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1 SUMMARY 

The key research accomplishments out of the DEFT cooperative agreement are three fold: 

1. Development of an efficient learning algorithm for relational probabilistic models: 
Historically, Artificial Intelligence has used either the logical approach (to address structured 
problems) or the statistical approach (to handle uncertainty). Recent years have witnessed a 
tremendous development of techniques to handle large-scale, structured and uncertain 
domains. Statistical Relational Learning (SRL) considers the problem of learning in the presence 
of rich, multi-relational, semi-structured data. While these models are highly attractive due to 
their compactness and comprehensibility, the task of learning in these models is 
computationally intensive. As part of the DEFT cooperative agreement, we developed an 
efficient learning algorithm for learning directed, undirected and bi-directed SRL models in the 
presence of hidden data/missing values, a problem that has rarely been addressed before in the 
community that traditionally makes a closed-world assumption to handle missing data. 

2. Development of the state-of-the-art data management system for automatic knowledge 
base construction: One key challenge in building a high-quality knowledge base construction 
(KBC) system is that developers must often deal with data that are both diverse in type and 
large in size. Further complicating the scenario is that these data need to be manipulated by both 
relational operations and state-of-the-art machine-learning techniques. This research thrust 
focuses on supporting this complex process of building KBC systems. DeepDive is a data 
management system that we built to study this problem; its ultimate goal is to allow scientists 
to build a KBC system by declaratively specifying domain knowledge without worrying 
about any algorithmic, performance, or scalability issues. 

3. Design, implementation, and evaluation of algorithms for several deep language 
understanding tasks such as knowledge-based population and anomaly detection: The basic 
scientific research pursued under this cooperative agreement were aimed at solving deep 
Natural Language Processing (NLP) problems. In particular, we focused on 
knowledge base population towards the later years and initially focused on anomaly detection 
from text data. 

In the subsequent sections, we present the accomplishments in detail and provide empirical support for 
our algorithms. Finally, we will conclude by listing all the papers/manuscripts and book published as a 
result of funding from this cooperative agreement. 
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2 INTRODUCTION 

We consider a three-pronged approach to deep exploration and filtering of text. The first is 
development of a set of scalable state-of-the-art learning algorithms that are capable of learning 
generalized probabilistic logic rules from noisy, incomplete data. The second is a data management 
system that is widely accepted as the state-of-the art for KBC and is highly scalable. The final direction 
is the design and adaptation of the scalable management and learning algorithms for the tasks of deep 
knowledge understanding such as knowledge-based population and anomaly detection. 

In this report, we organize and present our accomplishments (the approaches and their intuitive, 
theoretical and empirical ramifications) from, the Deep Exploration and Filtering of Text (DEFT) 
cooperative agreement into 3 main focus areas or research thrusts. Each of them is motivated and 
introduced separately in their respective sections. 
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3 METHODS, ASSUMPTIONS AND PROCEDURES 

3.1 Effective Statistical Relational Learning 

3.1.1 Motivation 

Statistical Relational Learning (SRL) studies the combination of relational learning (e.g. inductive 
logic programming) and statistical machine learning. By combining the power of logic and 
probability, such approaches can perform robust and accurate reasoning and learning about complex 
relational data. The advantage of these formulations is that they can succinctly represent probabilistic 
dependencies among the attributes of different related objects, leading to a compact representation of 
learned models. Most of these methods essentially use first-order logic to capture domain knowledge and 
soften the rules using probabilities or weights. 

While statistical relational models are indeed highly attractive due to their compactness and 
comprehensibility, learning them is typically much more demanding than learning propositional ones. 
Most of these methods essentially use first-order logic to capture domain knowledge and soften the 
rules using probabilities or weights. At least this was the goal of the models that were developed 
initially in this area. This is due to the fact that Inductive Logic Programming as a field was evolving 
then. This field concerns mainly with the problem of learning first-order rules from data. So early systems 
simply used a logic learner underneath to learn the rules and simply employed probabilistic learning 
techniques such as maximum likelihood estimation (for complete data) and Expectation-Maximization 
(EM) (for incomplete data) to learn the parameters (i.e., weights or probabilities) for these rules. This is 
due to the fact learning structure of a SRL model requires learning the parameters repeatedly in the 
inner loop which in turn can sometimes require probabilistic inference in its inner loop. This problem 
is exaggerated for SRL models since the predicates can allow for arbitrary combinations of variables 
or constants as arguments1. Consequently many early SRL methods relied of human experts providing 
the structure and only learned the parameters of models. 

Parameter learning reduced the amount of effort needed from the expert and potentially improved 
the accuracy of the model (by relying on data to correct mistakes made by experts), but also 
increased the computational time. For some domains, the structure of the model may be non-trivial, 
not known or insufficient.  As a result, both the structure and parameters of the model need to be 
learned from the data. 

Although structure learning reduces the expert’s effort, it can be computationally intensive due to 
the large space of possible structures while including parameter learning as a sub-task. Figure 1 shows 
this trade-off between the computation cost and expert’s effort. This project focuses on reducing the 
learning time while improving the accuracy of structure learning in SRL models 

 

 
1For instance, when learning to predict if someone (say x) is popular, it is possible to use the predicate 
Friends in several ways. Some possible ways are Friends(x,y), Friends(y,x), Friends(x,“Erdos”) and 
Friends(“Erdos”,x). Of course, the constant “Erdos” can be replaced with all possible constants in the 
data base
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So, is scaling up learning of SRL models insurmountable? No, as we will argue here. Typical SRL approaches 
seek to learn a single best SRL model. However, if learning a single best and easy-to-interpret model is 
difficult, we should maybe stop acting as if our goal is to do so, and instead embrace (model) complexity: 
we turn the problem of learning a single SRL model into a series of relational regression problems learned in 
a stage-wise manner using Friedman’s functional gradient boosting.  

This is a sensible idea since finding many rough rules of thumb of how to change a model can be a lot easier 
than finding a single model.  

 

 

Figure 1: Trade-offs on learning problems in SRL models. expert’s time vs. learning time 

3.1.2 Research Accomplishments 

An important advancement in our research thrust is triggered by the insight that finding many rough rules of 
thumb of how to change our probabilistic relational models locally can be a lot easier than finding a single, 
highly accurate local model. Consider for example relational dependency networks. Instead of learning 
the conditional probability distribution associated with each predicate using relational tree learning in single 
shot manner, one can represent it as a weighted sum of regression models grown in a stage-wise optimization 
using gradient boosting. 

