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1. Introduction
In multi-physics codes simulating large material flows, representations of the un-
derlying material structure must transport through the computational grid. Material
enters and leaves computations cells. Quantities like energy, density, and material
state are determined by a weighted average of the state entering a cell and what
remains after material exits. Errors are introduced by advecting structure variables
through the grid, and algorithms minimizing these errors improve the quality of the
solution. For solid mechanics, one of the more challenging quantities to advect is the
deformation gradient tensor because nonlinear combinations of the 9 components
correspond to physical quantities. For example, the determinant of the deformation
gradient describes the volume change. There is little chance that a linear combina-
tion of the 9 individual components of 2 deformation gradients will yield the same
determinant as taking the linear combination of the determinants.

One strategy to reduce advection error is to decompose the deformation gradient,
F, into smaller, physically meaningful pieces and to advect those. The multi-step
decomposition being investigated at the US Army Research Laboratory (ARL) be-
gins with an F = RU decomposition of the deformation gradient, where R is an
orthogonal rotation matrix and U is the symmetric right stretch tensor. The focus
of this technical brief is on advection of the rotation.

Rotation of an object or a microstructure can be represented in many forms, such as
Euler angles,1 angle-axis pairs, Rodrigues vectors,2 quaternions and rotation matri-
ces.3,4 While 3 parameters are sufficient to define a rotation, as in Euler angles, more
parameters are often used for convenience or other reasons. Consider, for example,
an angle-axis pair, which is defined in terms of a rotation ω about the unimodular
axis c. While there appear to be 4 parameters, the axis is a unit vector, so there is an
additional constraint, leaving only 3 independent parameters. Likewise, a quater-
nion representation has 4 parameters and a constraint equation. A rotation matrix
has 9 parameters, with 6 constraints from the orthogonality requirement. Advect-
ing large numbers of redundant parameters is not ideal since they must be adjusted
consistently after advection to satisfy the constraint equations.

From the perspective of having no redundant parameters, Euler angles and Ro-
drigues vectors both appear suitable. However, Euler angles are not periodic with
continued rotation. A body is in an identical orientation after a 360◦ rotation about
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an axis, but the Euler angles do not naturally return to the same values. A step
change in angles is necessary to keep the angles within a fundamental range. The
lack of periodicity is not an issue for many applications, but advection requires a
continuous parameterization, so Euler angles are not suitable for current consid-
erations. Rodrigues vectors, on the other hand, use periodic functions. However,
the components are unbounded as the cosine function in the denominator passes
through zero. A singularity cannot be accommodated so Rodrigues vectors are also
not suitable in the current context.

Angle-axis pairs and quaternions both have one redundant parameter. Similar to
Euler angles, the angle-axis pairs suffer from inability to represent periodicity in
rotations. The angle continuously increases with rotation. Quaternions are built
on periodic functions and are bounded. In addition, errors introduced by noise in
quaternions are less severe than for other methods,5 such as Euler angles, so there
is additional incentive for their use. Methods based on quaternions will be explored
in further detail in this report.

2. Quaternion Representation of a Rotation Matrix
The rotation of a body can be represented in terms of a rotation, ω, about a uni-
modular axis, c. Quaternions are related to angle-axis pairs, but they employ cyclic
functions that are able to capture periodicity. In terms of the rotation angle, ω, and
axis, c, the 4 components of the quaternion are defined in a rectangular Cartesian
coordinate system as

λ = c1 sin(ω/2)

µ = c2 sin(ω/2)

ν = c3 sin(ω/2)

ρ = cos(ω/2)

, (1)

subject to the constraint

λ2 + µ2 + ν2 + ρ2 = 1 . (2)

2



Approved for public release; distribution is unlimited.

Quaternions can be used to construct the rotation matrix, R, uniquely by

Rij =

 λ2 − µ2 − ν2 + ρ2 2(λµ− νρ) 2(νλ+ µρ)

2(λµ+ νρ) µ2 − ν2 − λ2 + ρ2 2(µν − λρ)
2(νλ− µρ) 2(µν + λρ) ν2 − λ2 − µ2 + ρ2

 . (3)

When determining quaternions from a rotation matrix, there is a nonuniqueness as
2 sets of quaternions can be determined for any general rotation matrix. Inspection
of Eq. 3 reveals that a sign indeterminacy stems from the quaternions only appear-
ing as products. Changing the sign on all of the quaterions gives the same rotation.
Redundancy is also expected because of the half angle in Eq. 1; it takes 2 full rota-
tions to run the range of the periodic functions. A common means of dealing with
this problem is to ensure that one of the quaterion components is always positive.
While this guarantees a unique solution acceptable for many applications, it forces
a discontinuous sign change in other components. The discontinuity could create
issues if quaternions are used to advect a rotation.

