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EXECUTIVE SUMMARY

A moving discontinuous Galerkin finite element method with interface condition enforcement is for-
mulated for flows with discontinuous interfaces. The method preserves a high-order representation up to
the interface, without relying on artificial dissipation or shock capturing for stabilization. The method can
compute curved interfaces, with a priori unknown topology, in multiple dimensions. The method applies to
both steady flows, or unsteady flows via a spacetime formulation.

E-1



A MOVING DISCONTINUOUS GALERKIN FINITE ELEMENT METHOD FOR
FLOWS WITH INTERFACES

1. INTRODUCTION

High-order methods have the potential to resolve complex flow field structures with high accuracy and
at a reduced computational cost compared to lower-order methods. One such method in particular, the dis-
continuous Galerkin finite element method (DG) [1–9], has been used with increasing success in the field
of computational fluid dynamics over the past two decades to simulate a wide variety of flows due, in no
small part, to its ability to achieve high-order accuracy on fully unstructured grids. Another advantage of
the DG method is a well-developed theory of adjoint consistency [9–12], which makes it a powerful tool
for adjoint-based optimization. In addition, spacetime discontinuous Galerkin methods [13–15] provide
a unified discretization of unsteady flow problems by simultaneously discretizing space and time. Thus,
spacetime DG offers the prospect of both high-order accuracy in space and time and adjoint consistency,
which provides an ideal framework for the optimization of unsteady flows. One question that naturally arises
is how these remarkable properties fare in inviscid flows that are not smooth and contain discontinuous in-
terfaces, including material interfaces and shocks. Since DG employs a discrete function space composed of
discontinuous, piecewise polynomials, it can, in principle, directly represent these discontinuous interfaces.
However, this requires that the interfaces are aligned with the grid. When misaligned, instabilities can arise,
leading to the common approach of artificial stabilization or shock capturing, cf. [16–19]. While shock
capturing has been remarkably successful for simulating a variety of complex flows, it can diminish some of
the benefits of DG, including high-order accuracy and consistency, an ongoing issue emphasized in a recent
survey of higher-order methods by Wang et al. [20].

In order to extend the advantages of DG from smooth to piecewise smooth flows with a priori unknown
interfaces, we propose a moving discontinuous Galerkin finite element method with interface condition
enforcement (MDG-ICE). This method fits, rather than captures interfaces, so that properties such as high-
order accuracy and adjoint consistency might be preserved. There are two important features of MDG-ICE
that distinguish it from standard DG. First, the method enforces the interface condition separately from the
conservation law in the underlying weak formulation, so that the residual only vanishes upon satisfaction of
both. Second, the method treats the discrete grid geometry as an additional solver variable so that the solver
simultaneously moves the discrete grid geometry to fit interfaces while resolving the flow field. Thus, in
contrast to standard DG, this method has both the means to detect, via interface condition enforcement, and
satisfy, via grid movement, the conservation law and its associated interface condition.

1.1 Background

Interface, or more specifically, shock fitting is a technique with a long history within the field of compu-
tational fluid dynamics, as surveyed by Moretti [21] and Salas [22, 23]. While a large number of variations
exist, the basic idea of these methods is to explicitly incorporate the definition of a shock surface into the
underlying grid structure and then move the grid according to the shock speed dictated by the Rankine-
Hugoniot conditions. Recent work by Paciorri, Bonfiglioli, et al. [24–28] has greatly extended the range of
Manuscript approved November 13, 2017.
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application of these methods and clearly demonstrated the advantage of preserving design accuracy in the
vicinity of a shock, a property sacrificed by standard shock-capturing methods. An ongoing difficulty with
existing shock-fitting approaches is treating shocks or interfaces whose topologies are unknown a priori or
whose topologies change in time.

Simulating material discontinuities poses an even more significant computational challenge. Such inter-
faces, which lack the nonlinear self-steepening behavior of shock waves, are highly susceptible to smearing
caused by artificial dissipation in shock-capturing methods. In an attempt to avoid this issue, a number of
techniques have been developed that instead track the motion of the interface explicitly. Front tracking meth-
ods, introduced by Glimm et al. [29, 30] and extended to DG by Nguyen et al. [31], analogously to shock
fitting, are particularly well-suited for tracking the evolution of material or contact discontinuities. Rather
than requiring interfaces to be aligned with grid interfaces, the extended finite element method (XFEM) [32]
uses local enrichment functions to represent interfaces that require special quadrature rules to perform the
numerical integration. A broader family of unfitted finite element methods (FEM) [15, 33–38] have also
been developed for moving interface problems. An advantage of these methods is that by avoiding the
alignment of grid interfaces with flow interfaces, it becomes less onerous to simulate flows with unknown
or dynamic interface topology, while providing high-order accuracy, especially in comparison to interface
capturing approaches.

Lagrangian or arbitrary Lagrangian-Eulerian (ALE) methods, represented for higher-order finite element
methods by work such as that of Dobrev et al. [39–41], Persson et al. [42], and Fidkowski [43], are an-
other class of interface-fitting techniques. These methods have numerous advantages, particularly regarding
highly accurate and robust treatment of dynamic material interfaces or moving bodies. Lagrangian methods
excel at representing such material interfaces directly, as well as moving bodies, since they are based on
moving a spatial grid with the velocity of the flow. ALE methods further improve upon Lagrangian meth-
ods, by allowing for more flexibility in the grid velocity. However, in the presence of shocks, some form
of shock capturing appears to still be required. In addition, for unsteady flow problems, ALE methods can
deform spatial grids so severely that, between time steps, a possible re-interpolation operation is required
to preserve validity of the grid. In addition to possibly introducing error, such a re-interpolation process
also complicates adjoint analysis. In contrast, within a spacetime formulation both stationary and spatially
deforming boundaries are readily treated as static spacetime boundaries, avoiding the difficulties of ALE for
highly deforming geometry [44], while inheriting the adjoint analysis of DG that has been developed for
steady flows.

Other related methods are those that also involve moving the grid geometry to improve accuracy. Harten
and Hyman [45] solve one-dimensional unsteady conservation laws using a moving grid based on local
characteristic velocities. The original moving finite element method introduces [46–48] the idea of treating
a spatial grid as a solver variable, which is integrated in time for unsteady flows. Roe and Nishikawa also
proposed a fluctuating splitting method which involves treating the grid as a variable [49]. Recently, Sanjaya
and Fidkowski [50] proposed an element warping strategy, which like the present work also moves element
nodes as part of the solver, greatly improving solution accuracy, as guided by least-squares or output-based
error metrics.

