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1. Introduction
Practical applications incorporating topology appear in many fields, of which, obvi-
ous examples include the study of networks1 (e.g., graph theory∗), condensed matter
physics (e.g., the recent Nobel prize-winning work on topological phase transitions
by Thouless, Haldane, and Kosterlitz3–7), robotics,8 and, more recently, topological
data analysis.9 Also recently, there has been a growing literature on the use of al-
gebraic topological methods to solve coverage problems in sensor networks. This
approach is particularly valuable when computational geometric approaches are in-
solvable or intractable due to the lack of location information at the sensor (e.g., in
GPS-denied or GPS-spoofed environments). In general, the use of topology, which
abstracts the geometry of the problem, enables the solvability of certain sensor cov-
erage problems under a minimal set of assumptions. In this work, we are interested
in this last application, in particular, as it pertains to the sparse coverage problem.

The practical application of homology in the sensor network coverage problem was
introduced in the foundational work of Ghrist and Muhammad10 and de Silva et
al.11–13 Therein, nontrivial members in the first homology groups of the Čech com-
plex were shown to coincide with gaps in sensor coverage. Since the construction of
this complex is impossible without sensor position information, homological cov-
erage criteria are developed using Rips complexes that bound the Čech complex
and that can be inferred directly from communication links (connectivity) among
the sensors. These criteria on a simplicial complex representation of the sensor
network coverage have contributed to unique approaches of solving several sensor
network problems (e.g., coverage hole detection, coverage verification, hole local-
ization, and so on; see Section 2 for more details).

The sparse coverage problem aims to find a sparse (much smaller) set of sensors that
maintains the existing coverage or the desired coverage requirements. Contributions
to the problem are relevant for power- and time-savings in sensor networks, extend-
ing mission lifetime. In the homological sensor network, the problem is equivalent
to a homology-preserving reduction problem: How does one eliminate redundancy
in the simplicial complex without changing homology? The problem is certainly
feasible in a centralized fashion by “shrinking” found generators of nontrivial ho-
mology using boundary information.12,13 Greedy single node removal approaches

∗In fact, both graph theory and topology often are described to have originated from Euler’s
solution to the Königsberg bridge problem.2
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based on homology calculations14 or heuristic indicators15 have also been devel-
oped. Gossip-type algorithms enable distributed solutions,16,17 albeit at a significant
communication cost. This report discusses in greater detail the simple distributed
greedy approaches, presented previously,18 tackling this problem in a fenced sensor
network, including calculating homology changes locally, strong collapsing, and
calculating Euler characteristic changes locally.

Due to the inherent computational complexity involved in computations on a com-
binatorial object like a simplicial complex, the sparse cover problem also generally
contributes to answering Question 6 of de Silva and Ghrist12: “Is there a way to
compress the Rips complex in a pre-processing step without changing the appro-
priate homology group?” The classical solution is elementary collapsing,19 which
removes pairs of simplices at a turn. But greedy node removal can be significantly
more efficient since all the simplices created by the node can be removed at once.
Amazingly, we discover that one of the approaches, strong collapsing, is both more
efficient than elementary collapsing and has a minimal generator-preserving prop-
erty. This last property is relevant to both the sparse cover problem and the hole
localization problem in sensor networks.

The rest of the report is constructed as follows. The minimal assumptions needed
for topological/homological methods in sensor networks and the basic sparse cover
problem are presented in Section 2. A basic background of simplicial complexes,
homology, and their application in the sensor network coverage problem are de-
scribed in Section 3. The sparse coverage problem and 3 greedy distributed ap-
proaches are discussed in Section 4. Simulations results for a simple example are
detailed in Section 5.

2. Sensor Networks with Minimal Assumptions
We start with a basic description of a planar sensor network with minimal assump-
tions. Let the sensors be denoted by V = {v0, v1, . . . , vn} with locations denoted
by X = {x0, x1, . . . , xn} ⊂ D, where xi corresponds to vi for each i.

Assumption 1. Each sensor node has a unique ID.

Note, we do not assume that the sensors have knowledge of their locations. In fact,
we assume the opposite. There exist numerous approaches for tackling various sen-

2
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sor coverage problems when the sensor locations are known. The goal under a min-
imal assumptions approach is to determine what is possible with less information.

Assumption 2. Each sensor node can communicate with other nodes within a ra-
dius rc of its position.

Thus, if 2 nodes u and v are at positions xu and xv, they can communicate if
||xu − xv|| ≤ rc. This enables information exchange between neighboring nodes.
In particular, each node can share its ID with its neighbors (i.e., the other nodes in
its communication range) and each node is able to learn the unique IDs of each of
its neighbors as well as the unique IDs of all the neighbors of each of its neighbors,
and so on.

In addition to a uniform communication range for the sensor network, we also as-
sume a uniform disk graph model for the sensor network.

Assumption 3. Each sensor can make sensing observations within a radius rs of its
position.

Hence, the sensor cover is given by U(X ) =
⋃

iB(xi, rs), where B(xi, rs) is the
closed disk of radius rs centered at xi. Without location information, we will even-
tually require some assumption comparing the communication radius rc with the
sensing radius rs to determine what region U covers. But first, we require some
assumptions about the coverage domain.

Assumption 4. Each sensor lies in a compact, connected domain D ⊂ R2 and the
boundary ∂D of this domain is connected.

