸𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠+𝑠𝑠𝑎𝑎𝑠𝑠𝑎𝑎𝑠𝑠𝑠𝑠𝑠𝑠𝑝𝑝𝑠𝑠 is the energy of the simulation containing the slab and
adsorbate, 𝐸𝐸𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 is the energy of the isolated slab, and 𝐸𝐸𝑠𝑠𝑎𝑎𝑠𝑠𝑎𝑎𝑠𝑠𝑠𝑠𝑠𝑠𝑝𝑝𝑠𝑠 is the energy of
the isolated adsorbate. Higher adsorption energies mean the adsorbate is likely to
be bound to the surface of the material.

Adsorption energy can be calculated in 3 different simulation environments:
vacuum, implicit solvation, and explicit solvation. Vacuum places the adsorbate on
the slab surface while being surrounded by vacuum padding and is the traditional
approach. This is the least computationally expensive method, but may not provide
accurate binding energies for solvated scenarios. Implicit solvation fills the vacuum
spacing with a specific dielectric constant to simulate a given medium. This better
captures the adsorbate binding energy, but still does not work well for charged
molecules (such as OH– or H+). Explicit solvation places water molecules where
the vacuum previously existed and may consist of either completely filling the
vacuum space or introducing only a single or double layer of solvation around
relevant surfaces and molecules. This explicit solvation results in more accurate
prediction of behavior but significantly increases computational cost.

Comparison of the adsorption energies of all species involved in a reaction allows
for prediction of the reaction through thermodynamics. However, energetic barriers
must be calculated using density functional perturbation theory or the nudged
elastic band method to determine the kinetics and mechanisms of how a species
will migrate across the material.

3. Results and Discussion

The framework developed here to facilitate high-throughput investigations of
surface reaction thermodynamics has been compiled into a single python file named
adsorbates.py that consists of multiple stand-alone algorithms. The logic and
function of each of these algorithms is described here. The details of the variables
can be found in Appendix D.

Determination and acquisition of the stable and metastable compounds is the first
step in this high-throughput process and the incorporation of existing methods into
this framework is straightforward. Bulk crystal structures may either be sourced
from existing databases such as the Materials Project or generated using a GA such
as GASP. Details on the installation and use of GASP to generate crystal structures
in accord with this algorithm are provided in Appendix B. Additional details may be
found in the GASP manual10 and usage documentation.

Approved for public release; distribution is unlimited.
6

3.1 Generating Slabs

The slab generation scheme is dependent on whether the slab is being generated for
initial convergence testing or high-throughput processing. Additionally, separate
functions have been developed for high-throughput slab generation for bulk
structures sourced from either a database or GA search. Accordingly, 3 different
functions have been developed for generating slabs. The first function,
makeConvergeSlabs, is intended to be used when a new alloy system or application
space is being explored to determine the minimum slab dimensional requirements
for accurate calculations. Following the convergence determination, slabs meeting
the dimensional criteria can be generated for further investigation in a high-
throughput manner using makeGA_slabs or makeMP_slabs, depending on the bulk
structure source.

3.1.1 Slab Convergence Testing

The makeConvergeSlabs function is designed to automate the process of
converging slabs and should be used whenever a new alloy system or application
space is being explored. This script should be run on a subset of bulk structures that
capture the diversity of the system. The script generates slabs of varying thicknesses
and varying vacuum spacings to identify the minimum slab and vacuum thickness
to use in the high-throughput slab generation algorithms described in Sections 3.1.2
and 3.1.3.

Slabs are created in set intervals of thickness because they are generated from
crystallographic unit cells with defined lattice parameters. For example, if the unit
cell height is 5 Å, it is not possible to generate a slab that is 7 Å thick without
breaking the crystallographic symmetry. As such, the algorithm identifies what the
interval spacing between slab thicknesses will be and generates slabs at these
precise intervals, the number of intervals being determined by the user. The first
thickness may not be in an interval, but all subsequent thicknesses will be in
intervals. Slabs can be generated for any Miller indices (hkl), although the (001)
surface is the default.

The vacuum padding does not have the same crystallographic limitations and can
be evaluated for the range of values of interest for the user. Although the
optimization of the slab thickness and vacuum padding can be done simultaneously,
it is more computationally conservative to first converge the vacuum spacing to
ensure the surfaces are electronically isolated and then converge the slab thickness.
Selective dynamics can be added to these slabs to lower the minimum slab thickness
using addsd, described in more detail in Section 3.2.1.

Approved for public release; distribution is unlimited.
7

Running makeConvergenceSlabs will populate the directory it is run from with
newly created directories following the nomenclature
‘[SlabThickness]_[VaccuumPadding]’. Because this nomenclature does not
contain any surface orientation or composition information, evaluation of
additional surface orientations or bulk structures should be initiated in a different
directory. Bulk structure files (POSCAR) do not necessarily need to be contained
within the directory from which makeConvergenceSlabs is executed and can be
identified using a path string input.

After the slabs are generated, they should be structurally optimized within VASP
to compare the relaxed surface energies. The submission of these jobs is not
automated, as there is not a single way to submit jobs across all job schedulers.
However, the VASP “noz” binary should be used during these and all subsequent
structural optimization calculations to prevent the simulation cell from resizing in
the z-direction and incorrectly impacting the surface energy results. Additional
details on the VASP “noz” binary are provided in Appendix C.

The orgDataConvergence script was developed to aid in the analysis of the slab
convergence simulation results. This script should be run in the same directory
where makeConvergeSlabs was run. Bulk energy values (eV) are read from the
VASP OSZICAR file and are converted to surface energies (eV/Å²) that are written
into a slab convergence results file called “resultsC.txt”. This file writes the
energetic data generated for slab convergence testing according to increasing slab
and vacuum thicknesses. Only systems that successfully terminate on an ionic
convergence will appear in the “resultsC.txt” file.

In order to enable accurate surface investigations, the surface energies should be
converged to 0.1 meV accuracy. If multiple compounds or surface orientations are
used to determine the slab convergence criteria, the largest values for both slab
thickness and vacuum spacing should be carried forward as the minimum values
for the remainder of the high-throughput investigation of that system.

3.1.2 High-Throughput Slab Generation from Genetic Algorithms

The makeGA_slabs function is designed to take materials discovered through GAs
and generate slabs of various orientations. Additional details of the installation and
recommended application of GASP for this framework are provided in
Appendix B. After completing the GA search and identifying the bulk compounds
of interest, the makeGA_slabs script can be used to generate slabs using the
previously determined slab dimensional minimums for a range of surface
orientations specified by (hkl) indices. At the time of publishing, the down-
selection of compounds from the GASP search for surface investigation is not

Approved for public release; distribution is unlimited.
8

automated, requiring the user to manually decide which compounds from the search
should be used.

Because the GASP output structure files are all by default named POSCAR and are
located in parent directories with non-intuitive names, the structure files for the
compounds of interest must be copied to a directory named “sources” and uniquely
renamed for clarity. For example, if the compound is the Mg17Al12 beta-phase
commonly found in the AZ series of magnesium alloys, then the POSCAR could
be renamed “Mg17Al12”.

Running the makeGA_slabs function in the parent directory containing “sources”
will result in the creation of a set of directories in the current directory matching
the name of each renamed POSCAR located in “sources” as shown in Fig. 2. Inside
each of these directories will be subdirectories containing POSCAR files
representing slab structures. The name of each subdirectory corresponds to the
orientation, in hkl notation, of the slab structure file contained within. For example,
a cut along the (111) plane will be labeled “111”. Prior to generating the
subdirectories and writing the POSCAR files, the symmetry of the slabs is
examined using the python materials genomics (pymatgen)11 StructureMatcher tool
for duplicates. Duplicate slabs are removed and only the unique slab structure files
are written.

Approved for public release; distribution is unlimited.
9

Fig. 2 Schematic of makeGA_slabs, makeMP_slabs, and makeLigSurface directory and file
organization. Directories generated by makeGA_slabs and makeMP_slabs are filled solid blue
and files are white. Directories generated by makeLigSurface are filled solid green. Black
dashed lines indicate subdirectories and files generated through these scripts. makeGA_slabs
and makeMP_slabs are run from the parent directory to generate the subsequent files and
directories, while makeLigSurface is run from inside the POSCAR_n directories.

Parent Directory

POSCAR_1

100 POSCAR_1

...

POSCAR_n

100_H2O

Site_1 POSCAR

... POSCAR

Site_n POSCAR

...

100_adsorbate ... POSCAR

010 ...

010_H2O ... POSCAR

...

010_adsorbate ... POSCAR

...

hkl ...

...

hkl_adsorbate ... POSCAR

...

POSCAR_n

100 ...

…

100_adsorbate ... POSCAR

hkl ...

...hkl_adsorbate ... POSCAR

Approved for public release; distribution is unlimited.
10

The default range of Miller indices for slab surface orientations is between –1 and
1 for each of the h, k, and l indices. However, additional orientations or a larger
range of indices may be specified by the user. Some orientations may have potential
for multiple surface terminations. Although there is no automated method to search
for these additional terminations, expert users can generate these alternate
terminations by duplicating the initial bulk POSCAR file and shifting the position
of each atom along the direction the slab is being cut.

3.1.3 High-Throughput Slab Generation from the Materials Project
Database

The makeMP_slabs function uses the Materials Project database to identify bulk
compounds for the high-throughput surface investigations. It can take any number
of elements as input, and will return all compounds within a defined distance from
the thermodynamic hull (including compounds on the hull). When the function is
run, the settings can either be entered upon request from the function or entered
prior to execution as a list variable. If the list is empty, then the settings are entered
as active inputs. Similar to generating slabs from GA searches, the orientation range
defaults to a maximum and minimum Miller index of 1 and –1 but can be modified
by the user. Additionally, symmetry is evaluated using the pymatgen11
StructureMatcher tool for all of the possible orientations and only unique slabs are
written to a directory corresponding to the orientation of the cut.

When run, makeMP_slabs will generate several directories named after the bulk
compounds selected from the Materials Project database. If 2 compounds share the
same name, a “_#” will follow the compound name, with # being a positive integer
greater than 1. Each compound directory will contain orientation-named
subdirectories that each contains the slab POSCAR structure file of that slab
orientation.

3.2 Performing Clean Slab Calculations

Prior to the addition of adsorbates on slab surfaces, the surface energy of the clean
slabs should be calculated and the slab surfaces should be structurally optimized.
At this point in the framework, a decision should be made regarding the use of
selective dynamics.

3.2.1 Selective Dynamics

The function addsd adds selective dynamics tags to a VASP structure file. Selective
dynamics is the option to restrict the ability of some atoms to move during
relaxation. In this function, selective dynamics is used to freeze the atoms in the

Approved for public release; distribution is unlimited.
11

bottom half of the slab, preventing motion in the x-, y-, and z-directions. The
remaining atoms are all permitted full motion. The halfway point is determined by
comparing the lowest and highest z-coordinates in the structure file. If there is an
adsorbate on a slab, the middle point will be defined between the bottom of the slab
and the top of the adsorbate rather than the bottom and top of the slab. In the event
that this results in an undesirable shift in the frozen atom list, the exact point below
which the atoms are frozen can be modified by the user. The advantage of selective
dynamics is to decrease computation time in 2 ways. First, and most apparent,
decreasing the number of atoms able to move results in fewer local optimizations
to calculate. Secondly, but a potentially larger impact overall, is that by freezing
the bottom half of the slab during the convergence testing and carrying throughout
the process, a thinner slab may be used throughout by reaching the energetic
convergence criteria sooner due to only optimizing 1 free surface rather than 2.

The addsd function may be run at any time in the high-throughput process. It must
be run in the directory that contains the POSCAR to be modified to add selective
dynamics. Then, the function is simply run with the necessary inputs to add
selective dynamics to the POSCAR. If the POSCAR file already has selective
dynamics tag present, the halfway point will be recalculated and the tags will be
updated.

Caution should be used when reporting surface energies while using selective
dynamics to freeze in a bulk structure on the bottom half of a slab. Because the 2
surfaces are no longer equivalent, the division by 2 in Eq. 1 is no longer sufficient
to describe the surface energy of the top optimized surface. In addition, Eq. 1 is no
longer valid if the surface terminations in the material are not equivalent (i.e., they
have differing atomic organizations or elemental compositions).

3.2.2 Surface Energy Analysis

Similar to the orgDataConvergence function, the orgDataSlabs function collects
and organizes data for slabs generated by makeMP_slabs or makeGA_slabs. This
function can be run after a slab generation was begun by makeGA_slabs or
makeMP_slabs and should be run from that same parent directory. Total energy
values of each compound and surface orientation considered are read from the
OSZICAR file and converted to slab surface energies that are printed in a results
file named “resultS.txt”. Any calculations that did not converge prior to termination
will not appear in the “resultsS.txt” file. The data are separated based on the
material directory and orientation subdirectory to avoid confusion between surfaces
of differing materials. Recall that symmetry operations were used to reduce the
number of surfaces simulated, so the number of orientations present in

Approved for public release; distribution is unlimited.
12

“resultsS.txt” is likely to be less than the maximum possible 27 for a triclinic system
cut along the default hkl values ranging from –1 to 1.

3.3 Molecule Adsorption on Surfaces

Adsorbates are placed on slabs using the makeLigSurface class, which contains 5
functions that are detailed in Sections 3.31 through 3.3.5. makeLigSurface is
dependent on a modified version of the MPInterface package.12 The first function,
setUp, is run using a slab (or bulk) structure as input to generate the necessary
parameters for adding adsorbates. The following 3 functions (oneAtomAdsorb,
twoAtomAdsorb, and threeAtomAdsorb) place adsorbates on the slab, returning
slabs with an adsorbate placed on the surface. The fifth function, writeStructs, runs
all of the generated adsorbate-covered slabs through the pymatgen11
StructureMatcher tool, grouping symmetric structures and allowing the user to
minimize the number of calculations performed. Two additional helper functions
within the class are also defined and used within the other functions. The getAngles
helper function returns an angle between 2 vectors. The getAbsCoord helper
function obtains the position of atoms in Cartesian coordinates rather than
fractional.