While the aforementioned interface-fitting techniques have proven useful for a number of flow scenarios,
a number of difficulties still exist that limit their general applicability. In particular, solving unsteady flows
with complex, dynamic interfaces that undergo topological changes remains a challenge. The MDG-ICE
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method attempts to circumvent these difficulties by making interface fitting an intrinsic part of the underly-
ing formulation in which the flow field and interface locations are solved as part of a single unified method.
By utilizing a spacetime formulation, complex interface dynamics that can cause extreme grid distortion
using standard time-marching interface-fitting techniques can be handled by making relatively small mod-
ifications to an existing spacetime mesh. Furthermore, incorporating shock fitting directly into a unified
variational finite element formulation would provide a natural setting to formulate adjoint-based optimiza-
tion in the presence of shocks [51–54], and enable differentiability with respect to interface geometry. Point
singularities that arise in inviscid flows (e.g., rarefactions and shock formations in spacetime) can also trig-
ger instabilities, due to the inability of standard polynomial basis functions to represent the instantaneous
transition that occurs at a single point. While such singularities can be stabilized using the same artificial
dissipation introduced by shock capturing, they provide a source for artificial entropy generation which
contributes to the reduction in the order of accuracy of the underlying numerical method. MDG-ICE also
provides a means of naturally treating these types of singularities. Boundary layers, which arise in viscous
flows, also require significant computational effort to resolve accurately and stably. Therefore, a broader
goal beyond a method tailor-designed for shocks, would be a general method that can exploit grid move-
ment to help resolve a range of challenging flow features including interfaces, singularities, and boundary
layers.

2. STANDARD DISCONTINUOUS GALERKIN METHOD FOR FLOWS WITH INTERFACES

The discontinuous Galerkin method, which is based on piecewise polynomial approximation over po-
tentially unstructured grids, is an ideal candidate for computing piecewise smooth flows with interfaces.
As long as any interfaces present in the exact flow solution coincide with the interfaces present in the grid,
DG has the potential to approximate such flows with high order accuracy. However, we seek a method that
not only has the means to represent piecewise smooth flows, but also provides the means to detect inter-
faces. Therefore, in order to compute flows with a priori unknown interfaces, we seek a method for which
the residual vanishes only upon satisfaction of the interface condition, or a weak or variational equivalent
thereof. With such a method at hand, the solver can then introduce the discrete grid geometry as a variable,
so that as the residual is driven to zero, the interfaces are fit with increasing accuracy.

To demonstrate the importance of the residual vanishing only upon satisfaction of the interface condi-
tion, we consider a linear advection problem for flow containing a jump discontinuity in a two-dimensional
domain, with an imposed uniform velocity of v = (vx,vt) 2 R2. We assume that vt = 1 and interpret the
second dimension as representing time, while we assume that the spatial velocity is positive, vx > 0. There-
fore, we can also interpret the interface as an unsteady, moving interface in one-dimensional space. Since
the flow is piecewise smooth, we decompose the domain W into two subdomains W1,W2, separated by an
interface ∂W1 \∂W2 with a normal n = (nx,nt) 2 R2 that is perpendicular to the spacetime velocity (vx,vt).
The two subdomains are defined as

W1 ={(x, t) 2 W |(x, t) · (nx,nt) < 0}
W2 ={(x,y) 2 W |(x, t) · (nx,nt) > 0} . (1)

The governing conservation law

— ·F (y) = — · (vxy,vty) = 0, in W1,W2 (2)
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(a) The spacetime solution obtained using DG(p = 0). The interface present in the exact solution is illustrated with a
dashed line.
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Fig. 1: A moving interface with spatial velocity vx = 1
10 . We observe that the residual has vanished without

having fit the interface.
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is augmented with the initial condition

y(x, t = 0) =

(

2 x < 0
0 x > 0

, (3)

inflow condition

y(x = �1, t) = 2, (4)

as well as the interface condition

Jn ·F (y)K = 0 on ∂W1 \∂W2. (5)

The exact solution, satisfying Eqs. (2), (3), (4), (5), is the piecewise constant flow

y(x, t) =

(

2 in (x, t) 2 W1

0 in (x, t) 2 W2
. (6)

We now evaluate the criterion that the residual vanishes only upon satisfaction of the interface condition,
for the case of the standard discontinuous Galerkin method where the grid is misaligned with the interface
present in the exact solution. Let T be a partition of W, consisting of disjoint cells k , so that W = [

k2T k .
Also let Y,V be piecewise polynomial function spaces defined over T , cf. Section 4.1. The standard DG
weak formulation is given: find y 2 Y such that

Â
k2T

��

h
�

y+,y�,n
�

,v+
�

∂k

� (F (y) ,—v)
k

�

= 0 8v 2 V, (7)

where the standard upwind numerical flux for linear advection in

h
�

y+,y�,n
�

=

(

(n · v)y+ if n · v < 0
(n · v)y� if n · v � 0

, (8)

which is also specialized at the domain boundary ∂W in order to incorporate boundary conditions. For a
detailed formulation and analysis of this method, for the case of smooth flow, see Hartmann and Leicht [9,
11] and the references contained therein. Figure 1 depicts the solution computed using DG for the case of
vx = 1

10 , along with the intentionally misaligned grid and interface present in the exact solution, ∂W1 \∂W2.
Despite this misalignment, the residual vanishes to machine precision. We observe that, in the lower-order
case, the solver produces a monotonic solution, yet the interface is diffused over many cells, which is
representative of the stability of low-order methods even in the presence of shocks. In the higher-order case,
the solution is less diffused, however, over-shoots and under-shoots are present, which is indicative of the
instability of high-order methods in the presence of discontinuous interfaces, necessitating shock capturing
strategies that locally stabilize the solution while, at best locally, sacrificing high-order accuracy [20].
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For both high and low order approximations, using the standard DG formulation, the residual vanishes
without having fit the interface. We therefore conclude that the standard DG formulation lacks the means to
unambiguously detect a priori unknown interfaces thus motivating the pursuit of a revised formulation.

3. MOVING DISCONTINUOUS GALERKIN METHOD WITH INTERFACE CONDITION
ENFORCEMENT

We now present a revised formulation of DG, which incorporates the interface condition separately into
the discretization in order to satisfy the criterion that the residual only vanishes once the interface condition
is satisfied, thus providing a means to detect a priori unknown interfaces. The method, which we refer to
as the Moving Discontinuous Galerkin Method with Interface Condition Enforcement (MDG-ICE), is first
formulated in physical space in Section 3.1. In order to drive the residual to zero, thus enforcing both the
conservation law and its associated interface condition, the method must have a means to fit interfaces,
which is provided by allowing the grid to move, or in other words, treating the grid as a variable. Therefore,
the formulation is mapped into reference space in Section 3.2, to clearly identify terms with a geometric
dependence and facilitate differentiation with respect to geometry.

3.1 Formulation in physical space with fixed geometry

3.1.1 Strong formulation

Let W ⇢ Rn be a given domain. We assume that W is partitioned by T , consisting of disjoint sub-
domains or cells k , so that W = [

k2T k , with interfaces e composing a set E so that [
e2E e = [

k2T ∂k ,
over which a normal n is defined. Consider a nonlinear conservation law, given in strong form, defined for
piecewise smooth, Rm-valued, functions y as

— ·F (y) = 0 in k 8k 2 T , (9)
Jn ·F (y)K = 0 on e 8e 2 E , (10)

in terms of a given flux function F : Rm ! Rm⇥n. In general one might consider systems of the form

— ·F (y,—y) = — ·
⇣

F c (y)�F d (y,—y)
⌘

= S (y) , (11)

where the convective flux F c (y) is only a function of the state y, the diffusive flux F d (y,—y) is also
possibly a function of the gradient —y, while S (y) denotes a source term. In the present setting, we restrict
the formulation to convection only, so that F (y) = F c (y) and S (y) = 0.

