
ARL-TR-8218•NOV 2017

US Army Research Laboratory

Survey of Existing Uncertainty
Quantification Capabilities for Army-Relevant
Problems
by James J Ramsey

Approved for public release; distribution is unlimited.

NOTICES

Disclaimers

The findings in this report are not to be construed as an official Department of the
Army position unless so designated by other authorized documents.

Citation of manufacturer’s or trade names does not constitute an official endorse-
ment or approval of the use thereof.

Destroy this report when it is no longer needed. Do not return it to the originator.

ARL-TR-8218•NOV 2017

US Army Research Laboratory

Survey of Existing Uncertainty
Quantification Capabilities for Army-Relevant
Problems
by James J Ramsey
Computational and Information Sciences Directorate, ARL

Approved for public release; distribution is unlimited.

REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 0704‐0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the
data needed, and completing and reviewing the collection information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing
the burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704‐0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202‐
4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a
currently valid OMB control number.

PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD‐MM‐YYYY)

2. REPORT TYPE

3. DATES COVERED (From ‐ To)

4. TITLE AND SUBTITLE

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

	
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

8. PERFORMING ORGANIZATION REPORT
NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR'S REPORT NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:
17. LIMITATION
 OF
 ABSTRACT

18. NUMBER
 OF
 PAGES

	

19a. NAME OF RESPONSIBLE PERSON

a. REPORT

b. ABSTRACT

c. THIS PAGE

19b. TELEPHONE NUMBER (Include area code)

 Standard Form 298 (Rev. 8/98)

 Prescribed by ANSI Std. Z39.18

November 2017 Technical Report

Survey of Existing Uncertainty Quantification Capabilities for Army-Relevant
Problems

James J Ramsey

ARL-TR-8218

Approved for public release; distribution is unlimited.

October 2016–September 2017

US Army Research Laboratory
ATTN: RDRL-CIH-C
Aberdeen Proving Ground, MD 21005–5066

This report surveys the current state of the art in uncertainty quantification. It provides a brief overview of uncertainty
quantification methods, a survey of currently available software implementations of these methods, and a discussion of how
these implementations may be integrated into a workflow on a high-performance computing cluster. Finally, it provides an
example of how existing uncertainty quantification capabilities may be applied to an example problem of Army interest, namely
simulation of the dynamic penetration of armor.

uncertainty quantification, readiness, high-performance computing

70

James J Ramsey

410-278-5614Unclassified Unclassified Unclassified UU

ii

Approved for public release; distribution is unlimited.

Contents

List of Figures v

List of Tables vi

Acknowledgments viii

1. Introduction 1

2. Overview of Uncertainty Quantification 1
2.1 Classification of Uncertainties 2
2.2 Uncertainty Propagation 3
2.3 Inverse Problems 5
2.4 Related Topics 6

2.4.1 Sensitivity Analysis 6
2.4.2 Model Emulation 7
2.4.3 Optimization under Uncertainty 7

3. Uncertainty Quantification and High-Performance Computing:
General Issues 8
3.1 High-Performance Computing Clusters and Their Typical Usage 8
3.2 Interfacing of UQ Software and External Applications 9

4. Survey of Available Uncertainty Quantification Software 11
4.1 Dakota 11
4.2 PSUADE 13
4.3 OpenTURNS 14
4.4 Chaospy 15
4.5 QUESO 16
4.6 PyMC and PyMC3 17
4.7 Stan 17
4.8 UQTools 18
4.9 PUQ 18

iii

Approved for public release; distribution is unlimited.

4.10 UQ-PyL 19
4.11 SmartUQ 20
4.12 OpenCOSSAN and COSSAN-X 21
4.13 MUQ 21
4.14 UQTk 22

5. Application of Uncertainty Quantification to Modeling of
Dynamic Penetration of Armor 23
5.1 Sensitivity Analysis 25
5.2 Uncertainty Propagation through Coarse Computational Model 28

5.2.1 Interval Analysis 29
5.2.2 Aleatoric Uncertainty Propagation 31

5.3 Uncertainty Propagation through Emulator of Refined Computational
Model 37
5.3.1 Interval Analysis 38
5.3.2 Aleatoric Uncertainty Propagation 42

6. Discussion and Conclusions 47

7. References 49

List of Symbols, Abbreviations, and Acronyms 57

Distribution List 59

iv

Approved for public release; distribution is unlimited.

List of Figures
Fig. 1 (a) Proper tiling of the UQ software and N external application instances

over MN + 1 processors. (b) Error in tiling where nodes N + 1 to 2N
have been inadvertently oversubscribed while the rest of the allocated
processors are idle... 10

Fig. 2 Diagram of example dynamic armor penetration problem. The penetrator
is a cylindrical 90%W–7%Fe–3%Ni tungsten alloy 131W rod, tapered at
one end, with dimensions of 0.91 cm in diameter and 13.1 cm in length.
The target is rolled homogeneous armor (RHA), whose depth is taken to
be effectively semi-infinite. ... 24

Fig. 3 MOAT results, assuming that all uncertain parameters are within±10%
of their baseline values ... 26

Fig. 4 Comparison of sensitivity indices {µ∗
i} from the MOAT method with

sensitivity indices from the FAST method, assuming that all uncertain
parameters are within±10% of their baseline values. Sensitivity indices
have been normalized so that the largest index equals one 27

Fig. 5 Comparison of sensitivity indices {µ∗
i} from the MOAT method with

sensitivity indices from the FAST method, using revised uncertain
bounds. Sensitivity indices have been normalized so that the largest index
equals one... 28

Fig. 6 Minimum penetration depth as a function of the number of samples used
in LHS, using coarse computational model 30

Fig. 7 Maximum penetration depth as a function of the number of samples used
in LHS, using coarse computational model 30

Fig. 8 Calculated values of the mean as a function of the number of samples, for
both LHS and stochastic collocation applied to a coarse model 36

Fig. 9 Calculated penetration depth as a function of Johnson–Cook parameter C
of the witness, at varying values of mesh element size h. Johnson–Cook
parameter n of the witness is held constant at n = 0.11. All other
parameters are held constant at their baseline values. 37

Fig. 10 Minimum penetration depth as a function of the number of samples used
in LHS, using emulator of refined computational model.................... 41

Fig. 11 Maximum penetration depth as a function of the number of samples used
in LHS, using emulator of refined computational model.................... 41

Fig. 12 Estimated relative error in mean value as a function of the number of
samples, for both LHS and stochastic collocation applied to an emulator
of a refined model ... 46

v

Approved for public release; distribution is unlimited.

List of Tables
Table 1 Baseline Johnson–Cook plasticity parameters and Poisson’s ratio (ν) for

the penetrator and witness materials ... 25

Table 2 Calculated penetration depth and wall clock time versus element size,
given baseline material parameters... 25

Table 3 Approximate computational costs of sensitivity analysis.................. 27

Table 4 Assumed bounds for the uncertain parameters in uncertainty propagation
simulations .. 29

Table 5 Interval analysis results with approximate computational cost, using
coarse computational model ... 31

Table 6 Moments of estimated probability distribution of penetration depth,
determined via LHS applied to a coarse model, where the 4 most
sensitive parameters are taken as uncertain................................... 32

Table 7 Moments of estimated probability distribution of penetration depth,
determined via LHS applied to a coarse model, where the Johnson–Cook
parameters and Poisson’s ratio of the witness are taken as uncertain ... 33

Table 8 Moments of estimated probability distribution of penetration depth,
determined via LHS applied to a coarse model, where all Johnson–Cook
parameters and Poisson’s ratios are taken as uncertain 33

Table 9 Moments of estimated probability distribution of penetration depth,
determined via stochastic collocation applied to a coarse model, where
the 4 most sensitive parameters are taken as uncertain..................... 35

Table 10 Moments of estimated probability distribution of penetration depth,
determined via stochastic collocation applied to a coarse model, where
the Johnson–Cook parameters and Poisson’s ratio of the witness are
taken as uncertain.. 35

Table 11 Moments of estimated probability distribution of penetration depth,
determined via stochastic collocation applied to a coarse model, where
all Johnson–Cook parameters and Poisson’s ratios are taken as uncertain.
Red text is used to highlight an obviously faulty value. 36

Table 12 Cross-validation test results ... 38

Table 13 Interval analysis results using emulator of refined computational
model .. 40

Table 14 Computational costs of EA using emulator of refined computational
model .. 40

vi

Approved for public release; distribution is unlimited.

Table 15 Moments of estimated probability distribution of penetration depth,
determined via LHS applied to an emulator of a refined model, where the
4 most sensitive parameters are taken as uncertain 43

Table 16 Moments of estimated probability distribution of penetration depth,
determined via LHS applied to an emulator of a refined model, where the
Johnson–Cook parameters and Poisson’s ratio of the witness are taken as
uncertain... 43

Table 17 Moments of estimated probability distribution of penetration depth,
determined via LHS applied to an emulator of a refined model, where all
Johnson–Cook parameters and Poisson’s ratios are taken as uncertain . 44

Table 18 Moments of estimated probability distribution of penetration depth,
determined via stochastic collocation applied to an emulator of a refined
model, where the 4 most sensitive parameters are taken as uncertain... 44

Table 19 Moments of estimated probability distribution of penetration depth,
determined via stochastic collocation applied to an emulator of a refined
model, where the Johnson–Cook parameters and Poisson’s ratio of the
witness are taken as uncertain... 45

Table 20 Moments of estimated probability distribution of penetration depth,
determined via stochastic collocation applied to an emulator of a refined
model, where all Johnson–Cook parameters and Poisson’s ratios are
taken as uncertain.. 45

Table 21 Computational costs of stochastic collocation at the highest sparse grid
level used, given emulator of refined computational model 46

vii

Approved for public release; distribution is unlimited.

Acknowledgments
We would like to thank Daniel Hornbaker and Robert Doney for their contributions
to our uncertainty quantification of a model problem in dynamic penetration of
armor, especially their guidance on the use of CTH.

This work was supported in part by a grant of computer time from the Department
of Defense High Performance Computing Modernization Program at the US Army
Research Laboratory Department of Defense Supercomputing Resource Center.

viii

Approved for public release; distribution is unlimited.

1. Introduction
Uncertainty quantification (UQ) is needed to systematically account for the uncer-
tainties in computational models and to express how these predictions may deviate
from the ground truth. It is thus important for the US Army Research Laboratory
(ARL) in its own work in computational prediction. However, the 2015–2016 As-

sessment of the Army Research Laboratory has noted,1 “A challenge that cuts across
the predictive simulation sciences portfolio [at ARL] is the lack of cutting-edge
R&D [research and development] efforts in validation, verification, and uncertainty
quantification.” Because of this assessment, efforts have begun to address this lack
of routine UQ practice in modeling and simulation at ARL. A part of these efforts
has been to survey the current state of the art in UQ, especially with regard to meth-
ods and software, and to examine the extent to which this state of the art is capable
of addressing problems of interest to the Army. This report contains several results
from this survey.

The structure of this report is as follows. Sections 2 and 3 are essentially introduc-
tory and are primarily for providing the background information needed in later
portions of the report. The first of these introductory sections is an overview of
UQ and its various methods. The second of these discusses issues pertaining to the
use of UQ software on the Army’s high-performance computing (HPC) systems,
especially the issues that arise when interfacing UQ software with “black-box” ap-
plications that run on parallel HPC clusters. Section 4 is a survey of existing UQ
software. It includes both applications and libraries, and it outlines not only the ca-
pabilities of these works of software, but how each of them interfaces with external
applications on HPC systems. Finally, Section 5 discusses an application of UQ to
a very typical example of an Army-relevant problem, namely the modeling of the
dynamic penetration of armor.

2. Overview of Uncertainty Quantification
To introduce some of the concepts that will be mentioned and discussed in later
sections of this report, a brief overview of UQ is provided here. First, we discuss
the classification of uncertainties and its practical importance for UQ. After this,
we describe the forward and inverse problems of UQ. Forward UQ is the problem
of how uncertainties in the input of a computational model propagate to its output.
Inverse UQ, on the other hand, is the problem of how to determine both the input

1

Approved for public release; distribution is unlimited.

parameters of a computational model and their uncertainties, given some experi-
mental values that this model is meant to at least approximately reproduce. This
overview then concludes with a discussion of topics that are frequently involved
with UQ, even if they are not in principle a necessary part of it.

2.1 Classification of Uncertainties
Uncertainties are typically classified into aleatoric and epistemic. Aleatoric un-
certainties cannot realistically be reduced by performing additional experiments.
Rather, they are attributed to inherent randomness in the physical world. On the
other hand, epistemic uncertainties are due to lack of knowledge.2 As an example
of both kinds of uncertainty, one may suppose the existence of a material whose mi-
crostructure varies from sample to sample. If there are a large number of samples,
then the mean values of the elastic parameters associated with the material can be
readily assessed, as well as the variance or other statistical measures of the distribu-
tion of parameters. The uncertainty in the parameters is aleatoric. However, if only a
few samples are available, then the mean value determined from these samples may
not be representative of the properties of future samples, and the variance in the ma-
terial’s properties becomes difficult or impossible to characterize. This uncertainty
is epistemic.

In principle, the distinction between aleatoric and epistemic uncertainty is impre-
cise. For example, seemingly random behavior could have a deterministic expla-
nation that is merely currently unknown. One could also argue that if one were to
know the exact microstructure of a given sample of material, then the parameters
that characterize it could be determined precisely, regardless of the variations across
samples.

In practice, though, the difference between the 2 kinds of uncertainties is that the
former is typically treated within a classical probability framework. For example,
the aleatoric uncertainty of a continuously variable parameter would be character-
ized by a probability density function (e.g., a Gaussian bell curve).2 By contrast,
epistemic uncertainty is often treated in an alternative framework where, for exam-
ple, the most one may be able to say about a particular parameter is that it likely is
somewhere within an interval, and it may be unclear how likely it is to be within a
particular subset of that interval. Accordingly, different UQ methods are often used

2

Approved for public release; distribution is unlimited.

for the different kinds of uncertainties.3,4∗

2.2 Uncertainty Propagation
Uncertainty propagation is the estimation of how uncertainties in the inputs of
a computational model manifest themselves as uncertainties in the quantities of
interest (QoI) output by the model. The choice of propagation methods depends
on whether the uncertainty in model inputs is aleatoric, epistemic, or both. Three
common classes of uncertainty propagation methods for aleatoric uncertainties are
Monte Carlo sampling methods, stochastic expansion, and reliability methods. For
epistemic uncertainties, interval analysis and Dempster-Shafer evidence theory may
be employed.

