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Abstract— Robotic tasks are becoming increasingly complex,
and with this also the robotic systems. This requires new tools to
manage this complexity and to orchestrate the systems to fulfill
demanding autonomous tasks. For this purpose, we developed
a new graphical tool targeting at the creation and execution
of robotic tasks, called RAFCON. These tasks are described in
hierarchical state machines supporting concurrency. A formal
notation of this concept is given. The tool provides many
debugging mechanisms and a GUI with a graphical editor,
allowing for intuitive visual programming and fast prototyping.
The application of RAFCON for an autonomous mobile robot
in the SpaceBotCamp competition has already proved to be
successful.

I. INTRODUCTION

Robotic systems are growing more and more complex.
Usually, they consist of a heterogeneous composition of
different modules for specific purposes (manipulation, vision,
navigation, etc.). All these components need to be coordi-
nated both in terms of communication and task flow. ROS
[1] is a common system handling the communication. Yet
in this paper, we focus on managing the task flow (over
time), which defines the flow control and thus orchestrates
all modules of a robotic system.

One approach for specifying tasks on a high level are
symbolic task planners, such as CRAM [2]. On the one
hand, their reasoning system and access to world knowledge
databases allow for complex tasks often found in household
scenarios (e. g. setting a table). On the other hand, these
tools haven’t reached a level in which they can be applied
for specific real-world tasks, especially in industries. This is
partially due to their obligatory (world) model, which is often
either under or over constrained and fails if a failure during
the execution cannot be represented in it [3]. Moreover, the
demand for computational resources is significantly higher.

As an alternative, many robotic systems use approaches
based on (hierarchical) state machines. They are a common
way of defining what to do in which order and how to react to
certain environmental changes or events. Here, the system is
typically in one state, from which it can proceed to a defined
number of other states. Which one is chosen at run-time,
depending on external events (like sensor inputs) or internal
events (like the result of a successful state execution).

Originally, state machines have been programmed tex-
tually as code, which does not only require expertise in
programming but also results in huge code fragments for
non-trivial tasks. Such code is hard to maintain, debug and
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Fig. 1. Our LRU robot [4] at the SpaceBotCamp 2015: Using a RAFCON
state machine (lower-right corner), the robot automatically grasps the blue
container for rock sample before returning it to the red base in the
background for assembly.

understand. Besides, many programming languages (such
as C[++]) are compiled. This leads to tedious development
cycles, as for every change in the program, the compiler must
be run, the binaries deployed and the system restarted.

In this paper, we present a newly developed tool called
RAFCON (RMC advanced flow control). It allows for visual
programming of hierarchical state machines, using a feature-
rich graphical user interface (GUI). It is programmed in
the interpreted language Python, which relieves one from
compiling and makes it possible to alter a state machine,
even while it is running. Python enables the integration of
heterogeneous components of a robotic system written in
different languages. The novel visualization of hierarchical
state machines together with sophisticated debugging mecha-
nisms permit fast prototyping and intuitive task development
with closed loop system tests, without the need of deep pro-
gramming skills. The architecture enables the collaboration
in a team on a single state machine. We proved this in the
SpacebotCamp 20161, in which RAFCON was used for the
mission control (see Fig. 1). The task of this contest included
autonomous exploration in an unstructured terrain, as well as
the localization, collection and assembly of different objects.

The next sections are organized as follows: We first put
the work in context and give related work (Section II). Then,
the core concepts of a RAFCON state machine are explained

1http://s.dlr.de/ura7
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(Section III). A formal definition of the state machine is given
in Section IV. The next Section V presents the GUI working
on top of the state machine core. More features of RAFCON
are listed in Section VI. An experimental validation is shown
in Section VII. Finally, Section VIII concludes the paper and
gives an outlook on future work.

II. RELATED WORK

RAFCON falls in a broad category, which can be named
robot programming. This field is huge and includes Program-
ming by Demonstration utilizing teleoperation, kinesthetic
teaching or observational learning [5]. Using these methods,
a robot can be taught arbitrary motions. However, definitions
how to react on certain inputs, like camera images, or
external events are very limited.