We assume that E consists of two disjoint subsets: the interior interfaces

e0 2 E0 = {e0 2 E |e0 \∂W = /0} (12)

and exterior interfaces

e

∂

2 E
∂

= {e

∂

2 E |e
∂

⇢ ∂W} , (13)
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so that E = E0 [E
∂

. For interior interfaces e0 2 E0 there exists k

+,k� 2 T such that e0 = ∂k

+ \∂k

�, so
that (10) is defined as

0 = Jn ·F (y)K = n+ ·F
�

y+
�

+n� ·F
�

y�� , on e0 8e0 2 E0 (14)

where n+,n� denote the outward facing normal of k

+,k� respectively, so that n+ = �n�. For exterior
interfaces

0 = Jn ·F (y)K = n+ ·F
�

y+
�

�n+ ·F
∂

�

y+
�

, on e

∂

e

∂

2 E
∂

. (15)

Here n+ ·F
∂

(y+) is the imposed normal boundary flux, which may or may not be a function of y+ depending
on the type of boundary condition. Therefore, we further decompose E

∂

into disjoint subsets of inflow and
outflow interfaces E

∂

= Ein [ Eout, so that at an outflow interface eout the boundary flux is defined as the
interior flux,

n+ ·Fout
�

y+
�

= n+ ·F
�

y+
�

, (16)

and therefore (15) is satisfied trivially, which is equivalent to no boundary condition being enforced. At an
inflow boundary ein 2 Ein, the normal boundary flux is a fixed constant independent of the interior state y+

n+ ·Fin
�

y+
�

= n+ ·Fin. (17)

Systems governed by Eqs. (9), (10) include linear scalar advection (2), spacetime Burgers flow (69),
and inviscid, compressible (Euler) flow, both in steady and spacetime form. The Euler flow state variable is
given by

y = (r,rv1, . . . ,rvn,rE) 2 Rm, (18)

where m = n+2. The i-th spatial flux component is given by

Fi (y) = (rvi,rviv1 + pdi1, . . . ,rvivn + pdin,rHvi) 2 Rm, (19)

Here r is density, (v1, . . . ,vn) 2 Rn is velocity, rE is stagnation energy per unit volume, and

H = (rE + p)/r (20)

is stagnation enthalpy. The pressure p is defined as

p = (g �1)

 

rE � 1
2

n

Â
i=1

rvivi

!

, (21)
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where the ratio of specific heats for air is given as g = 1.4. The steady Euler flux is

F (y) = (F1 (y) , . . . ,Fn (y)) 2 Rm⇥n, (22)

while the spacetime Euler flux is

F (y) = (F1 (y) , . . . ,Fn (y) ,y) 2 Rm⇥(n+1). (23)

3.1.2 Weak formulation

Let the solution space Y be a vector-valued, broken Sobolev space,

Y =
h

Hk (T )
im

=
n

y 2
⇥

L2 (W)
⇤m �
�8k 2 T , y|

k

2
h

Hk (k)
imo

, (24)

where k is a positive integer. The weak formulation is obtained by integrating the conservation law (9) and
its interface condition (10) against separate test functions: find y 2 Y such that

Â
k2T

(— ·F (y) ,v)
k

� Â
e2E

(Jn ·F (y)K ,w)
e

= 0 8(v,w) 2 V ⇥W, (25)

or, based on an integration by parts, equivalently,

Â
k2T

��

n ·F
�

y+
�

,v+
�

∂k

� (F (y) ,—v)
k

�

� Â
e2E

(Jn ·F (y)K ,w)
e

= 0 8(v,w) 2 V ⇥W, (26)

where the test space V = Y , while W is the corresponding single-valued trace space.

In contrast to the classical discontinuous Galerkin formulation, we do not substitute the flux function in
the resulting surface integral over ∂k with a numerical flux, cf. [9, 11], and instead retain the interior flux.
Global coupling is instead achieved through the weakly enforced interface condition over each e 2 E . Since
the conservation law and its interface condition are integrated against separate test functions, the residual
only vanishes upon weak satisfaction of both. This formulation can also be seen in the analysis of adjoint
flow problems involving shocks [51–54].

3.1.3 Alternative weak formulations

Although not considered in this work, the weak formulation (26) could be modified to substitute a
numerical flux, while still enforcing the interface condition separately: find y 2 Y such that

Â
k2T

��

h
�

y+,y�,n
�

,v+
�

∂k

� (F (y) ,—v)
k

�

� Â
e2E

(Jn ·F (y)K ,w)
e

= 0 8(v,w) 2 V ⇥W, (27)

which brings it closer to the standard DG method. In fact, if we choose W to be a zero-dimensional space,
then the standard DG formulation (7) is recovered. We observe also that the choice of an interior numerical
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flux h(y+,y�,n) = n ·F (y+) recovers (26), while the exterior numerical flux h(y+,y�,n) = n ·F (y�) and
integrating by parts, would lead to: find y 2 Y such that

Â
k2T

�

(— ·F (y) ,v)
k

�
�

Jn ·F (y)K ,v+
�

∂k

�

� Â
e2E

(Jn ·F (y)K ,w)
e

= 0 8(v,w) 2 V ⇥W. (28)

The proposed formulation is also related to the hybridized DG formulation [55, 56], which introduces an
interface variable ŷ 2 W to obtain a weak formulation: find (y, ŷ) 2 Y ⇥W ,

Â
k2T

�

(— ·F (y) ,v)
k

+
�

h
�

y+, ŷ,n
�

�n ·F
�

y+
�

,v+
�

∂k

�

� Â
e2E

�q
h
�

y+, ŷ,n
�y

,w
�

e

= 0 8(v,w) 2V ⇥W,

(29)
or

Â
k2T

��

h
�

y+, ŷ,n
�

,v+
�

∂k

� (F (y) ,—v)
k

�

� Â
e2E

(Jh(y, ŷ,n)K ,w)
e

= 0 8(v,w) 2 V ⇥W, . (30)

The weak formulation (26) is recovered by the non-standard choice of numerical flux

h
�

y+, ŷ,n
�

= n ·F
�

y+
�

. (31)

3.1.4 State equation and its linearization

We can represent (25) abstractly as a state equation e(y) = 0, by defining the state operator e : Y !
(V ⇥W )⇤ for y 2 Y as

e(y) = (v,w) 7! Â
k2T

(— ·F (y) ,v)
k

� Â
e2E

(Jn ·F (y)K ,w)
e

, (32)

The Fréchet derivative of the state operator (32) about a reference state y is then defined for a given pertur-
bation dy 2 Y as

e0 (y)dy = (v,w) 7! Â
k2T

�

— ·F 0 (y)dy,v
�

k

� Â
e2E

�q
n ·F 0 (y)dy

y
,w
�

e

. (33)