Monte Carlo sampling methods are perhaps the most straightforward. Probability
distributions are specified for model inputs, and the inputs then are randomly sam-
pled accordingly. For each sample of random inputs, the model produces corre-
sponding values for the QoI. Given enough samples, one may obtain a probability
distribution of each QoI. The method is simple and robust,6 and it does not suffer
from the so-called “curse of dimensionality”, that is, its rate of convergence is inde-
pendent of the number of parameters in a model.7 However, it has 2 disadvantages.
First, the convergence rate to the true probability distribution isO(1/

√
Nsam), where

Nsam is the number of samples.8 Second, the number of samples may be so high as
to be computationally infeasible, especially if the computational model under con-
sideration is expensive2 or if the tails of the probability distribution of the QoI need
to be accurately characterized.6 The computational feasibility may be improved to
some degree by using sampling techniques that are not purely random. For example,
while purely random sampling can lead to clumping of samples within the space of
possible inputs, Latin hypercube sampling (LHS)9 leads to a more even distribu-
tion of samples. On the other hand, importance sampling10 deliberately samples
some regions of the space of possible inputs more densely, such as the ranges of in-
puts that would cause a QoI to exceed some threshold indicating failure,4 and then
compensates for the sampling bias when calculating moments of the probability
distribution(s) of the QoI.

In stochastic expansion methods, the model output is expressed as a linear combi-

∗However, O’Hagan and Oakley have made arguments made for treating epistemic uncertainty
within a classical probability framework.5

3

Approved for public release; distribution is unlimited.

nation of basis polynomials. These methods include polynomial chaos and stochas-
tic collocation.4 In polynomial chaos methods,11 the basis consists of orthogonal
polynomials that are functions of the model inputs. The forms of these polynomi-
als depend upon the probability distributions of the model inputs. The coefficients
of the expansion are integrals that may be determined numerically, with the com-
putational model evaluated at the quadrature points. Alternatively, the coefficients
may be determined via regression. Once the coefficients are found, the moments of
the probability distribution of the model output are available in closed form. The
probability distribution itself may also be estimated.4 In stochastic collocation, the
basis consists of (possibly piecewise) polynomials that interpolate over model in-
puts sampled on regular (and possibly sparse) grids. The expansion coefficients are
values of the model output at those model inputs, and possibly values of partial
derivatives of the model output at those model inputs as well, depending on the
means of polynomial interpolation. Moments of the probability distribution of the
model output are again available in closed form,8 and again, the probability distribu-
tion of the model output may also be estimated.4 Stochastic expansion methods can
potentially require far fewer evaluations of the model than Monte Carlo sampling
methods, especially if the number of model inputs is relatively small, about 5 to
10 or so.6 Stochastic expansion methods, though, can suffer a curse of dimension-
ality, where the computational cost explodes as the number of model parameters
m increases. For example, a full k-order grid used for quadrature or interpolation
has km points. Use of a sparse grid can mitigate the curse of dimensionality but not
remove it entirely; the number of points in a Smolyak sparse grid scales as klog m

when employing a k-order rule.11

The above methods for accounting for aleatoric uncertainties are capable of provid-
ing estimates for the whole probability distribution of the QoI. However, often what
is desired is an estimate of the probability that the QoI will exceed some threshold,
indicating failure of the system being modeled. To determine this without determin-
ing the full probability distribution of the QoI, reliability methods4,8,12 are used.

A common, though problematic, approach for dealing with epistemic uncertainty
in a model input is to simply assume that possible values for the input are within
some interval and that each possible value is as likely as any other. Then methods
such as those described previously, which are suited for aleatoric uncertainties, are
used. This approach, though, may underestimate the likelihood that a model will

4

Approved for public release; distribution is unlimited.

predict an extreme value for a QoI, one that may indicate high stress or even failure
of a system.3 One method of avoiding this pitfall is to use interval analysis. In this
method, it is still assumed that the possible values of each model input are within
some interval, but there is no assumption that one random value in that interval is
just as probable as another. The output of this analysis is a set of intervals, one for
each QoI, rather than a probability distribution. Interval analysis employs optimiza-
tion algorithms to determine the extrema of the QoI given the ranges of possible
input values,4 and these algorithms may be subject to a curse of dimensionality. For
example, the UQ software Dakota uses the DIRECT algorithm in its implementa-
tion of one of its interval analysis methods,13 and this algorithm is limited to about
20 dimensions (i.e., model inputs).14

A method for accounting for epistemic uncertainty that goes beyond interval analy-
sis is Dempster-Shafer evidence theory.3 Here, a model input can instead be within
one or more intervals, rather than just a single one as in interval analysis. Associ-
ated with each interval is a so-called “basic probability assignment” (BPA), which,
despite its name, is not the same as a classical probability and has been described
as a measure of subjective belief instead. Obtaining BPAs is an ongoing research
problem, and several methods of determination have been discussed in recent lit-
erature.15,16 Once BPAs have been assigned to model inputs, uncertainty measures
can then be determined for the QoI calculated from the model. Typically, these take
the form of lower and upper bounds, respectively, on the probability distribution of
a QoI.3,4

2.3 Inverse Problems
Typically, a computational model has various input parameters. Some or all of these
may be estimated via a calibration process, where experimental values of QoI are
collected and then the parameters of the model are fitted so that it approximately
reproduces the experimental results. This fitting is not necessarily a form of UQ.
Fitting is often ad hoc, with uncertainty in the fitted parameters only roughly taken
into account through noting discrepancies between the model predictions and the
experimental values used to calibrate the model.17 However, there are more formal
methods, which may be classified as either frequentist or Bayesian, that do provide
measures of the uncertainty in the parameters.

In frequentist methods of model calibration, the model parameters are not taken to

5

Approved for public release; distribution is unlimited.

be random variables, but rather as fixed but unknown values, while the experimental
values are taken to be subject to random errors. A common example of a frequentist
method would be ordinary least-squares (OLS) minimization, which estimates the
values of the model parameters to be those that minimize the sum of the squared
differences between the experimental values and the model predictions that corre-
spond to them. Unlike the “true” values of the model parameters, these estimates
are instances of random variables, and ones with Gaussian probability distributions.
However, these distributions reflect the uncertainty in the estimation process itself
and may not be appropriate to use as inputs to the aleatoric uncertainty propagation
methods described in Section 2.2.2

In Bayesian methods of model calibration, the model parameters are taken to be
random variables, and the goal of these methods is to estimate the probability dis-
tributions of the parameters. This is often done via a family of Monte Carlo methods
called Markov chain Monte Carlo (MCMC) methods. All of the algorithms in this
family of methods entail generating chains of random states in which the last state
depends on the previous one, but the details of these algorithms have various advan-
tages and disadvantages. For example, the MCMC algorithms called Hamiltonian
Monte Carlo (or alternatively, Hybrid Monte Carlo) use gradients of the outputs of
the computational model in order to efficiently sample the regions of the space of
model parameters that contribute the most to the parameters’ probability distribu-
tion. These algorithms also tend to scale better with the number of model parame-
ters than other MCMC algorithms. However, if one is working with black-box com-
puter models (e.g., proprietary applications), the gradients may not be available, and
other approaches, such as various forms of the Metropolis-Hastings algorithm, may
be needed instead.18 Unlike the probability distributions associated with OLS esti-
mates of model parameters, the distributions from Bayesian methods can be used
as inputs to the aforementioned aleatoric uncertainty propagation methods.2

2.4 Related Topics
2.4.1 Sensitivity Analysis
Sensitivity analysis (SA) evaluates how strongly each input of a computational
model influences its output. In principle, it is not required to do UQ, but in practice,
it may be used to pare down the number of inputs used in a subsequent uncertainty
propagation analysis. There are several methods that may be used for SA. For ex-
ample, the Monte Carlo sampling methods for uncertainty propagation described in

6

Approved for public release; distribution is unlimited.

Section 2.2 may be modified by replacing an estimation of the probability distri-
bution of the QoI with an estimation of the correlation between each input and the
QoI. Another method decomposes the variance in the QoI into first-order contribu-
tions from each input, second-order contributions from the combined influence of
2 inputs, etc. This decomposition is then used to construct sensitivity indices for
each input.19–21 These are examples of global SA, which estimates the sensitivity of
model outputs as model inputs vary over the entirety of their domains. There is also
local SA, which estimates how model outputs vary with respect to perturbations in
model inputs about some set of nominal input values. This may involve estimates
of the values of the derivatives of the model output at these nominal values.2

2.4.2 Model Emulation
Computational models can be so expensive or time-consuming to execute that run-
ning hundreds or even thousands of instances of them—which would be needed
for several UQ and SA methods—is unfeasible. An emulator may be used to work
around this difficulty. This is an approximate model that is fit to a relatively small
number of samples of the original computational model and then used in place
of the original.2 Techniques for constructing emulators include Kriging methods,
multivariate adaptive regression splines (MARS), polynomial fits, and radial basis
function expansions.13,22 Even artificial neural networks may be used.13 Emulators
are also known as response surfaces, meta-models, or surrogate models.2 One catch
with the construction of emulators is that they may be subject to the curse of di-
mensionality. For example, with the standard methods for building a Kriging emu-
lator, the number of samples of the computational model needed to ensure the ac-
curacy of the emulator increases exponentially as the number of model parameters
increases.23 The computational cost of even determining a MARS response surface
also increases exponentially as the number of model parameters increases.24

2.4.3 Optimization under Uncertainty
Optimization under uncertainty (OOU), also known as stochastic optimization,25

describes processes or methods of finding a solution to a problem that is in some
sense optimal, while still accounting for uncertainties in the information needed to
solve the problem. Some OOU methods are used to minimize or maximize the mean
value of some quantity, while others are used to minimize the likelihood that some
quantity exceeds some threshold (e.g., a yield stress or some limit that would indi-
cate failure if exceeded).26 Also, methods are available for optimizing under both

7

Approved for public release; distribution is unlimited.

aleatoric and epistemic uncertainties.4 OOU often involves nesting an uncertainty
propagation problem within an iteration of what would otherwise be a deterministic
optimization problem,4,25 thus combining the computational expenses of both opti-
mization and UQ. Reducing this expense to allow OOU to be applied to nontrivial
problems is an ongoing topic of research.26

3. Uncertainty Quantification and High-Performance
Computing: General Issues

3.1 High-Performance Computing Clusters and Their Typical Usage
(This section is primarily intended for those altogether unfamiliar with how high-
performance computing systems are used.)

Typically, HPC systems are clusters of interconnected computers, each of which is
called a node, that behave almost as if they were a single very large computer. These
nodes generally share at least one common parallel file system. Typically, a small
fraction of these nodes are set aside for users to log in remotely and perform various
operations on the cluster, and these are called login nodes. For the most part, the rest
of the nodes are used for parallel computation, and these nodes are called compute

nodes. To run parallel software applications on a cluster, users typically write job

scripts, which are usually written in a scripting language, such as Bourne shell or
C shell. These job scripts generally specify how many compute nodes on which
the parallel software will run and the maximum amount of wall-clock time these
nodes will be allowed to run the software, and these scripts also contain commands
to launch the software with certain specified inputs. On login nodes, users submit
these job scripts to a batch scheduler, which is responsible for actually running
the job scripts, often in such a fashion that no single user takes up all of the clus-
ter’s computing resources. Although the batch scheduler routinely runs several job
scripts at once (on different compute nodes, of course), the scheduler is nonetheless
typically called a “queue” or “queuing system”.27

8

Approved for public release; distribution is unlimited.

3.2 Interfacing of UQ Software and External Applications
Many kinds of UQ software4,22,28,29 are designed to interface with external software
applications, which are treated as “black box” computational models. There are 3
general approaches to this. One of these, called here launch-and-use, is to have the
UQ software launch either instances of the external application itself or instances
of a wrapper script for the external application, and then have those instances return
their model outputs to the UQ software for further analysis. The second approach,
called here launch-and-quit, has 2 stages. The first stage is to have the UQ software
launch either instances of the external application itself or instances of a wrapper
script for the external application, and then quit. The instances of the external appli-
cations still keep running until they have written their model outputs to one or more
files. In the second stage, the user takes the outputs from the external application to
create input for the UQ software to postprocess and produce an analysis. The third
approach, called here the launchless approach, has 3 stages. In the first stage, the
UQ software writes model inputs (e.g., the results of a Monte Carlo sampling of in-
puts, or model input values at quadrature or collocation points) to one or more files.
The second stage begins with the user taking what the UQ software has written in
the first stage to generate input files for the external application and/or job scripts
for an HPC cluster that will run instances of this application, possibly in parallel.
The second stage ends when all instances of the application have finished running
and produced their outputs. The third stage is essentially the same as the second
stage of the launch-and-quit approach, that is, the user taking the outputs from the
external application to create input for the UQ software to postprocess.

The launch-and-use approach can introduce complications when running UQ soft-
ware on an HPC cluster. If a script is used and the external application is parallel,
then this script will typically contain commands for launching the parallel appli-
cation, such as mpiexec or, on a Craycluster, aprun, and HPC systems may
have restrictions on where those commands may execute. For example, a system
may not allow software launched with mpiexec to in turn launch a wrapper script
containing mpiexec, which would limit the UQ software itself to run serially if
the external application is parallel. The HPC cluster may also require that the ar-
guments to the command for launching the parallel application ensure that proper
tiling occurs. That is, if each instance of the external application is supposed to run
on M nodes, and the UQ software is supposed to launch N parallel instances, then

9

Approved for public release; distribution is unlimited.

not only does the job script that launches the UQ software need to allocate MN or
MN + 1 nodes, but the wrapper script needs to provide the correct arguments to
mpiexec (or a similar command) so that when an instance of the external applica-
tion is launched, it runs on a free set of M nodes, rather than one on which another
instance of the application is already running.4 Examples of proper and poor tiling
are shown in Fig. 1. Cray clusters introduce an additional complication because
they have intermediary nodes between their login and compute nodes, called ser-
vice nodes, on which the job scripts themselves are run.30 Service nodes are not
intended for heavy computation. Rather, the scripts that run on them are primarily
intended to execute commands that launch parallel software on the compute nodes.
Also, parallel software running on a Cray compute note cannot launch instances of
parallel software to run on other compute nodes. This means that when a job script
runs UQ software on a Cray cluster, only the external application launched by the
UQ software actually runs on the compute nodes, while the UQ software itself is
left running on a service node.31 This may be an issue if the UQ software does
significant computation that causes the service node to be overburdened.

Fig. 1 (a) Proper tiling of the UQ software and N external application instances over MN + 1
processors. (b) Error in tiling where nodesN+1 to 2N have been inadvertently oversubscribed
while the rest of the allocated processors are idle.