Another approach are the aforementioned symbolic task
planners, for which CRAM [2] is an example. In theory,
those systems accept natural high-level commands such as
”set the table for breakfast“ and then plan the involved steps
using a reasoning and prediction system with the help of
detailed models and world knowledge. This is a top-down
approach, contrasting the bottom-up approach of hierarchical
state machines.

Finite state machines (FSM, or extensions of them) are
heavily used for programming complex software or repre-
senting extensive robot behaviors [6]–[8]. Complex decision
trees would otherwise be very tedious to describe in huge
switch and if-else cascades (“spaghetti code”). A well known
kind of state machine is the deterministic finite state machine
(DFA) [9]. As state machines do not produce any output,
the finite state transducer (FST) augments the DFA with an
output alphabet and an output function [9].

Another extension of FSM is statechart, originally in-
vented by Harel [10]. Some of the concepts introduced by
Harel are orthogonality (which is equal to concurrency),
hierarchy and a special form of broadcast communication.

A further statechart dialect is SyncCharts [11]. It also
includes concurrency, hierarchy and information exchange
concepts, yet in addition offering enhanced preemption ca-
pabilities and support for transition priorities. The clear focus
of SyncCharts lies on reactive systems, i. e. systems reacting
to external events. The fact that there exists an exact formal
notation for SyncCharts is a clear advantage over statecharts.

Flowcharts are another type of diagram for modeling
behaviors or processes. The graphical representation of state
diagrams like statechart and SyncCharts share some similar-
ities with flowcharts. Yet, the formalisms heavily differ. One
distinction is the way in which a transitions is determined.
State diagrams are event-driven, i. e. events trigger their cor-
responding transitions. For flowcharts, transitions are either
automatically chosen (if there is only one) or depend on
the outcome of a state [12]. Strictly speaking, flowcharts are
not state machines, however we include these charts in our
broader sense of state machines.

For RAFCON, we deliberatively decided against an event-
driven design. State diagrams may have advantages in reac-
tive systems in which events are in the foreground, such as

stopwatches [10] or watchdogs for sensor monitoring [11].
However, with increasing complexity, event-driven system
are error-prone [13], resulting from complex topics that need
to be tackled, like event caching and priorization, event expi-
ration and parallel event handling [14]. Therefore, RAFCON
is inspired more by flowcharts, letting states decide about the
next transition to follow. Nevertheless, this decision can be
based on events, if the state registered a callback.

In our opinion, statecharts and SyncCharts offer too many
concepts, which increase complexity and whose benefit is
arguable. For example, they allow transitions to cross hier-
archy boundaries, which is contrary to important software
engineering principles like encapsulation and composabil-
ity [15]. There are many more concepts (transition guards,
transition hooks, deferred events, . . . ). All of these can
unburden the programmer from some work, while at the same
time increasing complexity and with this error-proneness of
the underlying system. Therefore, the RAFCON core (see
Section III) is kept slim, with only an essential feature set.

All state machine types mentioned so far are general
concepts that are not bound to robotic applications. There
exist also many solutions clearly invented for robotic pur-
poses. In [16], robots are programmed using generic action
components which are mapped to statecharts. Another state
machine like system for representing robot tasks are skill
nets [17]. However, their range of application is rather
limited, as they lack concepts for hierarchy, concurrency and
explicit data handling. XABSL [18] uses hierarchical state
machines to define robotic behaviors.

A proper tool for programming complex robotic tasks must
not only have concepts for hierarchies and concurrencies
but also needs a GUI intuitively integrating these concepts
and allowing for efficient programming. There is a huge
number of visual programming tools for a variety of different
domains2. Worth mentioning is for example Scratch, which
is intended for education and allows for both imperative
and event-driven programming [19]. The idea of using a
visual state machine concept for programming robots is not
new, either. One famous example for programming LEGO
Mindstorms robots is NXT-G [20]. There are also a lot
of hardware-independent tools, however all of them are
restricted in some way. Some are no longer maintained, like
ROS Commander [8], RobotFlow [21] or MissionLab [22],
others are closed source/commercial, such as Gostai Stu-
dio [23], or lack a graphical editor, for example SMACH [3].