The key idea in this line of work is to represent each conditional distribution as a set of relational regression 
trees (RRT), Figure 2 and Figure 3 illustrate an example of RRT. Figure 2 shows a relational functional 
gradient boosting. Relational Functional gradient boosting is similar to the standard gradient-boosting where 
trees are induced in stage-wise manner. At every iteration, the gradients are computed as the difference 
between observed and predicted probabilities of each example and a new regression tree is fitted to these 
examples. Figure 3 is an example of a RRT. The goal is to predict if a personA is advisedBy B (where A and 
B are logical variables) given the properties and relations of people at a university. At each node a (set of) 
predicate(s) is evaluated. The leaves denote regression values that are exponentiated and normalized to 
obtain the probabilities. The second branch from the left states that if B is a professor, A is not a professor, 
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A has more than 1 publication, and has more than 1 common publication with B, then the regression value is 
0.05. These regression values are then exponentiated and normalized. 
 
 

 

Figure 2: Relational Functional Gradient Boosting 

 
 

 

Figure 3: Example of a Relational Regression Tree 

To learn this set of RRTs for each conditional distribution, the learning approach was adapted based on the 
gradient boosting technique and was called relational functional-gradient boosting (RFGB). Assume that the 
training examples are of the form (xi, yi) for i = 1, ..., N and yi ∈ {1, ..., K}. Let us use x to denote the set 
of non-target predicates (features) and yi to denote the current target predicate.  

Then the goal is to fit a model P (y|x) ∝ eψ(y,x).  

The key idea is to compute the gradient (weight) for each example separately and fit a regression tree over 
all the weighted examples. This set of local gradients will approximate the global gradient.  
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The functional gradient of each example (xi, yi) w.r.t likelihood (ψ(yi = 1; xi)) is 

 

∂ log P (yi; xi)      =  I(yi=1;  xi) − P(yi= 1; xi)  (1) 

∂ψ(yi = 1; xi) 

where I is the indicator function that is 1 if yi = 1 and 0 otherwise. The expression is simply the adjustment 
required to match the predicted probability with the true label of the example. If the example is positive 
and the predicted probability is less than 1, this gradient is positive indicating that the predicted probability 
should move towards 1. Conversely, if the example is negative and the predicted probability is greater than 
0, the gradient is negative, driving the value the other way. They use RRTs to fit the gradient function for 
every training example. 

Each RRT can be viewed as defining several new feature combinations, each corresponding to one of the paths 
from the root to a leaf. The resulting potential functions from all these different RRTs still have the form 
of a linear combination of features but the features can be quite complex. This idea is illustrated in Figure 
3.  

The benefits of a boosted learning approach are manifold.  

•  First, being a nonparametric approach the number of parameters grows with the number of training 
episodes. In turn, interactions among random variables are introduced only as needed, so that the 
potentially large search space is not explicitly considered.  

• Second, such an algorithm is fast and straightforward to implement. Existing off-the-shelf 
regression learners can be used to deal with propositional, continuous, and relational domains in a 
unified way.  

•  Third, it learns the structure and parameters simultaneously, which is an attractive feature as 
learning probabilistic relational models is computationally quite expensive.  

For an implementation as well as further material on how to use it, we refer to 
http://pages.cs.wisc.edu/˜tushar/rdnboost/index.html. 

While originally developed for relational dependency networks, this work was later extended to learning 
MLNs by simply optimizing the pseudo-likelihood. 

Handling hidden data. Inspired by the success of structural EM on propositional graphical models and the 
success of boosting in learning SRL models, we developed an EM algorithm for functional-gradient boosting 
(FGB). We derive and present the update equations of the E and M-steps of the algorithm. One of the key 
features of our algorithm is that we consider the set of distributions in the models to be a product of potentials 
and this allows us to learn different models such as Markov Logic Networks (MLNs) and relational 
dependency networks (RDNs). After deriving the EM algorithm, we adopt the standard approach of 
approximating the full likelihood by the maximum a posteriori (MAP) states (i.e., hard EM). We show that this 
MAP approximation to the likelihood makes learning computationally tractable with minimal change in 

http://pages.cs.wisc.edu/%7Etushar/rdnboost/index.html
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quality. As far as we are aware, this is the first work on combining EM with FGB for relational domains. 

Let us denote the observed data using X and the hidden data using Y. Also, let us use 1 and 0 to represent true 
and false respectively. Given a training set with missing data, the goal is to maximize the log likelihood of 
the observed groundings. We average the likelihood function over all possible world states of the missing 
data (joint assignment over all hidden groundings) to compute the marginal probabilities of the observed 
groundings as shown below. 

£(ψ) ≡ log P (X = x|ψ)             Likelihood (£) of observed data x 

        = log ∑ P (x; y|ψ)                Marginalize over hidden data instantiations 

                              y€ Y 

= log ∑ 
      y€ Y 

{P (y|x; ψ!) P (x; y|ψ)  } 
P (y|x; ψt) 

 

Multiply and divide byP (y x; ψ!)      (2) 

 

Assume ψ! is our current estimate of the best model based on the log-likelihood function. We will derive 
gradient steps to find ψ that has a higher log-likelihood than ψ!. We then set the ψ obtained via these 
gradient steps as the new ψ! and iteratively find a better ψ. To make the iterative procedure clearer, we use 
ψt to represent the ψ! obtained after t iterations of the gradient steps. 

We present the high-level overview of our RFGB-EM (Relational Functional Gradient Boosting - EM) 
approach in Figure 4. Similar to EM approaches that we explained earlier, we sample the states for the 
hidden groundings based on our current model in the E-step and use the sampled states to update our model 
in the M-step.  ψt  represents the model in the tth  iteration.  The initial model, ψ0 can be as simple as 
a uniform probability for all examples or could be a model specified by an expert.  We sample certain 
number of assignments of the hidden groundings (denoted as |W |) using the current model ψt. Based on 
these samples, we create regression examples which are then used to learn T relational regression trees. 
The learned regression trees are added to the current model and the process is repeated. We refer to our 
paper [16, 25] for the detailed algorithm and the mathematical details. 
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Figure 4: RFGB-EM flowchart 

In figure 4, the Shaded nodes indicate variables with unknown assignments, while the white (or black) nodes 
are assigned true (or false) values. The input data has observed (indicated by X) and hidden (indicated by 
Y) groundings. We sample |W | assignments of the hidden groundings using the current model ψt. We create 
regression examples based on these samples, which are used to learn T relational regression trees. The 
learned trees are added to the current model and the process is repeated. 

Handling imbalanced data. We extended the framework to handle is misclassification costs on imbalanced 
class distributions where over-sampling or under-sampling do not work due to overfitting. Imbalanced class 
distributions have remained a significant bottleneck for relational algorithms due to several relations being 
false.  

For instance, consider Friends(x,y). If x and y can take 1000 values each, this relation can have 1M 
different grounded facts, while only a fraction of them will be true in the world. We defined a cost function,  

c(xi) = α I(yi = 1 ∧y = 0) + βI(yi = 0 ∧y = 1),     

where I(yi = 1 ∧y = 0) is 1 for false negatives  

and I(yi = 0 ∧y = 1) is 1 for false positives.  