In the launch-and-quit approach, either the UQ software uses system calls that al-

10

Approved for public release; distribution is unlimited.

low the external applications it launches to continue running after it quits, or—far
more commonly—either the UQ software or the wrapper scripts submit to a queue
the job scripts that run instances of the external application. The latter option may
limit the UQ software to run on a login node, since an HPC cluster may not al-
low other kinds of nodes to submit jobs. Also, if each job script only runs a single
instance of the external application, this may lead to submitting large numbers of
jobs to a queue, which may be a problem if the HPC cluster limits the number of
jobs that a single user can submit. However, if the UQ software is designed with
the batch scheduler in mind, then it can write job scripts that run several instances
of the external application in succession, each with its own set of model inputs,
thus limiting the number of submitted jobs.29 The launch-and-quit approach is tol-
erant of failures of the external application. For example, if one of the job scripts
launching the external application fails to complete (perhaps because it specifies an
insufficient amount of wall-clock time, or because a node malfunctions), that job
can be restarted and finished before the second stage begins.

The launchless approach obviously does not have the problems of the launch-and-
use approach above. It has the same fault tolerance as the launch-and-quit approach,
and it allows the user much flexibility in how to interact with the queuing sys-
tems of various clusters. However, neither the launch-and-quit nor the launchless
approaches work with UQ analyses that do not have distinct sampling and postpro-
cessing stages. As an example, interval analysis may use optimization to find the
minimum and maximum values of model outputs. This optimization can involve an
iterative process, where the current iteration may entail generating a set of model
inputs that depends upon model outputs calculated in a previous iteration.4 For UQ
analyses that cannot be divided into distinct stages, the launch-and-use approach is
required.

4. Survey of Available Uncertainty Quantification Software

4.1 Dakota
Dakota4 is an open-source project from Sandia National Laboratories, licensed un-
der version 2.1 of the GNU Lesser General Public License (LGPL). It was originally
designed in 1994 as an optimization toolkit, but its capabilities have since expanded
to encompass UQ. Its primary interface is text-based, that is, users write input files
specifying the desired UQ methods, various parameters, and so on. However, a GUI

11

Approved for public release; distribution is unlimited.

front-end is available.32

The following available aleatoric uncertainty propagation methods are provided in
Dakota: Monte Carlo sampling, using either ordinary random sampling or LHS;
stochastic expansion, including both polynomial chaos and stochastic collocation;
and reliability methods. Methods to propagate epistemic uncertainty include in-
terval analysis and Dempster-Shafer theory. Dakota also has implementations of
methods to account for combinations of aleatoric and epistemic uncertainties. For
inverse UQ problems, Dakota supports Bayesian model calibration using gradient-
free MCMC methods that can be used with black-box computational models. It
also supports a frequentist approach via its nonlinear least-squares implementation,
which can output confidence intervals for each model input.

Some SA capabilities are available in Dakota as well. When sampling with LHS, it
outputs partial correlation coefficients and partial rank correlation coefficients for
each model input.4 A larger magnitude of a coefficient may indicate a larger sensi-
tivity of the model output to the coefficient’s corresponding model input. However,
these coefficients should be interpreted with care, since the calculation of a par-
tial correlation coefficient is based on the assumption that the relationship between
model input and output is linear, and the calculation of a partial rank correlation
coefficient is based on the assumption that the relationship between model input
and output is monotonic.19 Alternatively, SA may be performed by decomposing
the variance (as discussed in Section 2.4.1), which in Dakota involves approxi-
mating integrals via Monte Carlo sampling. A third method provided by Dakota
implements the algorithm from Campolongo et al.,33 a modified form of the Mor-
ris “one-at-a-time” (MOAT) approach.34 The latter 2 methods do not require any
assumption of linearity or monotonicity.

Emulators of models can be constructed in Dakota via Kriging methods, MARS,
polynomial fits, radial basis function expansions, and artificial neural networks.
Dakota is also capable of performing OOU.

There is limited support for the launchless approach to interfacing with external
software described in Section 3.2. When doing Monte Carlo sampling or SA, it can
be executed in “pre-run” and “post-run” modes. The pre-run mode corresponds to
the first stage of the launchless approach, and it consists of writing a table con-
taining several sets of model inputs (e.g., Monte Carlo samples) to a text file. The

12

Approved for public release; distribution is unlimited.

post-run mode corresponds to the third stage of the launchless approach, and it
consists of reading a table of model inputs and outputs that had been written in
the second stage, and then outputting the results of a UQ or SA analysis. Unfor-
tunately, some analyses that could in principle be split into separate sampling and
post-processing stages, such as stochastic collocation, cannot be used with Dakota’s
pre-run and post-run modes. The documentation of Dakota recommends emulating
the launch-and-quit and launchless approaches by a workaround implemented with
the launch-and-use approach to interfacing with external software. In this emula-
tion, 2 wrapper scripts are used, one to elicit sets of parameters from Dakota and
one to do post-processing. That said, this emulation entails that the first wrapper
script return “dummy” model outputs, on which Dakota will waste computations.
All forms of UQ and SA analysis support the launch-and-use approach. In Dakota’s
implementation of this approach, the external application, or the wrapper script to
that application, reads in a file written by Dakota that contains model inputs and
writes a file to be read by Dakota that contains the model outputs.

4.2 PSUADE
PSUADE22 is from Lawrence Livermore National Laboratory. It appears to be dis-
tributed under the LGPL, but this is not entirely clear. (On the one hand, its source
code archive contains a copy of version 2.1 of the LGPL, and comments in its
source code indicate that it is under that license. On the other hand, the source
code archive also contains a copyright statement with the admonition “Commer-
cialization of this product is prohibited without notifying the Department of Energy
(DOE) or Lawrence Livermore National Laboratory (LLNL),” which conflicts with
the LGPL.35,36) PSUADE has 2 text-based interfaces. One of these is a batch in-
terface where users provide input files specifying the desired UQ methods, various
parameters, and so on. The other is an interactive command line interface.

Several Monte Carlo sampling methods for aleatoric uncertainty propagation, in-
cluding ordinary random sampling and LHS, are available in PSUADE. It supports
mixed aleatoric-epistemic uncertainty propagation as well, but support of propaga-
tion of purely epistemic uncertainties, such as Dempster-Shafer theory, is not cur-
rently documented. For inverse UQ problems, PSUADE supports Bayesian model
calibration using MCMC methods, but it applies these methods to an emulator of
the model rather than directly to the model itself. PSUADE constructs emulators
of models via Kriging methods, MARS, polynomial fits, and radial basis function

13

Approved for public release; distribution is unlimited.

expansions. It is also capable of performing OOU. Gan et al. have documented
the wide range of global SA capabilities in PSUADE.21 The modified form of the
MOAT algorithm34 from Campolongo et al.33 is supported. PSUADE also supports
several methods of decomposing the variance (as discussed in Section 2.4.1). This
includes not only approximating integrals via Monte Carlo sampling, but also the
Fourier amplitude sampling test (FAST).37After performing Monte Carlo sampling,
PSUADE can output partial correlation coefficients and partial rank correlation co-
efficients for each model input.21,22 If the relationship between model inputs and
outputs is linear or monotonic, then a larger magnitude of a coefficient can indicate
a larger sensitivity of the model output to the coefficient’s corresponding model
input. The documentation of PSUADE does not recommend using correlation coef-
ficients for non-monotonic models. Other SA methods supported include the Delta
test38 and the sum-of-trees method.39

PSUADE supports all 3 approaches to interfacing with external software described
in Section 3.2. When using the launch-and-use and launch-and-quit approaches, the
external application, or the wrapper script to that application, takes 2 arguments:
the name of a file written by PSUADE that contains model inputs, and the name of
a file that, in launch-and-use mode, would contain the model outputs and be read by
PSUADE. To support the launchless approach, PSUADE can write the parameter
files for every set of desired inputs and then quit. In the launch-and-quit and launch-
less approaches, the outputs from the launched instances of the external software
are harvested and collected into a file that PSUADE can read in order to finish its
analysis.

4.3 OpenTURNS
OpenTURNS28 is an open-source Python module, licensed under version 3 of the
GNU General Public License (GPL). It is the result of a collaboration of aca-
demic institutions and the French industrial companies Airbus Group, Électricité
de France Research and Development, Phimeca Engineering, and Ingénierie Math-
ématique et Calcul Scientifique.40 Users utilize OpenTURNS by writing Python
scripts that import the module and use its functions and class methods to execute
various steps of a UQ analysis.

This Python module provides several methods for propagating aleatoric uncertainty,
such as Monte Carlo sampling, including ordinary random sampling and LHS; poly-

14

Approved for public release; distribution is unlimited.

nomial chaos; and reliability methods. Support for propagating epistemic uncertain-
ties is not currently documented. Bayesian model calibration using MCMC methods
is available for solving inverse UQ problems. SA capabilities include determination
of partial correlation coefficients and partial rank correlation coefficients for each
model input, where—if the relationship between model inputs and outputs is linear
or monotonic—a larger magnitude of a coefficient can indicate a larger sensitivity
of the model output to the coefficient’s corresponding model input. SA can also
be done in OpenTURNS via several methods of decomposing the model output
variance (as discussed in Section 2.4.1). Emulators may be constructed by Krig-
ing methods, and also by approximating the computational model as an expansion
in an orthogonal basis, where the basis functions may be polynomials, sinusoidal
functions, or wavelets.

OpenTURNS does not explicitly support interfacing with external software. Instead,
users supply Python classes that implement computational models, which can then
be used as arguments to various functions and class methods in OpenTURNS. How-
ever, the functionality in Python to call external processes allows OpenTURNS to
interact with outside applications in the launch-and-use approach described in Sec-
tion 3.2. There is also support for the launch-and-quit and launchless approaches
(also described in Section 3.2) via the NumericalSample class. This class holds
a sequence of vectors, each of which can be a realization of model inputs or outputs.
In the first stage of the launchless approach, a Python script can use OpenTURNS to
create a sample of model inputs stored in an instance of the NumericalSample
class, and then write the contents of this instance to a file. In the last stage of the
launchless approach, a Python script can use OpenTURNS to read the outputs of a
computational model into an instance of this NumericalSample class. Various
functions and class methods in OpenTURNS are capable of taking instances of the
NumericalSample class as inputs to perform various analyses.

4.4 Chaospy
Chaospy41 is an open-source Python module, licensed42 under the MIT license.43

It implements 2 methods of uncertainty propagation: polynomial chaos and Monte
Carlo sampling. There is also additional functionality for calculating some statistics
of the outputs of these methods, such as the moments of the probability distributions
of model outputs. The module does not explicitly support interfacing with external
software. Rather, ChaosPy functionality is used to generate a list of model inputs,

15

Approved for public release; distribution is unlimited.

either random samples7 or quadrature points.41 Other functions of ChaosPy then ac-
cept this list of model inputs and a corresponding list of model outputs. Generation
of the latter list is left up to the user, and this generation can be implemented through
any of the launch-and-use, launch-and-quit, or launchless approaches discussed in
Section 3.2. Python’s capability to call external software applications facilitates the
first 2 approaches. Python functionality can also be used to write the list of model
inputs to one or more files, implementing the launchless approach.

4.5 QUESO
QUESO44,45 is an open-source C++ library licensed under version 2.1 of the GNU
LGPL. However, since it depends upon the GNU Scientific Library, which is li-
censed under the GNU GPL, it effectively is under the GPL itself.46 The QUESO
library is primarily designed for solving inverse UQ problems47 via a Bayesian ap-
proach that uses MCMC. It has some capability for solving uncertainty propagation
problems, but rather than use the “embarrassingly parallel” Monte Carlo sampling
methods described in Section 2.2, it uses a Monte Carlo method similar to the one
that it uses for inverse problems, where there is a chain of random states, each of
which is dependent on the previous state. While generation of a chain of random
states (for either forward or inverse problems) is a serial operation, multiple chains
may be generated in parallel. Computational models used with QUESO may also
be parallel.

Users employ QUESO by writing C++ programs that use the functionality from
the QUESO library. They write C++ classes that use computational models, which
certain QUESO classes then use as inputs. While interfacing with external soft-
ware is not explicitly supported, there is indirect support since C++ supports using
functions that call external software programs. Due to QUESO’s use of chains of
states in which the last state depends on the previous one, only the launch-and-use
approach to interfacing with external applications (see Section 3.2) is supported.

Dakota can be compiled against the QUESO library in order to use the library’s
inverse UQ capabilities.4

16

Approved for public release; distribution is unlimited.

4.6 PyMC and PyMC3
PyMC48 and PyMC349 are open-source Python modules that implement Bayesian
model calibration via MCMC. PyMC is licensed under the Academic Free Li-
cense,50 while PyMC3 is under version 2.0 of the Apache License. PyMC3, in ad-
dition to having a different programming interface from PyMC, also implements
Hamiltonian Monte Carlo and automatically determines the gradients needed for
that MCMC method. In principle, external software applications may be invoked us-
ing normal Python functionality so that they may be used with PyMC and PyMC3.
However, unless gradients for the outputs of the external software are supplied, only
the gradient-free MCMC implementations in PyMC3 may be used when interfac-
ing with external software. (In PyMC, all available MCMC implementations are
gradient-free.) Since MCMC entails generating chains of random states in which
the last state depends on the previous one, only the launch-and-use approach to
interfacing with external applications (see Section 3.2) is supported.

4.7 Stan
Stan51 is open-source software, licensed under the 3-clause BSD License,52 that
implements Bayesian model calibration via MCMC. The documentation for Stan
does not explicitly identify it as UQ software. It has a compiler that translates a
domain-specific language into C++ code, and tools for creating from that code
either command-line executables or objects in the Python or R languages. The
domain-specific language specifies the computational model and the model param-
eters to be calibrated. In addition to the Python and R interfaces, there are also
interfaces to Stan from MATLAB, Julia, Stata, and Mathematica. Stan can incor-
porate externally defined C++ functions into the executable objects that it creates,
and in limited cases, this may allow external software to be used with Stan via the
standard C++ functions that can call external software applications. However, in
Stan, there is an additional complication to interfacing with external code, because
it uses Hamiltonian Monte Carlo, which requires gradients. Normally, these would
be supplied via the auto-differentiation functionality in Stan (so that users would
not need to concern themselves with gradients), but in C++ code used to interface
with the external application, gradients pertaining to the output from that applica-
tion may need to be manually supplied.53 If these cannot be supplied, one may need
alternatives to Stan that do not require gradients, such as QUESO (Section 4.5),
PyMC (Section 4.6), or UQTk (Section 4.14).

17

Approved for public release; distribution is unlimited.