Under these rather basic assumptions (and with additional enabling assumptions for
the particular problem space or method), much has been accomplished in adapting,
in particular, homology-based methods to various basic sensor coverage problems:

1. detection of coverage holes (i.e., detecting if a hole or gap in coverage ex-
ists),10,17,20–25

2. detection or verification of coverage (i.e., ensuring there is no coverage gap
or hole),11,12,26–29

3
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3. discovery of a sparse cover,12,14–18

4. hole coverage repair or patching,12,21,30

5. pursuit and evasion games,12

6. location of coverage holes (i.e., finding a minimal cycle of nodes that circum-
ference a coverage hole or gap),17,20,22,24,31,32

7. event detection,33 and

8. mapping and route planning in an unknown environment.34–36

This list merely includes a good sampling of the applications that use homology as a
basis for tackling problems without location information and, in general, with min-
imal information. Some caveats require mention regarding the topological methods
in solving these problems (for some early examples, refer to the questions in de
Silva and Ghrist12). One example is that several of the methods for particular prob-
lems do not solve the complete problem. In fact, the initial coverage hole detection
approach only satisfied a sufficiency criterion and so it was possible for imaginary
coverage holes to be detected when the domain was, in fact, covered.10 This made
it a kind of over-coverage criterion. To address this and other related issues, there
exist several works examining the accuracy37–39 of various criteria or the vulnera-
bility40,41 of networks in the presence of sensor node failure.42

This report expands on the results reported previously18 and focuses on the problem
of finding a sparse cover using greedy approaches.

2.1 Sparse Coverage
The sparse coverage problem seeks to find as small a set as possible of existing
sensor nodes that can still maintain the same level of coverage of the domain if
the other nodes are removed. Generalizations or extensions of the problem include
finding a set that almost maintains the same level of coverage, finding a set or se-
quence of (independent) sets that each maintains coverage, and finding a sequence
of sets that maintains coverage over time but does not maintain coverage at any
given time (i.e., adapting the pursuit and evasion problem to solve the sparse cov-
erage problem). The motivation can be for power-savings and, hence, for extending
the coverage lifetime, or for time-savings, enabling the “extra” nodes to be available
for other non-sensing tasks.

4
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This work only addresses the basic sparse coverage problem, as first presented by
de Silva and Ghrist.12 For this, we require several more simple assumptions about
the coverage radii, the existence of fence nodes, and the cover.

Assumption 5. The sensing and communication radii satisfy the inequality

rs ≥
rc√

3
. (1)

This assumption guarantees that any part of D that intersects with the convex hull
of any collection of nodes that are pairwise no more than rc distance apart (and,
hence, can pairwise communicate) is covered by U(X ). In particular, for any triple
of sensor nodes that can pairwise communicate, the interior of the triangle of the
induced communication subgraph is covered (Fig. 1). An alternative approach is to
simply assume a “capture modality” that ensures the same guarantee.17

Fig. 1 Examples of communication links satisfying and failing the coverage criterion. Under
Assumption 5, the convex hull of every set of nodes that are pairwise-connected in the com-
munication graph is covered. Coverage in the Rips complex ensures coverage of the domain
(left), where the simplices are the vertices, edges, and triangles (triples). The contrapositive of
this statement is, if there is a gap in sensor coverage, then there will be a nontrivial homology
class in the Rips complex. Above (right), the center node is slightly shifted, destroying the local
triangle communication lattice structure.

Assumption 6. A subset of sensor nodes are recognized as fence nodes F =

{xf0 , xf1 , . . . , xfm} ⊂ X that lie on (or close to) the boundary ∂D and U(F) covers
∂D.

5
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The fence nodes can recognize their membership in the fence using only the con-
nectivity information in the communication graph.43 This assumption prevents po-
tential “edge effects” in the reduction/collapse processes presented later. Each node
in F has knowledge of its membership in F and can share this information. Conse-
quently, each node in X is aware which of its neighbors are fence nodes.

Assumption 7. U(X ) covers D.

In other words, coverage has already been verified. This is an assumption of con-
venience. An alternative approach if the domain was not covered is to detect the
coverage holes and either repair or patch the coverage gaps or locate the coverage
holes. If the former option, then Assumption 7 holds. If the latter option, then the
sensor nodes “co-locating” the hole location can be treated as fence nodes in each
of processes discussed later. However, this would also require some modification of
Assumption 4 since ∂D would be piecewise connected.

3. Simplicial Complexes
This section provides a brief background on simplicial complexes (sufficient to un-
derstand this work) and the representations of sensor network coverage as simplicial
complexes. For a more-detailed introductory treatment of simplicial complexes, the
reader is referred to Munkres, Hatcher, and Ghrist, respectively.44–46

3.1 Basics of Simplicial Complexes
An abstract simplicial complex is a collection K of finite sets closed under the
subset operation (i.e., if σ ∈ K and τ ⊂ σ, then τ ∈ K). An element σ of K is
called a simplex. A subset τ of a simplex σ is called a face of that simplex. If a
simplex is maximal (not a subset of any other simplex) in K, it is called a facet. A
subcomplex Λ of K is an abstract simplicial complex such that every simplex in Λ

also exists in K. The union of all the sets in K forms a vertex set V and its elements
are the vertices of the complex. Hence, every simplex is a finite set of vertices and
can be denoted by the vertices it contains (e.g., σ = v0v1 . . . vk). The dimension of
a simplex is one less than the number of its vertices (i.e., dim(σ) = |σ| − 1). In
particular, we call a simplex a k-simplex if it has dimension k. The dimension of
the complex is the supremum of the dimensions of its simplices.

An oriented simplex is a simplex with an orientation, denoted [v0, v1, . . . , vk], such

6
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that 2 oriented simplices consisting of the same vertices are equal if they differ by
an even number of permutations and they are the negative of the other if they differ
by an odd number of permutations. This induces a sequence of vector spaces over
R, denoted Ck(K), with basis being the set of oriented k-simplices of K for each
k.∗ The elements of Ck(K), written as

∑
i ciσ

(k)
i with each ci ∈ R, are called k-

chains. The sequence of vector spaces on K is connected as a chain complex by the
boundary operators (homomorphisms) ∂k : Ck(K)→ Ck−1(K) defined by

∂k[v0, v1, . . . , vk] =
k∑

j=0

(−1)j[v0, v1, . . . , v̂j, . . . , vk], (2)

where v̂j denotes that this vertex is missing from the oriented simplex. In Ck(K),
we refer to the image of ∂k+1 as the subgroup of k-boundaries, denoted Bk(K),
and we refer to the kernel of ∂k as the subgroup of k-cycles, denoted Zk(K). Since
Bk(K) ⊂ Zk(K), the boundary operators induce a sequence of homology groups

Hk(K) = Zk(K)/Bk(K). (3)

The homology of a simplicial complex determines the number of equivalence classes
that do not bound (i.e., that are not contractible to a point in the topology). Formally,
the number of nontrivial equivalence classes is the rank of the groups, called Betti

numbers, denoted
bk(K) = rank(Hk(K)). (4)

Note, in a geometric or network sense, b0(K) is the number of connected compo-
nents of K, b1(K) is the number of 1-D “holes” in K, b2(K) is the number of 2-D
voids in K, and so on.