3.3.1 Defining Possible Adsorption Sites

The setUp function is designed to set up the future calculations for adsorption
placement. It begins by generating a slab from the input structure or creating a
structure object and then continues by checking the area of the surface of the slab.
If it is less than the desired surface area to prevent adsorbate interaction with its
periodic image, the slab is scaled to approximately reach the minimum area.

The next step in the algorithm is to identify all atoms that exist in the top layer of
the material. The top layer of the material is defined as any atom that has no other
atoms directly above it, where “above” refers to the surface normal.

To account for the possibility that 2 atoms are above each other, but do not appear
to be based on the fractional coordinates, transformations of one atom along the a
and b vectors of the unit cell are also considered. If one atom is found to be above
the other after a transformation, then the uppermost atom is put under consideration
for being a top atom. If an atom was previously under consideration, but another
atom was found to be above it, the first atom is removed from consideration while
the second is added.

The depth below the topmost layer of surface atoms that may be considered
“surface” can also be tailored by the user. This surface depth should be monitored,
as the depth at which a hydrogen atom can reach into a surface is not the same as a

Approved for public release; distribution is unlimited.
13

water molecule, and prescreening such unreasonable situations can save
computation time.

This function returns a list that is used as an input for oneAtomAdsorb,
twoAtomAdsorb, and threeAtomAdsorb. In addition, it provides recommended
values for the maximum distance into the material that adsorbates can be placed,
and the maximum area formed by 3 atoms in threeAtomAdsorb. The details of the
objects in the list are given in Appendix D. The default distance and area values
may not be ideal for all adsorbate sizes. For example, hydrogen atoms can fit into
smaller interstitial sites than a water molecule.

The setUp function should always be run as a first step in adsorption additions,
prior to oneAtomAdsorb, twoAtomAdsorb, and threeAtomAdsorb. It is
recommended to use a slab as the input structure rather than generate one using this
function so the user is sure of what structure they are adding adsorbates to.
Additionally, the final output of this function is the same slab as input or generated
but with the previously bottom surface now the top surface. This is useful for
situations where the surface terminations of the same orientation are not always
equivalent.

3.3.2 Placing Adsorbates: Atop Sites

The oneAtomAdsorb function takes the output list of setUp with other settings and
returns a list of slabs with adsorbates as structure objects as the output. The
adsorbate positions considered are only directly above atoms in atop sites as shown
in Fig. 3. The adsorbate can also be rotated with respect to the adsorbate site or the
atom of the adsorbate meeting the slab surface. This distance from the adsorbate
and the surface atom it is above can be specified by the user. The function returns
a list of unique structures as determined by the pymatgen11 StructureMatcher tool.

Approved for public release; distribution is unlimited.
14

Fig. 3 Side and top-down view of a structure file generated by oneAtomAdsorb. The
adsorbate (hydrogen atom, brown) adsorbed onto the top of a material (aluminum slab, blue
representing aluminum atoms), specifically above a single atom.

3.3.3 Placing Adsorbates: Bridge Sites

The twoAtomAdsorb function takes the output list of setUp, with other settings, and
returns a list of slabs with adsorbates as structure objects as the output. The
adsorbate sites are located between 2 surface atoms as shown in Fig. 4. If the
distance between 2 surface atoms is less than or equal to a given value, the center
between those atoms is considered an adsorption site. The adsorbate can also be
rotated with respect to the adsorbate site or the atom of the adsorbate meeting the
slab surface. Two atoms of differing elevation can be considered part of the same
surface. The function returns a list of unique structures as determined by the
pymatgen11 StructureMatcher tool.

Approved for public release; distribution is unlimited.
15

Fig. 4 Side and top-down view of a structure file generated by twoAtomAdsorb. The
adsorbate (hydrogen atom, brown) adsorbed onto the top of a material (aluminum slab, blue
representing aluminum atoms), specifically between 2 aluminum atoms.

3.3.4 Placing Adsorbates: Interstitial Sites

The threeAtomAdsorb function takes the output list of setUp, with other settings,
and returns a list of slabs with adsorbates as structure objects as the output. The
adsorbate is placed at the point center of the triangle formed by the 3 surface atoms
as shown in Fig. 5. All translations and rotations are relative to this point. Three
atoms of various elevation can be considered as part of the same surface. In order
for the center point to be considered, both the area between the 3 surface atoms
must be less than or equal to a given value and the angles formed between the 3
atoms must fall between a specified range of angles. The adsorbate can also be
rotated with respect to the adsorption site or the atom of the adsorbate meeting the
slab surface. The function returns a list of unique structures, as determined by the
pymatgen11 StructureMatcher tool.

Approved for public release; distribution is unlimited.
16

Fig. 5 Side and top-down view of a structure file generated by threeAtomAdsorb. The
adsorbate (hydrogen atom, brown) adsorbed onto the top of a material (aluminum slab, blue
representing aluminum atoms), specifically at the center of a triangle formed by 3 aluminum
atoms.

3.3.5 Generating Adsorption Site List

The writeStruct function takes a list of structures as input and writes unique
structures as POSCARS using the pymatgen11 StructureMatcher tool. It generates
unique directories in which to store these structures, starting from the name “1” and
increasing incrementally from there.

This function is best used by taking the inputs of one/two/threeAtomAdsorb. It is
recommended to use a single list as input, but a list of sublists containing structure
objects can also be used as input. The function should be run when inside an
orientation directory generated by getGA_slabs or getMP_slabs (example:
path/to/parent/directory/Mg/111/). Typically, the slab inside the orientation
directory will be used as input for setup, followed by using
one/two/threeAtomAdsorb. Finally, writeStruct is used to generate and write the
adsorbed structures inside the orientation directory, keeping all the slabs associated
with the orientation in one directory.

3.4 Adsorption Analysis

The orgDataAdsorb function organizes data for slabs with adsorbates generated by
the makeLigSurface functions. The function returns the adsorption energy results
data in the file “resultsA.txt”, which organizes adsorption energies based on
material, surface orientation, and the site index. The code should be run in a

Approved for public release; distribution is unlimited.
17

directory that contains slab subdirectories (i.e., 101, 100, and 111). When
orgDataAdsorb is run, there must be a directory called “adsorbate” in the directory
where this function is run that contains the adsorbate isolated in vacuum. To
properly calculate the adsorption energy, the energy of both the slab in vacuum and
the adsorbate in vacuum must be known. A single ionic step (i.e., a non-self-
consistent) may be sufficient, though relaxation of the isolated molecule can be
helpful.

This function can be run after adsorbates are placed on surfaces, with the
recommended organization of adsorbed surfaces, then structurally optimized (refer
to Appendix D.7). Energy values are read from the OSZICAR file, so any system
that did not terminate on an ionic convergence will not appear in the “resultsA.txt”
file. Data are separated based on the orientation and the adsorbate site, thus
confusion between surfaces of differing materials are avoided. This function should
be run in the same directory that makeGA_slabs or makeMP_slabs was initially run
in.

4. Conclusions

This report details the high-throughput slab generation and molecular adsorption
toolkit “adsorbates” that was developed as a part of the High Performance
Computing Modernization Program’s FY17 internship program under project
number HIP-17-029. The toolkit was developed to aid in corrosion-resistant
magnesium alloy design and uses high-fidelity DFT calculations to predict and
evaluate the effect of potential secondary phases on the cathodic corrosion reaction
thermodynamics. The framework consolidates available open source tools such as
genetic algorithms, crystal structure databases, and slab generation tools in
conjunction with a newly developed molecular adsorbate placement tool. The
toolkit comprises 4 general stages: 1) generation of slabs from bulk structures that
are user defined, generated from GA searches, or mined from existing databases;
2) calculating clean slab surface energies; 3) placing adsorbates on the slab surface
based on nearest-neighbor configuration; and 4) calculating the binding energy of
the adsorbate at each unique adsorption site. This framework can be used for
corrosion investigation regardless of the materials system. In addition, it contains
tools that can be used to improve any investigation involving adsorbates on a
materials surface.

Approved for public release; distribution is unlimited.
18

5. References

1. Fajardo S, Frankel GS. Effect of impurities on the enhanced catalytic activity
for hydrogen evolution in high purity magnesium. Electrochimica Acta.
2015;165:255–267.

2. Südholz A, Kirkland N, Buchheit R, Birbilis N. Electrochemical properties of
intermetallic phases and common impurity elements in magnesium alloys.
Electrochemical and Solid-State Letters. 2011;14(2):C5–C7.

3. Birbilis N, Williams G, Gusieva K, Samaniego A, Gibson MA, McMurray HN.
Poisoning the corrosion of magnesium. Electrochemistry Communications.
2013;34:295–298.

4. Limmer KR, Williams KS, Labukas JP, Andzelm JW. First principles modeling
of cathodic reaction thermodynamics in dilute magnesium alloys. Corrosion.
2017;73(5):506–517.

5. Jain A, Ong SP, Hautier G, Chen W, Richards WD, Dacek S, Cholia S, Gunter
D, Skinner D, Ceder G. Commentary: the materials project: a materials genome
approach to accelerating materials innovation. Apl Materials.
2013;1(1):011002.

6. Tipton WW, Hennig RG. A grand canonical genetic algorithm for the
prediction of multi-component phase diagrams and testing of empirical
potentials. Journal of Physics: Condensed Matter. 2013;25(49):495401.

7. Sun W, Dacek ST, Ong SP, Hautier G, Jain A, Richards WD, Gamst AC,
Persson KA, Ceder G. The thermodynamic scale of inorganic crystalline
metastability. Science Advances. 2016;2(11):e1600225.

8. Kresse G, Furthmüller J. Efficient iterative schemes for ab initio total-energy
calculations using a plane-wave basis set. Physical Review B.
1996;54(16):11169–11186.

9. Giannozzi P, Baroni S, Bonini N, Calandra M, Car R, Cavazzoni C, Ceresoli
D, Chiarotti GL, Cococcioni M, Dabo I. Quantum espresso: a modular and
open-source software project for quantum simulations of materials. Journal of
physics: Condensed Matter. 2009;21(39):395502.

10. Tipton W, Hennig R. Gainesville (FL): University of Florida. GASP: The
genetic algorithm for structure and phase prediction [updated 2014 Apr 25;
accessed 2017 Nov 2]. http://www.mse.ufl.edu/wp-content/uploads/gasp
_manual.pdf.

Approved for public release; distribution is unlimited.
19

11. Ong SP, Richards WD, Jain A, Hautier G, Kocher M, Cholia S, Gunter D,
Chevrier VL, Persson KA, Ceder G. Python materials genomics (pymatgen): a
robust, open-source python library for materials analysis. Computational
Materials Science. 2013;68:314–319.

12. Mathew K, Singh AK, Gabriel JJ, Choudhary K, Sinnott SB, Davydov AV,
Tavazza F, Hennig RG. MPInterfaces: a materials project based Python tool for
high-throughput computational screening of interfacial systems.
Computational Materials Science. 2016;122:183–190.

Approved for public release; distribution is unlimited.
20

INTENTIONALLY LEFT BLANK.

Approved for public release; distribution is unlimited.
21

Appendix A. Software Installation in a Virtual Environment

Approved for public release; distribution is unlimited.
22

Prior to installing software, it is recommended to create a “software” directory in
your home directory to store the virtual environment, MPInterfaces, and all other
software. This helps prevent clutter in the home directory. Once a software has been
installed, moving the location of the software will likely break the software. This is
because the paths that were defined during installation are different and the original
paths do not point to the new location of the software.

The first step in performing high-throughput work is connecting to a
supercomputer. In order to use a great deal of the software available, access to root
files of many programs is required. Because supercomputer infrastructures vary and
root file permissions are not generally allowed, a virtual environment may be used
to circumvent this issue. These environments provide root files that can be accessed
and altered by the user as well as a space isolated from the main file structure; thus,
they are ideal for use on shared clusters/networks. However, they are also useful
for personal computers. Software packages can have conflicting dependencies, and
installing several in one environment can cause problems. Creating separate virtual
environments allows the packages to be installed independently from each other,
and thus do not cause conflict.

A.1 Installing a Virtual Environment

There are several kinds of virtual environments, but Miniconda is recommended.
The software can be downloaded at https://conda.io/miniconda.html by selecting
the Python 3.6 Linux 64-bit bash installer package. In order to be fully compatible
with the other tools in this suite, the 3.6 version of Python is required. To install
Miniconda, copy this file to the computer/supercomputer, and then unpack and
install with the following command:

bash [name of downloaded miniconda file]

To create the virtual environment, navigate to the file location, and enter the
command

conda create --name [desired name of environment]
anaconda python=3.6

To activate the virtual environment, use the command

source activate [desired name of environment]

To exit the virtual environment, use the command

source deactivate

Approved for public release; distribution is unlimited.
23

A.2 Installing Dependent Software Packages

Once the virtual environment has been activated, the “pip” command can be used
to install several pieces of software. “pip” is used to access an online repository of
software, from which one can obtain software packages and easily install them. To
begin, enter the command

pip install numpy

This package contains several mathematical functions and transformations, and is
required for the next package pymatgen. This package is also installed using pip
with the command

pip install pymatgen

Finally, the software package MPInterfaces is required. This package has
dependencies on both numpy and pymatgen, along with some others. These
additional packages are installed along with MPInterfaces, so additional steps are
not required. To obtain the package, navigate to the site
https://github.com/henniggroup/MPInterfaces, click “clone or download”, and
finally “Download ZIP”. Transfer this zip file to the relevant computer or cluster
and unzip the file using

Unzip [name of file]

Following, enter the directory created and enter the command

python setup.py develop

An addition should be made to MPInterfaces-master/mpinterfaces/interface.py.
cover_surface2. This modification of the Interface Class is presented in
Appendix G. The standard cover_surface function is unable to rotate molecules
relative to the location of adsorption. cover_surface2 uses the SymmOp function to
perform this transformation to the adsorbate, which also requires an additional 2
variables to define the rotation of the molecule relative to itself and relative to the
adsorption site.