Further state machine libraries that do not have a graphical
user interface (GUI) at all also exist, such as Boost statechart
[24] or Spring Statemachine [25].

While all of the mentioned tools were not considered as
sufficient for our needs, we adopted many or their features
for RAFCON. SMACH for example has a similar concept of
outcomes and data ports, called input/output keys. NXT-G
visualizes its input and output data ports as well as the
data flows, just as RAFCON. ROS Commander includes a

2See http://blog.interfacevision.com/design/design-visual-progarmming-
languages-snapshots/ for a graphical overview
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graphical editor, however it only offers a limited number of
features.

In our opinion, a GUI with a graphical representation of
the state machine and the option of editing, is an important
supportive feature of a programming tool for robots. How-
ever, this is not an easy feature to achieve, as bigger state
machine with deep hierarchies tend to become very complex.
Most visual programming tools do not support hierarchies,
like NXT-G, or show elements on different hierarchy levels
in the same size, such as SMACH, which does not scale.

The graphical representation of RAFCON is inspired by
the flow control tool Bubbles, which has been developed at
our institute some years ago [26].

III. CORE FRAMEWORK

The heart of the RAFCON core framework is a hierar-
chical state machine whose components are shown in the
class diagram in Fig. 2 and in their usage in Fig. 4. These
components are further explained in the following section.

+run()

+name : string
+state_id : uint
-parent
+input_data_port : DataPort
+output_data_port : DataPort
+outcomes : Outcome
-script : Script
-description

State

+from_state : uint
+from_outcome : int
+to_state : uint
+to_outcome : int

Transition
+from_state : uint
+from_key : string
+to_state : uint
+to_key : string

DataFlow

+run() : int

+states : State
+transitions : Transition
+data_flows : DataFlow
-start_state_id

ContainerState1*

1
*

+run()

ConcurrencyState

+execute() : int
+run()

ExecutionState

BarrierConcurrencyStatePreemptiveConcurrencyState

+run()

HierarchyState

Script

1

*

-outcome_id : 
uint
-name : string

Outcome 1*
-name : string
-data_type : string
-default_value

DataPort

1*

1

1

1

2

1

*

Fig. 2. A class diagram of the basic state machine classes of RAFCON.

A. States

Every state machine must have a single state at its root,
the so called root state. There are three basic types of
states: ExecutionStates, HierarchyStates and two forms of
ConcurrencyStates.

When thinking of a hierarchical state machine as a tree,
then its leaves are typically the ExecutionStates, see Fig. 3.
These states cannot contain any child state but instead each
of them contains a Python script to be run when the state
is executed. This allows the state to carry out arbitrary
functions, like calling an external robot API or triggering
a robot middle-ware such as ROS.

HierarchyStates are ContainerStates for child states of
any type and are thus called parent states of their child
states. The purpose of HierarchyStates is simply to allow
for the definition of hierarchical structures by grouping
related states. The direct children of a HierarchyState can be

considered as a flat state machine on its own with a single
entry state.

ConcurrencyStates are also ContainerStates. However, all
its child states are executed in parallel. There are two
subtypes, PreemptiveConcurrencyStates and BarrierConcur-
recyStates. If a child state of a PreemptiveConcurrencyState
finishes, all its sibling states (i.e. states that have the same
parent state) are preempted. In contrast, the BarrierConcur-
recyState waits for all of its child states to finish before
continuing. ConcurrencyStates are crucial for applications
in which several tasks have to be accomplished at the
same time. One example is running one or more observer
states monitoring the environment with different perception
devices, while at the same time an object is manipulated.

LibraryStates are encapsulated state machines, which can
be used and treated as any other state. This allows for
easy reusability and eases the collaboration on bigger state
machines.

We emphasize that a state in a RAFCON state machine
does not correspond to a state of the environment (world
state) but to a state in the flow of a robotic task.