3.2 Formulation in reference space with variable geometry

3.2.1 Mapping from reference space

In order to align discrete grid interfaces with flow interfaces, the grid must be treated as a variable.
Therefore, we transform the strong formulation (9), (10) and weak formulation (25) of the flow equations in
reference coordinates, in order to facilitate differentiation with respect to geometry. Therefore, we assume
that there is a continuous, invertible mapping

u : Ŵ ! W, (34)
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from a reference domain Ŵ ⇢ Rn to the physical domain W ⇢ Rn. We assume that Ŵ is partitioned by T̂ ,
so that Ŵ = [

k̂2T̂ k̂ . Also, we consider the set of interfaces Ê consisting of disjoint interfaces ê , such that
[

ê2Ê ê = [
k̂2T̂ ∂ k̂ . The mapping u is further assumed to be (piecewise) differentiable with derivative or

Jacobian matrix denoted

—u|
k̂

: k̂ ! L (Rn,Rn) 8k̂ 2 T̂ . (35)

The cofactor matrix cof(—u)|
k̂

: k̂ ! L (Rn,Rn) , is defined for k̂ 2 T̂ ,

cof(—u(x̂)) = det(—u(x̂))(—u(x̂))�> 8x̂ 2 k̂. (36)

Consider ê 2 Ê , for which we assume that there exists a parameterization q

ê

: D̂ ! ê , mapping from a
parameter space D̂ ⇢ Rn�1. A parameterization of e = u(ê) is then given by the composition q

e

= u � q

ê

:
D̂ ! e . Given ê 2 Ê , the (non-unit) normal s(—u)|

ê

: ê ! Rn is defined for x̂ 2 ê as the (non-unit) normal
of the tangent plane of e corresponding to the parameter q

�1
ê

(x̂). For example, if n = 3, and x ,h denotes
the parametric coordinate directions, then for x̂ 2 ê

s(—u)|
ê

=
�

∂

x

q

e

^∂

h

q

e

�

�q

�1
ê

(37)

where ∂

x

q

e

^∂

h

q

e

is the vector (or cross) product of the tangent plane basis vectors. A general formula for
evaluating the vector product of tangent plane basis vectors is given by the following: let (xxx1, . . . ,xxxn) denote
the coordinate directions in Rn, and the parameterization be given in terms of components q

e

=
�

q

1
e

, . . . ,q n
e

�

,
then

∂

x1q

e

^ · · ·^∂

xn�1q

e

= det

0

B

B

B

@

xxx1 . . . xxxn
∂

x1q

1
e

· · · ∂

x1q

n
e

...
. . .

...
∂

xn�1q

1
e

· · · ∂

xn�1q

n
e

1

C

C

C

A

, (38)

so that in general

s(—u)|
ê

=
�

∂

x1q

e

^ · · ·^∂

xn�1q

e

�

�q

�1
ê

, (39)

where we assume also that
�

�

∂

x1q

ê

^ · · ·^∂

xn�1q

ê

�

�= 1.

3.2.2 Geometric boundary conditions

In order to implement geometric boundary conditions, which constrain points to the boundary, we intro-
duce a nonlinear projection operator, denoted b : U !U . A common and simple example of such a mapping
would be for the case of constraining points to a boundary surface e 2 E

∂

, which lies on a hyperplane

P = {x 2 Rn |x ·nP = xP ·nP} , (40)

with a given unit normal nP and reference point xP. In this case, we define the projection to map the point to
the closest point on the hyperplane

b(u)|
ê

= u� (nP · (u� xP))nP. (41)
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Another example is the projection of a point to a fixed point x0, for example, the point lying at the intersection
of n hyperplanes in Rn,

b(u)|
ê

= x0, (42)

so that in particular the derivative of the projection vanishes at such points.

3.2.3 Strong and weak formulation in reference space

The strong formulation in reference coordinates is

(cof(—u)—) ·F (y) = 0 in k̂ 8k̂ 2 T̂ , (43)

Js(—u) ·F (y)K = 0 on ê 8ê 2 Ê , (44)

b(u)�u = 0 on ê 8ê 2 Ê
∂

. (45)

We assume that Y =
h

Hk
⇣

T̂
⌘im

now consists of functions defined in an Rm-valued broken Sobolev space

over T̂ , where k is a positive integer. We also assume that U =
⇥

H`
�

Ŵ
�⇤n, the Rn-valued Sobolev space over

Ŵ. We further assume that the test spaces V = Y and W , the corresponding single-valued trace space, now
consist of functions defined over reference space. We then define a provisional state operator ẽ : Y ⇥U !
(V ⇥W )⇤ for (y,u) 2 Y ⇥U ,

ẽ(y,u) = (v,w) 7! Â
k̂2T̂

((cof(—u)—) ·F (y) ,v)
k̂

� Â
ê2Ê

(Js(—u) ·F (y)K ,w)
ê

, (46)

which has a Fréchet derivative defined for perturbation (dy,du) 2 Y ⇥U , and test functions (v,w) 2 V ⇥W ,
by

⌦

ẽ0 (y,u)(dy,du) ,(v,w)
↵

=+ Â
k̂2T̂

���

cof0 (—u)—du
�

—
�

·F (y) ,v
�

k̂

+ Â
k̂2T̂

�

(cof(—u)—) ·
�

F 0 (y)dy
�

,v
�

k̂

� Â
ê2Ê

�q�
s0 (—u)—du

�

·F (y)
y
,w
�

ê

� Â
ê2Ê

�q
s(—u) ·

�

F 0 (y)dy
�y

,w
�

ê

. (47)

The state operator e : Y ⇥U ! (V ⇥W )⇤, which imposes geometric boundary conditions (45) by composing
the provisional state operator (46) with the projection b(u), is then defined

e(y,u) = ẽ(y,b(u)) , (48)

with Fréchet derivative defined, for state (y,u) 2 Y ⇥U and perturbation (dy,du) 2 Y ⇥U , by

⌦

e0 (y,u)(dy,du)
↵

= ẽy (y,b(u))dy+ ẽu (y,b(u))b0 (u)du. (49)
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The state equation in reference coordinates is e(y,u) = 0. The corresponding weak formulation in refer-
ence coordinates is: find (y,u) 2 Y ⇥U such that

he(y,u) ,(v,w)i = 0 8(v,w) 2 V ⇥W. (50)

4. SOLVER

In this section, we present an approach for solving the MDG-ICE weak formulation in reference coordi-
nates (50), including discretization using standard polynomial finite elements, the nonlinear solver strategy,
and the grid operations necessary for modifying the grid topology as the solver degenerates elements.