4.8 UQTools
UQTools54 is a MATLAB toolbox from NASA that is available without charge to
qualified American citizens that request it.55 Unlike many works of UQ software,
UQTools is focused mainly on reliability methods, including one developed by its
authors.12 In this method, the space of model inputs is divided into 2 sets, a failure
domain, consisting of model inputs that would yield undesirable model outputs, and
the complement to this domain, that is, the safe domain. A hyper-sphere or hyper-
rectangle is centered around a point within the safe domain and then expanded
(or contracted) until it just borders the failure domain. The lower bound on the
probability that the system will not fail is taken to be the probability that the model
inputs are within the expanded (or contracted) hyper-sphere or hyper-rectangle. In
addition to support for reliability methods, UQTools also has limited support for
SA, namely an implementation of local SA developed by the authors of UQTools.56

There is also some support for model emulation using either polynomials or radial
basis functions.

There is no explicit support for interfacing with external applications, but MATLAB
does have support for calling external software commands. Some of the function-
ality in UQTools, such as that for SA, allow the user to provide model inputs and
outputs as arguments to MATLAB functions. This allows for a launchless approach
to interfacing with external software (see Section 3.2). On the other hand, the op-
timization algorithms involved in the implementations of the reliability methods
make the launch-and-use approach to interfacing with external software unavoid-
able.

4.9 PUQ
PUQ29 is an open-source Python-based framework based upon work supported by
the National Nuclear Security Administration. It is available under the MIT li-
cense.43 It consists of a command-line program called “puq” that takes control
scripts as input. These control scripts are written in Python and import a module
that is also called puq. Alternatively, a user may avoid using the command-line
program and write a Python script (which still uses the “puq” module) that runs a
UQ analysis.

Currently, the only available aleatoric uncertainty propagation methods available
in PUQ are Monte Carlo sampling methods and polynomial chaos. The sampling

18

Approved for public release; distribution is unlimited.

methods supported are ordinary random sampling and LHS. PUQ does not currently
offer epistemic uncertainty propagation. To solve inverse UQ problems, PUQ uses
the external python module PyMC,48 which performs Bayesian model calibration.
The documentation for PUQ describes its model calibration functionality as “in
progress”. The only documented method for SA is the modified form of the MOAT
algorithm34 from Campolongo et al.33

Interfacing with external software is explicitly supported, but only via the launch-
and-use approach described in Section 3.2. The software is expected to accept input
parameters at the command line and dump its output to a file in a format readable
by PUQ. PUQ can launch the external software directly. In order to launch multiple
instances of the external software in parallel, PUQ can also launch the external soft-
ware by automatically generating job scripts in the Portable Batch System (PBS)
format, and submitting those scripts to a queue. However, instead of submitting the
jobs and quitting, PUQ monitors the progress of jobs in the queue and reads the
outputs from the jobs that have finished. PUQ continues running until all outputs
have been collected and analyzed. From the user’s perspective, the main difference
between a direct launch and launching via a PBS queue is that the latter runs jobs in
parallel, and there are additional parameters required for the latter approach, such
as the maximum wall-clock time per script, or the number of instances of the ex-
ternal software run in succession by each automatically generated job script. Users
are not expected to submit the job scripts manually or even to have direct access to
them.

4.10 UQ-PyL
UQ-PyL57 is an open-source software application written in Python whose function-
ality may be accessed through either a graphical user interface or through Python
scripts that import the module “UQ”.58 It is available under the GNU GPL, version
3.59 Monte Carlo sampling methods for aleatoric uncertainty propagation, such as
ordinary random sampling and LHS, are supported. The user manual indicates that
MCMC is supported,58 but this functionality is not exposed through the graphi-
cal interface. Various global SA methods are supported, such as the modified form
of the MOAT algorithm34 from Campolongo et al.33 algorithm and several meth-
ods of decomposing the variance, including the Fourier Amplitude Sampling Test
(FAST).37 UQ-PyL is also capable of constructing emulators of models via sup-
port vector machines,60 various generalized linear models,61 MARS, and Gaussian

19

Approved for public release; distribution is unlimited.

process regression.

UQ-PyL indirectly supports interfacing with external software. Sampled model in-
puts are written to files, and model outputs are read from files. The documentation
indicates that the model outputs are supposed to be written by using Python mod-
ules that define functions that are expected to call external applications. However,
the use of such scripts does not appear to require this, so both the launch-and-use
and launchless approaches to interfacing with external software (described in Sec-
tion 3.2) appear to be supported.

4.11 SmartUQ
SmartUQ62 is a proprietary software application with a graphical user interface.
Publicly available documentation for this software is currently limited to intro-
ductory descriptions of its features on pages of the web site for SmartUQ and a
YouTube video demonstrating its capabilities.63 No user manual appears to be of-
fered. From what is publicly available, it is not clear what the supported operating
systems of SmartUQ are, but the user interface shown in one of the videos appears
to indicate that it is available at least for Windows.

There are 2 ways of performing uncertainty propagation in SmartUQ, polynomial
chaos and a so-called “emulator-based” method. The details of the latter method are
not described, but the output of the method is a probability distribution of the model
outputs, characterized via both moments and histograms. It is not clear what algo-
rithms are used to implement emulators in SmartUQ. Inverse UQ is also available,
though it is not clear if it is Bayesian or if it even involves MCMC. SA capabili-
ties in SmartUQ are described on its website as being implemented via polynomial
chaos and “emulator-based” methods. OOU is also available, and it is done through
a combination of proprietary sampling techniques and emulators. Interfacing with
external software appears to largely if not entirely be done via a launchless approach
(see Section 3.2), where SmartUQ writes model inputs to comma-separated value
files that are then used to generate input files for external software.

20

Approved for public release; distribution is unlimited.

4.12 OpenCOSSAN and COSSAN-X
OpenCOSSAN64 is an open-source MATLAB toolbox and has been described as
the “computational core of the COSSAN project”. The Institute for Risk and Un-
certainty at the University of Liverpool, UK, has made it available under the LGPL.
COSSAN-X is proprietary UQ software with a graphical user interface, available
under a commercial or academic license, and although it appears to be based on
OpenCOSSAN, it does not require a MATLAB license to use.65

COSSAN-X has several toolboxes: (1) a UQ toolbox, which implements aleatoric
uncertainty propagation via Monte Carlo sampling (including purely random sam-
pling and LHS); (2) a reliability toolbox, which implements reliability methods;
(3) an optimization toolbox, which implements reliability-based optimization, a
form of OOU; (4) a meta-modeling toolbox, which implements model emulation
using neural networks or polynomial fitting; (5) a stochastic finite elements tool-
box, which implements stochastic finite element methods; (6) a SA toolbox, which
implements both local SA and global SA, with the latter including variance de-
composition methods such as the FAST method37; and (7) an HPC toolbox, which
allows COSSAN-X to submit jobs to grid computing systems that run external ap-
plications that implement computational models. COSSAN-X is designed to inter-
face with certain third-party finite element solvers, such as NASTRAN, ABAQUS
and ANSYS, though it can interface with other external applications as well. It is
designed to interface with external software via the launch-and-use approach (see
Section 3.2). OpenCOSSAN has the same capabilities as COSSAN-X, but users
interact with it via the MATLAB command line or scripts.

4.13 MUQ
MUQ66 is an open-source C++ library that also provides wrappers so that its func-
tionality may be accessed via Python modules. It is made available under the 3-
clause BSD License.52 Currently, documentation for this library is limited, and in-
cludes a user manual with several empty chapters,67 online Doxygen68 pages for
reference documentation, and some examples on the website for MUQ. Uncertainty
propagation capabilities appear to be limited to polynomial chaos methods. MUQ,
though, does provide Bayesian model calibration via MCMC for inverse UQ prob-
lems.

MUQ does not explicitly support interfacing with external software. Instead, users

21

Approved for public release; distribution is unlimited.

supply C++ or Python classes that implement computational models, which can
then be used as arguments to various functions and class methods in the MUQ li-
brary. Both C++ and Python, though, support using functions that call external soft-
ware programs. Since MCMC entails generating of chains of states in which the last
state depends on the previous one, only the launch-and-use approach to interfacing
with external applications (see Section 3.2) is supported for the inverse UQ func-
tionality. The adaptive polynomial chaos methods in MUQ, where the order of the
polynomials is adjusted until the error between the polynomial expansion and the
model is within some tolerance, is also limited to the launch-and-use approach as
well. Polynomial chaos methods utilizing a fixed number of terms are available, but
these also appear to be limited to using the launch-and-use approach, since func-
tionality for allowing users to access the values of the model inputs at quadrature
points is not documented. This means that users cannot use a launchless approach
where, for example, they write the model inputs at the quadrature points to a file so
that they can go on to calculate the values of model outputs without using MUQ.

4.14 UQTk
UQTk69 is an open-source collection of libraries and command-line utilities from
Sandia National Laboratories, licensed under the LGPL. The libraries are written
in C++ but may be accessible from a Python interface. The command-line tools
largely focus on aspects of polynomial chaos expansion. For example, one tool
generates quadrature points, while another generates a polynomial chaos expansion
from model responses sampled at those points, and another extracts moments and
sensitivity indices from the expansion. However, there is also a tool that constructs
model emulators via Gaussian process regression, a tool that performs Bayesian
model calibration via MCMC, and a tool that generates sensitivity indices from
Monte Carlo sampling. UQTk support for Monte Carlo sampling includes both or-
dinary random sampling and LHS, and outside of the supplied command-line tools
it can be applied to more than just SA.

Different aspects of the functionality of the UQTk libraries have different means
of interfacing with external software, and the command-line tools—which are thin
wrappers around the functionality of the UQTk libraries—reflect this. For example,
the tools for polynomial chaos entail the launchless approach, since the tools take as
input a file containing sample responses from a computational model. On the other
hand, the tool that performs MCMC has to employ the launch-and-use approach,

22

Approved for public release; distribution is unlimited.

due to the nature of the computational method that it implements.

5. Application of Uncertainty Quantification to Modeling of
Dynamic Penetration of Armor

As an example of how well the current state of the art in UQ can address Army-
relevant problems, existing UQ software is applied to a model case of dynamic
penetration of armor, illustrated in Fig. 2. The UQ software used for most of the
following analyses is Dakota,4 since it is widely used and has a broad range of
well-documented features. Penetration simulations are done with CTH,70 an Eule-
rian finite element code, and the setup for these simulations largely follows that
of Hornbaker.71 The penetrator is a cylindrical 90%W–7%Fe–3%Ni tungsten alloy
131W rod, tapered at one end, with a diameter of 0.91 cm and a length of 13.1 cm.
The initial velocity of the penetrator is 1.28 km/s. The witness (i.e., the target) is
rolled homogeneous armor (RHA), whose depth is taken to be effectively semi-
infinite. To track the QoI, that is, the penetration depth of the projectile, 20 tracers
are placed along the length of the projectile, and 4 tracers are placed on a plane
15 cm from the front of the target. The latter 4 tracers are evenly spaced from each
other and approximately 10.5 cm away from the z-axis, which is also the center line
along the length of the projectile. The projectile moves in the positive z-direction.
The penetration depth, then, is estimated according to the following formula,

PD = 15 cm−
[
max({Zp

1 , Z
p
2 , . . . })−

Zw
1 + Zw

2 + Zw
3 + Zw

4

4

]
, (1)

where Zp
i is the z-coordinate of the ith tracer on the penetrator, and Zw

i is the z-
coordinate of the ith tracer on the witness. The Johnson–Cook model72 is used for
both the penetrator and the witness. In this model, the von Mises flow stress is taken
to be

σflow = (A+Bεn)

(
1 + C ln

ε̇

ε̇0

)[
1−

(
T − Troom

Tmelt − Troom

)m]
, (2)

where ε, ε̇, and T are the equivalent plastic strain, the plastic strain rate, and the
temperature, and A, B, n, C, and m are fitting parameters. Parameter Tmelt is the
melting temperature of the material. The room temperature, Troom, is taken to be
298 K, and ε̇0 is 1 s−1. The baseline material parameters for the penetrator and
witness materials are taken from Hornbaker71 and shown in Table 1. The calculated
penetration depth and wall clock time for a given simulation depend upon the size of

23

Approved for public release; distribution is unlimited.

the finite elements in the regular mesh used in CTH, as shown in Table 2. The results
in that table are from simulations executed on 2 nodes of a Cray XC40 computing
cluster. Each node of the cluster has 32 Intel Xeon E5-2698 v3 cores, each with a
clock speed of 2.3 GHz. The material parameters for these simulations are those in
Table 1. Using a coarse mesh with an element size of 0.2 cm leads to a wall clock
time about 175 times smaller than the one for the finer mesh with elements of size
0.05 cm, while underestimating the penetration depth by about 15%.

Fig. 2 Diagram of example dynamic armor penetration problem. The penetrator is a cylin-
drical 90%W–7%Fe–3%Ni tungsten alloy 131W rod, tapered at one end, with dimensions of
0.91 cm in diameter and 13.1 cm in length. The target is rolled homogeneous armor (RHA),
whose depth is taken to be effectively semi-infinite.

24

Approved for public release; distribution is unlimited.

Table 1 Baseline Johnson–Cook plasticity parameters and Poisson’s ratio (ν) for the penetra-
tor and witness materials

Parameter Penetrator Witness

A (MPa) 1507 780
B (MPa) 176.6 780
C 0.016 0.004
n 0.12 0.106
m 1.00 1.00
Tmelt (K) 1723 1783
ν 0.310 0.294

Table 2 Calculated penetration depth and wall clock time versus element size, given baseline
material parameters

Element size (cm) Penetration depth (cm) Wall clock time

0.05 8.7 17 h, 30 min
0.1 8.2 1 h, 20 min
0.2 7.5 6 min

5.1 Sensitivity Analysis
The modified MOAT algorithm,33 as implemented within Dakota,4 is used to com-
pute sensitivity indices. This algorithm takes the following as input: (1) the desired
number of samples of the computational model and (2) the number of levels, that is,
the number of discrete values that each parameter can take on. For each parameter,
the algorithm computes 2 indices, µ∗, a first-order sensitivity index that indicates
how the response of the model is directly affected by changes to an input param-
eter, and σ, a second-order sensitivity index that indicates how much interaction a
parameter has with other parameters.

A coarse mesh (0.2-cm element size) is used here for SA, since the values of the
penetration depth are of less importance than how they vary with the model param-
eters. While there is wide range of model parameters that could potentially be taken
as uncertain,71 for the purposes of this example study, only the parameters in Ta-
ble 1 are taken as uncertain here. Initially, the values of the uncertain parameters are
taken to be within ±10% of their baseline values, and MOAT runs are performed
for several numbers of samples and levels. For the MOAT run with 105 samples,
4 levels are used. The MOAT runs with 1500 and 3000 samples use 4, 8, 16, and
32 levels. The results of these runs are summarized in Fig. 3, where the error bars
are used to indicate the minimum and maximum values of µ∗ and σ for each pa-

25

Approved for public release; distribution is unlimited.

rameter across all the runs. According to this MOAT analysis, the penetration depth
is most sensitive to the Johnson–Cook parameters A and B of the witness, though
the melting temperature of the penetrator appears to have significant second-order
sensitivities.