A.3 Importing Adsorbates.py Functions

Once the previous software has been installed, adsorbates.py can be used. This is
started by placing the adsorbates.py file in the directory from which the functions
should be run. Once this is done, the functions can be used in a python script
through the line:

import adsorbates

Approved for public release; distribution is unlimited.
24

All functions can then be used by typing the name of the function, and prefacing it
with “adsorbates”. For example,

adsorbates.makeConvergeSlabs(…)

Any functions within the makeLigSurface function should be called as follows:

Adsorbates.makeLigSurface.oneAtomAdsorb(…)

Importing the adsorbates.py software will generate a directory called
“__pycache__”, which contains files that speed up the initialization of the
adsorbates.py package. We recommend avoiding this by adding “-B’ to the
command line when running any python script that imports the package, as follows:

python –B example.py

Approved for public release; distribution is unlimited.
25

Appendix B. Genetic Algorithm for Structure Prediction (GASP)
Input Files

Approved for public release; distribution is unlimited.
26

B.1 Installing GASP

There are 2 forms of the genetic algorithm for structure prediction (GASP) 1: GASP
and GASP-python. The former primarily uses bash while the latter uses solely
python, although the operation is generally the same. GASP-python also has
additional changes to improve efficiency and is recommended for its enhanced
compatibility with the python framework developed here. GASP-python can be
installed from https://github.com/henniggroup/GASP-python. Installation should
be done within the python 3.6 virtual environment.

GASP may be used with several engines; however, the description here pertains
only to the use of Vienna ab initio simulation package (VASP). To run GASP, a
directory in the home directory called “bin” must contain 2 files: “callvasp” and
“submit_GA”. Because “callvasp” was written for a Slurm submission system,
whereas most Department of Defense (DOD) supercomputers use the Portable
Batch System submission system, the file will need to be edited to run properly.
The file “submit_GA” is used as the submission file for the simulations in the
GASP runs and will need to be customized in accordance with the submission
system of the supercomputer being used.

GASP runs are initiated from within a directory named of the user’s choosing that
contains the relevant information for the GASP simulation. This directory, for
example, “gasprun1”, must include a file defining the GASP parameters as well as
subdirectory named “inputs” that contains the VASP parameters files.

The GASP parameter file, “ga_input.yaml”, can be customized to adjust the manner
in which the genetic algorithm (GA) searches the computational space. However,
most default settings intended for exploring the energy landscape will work well
for this application. Settings that should be customized are based on the
computational limits and expectations: CompositionSpace, EnergyCode,
InitialPopulation, NumCalcsAtOnce, Constraints, and StoppingCriteria. Details on
GASP settings and options in this file are located in the GASP user manual1 and at
https://github.com/henniggroup/GASP-python/blob/master/docs/usage.md.

The directory “/gasprun1/inputs” must contain 2 files that pertain to the VASP
settings used in the simulations: INCAR and KPOINTS. KPOINTS should be an
automatic mesh, and INCAR should be universal enough that it can be applied to
any potential resulting structure from the GA. Example settings used in INCAR and
KPOINTS are given in Appendix A. The directory “/gasprun1/inputs” may also

1 Tipton WW, Hennig RG. A grand canonical genetic algorithm for the prediction of multi-component
phase diagrams and testing of empirical potentials. Journal of Physics: Condensed Matter.
2013;25(49):495401.

Approved for public release; distribution is unlimited.
27

contain an optional subdirectory “structs”. Any structures that are desired to seed
the algorithm should be placed in the “structs” directory, written in a POSCAR
format.

B.2 GASP Files

Example GASP input files have been included to guide the user in the settings
recommended for the GA run for this application space. Additional details on the
specific parameters and additional options may be found in the GASP manual1.
After completing the GASP installation, it is recommended to perform a short
VASP-based GASP run with a small initial population size and a static VASP
calculation to make sure the pathways and job submissions are all correct before
submitting the larger GA run.

B.2.1 VASP Submission Files

“Callvasp” and “qsubandpoll” files are required by GASP to perform VASP
calculations. The “callvasp” file is used by GASP to start a VASP run, which calls
“qsubandpoll” to submit and monitor VASP jobs within a given GASP run.
Example versions of “callvasp” and “qsubandpoll” are available in the GASP
manual and must be altered to match the high-performance computing specific
queuing system and structure.

B.2.2 GASP Input

The input file for GASP called “GA_input” is used to set genetic algorithm
parameters. It is recommended to test the GASP installation with a limited
population size and a static VASP calculation to ensure the syntax is correct before
submitting a full GA run. For exploring the existence of secondary phases, the
default settings in GASP are recommended. An example GA_input file is provided
as follows:

runTitle mgas

saveStateEachIter true

verbosity 4

popSize 20

InitialPopulation 30 random givenVol 20

InitialPopulation 2 poscars refstates/

compositionSpace 2 Mg As

Approved for public release; distribution is unlimited.
28

Promotion 1

Variation1 0.2 0.2 structureMut 0 0.3 0.1

Variation2 0.80 0.8 Slicer 0.5 1 1 0.05 0 0

ObjectiveFunction pd vasp true KPOINTS INCAR Mg
POTCAR_Mg As POTCAR_As

Selection probDist 13 1

useNiggliReducedCell true

optimizeDensity 0.5 4

useRedundancyGuard both 0.1 0.1 0.1

ConvergenceCriterion maxNumGens 20

minInteratomicDistance 1.5

maxLatticeLength 35

minLatticeLength 1

maxLatticeAngle 140

minLatticeAngle 40

maxNumAtoms 16

minNumAtoms 2

minNumSpecies 2

doNonnegativityConstraint false

parallelize 20 18

Performing GASP simulations using VASP as the engine driver additionally
requires VASP parameter files (INCAR, POTCAR, KPOINTS, and POSCAR) to
be made available to perform the VASP calculations. Examples of recommended
VASP settings are provided in Appendix C.

Approved for public release; distribution is unlimited.
29

Appendix C. Vienna ab initio Simulation Package (VASP) Files

Approved for public release; distribution is unlimited.
30

C.1 Vienna ab initio Simulation Package (VASP) Input Files

C.1.1 INCAR

The INCAR file is what is used to define the settings of the VASP simulation.
However, one should take note of any materials that may have dipoles within them.
If a dipole does appear, then the slab will not converge and the surface energy
values will continuously rise during convergence. This can be corrected by adding
the tags IDIPOL=3 and LDIPOL=TRUE. Details on these settings can be found on
the VASP manual (https://cms.mpi.univie.ac.at/vasp/vasp/vasp.html).

ENCUT should be set to 140% of the largest ENMAX in the POTCAR directory.
EDIFF of 1E-4 is accuracy to the 0.1 meV, which is sufficient for calculating
surface energies. When calculating adsorption energies, higher levels of accuracy
should be considered. For slabs, an example INCAR is as follows:

Example INCAR:

ENCUT=500

EDIFF=1E-4

PREC=Accurate

IBRION=2

ISIF=3

ISMEAR=1

SIGMA=0.1

NSW=50

C.1.2 KPOINTS

The KPOINTS file can be created using the script reciprocal, provided in
Appendix G. There are 4 variables for this script: makeKPOINTS(Boolean, string,
int, string). These variables are, respectively, whether the monolayer is a slab (True
if slab), the type of mesh desired (adsorbates.py was written for “Gamma”), how
detailed the mesh should be (in units of inverse Angstroms), and the path to which
the POSCAR is and KPOINTS should be written. The KPOINTS file1 generated is
the explicitly written results of an automatic mesh.

1 KPOINTs file: automatic k-mesh generation. Vienna (Austria): University of Vienna [accessed 2017

Nov 2]. https://cms.mpi.univie.ac.at/vasp/vasp/Automatic_k_mesh_generation.html.

https://cms.mpi.univie.ac.at/vasp/vasp/Automatic_k_mesh_genera

Approved for public release; distribution is unlimited.
31

The reason to use reciprocal.py instead of an automatic mesh is that slabs do not
need multiple KPOINTS in the direction with vacuum spacing. Rather, only a
single KPOINT is needed, which saves a great deal of calculation time. Thus, this
script explicitly writes out what will be the same results as an automatic mesh, but
reduces the number of KPOINTS in the z-direction if the Boolean is set to “True”.
If the material is not a slab, an automatic mesh KPOINTS file is recommended.

C.1.3 POTCAR

The VASP pseudopotential files, POTCAR, should be located in a common
directory on each high performance computing system and can be copied as needed.
For example, on Thunder, POTCAR files are located at /app/vaspapp/Potentials/. It
is recommended to use PBE-5.2. When working with multicomponent systems, all
relevant POTCAR files must be concatenated. To concatenate the POTCAR files,
use the cat function (cat [path to file 1] [path to file 2] [path to file 3] ….. > [path
to write new file to]).

C.1.4 POSCAR

The VASP structure file, POSCAR, contains the lattice parameters and angles as
well as coordinates and type of each atom in the structure being simulated. These
files can be created by the user, generated through adsorbates, or obtained through
databases, such as Materials Project.

C.2 Creating a VASP “noz" Binary

When running VASP simulations on systems with vacuum spacing, a new binary
must be used because a standard VASP binary will compress any vacuum spacing
in a system over time. This not only can cause self-interaction in the slab, but also
increase computation time. To solve this, the following should be included in the
file “constr_cell_relax.F” before compiling the VASP binary. This file should
contain the following:

SUBROUTINE CONSTR_CELL_RELAX(FCELL)

USE prec

REAL(q) FCELL(3,3)

! just one simple example

! relaxation in x and y directions only

SAVEX=FCELL(1,1)

SAVEY=FCELL(2,2)

Approved for public release; distribution is unlimited.
32

FCELL=0 ! F90 style: set the whole array to zero

FCELL(1,1)=SAVEX

FCELL(2,2)=SAVEY

! relaxation in z direction only

! SAVE=FCELL(3,3)

! FCELL=0 ! F90 style: set the whole array to
zero

! FCELL(3,3)=SAVE

RETURN

END SUBROUTINE

Vacuum spacing is assumed to be only in the z-direction, but other directions can
have their relaxation prevented as well (to do this, simply change which direction
information is saved). Shearing of the x-y plane will also be prevented by
disallowing relaxation in the z-direction. The file “constr_cell_relax.f90” contains
the same information and may need to be included when compiling.

Approved for public release; distribution is unlimited.
33

Appendix D. Adsorbates.py Software Variable Details

Approved for public release; distribution is unlimited.
34

This appendix describes the variables that act as inputs for the functions in the
adsorbates software package and the details of how each functions works, (i.e., the
logic of each function). The details are for the functions in adsorbates.py. The order
of the inputs listed for each function is the required order. If they are not entered in
this way, the function will not run properly. In addition, if the variable has a name
associated with it, then there is an assumed default value that can be changed by
the user. For example, setUp(…) and setUp(…, from_slab=True) indicates that the
input structure is a slab, while setUp(…, from_slab=False) indicates that the input
POSCAR is not a slab. Such variables are noted in this appendix.

D.1 makeConvergeSlabs

makeConvergeSlabs(string, list, [x,y,z],
numIntervals=int, spaceIntervals=int)

• string: the path to the POSCAR to make slabs out of

• list: the list of desired vacuum paddings (Angstrom)

• [x,y,z]: the hkl orientation to cut along

• numIntervals: how many intervals to have for slab thickness

• spaceIntervals: how many thicknesses to skip between each interval

When generating the slab, the initial vacuum thickness is 1, with a vacuum padding
of X-1 being added later. This is because, during slab generation, the vacuum is
sometimes added in discrete units. By adding the vacuum padding in a separate
step, the value closest to the desired thickness is reached. A slab with a vacuum
padding of 0 can be generated, but this often causes the resulting unit cell to be
unphysical by combining the top and bottom atomic layers of the slab into a single
atomic layer. This combination into a single layer makes differentiating the atoms
belonging to each surface impossible. “spaceIntervals” defines how many intervals
to skip before generating a new slab, where only the slabs written are considered
for “numInterval”. For example, if “spaceIntervals” is 2, only every other thickness
is written up to “numInterval”.

To write the files, directories with the names formatted as “[slab
thickness]_[vacuum thickness] are generated, with the corresponding slab being
written in a POSCAR format in said directory.

D.2 makeMP_slabs

makeMP_slabs(int[, settings=list])

Approved for public release; distribution is unlimited.
35

This function has 3 options for running. Regardless, it always requires an “int” to
run, with this “int” representing the highest index for the Miller indices that the
slabs will be generated along. A list is allowed as a second variable, when called
through “settings=[contents of list]” after the initial “int” value. This list contains
10 variables as described in Table D-1.