The calculation of these homologies47 or Betti numbers is a simple (but not nec-
essarily low complexity) matrix algebra task. Given an ordering of the k- and
(k − 1)-simplices, the boundary operator ∂k can be represented in matrix form as
B(k) : Rnk → Rnk−1 using Eq. 2, where nk is the number of k-simplices. Algo-
rithms for the computation of the homology groups can be found in Kaczynski et
al.47 The kth homology and Betti number can also be found via the matrix reduction

∗The homology groups are more commonly developed over rings using the integers Z instead of
fields using the reals R. For rings, a sequence of modules is induced instead of a sequence of vector
spaces.
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method.48 Specifically, note from Eqs. 4 and 3, that

bk = rank(Zk(K))− rank(Bk(K))

= nk − column rank(B(k+1))− column rank(B(k))

= nk − (# of nonzero cols of B̃(k+1))− (# of nonzero cols of B̃(k)), (5)

where B̃(k) is the matrix reduction of B(k). This approach can be made simpler by
using a much simpler field than R (e.g., Z2).

In this work, we are also interested in the relative homology Hk(K,Λ). This is
obtained by considering the chains, cycles, and boundaries in Λ as part of their
respective trivial groups. It can easily be calculated by placing a cone over the
simplices in Λ (i.e., adding a new vertex ι to K and to each simplex in Λ) and
calculating the usual homology one dimension higher.16 In particular, when Λ has
the topology of a cycle or loop and if H1(K) is trivial (i.e., there is no nontrivial
homology group), then the complex with a cone attached creates the topology of
the surface of a sphere in K

⋃
{ι}.

3.2 Simplicial Complexes in Sensor Networks
Since we lack the location information of the sensor nodes in our assumptions, we
require some method to translate the geometric problem of the coverage problem to
a strictly topological problem. Simplicial complexes, as a higher-dimensional topo-
logical space with a geometric realization, seem ideal for this translation provided
a relation between the coverage in the geometric domain of the sensor nodes and
a notion of a cover in the topological domain can be established. We rely on the
criteria found in de Silva and Ghrist12 and detailed as follows.

Recall, the (unknown) sensor node positions are given by X = {x0, x1, . . . , xn} ⊂
D, where xi corresponds to vi for each i and the sensor cover is given by U(X ) =⋃

iB(xi, rs), where B(xi, rs) is the closed disk of radius rs centered at xi.

The proper complex for representing the cover is the Čech complex Črs(X ), which
is formed by considering the intersections of the sensing disks (i.e., Črs(X ) =⋂

iB(xi, rs)). It has been shown that Črs(X ) is homotopy equivalent to the cover
U(X ). This result is often called the Čech Theorem or Nerve Theorem.49,50 In
this construction, the simplex with vertices v0, v1, . . . , vk exists if

⋂k
i=0B(xi, rs) is

8
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nonempty. Unfortunately, this construction is impossible without location informa-
tion, relying only on the connectivity information between the nodes in the network.

Instead, we construct the Rips complexRrc(X ), which is formed by considering the
cliques in the communication graph. In this construction, the simplex with vertices
v0, v1, . . . , vk exists if ||xi−xj|| ≤ rc for every i, j = 0, 1, . . . , k. This construction
is locally feasible from Assumptions 1 and 2 since each node can obtain awareness
of its star44 in the simplicial complex topology of Rrc(X ) (i.e., each node vi has
knowledge of which neighboring nodes are in each of the facets in which it is a
member).

Via the Rips complex, we have a homology-based criterion for coverage. Given
Assumptions 3–6, it can be shown10–13 that

Rrc(X ) ⊂ Črs(X ). (6)

Therefore, if the first homology is trivial in Rrc(X ) (i.e., there exist no 1-D holes)
then the first homology in Črs(X ) is also trivial and the cover U(X ) is hole-free in
D. Črs(X ) may have nontrivial homology outside of D if the fence is pinched in
some manner (e.g., this is possible if there exist non-neighboring fence nodes u and
v, where B(xu, rs)

⋂
B(xv, rs)

⋂
Dc 6= ∅ yet B(xu, rc)

⋂
B(xv, rc) = ∅).

An alternative homology-based criterion for verifying coverage is the existence of
a generator in the second relative homology group H2(Rrc(X ),Rrc(F)) that is
nonzero.12,13 Under Assumptions 1–7, since there is no hole in the domain, then
the homology of the Rips complex with a cone attached to the fence creates the
topology of the surface of a sphere. That is, since this complex with the cone has
a nontrivial second homology group, then the complex has a trivial first homology
group.

9
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4. The Sparse Cover Problem
The general literature dealing with deciding which nodes are required to remain ac-
tive and which nodes may sleep is rich.51–55 The particular problem addressed here
is the deterministic art-gallery-type problem as described in de Silva and Ghrist.12

Given a cover of the domain, find a sparse (ideally, minimal) generator of the non-
trivial homology classes inH2(Rrc(X ),Rrc(F)).

