AWARD NUMBER: W81XWH-12-1-0051

TITLE: Activation of mTor Signaling by Gene Transduction to Induce Axon Regeneration in the Central Nervous System Following Neural Injury

PRINCIPAL INVESTIGATOR: Robert Burke

CONTRACTING ORGANIZATION: Columbia University
New York, NY 10032-3702

REPORT DATE: August 2017

TYPE OF REPORT: Addendum to Final

PREPARED FOR: U.S. Army Medical Research and Materiel Command
Fort Detrick, Maryland 21702-5012

DISTRIBUTION STATEMENT: Approved for Public Release; Distribution Unlimited

The views, opinions and/or findings contained in this report are those of the author(s) and should not be construed as an official Department of the Army position, policy or decision unless so designated by other documentation.
Activation of mTor Signaling by Gene Transduction to Induce Axon Regeneration in the Central Nervous System Following Neural Injury

Robert E. Burke, MD

Email: rb43@cumc.columbia.edu

A long-standing belief about injuries and diseases of the brain and spinal cord has been that once axons are destroyed, they will not re-grow. This belief is now being challenged. As the brain matures, the genetic programs that control axon growth during development are silenced. Recent evidence shows that re-activation of these programs in the adult successfully induces axon growth. We have shown that re-activation of Akt/mTORC1 signaling, by use of AAV vector transfer, induces re-growth of dopaminergic axons at 3 to 6 weeks after destruction by a neurotoxin. However, this approach cannot be used in humans because Akt/mTORC1 signaling is oncogenic. The goal of this proposal is to refine this approach to achieve restorative effects in the absence of adverse effects.

Nothing listed
Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>2</td>
</tr>
<tr>
<td>Body</td>
<td>3</td>
</tr>
<tr>
<td>Key Research Accomplishments</td>
<td>8</td>
</tr>
<tr>
<td>Reportable Outcomes</td>
<td>9</td>
</tr>
<tr>
<td>Conclusion</td>
<td>11</td>
</tr>
<tr>
<td>References</td>
<td>12</td>
</tr>
</tbody>
</table>
INTRODUCTION

A longstanding concept in neuroscience has been that the mature mammalian central nervous system (CNS), unlike the peripheral nervous system (PNS), is incapable of axon regeneration. There are currently two principal concepts that form the basis of our understanding of the inability of the mature brain to regenerate axons. The first, and predominant, concept is that following injury to the CNS, extrinsic factors prevent axon growth (1, 2). These extrinsic factors are principally of two types: glial scar and myelin breakdown products. The second concept to account for axon regeneration failure is that as the brain matures, the intrinsic developmental genetic programs that mediate axon growth are silenced. In recent years there has been growing interest in the role played by silencing in the adult brain of these intrinsic programs. The therapeutic promise offered by the concept of silencing is that it suggests that if we are able to re-activate these programs, then it may be possible to achieve long range restorative axon growth. Such a possibility has received support from our studies of the activation of Akt/mTor signaling in models of retrograde axonal degeneration induced by the dopaminergic neurotoxin 6-hydroxydopamine (6OHDA). In this model, 6OHDA is injected unilaterally into the striatum of mice and within one week it induces over 80% destruction of the dopaminergic nigro-striatal projection (3). This model has been used for many years to simulate the principal neurodegeneration that occurs in human Parkinson’s disease (PD). In order to accurately simulate the clinical presentation of the disease, we waited until three weeks after the lesion, when most axons have been destroyed and about 50% of neurons still survive, and then transduced the surviving dopamine neurons by use of an AAV1 vector with either a constitutively active mutant of the Akt kinase (myristoylated-Akt (MYR-Akt)) (4) or hRheb(S16H), a constitutively active mutant of the Rheb GTPase (5, 6). Rheb GTPase is activated by Akt and it is a direct activator of the mTor kinase (7) (FIGURE 1). We have observed that transduction of SN dopamine neurons with either AAV MYR-Akt or AAV hRheb(S16H) induces a remarkable reinnervation of the striatum (FIGURE 2) (5, 6). While these observations with AAV MYR-Akt and AAV hRheb(S16H) offer a promising proof-of-concept, they cannot be directly implemented as a gene therapy for humans because both of these molecules are potent oncogenes. The challenge, therefore, is to try to exploit the beneficial axon growth phenotype offered by this approach while eliminating the undesirable oncogenic phenotype. In this proposal, we seek to address this challenge by attempting to identify the critical mediators of the axon growth phenotype downstream to mTor. We postulate that at some point downstream, the paths mediating the two phenotypes must diverge. Based on our results with hRheb(S16H) we know that activation of mTor is sufficient for axon growth. mTor has two principal substrates: eukaryotic translation initiation factor 4E binding protein (4E-BP1) and p70S6K (FIGURE 1). Of the two, we hypothesize that p70S6K is more likely to play a role in axon growth. P70S6K has
been identified as both necessary and sufficient for axon specification in primary neurons (8). Transduction of neurons with a constitutively active form of p70S6K induced the formation of multiple axons, whereas increased expression of eIF-4E did not (8). Although our principal hypothesis favors p70S6K in the induction of axon growth, we intend in this proposal to cover both possibilities by investigating the alternate mTor mediator, 4E-BP1, as well. The aim of this proposal therefore is to test the hypothesis that p70S6K or 4E-BP1 has the ability to induce axon regeneration in lesioned dopamine neurons. This proposal has direct therapeutic implications for the treatment of PD and other chronic neurologic diseases characterized by axon degeneration.

