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Abstract 

An analysis of the three-dimensional (3-D) finite element formulation of Maxwell's equations 
governing classical electromagnetic propagation in dielectrics is given including its analogy to 
Navier's equation. The weak form of the electric field equation is reviewed along with dispersion 
analysis and approximation equations. Radiation boundary conditions are also explored to include 
paraxial absorkr, Sandler absorber, and other absorkr comparisons. In addition, time domains 
vs. frequency domains are investigated with a listing of possible advantages and disadvantages. 
It was concluded that if large-scale calculations need to be done today, the-domain techniques 
provide the most practicable means; however, it is still premature to promote such solvers as 
production level tools for engineers. 
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1. Introduction 

The purpose of this work is to understand how the finite element method or any other numerical 

approximation may be effectively utilized m describing the starter switch wave propagation 

phenomena inherent in typical gas turbines, which are responsible for engine startup failures and 

unnecessary maintenance downtimes. We will start out by deriving and analyzing three-dimensional 

(3-D) transient finite element formulations of Maxwell's equations governing classical 

electromagnetic propagation in dielectrics. The derivation will provide a comprehensive analytical 

description of the b i t e  element equations, while the analysis will quantify accuracy of time-harmonic 

plane wave propagation as a function of wave direction and discretization. The derivation will be 

limited to the so-called Cartesian elements (hexahedrons) for reasons of modeling simplicity and 

computational efficiency. Skewed elements, although an important attribute of the finite element 

method, will not be discussed for the sake of brevity. 

A tacit assumption in this formulation is that electromagnetic waves are supported throughout 

an infinite 3-D space. In other words, there is no outer boundary limiting the field. Clearly, however, 

solving infinite-domain field problems is not practicaL Therefore, 3-D space must be divided into a 

finite interior or computational domain and an infinite exterior domain. By hypothesis, the interior 

includes all physical features of interest while the exterior is effectively "featureless" so that it 

propagates energy outward with negligible backscatter. This artifice allows replacement of the 

exterior domain with a so-called radiation boundary condition on the outer surface of the interior 

domain and defines the boundary value part of tbe problem. 

The finite element formulation of initial-boundary value problems governed by time-dependent 

partial differential equations (PDEsbMaxwell's equations in particular--consists of the following 

formal steps: 

1. Partition the problem's interior domain into a number of logically regular, contiguous 

subdomains. 



2. Represent the field over each subdomain by a simplified basis function that interpolates 

between discrete field points or nodes. 

3. Convert the pointwise partial differential operator to an equivalent but "weaker" scalar integral 

operator admitting bwer order derivatives. 

4. Evaluate the integral operator for the simplified field basis, giving an algebraic system of 

equations on the nodal field vector and its time derivatives. 

. 5. Apply a radiation condition on the interior domain's boundary in order to simulate scattering 

into the infinite exterior domain. 

6. Solve the system of ordinary differential equations (ODES) in time using finite differences, 

modal analysis, etc. 

The finite element part, steps 1-4, yields an approximate integration of the PDE9s spatial 

differential operator. In other words, the so-called fmite element discretization is nothing more than 

a quadrature formula. The remaining one-dimensional (1-D) temporal problem, step 6, is typically 

integrated in a more conventional fashion. 

F o d  reduction of the pointwise partial differential equation to a finite element form may be 

accomplished in at bast two ways-the method of weighted residuals (Galerb's method) and a 

variational principle. They are fundamentally equivalent for self-adjoint (symmetric) differential 

operators, provided that consistent assumptions are made, although the method of weighted residuals 

is more general, The approach chosen usually depends on the analyst's perspective or background, 

e-g., mathematid, engineering, etc., rather than any compelling analytical reason. Given here is a 

somewhat simplified derivation that is comprehensive yet minimizes nomenclature and historical 

biases. For further reading, a succinct description of the formalism in the context of linear differential 

operators may be found m Zienkiewicz (1 977). 



The most dif5cult part of the finite element formulation of propagation-type problems is deriving 

an effective radiation or absorbing boundary condition. This is an approximate condition on the 

exterior bundary of the finite element model that discriminates between incident (iUumination) and 

scattered radiation and selectively absorbs the scattered part, mimicking radiation into an infinite, 

nonreflecting exterior domain. Bn efkctive condition that is sufficient for simultaneous plane wave 

illumination and scattering will be attempted in the succeeding parts of this treatise. 