Intuitively, c(xi) = α when a positive example is misclassified, 

while c(xi) = β when a negative example is misclassified.  
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Now, the gradients were derived and the learning was performed as earlier. Our results showed that the 
proposed method was robust to handling severe class imbalance in a principled manner [42]. 

Learning from advice. Our framework is also capable of treating human as more than a mere labeler. To this 
effect, we developed a framework capable of handling preferences as advice. We aim to learn a model that has 
higher probabilities for examples that satisfy advice as compared to ones that do not. Consider s to be the set 
of training examples for which the advice is applicable,  

i.e., s = {si | B, F f-- label(si)}, where 

B is the background knowledge and F is the advice constraint.   

The learned model should have a higher probability for the label that satisfies the advice than the probability 
of the label that violates the advice, i.e., 

∀si ∈ s, P (l + (si)) ≥ P (l − (si)). 

We propose to incorporate this advice into RFGB by modifying the objective function to include a cost, 

MLL(x, y) = ∑   log 𝑒𝑒𝜓𝜓(𝑥𝑥𝑖𝑖; 𝑦𝑦))

cost(xi,ψ)+∑𝑒𝑒𝜓𝜓(𝑥𝑥𝑖𝑖; 𝑦𝑦
!
)        (3) 

More details of this work can be seen in our AAAI paper [33]. This work was later applied to the task of 
medical relation extraction from text [32]. 

Learning from one-class data. To solve the problem of learning with examples from one class, techniques 
such as Support Vector Machines (SVMs), nearest-neighbors and clustering have been proposed. These 
methods rely on a distance measure between the examples being provided. For propositional data, standard 
distance measures are available and such measures can also be learned. But data in real world domains tends 
to be more complicated and structured, which can naturally be represented using first-order logic where 
standard distance measures are not applicable. Hence, we developed an approach to perform one- class 
classification with a novel distance measure for relational data. This approach can be used to perform anomaly 
analysis as well as information extraction on rich structured data as seen in Natural Language Processing tasks. 

Relational examples can be viewed as examples with infinite dimensions (since there are infinite first- order 
rules where each rule can be used to create a boolean feature). The key idea of our approach is to select 
relevant dimensions from these infinite dimensions that keep examples of the same class close to each 
other while spreading out the unlabeled examples (similar to the idea in Principal Component Analysis 
approach for dimensionality reduction). Since our approach is a feature selection method, we can also use it 
for one-class classification in very high-dimensional data. Rather than using first-order logic rules to 
propositionalize the relational examples and learn a distance measure, we directly learn a relational distance 
function using trees. We use dissimilarity between the paths taken by examples in the relational trees to 
compute the distance between the examples. We learn multiple trees where each tree contributes to the 
distance between examples. We refer to our AAAI paper [17] for more details. 
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Efficient SRL using relational databases. Statistical Relational Learning approaches learn accurate models 
from noisy structured data but combining probabilities to model noise and first order logic to model the 
relational structure. The limitations of most SRL models stem from logical operations and aggregations they 
need to perform over multiple iterations, at times over large amounts of data, which affects their efficiency. 
This issue can potentially be alleviated by exploiting the power of relational databases. Recent database centric 
systems such as tuffy have made considerable progress in that direction, but are limited to only parameter 
learning.  We develop and formulate an approach that fully integrates relational databases with the Inductive 
Logic Programming engine that performs structure learning in SRL. Substantial speed-up is achieved via 
representing facts as im-memory database tables instead of text files and translating logical and aggregation 
operations into equivalent SQL queries. Additional efficiency gains result from precomputing and storing 
count data and caches for reoccurring costly join operations. Our evaluations prove the effectiveness of our 
approach paired with the state-of-the-art SRL framework RFGB. WE refer to our ILP 2016 best paper [21] for 
further details. 

Scaling via approximation in Relational Models.  Inference in statistical relational models is 
computationally expensive since full instantiation of first order theories is exponentially large. Lifted inference 
tries to alleviate this problem by performing inference over groups of instances that are equivalent/symmetric 
(induce the same belief on the query). But, even lifted inference techniques suffer from scaling issues for large 
datasets since it requires counting over number of instances in such equivalence groups. In learning, counting 
is an essential operation as a part of the recurring inference in structure learning and as a part of likelihood 
estimation in parameter learning. In a first order logic representation of the relational structures, counting is 
essentially over the satisfied instances of a FOL clause given the data. Estimating satisfiability via brute force 
is combinatorial search problem and is #P -complete. However, exact counting is not essential for large datasets 
since minor deviations have negligible effect on final likelihood or belief estimates. We developed an approach 
to approximate the counts of satisfied instances by compiling the data into a graph database representation and 
using a message passing technique to estimate expected values of counts from summary statistics of the 
constructed graph. Our approach FACT has demonstrated substantial efficiency gains on large datasets without 
compromising the performance in terms of learning or inference in statistical relational models. We refer to 
our SDM paper [6] for more details. 

Learning via Domain Adaptation/Transfer. Sophisticated machine learning models allow for effective and 
accurate learning from large amounts of data. With limited dataset sizes, however, accurate modeling is 
difficult. The advent of transfer learning techniques alleviate this limitation by using knowledge (model) gained 
from a source task for better and more effective learning in a target task with limited amount of data. Most 
techniques focus on transferring across related tasks in the same domain and do not work well for tasks in 
unrelated domains. Cross-domain transfer necessitates relational and structured representation. Recent transfer 
learning techniques for relational domains induce higher order generalized knowledge (such as 2nd-order 
logic) from the source domain and use that knowledge to learn better models in a target domain. While a 
reasonable approach, higher order logic is complicated to reason with and learning is less efficient. We 
proposed and developed Language-biased Transfer Learning (LTL) that performs domain-constrained walks 
on the source model (eg.: a FOL theory) and induces an initial model for the target domain aligned with the 
walks from the source domain, which is then refined via the small amount of data available for the target 
domain. The constrained walks are formally termed as Mode-Matching Trees (M 2T s) which implicitly 
capture the knowledge due to the domain language itself, including how variables are shared across different 
relations and how the source theory would be instantiated. A single path on the source domain tree may then 
induce several ones in the target tree which can later be refined, allowing better convergence to the most 
accurate theory in the target domain. Intuitively, it can be viewed as tracing the shape of the source domain 
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ontology and ensuring that the target model adheres to that shape as mush as possible, making the SRL structure 
search both effective and efficient. Empirical evaluations prove the effectiveness of our method in transferring 
across seemingly unrelated domains (eg: Sports and Finance, NELL ontologies). We refer to our ICDM paper 
[19] for further details and discussion. 