4.1 Discretization

Discretization of the weak formulation (50) implies choosing finite-dimensional subspaces Yh ⇢ Y , Uh ⇢
U , Vh ⇢ V and Wh ⇢ W . We use standard piecewise polynomials, cf. [9], defined over reference elements.
Let Pp denote the space of polynomials spanned by the monomials xxxa with multi-index a 2Nn

0 , satisfying
Ân

i=1 ai  p. In the case of a simplicial grid,

Yh =
n

y 2 Y
�

�8k̂ 2 T̂ , y|
k̂

2 [Pp]
m
o

. (51)

Let Qp denote the space of polynomials spanned by the monomials xxxa with multi-index a 2 Nn
0 , satisfying

ai  p for i = 1 . . .n. In the case of a cuboid grid,

Yh =
n

y 2 Y
�

�8k̂ 2 T̂ , y|
k̂

2 [Qp]
m
o

. (52)

The discrete subspace Uh of mappings from reference space to physical space are also discretized into Rn-
valued piecewise polynomials, in the case of a simplicial grid

Uh =
n

u 2 U
�

�8k̂ 2 T̂ , u|
k̂

2 [Pp]
n
o

, (53)

or in the case of a cuboid grid

Uh =
n

u 2 U
�

�8k̂ 2 T̂ , u|
k̂

2 [Qp]
n
o

. (54)

The case that the chosen polynomial degree of Uh is equal to that of Yh is referred to as isoparametric. It is
also possible to choose the polynomial degree of Uh to be less (sub-parametric) or greater (super-parametric)
than that of Yh.

The test space Vh is chosen to be Uh for a Galerkin-type method. Wh is the subspace of single-valued
polynomials defined over the interface. In the case of a simplicial grid

Wh =
n

w 2 W
�

�8ê 2 Ê , w|
ê

2 [Pp]
m
o

, (55)
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while in the case of a cuboid grid

Wh =
n

w 2 W
�

�8ê 2 Ê , w|
ê

2 [Qp]
m
o

. (56)

The discrete weak formulation is therefore just (50), only restricted to the discrete subspaces,

eh : Yh ⇥Uh ! Vh ⇥Wh. (57)

4.2 Nonlinear solver

Since in general dim(Yh)+dim(Uh) 6= dim(Vh)+dim(Wh), instead of solving

eh (y,u) = 0 (58)

directly, we instead seek a stationary point

e0
h (y,u) = 0. (59)

The unconstrained optimization problem (59) can be solved iteratively. Given an initialization (y,u)0 the
solution is repeatedly updated

(y,u)i+1 = (y,u)i +D(y,u)i i = 0,1,2, . . . (60)

until (59) is satisfied to a given tolerance.

Available iterative methods for solving (59) include the first-order gradient descent method with incre-
ment given by

D(y,u) = �ae0
h (y,u)⇤ eh (y,u) , (61)

the second-order Newton method with increment given by

D(y,u) = �e00
h (y,u)�1 e0

h (y,u) , (62)

or the Gauss-Newton method with increment given by

D(y,u) = �
�

e0
h (y,u)⇤ e0

h (y,u)
��1 �e0

h (y,u)⇤ eh (y,u)
�

. (63)

As the residual approaches zero, the Gauss-Newton method recovers the second order convergence rate of
the Newton method (62), while avoiding difficulties such as a loss of positive definiteness. Other choices
are possible, such as the Levenberg-Marquardt method,

D(y,u) = �
�

e0
h (y,u)⇤ e0

h (y,u)+l I (y,u)
��1 �e0

h (y,u)⇤ eh (y,u)
�

. (64)
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where I (y,u) denotes the identity mapping and l > 0 denotes a regularization factor, that ensures a full
rank linear system of equations. This method, can be viewed as an adaptive combination of the gradient
descent (61) and Gauss-Newton (63) methods, where the former is recovered by taking l large, while the
latter is recovered as l ! 0. Another possible choice would be the Lagrange-Newton method for constrained
optimization [57].

In the present work, we use the Levenberg-Marquardt method (64), which requires solving a symmetric,
positive definite system of linear system of equations. The regularization l I (y,u) in (64) can be generalized
to provide finer-grained control of the regularization with respect to different solution variables. Since
the system (59) is full rank with respect to y, a small or zero regularization can be applied with respect
to y, partially recovering the Gauss-Newton method (63). On the other hand, the system (59) is often of
insufficient rank with respect to geometry, so that a greater regularization can be applied with respect to
u, especially for the initial nonlinear solver iterations. This regularization is also useful for inhibiting the
solver from modifying the discrete geometry u too aggressively. Therefore, the regularization we use is in
the present work is of the form (y,u) 7! (lyy,luu), with ly,lu > 0.

Such a positive definite, symmetric system of equations can be solved for using either CG (conjugate
gradients) or MINRES [58]. Other available least squares solvers include LSQR [59] and LSMR [60].
The linear systems of equations are in general poorly conditioned, especially when the regularization pa-
rameter is low, so that preconditioning is essential. In the present work, we employ MINRES using right
preconditioning with a diagonal preconditioner [61].

4.3 Grid Operations

While in certain situations (cf. Section 5.1) the MDG-ICE solver is able to solve directly for the grid,
without modifying the grid topology, in general an arbitrary initial grid topology will not be compatible
with the interface topology present in the exact solution (cf. Section 5.4). In such situations MDG-ICE
drives cells in the discrete geometry u to degenerate, which can be identified by their generating a negative
Jacobian, det—u < 0. In such situations, degenerate simplicial cells can be removed using standard local
grid operations including edge collapse, cf. [62], while in order to maintain a sufficient level of refinement,
remaining cells can be refined to maintain a target number of cells, or to ensure that a maximum length
scale is not exceeded. In the case of cuboid cells, when a cell degenerates, we implement partial collapses
by aliasing degrees of freedom on opposite faces of the cell, an example of the application of this type of
degeneration is given in Section 5.2.

Upon convergence of the MDG-ICE solver to a stationary point (59), if the residual (58) is not yet
converged within a given tolerance, then the grid can be refined and a new stationary point sought on a finer
space (59).

4.4 Entropy Condition Enforcement

For nonlinear convection problems, in order to ensure uniqueness, an entropy inequality must be en-
forced, cf. [63]. In the context of piecewise smooth flow, this requires that

Jn ·F s (y)K � 0 on e 8e 2 E , (65)
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where her F s (y) denotes an entropy flux. In the case of inviscid compressible flow, governed by the Euler
equations, the spatial entropy flux can be defined as

F s (y) = (rsv1, . . . ,rsvn) 2 Rn, (66)

while the spacetime entropy flux can be defined as

F s (y) = (rsv1, . . . ,rsvn,rs) 2 Rn+1, (67)

where the entropy variable, which is negated in relation to physical entropy, can be defined as

rs = � r

g �1
ln(p/r

g) . (68)

In the present work, a very simple restart strategy is employed for the preliminary test cases considered
in Section 4.4. Between each nonlinear solver iteration, along any interface for which the entropy condition
is violated, the states are averaged. Since entropy condition violating solutions are dynamically unstable,
this approach appears to be sufficient for the preliminary test cases considered in the present work, as once an
entropy-violating discontinuity is broken, the solver is not strongly driven to recreate it. For more complex
flows, a more elaborate entropy condition enforcement may be required, which will be investigated in future
work.