Table D-1 Available settings for makeMP_slabs

Name Description
elements (string) A string of the elemental symbols corresponding to the desired

elements to search over, separated with a “-”

eleList (list) A list of elemental symbols corresponding to the desired elements
to search over

mp_id (string) The Materials Project application program interface (API) key ID.
Should be unique to each user. Can be obtained by creating a free
account on MaterialsProject.org and generating an API key.

maxTherm (int/float) The maximum distance of each compound from the thermodynamic
hull, in meV

min_thick (int/float) The minimum thickness for each slab

min_vac (int/float) The minimum vacuum spacing for each slab

include (string) True or False. Whether or not to include the end point compositions
in the slab generation.

maxAtom (int) The maximum number of atoms allowed in the bulk POSCARs.

includeHulls (string) True or False. Whether to include the maxAtom restriction on hull
compounds.

skips (list) A list of compounds to skip when making slabs. The list should be
composed of strings that represent the name of the compound to
skip.

If no list is given for settings, then the function requests values through input
commands. The function states the variable name, and the user then enters the
variable value and presses return/enter, leading to another variable being requested.
Once all variables have been entered, the code will begin to run.

Like makeGA_slabs, this function creates a directory with the name of the Materials
Project ID corresponding to each compound found. Within this directory will be
subdirectories for the bulk compound and the slabs generated, with the
corresponding POSCARs located in each directory.

A Materials Project application program interface (API) key is required for each
user to obtain the structure files from Materials Project. This API key can be
generated by accessing www.materialsproject.org, signing up for an account if not
already logged in, and clicking “API” in the upper left banner. Under the section
“API keys”, there will be a generated key or an option to generate a key. This key

Approved for public release; distribution is unlimited.
36

should be used for personal use only. The other settings are largely self-
explanatory. The only detail to mention is that, if there are 2 materials with the same
formula, the compound with a lower distance from the hull will be used.

D.3 makeGA_slabs

makeGA_slabs(string int/float, int/float, int)

• string: the path to the POSCAR files identified in the first list

• int/float: the minimum slab thickness to use

• int/float: the minimum vacuum padding to use

• int: the maximum value the indexes used in Miller indices can be

The algorithm takes each string in the list and generates a directory with the name
of the string. It then creates a subdirectory named “bulk”, in which the original
POSCAR is copied. MPInterfaces is then used to generate slab structure objects for
each potential surface up to the limit placed by the final “int” value. These slabs are
compiled in a list, which pymatgen1 sorts into a list of sublists. Each sublist contains
structures that are symmetrically identical. A single slab from each group is written
as a POSCAR file in a subdirectory that shares the name of the orientation the slab
is derived from. For example, if the (111) surface is used, a subdirectory called
“111” will be created and a POSCAR file representing the slab is written within it
and called “POSCAR”. The function attempts to use orientation names that do not
contain negative numbers, but this is not always feasible.

This script is ideal for structures identified using a genetic algorithm, though any
bulk crystal can be used. Some directories will begin with a ‘-‘, which can be
difficult for the os package to parse. To circumvent this, add a ‘./’ prior to the ‘-‘
for all leading negative signs. For example, to change into the directory “-110”, one
would write the line “os.chdir(‘./-110’)”.

D.4 addsd

addsd(string[, int/float])

• string: path to the POSCAR to add selective dynamics to

1 Ong SP, Richards WD, Jain A, Hautier G, Kocher M, Cholia S, Gunter D, Chevrier VL, Persson KA,

Ceder G. Python materials genomics (pymatgen): a robust, open-source python library for materials analysis.
Computational Materials Science. 2013;68:314–319.

Approved for public release; distribution is unlimited.
37

• int/float: the fractional amount to shift the selective dynamics cutoff point.
Assumed to be 0 unless given. Positive values increase the number of frozen
atoms and negative values decrease the number.

This addsd function adds selective dynamics to a structure. Selective dynamics is
the option to restrict the ability of some atoms to move during relaxation. This can
be turned on by line 7 of a POSCAR beginning with an “S”. What follows is
irrelevant. All lines below line 6 are shifted down by one line to accommodate. This
function will freeze the position of all atoms below the halfway point of a material.
If there is an adsorbate on a slab, the middle point will be defined between the
bottom of the slab and the top of the adsorbate.

The advantage of selective dynamics is to decrease computation time. Fewer atoms
able to move results in fewer calculations, and thus fewer resources used during
calculation.

D.5 getAngles

getAngles([x,y,z], [x,y,z])

This function takes 1 × 3 lists representing different vectors as inputs, and returns
the angle (in degrees) between those vectors as output. It acts as a helper function
for makeLigSurface.

D.6 getAbsCoord

getAbsCoord([x, y, z], int/float, int/float,
int/float)

This function takes a 1 × 3 list and 3 numbers as input, and returns a 1 × 3 array as
an output. This is used to obtain the locations of atoms in a standard x-y-z
coordinate system. It acts as a helper function to makeLigSurface.

D.7 makeLigSurface

makeLigSurface()

This class contains 5 functions, which are detailed in the following subsections.
The purpose of the class is to place adsorbates on the surface of slabs. The first
function sets up the adsorbate calculations, the following 3 functions place
adsorbates on a slab (on a single atom, between 2 atoms, and in the middle of 3
atoms), and the fifth function eliminates structurally symmetric configurations and
writes the structure files.

Approved for public release; distribution is unlimited.
38

D.7.1 setUp
setUp(string, string, int/float, int/float, [x,
y, z], minSurfArea=int/float, from_slab=Boolean,
hkl=[x, y, z], alwaysEqual=Boolean)

• string: the path to the input structure POSCAR

• string: the path to the adsorbate POSCAR

• int/float: the minimum slab thickness

• int/float: the minimum vacuum padding

• [x,y,z]: the supercell to use in the slab generation

• minSurfArea: the minimum surface area of the slab surface (Angstrom2)

• from_slab: whether the input structure is a slab (True) or not (False)

• hkl: the Miller index to make a slab along

• alwaysEqual: whether the a and b lattice vectors should be equal while
increasing the surface area (True) or can vary (False)

This function is designed to set up the future calculations for adsorption placement.
It begins by generating a slab from the input structure (or simply creating a structure
object if from_slab=True and hkl=[0,0,1]), then continues by checking the area of
the surface of the slab. If it is less than “minSufArea”, then supercells of the slab
are generated until the minimum surface area is reached.

The next step in the algorithm is to identify all atoms that exist in the top layer of
the material. The top layer of the material is defined as any atom that has no other
atoms directly above it. In the algorithm, one atom is “above” another if they form
a vector parallel to the slab surface normal. To determine this, a vector is formed
between the 2 atoms and compared to a vector perpendicular to the surface of the
slab (identified by taking the cross product of the a and b vectors of the unit cell).
If the vectors form a dot product that is 0.98 or greater, the atom that is higher along
the c vector is put under consideration for being a top atom.

To account for the possibility that 2 atoms are above each other, but do not appear
to be based on the original bulk fractional coordinates, transformations of one atom
along the a and b vectors are also considered. If one atom is found to be above the
other after a transformation, then it is put under consideration for being a top atom.
If an atom was previously under consideration, but another atom was found to be

Approved for public release; distribution is unlimited.
39

“above” it, the first atom is removed from consideration while the second is added
for consideration.

This function returns a list of 7 objects, 2 integers, a 1 × 3 vector, and a structure
object. The details of the objects in the list are as follows:

• pymatgen1 structure object slab

• list of atoms identified as being in the top layer

• list of all atomic positions

• list of elements in the slab

• float of the minimum thickness of the slab

• float of the minimum vacuum spacing

• adsorbate as a ligand object

The 2 integers are recommended values for the maximum height difference
between atoms considered for adsorbate placement and the maximum area that can
be formed between 3 atoms when considering adsorption, respectively. The
independent structure object is the same slab but reoriented so the bottom surface
is now the top surface. This is made available in case the user wishes to check if
the surfaces are identical or if they are structurally/chemically different.

D.7.2 oneAtomAdsorb
oneAtomAdsorb(list, string, [x,y,z], int/float,
[x,y,z],int/float)

• list: the list output by the setUp function. See Section D.7.1 for details on
what is in this list.

• string: the atomic symbol for the atom on the adsorbate that should be in
contact with the surface

• [x,y,z]: the angles to rotate the ligand toward. x is rotation around the
x-axis, y is rotation around the y-axis, and z is rotation around the z-axis.
(degrees). The center of rotation is the adsorption site of the slab.

• int/float: the distance of the adsorbate from the adatom (Angstrom)

• [x,y,z]: the axis in which to rotate the molecule in position around. At least
one of these values must be nonzero.

Approved for public release; distribution is unlimited.
40

• int/float: the number of degrees to rotate the adsorbate (degrees). If 0, there
will be no rotation about the adsorption point regardless of the values of the
previous list.

This function takes the output list of setUp, with other settings, and returns a list of
slabs with adsorbates as structure objects as the output. The adsorbate positions
considered are only above atoms. The rotation and translation of the adsorbate is
relative to this site.

D.7.3 twoAtomAdsorb
twoAtomAdsorb(list, int/float, string, [x,y,z],
int/float, int/float, [x,y,z], int/float)

• list: the list output by the setUp function. See Section D.7.1 for details on
what is in this list.

• int/float: the maximum distance between 2 surface atoms considered for
adsorption

• string: the atomic symbol for the atom on the adsorbate that should be in
contact with the surface

• [x,y,z]: the angles to rotate the ligand toward. x is rotation around the x-axis,
y is rotation around the y-axis, and z is rotation around the z-axis. (degrees).
The center of rotation is the site of adsorption for the slab.

• int/float: the distance of the adsorbate from the adatom (Angstrom)

• int/float: the maximum vertical distance between the 2 surface atoms
considered for adsorption (Angstrom)

• [x,y,z]: the direction in which to rotate the molecule in position, in Miller
indices. The center of rotation is the atom of the adsorbate that meets the
slab surface. Magnitude of the vector does not matter. At least one of the
values must be nonzero.

• int/float: the number of degrees to rotate the adsorbate (degrees). If set to 0,
no rotation will occur about the adsorption point regardless of the values of
the previous list.

This function takes the output list of setUp, with other settings, and returns a list of
slabs with adsorbates as structure objects as the output. If the distance between 2
surface atoms is less than or equal to a given value, the center between those atoms
is considered an adsorption site. An additional restriction is that the atoms must be
less than a maximum distance along the z-direction. setUp gives a value

Approved for public release; distribution is unlimited.
41

(defaultHeight) that is the vertical distance between the lowest surface atom and
the highest.

D.7.4 threeAtomAdsorb
threeAtomAdsorb(list, int/float, string, [x,y,z],
int/float, int/float, [x,y], [x,y,z], int/float)

• list: the list output by the setUp function. See Section D.7.1 for details on
what is in this list.

• int/float: the maximum area between 3 surface atoms considered for
adsorption

• string: the atomic symbol for the atom on the adsorbate that should be in
contact with the surface

• [x,y,z]: the angles to rotate the ligand toward. x is rotation around the x-axis,
y is rotation around the y-axis, and z is rotation around the z-axis. (degrees).
The center of rotation is the site of adsorption.

• int/float: the distance of the adsorbate from the adatom (Angstrom)

• int/float: the maximum vertical distance between the 2 surface atoms
considered for adsorption (Angstrom)

• [x,y]: the minimum and maximum angles that can form between the 3 atoms
considered for adsorption (degrees)

• [x,y,z]: the direction in which to rotate the molecule in position, in Miller
indices. The center of rotation is the atom of the adsorbate that meets the
slab surface. Magnitude of the vector does not matter. At least one of these
values has to be nonzero.

• int/float: the number of degrees to rotate the adsorbate (degrees). If set to 0,
no rotation will occur about the adsorption point regardless of the values of
the previous list.

This function takes the output list of setUp, with other settings, and returns a list of
slabs with adsorbates as structure objects as the output. If the area between 2 surface
atoms is less than or equal to a given value, the center of the area formed by these
atoms is considered the site for adsorption. An additional restriction is that the
angles formed between the 3 atoms must fall between a range of angles. Finally,
the atoms considered must be less than a maximum distance along the z-direction.
setUp gives a value (defaultHeight) that is the vertical distance between the lowest
surface atom and the highest. It also recommends a maximum area (defaultArea)

Approved for public release; distribution is unlimited.
42

that is calculated by taking the area of the slab surface and dividing by the number
of surface atoms present in the material and multiplying by 3.

D.7.5 writeStructs
writeStructs(list)

• list: a list that either contains structure objects or contains sublists that
contain structure objects

This function takes a list that contains structure objects or list of sublists containing
structure objects. The function uses the pymatgen1 StructureMatcher tool to
organize the input structures. This requires a single list of structures as input. Thus,
if a list of sublists is used, then all structures within the sublist are combined into a
single list used in the StructureMatcher tool. The tool then creates a list of sublists,
where each sublist contains identical structures. This function then takes the first
structure in each sublist and writes them to a unique directory. The first unique
structure is placed in a directory called “1”, the second unique structure is placed
in a directory called “2”, and so on until one structure from each sublist has been
written to.

D.8 orgDataConvergence

orgDataConvergence()

Organizes data for slabs generated with makeConvergeSlabs. The code should be
run in the same directory where makeConvergeSlabs was run, because the assumed
organization of structures is that generated by makeConvergeSlabs.

D.9 orgDataSlabs

orgDataSlabs()

Organizes data for slabs generated with makeGA_slabs and makeMP_slabs. The
code should be run in the same directory where these functions were run because
the assumed organization of structures is that generated by these functions.

D.10 orgDataAdsorb

orgDataAdsorb()

Organizes data for slabs generated with the writeStruct function of
makeLigSurface. The code should be run in the same directory where
makeGA_slabs or makeMP_slabs was run because the assumed organization of

Approved for public release; distribution is unlimited.
43

structures is that generated by writeStruct, which is dependent on the organization
of makeGA_slabs and makeMP_slabs.

Approved for public release; distribution is unlimited.
44

INTENTIONALLY LEFT BLANK.

Approved for public release; distribution is unlimited.
45

Appendix E. Python Script for Complete adsorbates.py Source

 This appendix appears in its original form, without editorial change.