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0.09

 0.1

 0.11

 0.12

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

σ

µ*

aP

bP

cP

mP

nP

tP

νP

aW
bW

cW

mW

nW

tW

νW

Fig. 3 MOAT results, assuming that all uncertain parameters are within±10% of their base-
line values

To corroborate the results from the MOAT runs, a second SA method is used, the
FAST algorithm.37 Since this algorithm is not available in the version of Dakota
used for these analyses, the implementation of FAST from PSUADE22 is used here.
The results from applying the FAST method are to be compared to those of the
MOAT analyses employing 3000 samples. However, implementation of the FAST
method restricts the number of samples used to be certain integer values, so the
number of samples used with this method is not 3000 as in MOAT, but rather 3657.
A comparison of the sensitivity indices {µ∗i } from the MOAT method with sensi-
tivity indices from the FAST method is shown in Fig. 4, and the results from the
2 methods appear to confirm each other. The approximate computational costs of
running sensitivity analyses with MOAT and FAST are shown in Table 3.

26

Approved for public release; distribution is unlimited.

Table 3 Approximate computational costs of sensitivity analysis

Method Number of samples Estimated CPU hours

MOAT 3000 19,000
FAST 3657 23,000

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

aP bP cP mP nP tP νP aW bW cW mW nW tW νW

MOAT (3000 samples, 32 levels, normalized)
FAST (3657 samples, normalized)

Fig. 4 Comparison of sensitivity indices {µ∗
i } from the MOAT method with sensitivity indices

from the FAST method, assuming that all uncertain parameters are within ±10% of their
baseline values. Sensitivity indices have been normalized so that the largest index equals one.

As mentioned before, in the previous analysis, the values of the uncertain parame-
ters are taken to be within ±10% of their baseline values. However, an expert opin-
ion73 has indicated that the uncertainty bounds for Johnson–Cook parameters C, n,
and m should be revised, and recommends that C be taken to be within [0, 0.04], n
be taken to be within [0.02, 0.15], and m be within [0.85, 1.15], due to problems in
how the Johnson–Cook functional form accounts for the strain rate and temperature
sensitivity. These new bounds have been applied to the Johnson–Cook parameters
of both penetrator and witness, leading to the SA results shown in Fig. 5, where the
penetration depth is most sensitive to the Johnson–Cook parameters C and n of the
witness. Taking into account both sets of sensitivity analyses, the 4 most sensitive
parameters are found to be A, B, C, and n of the witness.

27

Approved for public release; distribution is unlimited.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

aP bP cP mP nP tP νP aW bW cW mW nW tW νW

MOAT (3000 samples, 32 levels, normalized)
FAST (3657 samples, normalized)

Fig. 5 Comparison of sensitivity indices {µ∗
i } from the MOAT method with sensitivity in-

dices from the FAST method, using revised uncertain bounds. Sensitivity indices have been
normalized so that the largest index equals one.

5.2 Uncertainty Propagation through Coarse Computational Model
The initial rounds of uncertainty propagation analysis have been applied to a coarse
discretization of the dynamic penetration model, with an element size of 0.2 cm.
Simulations have been performed for three sets of uncertain parameters: all the
Johnson–Cook parameters and Poisson’s ratios for both penetrator and witness,
14 parameters in total; the Johnson–Cook parameters and Poisson’s ratio for the
witness only, 7 in total; and the 4 most sensitive parameters as determined from
the previously done sensitivity analyses (i.e., A, B, C, and n of the witness). The
bounds assumed for any uncertain parameters are shown in Table 4. These bounds
are the same as those used in the second round of sensitivity analyses, where most
of the bounds are taken to be ±10% of their baseline values, but the bounds for C,
n, and m are those recommended by an expert opinion.73 Parameters not treated as
uncertain are assigned the baseline values shown in Table 1.

28

Approved for public release; distribution is unlimited.

Table 4 Assumed bounds for the uncertain parameters in uncertainty propagation simulations

Parameter Penetrator Witness

A (MPa) 1356.3–1657.7 702.0–858.0
B (MPa) 158.94–194.26 702.0–858.0

C 0–0.04 0–0.04
n 0.02–0.15 0.02–0.15
m 0.85–1.15 0.85–1.15

Tmelt (K) 1550.7–1895.3 1604.7–1961.3
ν 0.279–0.341 0.2646–0.3234

5.2.1 Interval Analysis
Since probability distributions for the uncertain parameters are not known, interval
analyses are performed via Dakota. Two methods are used to estimate the mini-
mum and maximum values of the penetration depth. One method is crude but easily
parallelized. It involves taking an LHS of the computational model (i.e., the CTH
simulation of dynamic penetration). For each set of sampled model parameters, a
value for the penetration depth is determined, and the smallest and largest of these
values are taken to be the minimum and maximum values of the penetration depth.
One may obtain increasingly accurate estimates of the minimum and maximum
by extending the previous LHS (i.e., keeping the original samples from LHS and
adding additional samples, which in Dakota requires doubling the number of sam-
ples4) rather than generating a new set of samples afresh. The advantage of this
method is that the evaluations of the computational model for each LHS are inde-
pendent and thus can be run in parallel. The disadvantage is that the samples are
spread evenly over the parameter space rather than concentrated in the regions of
the space that would be more likely to yield minima and maxima of the compu-
tational model. The other method, efficient global optimization (EGO)74, samples
the computational model where a so-called “expected improvement” function is
maximal, so it generally requires far fewer evaluations of the model than the pre-
vious method. However, at each iteration of the EGO algorithm, the determination
of where to next sample the computational model depends upon the evaluations of
the model that have been done in previous iterations. This forces evaluations of the
computational model to be done in sequence rather than in parallel.

Figures 6 and 7 show the results of interval analyses that have been done using LHS
and EGO. The abscissas in these figures are for the number of samples used in LHS
only. (The numbers of samples used for the EGO runs are shown in Table 5.) For

29

Approved for public release; distribution is unlimited.

both LHS and EGO, reducing the number of uncertain parameters leads to overes-
timating the minimum and underestimating the maximum values of the penetration
depth. The figures also show that LHS, even with a sample size of over 500,000,
consistently overestimates the minimum and almost consistently underestimates the
maximum. Furthermore, it does this while having a far greater computational cost
than EGO, as shown in Table 5. The computational cost of EGO does depends, of
course, on the number of iterations needed to reach convergence within a certain
tolerance (and this tolerance is hard-coded in Dakota’s implementation of EGO).
It also depends strongly on the number of uncertain parameters, in contrast to the
interval analyses using LHS.

 4.8

 4.9

 5

 5.1

 5.2

 5.3

 5.4

 5.5

 5.6

 0 100000 200000 300000 400000 500000 600000

P
en

et
ra

tio
n

de
pt

h
(c

m
)

Number of samples

SA JC params, LHS
SA JC params, EGO

Witness JC params, LHS
Witness JC params, EGO

All JC params, LHS
All JC params, EGO

Fig. 6 Minimum penetration depth as a function of the number of samples used in LHS, using
coarse computational model

 7.6

 7.8

 8

 8.2

 8.4

 8.6

 8.8

 9

 9.2

 0 100000 200000 300000 400000 500000 600000

P
en

et
ra

tio
n

de
pt

h
(c

m
)

Number of samples

SA JC params, LHS
SA JC params, EGO

Witness JC params, LHS
Witness JC params, EGO

All JC params, LHS
All JC params, EGO

Fig. 7 Maximum penetration depth as a function of the number of samples used in LHS, using
coarse computational model

30

Approved for public release; distribution is unlimited.

Table 5 Interval analysis results with approximate computational cost, using coarse computa-
tional model

Method
Number of
uncertain

parameters

Number of
samples

Minimum
(cm)

Maximum
(cm)

Estimated
CPU hours

4 524,288 5.26757 8.61692 3× 106

LHS 7 524,288 5.13744 8.71716 3× 106

14 524,288 5.08354 8.8207 3× 106

4 25 5.22289 8.54611 160
EGO 7 45 4.97696 8.90132 290

14 126 4.87181 9.11674 800

5.2.2 Aleatoric Uncertainty Propagation
In addition to the interval analysis, uncertainty propagation methods suited for
aleatoric uncertainties are also applied to the dynamic penetration problem. How-
ever, since probability distributions for the uncertain parameters are not known,
the results of these analyses should be treated with caution. In order to apply the
methods for aleatoric uncertainties, the probability density functions of the uncer-
tain parameters are taken to be uniform, with the bounds as shown in Table 4. Two
methods are used to estimate the moments of the probability density function of
the penetration depth: Monte Carlo using LHS, and stochastic collocation using
Smolyak sparse grids. Both of these are done with Dakota.

Tables 6 through 8 show the mean, standard deviation, skewness, and kurtosis of
the Latin hypercube samples that have been used in the interval analysis discussed
in Section 5.2.1. In the source code of Dakota, the calculated skewness and kurtosis
are equivalent to the following formulas found in Joanes and Gill.75

G1 =

√
M(M − 1)

M − 2

m3

m
3/2
2

, (3)

G2 =
M − 1

(M − 2)(M − 3)

{
(M + 1)

[
m4

m2
2

− 3

]
+ 6

}
, (4)

where M is the number of samples and

mr =
1

M

M∑
i=1

(xi − x̄)r, (5)

where xi is one of theM samples of the QoI, and x̄ is the mean of the QoI. The num-

31

Approved for public release; distribution is unlimited.

ber of uncertain parameters changes the values to which the moments of the samples
appear to have converged, and this effect is stronger for higher order moments. The
mean varies from about 6.63 to 6.67 cm, a relative difference of about 0.6%. The
standard deviation varies from about 0.55 to 0.57 cm, a relative difference of about
4%. For the kurtosis in particular, if only the 4 most sensitive parameters are taken
as uncertain, it is approximately −0.72, but if all 14 of the parameters in Table 1
are taken as uncertain, it becomes closer to −0.56, a relative difference of 28%.

Table 6 Moments of estimated probability distribution of penetration depth, determined via
LHS applied to a coarse model, where the 4 most sensitive parameters are taken as uncertain

Number of
samples Mean (cm)

Standard
deviation

(cm)
Skewness Kurtosis

128 6.62668 0.557501 0.189498 −0.961469
256 6.62592 0.553948 0.295482 −0.729879
512 6.62629 0.547239 0.205096 −0.726831

1,024 6.62706 0.547204 0.20364 −0.702608
2,048 6.62856 0.548484 0.208008 −0.752213
4,096 6.62902 0.550569 0.242908 −0.744212
8,192 6.62906 0.549154 0.237961 −0.729982

16,384 6.62874 0.548376 0.231745 −0.72422
32,768 6.62888 0.548611 0.233957 −0.723087
65,536 6.62905 0.548475 0.232121 −0.727582
131,072 6.6293 0.548469 0.226063 −0.73075
262,144 6.62938 0.548561 0.224258 −0.726403
524,288 6.63129 0.549032 0.225786 −0.721545

32

Approved for public release; distribution is unlimited.

Table 7 Moments of estimated probability distribution of penetration depth, determined via
LHS applied to a coarse model, where the Johnson–Cook parameters and Poisson’s ratio of
the witness are taken as uncertain

Number of
samples Mean (cm)

Standard
deviation

(cm)
Skewness Kurtosis

128 6.65118 0.574996 0.052879 −0.822637
256 6.64969 0.568117 0.105518 −0.862397
512 6.64967 0.561954 0.166596 −0.72365

1,024 6.64932 0.56002 0.212136 −0.658223
2,048 6.64954 0.559955 0.2174 −0.653254
4,096 6.64999 0.560162 0.192965 −0.648086
8,192 6.65021 0.560195 0.162296 −0.693831

16,384 6.65009 0.560443 0.187207 −0.636809
32,768 6.65016 0.560721 0.189291 −0.658717
65,536 6.64997 0.560595 0.190039 −0.663245
131,072 6.64995 0.560444 0.188385 −0.673174
262,144 6.64991 0.560693 0.191832 −0.676633
524,288 6.64988 0.560611 0.192973 −0.672354

Table 8 Moments of estimated probability distribution of penetration depth, determined via
LHS applied to a coarse model, where all Johnson–Cook parameters and Poisson’s ratios are
taken as uncertain

Number of
samples Mean (cm)

Standard
deviation

(cm)
Skewness Kurtosis

128 6.6701 0.557533 0.017908 −0.832316
256 6.66744 0.555064 0.056735 −0.741171
512 6.66678 0.561462 0.209637 −0.481117

1,024 6.66813 0.566678 0.238629 −0.457562
2,048 6.66784 0.564511 0.209327 −0.48841
4,096 6.66838 0.567589 0.184448 −0.574621
8,192 6.66883 0.567524 0.211078 −0.555243

16,384 6.66835 0.568057 0.210512 −0.564959
32,768 6.66838 0.568521 0.21297 −0.565021
65,536 6.66835 0.568256 0.212324 −0.545928
131,072 6.66817 0.567895 0.212661 −0.546767
262,144 6.66814 0.568206 0.21089 −0.555352
524,288 6.66817 0.568183 0.208243 −0.557963

33

Approved for public release; distribution is unlimited.

Tables 9 through 11 show the moments calculated in the stochastic collocation runs.
These moments are determined in Dakota by numerical integration, using the points
of the sparse grid as quadrature points.8 The number of samples (i.e., the number
of grid points) is determined from the sparse grid level and the number of uncer-
tain parameters. A comparison of Tables 6 and 9 shows that for the cases where
the four most sensitive parameters are taken as uncertain, the results from LHS and
stochastic collocation are largely consistent. However, as the number of uncertain
parameters increases, the variation seen in the values of the moments also increases.
This is starkly apparent in Fig. 8, where stochastic collocation appears particularly
ill-behaved. Further ill behavior can be seen in the negative variance shown in Ta-
ble 11. Since the standard deviation is the square root of the variance, such a neg-
ative value is obviously incorrect. Similar ill behavior from stochastic collocation
has been observed by Tsuji et al.,76 who attributed a calculated negative variance to
the negative weights in numerical quadrature applied to a highly oscillatory compu-
tational model (in this case, scattering of high-frequency waves). Here, though, the
computational model is dynamic penetration, which is not necessarily oscillatory
per se. The model entails discontinuities in displacement fields, since it involves
fracture, but this may not necessarily entail discontinuities or other non-smoothness
in the QoI (i.e., the penetration depth). However, the coarse discretization employed
by the computational model used here could introduce non-smoothness in the QoI,
and Fig. 9 indicates that this is in fact the case. This figure shows the calculated
values of the penetration depth as a function of the Johnson–Cook parameter C of
the witness, at varying values of mesh element size, with the Johnson–Cook param-
eter n of the witness held constant at n = 0.11 and all other parameters are held
constant at their baseline values. Coarsening the mesh does more than just lead to
underestimation of the penetration depth; it also introduces artifacts that artificially
roughen the solution for it. This would indicate that given a properly refined mesh,
stochastic collocation would be more well-behaved.