Relational Deep models. Connectionist approaches, including Restricted Boltzman Machines (RBM), have 
become increasingly popular for learning probability distributions due to their expressive power which has let 
to their success in varied tasks such as collaborative filtering, motion capture, density modeling of images and 
speech and so on. Being a connectionist framework, RBMs allow for ‘stacking’, leading to deep models. 
However, it suffers from the limitations of interpretability and the necessity of data being represented as finite 
dimensional flat feature vectors (i.i.d.). We formulated and developed Relational RBMs that enable RBMs to 
operate on noisy, structured data. 

The key idea behind our proposed formalism is to construct relational features via random walks (inspired by 
the Path Ranking Algorithm) on the relational schema (object/entity classes and relations between them) and 
using the support for such features (counts/existentials) as inputs to a discriminative RBM (since we are 
interesting in classification tasks). We show how our approach relates to Statistical Relational Learning 
approaches. The relational feature construction via random walks is akin to structure learning of relational 
models (eg. MLN clauses) and the discriminative RBM acts as the parameter learning layer for the relational 
structure. This, in turn, provides some degree of interpretability to RBMs. We demonstrate how our RRBMs 
exhibit better or equal performance to state-of-the-art SRL approaches (RDN-Boost/MLN-Boost) on several 
relational datasets. We refer to our ILP paper [15] for further details.  
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3.2 DeepDive Developments 

Our development of DeepDive has proceeded as a series of iterations of application, technique, and 
abstraction. Applications from domain scientists provide the motivation and prioritize a series of core 
computer science challenges; these challenges become the focus of a series of studies of relevant 
techniques, and these techniques are then made available to the user via a declarative abstraction that in turn 
facilitates more applications. 

3.2.1 Application and Quality: PaleoDeepDive 

Paleontology is based on the description of fossils. Unfortunately, most fossil data are buried in journal 
articles published over the past four centuries. To make these data usable by paleontologists, nearly two 
decades ago, a team of more than 300 scientists spent nearly 10 continuous person years manually reading 
40K publications to compile one of the largest paleontological knowledge bases, PaleoBioDB, which has 
been the basis of more than 200 scientific publications. This stunning amount of human effort and the huge 
scientific impact of PaleoBioDB raised the question: Can we apply our prototype system built for DARPA 
to automate this process but still achieve human levels of quality? This motivated our collaboration with 
geoscientist Shanan Peters to build PaleoDeepDive [34]. The goal was to take as input journal articles and 
construct knowledge bases in the same schema as PaleoBioDB. We conducted a series of studies on the 
quality of this process. 

Rule-based vs. Inference-based Systems. State-of-the-art KBC researches are usually conducted along one 
of two different lines—those based on hard rules and those based on statistical inference. We conducted studies 
[29, 30] to investigate the impact of statistical inference on the quality of KBC. We found that, with similar 
engineering efforts and enough training examples, across a range of five different applications, the inference-
based approach often achieves higher quality. This is not surprising, because for the inference-based approach, 
the user only needs to specify what features are potentially relevant and let the inference algorithm decide their 
quality (weights); however, for a rule-based system, the developer must deal with both. This decoupling of 
relevancy and quality allows users to add many relevant but possibly noisy sources to boost the quality of a 
KBC system quickly. 

Directly Supervised vs. Distantly Supervised Systems. As our study about inference-based KBC systems 
reveals, for an inference system to be able to make decisions about the quality of features, it is important to 
have a large set of training examples. Thus, We investigated different ways of creating such examples. As for 
textbook supervised machine-learning systems, many such training examples can be manually labeled by 
experts, which results in high-quality training examples, but this process is usually expensive and time-
consuming. Instead, We studied [47] two less expensive but potentially lower quality, noisy ways of generating 
training examples, namely distant supervision and crowd-sourcing. Distant supervision allows the user to write 
rules to generate training examples from an unstructured corpus by linking it to an existingKB, while crowd-
sourcing allows the user to delegate the labelling procedure to non-professional workers. This study found that 
distant supervision can achieve better quality given a large enough unstructured corpus, and the key insight is 
that the noise produced by the supervision procedure can be mitigated by a large number of training examples 
with statistical learning. 
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Single-modality vs. Multi-modality Systems. The above studies formed the basis for building the first 
version of PaleoDeepDive, which extracts information from sources such as text and tables separately. 
However, this first prototype had a less than satisfying quality—To understand a table inside a document, we 
often need to consult information in other tables or text in the rest of the document. This motivated a follow-
up study [11] in which we designed a joint inference scheme to conduct inference concurrently across text and 
tables. This study shows the significant impact of such a joint inference on the quality of PaleoDeepDive; 
however, it introduced statistical inference tasks that often require terabytes of data, which pose challenges for 
the scalability and performance of the system. 

Discussion With this engine and the series of study on quality, for all fossil-related relations in Paleo- 
BioDB, PaleoDeepDive achieves comparable, and sometimes better, quality than human volunteers [34] and 
forms the foundation of another dozen of applications [2, 22, 34, 45, 52] that follow similar approaches. 

3.2.2 Performance and Scalability: Scalable Statistical Inference and Learning 

The array of studies shown above demonstrate the necessity for a scalable and efficient engine that can 
conduct joint statistical inference and learning. Compared with a traditional relational workload, one key 
difference of a statistical workload, as we found in many applications [49], is the decoupling of hardware 
efficiency and statistical efficiency. That is, an implementation that takes full advantage of the hardware 
might converge slowly from a statistical perspective, and thus lead to suboptimal end-to-end efficiency 
compared with a more balanced implementation. Worse, there is only a limited body of theory to guide 
the choice between these two angles. Thus, our research takes a systems approach for both scalability and 
efficiency. 

Scalable Statistical Inference with Gibbs Sampling. As statistical inference is often #P-hard in general, one 
workhorse approximate algorithm is Gibbs sampling. We conducted a study [48] on running Gibbs sampling 
over data that does not fit in the main memory. our approach is to revisit three classic database techniques that 
are used in storage managers: materialization, page-oriented layout, and buffer-replacement policy. After 
studying the tradeoffs associated with the different choices of these techniques, We developed a prototype 
system that achieves an increase in speed of up to two orders of magnitude over traditional baseline approaches. 
This study also revealed the potential of adapting classic database techniques to this new workload after a 
systematic revisit. 

Performant Main-memory Statistical Analytics. We then conducted a study on how to speed up the 
execution of inference inside the main-memory buffer. The need for this type of research is also relevant to an 
industrial trend; today, even small organizations have access to machines with large main memories. Not 
surprisingly, there has been a flurry of activity to support main-memory analytics in both industry and research. 
However, each of these systems often picks one design point in a larger tradeoff space. Thus, our research [49] 
seeks to define and study this tradeoff space, focusing on commodity multi-socket, multi-CPU, non-uniform 
memory access (NUMA) machines.  This tradeoff space contains axes such as data access methods, data 
replication, and model replication.  From this study, We found that today’s research and industrial systems 
often underutilize commodity modern hardware for analytics, sometimes by two orders of magnitude. This 
study results in a system called DimmWitted, the workhorse inference engine inside DeepDive that supports 
all its execution of statistical inference algorithms. 
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3.2.3 Abstraction and Usability: Iterative Feature Engineering 

The above studies, along with our other work in systems [13, 31] and collaborative work in theory [7, 8, 40, 
50], forms the cornerstone of an efficient DeepDive engine. One remaining challenge is determining what 
abstraction and interface DeepDive should provide to the user. One observation we made by observing 
scientists’ use patterns is that building high-quality KBC systems is not a one-shot process; instead, it is an 
iterative process in which the user keeps trying different combinations of features and executes statistical 
inference on different but similar tasks. Therefore, We focused on studying an iterative abstraction for two 
popular workloads: feature selection and feature engineering. 