Maxwell's Equations 

Maxwell's equations provide the mathematical basis for rigorous analysis of classical 

electromagnetic wave propagation. In particular, they provide a complete description of macroscopic 

optical phenomena in dielectric media. There are lower limits on size and intensity where quantum 

behavior becomes significant, but for nearly all scales of practical interest, Maxwell's equations are 

both necessary and sufficient. h attempt at the various forms of the equations along with ancdhy 

relations that are useful for numerical algorithm development wiIl be made in the most terse and 

sufficient manner. 

Maxwell originally proposed an arcane system of 20 equations in 20 unknowns. The system 

was subsequently simplified by Heaviside and Hertz to its modern form, namely 

where B is magnetic induction, E is electric field intensity, D is electric displacement, J is current 

density, and H is magnetic field intensity. Continuity of E and H is required in order to defme the 

spatid derivatives. Note that in (1) bold letters represent vectors, Vx is the curl operator, and time 

derivatives are denoted by a dot above the variable. 



A useful alternative to Maxwell's pointwise PDEs are volumetric forms obtained by integrating 

(1) over space. Applying the so-called curl theorem--anabgous to the divergence theorem of 

Gauss-to the resulting integrals of V x E and V x H yields the vector integral equations 

where Q is the d o e  of integration, Z, is its boundary, and n is the outward unit n o d  vector to 

2. This form removes the restriction on iieH continuity since spatial derivatives no longer appear. 

More conventional scalar integral equations m y  be written by applying Stokes9 theorem to 

Maxwell's equations, yielding the famous laws of Ampere and Faraday. 

To mdce Maxwell's equations determinate for B, E, D, J, and H ,  so-called constitutive relations 

must be defined. In nearly all cases, the bea r  relations 

suffice. Proportionality factors, p, r, and 0, are magnetic permeability, dielectric permittivity, and 

conductivity, respectively. Provided the medium is isotkopic, these factors are scalars, otherwise they 

are tensors. Substituting (3) into (1) gives the determinate form of Maxwell's PDEs, 

relating the time rate of change of the magnetic field to the curl (vorticity or "swirl") of the electric 

field and vice versa. These assume tRat E and p vary with time slowly, if at d, in comparison to the 

fields themselves. For nonmagnetic materials, permeability p is essentially equal to its vacuum 

value, p,,, everywhere. 

Smce E is the primary field unknown for analyses in dielectric media, H may be eliminated 

between the two curl equations in (4) and treated as a secondary or derived quantity. Taking the time 



derivative of the second equation m (4), the curl of the &st, and eliminating the term with M gives 

the second order partial differential equation, 

where the constant magnetic permeability is brought outside the curl operator. Such a simple 

equation cannot be written for H k a u s e  r, unlike p, is a function of position and its gradient must 

be included. Using the vector identity, V x V x E = V @ - E )  - E, equation (5) may also be 

written 

Note the similarity between this equation and Navier's equation 

describing displacement U in a linear elastic medium 

It should be noted for completeness that the vector fields in (1) are ultimately caused by some 

distriition of electric charge, p, and current, J ,  generally related by the continuity equation, 

expressing pointwise conservation of charge. Taking the divergence of (11, substituting (8), and 

integrating over time, assuming a quiescent initial or final state, gives the divergence conditions, 

These are often appended to Maxwell's equations but are dependent conditions, either m part 

(V . B = Q), or wholly if charge is conserved (V D = p). Obseme that by solving V . D = V el3 = p 



for V E = PIE - V E / E  . E and replacing V . E in (6) ,  a second order equation results that implicitly 

incorporates charge conservation. 

3. A Weak Form of the Electric Field Equation 

To apply the conventional finite element formalism to Maxwell's equations, it is convenient to 

start with the second order PDE on the electric field, (5)' rather than the original system of fist order 

equations, (4). Strict solutions of this equation must possess at least second derivatives; however, 

it is impractical to require such continuity from numerical approximations. A better approach is to 

rewrite the equation in an integral form admitting lower order derivatives. This is the so-called weak 

formulation. 