34

Approved for public release; distribution is unlimited.

Table 9 Moments of estimated probability distribution of penetration depth, determined via
stochastic collocation applied to a coarse model, where the 4 most sensitive parameters are
taken as uncertain

Sparse grid
level

Number of
samples Mean (cm)

Standard
deviation

(cm)
Skewness Kurtosis

1 9 6.6372 0.571718 −0.003583 −2.07818
2 49 6.62832 0.543583 0.214062 −0.752549
3 209 6.62883 0.552371 0.291884 −0.767651
4 705 6.63528 0.542335 0.14579 −0.731395
5 1,985 6.64836 0.62377 0.398902 −0.790707
6 4,865 6.62821 0.553691 0.225577 −0.775033
7 10,369 6.62333 0.536665 0.258248 −0.584716
8 19,841 6.63093 0.550355 0.231678 −0.748186
9 35,201 6.63016 0.551521 0.208562 −0.760429

10 57,729 6.62727 0.546689 0.232657 −0.734721
11 90,497 6.63014 0.549362 0.229378 −0.729081

Table 10 Moments of estimated probability distribution of penetration depth, determined via
stochastic collocation applied to a coarse model, where the Johnson–Cook parameters and
Poisson’s ratio of the witness are taken as uncertain

Sparse grid
level

Number of
samples Mean (cm)

Standard
deviation

(cm)
Skewness Kurtosis

1 15 6.6229 0.579427 0.062287 −2.12148
2 127 6.75694 0.544227 −0.390457 −0.577686
3 799 6.60178 0.57202 0.520205 −0.571376
4 4,047 6.60138 0.533004 0.407697 −0.141323
5 17,263 6.70644 0.577721 −0.108599 −0.785255
6 63,967 6.61358 0.556794 0.404215 −0.712062

35

Approved for public release; distribution is unlimited.

Table 11 Moments of estimated probability distribution of penetration depth, determined
via stochastic collocation applied to a coarse model, where all Johnson–Cook parameters and
Poisson’s ratios are taken as uncertain. Red text is used to highlight an obviously faulty value.

Sparse grid
level

Number of
samples Mean (cm) Variance

(cm2) Skewness Kurtosis

1 29 6.83208 0.292281 −1.11537 −0.986829
2 449 6.55093 0.295054 0.65924 −0.712058
3 4,929 6.71718 0.451761 0.313725 −1.18332
4 42,785 5.84996 −0.777013 NA NA

 6.55

 6.6

 6.65

 6.7

 6.75

 6.8

 6.85

 1 10 100 1000 10000 100000 1e+06

P
en

et
ra

tio
n

de
pt

h
(c

m
)

Number of samples

SC, SA params
LHS, SA params

SC, witness params
LHS, witness params

SC, all params
LHS, all params

Fig. 8 Calculated values of the mean as a function of the number of samples, for both LHS
and stochastic collocation applied to a coarse model

36

Approved for public release; distribution is unlimited.

 6

 6.5

 7

 7.5

 8

 8.5

 9

 9.5

 0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04

P
en

et
ra

tio
n

de
pt

h
(c

m
)

cW

h = 0.2 cm
h = 0.1 cm

h = 0.05 cm

Fig. 9 Calculated penetration depth as a function of Johnson–Cook parameter C of the wit-
ness, at varying values of mesh element size h. Johnson–Cook parameter n of the witness is
held constant at n = 0.11. All other parameters are held constant at their baseline values.

5.3 Uncertainty Propagation through Emulator of Refined
Computational Model

The length of time needed to run a refined computational model of dynamic pene-
tration, that is, one with an element size of at least 0.05 cm, makes certain compu-
tational analyses intractable. An interval analysis with EGO would be an example
of this. Even if only the 4 most sensitive parameters are taken as uncertain, then
an interval analysis will likely require about 25 samples, given the results shown in
Table 5. Now the first few samples may be done in parallel. By default, in Dakota,
there would be (P + 1)(P + 2)/2 of these samples, where P is the number of
uncertain parameters, so for P = 4, the first 15 samples may be done in parallel,
leaving the next 10 to be done in sequence. As indicated in Table 2, each of these
samples takes about 17.5 h (on 64 processing cores), so the expected wall clock
time would be about 8 days, which is longer than allowed wall clock time for a
batch job on several computing clusters.77–80 Another example of a difficult analy-
sis would be stochastic collocation with 14 parameters. To determine convergence
in practice, collocation would need to be done for 4 sparse grid levels, but at the
fourth level, 42,785 samples are required, leading to a computational cost of about

37

Approved for public release; distribution is unlimited.

48 million CPU hours for that grid level alone. Because of this, emulators of the
refined computational model of dynamic penetration are employed.

The Surfpack functionality in Dakota has been used to create emulators for 3 sets
of uncertain parameters: all the Johnson–Cook parameters and Poisson’s ratios for
both penetrator and witness, 14 parameters in total; the Johnson–Cook parameters
and Poisson’s ratio for the witness only, 7 in total; and the 4 most sensitive parame-
ters as determined from the previously done sensitivity analysis (i.e.,A,B,C, and n
of the witness). As in the analyses described in Section 5.2, the bounds assumed for
any uncertain parameters are shown in Table 4, while parameters not treated as un-
certain are assigned the baseline values shown in Table 1. Kriging methods (with a
reduced quadratic trend) are used to build the emulators. Each emulator is fit to 128
samples of the refined model (with element size 0.05 cm). The placement of sam-
ples is determined via LHS. Dakota is used to perform 2 forms of cross-validation
on the emulators: k-fold (with 5 folds) and leave-one-out. For each cross-validation,
the root mean square (RMS) error and mean absolute error are calculated, and the
results of these tests are shown in Table 12.

Table 12 Cross-validation test results

5-fold Leave-one-out

Number of
parameters

RMS error
(cm)

Mean abs.
error (cm)

RMS error
(cm)

Mean abs.
error (cm)

4 0.0161882 0.0101982 0.0128969 0.0093863
7 0.0176734 0.0132631 0.0178954 0.0136456
14 0.0372402 0.0266779 0.0286012 0.0215368

While Dakota is capable of creating model emulators and saving them to files, at the
time of this writing it is not capable of reading back in those saved emulators and
using them for further analysis. Accordingly, we have modified our copy of Dakota
to add this functionality, and this copy is what has been used in the analyses dis-
cussed below. The patches for this functionality have been submitted to the Dakota
developers.

5.3.1 Interval Analysis
In order to compare the results from the emulator of the fine model with the pre-
vious results from the coarse model, 2 methods are initially used to estimate the
minimum and maximum values of the penetration depth: EGO and LHS. Again,

38

Approved for public release; distribution is unlimited.

Dakota’s implementations of these methods, which are discussed in more detail in
Section 5.2, have been used here. However, convergence problems have occurred
in the EGO implementation in Dakota, especially for the emulators with over 4
parameters, where the implementation terminates because it reaches the maximum
number of samplings of the computational model (which has a hard-coded cap of
89,980 within Dakota), instead of terminating due to finding an extremum. Because
of this, EGO is replaced with an evolutionary algorithm (EA) in subsequent interval
analyses. Unlike EGO, where the number of samplings is dependent on a conver-
gence tolerance, the EA implementation in Dakota proceeds until either the number
of iterations or the number of samplings of the computational model reaches a user-
specified maximum value.4 Hence, in subsequent figures, the extrema determined
from EA are plotted as a function of the number of samplings of the computational
model. Like EGO, EA forces a serialization of the sampling of the computation
model. That is, at each iteration of EA, the determination of where to next sample
the computational model depends upon the evaluations of the model that have been
done in previous iterations.

Table 13 and Figs. 10 and 11 show the results of interval analyses that have been
done using LHS and EA. For both LHS and EA, reducing the number of uncertain
parameters leads to overestimating the minimum and underestimating the maxi-
mum values of the penetration depth. The figures also show that LHS, even with
a sample size of over 500,000, consistently overestimates the minimum and un-
derestimates the maximum. These results are similar to the ones in Section 5.2.1.
However, most of these results have been obtained on a Linux workstation rather
than a computational cluster, because they have been determined from computa-
tionally cheap emulators, so the overall computation time is usually on the order of
minutes. The computational costs of EA are shown in Table 14, and it is apparent
that the cost for EA here is not strongly dependent on the number of parameters.

39

Approved for public release; distribution is unlimited.

Table 13 Interval analysis results using emulator of refined computational model

Method
Number of
uncertain

parameters

Number of
samples to
determine
minimum

Number of
samples to
determine
maximum

Minimum
(cm)

Maximum
(cm)

4 524,288 524,288 5.9974 9.99367
LHS 7 524,288 524,288 5.8905 10.50262

14 524,288 524,288 5.82182 10.40303

4 6,000 6,000 5.93536 10.07932
EA 7 65,561 65,555 5.63299 10.76256

14 524,373 524,326 5.33994 10.95350

Table 14 Computational costs of EA using emulator of refined computational model

Number of
uncertain

parameters

Number of
samples to
determine
minimum

Number of
samples to
determine
maximum

CPU time
(s)

4 6,000 6,000 3617.11
7 65,561 65,555 35.34
14 524,373 524,326 248.72

40

Approved for public release; distribution is unlimited.

Fig. 10 Minimum penetration depth as a function of the number of samples used in LHS,
using emulator of refined computational model

Fig. 11 Maximum penetration depth as a function of the number of samples used in LHS,
using emulator of refined computational model

41

Approved for public release; distribution is unlimited.

5.3.2 Aleatoric Uncertainty Propagation
In addition to the interval analysis, uncertainty propagation methods suited for
aleatoric uncertainties are also applied to the dynamic penetration problem. The
methods used to estimate the moments of the probability density function of the
penetration depth, as well as the implementations of these methods, are the same
ones that have been applied to the coarse computational model in Section 5.2.2:
Monte Carlo using LHS and stochastic collocation using Smolyak sparse grids.
Again, since probability distributions for the uncertain parameters are not known,
the results of these analyses should be treated with caution. In order to apply the
methods for aleatoric uncertainties, the probability density functions of the uncer-
tain parameters are taken to be uniform, with the bounds as shown in Table 4.

Tables 15 through 17 show the mean, standard deviation, skewness, and kurtosis of
the Latin hypercube samples that have been used in the interval analysis discussed
in Section 5.3.1. Skewness and kurtosis have been calculated using the formulas
shown in Eqs. 3 and 4. Again, the number of uncertain parameters changes the val-
ues to which the moments of the samples appear to have converged, and this effect
is stronger for higher order moments. The mean varies from about 7.86 to 7.89 cm,
a relative difference of about 0.4%. The standard deviation varies from about 0.66
to 0.68 cm, a relative difference of about 3%. For the kurtosis in particular, if only
the 4 most sensitive parameters are taken as uncertain, it is approximately −0.49,
but if all 14 of the parameters in Table 1 are taken as uncertain, it becomes closer to
−0.44, a relative difference of 11%.

Tables 18 through 20 show the moments calculated in the stochastic collocation
runs. These results are consistent with the LHS results from Tables 15 through 17,
and they show none of the ill behavior that is seen in the stochastic collocation
results for the coarse model. Furthermore, unlike the case with the coarse model,
these stochastic collocation results converge more quickly than the corresponding
LHS results. Figure 12 illustrates this by plotting the estimated relative error in the
mean versus the number of samples.

These results, much like the results from Section 5.3.1, usually take only minutes
because they have been determined from computationally cheap emulators. The
computational costs of stochastic collocation in particular are shown in Table 21.

42

Approved for public release; distribution is unlimited.

Table 15 Moments of estimated probability distribution of penetration depth, determined via
LHS applied to an emulator of a refined model, where the 4 most sensitive parameters are
taken as uncertain

Number of
samples Mean (cm)

Standard
deviation

(cm)
Skewness Kurtosis

128 7.860942 0.671751 0.214417 −0.780524
256 7.861443 0.666484 0.305348 −0.506901
512 7.861390 0.657371 0.191849 −0.504726

1,024 7.861731 0.657898 0.190248 −0.469401
2,048 7.862261 0.658083 0.202693 −0.518278
4,096 7.862414 0.659850 0.243553 −0.506483
8,192 7.862314 0.658545 0.235649 −0.490406

16,384 7.862266 0.657494 0.224716 −0.489922
32,768 7.862431 0.657890 0.226145 −0.489605
65,536 7.862375 0.657438 0.224686 −0.495513
131,072 7.862323 0.657298 0.219203 −0.497210
262,144 7.862369 0.657512 0.216640 −0.492003
524,288 7.862408 0.657653 0.219913 −0.490080

Table 16 Moments of estimated probability distribution of penetration depth, determined via
LHS applied to an emulator of a refined model, where the Johnson–Cook parameters and
Poisson’s ratio of the witness are taken as uncertain

Number of
samples Mean (cm)

Standard
deviation

(cm)
Skewness Kurtosis

128 7.878764 0.693531 0.093858 −0.572949
256 7.877735 0.685709 0.143252 −0.644030
512 7.878390 0.680854 0.215643 −0.464405

1,024 7.878854 0.679304 0.259640 −0.376152
2,048 7.878791 0.678602 0.269414 −0.365374
4,096 7.878548 0.678936 0.242118 −0.363966
8,192 7.878413 0.678761 0.204815 −0.423998

16,384 7.878558 0.679683 0.235691 −0.350584
32,768 7.878527 0.679589 0.238237 −0.377591
65,536 7.878521 0.679489 0.239495 −0.381770
131,072 7.878470 0.679332 0.236238 −0.397288
262,144 7.878483 0.679660 0.239759 −0.401954
524,288 7.878492 0.679633 0.241657 −0.396144

43

Approved for public release; distribution is unlimited.