Centralized approaches to reduce a given generator are, of course, available,12 as are
gossip-inspired distributive approaches.16,17 The former may require a certain level
of computational and memory capability (of at least one node) and the latter has
a significant communication cost. The classical homology-preserving approach is
elementary collapsing,19 which has been used in the sensor network coverage verifi-
cation problem28 but not in the sparse cover problem yet. The elementary collapsing
process removes 2 simplices (locally) at a time, which is similar to the “S-reduction
pair” removal approach on “S-complexes” found in Dłotko et al.56

The 3 approaches discussed here are greedy node removal processes. These pro-
cesses have the potential for finding a sparse cover faster at the potential cost of
losing the optimal (minimal) cover. The first approach is just locally calculating
the change in homology when a node is removed. The second approach utilizes the
notion of strong collapsing.57,58 The third approach uses the Euler characteristic.

4.1 Local Homology Changes
Calculating changes to the homology when a node is removed is the simplest greedy
scheme, but also potentially the most computationally expensive. The premise is
that the computation can be performed locally, under the specified assumptions.
This approach has been used before for the sparse cover problem. Varposhti et al.14

and Vergne et al.15 relied on calculating the change in homology when a node is
removed.∗ Both works presented a centralized algorithm, but the conversion to a
distributed variant is trivial and is described in Algorithm 1.

Consider if a non-fence node v is removed from the sensor network. Effectively,
this removes the sensing range set B(xv, rs) from the union of sets composing the
cover U(X ). In the simplicial complex representations, this removes any of the sim-

∗Vergne et al.15 selected the node for removal using a notion of “index”, but still calculated the
change in homology before removal.

10
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plices containing v in the Čech and Rips complexes. Let S(v) denote the simplicial
complex of the closed star of v (i.e., the minimal subcomplex ofRrc(X ) containing
every simplex v is contained in). Let L(v) denote the simplicial complex of the link

of v (i.e., the minimal subcomplex of Rrc(X ) containing the neighboring nodes of
v).44 Thus, the removal of node v from Rrc(X ) removes all of the simplices in the
star S(v) except for those simplices in the linkL(v). This gives the following result:

Theorem 1. Under Assumptions 1–7, the domain D remains covered with the re-
moval of node v if rank(H1(L(v))) = 0.

Proof. Suppose the removal of v causes a gap in sensor coverage. Then, by the
Nerve Theorem,49,50 there exists a nontrivial first homology group in the Čech com-
plex without v. Since v is in the interior of D (it is not a fence node), then Eq. 1
implies the same for the Rips complex without v. Note that this implies there exists a
cycle that previously bounded but now does not bound. Since the only change is the
removal of simplices containing v, the cycle must previously have been a bound-
ary of some subset of the removed simplices. Note, ∂S(v) = L(v), so the now-
nonbounding cycle must reside in the link of v. Hence, rank(H1(L(v))) 6= 0.

Since each node is aware of its local neighborhood by assumption, each node can
detect if its removal causes a gap in the sensor coverage by detecting a change
in the homology from S(v) to L(v). For the coverage problem here, since it is
assumed the rank(H1(S(v))) = 0, then only rank(H1(L(v))) needs to be checked.
If rank(H1(L(v))) = 0, then v is redundant to the cover; otherwise, v is necessary
to the homological coverage criterion and likely necessary to the cover. Theorem
1 applies to the removal of a single vertex at a time in its local neighborhood.
Neighboring nodes turned off simultaneously may affect the homological coverage,
so nodes must cooperate in a decentralized manner to ensure adjacent nodes are not
turned off simultaneously during each iteration. Algorithm 1 presents a scheme that
satisfies this requirement.

The algorithm is only iterated on non-fence nodes to ensure coverage of the domain.
At some iteration time, rank(H1(L(v))) 6= 0 for every remaining non-fence node
in the network since there are always a decreasing number of remaining nodes after
each iteration. For the nodes to obtain a stop point, either a time-out or flooding
protocol can be used when each node detects no changes in its local neighborhood.

11
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Algorithm 1 Calculating homology changes locally
Calculate rank(H1(L(v))).
if rank(H1(L(v))) = 0 then

Broadcast self as candidate for collapse to neighbors
if All neighboring nodes broadcast themselves as non-candidates then
v not needed for cover, broadcast sleep message (collapse)

else if Some neighboring nodes also broadcast themselves as candidates for
collapse then

if Node v has a larger ID than all candidate neighbors then
Broadcast sleep message (collapse)

else if Candidate neighbor node u has a larger ID than v then
Broadcast self as non-candidate (still needed for cover)
if u broadcasts sleep/collapse message then

Eliminate simplices containing u from the local information in v
Recalculate rank(H1(L(v)))

end if
end if

end if
else

Broadcast non-candidate status to neighbors
if Neighbor u broadcast sleep/collapse message then

Eliminate simplices containing u from the local information in v
Recalculate rank(H1(L(v)))

end if
end if

12
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The computational complexity of Algorithm 1 depends mostly on the complexity
of calculating the homology. Essentially, this requires finding the rank of 2 matrices
in Eq. 5 of size on the order of the number of 1- and 2-simplices. In the worst case,
there are O(d3) 2-simplices, where d is the degree of the node, and by standard
methods, such as Gaussian elimination, finding the rank is O(d9) per iteration at
the node. The communication cost per node is at least one message sent per round,
with additional messages required if the node is a candidate for removal.

4.2 Strong Collapsing in Sensor Networks
The second approach uses the notion of a strong collapse, which requires some
further background. If every facet that contains a vertex v ∈ K also contains the
vertexw, thenw is said to dominate v. If this is the case, then a strong collapse of the
vertex v in K is the removal of every simplex that contains v from K with nothing
else changed (Fig. 2). This is already proven by Barmak and Minian57 and described
by Wilkerson et al.,58 but here we shall show a slightly stronger property first stated
by Wilkerson et al.58 To prove this stronger homology-preserving property of strong
collapsing, we need to introduce the notion of relations and the conjugate complex.