Iterative Feature Selection. Feature selection is the process of selecting a set of features that will be used to 
build a statistical model—a process that is widely regarded as the most critical step of statistical analytics. We 
found that [46] feature selection is an interactive human-in-the-loop process. For this reason, we designed a 
declarative language to specify a feature selection workload. This declarative language and the iterative model 
mean that feature selection workloads are rife with reuse opportunities. Thus, we studied how to materialize 
portions of this computation, using not only classical database optimizations but also methods that have not 
previously been used in databases, including structural decomposition methods and warmstart. This study 
found that traditional database-style approaches that ignore these new opportunities are more than two orders 
of magnitude slower than an optimal plan in this new tradeoff space across multiple execution backends, and 
that a simple cost-based optimizer can often automatically select a near-optimal execution plan for feature 
selection. 

Iterative Feature Engineering. The workload of developing a KBC system is often more complicated than 
just feature selection. In most applications built with DeepDive, we have seen a spectrum of changes that can 
be made during the development—quality requirements change, new data sources arrive, and new concepts 
are needed in the application. This finding motivates our desire to develop techniques for making the entire 
pipeline incremental in the face of changes, both to the data and to the DeepDive program. The first component 
of this study is a language similar to Datalog that allows the user to specify feature extraction, distant 
supervision, and statistical inference and learning using a unified, relational, and declarative language. The 
main technical challenge is to incrementally maintain statistical inference and learning given a changed factor 
graph. We developed two methods for incremental inference based respectively on sampling and variational 
techniques, and we further study the tradeoff space of these methods in order to develop a simple rule-based 
optimizer [38]. These techniques speed up KBC inference tasks by up to two orders of magnitude with 
negligible impact on quality. This work forms DeepDives current language and interaction model, which most 
of our applications build on. 
 

3.3 Deep NLP Tasks 

We now describe our deep NLP tasks that we have addressed in the past three years. 

3.3.1 Applications and Challenges 

Knowledge base construction (KBC) is the process of populating a knowledge base with facts extracted 
from unstructured data sources such as text, tabular data expressed in text and in structured forms, and even 
maps and figures. In sample-based science [35], one typically assembles a large number of facts (typically 
from the literature) to understand macroscopic questions, e.g., about the amount of carbon in the Earth’s 
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atmosphere throughout time, the rate of extinction of species, or all the drugs that interact with a particular 
gene. To answer such questions, a key step is to construct a high-quality knowledge base, and some sciences 
have undertaken decade-long sample collection efforts, e.g., PaleoDB.org and PharmaGKB.org. 

In parallel, KBC has attracted interest from industry [10,51] and academia [3–5,9,14,18,24,28,36,37,41, 43]. 
To understand the common patterns in KBC systems, we are actively collaborating with scientists from a 
diverse set of domains, including geology [44], paleontology [35], pharmacology for drug repurposing, and 
others. We first describe one KBC application we built, called PaleoDeepDive, then present a brief 
description of other applications built with similar purposes. 

PaleoDB and PaleoDeepDive Paleontology is based on the description and biological classification of 
fossils, an enterprise that has been recorded in and an untold number of scientific publications over the 
past four centuries. One central task for paleontology is to construct a knowledge base about fossils from 
scientific publications, and an existing knowledge base compiled by human volunteers has greatly expanded 
the intellectual reach of paleontology and led to many fundamental new insights into macroevolutionary 
processes and the nature of biotic responses to global environmental change. However, the current process 
of using human volunteers is usually expensive and time-consuming. For example, PaleoDB, one of 
the largest such knowledge bases, took more than 300 professional paleontologists and 11 human years to 
build over the last two decades, resulting in PaleoDB.org. To get a sense of the impact of this database 
on this field, at the time of writing, this dataset has contributed to 205 publications, of which 17 have 
appeared in Nature or Science. 

This provided an ideal test bed for our KBC research. In particular, we constructed a prototype called 
PaleoDeepDive [35] that takes in PDF documents. This prototype attacks challenges in optical character 
recognition, natural language processing, information extraction, 

Beyond Paleontology The success of PaleoDeepDive motivates a series of other KBC applications in a 
diverse set of domains including both natural and social sciences. Although these applications focus on 
very different types of KBs, they are usually built in a way similar to PaleoDeepDive. This similarity 
across applications motivate our study of building DeepDive as a unified framework to support these diverse 
applications. 

Human-Trafficking MEMEX is a DARPA program that explores how next generation search and 
extraction systems can help with real-world use cases. The initial application is the fight against human 
trafficking. In this application, the input is a portion of the publicly-indexed and ”dark” web in which human 
traffickers are likely to (surreptitiously) post supply and demand information about illegal labor, sex workers, 
and more. DeepDive processes such documents to extract evidential data such as names, addresses, phone 
numbers, job types, job requirements, information about rates of service, etc. Some of these data items are 
difficult for trained human annotators to accurately extract and have never been previously available, 
but DeepDive- based systems have high accuracy (Precision and Recall in the 90s, which may surpass that 
of non-experts). Together with provenance information, such structured, evidential data are then passed on 
to both other collaborators on the MEMEX program as well as law enforcement for analysis and consumption 
in operational applications. MEMEX has been featured extensively in the media and is supporting actual 
investigations. For example, every human trafficking investigation pursued by the Human Trafficking 
Response Unit in New York City now involves MEMEX, for which DeepDive is the main extracted data 
provider. In addition, future use cases such as applications in the war on terror are under active consideration. 
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Medical Genetics The body of literature in life sciences has been growing at an accelerating speed, to the 
extent that it has been unrealistic for scientists to perform research solely based on reading and/or keyword 
search. Numerous manually-curated structured knowledge bases are likewise unable to keep pace with 
exponential increases in the number of publications available online. For example, OMIM is an authoritative 
database of human genes and mendelian genetic disorders which dates back to the 1960s, and so far contains 
about 6,000 hereditary diseases or phenotypes, growing at a rate of roughly 50 records / month for many 
years. Conversely, almost 10,000 publications were deposited into PubMed Central per month last year. 
In collaboration with Prof. Gill Bejerano at Stanford, we are developing DeepDive applications to create 
knowledge bases in the field of medical genetics. Specifically, we use DeepDive to extract mentions 
of genes, gene variants, and phenotypes from the literature, and statistically infer their relationships, presently 
being applied to clinical genetic diagnostics & reproductive counseling. 