Table 17 Moments of estimated probability distribution of penetration depth, determined
via LHS applied to an emulator of a refined model, where all Johnson–Cook parameters and
Poisson’s ratios are taken as uncertain

Number of
samples Mean (cm)

Standard
deviation

(cm)
Skewness Kurtosis

128 7.887400 0.670496 0.078593 −0.628344
256 7.886947 0.668399 0.086020 −0.553926
512 7.888593 0.674503 0.219055 −0.361933

1,024 7.889483 0.679516 0.225833 −0.366981
2,048 7.889293 0.677243 0.185826 −0.378712
4,096 7.889428 0.680186 0.165514 −0.464165
8,192 7.889521 0.679740 0.205251 −0.440576

16,384 7.889599 0.680939 0.208647 −0.451748
32,768 7.889653 0.681484 0.210668 −0.452663
65,536 7.889630 0.681646 0.211492 −0.429366
131,072 7.889645 0.681223 0.212860 −0.429911
262,144 7.889667 0.681586 0.211442 −0.438300
524,288 7.889664 0.681610 0.208760 −0.439043

Table 18 Moments of estimated probability distribution of penetration depth, determined via
stochastic collocation applied to an emulator of a refined model, where the 4 most sensitive
parameters are taken as uncertain

Sparse grid
level

Number of
samples Mean (cm)

Standard
deviation

(cm)
Skewness Kurtosis

1 9 7.857600 0.645780 0.027160 −2.058740
2 49 7.864780 0.657830 0.222844 −0.589014
3 209 7.862480 0.657247 0.222194 −0.461234
4 705 7.862320 0.657826 0.219210 −0.497957
5 1,985 7.862380 0.657763 0.220081 −0.493212
6 4,865 7.862370 0.657759 0.220166 −0.493194
7 10,369 7.862370 0.657759 0.220171 −0.493193

44

Approved for public release; distribution is unlimited.

Table 19 Moments of estimated probability distribution of penetration depth, determined via
stochastic collocation applied to an emulator of a refined model, where the Johnson–Cook
parameters and Poisson’s ratio of the witness are taken as uncertain

Sparse grid
level

Number of
samples Mean (cm)

Standard
deviation

(cm)
Skewness Kurtosis

1 15 7.873470 0.665098 −0.027559 −2.116560
2 127 7.879140 0.681261 0.229545 −0.566297
3 799 7.878530 0.679870 0.242216 −0.389906
4 4,047 7.878540 0.679926 0.240589 −0.406856
5 17,263 7.878540 0.679927 0.240684 −0.405990
6 63,967 7.878540 0.679927 0.240676 −0.406026

Table 20 Moments of estimated probability distribution of penetration depth, determined
via stochastic collocation applied to an emulator of a refined model, where all Johnson–Cook
parameters and Poisson’s ratios are taken as uncertain

Sparse grid
level

Number of
samples Mean (cm)

Standard
deviation

(cm)
Skewness Kurtosis

1 29 7.892810 0.660604 −0.119872 −2.124830
2 449 7.889430 0.684504 0.217672 −0.636388
3 4,929 7.889680 0.681388 0.207447 −0.415551
4 42,785 7.889670 0.681634 0.206738 −0.441398
5 310,689 7.889670 0.681621 0.206899 −0.439740

45

Approved for public release; distribution is unlimited.

Table 21 Computational costs of stochastic collocation at the highest sparse grid level used,
given emulator of refined computational model

Number of
uncertain

parameters

Sparse grid
leven

Number of
samples

CPU time
(s)

4 7 10,369 10.26
7 6 63,967 121.83
14 5 310,689 2130.9

10-5

10-4

10-3

10-2

10-1

100 101 102 103 104 105 106

E
st

. r
el

. e
rr

 in
 m

ea
n

va
lu

e
(%

)

Number of samples

SA params, LHS
SA params, SC

Wit. params, LHS
Wit. params, SC
All params, LHS
All params, SC

Fig. 12 Estimated relative error in mean value as a function of the number of samples, for
both LHS and stochastic collocation applied to an emulator of a refined model

46

Approved for public release; distribution is unlimited.

6. Discussion and Conclusions
The survey of software discussed in Section 4 indicates the range of UQ software
that is available. Some of these works of software, such as Chaospy or QUESO,
have a relatively narrow focus, such as polynomial chaos or MCMC, while others,
like Dakota or PSUADE, are intended to offer a broad range of functionality. Some
of these, such as UQ-PyL, appear to be maintained by one or two developers, while
others, such as Dakota, are supported by a team of developers at an institution,
such as a national laboratory. So far, Dakota appears to be the most promising UQ
software out of what is currently available, at least with regard to uncertainty prop-
agation. However, even it was not entirely sufficient for the analyses described in
Section 5. It lacked a method of SA (that was supplied by PSUADE), and it required
modification to read back in the very saved model emulators that it created.

In the uncertainty propagation analyses of dynamic penetration of armor discussed
in Section 5, the intervals from the interval analyses are far from sharp. For the
coarse model, the width of the interval is about 64% of the estimated mean pene-
tration depth, and for the emulator of the refined model, the width is about 71% of
the mean. This lack of sharpness is also reflected in the results from the propaga-
tion of aleatoric uncertainty through the dynamic penetration simulations. Based on
Chebyshev’s inequality,81 the “true” value of the penetration depth has at least an
88.8% probability of being within 3 standard deviations from the mean.∗ If one were
to assume the coarse computational model is correct, this would indicate that the
true value is likely within an interval of about [4.96, 8.37] cm. For the fine model,
this would indicate that it is likely within an interval of about [5.84, 9.93] cm. In
principle, this lack of sharpness may be improved by having better estimates of
the uncertainties of the parameters. However, the uncertainty of at least one of
the parameters, the Johnson–Cook parameter C, is a reflection of how poorly the
Johnson–Cook strength model reflects how the stress-strain relationship in a metal
is affected by the stress rate,73 and Fig. 9 indicates that variation in this parameter is
responsible for a significant portion of the variability in the penetration depth. Re-
ducing the uncertainty due to this issue may be a matter of replacing the Johnson–
Cook strength model with a more accurate one.

∗For a Gaussian probability distribution, the true value would have about a 99.7% probability of
being within 3 standard deviations from the mean.81 However, since the probability distributions of
the model parameters are crudely estimated as uniform, the shape of the probability distribution of
the penetration depth is also a crude estimate and likely should not be treated as close to Gaussian.

47

Approved for public release; distribution is unlimited.

One can also see the so-called curse of dimensionality have some effect on the
uncertainty propagation analyses of dynamic penetration of armor. In the interval
analyses using EGO and EA, the number of samples needed to reach a converged
value for the extrema increases with the number of uncertain parameters. As pointed
out in Section 2.2, stochastic collocation methods are also affected by the curse, and
how this manifests itself in practice can be seen in how, for a given sparse level, the
number of samples needed increases with the number of parameters. For 4 param-
eters, 705 samples are needed; for 7 parameters, 4,047 samples are needed, and for
all 14 parameters, 42,785 samples are needed. However, the practical effect of this
is mitigated through the use of emulators. For example, given a sparse grid level of
4 and the coarse model using 14 parameters, the number of CPU hours for stochas-
tic collocation is about 42, 785× 64× 6 min ≈ 270, 000 h. As seen in Table 21, for
an even higher sparse grid level and the same number of parameters, the CPU time
for stochastic collocation with an emulator is about 36 min. In short, because the
emulators are so computationally inexpensive, even if the relative computational
cost explodes as the number of parameters increases, the absolute cost for a large
number of parameters can still be manageable. As pointed out in Section 2.4.2,
though, the construction of the emulators themselves can be subject to the curse of
dimensionality, which may limit the degree to which they can mitigate the practical
costs of the curse.

Future work on UQ with armor may expand the number of uncertain model param-
eters, use more precise characterizations of the uncertainties in those parameters,
and possibly use more accurate strength models.

48

Approved for public release; distribution is unlimited.

7. References

1. National Academies of Sciences, Engineering, and Medicine. 2015–2016 As-
sessment of the Army Research Laboratory. Washington (DC): The National
Academies Press; 2017.

2. Smith RC. Uncertainty quantification: theory, implementation, and applica-
tions. Philadelphia (PA): Society for Industrial and Applied Mathematics;
2013.

3. Oberkampf WL, Helton JC. Evidence theory for engineering applications. In:
Engineering Design Reliability Handbook; Nikolaidis E, Ghiocel DM, Sing-
hal S, editors. Boca Raton (FL): CRC Press; 2004 Dec; Chapter 10.

4. Adams BM et al. Dakota, a multilevel parallel object-oriented framework for
design optimization, parameter estimation, uncertainty quantification, and sen-
sitivity analysis: version 6.5 user’s manual. Albuquerque (NM): Sandia Na-
tional Laboratories; 2016 Nov.

5. O’Hagan A, Oakley JE. Probability is perfect, but we can’t elicit it perfectly.
Reliability Engineering & System Safety. 2004;85(1):239–248.

6. Roy CJ, Oberkampf WL. A comprehensive framework for verification, valida-
tion, and uncertainty quantification in scientific computing. Computer Methods
in Applied Mechanics and Engineering. 2011;200(25–28):2131–2144.

7. Chaospy documentation. 2016 [accessed 2017 Feb 1]. http://chaospy.
readthedocs.io/en/master/index.html.

8. Adams BM et al. Dakota, a multilevel parallel object-oriented framework for
design optimization, parameter estimation, uncertainty quantification, and sen-
sitivity analysis: version 6.5 theory manual. Albuquerque (NM): Sandia Na-
tional Laboratories; 2016 Nov.

9. McKay MD, Beckman RJ, Conover WJ. A comparison of three methods for
selecting values of input variables in the analysis of output from a computer
code. Technometrics. 1979;21(2):239–245.

10. Denny M. Introduction to importance sampling in rare-event simulations. Eu-
ropean Journal of Physics. 2001;22(4):403.

49

http://chaospy.readthedocs.io/en/master/index.html
http://chaospy.readthedocs.io/en/master/index.html

Approved for public release; distribution is unlimited.

11. Eldred M. Recent advances in non-intrusive polynomial chaos and stochastic
collocation methods for uncertainty analysis and design. In: 50th AIAA/AS-
ME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Confer-
ence; 2009 May; Palm Springs (CA). (AIAA; no. 2009–2274) American Insti-
tute of Aeronautics and Astronautics; c2009.

12. Crespo LG, Giesy DP, Kenny SP. Reliability-based analysis and design via
failure domain bounding. Structural Safety. 2009;31(4):306–315.

13. Adams BM et al. Dakota, a multilevel parallel object-oriented framework for
design optimization, parameter estimation, uncertainty quantification, and sen-
sitivity analysis: version 6.5 reference manual. Albuquerque (NM): Sandia
National Laboratories; 2016 Nov.

14. Jones DR. Direct global optimization algorithm. In: Encyclopedia of Optimiza-
tion; Floudas CA, Pardalos PM, editors. Boston (MA): Springer US; 2009. p.
725–735.

15. Suh D, Yook J. A method to determine basic probability assignment in con-
text awareness of a moving object. International Journal of Distributed Sensor
Networks. 2013;9(8).

16. Xu P, Deng Y, Su X, Mahadevan S. A new method to determine basic probabil-
ity assignment from training data. Knowledge-Based Systems. 2013;46:69–80.

17. Kennedy MC, O’Hagan A. Bayesian calibration of computer models. Jour-
nal of the Royal Statistical Society: Series B (Statistical Methodology).
2001;63(3):425–464.

18. Brooks S, Gelman A, Jones G, Meng XL, editors. Handbook of Markov Chain
Monte Carlo. Boca Raton (FL): CRC Press; 2011.

19. Helton JC, Johnson JD, Sallaberry CJ, Storlie CB. Survey of sampling-based
methods for uncertainty and sensitivity analysis. Reliability Engineering &
System Safety. 2006;91(10–11):1175–1209.

20. Saltelli A, Chan K, Scott EM, editors. Sensitivity analysis. Chichester (Eng-
land): John Wiley & Sons, Ltd.; 2000.

50

Approved for public release; distribution is unlimited.

21. Gan Y, Duan Q, Gong W, Tong C, Sun Y, Chu W, Ye A, Miao C, Di Z. A com-
prehensive evaluation of various sensitivity analysis methods: a case study with
a hydrological model. Environmental Modelling & Software. 2014;51:269–
285.

22. Tong C. PSUADE Short Manual (Version 1.7). Livermore (CA): Lawrence
Livermore National Laboratory; 2017 May.

23. Tripathy R, Bilionis I, Gonzalez M. Gaussian processes with built-in dimen-
sionality reduction: applications to high-dimensional uncertainty propagation.
Journal of Computational Physics. 2016;321:191–223.

24. Chouchoulas A, Shen Q. Rough Set-Based Dimensionality Reduction for Mul-
tivariate Adaptive Regression Splines. In: Rough Sets and Current Trends in
Computing: Second International Conference, RSCTC 2000 Banff, Canada,
October 16–19, 2000 Revised Papers; Ziarko W, Yao Y, editors. Berlin (Hei-
delberg): Springer Berlin Heidelberg; 2001. p. 144–151.

25. Diwekar U. Optimization Under Uncertainty. In: Introduction to Applied Op-
timization; 2nd ed.; New York (NY): Springer; 2008 ; Chapter 5.

26. Giunta AA, Eldred MS, Swiler LP, Trucano TG. Perspectives on optimization
under uncertainty: algorithms and applications. In: 10th AIAA/ISSMO Multi-
disciplinary Analysis and Optimization Conference; 2004 Aug; Albany (NY).
(AIAA; no. 2004–4451) American Institute of Aeronautics and Astronautics;
c2004.

27. High Performance Computing Centers @ DoD HPCMP. 2017 [accessed 2017
Jan 20]. https://centers.hpc.mil/.

28. OpenTURNS. 2016 [accessed 2016 Dec 22]. http://www.openturns.
org/.

29. Hunt M. PUQ: PRISM uncertainty quantification framework. c2010–2012 [ac-
cessed 2016 Dec 22]. http://c-primed.github.io/puq/.

30. Login vs. Service vs. Compute Nodes. 2013 [accessed 2017
Jan 18]. https://www.olcf.ornl.gov/kb_articles/

login-vs-service-vs-compute-nodes/.

51

https://centers.hpc.mil/
http://www.openturns.org/
http://www.openturns.org/
http://c-primed.github.io/puq/
https://www.olcf.ornl.gov/kb_articles/login-vs-service-vs-compute-nodes/
https://www.olcf.ornl.gov/kb_articles/login-vs-service-vs-compute-nodes/

Approved for public release; distribution is unlimited.

31. Stephens JA. Sandia National Laboratories, Albuquerque, NM. Personal com-
munication, 2016 Dec 2.

32. Dakota GUI Version 0.2 User Manual. 2016 [accessed 2017
Jan 23]. https://dakota.sandia.gov/content/

dakota-gui-version-02-user-manual.

33. Campolongo F, Cariboni J, Saltelli A. An effective screening design for
sensitivity analysis of large models. Environmental Modelling & Software.
2007;22(10):1509–1518.

34. Morris MD. Factorial sampling plans for preliminary computational experi-
ments. Technometrics. 1991;33(2):161–174.

35. Foundation FS. Frequently Asked Questions about the GNU Licenses.
2017 [accessed 2017 Jan 24]. https://www.gnu.org/licenses/

gpl-faq.html.