Fig. 2 Strong collapsing: A vertex is dominated by another vertex. Vertex v is dominated by
vertex w. Cycle (s) bounds in the topology, whereas cycle (t) does not bound.

A (binary) relationR between the elements of 2 setsA andB induces 2 labeled sim-

plicial complexes. For example, in one instance, we associate a simplex of elements
of B if each element is related byR to an element a ∈ A (i.e., σa = {b ∈ B : aRb}).
This complex induced by this collection of sets is denoted as KA(B, R). For clarity,
in this instance, we call B the vertex set and A the label set. This is equivalent to
treating this relation as an incidence matrix where the labels (simplices) correspond
to the rows and the vertices correspond to the columns of the matrix. Naturally, by
this construction, every facet must have a label. However, not all labeled simplices
are facets. Its conjugate complex, wherein the roles of the sets are reversed, is de-
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noted KB(A, R−1). This is equivalent to the transpose of the incidence matrix. A
classical result by Dowker59 states that KA(B, R) and KB(A, R−1) have the same
homology.

Theorem 2. Strong collapsing preserves homology.

Proof. Let v be dominated by w in K. Suppose v is contained in each of the facets
f1, f2, . . . , fm and w is contained in each of the facets f1, f2, . . . , fm, . . . , fn with
n ≥ m (i.e., w is contained in every facet containing v or w dominates v). Let A
be the facet set and B the vertex set of K, so that K = KA(B,3). Then v and
w, respectively, represent the labeled simplices f1f2 . . . fm and f1f2 . . . fn in the
conjugate KB(A,∈). Since {f1, f2, . . . , fm} ⊂ {f1, f2, . . . , fn}, then the labeled
set v = f1f2 . . . fm is a face of w = f1f2 . . . fn and is redundant to the collection of
simplices in B that induces the simplicial complexKB(A,∈). Let B′ = B−{v} and
let A′ = {σ − {v} : σ ∈ A}. Then KB(A,∈) ∼= KB′(A′,∈), which by Dowker59

has the same homology as KA′(B′,3).

Corollary 3. Under Assumptions 1–7, the domain D remains covered with the
strong collapse (removal) of a dominated node v.

In the sensor network topology, defining A to be the facets of the Rips complex
Rrc(X ) and B to be the its vertices, we have KA(B,3) = Rrc(X ). Strong collaps-
ing can be implemented in a decentralized manner to eliminate redundancies in the
homology. If f1, f2, . . . , fm are the facets containing node v, then an algorithm for
node v is described in Algorithm 2.

Before discussing the algorithm, we first discuss the stronger property of strong col-
lapsing that is particularly applicable in sensor networks. We can show that strong
collapsing preserves at least one minimal cycle generator for each nontrivial homol-
ogy class, where a generator is a minimal k-cycle if there exists no other k-cycle
consisting of fewer k-simplices.58

Theorem 4. Strong collapsing preserves a minimal cycle in each nontrivial homol-
ogy class.

Proof. Let v be a vertex existing in a minimal k-cycle
∑

i σ
(k)
i corresponding to a

nontrivial class in Hk(K) and suppose that v is dominated by w in K. Consider
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Algorithm 2 Calculating node strong collapsibility
Set f =

⋂m
i fi

if f \ {v} 6= ∅ then
Choose largest alphanumeric ID w of the nodes in f \ {v}
Broadcast request to collapse (not needed for cover) to w
if w requests to collapse to v then

Node with smallest ID among w and v collapses and broadcasts collapse
message to neighbors
Node with largest ID broadcasts non-candidate status for collapse (needed
for cover)
Node with largest ID ack request from collapsing node and updates facet list

else
Receive ack from w
Broadcast collapse message to neighbors

end if
else

Broadcast non-candidate status for collapse (needed for cover)
if Request received from neighboring node u to collapse to v or collapsing
message received from u then

Ack request from neighboring node u
Update facet list, removing node u

end if
end if
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the subcomplex Λ consisting of the simplices σ(k)
i when v /∈ σ(k)

i and the simplices
{w}

⋃
σ
(k)
i when v ∈ σ(k)

i . The inclusion of w in Λ does not harm the k-cycle that
doesn’t bound, since it does not in K. Note that v is still dominated by w in Λ by
construction. Define

τ
(k)
i =

{
σ
(k)
i if v /∈ σ(k)

i

(σ
(k)
i

⋃
{w})− {v} v ∈ σ(k)

i

(7)

A strong collapse of v leaves Λ with only the facets τ (k)i . Since strong collapsing
preserved homology by Thm. 2, then

∑
i τ

(k)
i must be a minimal k-cycle corre-

sponding to the nontrivial class in Hk(Λ) otherwise, since each τ (k)i ⊂ K, a cycle
with fewer simplices exists in Hk(K), contradicting the assumption that

∑
i σ

(k)
i

was minimal.

Corollary 5. Under Assumptions 1–7, the minimal cover of the domain D remains
with the strong collapse (removal) of a dominated node v.

Essentially, the vertex w replaces the dominated node v in the minimal cycle (i.e., if
v is a dominated node in a minimal cycle, then there exists a homologous minimal
cycle). This is a particularly relevant feature for sensor networks. For example,
preserving the minimal cycle bounding a homological hole is critical for the hole
localization problem12 and the coverage repair problem.30

This property also has consequences for the sparse cover problem. Recall that if a
cover exists in the usual first homology of Rrc(X ), then there exists a generator in
the second relative homology group H2(Rrc(X ),Rrc(F)).12,13 This generator can
be found by placing a “cone” over the fence subcomplex (i.e., adding an imaginary
node ι to each simplex in the fenceRrc(F)). Since fence nodes are self-aware, they
presume communication with this imaginary node to construct this extended Rips
complex. This creates a sphere with the cover as part of the surface. The preserva-
tion of the cycle in the second homology of this extended Rips complex preserves
a minimal cover of the Rips complex.