To derive the weak form of (5) it is necessary to define another field over the wave domain, the 

so-called test function, G(x,t). This is a completely arbitrary function within wave domain 0. Taking 

the inner (dot) product of (5) with G and integrating over f2 gives 

Multiplication by a test function and integrationreduces the pointwisevector equation to a volumetric 

scalar equation-the weak form. It is easy to prove the assertion that if this integral equation is 

satisfied for any G, then the PDE is necessarily satisfied at all points in the domain. The converse is 

certainly true; but if the PDE is not satisfied in some subdomain, then a test function can be chosen 

that makes the integral nonzero, hence the assertion is true. 

Consider the right-hand integrand in (lo), i.e., G . V x (V x 23) after factoring. From the vector 

identity, V (A x B) = B @ x A) - A @ x B), thk integrand can be written 



Integrating and applying the divergence theorem to the second term gives 

In the surface integral n is the outward unit n o d  to Z and the integrand has been rearranged 

according to the rule for scalar triple products. 'Ibis identity is the vector analog of Green's identity, 

e-g., see Stratton (1941), and is simply the result of multichnensiond integration by parts. 

Substituting (3) into (3. I), the volume-averaged scalar equation becomes 

The critical result expressed in (1 3) is that the volume integral of the second order spatial operator 

has been replaced by "weaker" volume and surface integrals of first order operators. 

4. Reduction to an Ordinary Differential Equation 

The basis for transforming the volumetric partial differential equation to an ordinary differential 

equation is an assumption on the mathematical form of wave fields in domain n. In particular, 

fields are assumed to be separable in space and t h e ,  namely, 

where x is the position vector, matrix S(x) represents the field's spatial variation, and vectorflt) or 

g(t) represents the time variation. Note t b t  the same spatial variation is assumed for E and G in (14). 

This assumption, associated with the name of Gderkh in the fmite element literature, is particularly 

convenient because it yields a symmetric system of equations. 

Separable representation (1 4) may be interpreted m a number of ways. For example, S(x) can be 

eigenvectors (mode shapes), whenceflt) are the corresponding eigenvalues (frequencies) for the 



given domain, or S(x) can be a multidimensionalFourier series, for whichf(t) are the the-dependent 

Fourier coefficients. Alternatively, it is easy to show that (14) is the functional form of a 

multidimensional Taylor series. Jn that case, f(t) is an jrafinite vector of all derivatives at point x and 

S(x) is a corresponding infinite matrix consisting of the coefficients of these derivatives in the series, 

i.e., powers of the local space coordinates. Note that each of these interpretations can provide a local 

or global basis for analysis. 

Substituting separable solutions (14) into the integrands jn (13) and applying the vector 

differential operator to those on the right side gives 

Therefore, substituting into (13), moving the vector functions of time outside the integrals, and 

rearranging yields 

where 

are symmetric coefficient matrices defined by the volume integrals and 

B = L / ~ ~ r z x V x ~ &  (1 8) 
b 

is the matrix defined by the surface integral. Since g(t) is arbitrary, (16) is satisfied when 



This is the global ordinary differential equation equivalent to Maxwell's PDEs in Q, Of course, the 

utility of (19) depends on the choice of separable field representation, i.e., S(x) andflt). 

5. The Finite Element Equations 

Given the previous mathematical preamble, the finite element procedure consists of partitioning 

or discretizing interior domain into a number of subdomains or finite elements. The field is 

approximated over each elenlent by an interpolating or shape function depending on values at discrete 

nodes on or irm the element. This yields a convenient bcal basis (in contrast to a global basis) for 

evaluating the model's matrix coefficients in (1 7) using an element-by-element summation. 

To provide some degree of field continuity across element boundaries, most of the discrete nodes 

are defined on the element surfaces and shared by adjacent elements. Provided that they cover the 

domain, the elements and shape functions may be completely arbitrary. However, it is advantageous 

in terms of modeling and computation to make elements as simple as possible. Thus, in three 

dimensions, simple hexahedron or hick shapes, i.e., so-called Cartesian elements, are favored with 

low-degree shape functions based on nodes at the comers, and on tbe faces and edges as the degree 

of interpolant is increased. The tri-linear shape function (linear in each direction) with corner nodes 

is the lowest degree that provides field continuity in 3-D; hence, this is the most "elemental" 

interpolant. A simple analog to this shape function is the common trapezoidd rule used in numerical 

integration of functions in one or more dimensions. 