Figure 1 shows examples of quaternion components for 400◦ rotations of 2 different
initial rotation matrices. The cosine component, ρ, was forced to be positive. As ρ
hits zero, where there would have been a sign change, other quaternion components
flip sign creating large discontinuities.

Fig. 1 Evolution of quaternion components for 2 different initial rotation matrices

Had another of the quaternion components been chosen to be always positive, the
discontinuity would have occurred in another place.

3
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3. Continuity from Evolution
Continuity conditions can be applied to evolve the quaternions if the rotations are
associated with the deformation gradient. The deformation gradient begins as the
identity and evolves continuously over time. Generally, the deformation gradient at
the beginning of the time step will be available when the deformation gradient at
the end of the step is calculated. This allows selection of the sign on the quaternion
to keep the values continuous. Within a finite element code, as long as the deforma-
tion gradients in neighboring elements continue to evolve smoothly, discontinuities
should never exist between adjacent elements. Barton6 has used the sign of the inner
product of the beginning-of-step and end-of-step quaternions to trigger a sign flip.

ρ0ρ+ λ0λ+ µ0µ+ ν0ν < 0 . (4)

If the inner product is negative, the sign of all of the quaternion components is
changed. The rotations shown in Fig. 1 are recalculated using sign continuity, and
the results are shown in Fig. 2. The quaternions are now continuous throughout the
range.

Fig. 2 Evolution of quaternion components for 2 different initial rotation matrices using con-
tinuity from previous value

This continuity criterion is particularly well suited for the deformation gradient,
where, initially, ρ = 1 and λ = µ = ν = 0. The sum in Eq. 4 is dominated by ρ
in the vicinity of the initial orientation, and no sign change will be indicated. The
remaining values transition smoothly from positive to negative. Other quaternion
components dominate Eq. 4 at large rotations to maintain continuous values.

4
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While the method ensures continuity, not all symmetries are captured. Consider 2
material points with common material directors. After rotating each 180◦ in op-
posite directions, they will again have a common orientation. However, the sine
portion of the quaternions in Eq. 1 will have opposite algebraic signs and will not
show the proper orientation relationship. The half angles create a parameter space
that is twice the size needed, and the functions do not cycle back on themselves at
the correct rate.

The criterion also does not resolve ambiguities in other initial rotations. Say the
initial rotation is 180◦ about the z-axis. The first 2 diagonal elements of the rotation
matrix are -1 and the off-diagonals are zero. Perturbations on one side of this have
the product ρν being positive and the product is negative for perturbations on the
other side. The signs of ρ and ν individually are not determined without introduc-
tion of additional rules. If ρ is assumed positive, as in the case of the initial rotation
being the identity, the ν will be discontinuous between positive and negative rotat-
ing points. Alternative rules would have to be applied in such situations.

It is not anticipated that the deficiencies noted above will be an issue for the defor-
mation gradient, but such situations may arise for the lattice orientations in crystal
plasticity simulations. Alternative methods may be useful for the more general case.

4. Proposal for a Unique Representation
The solution proposed here is to retain the quaternion products from the rotation
matrix so that unique determination of the algebraic sign is not necessary. Hence,
the products λρ, µρ, νρ, and ρ2 are advected. There is an obvious issue when ρ = 0

and all of the component products to be advected are zero. The proposed solution
includes a lower limit on ρ such that ρ2 ≥ ε2 for some small ε. With this condition,
the quantities advected are λρ̃, µρ̃, νρ̃, and ρρ̃, where

ρ̃ =

ρ if ρ2 ≥ ε2

ε otherwise
. (5)

Given a rotation matrix, the procedure is to first determine

ρ2 =
1

4
(R11 +R22 +R33 + 1) , (6)

5
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and compare the value with ε2. If ρ2 ≥ ε2, then

λρ̃ =
1

4
(R32 −R23)

µρ̃ =
1

4
(R13 −R31)

νρ̃ =
1

4
(R21 −R12)

ρρ̃ = ρ2

. (7)

If ρ2 < ε2 the rotation matrix diagonal is used to compute components as:

λρ̃ =
1

2
ε sign (R32 −R23)

√
+R11 −R22 −R33 + 1

µρ̃ =
1

2
ε sign (R13 −R31)

√
−R11 +R22 −R33 + 1

νρ̃ =
1

2
ε sign (R21 −R12)

√
−R11 −R22 +R33 + 1

ρρ̃ = ε
√
ρ2

. (8)

This latter case only applies when rotation angles are near 180◦, where λ2 + µ2 +

ν2 ' 1 and the magnitude of the advected quantities is set by the parameter ε.