Theorem 6. Let R+
rc(X ) denote the extended Rips complex with the imaginary

node ι connected to each fence node in the communication graph. Under Assump-
tions 1–7, if a fence node v strongly collapses in R+

rc(X ), it strongly collapses to
another fence node.
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Proof. Let v be a fence vertex dominated by w. Since v is a fence vertex, it is
adjacent to the imaginary vertex ι in the augmented communication graph. So there
exists a facet σ 3 v that also contains ι. Since w dominates v, w must also reside in
σ and, thus, be adjacent to ι in the augmented communication graph. Hence, w is a
fence vertex.

This implies that a cycle of fence nodes circumnavigating the perimeter of the do-
main remains after strong collapsing. Unlike other protocols, the fence nodes can
participate, if desired, in the strong collapsing process with the guarantee that a
cycle covering the boundary ∂D will remain in the collapsed complex.

Now, returning to Algorithm 2, first note that unlike the simple homology calcu-
lation approach in Algorithm 1, this strong collapsing algorithm allows multiple
nodes to collapse within a single iteration. However, now care is taken in the case
when 2 nodes dominate each other. In this case, only one can collapse since strong
collapsing only preserves homology when the collapsing node’s dominating vertex
remains in the complex. In fact, the removal of 2 co-dominate vertices usually alters
the homology.

As before, the algorithm is guaranteed to obtain a steady-state where f \ {v} = ∅
for every remaining node in the domain, so only a (time-out or flood) protocol is
required to end the strong collapsing process. The complexity of the algorithm is
in searching the facet list for a node that dominates v and searching the facets for a
dominated node u for removal. This depends on the data structure.∗ Intersecting 2
sets can be done in O(p), where p is the size of the sets, in this case, the dimension
of the complex. If m is the facet degree (number of facets connected to a node60),
then finding f takes at worst O(pm) for each node. For removal of vertices in a
double incidence list data structure (i.e., for each neighbor of v a list is attached
of labeled facets it is a member of and for each labeled facet a list is attached
of the neighbors in each facet), the complexity is at worst O(d + pm), where d
is the degree of the node. For finding a dominating node of v, the complexity is
O(d) if each list of neighbors also records the number of its elements. Hence, the
complexity is O(d + pm) per iteration at the node. The communication cost of the
algorithm requires at least one message sent per iteration if neither v collapses nor

∗An alternative equivalent algorithm32 can actually be executed simply from the neighbor infor-
mation whereby each node compares its neighbor list with that of each of its neighbors. This can be
done prior to the construction of any simplices.
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any of its neighbors collapse. Otherwise, an additional message is needed for each
vertex that collapses to v and at least 2 messages are needed if v collapses.

4.3 Euler Characteristic Changes
The last approach discussed here is heuristic, although simulations in the next sec-
tion show it to be reliable. The Euler characteristic45 is another topological invariant
that categorizes classes of topological structure. This characteristic has 2 definitions
for a simplicial complex K:

χ1(K) =
∑
k

(−1)kfk, (8)

χ2(K) =
∑
i

(−1)ibi, (9)

where fk is the kth face number defined by fk =
∣∣{σ(k) ∈ K}

∣∣ and bi is the ith
Betti number defined in Eq. 4. It is trivial to show that χ1(K) = χ2(K) (using an
induction argument on the number of simplices).

The general greedy strategy for finding a sparse cover is for the node to perform
the necessary calculations to determine if its removal changes the homology. If the
homology does not change with a node removal, then it is clear from Eq. 9 that the
Euler characteristic will also not change even though the number of simplices in the
sum of Eq. 9 have changed. The converse statement is not generally true. The ho-
mology can change, but the Euler characteristic be preserved. A simple example is a
node removal that simultaneously creates a cycle and disconnects a component (or
creates a separate component).∗ However, in a planar geometry under Assumptions
1–7, this possibility may be implausible.

For the sensor coverage scenario, each node v can determine the number of sim-
plices it resides and, hence, can count them. So if node v is removed, the change in

∗A specific example is the complex generated by the facets {abc, acd, ade, abe, af}, which is a
cone via the vertex a over a square cycle {bc, cd, de, eb} and a vertex f . With a, the face numbers
are f0 = 6, f1 = 9, f2 = 4 and the Betti numbers are b0 = 1, b1 = 0. Without a, the face numbers
are f0 = 5, f1 = 4 and the Betti numbers are b0 = 2, b1 = 1. In both cases, χ = 1.
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the Euler characteristic is given by

∆χ(v) = χ(Rrc)− χ(R′rc)

=
∑
k

(−1)k
∣∣{σ(k) ∈ Rrc : v ∈ σ(k)}

∣∣ . (10)

Conjecture 1. Under Assumptions 1–7, the region remains covered with the re-
moval of a non-fence node v if ∆χ(v) = 0.

Heuristically examining the scenario, the only way that b0 can change is if the re-
moval of node v separates a component into multiple components. This can only
occur if the link of v is not connected (i.e., not a single component), but this is not
possible by assumption. Either b1 is unchanged (i.e., it remains b1 = 0 as under the
assumption and no coverage is lost by the removal of node v) or, if it is changed,
then b1 > 0 and there must exist some (even Betti numbers) b2is that also changed
with the removal of v so that the Euler characteristic remains fixed. Any new higher-
dimensional nonbounding cycle would cover v’s position, which would prevent a
nonbounding 1-cycle winding around v’s position, and would/should necessarily
include simplices covering the circumference of the sensor disk (acting as a cone
over any potential cycle not winding around v’s position). This argument is not a
rigorous proof of the conjecture, but the conjecture holds with high probability for
uniformly distributed vertices in a square domain, as discussed in the next section.

The implementation of this approach, described in Algorithm 3, is similar to that
for calculating changes in homology in Algorithm 1 in that adjacent nodes cannot
be simultaneously removed in the same iteration.