B. Outcomes and transitions

Each state has outcomes that define connection points for
transitions. The aforementioned scripts of ExecutionStates
return a value corresponding to one of the state’s outcomes.
The successor state is determined by following the transition
connected to the returned outcome. If its target is a sibling
state, then this state is executed consequently. Alternatively,
the transition can be connected to an outcome of the parental
ContainerState. In this case, the execution of the Container-
State is left on the outcome the transition is connected to.

If a HierarchyState is to be executed, the start transition
determines which of its child states to execute first. For
ConcurrencyStates, no start transitions are required, as all
inner states are executed in parallel.

Another core functionality of the RAFCON framework
is its integrated error and preemption handling (similar to
SMACH [3]). Every state must have the two outcomes
aborted and preempted. If an uncaught exception occurs in a
state, it is automatically left on the aborted outcome. In Pre-
emptiveConcurrencyStates, child states being preempted due
to a sibling state having finished its execution are automat-
ically left on the preempted outcome. Based on this, a pro-
grammer can implement arbitrary error recovery strategies or
shutdown mechanisms in states connected to the appropriate
outcomes. In case a triggered aborted/preempted outcome
has no transition connected to it, then the aborted/preempted
outcome of the parent state is triggered. This propagation
is continued until an outcome with a transition is found.
Thereby, states handling preemption and errors can be placed
at any level. PreemptiveConcurrencyStates having caused a
preemption stop its propagation. In contrast, errors propagate
up to the root state and stop the execution, if the error is not
caught.
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C. Data ports and data flows

RAFCON supports concepts for private, scoped and global
variables. Private variables can be defined within the script
of an ExecutionState and do not leave this scope. However,
states can pass values to other states using data ports and data
flows, which relates to scoped variables. For this, every state
can define input data ports that correspond to parameters
of a function. Similarly, a state defines output data ports,
corresponding to return values of functions. Each data port
has a name, data type and default value. Values on input data
ports are passed to the script of an ExecutionState. This script
can then assign values to the output data ports of its state.
Finally, variables globally accessible are stored in the global
variable manager. This manager supports storing variables
by value and by reference and features thread safe read and
write accesses.

Data flows are directed and define the mapping between
data ports. If a data flow connects two data ports, then the
value assigned to its source is forwarded to its target. By this,
values cannot only be passed between sibling states, but also
up and down in the hierarchy.

IV. FORMAL STATE MACHINE DESCRIPTION

The concepts of a RAFCON state machine, described
in the previous section, contain components distinguishing
it from all other state machines mentioned in Section II.
Therefore, in the following, we will give a formal notation
of our state machine using predicate logic and set theory.

Concerning the execution semantics, the RAFCON state
machine model resembles a FST with the Moore model [9],
as the actions of the state machine take place during the
execution of a state and not during the transition.

However, relating to data handling, our state machine
approach is similar to the Mealy model [9]. The main
difference to the Mealy model is that the input for a state
is not associated with the transitions but is passed via
dedicated data edges, called data flows. More specifically,
states forward their output as input to other states (1×n
relation).

First, we define the elements of a state machine and
its relationships. Then, the definition of a RAFCON state
machine is provided.

HS
(root)

HS CS ES

ES ES ES ES ES

Fig. 3. The hierarchical state machines in RAFCON can be represented
as a tree. The root state, all direct children of a hierarchy state (HS), as
well as each direct child of a concurrency state (CS) can be considered as
a separate, flat state machine (dashed rectangles). The leaves of the tree
are typically execution states (ES), but could also be empty hierarchy or
concurrency states.

Definition 1 (State): A state s is an entity having an
execution mode and type: sem(s) ∈ {active, inactive},
type(s) ∈ {execution, hierarchy, concurrency}. The differ-
ent states are called execution states, hierarchy states and
concurrency states, respectively.

Definition 2 (RAFCON state machine tree (RST)): A
RAFCON state machine tree (RST) is a rooted tree
G = (S,E) with r ∈ S being the root vertex. S is the
set of nodes and E is the set of edges which define the
tree-order x < y (∀x ∈ V \ r : r < x), following the
definition of [27, p. 13–15]. All vertices s ∈ S are states,
therefore r is also titled the root state. All states s ∈ S with
type(s) = execution must be leaves of the tree. In Fig. 3,
an example of a RAFCON state machine tree is shown.