BODY

TASK 1 YEAR 01: To determine whether p70S6K or a constitutively active mutant, or both, are mediators of axon growth in the dopaminergic nigro-striatal projection.

In Year 01 we successfully completed this Task, and found that a constitutively active form of p70S6K can mediate new axon growth. We first created the AAV vectors for p70S6K(WT) and the constitutively active form p70S6K(del C/T389E) (9, 10). In these Experiments a 6OHDA lesion was performed, followed in three weeks by intra-nigral injection of the AAV vectors. The effects on axon growth were assessed at 12 weeks post AAV. We determined by three measures that p70S6K(del C/T389E) induced new axon growth following their destruction by neurotoxin. We determined that p70S6K(del C/T389E) partially restores axon numbers in the medial forebrain bundle (MFB), identified as TH-positive axons in the MFB. In addition, we used two methods to rule out the possibility that p70S6K(del C/T389E) was just upregulating TH expression and not inducing new axon growth. In the first, we used transgenic mice (TH-GFP) that express GFP under the TH promoter. GFP is a stable protein and not subject to endogenous regulators of TH. Second we have used an anterograde tracer technique in which the axon-targeted fusion protein Tomato-Tau is delivered to SN neurons by AAV and expression is driven by the robust chicken-beta actin promoter. By both of these methods there was a clear induction of axon growth by AAV p70S6K(del C/T389E). Based on these results we concluded that our hypotheses was confirmed, that p70S6K, a downstream target of mTORC1, is capable of recapitulating the axon growth effects of MYR-Akt and hRheb(S16H).
In Year 02 we successfully created the AAV vector for eIF4E, a protein translation factor that is constitutively inhibited by 4E-BP1. Experiments were performed as described for TASK 1. eIF4E did not induce a significant effect on striatal innervation, the number of dopaminergic axons within the medial forebrain bundle (MFB) by tyrosine hydroxylase (TH) immunohistochemistry, or the number of GFP-positive axons or Tomato-Tau-positive axons in the MFB. Given the lack of an effect of eIF4E on axon growth by these anatomical measures, we anticipated that there would not be evidence for restoration of behavioral deficits and that proved to be the case. Thus, unlike p70S6K, eIF4E did not have an ability to induce axon regrowth.

With these results for AAV eIF4E completed in Year 02 we came to an important juncture in our studies. We had originally proposed in our Statement of Work that we would devote our first two TASKs in Years 01 and 02 to a determination of which downstream substrate of the kinase mTor is responsible for its axon growth-mediating effects. After these first two years of work, and completion of TASKS 1 and 2 we have a clear and unequivocal answer: p70S6K mediates axon growth and eIF4E does not (FIGURE 3). We have therefore proceeded in Task 3 to further refine the use of p70S6K by genetically engineering it to be targeted to axons. We hypothesize that its axon growth effects are mediated locally within the axon. If our hypothesis is correct, then the axonally targeted forms will be more potent and it will have diminished risk of off-target effects, such as oncogenesis.

TASK 3. YEARS 03-04. To determine whether an axon targeting strategy affects the ability of p70S6K to induce axon growth.

In Year 03, we created the following axon-targeting vectors for p70S6K(del C/T389E), the constitutively active form of p70S6K:

- **AAV cAPP-pS6K(CA):** (CA: constitutively active).
 This construct is targeted to axons by 15 C-terminus amino acids of amyloid precursor protein (cAPP). cAPP had been found in our publication in *Gene Therapy* (2013) to be the most effective known axon-targeting motif. In that study the motif was placed at the N-terminus as it had been in...
previously published studies.