5. EXAMPLES

We now use MDG-ICE to compute a variety of benchmark flow configurations, in order to provide an
initial assessment of its ability to stably and accurately compute piecewise smooth flows with discontinuous
interfaces. The first problem, presented in Section 5.1, a one-dimensional, unsteady, moving interface, is
solved for the case of both a small and large motion. This case illustrates the ability of MDG-ICE to solve
for flows with interfaces with a minimal reliance on grid topology modification. While in the first problem,
the interface is imposed as a temporal inflow condition, the second problem, presented in Section 5.2, is that
of shock formation. This problem assesses the ability of MDG-ICE to solve for flows with grid topology that
changes in time. The third problem, presented in Section 5.3, the Sod shock tube problem, assesses the abil-
ity of MDG-ICE to handle a number of different types of waves within a unified formulation. These include
a shock and contact discontinuity, as well as a rarefaction, that introduces both a singularity and derivative
discontinuities. The fourth problem, presented in Section 5.4, is that of intersecting oblique shocks, which
assesses the ability of MDG-ICE, in conjunction with local grid operations, to compute a priori unknown in-
terfaces in both two-dimensional and three-dimensional space. The fifth problem, presented in Section 5.5,
of supersonic flow over a cylinder, assesses the ability of MDG-ICE to compute a priori unknown curved
interface geometry, while retaining a high-order representation up to the interface.

5.1 Moving Interface

First, we revisit the case involving a moving interface governed by the spacetime linear advection equa-
tion with spatial velocity vx = 1

10 considered in Section 1.1. Figure 2 depicts the solution computed using
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MDG-ICE. The solver was initialized with a uniform grid, with the temporal initial condition (3) at t = 0
extruded in time. MDG-ICE computes the exact solution, and in particular, fits the interface present in the
exact solution, which is illustrated with a dashed line. This piecewise constant flow was computed for the
cases of p = 0,1,2,3, in order to demonstrate that MDG-ICE avoids the artificial dissipation introduced by
low-order methods with unfitted interfaces, while also avoiding the oscillations produced by higher-order
methods in the presence of unfitted interfaces, as shown in Figure 1 for the case of the standard DG method.
An analogous flow was computed using a larger spatial velocity vx = 3

2 using MDG-ICE(p = 0), as shown
in Figure 3. In this case, the upstream state transitioned across many cells, including around one of the
corners of the domain to reproduce the exact solution, without requiring any grid topology changes. This
case demonstrates that MDG-ICE is also able to fit interfaces with large motion by simultaneously updating
the flow field and the grid, with minimal reliance on grid topology modification.

5.2 Spacetime Burgers flow

In the previous example, an interface was specified as an initial condition. An interesting question, is
whether or not a method for treating interfaces can handle changes in topology in time, which happens, for
example, in the case of shock formation. An additional related phenomenon that occurs in inviscid flows,
is that of singularities, which can occur just prior to shock formation. To assess the ability of MDG-ICE
to compute such flows, we now consider a shock formation problem governed by the spacetime Burgers
equation with flux

F (y) =

✓

1
2

y2,y
◆

. (69)

The smooth initial condition at t = 0 is specified as

y(x, t = 0) =

8

>

<

>

:

2 x < 1
4

4�8x 1
4  x  3

4
�2 x > 3

4

, (70)

which leads to a shock at t = 1
8 . The exact spacetime solution is

y(x, t) =

8

>

<

>

:

2 x < x+ (t)
8x�4
8t�1 x+ (t)  x  x� (t)
�2 x > x� (t)

, (71)

where the shock positions are denoted

x+ (t) = min
✓

1
4

+2t,
1
2

◆

, (72)

x� (t) = max
✓

3
4

�2t,
1
2

◆

. (73)
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(a) The converged spacetime solution obtained for vx = 1
10 . The solver was initialized with a uniform grid, with the

initial condition at t = 0 extruded in time. The solver was initialized with a uniform grid, with the initial condition at
t = 0 extruded in time. Upon convergence, the interface present in the exact solution, illustrated with a dashed line,
has been fit.
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(b) The converged piecewise polynomial solutions obtained for MDG-ICE(p = 0,1,2,3), sampled along the line
t = 1. The dashed line located at x = 1

10 spans the interface present in the exact solution.

Fig. 2: A one-dimensional moving interface, computed using MDG-ICE.



18 Andrew Corrigan, Andrew D. Kercher, David A. Kessler

�1.00 �0.75 �0.50 �0.25 0.00 0.25 0.50 0.75 1.00
x

0.0

0.2

0.4

0.6

0.8

1.0
t

MDG-ICE(p = 0)

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

y

Fig. 3: A one-dimensional moving interface, with a velocity of vx = 3
2 , shown in a two-dimensional space-

time domain, computed using MDG-ICE. The solver was initialized with a uniform grid, with the initial
condition at t = 0 extruded in time. Upon convergence, the interface present in the exact solution, illustrated
with a dashed line, has been fit. The interface exits the domain at t = 2

3 .

This is a variant of the problem studied by Giles and Ulbrich [52–54] when considering adjoint solutions
for shocked flows.

The solution computed using MDG-ICE(p = 2) on a grid discretizing the spacetime domain W = (0,1)⇥
�

0, 1
2
�

with six quadrilateral cells is shown in Figure 4. The flow state variable y was discretized using Q2
elements, while the shape variable u was discretized using Q1 elements. Figure 4a shows the solution
initialization, which was the extrusion of the initial condition (70) in time. With only six cells, MDG-ICE is
able to reproduce the exact solution by partially degenerating one cell, while fully degenerating another cell.
The degeneration process involves imposing an equality constraint on initially distinct degrees of freedom,
so that upon subsequent solver iterations they move in a synchronized fashion. The partially degenerated
cell has its top two points collapsed, enabling it to exactly reproduce the singularity leading into the point of
shock formation. As shown in Figure 4c, the flow is piecewise linear in space, with an increasing slope that
transitions to an instantaneous jump at (x, t) =

� 1
2 , 1

8
�

. Emanating from this point is the fully degenerated
cell, which has its top two and bottom two points collapsed, coinciding with the shock interface. This case
indicates that MDG-ICE is capable of handling interface topology that changes in time as well as flows with
singularities.

5.3 Shock tube

In this example, we consider a shock tube problem, governed by the spacetime Euler equations (23),
where multiple interfaces emanate from a discontinuity at t = 0. The initial conditions are those of the
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(a) Initial condition given by (70) extruded in time, with a
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(b) The converged spacetime solution computed by MDG-
ICE(p = 2) using a Q1 geometry representation. The point
of shock formation is obtained at (x, t) =
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(c) The converged piecewise polynomial solutions obtained for MDG-ICE(p = 2), sampled along the lines t =
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16 , 1
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spans the interface present in the exact solution.