Approved for public release; distribution is unlimited.
46

#Copyright (c) 2017 Joshua Thomas Paul
#MIT License

#Permission is hereby granted, free of charge, to any person obtaining a copy of
#this software and associated documentation files (the "Software"), to deal in
#the Software without restriction, including without limitation the rights to
#use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
#the Software, and to permit persons to whom the Software is furnished to do so,
#subject to the following conditions:

#The above copyright notice and this permission notice shall be included in all
#copies or substantial portions of the Software.

#THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF
ANY KIND, EXPRESS OR
#IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS
#FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO
EVENT SHALL THE AUTHORS OR
#COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
OTHER LIABILITY, WHETHER
#IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
FROM, OUT OF OR IN
#CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.

from six.moves import range

import os
import sys
import math
import copy

import numpy as np

from pymatgen.core.structure import Structure, Molecule
from pymatgen.core.lattice import Lattice
from pymatgen.core.surface import Slab, SlabGenerator
from pymatgen.core.operations import SymmOp
from pymatgen.util.coord_utils import get_angle

from mpinterfaces.transformations import reduced_supercell_vectors

Approved for public release; distribution is unlimited.
47

from mpinterfaces.utils import get_ase_slab, align_axis
from mpinterfaces.default_logger import get_default_logger

###############################

from pymatgen.io.vasp.inputs import Poscar
from operator import itemgetter
from pymatgen.core.periodic_table import Element
from pymatgen.core.composition import Composition
from pymatgen.analysis.structure_matcher import StructureMatcher
from math import acos

from mpinterfaces.utils import align_axis, add_vacuum
from pymatgen.analysis.structure_matcher import StructureMatcher
from mpinterfaces.interface import Interface, Ligand
from pymatgen.matproj.rest import MPRester as mpr
def makeConvergeSlabs(struct, vacs, hkl,numIntervals=4,spaceIntervals=1):
 # To generate slabs, run this function in a
 # directory where the convergence to be tested
 # in. Give a bulk structure object (that you will converge),
 # list of vacuum spacings, and the hkl to make the
 # surface along.
 structure = Structure.from_file(struct)
 a,b,c = hkl
 iface_slab = Interface(structure, hkl=[a,b,c],
 min_thick=.1, min_vac=1,
 supercell=[1,1,1],
 primitive=False,from_ase=True)

 coords = iface_slab.cart_coords
 zs = [z for [x,y,z] in coords]
 interval1 = max(zs)-min(zs)
 if interval1==0:
 minThick=.1
 while interval1==0:
 minThick+=.25
 iface_slab = Interface(structure, hkl=[a,b,c],
 min_thick=minThick, min_vac=1,
 supercell=[1,1,1],
 primitive=False,from_ase=True)

 coords = iface_slab.cart_coords
 zs = [z for [x,y,z] in coords]

Approved for public release; distribution is unlimited.
48

 interval1 = max(zs)-min(zs)
 iface_slab = Interface(structure, hkl=[a,b,c],
 min_thick=interval1*2*1.5, min_vac=1,
 supercell=[1,1,1],
 primitive=False,from_ase=True)
 coords = iface_slab.cart_coords
 zs = [z for [x,y,z] in coords]
 interval2 = max(zs)-min(zs)
 interval = interval2-interval1

 thicks = []
 thicks.append(round(interval1,2))
 for x in range(numIntervals):
 thicks.append(round(interval1+interval*(x+1)*spaceIntervals,2))

 for min_thick in thicks: # Minimum thickness to make slabs. Note that they
should
 # be in intervals of the smallest thickness possible, ie
 # the height of the slab made using a single unit cell
 for min_vac in vacs: # Minimum vacuum spacing
 try:
 os.mkdir(str(min_thick)+'_'+str(min_vac)) # Makes a slab directory
 except:
 pass

 iface_slab = Interface(structure, hkl=hkl,
 min_thick=min_thick, min_vac=1,
 supercell=[1,1,1],
 primitive=False,from_ase=True)
 iface_slab.sort()
 iface_slab = align_axis(iface_slab) # Align slab surface normal to the c
axis
 iface_slab = add_vacuum(iface_slab, min_vac-1) # Apply vacuum spacing
 iface_slab.to('poscar', str(min_thick)+'_'+str(min_vac)+'/POSCAR') #
Write file

def makeMP_slabs(index=1, settings=[]):

 if settings==[]:

Approved for public release; distribution is unlimited.
49

 elements=''
 numEle = int(input('Enter number of elements | '))
 eleList = []
 for x in range(numEle): # Loop as many times as elements to input
 addEle = input('Type element symbol | ')
 elements+=addEle
 if x!=numEle-1:
 elements+='-'
 eleList.append(addEle)
 mp_id = input('Enter MaterialsProject API key | ') # Enter
MaterialsProject API key. Should be the one
 # specific to your account, not someone
else's
 maxTherm = float(input('Enter maximum distance from thermodynamic
hull (in meV) | '))
 min_thick = float(input('Enter minimum slab thickness (in angstrom) | '))
 min_vac = float(input('Enter minimum vacuum spacing (in angstrom) | '))
 include = input('Include endpoints? True or False | ') # Include pure
compositions in MaterialsProject pull
 skips = [input('Skip any compounds? Separate elemental compositions
with a , and entered in all potential elemental orders as well. If no compounds
should be skipped, hit return | ')] # Any compounds to be skipped over?
 maxAtom = int(input('What is the maximum number of atoms in the
compounds taken? | ')) # Upper limit on number of atoms
 includeHulls = input('Include this limitation on hull compounds?
True/False | ')

 elif len(settings)==10:
 elements, eleList, mp_id, maxTherm, min_thick, min_vac, include,
maxAtom, includeHulls, skips = settings
 else:
 print('Settings is not the appropriate length. Terminating')
 exit()

 comps = mpr(mp_id).get_data(elements) # Obtain all structures for the system
defined
 # (does not include inputs)

 finalSet = {}
 record = {}

Approved for public release; distribution is unlimited.
50

 # Obtain list of compounds

 for comp in comps: #
 energy = comp['e_above_hull'] # Obtain energy above hull of compound
 if energy<=maxTherm*.001:
 if energy==0:
 if includeHulls=='True': # Continue if hulls should be restricted by
maxAtom
 if comp['nsites']<=maxAtom:
 formula = comp['pretty_formula'] # Obtain reduced formula (to
organize data)
 finalSet[formula]=comp['material_id'] # Obtain material id (to later
pull structure)
 record[formula]=comp['e_above_hull'] # Note energy above hull
(so most stable structure is selected)
 else: # Continue if all hull compounds should be taken
 formula = comp['pretty_formula']
 if formula not in skips:
 finalSet[formula]=comp['material_id']
 record[formula]=comp['e_above_hull']
 else: # Loop over off hull compounds
 if comp['nsites']<=maxAtom:
 formula = comp['pretty_formula']
 if formula not in skips:
 if formula not in record:
 finalSet[formula]=comp['material_id']
 record[formula]=comp['e_above_hull']
 else:
 i=2
 while formula+'_'+str(i) in record:
 i+=1
 finalSet[formula+'_'+str(i)]=comp['material_id']
 record[formula+'_'+str(i)]=comp['e_above_hull']
 for ele in eleList: # Add pure end point compounds to list
 soloComps = mpr(mp_id).get_data(ele)
 for comp in soloComps:
 if comp['e_above_hull']==0:
 formula = comp['pretty_formula']
 if formula not in skips:
 finalSet[formula]=comp['material_id']

 os.mkdir(elements)
 os.chdir(elements)

Approved for public release; distribution is unlimited.
51

 for comp in finalSet: # For each compound, create a bulk directory and slabs
 os.mkdir(comp)
 os.chdir(comp)
 strt = mpr(mp_id).get_structures(finalSet[comp])[0]
 os.mkdir('bulk')
 Poscar(strt).write_file('bulk/POSCAR')
 structs = []
 structs2= []
 results=[]
 for a in range(-1*index, index):
 for b in range(-1*index, index):
 for c in range(-1*index, index):
 supercell = [1, 1, 1]
 if a==0 and b==0 and c==0:
 pass
 else:
 hkl = [a,b,c]

 iface_slab = Interface(strt, hkl=hkl,
 min_thick=min_thick, min_vac=1,
 supercell=supercell,
 primitive=False,from_ase=True)
 iface_slab.sort()
 iface_slab = align_axis(iface_slab)

 iface_slab = add_vacuum(iface_slab, min_vac-1)
 structs2.append([iface_slab, str(a)+str(b)+str(c)])
 structs.append(iface_slab)
 results = StructureMatcher().group_structures(structs,anonymous=False)
 print(len(results))
 counter = 1
 for slab in results:
 for s in list(reversed(structs2)):
 if len(StructureMatcher().group_structures([slab[0],s[0]]))==1:
 print(s[1])
 os.mkdir(str(s[1]))
 slab[len(slab)-1].to('poscar',str(s[1])+'/POSCAR')
 break
 os.chdir('../')

def makeGA_slabs(pathToCompList, min_thick, min_vac, index=1):

Approved for public release; distribution is unlimited.
52

 # Will generate slabs from a list of POSCARS. The path to
 # a directory filled with the POSCARs to turn into slabs is
 # taken as the input. Afterward, the minimum thickness of these slabs and
 # minimum vacuum spacing are given. Optional is the maximum
 # miller index, which is assumed to be 1 if not given

 for comp in os.listdir(pathToCompList):
 os.mkdir(comp) # Make a directory for the crystal being made into slabs
 os.chdir(comp)
 os.mkdir('bulk') # Make a directory to calculate the bulk energy. To prevent
this, comment out this and the next line
 os.system('cp ../'+pathToCompList+'/'+comp+' bulk/POSCAR')
 strt = Structure.from_file('bulk/POSCAR')
 structs = []
 structs2= []
 for a in range(-1*index, index): # A list of the indices to loop over
 for b in range(-1*index, index): # A list of the indices to loop over
 for c in range(-1*index,index): # A list of the indices to loop over
 supercell = [1, 1, 1] # Whether to make a supercell
 if a==0 and b==0 and c==0: # Make sure that there is some indici cut
along
 pass
 else:
 hkl = [a,b,c]

 iface_slab = Interface(strt, hkl=hkl, # Create slab
 min_thick=min_thick, min_vac=1,
 supercell=supercell,
 primitive=False,from_ase=True)
 iface_slab.sort() # Organize atoms so they are properly
grouped
 iface_slab = align_axis(iface_slab) # Align c axis so that slab
surface is parallel to AB plane

 iface_slab = add_vacuum(iface_slab, min_vac-1) # Add vacuum
spacing. -1 since 1 A was initially used in slab generation
 structs2.append([iface_slab, str(a)+str(b)+str(c)])
 structs.append(iface_slab)
 results = StructureMatcher().group_structures(structs,anonymous=False) #
Takes a list of structures as inputs, and returns
 # a list of structure lists. Each
sublist is a grouping

Approved for public release; distribution is unlimited.
53

 # of symmetrically equivalent
structures
 counter = 1
 for slab in results:
 for s in list(reversed(structs2)): # Reversed so positive indicies are
selected as names first
 if len(StructureMatcher().group_structures([slab[0],s[0]]))==1: # If only
one list is returned, the structures are identical
 os.mkdir(str(s[1]))
 slab[len(slab)-1].to('poscar',str(s[1])+'/POSCAR')
 break
 os.chdir('../')

def addsd(structure,shift=0):
 lines = open(structure,'r').readlines()
 zs = []
 if lines[7][0]!='S': # Checks whether the "S" tag is present yet
 for num in range(len(lines)):
 if num >7:
 zs.append(float(lines[num].split()[2])) # Adds all z coordinates to a list
 mid = (max(zs)+min(zs))/2 # Finds the center of the slab
 with open(structure,'w') as f:
 for num in range(len(lines)):
 if num>7:
 splits = lines[num].split()
 if float(splits[2])>mid+shift: # If atom above the center, allow
movement
 f.write(splits[0]+' '+splits[1]+' '+splits[2]+' T T T ')
 else: # If atom not above center, fix position
 f.write(splits[0]+' '+splits[1]+' '+splits[2]+' F F F ')
 if len(splits)>3: # If the atom had an identifer (ex: '.5 .5 .5 Mg'), add
the identifier
 f.write(splits[3]+' \n')
 else:
 f.write(' \n')
 elif num<7: # Write all lines prior to line 7 as is
 f.write(lines[num])
 elif num==7:
 f.write('S \n') # Add 'S' tag whil keeping
 f.write(lines[num]) # Add previous identifier
 os.chdir('../')
 else: # Continue if 'S' tag was present

Approved for public release; distribution is unlimited.
54

 for num in range(len(lines)):
 if num >8:
 zs.append(float(lines[num].split()[2])) # Adds all z coordinates to a list
 mid = (max(zs)+min(zs))/2 # Finds center of the slab
 with open(structure,'w') as f:
 for num in range(len(lines)):
 if num>8:
 splits = lines[num].split()
 if float(splits[2])>mid+shift: # If atom above the center, allow
movement
 f.write(splits[0]+' '+splits[1]+' '+splits[2]+' T T T ')
 else: # If atom not above center, fix position
 f.write(splits[0]+' '+splits[1]+' '+splits[2]+' F F F ')
 if len(splits)>3: # If the atom had an identifer (ex: '.5 .5 .5 Mg'), add
the identifier
 f.write(splits[3]+' \n')
 else:
 f.write(' \n')
 else:
 f.write(lines[num]) # Write all lines prior to atomic positions

def getAngles(array1,array2):
 mag1 = np.linalg.norm(array1)
 mag2 = np.linalg.norm(array2)
 dotted = np.dot(array1,array2)
 if float(dotted/mag1/mag2)>=float(1.0):
 angle = 0
 else:
 angle = acos((dotted/mag1/mag2))
 return angle*180/np.pi

def getAbsCoord(site,a,b,c):
 return np.array([site.a*a[0]+site.b*b[0]+site.c*c[0], \
 site.a*a[1]+site.b*b[1]+site.c*c[1], \
 site.a*a[2]+site.b*b[2]+site.c*c[2]])

class makeLigSurface():

 def setUp(slabName, adsorbName,min_thick,min_vac,supercell,
minSurfArea=0.1,from_slab=True,hkl=[0,0,1],alwaysEqual=False):