Pharmacogenomics Understanding the interactions of chemicals in the body is key for drug discovery. 
However, the majority of this data resides in the biomedical literature and cannot be easily accessed. The 
Pharmacogenomics Knowledgebase is a high quality database that aims to annotate the relationships between 
drugs, genes, diseases, genetic variation, and pathways in the literature. With the exponential growth of the 
literature, manual curation requires prioritization of specific drugs or genes in order to stay up to date with 
current research. In collaboration with Emily Mallory and Prof. Russ Altman [23] at Stanford, we are 
developing DeepDive applications in the field of pharmacogenomics. Specifically, we use DeepDive to 
extract relations between genes, diseases, and drugs in order to predict novel pharmacological relationships. 

TAC-KBP TAC-KBP is a NIST-sponsored research competition where the task is to extract common 
properties of people and organizations (e.g., age, birthplace, spouses, and shareholders) from a 1.3 million 
newswire and web documents – this task is also termed Slot Filling. In the 2014 evaluation, 31 US and in- 
ternational teams participated in the competition, including a solution based on DeepDive from Stanford [1]. 
The DeepDive based solution achieved the highest precision, recall, and F1 among all submissions. 
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3.3.2 Dependency Networks for KBP 

Our Approach: We present our system for KBP slot filling based on probabilistic logic formalisms 
and present the different components of the system. Specifically, we employ Relational Dependency 
Networks, a formalism that has been successfully used for joint learning and inference from stochastic, 
noisy, relational data. We consider our RDN system against the current state-of-the-art for KBP to 
demonstrate the effective- ness of our probabilistic relational framework. Additionally, we show how 
RDNs can effectively incorporate many popular approaches in relation extraction such as joint learning, 
weak supervision, word2vec features, and human advice, among others. 

We provide a comprehensive comparison of various settings such as joint learning vs learning of 
individual relations, use of weak supervision vs gold standard labels, using expert advice vs only learning 
from data, etc. These questions are extremely interesting from a general machine learning perspective, 
but also critical to the NLP community. As we show empirically, the key contributions of this paper 
are as follows: 

• Our RDN framework is competitive, and often superior, to state-of-the-art systems for KBP slot 
filling.  

• RDNs successfully incorporate various types of features, including advice, joint learning, and 
word2vec features. 

• Ours is the first KBP system to leverage knowledge-based weak supervision – a logic-based 
framework that we have previously shown to be complementary and often superior to distant 
supervision. 

Some of the results such as human advice being useful in many relations and joint learning being 
beneficial in the cases where the relations are correlated among themselves are on the expected lines. 
However, some surprising observations include the fact that weak supervision and word2vec 
features are not as useful as expected, although further investigation is warranted. 

Given a training corpus of raw text documents, our learning algorithm (Figure 5) first converts these 
documents into a set of facts (i.e., features) that are encoded in first order logic (FOL). Raw text is 
processed using the Stanford CoreNLP Toolkit2 to extract parts-of-speech, word lemmas, etc. as well as 
generate parse trees, dependency graphs and named-entity recognition information. The full set of 
extracted features are then converted into features in prolog (i.e., FOL) format and are given as input to 
the system. 

 

 

 

 

 
2 http://stanfordnlp.github.io/CoreNLP 

http://stanfordnlp.github.io/CoreNLP
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Figure 5: Pipeline: Full RDN relation extraction pipeline 

In addition to the structured features from the output of Stanford toolkit, we also use deeper features 
based on word2vec as input to our learning system. Standard NLP features tend to treat words as 
individual objects, ignoring links between words that occur with similar meanings or, importantly, 
similar contexts (e.g., city-country pairs such as Paris – France and Rome – Italy occur in similar 
contexts). word2vec provide a continuous-space vector embedding of words that, in practice, capture 
many of these relationships. We use word vectors from Stanford3 and Google4. 

We generated features from word vectors by finding words with high similarity in the embedded space. 
That is, we used word vectors by considering relations of the following form: 

isCosSimilar(wordA, relationB, threshold), if a word has a high cosine similarity to any 
keyword (e.g., “father”) for a particular relation (e.g., parent). We set the modes such that the first 
argument to isCosSimilar is a ‘-’ (i.e., existing) variable, while the second and third arguments 
are constants.  We provide lists of candidate constants (on average a few dozen for each target relation) 
for the second argument using our knowledge of each target concept. For example, we include words 
such as “father” and “mother” (inspired by the parent relation) or “devout”,“convert”, and “follow” 
(religion relation). 

One difficulty with the KBP task is that very few documents come labeled as gold standard labels, 
and further annotation is prohibitively expensive beyond a few hundred documents. This is 
problematic for discriminative learning algorithms, like the RDN learning algorithm, which excel 
when given a large supervised training corpus. To overcome this obstacle, we employ weak 
supervision – the use of external knowledge (e.g., a database) to heuristically label examples. We 
employ our novel knowledge-based weak supervision approach, as opposed to the more traditional 
distant supervision. 

 
3 http://nlp.standford.du/projects/glove/  
4 https://code.google.com/p/word2vec/  

http://nlp.standford.du/projects/glove/
https://code.google.com/p/word2vec/
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An alternative approach, knowledge-based weak supervision is based on previous work [27, 39] with 
the following insight: labels are typically created by “domain experts” who annotate the labels 
carefully, and who typically employ some inherent rules in their mind to create examples. For example, 
when identifying family relationship, we may have an inductive bias towards believing two persons 
in a sentence with the same last name are related, or that the words “son” or “daughter” are strong 
indicators of a parent relation. We call this world knowledge as it describes the domain (or the world) of 
the target relation. 

Table 1: Rules for KB Weak Supervision. 

Weight MLN Clause 
1.0 

 
0.6 

 
0.8 

 
0.8 

entityType(a, “PER”), entityType(b, “NUM”), nextWord(a, c), 
word(c, “,”), nextWord(c, b) → age(a, b) 

entityType(a, “PER”), entityType(b, “NUM”), 
prevLemma(b, “age”) → age(a, b) 

entityType(a, “PER”), entityType(b, “PER”), 
nextLemma(a, “mother”) → parents(a, b) 

entityType(a, “PER”), entityType(b, “PER”), 
nextLemma(a, “father”) → parents(a, b) 

For the KBP task, some rules that we used are shown in Table 1. Table 1 is a sample of knowledge-
based rules for weak supervision. The first value defines a weight or confidence in the 
accuracy of the rule. The target relation appears at the end of each clause. “PER”, “ORG”, 
“NUM” represent entities that are persons, organizations, and numbers, respectively. For example, the 
first rule identifies any number following a person’s name and separated by a comma is likely to be the 
person’s age (e.g., “Sharon, 42”). The third and fourth rule provide examples of rules that utilize more 
textual features; these rules state the appearance of the lemma “mother” or “father” between two persons 
is indicative of a parent relationship. Previous results show this approach produces more examples 
with less overhead than distant supervision and can be employed where relevant database are not 
available. 