AAV P70SK6(CA)-cAPP: This construct again uses the cAPP axon-targeting motif, but places it at the C-terminus as it is in its native location in the APP protein.

AAV cAPP-p70S6K(CA)-TAU-ZIP: This construct supplements the peptide-based cAPP axon targeting motif with an mRNA-based motif, the 3'UTR axon-targeting ‘zip code’ of the microtubule-binding protein tau. In our *Gene Therapy* publication, it was the most potent mRNA-based motif.

AAV 3XNLS-pS6K(CA): This construct includes a nuclear localization signal (NLS) and it will target the constitutively active form of p70S6K away from the axon, into the nucleus.

AAV P70SK6(CA)-CaMKII-3'UTR. This construct targets mRNA away from the axon, towards the dendrites.

AAV p70S6K(del C/T389E), the constitutively active form of p70S6K, without axonal targeting, will serve as a comparison control for the targeted forms.

Considerable time and effort was spent in Year 03 making these vectors and characterizing them for transduction efficiency. During this evaluation we encountered a problem for the three axonal targeted constructs. Although we have routinely detected the FLAG epitope in numerous constructs in our prior work, we were unable to detect FLAG in these constructs. This problem made it impossible to determine transduction efficiency, and, most importantly, to determine relative ability to achieve axon targeting. Fortunately, we were able to establish a ‘work around’ for this problem; we established an immunostaining protocol for p70S6K itself, and this protocol enabled us to detect expression of all of these targeted constructs.

With the new immunostaining protocol for p70S6K we made the novel observation that endogenous p70S6K is abundantly expressed in axons of the medial forebrain bundle. This observation is of interest because it suggests that this protein plays a normal physiologic role in the maintenance of these axons. If such is the case, then it would be an especially good candidate for restoration of axons in this system. Given that endogenous p70S6K is expressed in axons, we were not surprised to observe that the transgene p70S6K(CA), without an axon targeting sequence, was also expressed in axons. Disappointingly, however, the abundance of p70S6K(CA) protein expression in axons was not increased by any of the axon targeting motifs. The reason for this may be that since endogenous p70S6K is normally trafficked to axons, the mechanisms that mediate this localization may have achieved maximal axonal expression for the transgene p70S6K(CA), such that there is no further enhancement by the addition other axon targeting motifs. In view of this unexpected result, we have modified our strategy to evaluate the role of normal axonal expression on the ability of p70S6K to mediate axon growth. If the maximum expression in axons is achieved by non-targeted p70S6K(CA), then we can assess the importance of axon expression by performing the converse experiment and divert this molecule away from the axon compartment. This was done by use of a nuclear targeting signal, to traffic to the nucleus.
In Year 04 we pursued this strategy: We have performed experimental analysis of axon labeling by non-targeted p70S6K(CA) in comparison to AAV 2/1 3X NLS p70S6K(CA). The NLS signal is clearly effective in diverting p70S6K away from axons (see FIGURE 4).

Therefore, in Year 04 we proceeded as described in our original proposal. At Time = 0, mice receive a unilateral intra-striatal injection of 6-OHDA. At Time = 3 weeks post lesion, the mice receive either AAV p70S6K(WT) or AAV p70S6K(CA) or AAV NLS-p70S6K(CA). At Time = 15 weeks (12 weeks post AAV) mice were sacrificed and new axon growth was determined by measures performed in three separate experiments: (1) Immunostaining for TH on coronal SN and striatal sections was utilized to (i) determine the number of remaining SN dopamine neurons by stereologic counting, and (ii) determine the extent of reinnervation of the striatum by measurement of the density of TH immunoperoxidase staining in the lesioned striatum. (2) Immunostaining for TH on horizontal sections was utilized to determine the number of axons in the medial forebrain bundle by stereologic counting. (3) Confocal microscopy was performed on horizontal sections to determine the number of Tomato-positive axons in the MFB.

As shown in FIGURE 5, both p70S6K (CA) and NLS-p70S6K (CA) showed trends for effects on axon growth, and, contrary to our expectation, the NLS did not appear to abrogate axon growth effects. However, these experiments were not conclusive. There were two concerns. First, we did not succeeded in definitively demonstrating the ability of p70S6K (CA) to induce axon growth, which serves as our positive control. Second, these experiments lacked adequate power.
Therefore, in Year 05 we first undertook to make a fresh batch of each of the AAV constructs. The original batches were both made in 2011 and may have lost transduction efficiency during long term storage.