With the domain covered by an assemblage of elements and nodes, individual elements, m - 1, 

M, and nodes, n = 1, N, are consecutively numbered in some convenient fashion. The global 

unknown vector,f(t) in (14), is written asfTt) = [f,, f,, fJT, where vectors f, k = 1,2,3 are the three 

components of the electric field at the N ordered nodes of the assemblage. 



We consider a single, eight-node, Cartesian f i t e  element or hick with element numbering and 

coordinates system. This is the generic element composing any assemblage, with element node 

numbers related to global node numbers by a simple map. The shape function matrix and node vector 

for element m are written as 

Srn(x) = 

where sm(x) and 0 are row 8-vectors and f,m(t) are co1um 8-vectors for the three field components. 

The same spatial basis, ie., sm (x), is assumed for each field component. Note that the curl term in 

(13) becomes 

The canonical tri-hear shape function assumed here is the row vector 

(1-2x1 Ax)(B-2y/By)(B-2~/ Az) 

(l+2x/Ax)(f-2y/Ay)(l-2z/Az) 

(l+2xl Ax)(l+2y/ Ay)(l-221 Az) 

(1 +a/ Bx)(l-2yl Ay)(l+2z/ Az) 

(1 +2x l &)(I +2y l Ay)(l+22 / Az) 
j1-2~1 &)(I +2y 1 Ay)(1+2z/ Az) 

1 s m = ,  
8 

(1-2x/Bx)(B+2y/ Ay)(l-2z/ Az) 

(1-2x/Bx)(1-2ylBy)(1+2zlAz) 



Each component (1 to 8) of this vector is unity at the corresponding node (1 to 8) and decreases 

linearly to zero at all other nodes. 

Given definite forms of the element shape function and nodal vector f, the elemental matsix 

coefficients can be computed. These are found by substituting the above into integral definitions (17) 

and evaluating. For most rnodeljng purposes, r and cr may be assumed constant over an element;' 

hence, they are typically factored out of the integration. There is no need to evaluate surface integral 

tern Bm since it is irrelevant at the element level, although, as a point of interest, it is numerically 

equal to -KT" by virtue of (1 1) and (1 3). 

The algebra and integration of the 24 x 24 matrices are somewhat tedious and best done 

symbolically using a program like Macsyma or Mathernatica. All of the evaluations described in 

the following sections were done in Mathematica (WoEam 1988) because of its general utility and 

availability on personal computers. 

Rather than listing the 24 x 24 coefficient matrices, suffice it to say that they are fully populated, 

symmetric, and real, with W l a  = P o  when e and 0 are constant. With tlhe element coefficient 

matrices thus evaluated, the global system of fkite element equations is assembled by inflatmg the 

element matrices, i-e,, mapping the element row and column positions to the global row and column 

positions and summing the contribution from each element m the assemblage. 

Dispersion Analysis of the Finite Element Equations 

The numerical solution of PDEs is not as straightforward as the previous derivations would 

suggest. There are many variations on the basic numerical theme that need to be considered in the 

context of the physical application. An effective means of assessing pros and cons is dispersion 

analysis. It is particularly useful for quantifying wave-analytic properties of the numerical 

solutions. 



Since any finite element discretization introduces an artificial length scale (element size), wave 

propagation through the model is necessarily dispersive, i.e., phase velocity depends on frequency. 

Also, properties exhibit directional dependence by virtue of the element's shape, so phase velocity 

is also anisotropic. This- dispersive and anisotropic behavior is unavoidable in any discrete numerical 

solution. Fortunately, errors can be made negligible for practical purposes by ensuring that element 

size is small compared to the minimum wavelength in the propagating signal. 

A simplified model to quantify these errors consists of the 2 x 2 x 2 assemblage or molecule of 

Cartesian elements for the case of square elements. Since nodes are only coupled to their nearest 

neighbor, this simple molecule is sufficient to write the complete set of equations governing the 

electric field at the interior node. These equations provide the dqersion relations that completely 

describe wave-analytic properties of an infinite Cartesian grid. 