36. Foundation FS. GNU Lesser General Public License, version 2.1.
1999 [accessed 2017 Jan 24]. https://www.gnu.org/licenses/

old-licenses/lgpl-2.1.html.

37. Cukier RI, Fortuin CM, Shuler KE, Petschek AG, Schaibly JH. Study of the
sensitivity of coupled reaction systems to uncertainties in rate coefficients. I
Theory. The Journal of Chemical Physics. 1973;59(8):3873–3878.

38. Pi H, Peterson C. Finding the embedding dimension and variable dependen-
cies in time series. Neural Computation. 1994;6(3):509–520.

39. Breiman L, Friedman J, Stone CJ, Olshen RA. Classification and regression
trees. Boca Raton (FL): CRC Press; 1984.

40. Baudin M, Dutfoy A, Iooss B, Popelin AL. OpenTURNS: An Industrial
Software for Uncertainty Quantification in Simulation. In: Handbook of Un-
certainty Quantification; Ghanem R, Higdon D, Owhadi H, editors. Cham
(Switzerland): Springer International Publishing; 2016. p. 1–38.

41. Feinberg J, Langtangen HP. Chaospy: An open source tool for design-
ing methods of uncertainty quantification. Journal of Computational Science.
2015;11:46–57.

52

https://dakota.sandia.gov/content/dakota-gui-version-02-user-manual
https://dakota.sandia.gov/content/dakota-gui-version-02-user-manual
https://www.gnu.org/licenses/gpl-faq.html
https://www.gnu.org/licenses/gpl-faq.html
https://www.gnu.org/licenses/old-licenses/lgpl-2.1.html
https://www.gnu.org/licenses/old-licenses/lgpl-2.1.html

Approved for public release; distribution is unlimited.

42. Chaospy 2.2.0: Python Package Index. 2017 [accessed 2017 Feb 1]. https:
//pypi.python.org/pypi/chaospy.

43. The MIT License. 2017 [accessed 2017 Jan 25]. https://opensource.
org/licenses/MIT.

44. Estacio-Hiroms KC, Prudencio EE. QUESO User’s Manual. Austin (TX):
Center for Predictive Engineering and Computational Sciences, University of
Texas; 2013.

45. Prudencio EE, Schulz KW. The parallel C++ statistical library ‘QUESO’:
Quantification of uncertainty for estimation, simulation and optimization. In:
Euro-Par 2011: Parallel Processing Workshops; 2011 Aug; Bordeaux (France).
Springer; c2012. p. 398–407.

46. Foundation FS. Why you shouldn’t use the Lesser GPL for your next library.
2016 [accessed 2017 Jan 24]. https://www.gnu.org/licenses/

why-not-lgpl.html.

47. Question about QUESO’s formulation of forward problems. 2017 [ac-
cessed 2017 Jan 30]. https://groups.google.com/d/msg/

queso-users/ptkxrqG2JHk/rBMiEF8tBwAJ.

48. Patil A, Huard D, Fonnesbeck C. PyMC: Bayesian stochastic modelling in
Python. Journal of Statistical Software. 2010;35(1):1–81.

49. Salvatier J, Wiecki TV, Fonnesbeck C. Probabilistic programming in Python
using PyMC3. PeerJ Computer Science. 2016;2:e55.

50. PyMC User’s Guide. 2017 [accessed 2017 Feb 2]. http://pymcmc.

readthedocs.io/en/latest/.

51. Stan. 2017 [accessed 2017 Apr 5]. http://mc-stan.org/.

52. The 3-Clause BSD License. 2017 [accessed 2017 Feb 3]. https://

opensource.org/licenses/BSD-3-Clause.

53. Betancourt M. Re: Using external C++ code in Stan. 2017 [accessed
2017 Jul 14]. https://groups.google.com/d/msg/stan-users/
vs3A1uVmr1g/oA--zKaFCwAJ.

53

https://pypi.python.org/pypi/chaospy
https://pypi.python.org/pypi/chaospy
https://opensource.org/licenses/MIT
https://opensource.org/licenses/MIT
https://www.gnu.org/licenses/why-not-lgpl.html
https://www.gnu.org/licenses/why-not-lgpl.html
https://groups.google.com/d/msg/queso-users/ptkxrqG2JHk/rBMiEF8tBwAJ
https://groups.google.com/d/msg/queso-users/ptkxrqG2JHk/rBMiEF8tBwAJ
http://pymcmc.readthedocs.io/en/latest/
http://pymcmc.readthedocs.io/en/latest/
http://mc-stan.org/
https://opensource.org/licenses/BSD-3-Clause
https://opensource.org/licenses/BSD-3-Clause
https://groups.google.com/d/msg/stan-users/vs3A1uVmr1g/oA--zKaFCwAJ
https://groups.google.com/d/msg/stan-users/vs3A1uVmr1g/oA--zKaFCwAJ

Approved for public release; distribution is unlimited.

54. Kenny SP, Crespo LG, Giesy DP. UQTools: The Uncertainty Quantification
Toolbox—Introduction and Tutorial. Hampton (VA): National Aeronautics and
Space Administration (NASA); 2012 Apr.

55. The Uncertainty Quantification Toolbox. 2016 [accessed 2017 Feb 3]. https:
//uqtools.larc.nasa.gov/.

56. Crespo LG, Kenny SP, Giesy DP. Sampling-based strategies for the esti-
mation of probabilistic sensitivities. In: 50th AIAA/ASME/ASCE/AHS/ASC
Structures, Structural Dynamics, and Materials Conference; 2009 May; Palm
Springs (CA). (AIAA; no. 2009–2283) American Institute of Aeronautics and
Astronautics; c2009.

57. Wang C, Duan Q, Tong CH, Di Z, Gong W. A GUI platform for uncer-
tainty quantification of complex dynamical models. Environmental Modelling
& Software. 2016;76:1–12.

58. Wang C, Duan Q. UQ-PyL User Manual (Version 1.1). Beijing (China): Bei-
jing Normal University; 2015.

59. Foundation FS. GNU General Public License, version 3. 2007 [accessed 2017
Feb 3]. https://www.gnu.org/licenses/gpl.html.

60. Burges CJ. A tutorial on support vector machines for pattern recognition. Data
Mining and Knowledge Discovery. 1998;2(2):121–167.

61. Madsen H, Thyregod P. Introduction to general and generalized linear mod-
els. Boca Raton (FL): CRC Press; 2010.

62. SmartUQ – Quantify Every Uncertainty. 2017 [accessed 2017 Jan 31].
https://www.smartuq.com/.

63. SmartUQ’s Uncertainty Quantification Software Features. 2017 [accessed 2017
Feb 1]. https://www.youtube.com/watch?v=eQ8u58D-MR0.

64. COSSAN software. 2017 [accessed 2017 Feb 8]. http://www.cossan.
co.uk/.

65. Patelli E. An open computational framework for reliability based opti-
mization: presentation slides from Eleventh International Conference on

54

https://uqtools.larc.nasa.gov/
https://uqtools.larc.nasa.gov/
https://www.gnu.org/licenses/gpl.html
https://www.smartuq.com/
https://www.youtube.com/watch?v=eQ8u58D-MR0
http://www.cossan.co.uk/
http://www.cossan.co.uk/

Approved for public release; distribution is unlimited.

Computational Structures Technology, Dubrovnik (Croatia). 2012 [ac-
cessed 2017 Feb 8]. https://www.academia.edu/3151038/An_

open_computational_framework_for_reliability_based_

optimization.

66. MUQ: MIT Uncertainty Quantification Library. 2015 [accessed 2016 Dec 22].
http://muq.mit.edu/.

67. Parno M, Davis A, Wang Z, Feng C, Marzouk Y, Conrad P. MUQ: The MIT
Uncertainty Quantification Library Version 0.1 User’s Manual. Cambridge
(MA): Massachusetts Institute of Technology; 2014 Dec.

68. van Heesch D. Doxygen. 2016 [accessed 2017 Aug 1]. http://www.
doxygen.org.

69. Sargsyan K, Safta C, Chowdhary K, Castorena S, de Bord S, Debusschere B.
UQTk version 3.0.1 user manual. Sandia National Laboratories; 2016 Sep. Re-
port No.: SAND2016-9215.

70. Hertel ES, Jr., Bell RL, Elrick MG, Farnsworth AV, Kerley GI, Mcglaun JM,
Petney SV, Silling SA, Taylor PA, Yarrington L. CTH: A software family for
multi-dimensional shock physics analysis. In: Shock Waves @ Marseille I: Hy-
personics, Shock Tube & Shock Tunnel Flow; 1993 June; Marseille (France).
Springer; c1995. p. 377–382.

71. Hornbaker DJ. Quantifying uncertainty from computational factors in simu-
lations of a model ballistic system. Aberdeen Proving Ground (MD): Army
Research Laboratory (US); 2017 Aug. Report No.: ARL–TR–8074.

72. Johnson GR, Cook WH. A constitutive model and data for metals subjected to
large strains, high strain rates and high temperatures. In: Seventh International
Symposium on Ballistics: Proceedings; 1983 Apr; The Hague (Netherlands).
American Defense Preparedness Association; c1983. p. 541–547.

73. Becker R. US Army Research Laboratory, Aberdeen Proving Ground, MD.
Personal communication, 2017 Jan 9.

74. Jones DR, Schonlau M, Welch WJ. Efficient global optimization of expensive
black-box functions. Journal of Global Optimization. 1998;13(4):455–492.

55

https://www.academia.edu/3151038/An_open_computational_framework_for_reliability_based_optimization
https://www.academia.edu/3151038/An_open_computational_framework_for_reliability_based_optimization
https://www.academia.edu/3151038/An_open_computational_framework_for_reliability_based_optimization
http://muq.mit.edu/
http://www.doxygen.org
http://www.doxygen.org

Approved for public release; distribution is unlimited.

75. Joanes DN, Gill CA. Comparing measures of sample skewness and kur-
tosis. Journal of the Royal Statistical Society: Series D (The Statistician).
1998;47(1):183–189.

76. Xiu D, Tsuji P, Ying L. Fast method for high-frequency acoustic scattering
from random scatterers. International Journal for Uncertainty Quantification.
2011;1(2):99–117.

77. Cray XC40 (Conrad) User Guide. 2017 [accessed 2017 Jun 30].
https://www.navydsrc.hpc.mil/docs/conradUserGuide.

html#queueInfo.

78. SGI ICE X (Topaz) User Guide. 2017 [accessed 2017 Jun 30]. https://
www.erdc.hpc.mil/docs/topazUserGuide.html#queueInfo.

79. Cray XC40 (Excalibur) User Guide. 2017 [accessed 2017 Jun 30].
https://www.arl.hpc.mil/docs/excaliburUserGuide.

html#queueInfo.

80. SGI Ice X (Thunder) User Guide. 2017 [accessed 2017 Jun 30].
https://www.afrl.hpc.mil/docs/thunderUserGuide.html#

queueInfo.

81. NIST/SEMATECH e-Handbook of Statistical Methods: Approximate in-
tervals that contain most of the population values. 2017 [accessed
2017 Aug 9]. http://www.itl.nist.gov/div898/handbook/

prc/section2/prc261.htm.

56

https://www.navydsrc.hpc.mil/docs/conradUserGuide.html#queueInfo
https://www.navydsrc.hpc.mil/docs/conradUserGuide.html#queueInfo
https://www.erdc.hpc.mil/docs/topazUserGuide.html#queueInfo
https://www.erdc.hpc.mil/docs/topazUserGuide.html#queueInfo
https://www.arl.hpc.mil/docs/excaliburUserGuide.html#queueInfo
https://www.arl.hpc.mil/docs/excaliburUserGuide.html#queueInfo
https://www.afrl.hpc.mil/docs/thunderUserGuide.html#queueInfo
https://www.afrl.hpc.mil/docs/thunderUserGuide.html#queueInfo
http://www.itl.nist.gov/div898/handbook/prc/section2/prc261.htm
http://www.itl.nist.gov/div898/handbook/prc/section2/prc261.htm

Approved for public release; distribution is unlimited.

List of Symbols, Abbreviations, and Acronyms

ARL US Army Research Laboratory

BPA basic probability assignment

EA evolutionary algorithm

EGO efficient global optimization

FAST Fourier amplitude sampling test

GPL (GNU) General Public License

HPC high-performance computing

LGPL (GNU) Lesser General Public License

LHS Latin hypercube sampling

MARS multivariate adaptive regression splines

MCMC Markov chain Monte Carlo

MOAT Morris one-at-a-time

NASA National Aeronautics and Space Administration

OLS ordinary least-squares

OOU optimization under uncertainty

PBS Portable Batch System

QoI quantities of interest

RHA rolled homogeneous armor

RMS root mean square

SA sensitivity analysis

UQ uncertainty quantification

57

Approved for public release; distribution is unlimited.

INTENTIONALLY LEFT BLANK.

58

Approved for public release; distribution is unlimited.

1
(PDF)

DEFENSE TECHNICAL
INFORMATION CTR
DTIC OCA

2
(PDF)

DIR ARL
IMAL HRA

RECORDS MGMT
RDRL DCL

TECH LIB

1
(PDF)

GOVT PRINTG OFC
A MALHOTRA

1
(PDF)

DIR USARL
RDRL CIH C

J J RAMSEY

59

Approved for public release; distribution is unlimited.

INTENTIONALLY LEFT BLANK.

60

	List of Figures
	List of Tables
	Acknowledgments
	Introduction
	Overview of Uncertainty Quantification
	Classification of Uncertainties
	Uncertainty Propagation
	Inverse Problems
	Related Topics
	Sensitivity Analysis
	Model Emulation
	Optimization under Uncertainty

	Uncertainty Quantification and High-Performance Computing: General Issues
	High-Performance Computing Clusters and Their Typical Usage
	Interfacing of UQ Software and External Applications

	Survey of Available Uncertainty Quantification Software
	Dakota
	PSUADE
	OpenTURNS
	Chaospy
	QUESO
	PyMC and PyMC3
	Stan
	UQTools
	PUQ
	UQ-PyL
	SmartUQ
	OpenCOSSAN and COSSAN-X
	MUQ
	UQTk

	Application of Uncertainty Quantification to Modeling of Dynamic Penetration of Armor
	Sensitivity Analysis
	Uncertainty Propagation through Coarse Computational Model
	Interval Analysis
	Aleatoric Uncertainty Propagation

	Uncertainty Propagation through Emulator of Refined Computational Model
	Interval Analysis
	Aleatoric Uncertainty Propagation

	Discussion and Conclusions
	References
	List of Symbols, Abbreviations, and Acronyms
	Distribution List