Approved for public release; distribution is unlimited.
55

 # slabName: Path to/name of the POSCAR file containing the slab or to-be
slab
 # adsorbName: Path to/name of the POSCAR file containing the adsorbate
 # min_thick: Minimum thickness of slab
 # min_vac: Minimum vacuum padding in the slab
 # supercell: Supercell to start from in adsorbate generation
 # minSurfArea: The minimum surface area of the slab
 # from_slab: Whether the POSCAR 'slabName' is a slab or not. Default to
True
 # hkl: The hkl indice to cut along. By default [0 0 1]
 # alwaysEqual: During surface area comparisons, whether or not to always
increase the
 # supercell in the x and y direction simultaneously, or alternating.
Default to alternating (False)

 strt_start = Structure.from_file(slabName)
 mol_struct = Structure.from_file(adsorbName)
 mol = Molecule(mol_struct.species, mol_struct.cart_coords)
 ligand = Ligand([mol]) # Turn adsorbate into object

 strt = Interface(strt_start, hkl=hkl,
 min_thick=min_thick, min_vac=min_vac,
 supercell=supercell,
 primitive=False, from_ase=True,start_from_slab=from_slab)
 strt_novac = Interface(strt_start, hkl=hkl,
 min_thick=min_thick, min_vac=0,
 supercell=supercell,
 primitive=False,from_ase=True,start_from_slab=from_slab)
 strt_novac.sort()
 strt_novac = align_axis(strt_novac)
 strt_novac.to('poscar','POSCAR_slab_noVac.vasp')
 strt_novac.to('poscar','POSCAR_slab_noVac_reduced.vasp')

 # Get the list of sites in the slab. Then get a list [keep]
 # of atoms that have no other atom above it along the z-axis
 strt.sort()
 strt = align_axis(strt)
 lines = open('POSCAR_slab_noVac.vasp','r').readlines()
 a = [float(num) for num in lines[2].split()]
 b = [float(num) for num in lines[3].split()]
 c = [float(num) for num in lines[4].split()]

Approved for public release; distribution is unlimited.
56

 # Scale the supercell size until it reaches the specified
 # minimum surface area. If alwaysBoth=False, increases
 # supercell to keep lattice vector sizes as similar as possible.
 if np.linalg.norm(np.cross((a),(b)))<minSurfArea*.9:
 aMultiple = 1
 bMultiple = 1
 if alwaysEqual==False: # If False, scale vectors so they are about equal,
 # then increase the size of lattice vector a
 while
aMultiple*bMultiple*np.linalg.norm(np.cross((a),(b)))<minSurfArea*.9:
 if aMultiple*np.linalg.norm(a)>bMultiple*np.linalg.norm(b):
 supercell[1]+=1
 bMultiple+=1
 elif aMultiple*np.linalg.norm(a)<bMultiple*np.linalg.norm(b):
 supercell[0]+=1
 aMultiple+=1
 else:
 supercell[0]+=1
 aMultiple+=1
 else: # If True, scale lattice vectors so they are approximately equal, then
 # create supercell in x and y directions simultaneously until
minSurfArea
 # is reached
 if aMultiple*np.linalg.norm(a)*.9>bMultiple*np.linalg.norm(b):
 while aMultiple*np.linalg.norm(a)*.9>bMultiple*np.linalg.norm(b):
 supercell[1]+=1
 bMultiple+=1
 elif aMultiple*np.linalg.norm(a)<.9*bMultiple*np.linalg.norm(b):
 while aMultiple*np.linalg.nor(a)<.9*nbMultiple*p.linalg.norm(b):
 supercell[0]+=1
 aMultiple+=1
 while
aMultiple*bMultiple*np.linalg.norm(np.cross((a),(b)))<minSurfArea*.9:
 supercell[0]+=1
 supercell[1]+=1
 aMultiple+=1
 bMultiple+=1

 strt = Interface(strt_start, hkl=hkl,
 min_thick=min_thick, min_vac=min_vac,
 supercell=supercell,
 primitive=False, from_ase=True,start_from_slab=True)

Approved for public release; distribution is unlimited.
57

 strt_novac = Interface(strt_start, hkl=hkl,
 min_thick=min_thick, min_vac=0,
 supercell=supercell,
 primitive=False, from_ase=True,start_from_slab=True)
 strt_novac.sort()
 strt_novac = align_axis(strt_novac)
 strt_novac.to('poscar','POSCAR_slab_noVac.vasp')
 strt_novac.to('poscar','POSCAR_slab_noVac_reduced.vasp')

 # get the list of sites in the slab. Then get a list [keep]
 # of atoms that have no other atom above it along the z-axis
 strt.sort()
 strt = align_axis(strt)
 lines = open('POSCAR_slab_noVac.vasp','r').readlines()
 a = [float(num) for num in lines[2].split()]
 b = [float(num) for num in lines[3].split()]
 c = [float(num) for num in lines[4].split()]

 strt.to('poscar','POSCAR_slab.vasp')

 lines = open('POSCAR_slab.vasp','r').readlines()
 i = 0
 a_vec = [float(num) for num in lines[2].split()]
 b_vec = [float(num) for num in lines[3].split()]
 c_vec = [float(num) for num in lines[4].split()]
 aMag = np.linalg.norm(a_vec)
 bMag = np.linalg.norm(b_vec)
 cMag = np.linalg.norm(c_vec)
 sites = strt.cart_coords
 normal = np.cross(a_vec, b_vec)
 xShift = np.array(a_vec)
 yShift = np.array(b_vec)

 # Begin identifying sites that correspond to the top surface atoms.
 # This is defined as no atoms being above the site in the direction
 # normal to the surface. The "_Shift" variables are present to
 # take into account that fractional coordinates may not identify
 # one site as being above an atom due to unit cell shape, but when
 # supercells are created it clearly is.
 keep = []
 kept = []
 index = 0
 maxZs = {}

Approved for public release; distribution is unlimited.
58

 loop=0
 while loop<4:
 index=0
 for site in strt.sites:
 x,y,z = getAbsCoord(site,a_vec,b_vec,c_vec)
 addIt = True
 breakAgain = False
 if keep != []:
 for atom in keep:
 x2,y2,z2, oldIndex = atom
 atomVectors = []
 atomVectors.append(np.array([x-x2,y-y2,z-z2]))
 atomVectors.append(np.array([x-x2,y-y2,z-z2])-xShift)
 atomVectors.append(np.array([x-x2,y-y2,z-z2])-yShift)
 atomVectors.append(np.array([x-x2,y-y2,z-z2])-xShift-yShift)
 atomVectors.append(np.array([x-x2,y-y2,z-z2])+xShift)
 atomVectors.append(np.array([x-x2,y-y2,z-z2])+yShift)
 atomVectors.append(np.array([x-x2,y-y2,z-z2])+xShift+yShift)
 atomVectors.append(np.array([x-x2,y-y2,z-z2])-2*xShift)
 atomVectors.append(np.array([x-x2,y-y2,z-z2])-2*yShift)
 atomVectors.append(np.array([x-x2,y-y2,z-z2])-2*xShift-
2*yShift)
 atomVectors.append(np.array([x-x2,y-y2,z-z2])+2*xShift)
 atomVectors.append(np.array([x-x2,y-y2,z-z2])+2*yShift)
 atomVectors.append(np.array([x-x2,y-y2,z-
z2])+2*xShift+2*yShift)
 if index != oldIndex:
 for atomVector in atomVectors:
 dotted = np.dot(atomVector/np.linalg.norm(atomVector),
normal/np.linalg.norm(normal))
 if dotted>=.98:
 addIt = False
 keep.remove(atom)
 keep.append([x,y,z,index])
 if z not in maxZs:
 maxZs[z]=1
 else:
 maxZs[z]+=1
 if maxZs[z2]==1:
 del maxZs[z2]
 else:
 maxZs[z2]-=1
 kept.append(index)

Approved for public release; distribution is unlimited.
59

 kept.remove(oldIndex)
 breakAgain=True
 break
 if dotted<0:
 addIt=False

 if breakAgain==True:
 break
 if addIt == True and index not in kept:
 keep.append([x,y,z,index])
 kept.append(index)
 if z not in maxZs:
 maxZs[z]=1
 else:
 maxZs[z]+=1
 elif index not in kept:
 keep.append([x,y,z,index])
 kept.append(index)
 if z not in maxZs:
 maxZs[z]=1
 else:
 maxZs[z]+=1
 index+=1
 loop+=1
 areaCounter = 0
 defaultHeight = max(maxZs)-min(maxZs)
 areaCounter = len(maxZs)
 defaultArea = strt.volume/strt.lattice.c/areaCounter*3
 elements = Composition(strt.formula).elements
 strtR = copy.deepcopy(strt)
 i=0
 for x in strtR.frac_coords:
 strtR.translate_sites(i,[0,0,2*(.5-x[2])])
 i+=1
 # Returns: the slab structure as an object, a list of surface sites,
 # a list of all sites, a list of elements in the slab, the minimum thickness,
 # the maximum thickness, and the ligand object. Also returned are the
suggested
 # default area for threeAtomAdsorb, default thickness from top atom of
surface layer,
 # the vector representing the normal, and the slab inverted (so the bottom
surface is
 # now the top) as a structure object

Approved for public release; distribution is unlimited.
60

 return [strt, kept,sites, elements,min_thick,min_vac,ligand],
defaultArea,defaultHeight, normal, strtR

 def
oneAtomAdsorb(params,adatom_on_lig,spin,displacement,rotation,angleToRot):
 # First loop for generating adsorbates above atoms
 # Attach the ligands to the slab.
 # param: The set of parameters returned by setUp
 # adatom_on_lig: The adatom of the ligand that you want attaching
 # to the surface
 # displacement: The distance between the adsorbate and the surface atom
 # rotation: The direction to rotate the adsorbate, defined by the a,b,c
 # lattice vectors.
 # angleToRot: The angle to rotate the adsorbate along the rotation direction

 strt,keep,sites,elements,min_thick,min_vac,ligand = params
 structsToContinue = []
 for site in keep:
 iface = Interface(strt, hkl=[0,0,1],
 min_thick=min_thick, min_vac=min_vac,
start_from_slab=True,
 ligand=ligand, displacement=displacement, scell_nmax =
10,

adatom_on_lig=adatom_on_lig,adsorb_on_species=str(elements[0]),
 primitive=False,from_ase=True,rot=spin)
 iface.set_top_atoms()
 topAtoms = iface.top_atoms
 failed=True
 if topAtoms ==[]:
 while topAtoms == [] and failed==True:
 for ele in elements:
 iface = Interface(strt, hkl=[0,0,1],
 min_thick=min_thick, min_vac=min_vac,
start_from_slab=True,
 ligand=ligand, displacement=displacement, scell_nmax =
10,

adatom_on_lig=adatom_on_lig,adsorb_on_species=str(ele),
 primitive=False, from_ase=True,rot=spin)
 iface.to('poscar','TEMP.vasp')
 iface.set_top_atoms()
 if iface.top_atoms != []:

Approved for public release; distribution is unlimited.
61

 failed=False
 break
 if iface.top_atoms == []:
 failed = True

 iface.cover_surface2([site], rotation,angleToRot)
 iface.sort()
 # extract bare slab
 iface_slab = iface.slab
 iface_slab.sort()
 # set selective dynamics flags as required
 true_site = [1, 1, 1]
 false_site = [0, 0, 0]
 sd_flag_iface = []
 sd_flag_slab = []
 # selective dynamics flags for the interface
 for i in iface.sites:
 sd_flag_iface.append(false_site)
 # selective dynamics flags for the bare slab
 for i in iface_slab.sites:
 sd_flag_slab.append(false_site)
 interface_poscar = Poscar(iface, selective_dynamics=sd_flag_iface)
 slab_poscar = Poscar(iface_slab, selective_dynamics=sd_flag_slab)
 # poscars without selective dynamics flag
 iface.to('poscar', 'POSCAR_interface_'+str(site+1)+'.vasp')
 iface_slab.to('poscar', 'POSCAR_slab.vasp')

interface_poscar.write_file("POSCAR_interface_with_sd_"+str(site+1)+".vasp")
 slab_poscar.write_file("POSCAR_slab_with_sd.vasp")
 structsToContinue.append(iface)
 # structsToContinue =
StructureMatcher().group_structures(structsToContinue,anonymous=False)
 return structsToContinue
 def twoAtomAdsorb(param,length, adatom_on_lig, spin, displacement,
heightDiff,rotation,angleToRot):
 # Second loop for generating adsorbates between atoms
 # param: The set of parameters returned by setUp
 # length: the maximum distance between the two atoms considered for
adsorption.
 # In units of Angstroms
 # adatom_on_lig: The adatom of the ligand that you want attaching
 # to the surface
 # displacement: The distance between the adsorbate and the surface atom