Fig. 4: Burgers spacetime shock formation

classic Sod shock tube, with a piecewise constant state, with

(r,v, p)(x, t = 0) =

(

(1,0,1) x < 0
�1

8 ,0, 1
10
�

x > 0
, (74)

The solution computed using MDG-ICE(p = 3) on a grid discretizing the spacetime domain W =
�

� 1
2 , 1

2
�

⇥
�

0, 2
10
�

with ten quadrilateral cells is shown in Figure 5 within a single spacetime slab. The flow state variable
y was discretized using Q3 elements, while the shape variable u was discretized using Q1 elements. Fig-
ure 5a shows the spacetime initialization, which was the extrusion of the initial condition (74) in time. Also,
the middle eight cells were degenerated to the point (x, t) = 0 at the temporal initialization. Figures 5c-5f
show a comparison of density, pressure, velocity, and entropy between the MDG-ICE solution and the exact
solution, cf. [64]. We observe in Figure 5c that both the shock and contact are fitted as true discontinuities,
at the correct location, indicating that the speed of each is computed correctly. Moreover at the head and tail
of the rarefaction, a derivative discontinuity exists, which is also fit. Each of these types of discontinuities
were computed without resorting to specialized logic specific to each type. This highlights one of the key
features of MDG-ICE, that multiple types of discontinuities can be detected and fitted simply by solving
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the weak formulation (50), which enforces both the conservation law (9) and its interface condition (10)
separately. Another key observation is that even though MDG-ICE does not rely on artificial dissipation for
stability, the computed solutions are oscillation-free while in Figure 5f we observe the absence of spurious
entropy generation at the shock.

5.4 Intersecting oblique shocks

State Pressure (p) Mach (M) Density (r) Entropy (s)
1 1 2 1 1.177652828
2 1.31540694 1.821253900 1.21557716 1.179751529
3 1.70550887 1.648699723 1.46260855 1.181536318
4 2.187780929 1.478144666 1.74655696 1.183109810

Table 1: Oblique shocks: Pressure, Mach, Density and Entropy values
computed at each of the distinct states in the intersecting oblique shock
flow, shown in Figures 6, 7, and 8 in 2D, and Figure 9 in 3D.

In this example, we consider initially unfitted intersecting oblique shocks, governed by the steady Euler
equations (22), in order to assess the ability of MDG-ICE to compute flows with non-trivial and a-priori
unknown interface topology. The inflow condition are specified with a Mach number M1 = 2, density
r1 = 1, and pressure p1 = 1. The domain and grids used for simulating this flow are shown in Figure 6.

First we computed this flow using the standard DG(p = 1) method with the HLLC flux [64, 65], aug-
mented with a shock capturing strategy based on [16]. The coarse grid with 641 linear triangular cells shown
in Figure 6a was used to compute the density field shown in Figure 7a. In order to reduce the artificial dis-
sipation present in the solution, we employed a residual-based adaptation strategy to refine the grid locally,
shown in Figure 6b, resulting in reduced artificial dissipation around the shocks as shown in Figure 7b. We
also see that the considerable amount of spurious entropy generation produced by shock capturing on the
coarse grid, Figure 8a, was reduced by adaptive grid refinement as shown in Figure 8b, but that it is still
significant.

Next we computed this flow using MDG-ICE(p = 1), which does not rely on any form of shock capturing
or artificial dissipation. We initialized the solution using the coarse grid DG(p = 1) shock-captured solution
on 641 linear triangle cells (Figure 7a). As the MDG-ICE solver progressed, any cells that degenerated
were removed from the grid via local collapse operations, as described in Section 4.3. The resulting grid,
shown in Figure 6c, had 461 linear triangle cells remaining, with the intersecting shock interfaces clearly
visible. The corresponding density field, shown in Figure 7c, shows that the solver has fit the shocks as true
discontinuities with an instantaneous jump across each shock interface. For this piecewise constant flow,
the MDG-ICE residual has vanished, indicating that the computed solution is exact. The computed flow
values, for each flow field state are listed in Table 1. As in the previous example, the entropy field, shown in
Figure 8c, indicates that no spurious entropy is generated.
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(a) The initial spacetime grid and density field over W = (�0.5,0.5)⇥ (0,0.2). The initial solution consists
of 10 Q3 quadrilateral cells using a Q1 shape representation, where the middle eight cells are degenerated
at the point (x, t) = 0, as part of the temporal initialization. The dashed lines indicate the location of the
shock, contact, and rarefaction head and tail that are present in the exact solution.
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(b) The converged spacetime grid and density field over W = (�0.5,0.5) ⇥ (0,0.2). The final solution
consists of 10 Q3 quadrilateral cells using a Q1 shape representation. The dashed lines indicate the location
of the shock, contact, and rarefaction head and tail that are present in the exact solution.
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Fig. 5: Sod shock tube
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Finally we computed three-dimensional reflecting planar shocks using MDG-ICE(p = 1) , with flow con-
ditions that are analogous to those of the two-dimensional case. While, physically, the three-dimensional
flow is equivalent to the two-dimensional flow, the grid is fully unstructured and moves in all dimensions.
The initial grid consisted of 9,724 linear tetrahedral cells. A challenge that arises when computing three-
dimensional fitted interfaces is that the grid topology has increased complexity, which can manifest in a
greater tendency for cells to degenerate and collapse. The final grid, which consisted of 10,750 linear tri-
angle cells, was obtained by MDG-ICE in conjunction with local collapse operations, to remove degenerate
cells, along with local refinement, to refine cells that exceeded a maximum length scale of 0.1 in order to
ensure that sufficient resolution was maintained. The computed flow field is shown in Figure 9. As in the
two-dimensional case, the MDG-ICE residual has vanished, indicating that the computed solution is exact.

This case shows that MDG-ICE does not require a priori knowledge of the shock location and topology,
or impose restrictions on the topology. As can be seen, the method handles shock-shock as well as shock-
wall interactions. This demonstrates the ability of MDG-ICE to fit initially unfitted shocks, even with
non-trivial topology. The three-dimensional intersecting planar oblique shocks, indicates that the ability of
MDG-ICE to compute flows with non-trivial interface topology generalizes to higher dimensions.

5.5 Bow Shock

So far the problems considered have involved linear interface geometry. Since the MDG-ICE formula-
tion makes no assumption about the shape representation, and accommodates standard finite element shape
representations, we consider a problem involving curved boundaries and interface geometry. The problem
is that of supersonic flow over a cylinder, resulting in a curved bow shock as described by Shu [66]. Here
we also use an initial grid consisting of 15⇥20 points, or 14⇥19 cells, which we then decompose into 532
unstructured triangular cells. The inflow condition is Mach number M• = 3, pressure p• = 1, and density
r• = 1.4.

First we computed the solution using the standard DG(p = 1) method with the HLLC flux [64, 65],
augmented with a shock capturing strategy based on [16]. This shock captured solution was then used as an
initialization to compute the flow field using MDG-ICE(p = 3) with P2-shape triangle elements that were
constrained to the outer ellipse and inner circle via geometric boundary conditions. The grids are shown
in Figure 10, along with the computed pressure fields in Figure 11. Since the exact solution has a constant
stagnation enthalpy (20) throughout the domain, H• = 7, this quantity is shown as well in Figure 12.