Using the tree-order of a RST, we can define further
relations on such a tree:

Definition 3 (parent): In a RST G = (S,E), state p ∈ S
is called a parent of state s ∈ S, if p < s and p and s being
neighbors [27, p. 3] (i. e. share a common edge e ∈ E). This
is written as parent(p, s).

Definition 4 (children): In a RST G = (S,E), the chil-
dren of a state p ∈ S, written as children(p), is defined as
the set of all s ∈ S : parent(p, s).

Definition 5 (siblings): In a RST G = (S,E), two states
s, s′ ∈ S are said to be siblings, write siblings(s, s′), if
∃p ∈ S : parent(p, s)∧parent(p, s′). Note that s and s′ can
be the same state.

The following definitions 6 and 7 are related to the logical
flow of a RAFCON state machine.

Definition 6 (Logical port): A logical port is a couple
l = (s, t) with state s and type t ∈ {income, outcome},
outcome ∈ {aborted, preempted, common}. A logical port
with any type of outcome is literally called an outcome.

Definition 7 (Transition): A transition is a couple t =
(l1, l2) with l1 = (s1, outcome), l2 = (s2, income) both
being logical ports and siblings(s1, s2). l1 is called the
source port, l2 the target port.

The following definitions 8 through 11 are related to the
data handling of a RAFCON state machine.

Definition 8 (Data port): A data port is a triple d =
(s, t, v) with state s, type t ∈ {input, output} and default
value v ∈ A, whereat A is an arbitrary alphabet.

Definition 9 (Data flow): A data flow is a couple F =
(d1, d2) with d1 = (s1, t1, v1) and d2 = (s2, t2, v2) both
being data ports, which must fulfill

(siblings(s1, s2) ∧ t1 = output ∧ t2 = input) ∨
(parent(s1, s2) ∧ t1 = t2 = input) ∨
(parent(s2, s1) ∧ t1 = t2 = output)

Thus, a data flow exists either between two sibling states
or between a child and its parent state.

Definition 10 (Data port value): Each data port d =
(s, t, v) has a value a of a certain alphabet A: value(d) = a.
By default, value(d) = v. If t = output and type(s) =
execution, then the output function µe can determine this
value (see Definition 12). If there is a data flow f = (d′, d),
then the value of the source port d′ defines the value of the
target port d: (value(d′) = a′)⇒ (value(d) = a′).
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Definition 11 (Value vector): A value vector Vs′,t′ with
state s′ and data port type t′ ∈ {input, output} is a vector
consisting of all values assigned to all ports of that type at
that state, thus [value(d1), value(d2), . . .] for all di = (s =
s′, t = t′, vi).

With the definitions of the elements of a state machine
and its relations, the state machine definition can be given:

Definition 12 (HFPD): A hierarchical, parallel, finite
state machine with data flows (HPFD) is a 11-tuple
(Σ,W,G,L, T,D, F,M, Sexit, Texit, P ), where
• Σ is the data alphabet. This is typically R, but can also

contain e. g. strings or lists.
• W (τ) : τ 7→ Σn, n ∈ N is a vector function

representing the world state at time instance τ . This
vector function serves as access to global variables, see
Section III, or sensor readings. In robotic contexts, Σ is
not finite and thus neither are the elements of W (τ).

• G = (S,E) is a RST, with the set of states S being
finite and non-empty.

• L is the set of logical ports, whereat ∀s ∈ S : (∃!l ∈ L :
l = (s, income))∧(∃!l′ ∈ L : l′ = (s, aborted))∧(∃!l′′ :
l′′ = (s, preempted)). Thus, all states must have exactly
one logical of each type income, aborted and preempted.
Furthermore, ∀l = (s, t) ∈ L : s ∈ S.

• T is the set of transitions, with ∀t = (l1, l2) ∈ T : l1 ∈
L ∧ l2 ∈ L.