To assemble the molecule, a left-to-right, top-to-bottom, front-to-back numbering convention is 

used. The three layers or sheets of nodes and the two sheets of elements are so numbered, starting 

from the upper left corner. The node numbering sequence for a single element is mapped to the 

molecule node numbering for each element using a simple b o h p  table. Inflating the element 

equations via this mapping and assembling them by summation yields 8 1 x 8 1 M and K matrices in 

the finite element model, ~ f -  Kf = 0. Unhowm vectorfit) is composed of 27 x-kld, 27 y-field, 

and 27 z-field unhowns at the 27 nodes of the molecule. Equations for the center node may be given 

by rows 14,41, and 68. 

We assume that a time-harmonic, linearly polarized, plane wave propagates through the model 

in the direction of unit wave vector R = {sin 8 cos a, sin @ sin 4, cos @}=, specified by spherical 

angles, Q and 4. This is given by 

where A is the unit polarhation vector, x is the position vector, and v is the phase velocity. Given this 

prescription of the incident field vector, f(t) is found directly by evaluating (23) at the x coordinate 



of each of the 27 nodes. Instead of simply differentiating (23) to obtainj, it is evaluated from the 

central difference approximation 

~ ( t )  = (E(t + At) - 2E(t) + E(t - At)) 1 At 2 ,  (24) 

corresponding to the typical stepwise forward integration scheme with timestep A t  and error on the 

order of Af. 

The problem is to determine phase vebcity v compatible with the finite element equations and 

assumed form of the propagating field. This isaccomplished by evaluating solution vectors f and] 

at the nodes from (23) and (24), isolating the three field equations for the mterior node in Mf, ie., 

rows 14,41, and 68, and solving for v and A. It is convenient to rewrite the three equations as VA 

= 0 where V is a 3 x 3 matrix coefficient. This system of equations has a sohtion if and only if the 

determinant of Vvanishes, i.e., IV I = 0, yie- a nonlinear scalar equation on phase velocity v. This 

is the dispersion relation and its solution near c = 1 I f i  must k found numerically. Substituting 

v back into V gives the homogeneous system of equations governing polarization vector A. In 

particular, A is the space mapped by hear  transformation V into the null vector, i.e., A is equal to 

the null space of V. These solutions are described below. 

Near v = c the dispersion relation is found to be second order in general, i.e., it looks like a 

parabola locally. Therefore it exhibits two solutions near c. This multiplicity can be traced to the 

element shape function row vector, equation (22). Evaluating the products yields terms proportional 

to 1, x, y, 2, xy, xz, yz, xyz for each vector component, corresponding to the first eight terms in a 

Taylor series (recall, there are eight nodal values; hence, eight terms in the series are determinate). 

However, by a simple rotation of coordinates (X, Y. Z say), k e  last four terms may be converted to 

product terms m e  x2, y2, z2, and x3, y3, 2. Therefore, the shape function's form is not rotationally 

invariant, unlike the original differential equation. This "rotational variability" shows itself as two 

phase velocities in each direction. 



Numerical dispersion results for the case of a cubic Cartesian grid, showing vlc vs. spherical 

angles of incidence and maximum vlc vs. discretization. Discretization is measured by the number 

of elements supporting a wavelength. Shape of the normibed v surface is nearly independent of 

discretization. Note that maximum error occurs along the Cartesian axes and phase velocity is 

always greater than c. See Sandler (1991) for a more complete discusspn and explanation of the 

aforementioned results. 

Eigenanalysis of V shows that, in general, this 3 x 3 matrix is doubly degenerate, i.e., there is one 

nonzero eigenvalue and two "zero" eigenvalues that are clustered very near zero. Eigenvectors of 

these "zero" eigenvalues span the nullspace of V-a plane in this case. Vector A lies in this so-called 

polarization plane, which is perpendicular to the eigenvector of the nonzero eigenvalue of V, 

denoted q. Since Maxwell's equations represent transverse waves, ideally the polarization plane 

is perpendicular to wave vector k, i.e., g and k are colinear; however, grid anisotropy produces a 

"transversality" error, which can be measured by the angle between q and R 

Approximate Finite Element Equations 

Dispersion analysis of the exact finite element equations indicates four difficulties. The first is 

philosophical, namely, ahat ehe numerical phase velocity in a vacuum is greater than the continuum 

speed of light-which physical objects can never ex&. It would be preferable to Rave a 

conservative solution where numerical velocities are always less than continuum velocities. 