Similarly like the prior 2 greedy approaches, this algorithm will reach a steady-state
where ∆χ(v) 6= 0 for every non-fence node v. The calculation of ∆χ(v) in Eq. 10
is equivalent to calculating the Euler characteristic of the link of the vertex, which
is O(q2min(d,m)) per iteration at each node, where d is the node degree, m is the
facet degree, and q is a polynomial.61 The communication cost is exactly the same
as computing local homology changes.
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Algorithm 3 Calculating Euler characteristic changes locally
Calculate ∆χ(v).
if ∆χ(v) = 0 then

Broadcast self as candidate for collapse to neighbors
if All neighboring nodes broadcast themselves as non-candidates then
v not needed for cover, broadcast sleep message (collapse)

else if Some neighboring nodes also broadcast themselves as candidates for
collapse then

if Node v has a larger ID than all candidate neighbors then
Broadcast sleep message (collapse)

else if Candidate neighbor node u has a larger ID than v then
Broadcast self as non-candidate (still needed for cover)
if u broadcasts sleep/collapse message then

Eliminate simplices containing u from the local information in v
Recalculate ∆χ(v)

end if
end if

end if
else

Broadcast non-candidate status to neighbors
if Neighbor u broadcast sleep/collapse message then

Eliminate simplices containing u from the local information in v
Recalculate ∆χ(v)

end if
end if
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5. Simulations
We reconsider the scenario from Vergne et al.15 and Moore,18 wherein p nodes are
randomly distributed in a square domain of length 2 with 8 fence nodes located at
the corners and midpoints of the square edges. The communication network follows
a unit disk graph model (i.e., the communication radius is rc = 1), so that the fence
nodes form a simply connected cycle that covers the boundary. On 1000 realizations
for each case of p = 18, 21, 24, 27, 30 interior nodes (with the 8 fence nodes), the
Rips complex is constructed from the communication graph. We check that the
generated sensor network covers the domain in the homological sense under the
conditions of Assumptions 1–7. On each sensor network realization, we implement
the 3 approaches outlined in the previous sections.

For local homology calculations and strong collapsing, Thms. 1 and 2, respectively,
guarantee that homology will be preserved. For Euler characteristic calculations,
we do not have this guarantee. So for this last process, additional checks were per-
formed to test if the homology H1 is changed at any point in the process (i.e., after
every iteration). The H1 homology was preserved at each step throughout. This
gives some indication that reduction via Euler characteristic calculations will at the
very least preserve homology with high probability in planar networks.

5.1 An Illustrative Example
An illustrative example of a realization of the sensor placement, coverage, and com-
munication connectivity is given in Fig. 3. The sensor positions are denoted by an
∗ (asterisk) symbol. When 2 sensor positions are separated by no more than rc = 1

unit distance, a line is drawn to represent communication connectivity. Around each
sensor, with radius rs =

√
3/3, is a lightly shaded region denoted its sensing range.

Darker regions indicate many overlaying sensing disks and, thus, the degree of re-
dundancy even for this case of p = 18 interior sensors.

Also illustrated in Fig. 3 is the application of strong collapsing for this realization.
The sensor nodes that are turned off (or put in a sleep state) using Algorithm 2 are
now denoted with a ◦ (circle) symbol, while the nodes that are still needed to main-
tain full homological coverage are still denoted with a ∗ symbol. For this particular
realization, only 5 of the original 18 nodes are required for a sparse cover. More-
over, the result shown is also a minimal cover since we know that strong collapsing
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Fig. 3 Sensor network coverage/communication realization and the associated (strong collaps-
ing) sparse cover. A realization of a sensor network with p = 18 interior nodes before (left) and
only 5 interior nodes after strong collapsing (right).

preserves such a cover from Thm. 4 and by observation it is clear that if any node
is removed, a coverage hole or gap would be formed.∗

Results of sparse covers found by local calculations of homology changes and Euler
characteristic changes are not shown since this is just an illustrative example of a
sparse cover outcome.

5.2 Distributions of Sparse Covers Results
Figure 4 shows the mean and median size of the sparse covers found for the real-
izations via the 3 methods: local homology calculations (blue), strong collapsing
(black), and Euler characteristic calculations (red). The results for local homology
calculations and Euler characteristic calculations are identical for the median and
nearly so for the mean. Strong collapsing, while preserving a minimal cover (Thm.
4), typically results in a larger sparse cover compared to the other 2 approaches.

The reasons for both of these observations are explained by the illustrations in Fig.
5. First, note that Algorithm 1 does not calculate the homology (or even the rank)
in every dimension. Since the region of interest is planar, it is only necessary to
checkH1. Hence, it is possible that removing a node can change the homology in a
higher dimension (H0 cannot change since the preservation of the fence nodes and
coverage assumption ensures connectivity). In the first illustration, the removal of
the central node g creates an octahedron, which has a void in the interior. Since it

∗The measure of minimal for the cover is measured in the number of 2-simplices, or triangles,
and not the number of nodes.
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Fig. 4 Final number of nodes in the sparse covers and iterations needed to obtain covers.
Mean and median values for the final number of interior nodes in the sparse cover (left) and
the number of iterations required (right) to reach that state for each method: local homology
calculations (blue), strong collapsing (black), and Euler characteristic calculations (red).

Fig. 5 Examples demonstrating feasibility relations among local homology calculations, strong
collapsing, and Euler characteristic calculations. It is possible for the removal of a node (g) via
local homology calculations when it cannot happen via Euler characteristic calculations or
strong collapsing (left). Moreover, is it possible for the removal of a node (g) via both of these
methods when it cannot happen via strong collapsing (right). Only the communication links
are shown for clarity; the Rips complex consists of the cliques.

only changes H2, then the central node is a candidate for removal in Algorithm 1.
However, the addition of a nontrivial group inH2 changes b2 and the Euler charac-
teristic via Eq. 9. So the central node is not a candidate for removal in Algorithm 3.
However, this situation is rare as indicated in Fig. 4.