Approved for public release; distribution is unlimited.
62

 # heightDiff: The maximum difference in heighet between two atoms
considered for
 # adsorption. In unites of Angstroms
 # rotation: The direction to rotate the adsorbate, defined by the a,b,c
 # lattice vectors.
 # angleToRot: The angle to rotate the adsorbate along the rotation direction
 strt,keep,sites,elements,min_thick,min_vac,ligand = params
 complete = []
 structsToContinue = []
 for site1 in keep:
 for site2 in keep:
 if site1!=site2:
 complete.append([site1,site2])
 # create a minimum distance adsorbate must be from the other atoms
 radCount=0
 radius=0
 for ele in elements:
 radius+=Element(ele).atomic_radius/2
 radCount+=1
 radius_criteria = radius/radCount
 if abs(sites[site1][2]-sites[site2][2])!=0:
 translation = sites[site2]-sites[site1]
 diffTrans = copy.deepcopy(translation)
 if diffTrans[0]==0:
 diffTrans=diffTrans[1:]
 elif diffTrans[1]==0:
 diffTrans=[diffTrans[0]]
 diffTrans.append(translation[2])
 elif diffTrans[2]==0:
 diffTrans=diffTrans[:2]
 if np.linalg.norm(diffTrans)<=length and
translation[2]<=heightDiff:
 newPosition = sites[site1]+translation/2
 skip = False
 for site in keep:
 if np.linalg.norm(translation)<radius_criteria:
 skip = True
 break
 if skip != True:
 iface = Interface(strt, hkl=[0,0,1],
 min_thick=min_thick, min_vac=min_vac,
start_from_slab=True,

Approved for public release; distribution is unlimited.
63

 ligand=ligand,
displacement=displacement+translation[2]/2, scell_nmax = 10,

adatom_on_lig=adatom_on_lig,adsorb_on_species=str(elements[0]),
 x_shift=translation[0]/2, y_shift=translation[1]/2,
 primitive=False,from_ase=True,rot=spin)
 iface.set_top_atoms()
 topAtoms = iface.top_atoms
 failed=False
 if topAtoms ==[]:
 while topAtoms == [] and failed==False:
 for ele in elements:
 iface = Interface(strt, hkl=[0,0,1],
 min_thick=min_thick, min_vac=min_vac,
start_from_slab=True,
 ligand=ligand,
displacement=displacement+translation[2]/2, scell_nmax = 10,

adatom_on_lig=adatom_on_lig,adsorb_on_species=str(elements[0]),
 x_shift=translation[0]/2,
y_shift=translation[1]/2,
 primitive=False,from_ase=True,rot=spin)
 iface.to('poscar','TEMP.vasp')
 iface.set_top_atoms()
 if iface.top_atoms != []:
 break
 if iface.top_atoms == []:
 failed = True
 iface.cover_surface2([site1],rotation,angleToRot)
 iface.sort()
 iface_slab = iface.slab
 iface_slab.sort()
 true_site = [1, 1, 1]
 false_site = [0, 0, 0]
 sd_flag_iface = []
 sd_flag_slab = []
 # selective dynamics flags for the interface
 for i in iface.sites:
 sd_flag_iface.append(false_site)
 # selective dynamics flags for the bare slab
 for i in iface_slab.sites:
 sd_flag_slab.append(false_site)

Approved for public release; distribution is unlimited.
64

 interface_poscar = Poscar(iface,
selective_dynamics=sd_flag_iface)
 slab_poscar = Poscar(iface_slab,
selective_dynamics=sd_flag_slab)
 # poscars without selective dynamics flag
 # iface.to('poscar', 'POSCAR_interface_'+str(x)+'.vasp')
 iface.to('poscar', 'POSCAR_interface_trans'+str(site1+1)+'-
'+str(site2+1)+'.vasp')
 iface_slab.to('poscar', 'POSCAR_slab.vasp')
 # poscars with selective dynamics flag

interface_poscar.write_file("POSCAR_interface_with_sd_"+str(site1+1)+'-
'+str(site2+1)+".vasp")
 slab_poscar.write_file("POSCAR_slab_with_sd.vasp")
 structsToContinue.append(iface)
 # structsToContinue =
StructureMatcher().group_structures(structsToContinue,anonymous=False)
 return structsToContinue

 def threeAtomAdsorb(params,area, adatom_on_lig,spin, displacement,
heightDiff,angleRestricts,rotation,angleToRot):
 # Third loop for generating adsorbates between atoms
 # param: The set of parameters returned by setUp
 # area: The maximum area formed by the three atoms considered for
adsorption.
 # In units of Angstroms^2
 # adatom_on_lig: The adatom of the ligand that you want attaching
 # to the surface
 # displacement: The distance between the adsorbate and the surface atom
 # heightDiff: The maximum difference in heighet between two atoms
considered for
 # adsorption. In units of Angstroms.
 # angleRestricts: [minimum, maximum] angles between the three atoms
considered
 # for adsorption
 # rotation: The direction to rotate the adsorbate, defined by the a,b,c
 # lattice vectors.
 # angleToRot: The angle to rotate the adsorbate along the rotation direction
 strt,keep,sites,elements,min_thick,min_vac,ligand = params
 minAngle, maxAngle = angleRestricts
 structsToContinue = []
 radius = 0
 radCount=0

Approved for public release; distribution is unlimited.
65

 for ele in elements:
 radius+=Element(ele).atomic_radius
 radCount+=1
 radius_criteria = radius/radCount
 for site1 in keep:
 for site2 in keep:
 for site3 in keep:
 if site1!=site2 and site2!=site3 and site1!=site3:
 x1,y1,z1=sites[site1]
 x2,y2,z2=sites[site2]
 x3,y3,z3=sites[site3]
 if abs(z1-z2)<heightDiff and \
 abs(z1-z3)<heightDiff and \
 abs(z2-z3)<heightDiff:
 newPosition= (sites[site1]+sites[site2]+sites[site3])/3
 skip = False
 a = np.array(sites[site2]-sites[site1])
 b = np.array(sites[site3]-sites[site1])
 if np.linalg.norm(np.cross(a,b))>area:
 skip = True
 if skip==False:
 ang1 = strt.get_angle(site1,site2,site3)
 ang2 = strt.get_angle(site2, site3, site1)
 ang3 = strt.get_angle(site3, site1, site2)
 if ang1 > 180:
 ang1-=180
 if ang2 > 180:
 ang2-=180
 if ang3 > 180:
 ang3-=180
 angles = [ang1, ang2, ang3]
 for angle in angles:
 if angle<minAngle or angle>maxAngle:
 skip=True
 break
 translation = newPosition-sites[site1]
 for site in keep:
 if np.linalg.norm(translation)<radius_criteria:
 skip = True
 break
 if skip != True:
 iface = Interface(strt, hkl=[0,0,1],

Approved for public release; distribution is unlimited.
66

 min_thick=min_thick, min_vac=min_vac,
start_from_slab=True,
 ligand=ligand,
displacement=displacement+translation[2], scell_nmax = 10,

adatom_on_lig=adatom_on_lig,adsorb_on_species=str(elements[0]),
 x_shift=translation[0], y_shift=translation[1],
 primitive=False, from_ase=True,rot=spin)
 iface.set_top_atoms()
 topAtoms = iface.top_atoms
 failed=False
 if topAtoms ==[]:
 while topAtoms == [] and failed==False:
 for ele in elements:
 iface = Interface(strt, hkl=[0,0,1],
 min_thick=min_thick, min_vac=min_vac,
start_from_slab=True,
 ligand=ligand,
displacement=displacement+translation[2], scell_nmax = 10,

adatom_on_lig=adatom_on_lig,adsorb_on_species=str(elements[0]),
 x_shift=translation[0],
y_shift=translation[1],
 primitive=False, from_ase=True,rot=spin)
 iface.to('poscar','TEMP.vasp')
 iface.set_top_atoms()
 if iface.top_atoms != []:
 break
 if iface.top_atoms == []:
 failed = True
 iface.cover_surface2([site1],rotation,angleToRot)
 iface.sort()
 iface_slab = iface.slab
 iface_slab.sort()
 true_site = [1, 1, 1]
 false_site = [0, 0, 0]
 sd_flag_iface = []
 sd_flag_slab = []
 # selective dynamics flags for the interface
 for i in iface.sites:
 sd_flag_iface.append(false_site)
 # selective dynamics flags for the bare slab
 for i in iface_slab.sites:

Approved for public release; distribution is unlimited.
67

 sd_flag_slab.append(false_site)
 interface_poscar = Poscar(iface,
selective_dynamics=sd_flag_iface)
 slab_poscar = Poscar(iface_slab,
selective_dynamics=sd_flag_slab)
 # poscars without selective dynamics flag
 iface.to('poscar', 'POSCAR_interface_trans'+str(site1+1)+'-
'+str(site2+1)+'-'+str(site3+1)+'.vasp')
 iface_slab.to('poscar', 'POSCAR_slab.vasp')
 # poscars with selective dynamics flag

interface_poscar.write_file("POSCAR_interface_with_sd_"+str(site1+1)+'-
'+str(site2+1)+'-'+str(site3+1)+".vasp")
 slab_poscar.write_file("POSCAR_slab_with_sd.vasp")
 structsToContinue.append(iface)
structsToContinue =
StructureMatcher().group_structures(structsToContinue,anonymous=False)
 return structsToContinue

 def writeStruct(structList, hkl_name, ligandName):
 # will generate directories and write POSCAR files to them
 # in the directory the function is run in. Takes a list of
 # structure objects as input.
 structsListSingle = []
 if len(structList)==1:
 structsListSingle=structList
 elif len(structList)==0:
 print('EMPTY LIST. CANNOT RUN')
 exit()
 else:
 for sublist in structList:
 for struct in sublist:
 structsListSingle.append(struct)
 finalStructs =
StructureMatcher().group_structures(structsListSingle,anonymous=False)
 i = 1
 os.mkdir(hkl_name+'_'+ligandName)
 os.chdir(hkl_name+'_'+ligandName)
 for struct in finalStructsList:
 os.mkdir(str(i))
 struct[0].to('poscar',str(i)+'/POSCAR')
 i+=1
 os.chdir('../')

Approved for public release; distribution is unlimited.
68

def orgDataConvergence():
 # Organize the data from a slabConvergence. Run in
 # the directory where slabConvergence was run. The
 # data will be in the directory where this function was
 # run and will be called "resultsC.txt"
 comps = []
 thicks = []
 spaces = []
 diction = {}
 for comp in os.listdir('.'):
 if os.path.isdir(comp) and 'bulk' not in comp:
 comps.append(comp)

 bulkAtom = 0
 for x in open('bulk/POSCAR','r').readlines()[6].split():
 bulkAtom+=int(x)
 bulkE = float(open('bulk/OSZICAR','r').readlines()[-1].split()[4])/bulkAtom
 with open('resultsC.txt','w') as f:
 f.write('{0:^10}'.format('Thickness')+' | {0:^8}'.format('vacPad')+' |
{0:^10}'.format('eV/atom')+' \n')
 for comp in comps:
 energy = 0
 try:
 print(comp)
 thick = comp[:comp.index('_')]
 space = comp[comp.index('_')+1:]
 if open(comp+'/OSZICAR','r').readlines()[-1].split()[0].isdigit():
 energy = open(comp+'/OSZICAR','r').readlines()[-1].split()[4]
 if energy != 0:
 numAtoms = 0
 posLines = open(comp+'/POSCAR','r').readlines()
 nums = posLines[6].split()
 a = np.array(posLines[2].split())
 b = np.array(posLines[3].split())
 for num in nums:
 numAtoms+=int(num)
 if thick not in diction:
 diction[thick] = {}
 diction[thick][space]=((float(energy)-bulkE*numAtoms))
 # diction[thick][space]=((float(energy)-
bulkE*numAtoms))/np.cross(a,b)#/8.785
 if thick not in thicks:
 thicks.append(thick)

Approved for public release; distribution is unlimited.
69

 if space not in spaces:
 spaces.append(space)
 except:
 pass
 thicks = sorted(thicks, key=float)
 spaces = sorted(spaces,key=float)
 for thick in thicks:
 for space in spaces:
 if space in diction[thick]:
 with open('resultsC.txt','a') as f:
 f.write('{0:10}'.format(thick)+' | {0:8}'.format(space)+' |
{0:<10}'.format(diction[thick][space])+' \n')

def orgDataSlabs():
 # Will organize data generated by makeGA_slabs or makeMP_slabs.
 # Run in the directory where the slabs are located. The data will
 # be organized in a file called "resultsS.txt".

 with open('resultsS.txt','w') as f:
 f.write('{0:^10}'.format('Index')+' | {0:^10}'.format('eV/atom')+' \n')
 for comp in os.listdir('.'):
 if os.path.isdir(comp):
 if os.path.exists(comp+'/bulk/OSZICAR') and
open(comp+'/bulk/OSZICAR','r').readlines()[-1].split()[0].isdigit():
 os.chdir(comp)
 hkls = []
 with open('../resultsS.txt','a') as f:
 f.write('-------'+comp+'------- \n')
 diction = {}
 for hkl in os.listdir('.'):
 if os.path.isdir(hkl) and 'bulk' not in hkl:
 hkls.append(hkl)

 bulkAtom = 0
 for x in open('bulk/POSCAR','r').readlines()[6].split():
 bulkAtom+=int(x)
 bulkE = float(open('bulk/OSZICAR','r').readlines()[-
1].split()[4])/bulkAtom
 hklData = {}
 for hkl in hkls:
 energy = 0
 try:
 print(comp)