The second difliculty is that phase velocity errors are greatest in the local coordinate directions, 

i.e., n o d  to the element faces. In practice, it is natural to align numerical models with these 

coordinates and also to gather information on waves traveling dong or near them, e.g., for imaging. 

Therefore, it would be better if propagation errors were minimized rather than maximized in these 

directions. 



The third difficulty is existence of two waves in any direction. This is typical of anisotropic 

media, where the two waves are denoted ordinary and extraordinary waves. Since the phase 

velocities are close, the two waves are numericaUy indistinguishable in most cases. Nonetheless, from 

an analytical viewpoint, particularly with respect to boundary conditions, this is an unwelcome 

complication. 

The fourth dficulty is the number of floating point operations necessary to evaluate and solve 

the exact finite element equations. Acording to Sandler (1991), there is at least a factor of 5 more 

than necessary for a conventional finite Werence approximation of Maxwell's equations. This 

profligacy is a deterrent to finite elements despite their marked advantage for modeling geometrically 

complicated features. 

These difficulties are known to numerical wave propagation d y s t s ,  particularly in the elasticity 

community. One approach that claims to remedy all of them is approximation of the coefficient 

matrices by parameter lumping md reduced integration. Parameter lumping diagonalize the M and 

C matrices by placing the sum of each row in the diagonal position and zeroing the off-diagonal 

terms. Reduced integration applies to evaluation of the K matrix, using an approximate quadrature 

rule, e.g., the simple rectangular rule, or more generally, single-point Gaussian quadrature. 

Dispersion analysis of the lumped parameter, reduced integration finite element equations is done 

in the same way as for the exact equations. The dispersion relation is still locally parabolic but just 

reaches zero at its maximum (or minimum depending on the sign chosen) so there is only one phase 

velocity. Velocity dependence on angle of incidence is qualitatively similar, but numerical phase 

velocities are always less than exact phase velocities. Miximum error occurs near the space diagonal 

(8 = 45 ", 4 = 45 "), and numerous authors show that absolute phase velocity error is only slightly 

greater than that exhibited by the exact equations. 

Clearly, the approximate finite element equations solve the first three problems mentioned at the 

beginning of this section. A count of arithmetic operations shows that they also require less than 

half the operations needed to evaluate the exact equations. The physical basis for these 



approximations can be found in the differential and integral forms of Maxwell's equations, (2). In 

particular, the lumped parameter and reduced integration finite element equations can be shown to 

follow from the first of (1) and the second of (2) written as 

for the case of zero conductivity. 

8. Radiation Boundary Conditions 

Discrete numerical methods like finite elements or finite differences are necessarily formulated on 

finite spatial grids-whether the actual domain being modeled is finite or infmite. This domain 

truncation introduces artificial boundaries that must be treated with special care in order to minimize 

nonphysical wave reflections. These trap energy tRat would otherwise be radiated and establish 

undesirable resonances within the grid. Note tRat this is true regardless of the solution scheme 

applied, in either the time- or frequency-domain. The solution to the problem is to apply so-called 

radiation or absorbing boundary conditions on the model's exterior surfaces. 

h optics-type problem, there is an added complication because some form of illumination is 

usually prescribed over the model. ahis is accommodated by an iuumination boundary condition, 

designed to apply the known incident electromagnetic field on the model boundaries and transmit or 

absorb the scattered field as if the model extended out to infinity, Determination of an incident 

electric field consistent with the numerical propagation characteristics of the grid is a nontrivial 

calculation, especially in the presence of arbitrary angles of incidence and model topography. These 

numerical problems are addressed elsewhere in this report. Here, it is assumed that the incident field 

is known, and approximate radiation conditions for the scattered fields are described. 

In formulatmg radiation boundary conditions, there is a tradeoff between accuracy and 

complexity. Generally, the more boundary nodes that are coupled by the boundary formulation, the 



more accurate and computationally intensive the condition will be for a given model size. 