• D is the set of data ports, with ∀d = (s, t, v) ∈ D : s ∈
S ∧ v ∈ Σ.

• F is the set of data flows, with ∀f = (d1, d2) ∈ F :
d1, d2 ∈ D.

• M is the set of all output functions µe : Ve,input ×
W (τ) 7→ Le,outcome × Ve,output for the execution states
e ∈ S. Here, Ve,input and Ve,output are the input respec-
tively output value vectors of e and Le,outcome being the
set of all logical ports l = (s = e, t = outcome) ∈ L.
The output functions have access to the current world
state W (τ). Together with the input port values, they
determine the outcome port and the values assigned to
the output ports. The evaluation of an output function
takes a certain amount of time ∆τ > 0.

• Sentry ⊂ S is the set of all start states. A start state is
the state evaluated first when entering a hierarchy state.
Thus, for each hierarchy state h ∈ S, there is at most
one state s ∈ Sentry with parent(h, s).

• Texit is a set of couples texit = (l1, l2) with l1 =
(s1, t1 = outcome) ∈ L being the source outcome,
l2 = (s2, t2 = outcome) ∈ L being the target outcome
and parent(s2, s1). If the execution (see further down)
reaches an outcome being the source port of a couple
texit ∈ Texit, then the state s2 of the target outcome is
left at this target outcome l2.

• P is the set of all outcome functions ρc :
P(Lchildren(c), outcome) 7→ Lc,outcome for the concurrency
states c ∈ S. Here, P(Lchildren(c), outcome) is the power
set of all outcomes of all children(c) and Lc,outcome is
the set of all logical ports l = (s = c, t = outcome) ∈
L. If one child state of c exits (c being a preemptive

concurrency state) or all children of c have exited (c
being a barrier concurrency state), then ρc determines
the outcome of c on which c is exited.

The following properties apply for HPFDs:
• If a hierarchy state is executed, then the execution

directly starts with the entry state defined by Sentry
and finishes when an exit outcome defined by Texit is
reached.

• If a concurrency state is entered, all of its children are
entered in parallel. Thus, the execution splits up. The
outcome function ρc defines on which outcome to leave
the concurrency state.

• Initially, all states are inactive: ∀s ∈ S, sem(s) =
inactive. When a state s is entered, meaning that the
execution reaches an income l = (s, income) ∈ L,
then sem(s) = active. Accordingly, when a state is
left, meaning that the execution reaches an outcome
l = (s, outcome) ∈ L, then sem(s) = inactive.

• Every port l = (s, t = outcome) ∈ L can only be the
source of either one t ∈ T or one texit ∈ Texit.

• Transitions are only allowed in hierarchy states.
With these definitions, for example deadlock detection

and reachability analysis are possible in future work. Fur-
thermore, it enables comparisons with other state machine
approaches.

V. GRAPHICAL USER INTERFACE

The GUI is an important feature of RAFCON. A screen-
shot of it with an example state machine is shown in Fig. 5.
The user interface distinguishes RAFCON from other flow-
control tools, especially with its central element, the graphi-
cal state machine editor. Using this GUI, state machines and
their execution status can be viewed and observed. On top of
that, state machines can be created from scratch and edited,
even during the execution of a state machine.

The GUI allows for visual programming. Compared to
textual programming, most of the work can be accomplished
straightforward using only the mouse; code is replaced by a
compact graphical representation. This helps in creating a
mental model of a state machine [28]. Both logical and data
connections can be seen on the first sight. In addition, the
current execution point(s) are highlighted. Programming state
machines visually is fast and getting started is easy, as the
interaction is intuitive. This is supported by the layout and
design of the GUI, which was developed in cooperation with
a professional interface designers3. A video showing how to
program tasks in RAFCON is provided next to this paper.