To this effect, we encode the domain expert’s knowledge in the form of first-order logic rules with 
accompanying weights to indicate the expert’s confidence. We use the probabilistic logic formalism 
Markov Logic Networks to perform inference on unlabeled text (e.g., the TAC KBP corpus). Potential 
entity pairs from the corpus are queried to the MLN, yielding (weakly-supervised) positive examples. 
We choose MLNs as they permit domain experts to easily write rules while providing a probabilistic 
framework that can handle noise, uncertainty, and preferences while simultaneously ranking positive 
examples. We use the Tuffy system to perform inference as it is robust and scales well to millions of 
documents5. 

 

 

 
5As the structure and weights are predefined by the expert, learning is not needed for our MLN 
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3.3.3 Extracting Medical Relations from Text 

While there is a plethora of research on detecting Adverse Drug Events (ADEs) from clinical data, there 
are not many methods that can validate the output of these algorithms except for manually scanning 
through the ADEs. In this case, the burden is on the expert to evaluate these extracted ADEs by 
knowing all the ones published in the literature. We explore the use of published medical abstracts to 
serve as ground truth for evaluation and present a method for effectively extracting the ADEs from 
published abstracts. To this effect, we adapt and apply our advice-based algorithms presented earlier that 
use a human expert (say a physician) as more than a “mere labeler”, i.e., the human expert in our system 
is not restricted to merely specify which of the drug event pairs are true ADEs. Instead, the human 
expert would “teach” the system much like a human student by specifying patterns that he/she would 
look for in the papers. These patterns are employed as advice by the learning system that seamlessly 
integrates this advice with training examples to learn a robust classifier. 

More precisely, given a set of ADE pairs (drug-event pairs), we build upon an NLP pipeline to rank the 
ADE pairs based on the proof found in the literature. Our system first searches for PubMed abstracts 
that are relevant to the current set of ADE pairs. For each ADE pair, these abstracts are then parsed 
through a standard NLP parser (we use Stanford NLP parser) and the linguistic features such as parse trees, 
dependency graphs, word lemmas and n-grams etc. are generated. These features are then used as 
input to our RFGB algorithm for learning to detect ADEs from text. While powerful, standard learning 
will not suffice for the challenging task of extracting ADEs as we will show empirically. The key 
reason is that we do not have sufficient number of training examples to learn a robust classifier. Also, 
the number of linguistic features can be exponential in the number of examples and hence learning a 
classifier in this hugely imbalanced space can possibly yield sub-optimal results. To alleviate this 
imbalance and guide the learner to a robust prediction model, we explore the use of human guidance 
as advice to the algorithm. This advice could be in terms of specific patterns in text. For instance it is 
natural to say something like, “if the phrase no evidence is present between the drug and event in the 
sentence then it is more likely that the given ADE is not a true ADE”. The learning algorithm can then 
identify the appropriate set of features (from the dependency graph) and make the ADE pair more likely 
to be a negative example. 

The drug and event pairs come from Observational Medical Outcomes Partnership 6 2010 ground truth, 
a manually curated database. To facilitate evaluation and comparison of methods and databases, 
OMOP established a common data model so that disparate databases could be represented uniformly. 
This included definitions for ten ADE-associated health outcomes of interest (HOIs) and drug exposure 
eras for ten widely-used classes of drugs. 

Since this OMOP data includes very few positive examples (10 to be precise), we investigated other 
positive examples found in the literature to increase the training set. Our final dataset that we built 
contains 39 positive and 1482 negative examples (i.e., 39 x 38, the cross-product of all drug-effect pairs 
and obtained the ones that are not true ADE). The abstracts that we collected for the drug and event pairs 
contained 5198 sentences. Note that some drug and event pairs were not mentioned in any abstracts. 
In all experiments, we performed 4-fold cross validation. We compare both area under the curve for 
ROC and PR curves. We discuss the empirical results in later sections. 

6 http://omop.org/  

http://omop.org/
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3.3.4 Anomaly Detection from Text 

We consider a supervised approach to identifying anomalies in text. Our definition of anomaly also 
follows the standard definition of “deviating from normal (expected) situations”.  We are interested 
in document classification, i.e., identifying documents that deviate from the normal. We hypothesize that 
the definition of anomaly in the context of textual data depends on the domain of interest. For instance, 
when reading sports articles, an example anomaly is when a low-ranked team playing away from 
home defeats a top-ranked team. This “upset” can be identified based on the knowledge of the teams, 
their relative rankings etc. and not necessarily on the lexical features. Similarly, in the recent unfortunate 
incident of the missing flight, the size of the aircraft and the zone in which it was flying are crucial to 
identifying it as an anomaly. When tagging anomalies in a question forum, the context of a question 
(for example, requesting solutions to a homework problem) is crucial. The common theme across all 
these situations is that specific information about the domain is more important than the lexical 
features. Such domain knowledge can be naturally provided in first-order logic (FOL) as features or 
advice rules. Consequently, it is easier to learn using richer representations such as Statistical Relational 
Learning (SRL). We employ a recently successful learning algorithm called relational functional 
gradient-boosting (RFGB) [26] for learning to predict the anomalies and show that it outperforms 
standard approaches. 

We made a few key contributions in this work [20]: (1) we show that using domain knowledge can 
substantially improve the detection of anomalies in text and (2) we also show that simply looking at 
syntactic features can greatly reduce the predictive performance of automated anomaly detection (3) 
finally, we evaluate using two domains - a literature domain, inspired by the work of Guthrie [12], 
where the goal is to identify text that does not belong to a particular author, and a flight domain where 
the goal is to read about flight incidents and identify the relatively “unexpected” incidents. 
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4 RESULTS AND DISCUSSION 

We discuss our results and findings based the focus areas of research and our methods and approaches 
that we enumerate above. 

4.1 Effective SRL via advice 

Figure 6 presents some sample results of learning from advice in a segmentation task and on standard 
SRL domains with high class imbalance. The results clearly demonstrate that our advice-based approach 
learns effectively better models even on not just relational data sets, but propositional ones as well. 
I n  s e g m e n t ( 1 ) ,  Adv-initial are the methods that use advice as prior knowledge and learn from 
them using propositional (prop) and relational (rel) classifiers. For segment (2), In standard PLM 
domains using misclassification costs. The last 2 sets of columns are different α and β values. 