Increasingly accurate radiation conditions can, in principle, allow smaller and smaller models around 

the scattering features of interest. Development dong these lines may well be warranted, but for this 

report, attention is restricted to absorbing conditions that are local in space and time for compatibility 

with the explicit time integration approach. In this way, no more than a small hction of the 

computational effort is expended on the evaluation of boundary conditions. 

Here, the basis for radiation conditions is the paraxial wave equation, i.e., an equation valid for 

propagation in (and around) a selected direction. The prototypical example is the 1 -D wave operator, 

which can be factored as 

where the factors 

represent the right and left traveling waves. Thus, if the time and space derivatives are related 

according to this operator, at the ends of a 1-D domain, then an "exact" radiation boundary condition 

results; it cannot be truly exact in practice kcause approximations are implicit in the numerical 

implementation. This is the well-known normal incidence condition, the so-called '%lack" boundary. 

It turns out to be quite reasonable for many applications, particularly for boundaries very far kom a 

compact body in a homogeneous material, e.g., for conventional radar-like scattering problems. 

In order to signdicantly enhance boundary condition performance, higher order paraxial 

approximations of the multidimensional Maxwell's equations must be derived and applied as 

discussed below. Also, a condition proposed by Sander (1991) is d e s c r i i .  The 4th order paraxial 

and Sandler conditions are demonstrated to k roughly equivalent in accuracy, although certain 

implementation issues appear to favor the latter. 



h their paper, "Absorbing Boundary Conditions for Acoustic and Ehstic Wave Equations," 

Clayton and Engquist (1977) developed an absorbing boundary condition for the two-dimensional 

(2-D) elastic wave equation using a p a r d  approximation method. This approach has been 

extended here to Maxwell's equations with zero conductivity. For the sake of brevity, only the 

resulting paraxial equations are stated, since the derivation is not immediately relevant. Engquist 

[1991] claims that extension to the case of finite conductivity should also be possible. 

The paraxial versions of Maxwell's equations are derived £rom the equivalent second order partial 

differential equation on E, from equation (5). In the following equations, it is assumed that the 

x-coordinate is normal to the absorbing suPface. In 2-D, the garaxial equation is, 

where c = llfip denotes the wavespeed, while in 3-D this bccomcs 

The purpose of the exercise is to derive a consistent boundary condition fiom these paraxial 

approximations of Maxwell's equations. This is accomplished by applying the standard Galerkin finite 

element formulation to equations (28-29), from which an implementation of the boundary conditions 

consistent with the interior domain may be derived. However, there does not appear to be a single, 

consistent way of doing this, particularly in the context of the reduced integration techniques used 

in finite element algorithms. 

For the 2-D case, no difficulties are encountered. Clearly, more work on the implementation of 

garaxial boundary conditions in finite element algorithms is required. It appears that a complete 

paraxial finite element formulation with a layer of paraxia9 elements around the model instead of 

merely paraxial boundaries will be a useful direction for development. 



Although effective, the 4th order p a r d  conditions are not naturally compatible with discrete 

algorithms, nor do they readily admit conductivity. The problem is that these methods are based on 

an analytical approximation of Maxwell's equations rather than on an approximation of the discrete 

finite element form of these equations. There is a subtle but real difference. Approaches that attack 

the discrete equations themselves have been studied recently, In particular, Sander (1 99 1) developed 

a mechanically based absorbing condition for nonlinear solid mechanics applications. This condition 

is superior to the paraxial approach described previously, because it eliminates wavespeed from the 

formulation (which in nonlinear calculations is problematic) and provides better directionality than 

the 2nd order paraxial or normal incidence condition. 

9. Time Domain vs. Frequency Domain 

Time-domain methods currently provide the quickest, least computer memory intensive, most 

robust path to a solution. Advances m numerical methods may someday change this answer. There 

do exist reasons for using frequency-domain simulations if they become competitive in CPU and 

memory cost. 

The primary advantage of the time-domain solver is that it embodies an efficient explicit algorithm 

that requires minimal memory, thus permitting solutions of the largest finite element model possible 

on any given machine. It is also robust and deterministic in the sense that if run long enough, 

steady-state will be achieved and a solution will be found. Additional advantages of the time-domain 

approach are that it is directly extensible to nonlinear problems where material properties change with 

time, e.g., the bleaching process in photolithography, wave arrivals may k separated in time 

providing ktter insight mto physical processes, and transient (pulsed) or other nonsmusoidal signals 

are easily accommodated. 