A. GUI layout

The GUI is implemented with the GTK+ widget toolkit.
It is completely separated from the RAFCON core. Changes
made to the core are published using the observer pattern to
the model-view-controller architecture (MVC) of the GUI.
The layout and design of the GUI follow commonly ac-
cepted principles. One example for this is the arrangement

3Interaktionswerk, https://interaktionswerk.de/
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Fig. 4. Screenshot of the RAFCON GUI, showing an example of a simple state machine for a robotic task. The robot explores the environment until a
red ball is detected or the time runs out.

and alignment of elements following the gestalt principles
proximity, similarity, continuity and closure, which improves
the effectiveness of information retrieval [29].

Flexibility and modularity are further characteristics of
the GUI. The aforementioned graphical editor is the central
element of the GUI (see V-B) and typically takes the most
space. It is surrounded by three sidebars. The scalable,
detachable and foldable sidebars are organized in notebooks,
whose tabs can be reordered.

The right sidebar is named the state editor, see (1) in
Fig. 4. The selected state is shown in here with all its details.
Common state properties such as name and description can
be changed. In addition, there are several widgets to modify
outcomes, input/output data ports, scoped variables (a feature
to graphically ease connecting input and output ports of
sibling states), transitions and data flows. For execution
states, a source code editor allows for altering the code with
code highlighting and syntax check.

The left sidebar is composed of several widgets with more
state machine related content:

(2) Library manager: shows all available libraries, which
can be added to the current state machine using drag
and drop

(3) State machine tree: gives another tree perspective on a
state machine and allows for navigation

(4) Global variable manager: shows the value of all global
variables

(5) Modification history: allows to undo and redo changes
made to the state machine. The modifications history
is stored as a tree. The widget allows to access the
different branches of the history.

(6) Execution history: lists the executed states in chrono-

logical order and optionally shows the context data
The sidebar at the bottom only consists of a logger (7). All

log entries, from the core, the GUI and the executed states
are shown here. The messages are color coded and can be
filtered by log level.

B. Graphical editor

A lot of effort has been put into the development of
the graphical state machine editor, see (8) in Fig. 4. The
biggest challenge here is the proper visualization of huge
state machines with deep hierarchies, as mentioned in II. A
user should be able to quickly understand the purpose of a
state machine and easily navigate both within one hierarchy
level and up and down the hierarchy.

For this, a panning and zooming mechanism was intro-
duced. Elements down in the hierarchy are smaller than
further up in the hierarchy. Details disappear when they get
too small. This intuitive approach, common in digital maps,
helps in navigating even complex state machines easily.

Fully zoomed out, the user only compactly sees the
highest-level states and their connections. Therefore, it is
easy to grasp the coarse task flow, as one is not distracted by
the details of the implementations of the single steps within
a task. If one is interested in the composition of a state,
the mouse cursor can be moved over the state and the scroll
wheel turned. Consequently, the state is zoomed in and more
details of its inner content (child states, transitions, etc.) are
revealed.

Further interaction like moving or resizing states, adding
connections with via-points is possible as well. The control
of these actions is similar to that of other applications, such
as UML editors.
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There are different viewing modes implemented, which
can be activated and allow to further focus on currently
relevant aspects of a state machine. By default, everything is
shown. Other view modes hide all data flow related entities
or put everything in the background, except the currently
selected state with its connections.

If a state is selected, it is marked with a blue border and
its details are shown in the states editor. There it can further
be inspected and manipulated.

VI. FURTHER FEATURES

Not all of the features of RAFCON have been described
yet. While it is not possible to mention all in the scope of
this paper, at least the most important remaining ones shall
be listed here.

RAFCON stores state machines in a human readable file
format. Each state is stored in its own folder on the file
system, containing separate JSON files for core and GUI
data. The folder structure directly reflects the state machine
tree. This enables versioning of state machines in repositories
and thus collaborative state machine programming.

The comprehensive core API allows for programmatic
state machine generation from within another tool, e. g. task
planners like CRAM.

Modifications of the state machine can be conducted
during runtime. The script code of ExecutionStates can be
changed as well as the structure of the state machine.

Using the stepping mode of the execution engine, a state
machine can easily be debugged. Similar to the debug mode
in modern IDEs, one can step over, into and out. Hereby,
values assigned to data ports are shown in the GUI.