Approved for public release; distribution is unlimited.
70

 oLines = open(hkl+'/OSZICAR','r').readlines()
 if oLines[-1].split()[0].isdigit():
 energy = oLines[-1].split()[4]
 if energy != 0:
 numAtoms = 0
 posLines = open(hkl+'/POSCAR','r').readlines()
 nums = posLines[6].split()
 a = [float(x) for x in np.array(posLines[2].split())]
 b = [float(x) for x in np.array(posLines[3].split())]
 for num in nums:
 numAtoms+=int(num)
 hklData[hkl]=((float(energy)-
bulkE*numAtoms)/np.linalg.norm(np.cross(a,b))/2)

 except:
 pass
 for hkl in hklData:
 with open('../resultsS.txt','a') as f:
 f.write('{0:10}'.format(hkl)+' | {0:<10}'.format(hklData[hkl])+' \n')
 with open('../resultsS.txt','a') as f:
 f.write('\n')
 os.chdir('../')

def orgDataAdsorb():
 # Will organize adsorbate data generated by .
 # Run in the directory where the slabs are located. The data will
 # be organized in a file called "resultsA.txt".
 if os.path.exists('adsorbate/OSZICAR') and
open('adsorbate/OSZICAR','r').readlines()[-1].split()[0].isdigit():
 adsorbateEnergy = float(open('adsorbate/OSZICAR','r').readlines()[-
1].split()[4])
 else:
 print('NO ADSORBATE PRESENT. ENDING FUNCTION.')
 exit()
 with open('resultsA.txt','w') as f:
 f.write('{0:^10}'.format('Index')+' | {0:^10}'.format('eV/atom')+' \n')
 for comp in os.listdir('.'):
 if os.path.isdir(comp):

 if os.path.exists(comp+'/bulk/OSZICAR') and
open(comp+'/bulk/OSZICAR','r').readlines()[-1].split()[0].isdigit():
 os.chdir(comp)
 hkls = []

Approved for public release; distribution is unlimited.
71

 with open('../resultsA.txt','a') as f:
 f.write('-------'+comp+'------- \n')
 diction = {}
 for hkl in os.listdir('.'):
 if os.path.isdir(hkl) and 'bulk' not in hkl:
 hkls.append(hkl)

 bulkAtom = 0
 for x in open('bulk/POSCAR','r').readlines()[6].split():
 bulkAtom+=int(x)
 bulkE = float(open('bulk/OSZICAR','r').readlines()[-
1].split()[4])/bulkAtom
 hklData = {}
 adsorbData = {}
 for hkl in hkls:
 energy = 0
 try:
 print(comp)
 oLines = open(hkl+'/OSZICAR','r').readlines()
 if oLines[-1].split()[0].isdigit():
 energy = float(oLines[-1].split()[4])
 hklData[hkl]=energy
 except:
 pass
 try:
 adsorbData[hkl] = {}
 for site in os.listdir(hkl):
 if os.path.isdir(hkl+'/'+site):
 print(1)
 energy=0
 aLines = open(hkl+'/'+site+'/OSZICAR','r').readlines()
 print(2)
 if aLines[-1].split()[0].isdigit():
 energy = float(aLines[-1].split()[4])
 print(3,energy)
 if energy!=0:
 print(4)
 adsorbData[hkl][site] = energy-adsorbateEnergy-
hklData[hkl]
 print(5)
 except:
 pass
 print(adsorbData)

Approved for public release; distribution is unlimited.
72

 for hkl in adsorbData:
 with open('../resultsA.txt','a') as f:
 f.write('{0:10}'.format(hkl)+' \n')
 for site in adsorbData[hkl]:
 f.write('{0:10}'.format(site)+' |
{0:10}'.format(str(round(adsorbData[hkl][site],5)))+' \n')
 with open('../resultsA.txt','a') as f:
 f.write('\n')
 os.chdir('../')

Approved for public release; distribution is unlimited.
73

Appendix F. MPInterface Modification

 This appendix appears in its original form, without editorial change.

Approved for public release; distribution is unlimited.
74

This appendix is comprised of an addition of “cover_surface2” to MPInterface’s
mpinterfaces.interface Interface class. This addition enables the rotation of
adsorbates on the slab surface.

def cover_surface2(self, site_indices, rotation,
angleToRot):

 """

 puts the ligand molecule on the given list of
site indices

 """

 num_atoms = len(self.ligand)

 normal = self.normal

 # get a vector that points from one atom in
the botton plane

 # to one atom on the top plane. This is
required to make sure

 # that the surface normal points outwards from
the surface on

 # to which we want to adsorb the ligand

 vec_vac = self.cart_coords[self.top_atoms[0]]
- \

 self.cart_coords[self.bottom_atoms[0]]

 # mov_vec = the vector along which the ligand
will be displaced

 mov_vec = normal * self.displacement

 angle = get_angle(vec_vac, self.normal)

 # flip the orientation of normal if it is not
pointing in

 # the right direction.

 if (angle > 90):

 normal_frac =
self.lattice.get_fractional_coords(normal)

Approved for public release; distribution is unlimited.
75

 normal_frac[2] = -normal_frac[2]

 normal =
self.lattice.get_cartesian_coords(normal_frac)

 mov_vec = normal * self.displacement

 # get the index corresponding to the given
atomic species in

 # the ligand that will bond with the surface
on which the

 # ligand will be adsorbed

 adatom_index =
self.get_index(self.adatom_on_lig)

 adsorbed_ligands_coords = []

 # set the ligand coordinates for each
adsorption site on

 # the surface

 for sindex in site_indices:

 # align the ligand wrt the site on the
surface to which

 # it will be adsorbed

 origin = self.cart_coords[sindex]

self.ligand.translate_sites(list(range(num_atoms)),

 origin -
self.ligand[

adatom_index].coords)

 # displace the ligand by the given amount
in the direction

 # normal to surface

Approved for public release; distribution is unlimited.
76

self.ligand.translate_sites(list(range(num_atoms)),
mov_vec)

 # vector pointing from the adatom_on_lig
to the

 # ligand center of mass

 vec_adatom_cm = self.ligand.center_of_mass
- \

 self.ligand[adatom_index].coords

 # rotate the ligand with respect to a
vector that is

 # normal to the vec_adatom_cm and the
normal to the surface

 # so that the ligand center of mass is
aligned along the

 # outward normal to the surface

 origin = self.ligand[adatom_index].coords

 angle = get_angle(vec_adatom_cm, normal)

 if 1 < abs(angle % 180) < 179:

 # For angles which are not 0 or 180,

 # perform a rotation about the origin
along an axis

 # perpendicular to both bonds to align
bonds.

 axis = np.cross(vec_adatom_cm, normal)

 op =
SymmOp.from_origin_axis_angle(origin, axis, angle)

 self.ligand.apply_operation(op)

 elif abs(abs(angle) - 180) < 1:

 # We have a 180 degree angle.

Approved for public release; distribution is unlimited.
77

 # Simply do an inversion about the
origin

 for i in range(len(self.ligand)):

 self.ligand[i] =
(self.ligand[i].species_and_occu,

 origin - (

self.ligand[i].coords - origin))

 axis = np.cross(vec_adatom_cm, normal)

 op =
SymmOp.from_origin_axis_angle(origin,rotation,angleToR
ot)

 self.ligand.apply_operation(op)

 # x - y - shifts

 x = self.x_shift

 y = self.y_shift

 rot = self.rot

 op =
SymmOp.from_origin_axis_angle(self.cart_coords[sindex]
,[1,0,0],rot[0])

 self.ligand.apply_operation(op)

 op =
SymmOp.from_origin_axis_angle(self.cart_coords[sindex]
,[0,1,0],rot[1])

 self.ligand.apply_operation(op)

 op =
SymmOp.from_origin_axis_angle(self.cart_coords[sindex]
,[0,0,1],rot[2])

 self.ligand.apply_operation(op)

 if x:

Approved for public release; distribution is unlimited.
78

self.ligand.translate_sites(list(range(num_atoms)),

np.array([x, 0, 0]))

 if y:

self.ligand.translate_sites(list(range(num_atoms)),

np.array([0, y, 0]))

3d numpy array

adsorbed_ligands_coords.append(self.ligand.cart_coords
)

 # extend the slab structure with the
adsorbant atoms

 adsorbed_ligands_coords =
np.array(adsorbed_ligands_coords)

 for j in range(len(site_indices)):

[self.append(self.ligand.species_and_occu[i],

adsorbed_ligands_coords[j, i, :],

 coords_are_cartesian=True)

 for i in range(num_atoms)]

Approved for public release; distribution is unlimited.
79

Appendix G. Python Script for reciprocal.py to Generate KPOINT
Files

 This appendix appears in its original form, without editorial change.

Approved for public release; distribution is unlimited.
80

import os

def makeKPOINTS(twoD, MeshType,Length,
desired_directory):

 #Input Variables

 MeshType = MeshType

 TwoDimensional = twoD

 l = Length

 input_POSCAR = desired_directory+'POSCAR'

 output_KPOINTS = desired_directory+'KPOINTS'

 POSCAR = open(input_POSCAR, 'r')

 lines = POSCAR.readlines()

 scale =
Decimal.from_float(float(lines[1].split()[0]))

 #Define original lattice vectors

 a1 = lines[2].split()

 a2 = lines[3].split()

 a3 = lines[4].split()

 a11 = scale*Decimal.from_float(float(a1[0]))

 a12 = scale*Decimal.from_float(float(a1[1]))

 a13 = scale*Decimal.from_float(float(a1[2]))

 a21 = scale*Decimal.from_float(float(a2[0]))

 a22 = scale*Decimal.from_float(float(a2[1]))

 a23 = scale*Decimal.from_float(float(a2[2]))

Approved for public release; distribution is unlimited.
81

 a31 = scale*Decimal.from_float(float(a3[0]))

 a32 = scale*Decimal.from_float(float(a3[1]))

 a33 = scale*Decimal.from_float(float(a3[2]))

 #Calculate the determinant

 det = a11*(a22*a33-a23*a32)-a12*(a21*a33-
a23*a31)+a13*(a21*a32-a22*a31)

 #Calculate reciprocal vectors

 b11 = (a22*a33-a23*a32)/det

 b12 = (a21*a33-a23*a31)/det

 b13 = (a21*a32-a22*a31)/det

 b21 = (a12*a33-a13*a32)/det

 b22 = (a11*a33-a13*a31)/det

 b23 = (a11*a32-a12*a31)/det

 b31 = (a12*a23-a13*a22)/det

 b32 = (a11*a23-a13*a21)/det

 b33 = (a11*a22-a12*a21)/det

 with open(output_KPOINTS, 'w') as file:

 kpoints_x = ''

 kpoints_y = ''

Approved for public release; distribution is unlimited.
82

 kpoints_z = ''

 file.write('Automatic mesh\n')

 file.write('0\n')

 kpoints_x =
round(float(l*Decimal.sqrt(b11*b11+b12*b12+b13*b13)))

 kpoints_y =
round(float(l*Decimal.sqrt(b21*b21+b22*b22+b23*b23)))

 kpoints_z =
round(float(l*Decimal.sqrt(b31*b31+b32*b32+b33*b33)))

 if TwoDimensional == True:

 kpoints_z =1

 file.write(MeshType + '\n')

 file.write(str(int(kpoints_x)) + " " +
str(int(kpoints_y)) + " " + str(int(kpoints_z)))

 print kpoints_x, kpoints_y, kpoints_z

if __name__ == '__main__':

 makeKPOINTS(True, 'Gamma',50,'')

Approved for public release; distribution is unlimited.
83

List of Symbols, Abbreviations, and Acronyms

API application program interface

ARL US Army Research Laboratory

DFT density functional theory

DOD Department of Defense

GA genetic algorithm

GASP genetic algorithm for structure prediction

HPCMP High Performance Computing Modernization Program

pymatgen python materials genomics

VASP Vienna ab initio Simulation Package

Approved for public release; distribution is unlimited.
84

 1 DEFENSE TECHNICAL
 (PDF) INFORMATION CTR
 DTIC OCA

 2 DIR ARL
 (PDF) IMAL HRA
 RECORDS MGMT
 RDRL DCL
 TECH LIB

 1 GOVT PRINTG OFC
 (PDF) A MALHOTRA

 1 UNIV OF FLORIDA
 (PDF) J PAUL

 2 UNIV OF ILLINOIS URBANA-CHAMPAIGN
 (PDF) S CHAUDHURI
 P PRIYA

 4 ARL
 (PDF) RDRL WMM B
 M TSCHOPP
 E HERNANDEZ
 RDRL WMM F
 K LIMMER
 S COLEMAN

	List of Figures
	Acknowledgments
	1. Introduction
	2. Methods of Surface Investigation
	2.1 Bulk Phase Identification
	2.2 Slab Generation
	2.3 Slab Convergence
	2.4 Adsorption and Binding Energy

	3. Results and Discussion
	3.1 Generating Slabs
	3.1.1 Slab Convergence Testing
	3.1.2 High-Throughput Slab Generation from Genetic Algorithms
	3.1.3 High-Throughput Slab Generation from the Materials Project Database

	3.2 Performing Clean Slab Calculations
	3.2.1 Selective Dynamics
	3.2.2 Surface Energy Analysis

	3.3 Molecule Adsorption on Surfaces
	3.3.1 Defining Possible Adsorption Sites
	3.3.2 Placing Adsorbates: Atop Sites
	3.3.3 Placing Adsorbates: Bridge Sites
	3.3.4 Placing Adsorbates: Interstitial Sites
	3.3.5 Generating Adsorption Site List

	3.4 Adsorption Analysis

	4. Conclusions
	5. References
	Appendix A. Software Installation in a Virtual Environment
	Appendix B. Genetic Algorithm for Structure Prediction (GASP) Input Files
	Appendix C. Vienna ab initio Simulation Package (VASP) Files
	Appendix D. Adsorbates.py Software Variable Details
	Appendix E. Python Script for Complete adsorbates.py Source3F(
	Appendix F. MPInterface Modification4F(
	Appendix G. Python Script for reciprocal.py to Generate KPOINT Files5F(
	List of Symbols, Abbreviations, and Acronyms