We observe that the curved bow shock is fit by the MDG-ICE solver in conjunction with local grid
operations to collapse degenerate cells while performing local refinement to maintain a target number of
532 cells. The location of the shock along the line y = 0 was computed as x = �1.698 for a stand-off dis-
tance of 0.698. As a form of shock fitting that does not rely on any form of shock capturing or artificial
dissipation, MDG-ICE appears to be immune to carbuncle instabilities [67, 68]. The computed pressure
field also appears to be free of the detrimental effects of artificial dissipation that are apparent in the shock
captured solution. Furthermore, MDG-ICE more closely preserves a constant value of stagnation enthalpy
throughout the domain, reducing the stagnation enthalpy error kH �H•kL2(W) nearly two orders of magni-
tude compared to the DG(p = 1) solution, from 1.2633 ⇥ 10�1 to 1.9704 ⇥ 10�3. The pressure and Mach
number distribution, sampled along the line y = 0, along with the exact pressure at the stagnation point,
p ⇡ 12.06096, are shown in Figure 13. The computed pressure and Mach number at the stagnation point on
this coarse grid are 12.0559064 and 2.26753700⇥10�2 respectively.
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(a) An initial coarse grid of 641 cells.
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(b) A finer grid obtained using isotropic, residual-based adaptation, resulting
in 25,941 cells.
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(c) A fitted grid computed by MDG-ICE(p = 1) without shock capturing, with
degenerate cell collapse, using the coarse grid shown in (6a) as the initializa-
tion, resulting in 461 cells. The shock interfaces present in the exact solution
are reproduced by the grid.

Fig. 6: Intersecting oblique shocks: Grid
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(a) The density field computed using DG(p = 1) with shock capturing on a
coarse grid with 641 cells. The effect of artificial dissipation introduced by the
shock capturing is noticeable.
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(b) The density field computed using DG(p = 1) with shock capturing on the
finer grid with 25,941 cells. The effect of artificial dissipation introduced by
the shock capturing is reduced from its effect on the coarser grid, but is still
visible.
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(c) The density field computed using MDG-ICE(p = 1) without shock captur-
ing.

Fig. 7: Intersecting oblique shocks: Density
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(a) The entropy field computed using DG(p = 1) with shock capturing on a
coarse grid. A significant amount of spurious entropy generation is visible.
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(b) The entropy field computed using DG(p = 1) with shock capturing on the
adapted grid. Spurious entropy generation has been reduced from (8a), how-
ever is still significant.
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(c) The entropy field computed using MDG-ICE(p = 1) without shock captur-
ing.

Fig. 8: Intersecting Oblique Shocks: Entropy
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(a) The density field computed using MDG-ICE(p = 1) without shock capturing: thresholded to show r1 and r3.

(b) The density field computed using MDG-ICE(p = 1) without shock capturing: thresholded to show r2 and r4.

Fig. 9: Three-Dimensional Intersecting Shocks
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This case indicates that MDG-ICE generalizes to the case of curved interface geometry. Moreover, this
result further illustrates the potential of MDG-ICE to circumvent the loss of accuracy that occurs using
shock capturing.

6. CONCLUSIONS AND FUTURE WORK

The proposed method, MDG-ICE, accurately and stably computes flows with interfaces, including
shocks, without relying on interface or shock capturing, within a unified formulation, by enforcing the
conservation law and its interface condition simultaneously, while treating the discrete domain geometry
as a variable. Preliminary test cases demonstrate that the method can be used to compute both steady and
unsteady flows, a priori unknown interface topology, point singularities, using higher-order elements in
arbitrary-dimensional spaces.

In order to further assess the robustness of the proposed method, future work will apply MDG-ICE to 
problems of increased complexity. For example, in Section 5.1, a slowly moving discontinuity was com-
puted without artificial dissipation being introduced. Analogous results, which are oscillation-free, can be 
obtained using MDG-ICE for the case of slowly moving shocks in the context of the spacetime Euler equa-
tions, which has been reported as being challenging for Godunov-type or shock capturing methods, cf. [69–
71]. Furthermore, in such situations, unfitted shocks can induce oscillations using standard methods, which 
shock capturing can effectively suppress. However, the challenge then becomes simultaneously preserving 
other low-amplitude flow structures such as physical acoustic waves, so that the shock capturing does not 
mistakenly suppress such waves too. This issue is of particular concern in aeroacoustics, and remains an 
open issue for higher-order methods [20]. This issue arises in other applications, including in scramjets, 
in which the flame can be quite sensitive to perturbations of the local flow conditions, or boundary layer 
separation on hypersonic vehicles. In the present work, we have demonstrated the ability of MDG-ICE to 
stably resolve shocked flows without artificial dissipation. In future work, we will assess MDG-ICE’s ability 
to resolve the interaction of smooth flow features with shocks.

Future work will further improve the robustness and efficiency of the method. Techniques such as do-
main decomposition (for spacetime marching) and multigrid are of particular interest to improve the linear
solver efficiency. The initialization and regularization strategy used by the nonlinear solver will be opti-
mized to achieve robust convergence using a minimum number of iterations. Future work will also consider
the extension of the proposed formulation to flows involving diffusion and reactions, incompressibility con-
straints, as well as other conservation laws. While in the present work the formulation was introduced and
preliminary comparisons demonstrated the accuracy and stability of the proposed method, a future theoret-
ical study of convergence and stability will be used to either justify optimal high-order convergence in the
presence of discontinuous interface or provide guidance to revise the method to ensure such properties.
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Fig. 10: The initial linear and quadratic grids, as well as the final shock fit grid, for the bow shock simulation.
The DG(p = 1) solver used shock capturing on a grid with 532 P1 triangle cells. The MDG-ICE(p = 3)
solver was initialized by projecting the DG(p = 1) solution, and, in conjunction with degenerate cell collapse
and local refinement, successfully fit the shock using curved P2 triangle cells, without shock capturing.
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Fig. 11: The computed pressure field corresponding to the grids shown in Figure 10. The MDG-ICE(p = 3)
solver was initialized by projecting the DG(p = 1) solution. The flow field variables were resolved using P3
elements, without shock capturing, while the shock interface was fit using curved a P2 shape representation.
The location of the shock along the line y = 0 was computed as x = �1.698 for a stand-off distance of 0.698.
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Fig. 12: The computed stagnation enthalpy (20) field corresponding to the grids shown in Figure 10. The
exact solution has a constant stagnation enthalpy H• = 7. The stagnation enthalpy field computed using
MDG-ICE(p = 3) without shock capturing, significantly improves the accuracy with respect to the exact
solution, decreasing the error kH �H•kL2(W) decreased from 1.2633⇥10�1 to 1.9704⇥10�3.



A Moving Discontinuous Galerkin Finite Element Method for Flows with Interfaces 31

�3.0 �2.5 �2.0 �1.5 �1.0
x

2

4

6

8

10

12

P
re

ss
u
re

(p
)

MDG-ICE(p = 3)

(a) The pressure sampled along y = 0. The location of
the shock was computed as x = �1.698 for a stand-off dis-
tance of 0.698. The exact pressure at the stagnation point,
p ⇡ 12.06096, is marked with a cross. The computed pres-
sure at the stagnation point on this coarse grid is 12.0559064.
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(b) The Mach number sampled along y = 0. The exact Mach
number at the stagnation point, M = 0, is marked with a cross.
The computed Mach number at the stagnation point on this
coarse grid is 2.26753700⇥10�2.

Fig. 13: Bow shock: Computed with MDG-ICE(p = 3) using a P2 shape representation.

A version of this work has been submitted for consideration for publication in the Journal of Computa-
tional Physics.
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