On top of that, one can also step backwards, due to
the execution history being stored including the whole data
context. To the best of our knowledge, this feature is novel
in the context of debugging capabilities of IDEs or visual
programming tools. For ExecutionStates, instead of the nor-
mal script, an optionally defined backwards-execution script
is executed. This helps debugging complex state machines
as it eases the way to return to a certain execution point.

Finally, the state machine can be started at an arbitrary
state, which can be programmatically specified by its unique
state path or graphically selected by the user.

During development, the RAFCON GUI is essential for
programming state machines (see chapter V). When the state
machine is ready for release, the RAFCON core can execute
the state machine on the target device without any GUI
overhead. This makes our framework very lightweight. Yet,
the GUI allows the remote control of state machines running
on another host.

VII. CASE STUDIES

RAFCON is a software tool which aims at offering an
intuitive way to program robots and helps to build a clear
hierarchical system architecture. However, it is difficult to
give a statistical evaluation of its usability and intuitiveness
or quality measurements of systems designed with our tool.

Fig. 5. A coarse overview of the role of RAFCON, orchestrating the
different system components in the SpaceBotCamp competition.

Thus, we focus on demonstrating successful applications of
our software in challenging scenarios.

In the SpaceBotCamp Competition held in November
2015 and organized by the DLR Space Administration, we
participated together with nine other teams. The mission was
to explore a previously unknown, moon like environment
with a mobile robot (see Fig. 1), find two objects and finally
bring them to a base station for assembly. A time limit of
sixty minutes had to be met and the communication to the
robot was delayed by four seconds round trip time. Thus a
very high level of autonomy was necessary [30].

Our team was the only one to fulfil all tasks of the
competition specification. Furthermore we accomplished the
mission fully autonomously, requiring only half of the given
time limit. Next to a robust hardware design and sophisti-
cated solutions for navigation, manipulation and computer
vision, our RAFCON state machine concept played a vital
role in orchestrating all system components (for the coarse
architecture, see Fig. 5).

Our final state machine had a complexity of more than 700
states, more than 1200 transitions and eight hierarchy levels.
This is a high number, considering that the states are only
performing high level actions (like retrieving some knowl-
edge of a world model or driving the robot autonomously to
another viapoint).

RAFCON helped us to apply the divide an conquer
concept to the task. This enabled several developers to
program the state machine at the same time. Specifically,
states concerning navigation, exploration, computer vision,
object detection, world model integration, manipulation and
grasping, were all created independently. Beyond that, the
initial strategy for solving the challenge could be mapped
out before implementing the actual functionalities. Moreover,
having wrapped all system functionalities into states, altering
the behavior of our robot using the GUI was much simpler
compared to purely textual based state machine descriptions.

RACELab is another project at our institute, in which
advanced robot skills for industrial automation are devel-
oped [31]. These skills fully rely on RAFCON and demon-
strate its usefulness in industrial contexts with robot arms.
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SAPHARI4 is a further project example, in which the
use of RAFCON proved to be fruitful for human-robot-
interaction.

VIII. CONCLUSIONS

We presented RAFCON, a graphical tool to facilitate
collaborative programming of complex robotic tasks. Hi-
erarchical state machines allow the creation of concurrent
flow controls. The intuitive GUI and many features like
the debug mechanisms of the execution engine extend its
usefulness. This was proved especially in the SpaceBotCamp
competition, in which our robot controlled by RAFCON
fulfilled the challenging mission of autonomous exploration
as well as object detection, collection and assembly.

RAFCON is constantly being extended and improved. To
increase the usability and overview while facing complex
state machines, the GUI is further enhanced to match the
design guidelines of our designer. One extension of the
GUI will be a miniature view of the state machine, which
could serve as a time saving navigation alternative. Another
planned feature useful for both multi-robot and mobile robot
scenarios is the ability to remotely edit state machines.

We noticed the deficiency of a properly designed, well
supported and powerful task programming tool freely avail-
able. Therefore, we plan to provide RAFCON as an open
source tool to the community5.
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