Second, note that since strong collapsing preserves homology (Thm. 2), then when
a node can be removed in Algorithm 2 the homology and Euler characteristic will
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be unchanged. Hence, the node can also be removed by Algorithms 1 and 3. The
converse is not true. This is illustrated in the second example, where the central
node g is part of three 3-simplices that each have a unique node from the other
pair. So the central node is not dominated, but its removal is clearly possible since
rank(H1(L(g))) = 0 and ∆χ(g) = 0. This occurs frequently as indicated in Fig. 4.

In each method, Fig. 4 shows that the median sparse cover size remains unchanged
and the mean nearly so over the range of initial interior nodes p. This result is not
surprising, since the size of the domain remains fixed and the typical number of
nodes necessary for a cover should not change. There is a slight growth in the mean
size in the sparse cover after strong collapsing, which can likely be attributed to
increasing occurrences of instances similar to that described in Fig 5.

The distributions of the sparse cover sizes for the realizations in the cases of p = 18

and p = 30 are shown in Fig. 6. This illustrates the slight rightward shift in the
sparse cover distributions as the number of initial nodes is increased. The shift is
more significant for strong collapsing, where the number of sparse covers at least as
large as 10 interior nodes doubles. For much denser networks, if one seeks a smaller
cover, then local homology and Euler characteristic calculations may be preferred.

Fig. 6 Sparse cover size distributions. Distribution of the final number of interior nodes re-
maining in the sparse cover for local homology calculations (blue), strong collapsing (green),
and Euler characteristic calculations (pink) in the case of p = 18 initial nodes (left) and p = 30
initial nodes (right).

We also calculated (not shown) the percentage when the various methods obtained
a minimal cover (in terms of the number of nodes). For p = 18, strong collapsing
finds a minimal cover for 23.5% of the realizations. This nearly doubles to 49.1%

for local homology and Euler characteristic calculations. For p = 30, these rates
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drop to 8% and 17%, respectively. Also, we found that after strong collapsing, on
average, more than 20% (when p = 18) to 35% (when p = 30) of the nodes would
be candidates for removal via local homology or Euler characteristic calculations.

The mean and median number of iterations required for each approach are also
shown in Fig. 4: local homology calculations (blue), strong collapsing (black), and
Euler characteristic calculations (red). Again, we note that the difference between
local homology and Euler characteristic calculations is minimal. Both methods in-
dicate predictable near linear growth with respect to p in the number of iterations
required to obtain the sparse cover (i.e., the methods require a little greater than one
more iteration for each additional 2 nodes). On the other hand, the method of strong
collapsing obtains its sparse cover nearly independently with respect to p. This is
because, unlike the other 2 methods, strong collapsing allows adjacent nodes to
collapse simultaneously to a dominating node.

The distributions of the number of iterations required to obtain the sparse cover for
the realizations in the cases of p = 18 and p = 30 are shown in Fig. 7. Strong
collapsing clearly performs best in terms of the number of iterations. Fewer than
3% of realizations of the local homology or Euler characteristic calculations took
as few iterations as the worst-performing realizations for strong collapsing when
p = 18. This difference becomes more stark as p grows. When p = 30, none of the
realizations of strong collapsing took as many as 8 iterations, whereas none of the
realizations of local homology and Euler characteristic calculations took as few as
8 iterations.

Fig. 7 Total iterations required to obtain cover distributions. Distribution of the number of
iterations required to obtain the sparse cover for local homology calculations (blue), strong
collapsing (green), and Euler characteristic calculations (pink) in the case of p = 18 initial
nodes (left) and p = 30 initial nodes (right).
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5.3 Comments on Computational Complexity
The comparisons of total iterations needed to obtain a sparse cover for the vari-
ous methods in Fig. 7 is not the fairest comparison. As discussed for each method
in Section 4, while the communication costs are similar, the computational com-
plexity can be very different depending on the approach and on the basic network
characteristics (e.g., average or maximum values of node degree, facet degree, and
size of the facets).

Note the size of the facets is generally bounded by the maximum degree. So under
the assumption that the facet degree scales with the node degree, then it is easy to
see that the worst-case complexity of the strong collapsing computations will be less
than that of the other 2 methods. It is always true that d+ pm < d9, and except for
low values of d, p,m, it is also true that d + pm < q2min(d,m). (This last inequality
can be inferred from the fact that log(x)/x is a decreasing function for large x.)
This is confirmed experimentally in the simulations. Strong collapsing took orders
of magnitude less computation time than local homology calculations, and Euler
characteristic calculations took less time than strong collapsing when p = 18 and
more time with p = 30.

Comparing local homology calculations with Euler characteristic equations, note
that for d9 < 2min(d,m), then the degree must satisfy log(d)/d < log(2)/9. This
implies the degree needs to be quite large (i.e., d > 50) before the counting problem
of finding the Euler characteristic surpasses the rank problem of determining the
number of homology classes b1. (This, of course, assumes worst-case complexity
and ignores constant coefficients.) For the sensor network realizations examined in
this report, this never occurred and Euler characteristic computations took less time
than local homology computations.

6. Conclusion
Several simple greedy methods of determining a sparse cover in a location-unaware
fenced sensor network via homological methods are presented. None of these ap-
proaches is presumed or proposed as a standalone process for finding a cover, but
as preprocessing steps, potentially including other approaches,12,14–17 selected based
on the sensor network density characteristics (i.e., node degree, facet degree, and
facet size). Strong collapsing seems a particularly attractive preprocessing option
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for several desirable features. It preserves a minimal cover (Thm. 4). It can be exe-
cuted prior to the construction of the simplicial complex.32 Unlike the other meth-
ods presented here, it enables the greedy removal of adjacent nodes. Calculating
changes in the Euler characteristic also seems a potentially promising option. The
justification for the process (i.e., that a nonbounding 1-cycle will not be created
[Conj. 1]) still needs to be proven rigorously. However, simulation results are en-
couraging in that the method at least works with high probability.
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