Following advection, limits should be imposed on the advected values and the con-
straint equation must be applied to ensure valid values and a pure rotation. Since
each of the quaternion factors is bounded between -1.0 and 1.0, the advected quater-
nion products (λρ̃, µρ̃, νρ̃, and ρρ̃) are also bounded between -1.0 and 1.0. Appli-
cation of the constraint from Eq. 2 determines the scaling factor, ρ̃∗2, through

ρ̃∗2 = (λρ̃)2 + (µρ̃)2 + (νρ̃)2 + (ρρ̃)2 . (9)

Dividing through Eq. 9 by ρ̃∗2, it can be seen that the ratio ρ̃2/ρ̃∗2 multiplies each
of the quaternion values to satisfy the constraint. If there are no advection errors the
ratio is 1.0. The quaternion products needed to reconstruct the rotation matrix can
then be obtained without loss of sign information from the advected quantities and
the scaling factor, ρ̃∗2, using

λ2 =
(λρ̃)2

ρ̃∗2
, λµ =

λρ̃ µρ̃

ρ̃∗2
, and ρ2 =

(ρρ̃)2

ρ̃∗2
. (10)
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Similar expressions are applied to determine the remaining terms. These quantities
can be used directly in Eq. 3 to calculate the rotation matrix. The value of ρ̃∗2 will be
nonzero unless advection error results in all 4 advected quaternion products being
zero. The limiting value, ε, was introduced to prevent a zero solution, but it should
be guarded against in the algorithm nonetheless. This can be ensured by enforcing
ρ̃∗2 ≥ ε2 when evaluating Eq. 9 by scaling each of the terms on the right hand side.
It is critical that the values used in Eq. 10 satisfy Eq. 9.

Using the representation in Eq. 7 and Eq. 8, the 4 advected components are plotted
in Fig. 3 for the same rotations as in Fig. 1. It can be seen that the functions are
smooth and continuous. One of the points in each figure has ρρ̃ = 0 identically, and
the other quantities are nonzero because of the ε offset.

Fig. 3 Evolution of quaternion products for 2 different initial rotation matrices

It is interesting that the quaternion products proposed create a representation in
terms of the full rotation angle from an angle-axis pair rather than the half angle
shown in Eq. 1. The products are:

λρ = c1 sin(ω/2) cos(ω/2) =
1

2
c1 sin(ω)

µρ = c2 sin(ω/2) cos(ω/2) =
1

2
c2 sin(ω)

νρ = c3 sin(ω/2) cos(ω/2) =
1

2
c3 sin(ω)

ρρ = cos2(ω/2) =
1

2
[1 + cos(ω)]

. (11)

7
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Here the angular range for periodicity corresponds to the physical rotation. The
angular range for periodicity for quaternions, on the other hand, is twice that of
the physical rotation. Keeping the correct angular range eliminates the antipodal
problem. However, the representation in Eq. 11 does not have a simple form for the
constraint equation, as Eq. 9 involves both ρ2 and ρ4.

The troublesome special cases described with the continuity approach in Section 3
do not create the same issues with the proposed representation. Since the full ro-
tation angle is used in Eq. 11 rather than the half angle, 2 material points rotated
180◦ in opposite directions will have the same representation. In addition, initial
orientations of 180◦ are zero, so there will not be discontinuous behavior at these
points.

The potential issue with the proposed representation is the method to avoid the
singularity when ρ is zero. This will require further exploration and use to uncover
any difficulties.

5. Summary and Conclusions
Two methods are explored for dealing with the antipodal ambiguity in represent-
ing rotations by quaternions. Enforcing continuity between beginning and end step
values should work well for rotations associated with the deformation gradient. An
alternative method based on the sine of the full rotation angle is proposed for situa-
tions where continuity cannot be enforced or for more arbitrary initial orientations.
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