Disadvantages of time-domain solvers are that user intervention is required to assess when 

steady-state has been reached. One can envision problems where a long simulation may k necessary 



to achieve steady-state. Also, the steady-state quantities (amplitude and phase) are not primary in 

the time domain and must be obtained by a secondary calculation after steady-state has been achieved. 

Given that we are looking for a frequency-domain solution, the advantages of a straightforward 

frequency-domain formulation appear obvious. The difficulty is that for realistically sized models this 

formulation requires the solution of an enormous, sparse, hear  system of equations. In addition, the 

linear system has undesirable numerical properties, namely, it is complex, non-Hermitian (due to 

absorbing boundary conditions andlor conductivity), nonsymmetric (due to absorbing boundary 

conditions), and is typically indefinite. 

There are two basic methods of solving linear systems: direct (some variation of Gaussian 

elimination) and iterative. Direct methods are typically divided into two phases: factorization of the 

coefficient matrix, followed by back-substitution to obtain the solution. The payoff here is that most 

of the work is performed in the factorization, so that solutions for additional *ht-hand sides, e.g., 

different illumination sources, can be obtained from a relatively cheap backsolve. The drawback of 

direct methods is that they require large amounts of memory and CPU time. For example, consider 

a 100 x 100 x 100 element 3-D model with three electric field components unknown at each node, 

in complex arithmetic. This is a modest model size. For this problem, a standard band solver such 

as ZBGFA out of LINPACK (Dongarra et al. 1979) requires 5.73 x 10" words of storage, which far 

exceed the capacity of any present day computer. The number of floating point operations to solve 

such a system is also prohibitive. It is worth noting here that this linear system is very sparse, i.e., 

only 2.5 x 10' or 0.04% of the entries are nonzero. Observe that even the nonzero entries exceed 

the largest available machines, but only by a small margin. Some work has been done on sparse 

system direct solvers that attempt to economize on storage relative to the basic band solvers. Thus, 

we could conservatively concur with the conventional wisdom which holds that 3-D problems cannot 

be solved directly. 

The alternative to direct solvers is iterative methods in which an initial guess for the solution(zero 

if nothing better is available) is successively r e h d  until the error becomes "small." Conventional 

wisdom says that the Krylov subspace-type methods are best, which includes the conjugate gradient 



approach. Frequently, some type of preconditioner is used m conjunction with these methods to 

accelerate convergence. For some classes of matrices, e.g., positive definite symmetric, these 

methods work extremely well The major portion of the CPU effort is in computing a product of the 

coefficient matrix with a vector and in computing inner products of two vectors. Thus, the 

insurmountable memory requirements of the direct methods can be avoided. Adtional vectors of 

length N (the total number of unknowns), which form the basis of the Krylov Subspace, are usually 

required. 

'Fhings to consider in choosing an iterative method are: 1) the total amount of work required by 

the method and the preconditioner to achieve an acceptable solution; 2) the total amount of memory 

required by the method and the preconditioner; 3) the possibility of brealcdowthe algorithm fails, 

or hangs-the convergence rate becomes so low that a solution is not attainable; and 4) determiniswa 

solution might be obtainable only by trial-and-error tweaking of the preconditioner or iterative solver 

parameters. 

summary 

Recently, Freund (1 99 1,1992) proposed a new Krylov-subspace method that he calls QMR (for 

quasi-minimal residual) and extended it to general nonsingular, non-Hermitian systems. He 

specifically targets the systems arising from frequency-domain h t e  numerical methods. He has 

also devised a strategy that circumvents one cause of breakdown, though incurable breakdowns are 

still possible in theory. 

For frequency-domain fmite element solvers, solution techniques for the resulting class of linear 

systems are still in the research phase. Significant advances have been achieved in recent years, and 

more advances are expected. Trying new solution algorithms is a worthwhile exercise, which 

provides feedback to the mathematicians and computer scientists, and is to everyone's advantage. 

On the other hand, it is premature to promote such solvers as production level tools for engineers. 

If large-scale cdculations need to be done today, timedomain techniques provide the most practical 

means of doing them 
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