TASK 3 (Modified). YEAR 05. To determine whether a nuclear targeting strategy affects the ability of p70S6K to induce axon growth.

Year 05 we made fresh batches of each of the AAV constructs and determined that they had transduction efficiency equivalent to the original batches. In this quarter we confirmed that our new constructs have the same trafficking patterns as the original constructs; the p70S6K(CA) form is highly expressed in axons whereas the NLS-p70S6K(CA) form is not, as shown in FIGURE 4. The status of the three repeat experiments (as shown in FIGURE 5 and described on p 8) is as follows: (1) Immunostaining for TH on coronal SN and striatal sections has been completed and the data analyzed as shown in FIGURE 6:

![FIGURE 6](image)

(2) Immunostaining for TH on horizontal sections to determine the number of axons in the medial forebrain bundle by stereologic counting. These mice have all been processed and their brain sections are now in the final phase of quantification.

(3) Confocal microscopy in horizontal sections to determine the number of Tomato-positive axons in the MFB. These mice have completed the experimental protocol; quantification will soon begin. Both of these studies will be completed before the FINAL REPORT on this entire project is due in October.
KEY RESEARCH ACCOMPLISHMENTS

- AAV2/1 vectors have been created for p70S6K(WT), p70S6K(del C/T389E) (hereafter named p70S6K(CA) (constitutively active), and eIF4E.

- AAV p70S6K(CA) has been shown to induce new axon growth in SN dopamine neurons following axon destruction, thus recapitulating the abilities of MYR-Akt and hRheb(S16H) to do so.

- The new axon growth induced by p70S6K(del C/T389E) is functional; it is able to restore behavioral deficits induced by 6OHDA lesion.

- AAV eIF4E does not recapitulate the axon growth effects of MYR-Akt and hRheb(S16H).

- AAV2/1 vectors have been created to target p70S6K(CA) to axons: AAV cAPP-pS6K(CA), AAV P70SK6(CA)-cAPP, and AAV cAPP-p70S6K(CA)-TAU-ZIP.

- We have established an immunohistochemical protocol for staining p70S6K and have demonstrated that both endogenous p70S6K and our non-targeted transgene, p70S6K(CA) are expressed in the axons of the dopaminergic nigro-striatal projection in adult mice.

- We have found that diverse approaches to axon targeting do not achieve a higher level of axonal expression than observed with endogenous p70S6K or our non-targeted transgene, p70S6K(del C/T389E).

- This observation has led us to change our strategy; we created a mutant form of p70S6K(del C/T389E) that is targeted away from the axon by a nuclear localization signal.

- An AAV2/1 vector was created for 3X NLS p70S6K(CA).

- We have shown by fluorescence immunohistochemistry that 3X NLS p70S6K(CA) is successfully targeted to the nucleus and this results in diminished axon expression of p70S6K(CA).

- We have shown that an NLS suppresses the ability of p70S6K(CA) to reinnervate the striatum following 6OHDA lesion.
REPORTABLE OUTCOMES:

Presentations

Publications: Original Articles, Peer-Reviewed

Publications: Review Articles, Peer-Reviewed

Burke RE and O'Malley K. Axon Degeneration in Parkinson’s Disease. In: M Coleman and MR Freeman (Eds), Experimental Neurology (Special Issue): Axon Degeneration, 2013, 246:72-83. (NIHMSID: 350856)

CONCLUSIONS

Based on our results in Years 01 & 02, we conclude that our fundamental strategy, to attempt to recapitulate the axon growth effects of MYR-AKT and hRheb(S16H) with mediators downstream of mTORC1 is successful, because we have achieved axon growth with a constitutively active form of p70S6K. In Year 02 we determined that the other principal mTor target, eIF4E, does not have axon growth induction capacity. In Year 03 we have learned that endogenous p70S6k and our constitutively active transgene, p70S6K(del C/T389E), are both expressed in axons. We found that diverse approaches to axon targeting were unable to augment the normal axon targeting of these molecules. In order to determine the importance of expression in axons to the ability of p70S6K(del C/T389E) to induce new axon growth, in Year 04 we used a converse strategy and have diverted it away from axons. This has been done using a nuclear localization signal, which was shown in Year 03 to effectively diminish p70S6K(del C/T389E) expression in axons. In Year 05, after preparation and evaluation of all new batches of viral vectors, we are completing our assessment of the effect of an NLS on the ability of p70S6K(del C/T389E) to induce new axon growth. We have thus far shown that an NLS suppresses the ability of p70S6K(del C/T389E) to induce striatal reinnervation.