 
Figure 6: Sample results of learning from advice  

(1) in a segmentation task and  (2)In standard PLM domains 

Figure 7 illustrates the success of our advice-based SRL framework on a real-world task of predicting 
Adverse Drug Events (ADEs) from text, specifically medical abstracts. We defer the detailed 
discussion about the ADE results to a later stage. Except for alchemy, the systems evaluated were 
developed by project members. 

 

Figure 7: Experimental results for predicting ADEs 
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4.2 DeepDive and Deep NLP 

PaleoDB & PaleoDeepDive Some statistics about our prototype PaleoDeepDive process are shown 
in Figure 8. As part of the validation of this system, we performed a double-blind experiment to 
assess the quality of the system versus the PaleoDB. We found that the KBC system built on DeepDive 
has achieved comparable—and sometimes better—quality than a knowledge base built by human 
volunteers over the last decade [35] and leads to similar scientific insights on topics such as biodiversity. 
This quality is achieved by iteratively integrating diverse sources of data- often quality 
scales with the amount of information we enter into the system. Figure 8 illustrates the accuracy 
of the results in PaleoDeepDive.  

 
Figure 8: Quality of KBC system built with DeepDive. 

Dependency Networks for KBP For the experimental evaluation of the Knowledge Base 
Population (KBP) task via our dependency network approach we considered 14 specific relations from 
two categories, person and organization from the TAC KBP competition. The relations considered are 
listed in the left column of Table 2. In Table 2, the Columns indicate the number of training examples 
utilized – both human annotated (Gold) and weakly supervised (WS), when available – from TAC 
KBP 2014 and number of test examples from TAC KBP 2015. 10 relations describe person entities 
(per) while the last 4 describe organizations (org). We utilize documents from KBP 2014 for training 
while utilizing documents from the 2015 corpus for testing.  
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Table 2: The relations considered from TAC KBP 

Relation Gold WS Test 
per : age 
per : alternateName 
per : children 
per : origin 
per : otherFamily 
per : parents 
per : religion 
per : siblings 
per : spouse 
per : title  
org : cityHQ 
org : countryHQ 
org : dateF ounded 
org : foundedBy 

89 
28 
89 
96 
72 
71 
70 
77 
66 
158 
69 
69 
70 
62 

750 
x 

x 
750 
750 
750 
750 
750 
750 
x 
x 
21 
750 
750 

44 
18 
23 
48 
10 
30 
11 
31 
28 
39 
10 
29 
17 
32 

All results presented are obtained from 5 different runs of the train and test sets to provide more robust 
estimates of accuracy. We consider three standard metrics – area under the ROC curve, F-1 score 
and the recall at a certain precision. We chose the precision as 0.66 since the fraction of positive 
examples to negatives is 1:2 (we sub-sampled the negative examples for the different training sets). It 
must be mentioned that not all relations had the same number of hand-annotated (gold standard) 
examples because the 781 documents that we annotated had different number of instances for these 
relations. The train/test gold-standard sizes are provided in the table, including weakly supervised 
examples. Negative examples are created by randomly selecting paired entities in the same sentence. 

Our system performs comparably, and often better than the state-of-the-art RelationFactory system 
(Table 3 located in the conclusions section of this report). In particular, our method outperforms 
RelationFactory in AUC ROC across all relations. Recall provides a more mixed picture with both 
approaches showing some improvements – RDN outperforms in 6 relations while RelationFactory 
does so in 8. The values in bold indicate superior performance against the alternative approach. 
Note that in the instances where RDN provides superior recall, it does so with dramatic improvements 
(RF often returns 0 positives in these relations). F1 also shows RDN’s superior performance, 
outperforming RF in most relations. Thus, our RDN framework performs comparably, if not better, 
across all metrics against the state-of-the-art.  
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Table 3: RelationFactory vs RDN 

Relation AUC ROC 
RF RDN 

Recall 
RF RDN 

F1 
RF RDN 

age 0.64 0.93 0.28 0.74 0.44 0.67 
alternateName 0.50 0.77 0.00 0.16 0 0.10 
children 0.54 0.76 0.09 0.14 0.17 0.28 
origin 0.50 0.89 0.00 0.86 0 0.64 
otherFamily 0.56 0.90 0.11 0.06 0.24 0.22 
parents 0.29 0.74 0.33 0.15 0.50 0.31 
religion 0.50 0.81 0 0.56 0 0.60 
siblings 0.13 0.81 0.17 0.00 0.29 0.29 
spouse 0.57 0.85 0.13 0.04 0.23 0.37 
title 0.67 0.90 0.67 0.07 0.80 0.54 
cityHQ 0.38 0.74 0.38 0.28 0.55 0.41 
countryHQ 0.57 0.77 0.14 0.62 0.25 0.58 
dateFounded 0.67 0.86 0.33 0.05 0.50 0.46 
foundedBy 0.20 0.84 0.37 0.25 0.54 0.55 

Extracting medical relations from text The results for extracting medical relations from text 
(specifically ADEs) are presented in figure 7 above. The first three graphs present the results of using 
only data and employing standard relational learning methods. As can be seen, our proposed method 
that also employs “human advice” outperforms the three baselines that do not incorporate advice - (RDN-
Boost, MLN-Boost, and Alchemy). This highlights the high value that the expert knowledge can have 
when learning with few training examples. Also, our proposed method is effectively learning with a 
high degree of accuracy to predict from the text abstracts. It is also clear that the advice is effectively 
incorporated when compared to merely using the data for learning and inference. 

We investigated the differences between our predictions and the OMOP ground truth to understand 
whether our method was truly effective. One key example where our method predicted an ADE pair 
to be positive, but OMOP labeled it as a negative ADE pair was: Bisphosphonate causes Acute Renal 
Failure. Our method predicted it as an ADE with a high (98.5%) probability. We attempted to 
validate our prediction and were able to find evidence in the literature to support our prediction. As an 
example, PubMed article (PMID 11887832) contains the sentence: 

Bisphosphonates have several important toxicities: acute renal failure, worsening renal function, 
reduced bone mineralization, and osteomalacia. 

This suggests that our method (1) is able to find some evidence to support its prediction and (2) is 
capable of incorporating novel medical findings. We refer to our paper for more details on our system 
[32]. 
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Anomaly Detection To evaluate our approach for anomaly detection from text we chose our first 
domain as the identification of anomalous flight incidents from text. We created a dataset consisting 
of 45 news articles reporting different flight incidents. Anomalies in this domain refer to unexpected 
flight incidents such as missing or crashed passenger aircrafts with more than 100 passengers in non-war 
zones. Of the 45 articles, we identified 18 articles as anomalous. Inspired by Guthrie’s work [12] on 
anomaly detection in a literature domain, we created a second dataset with anomalous literary excerpts. 
We selected excerpts with 20 – 30 sentences from Sir Arthur Conan Doyle’s books to create the set of 
normal documents. To create anomalous documents, we introduced a sentence, at random, from Jane 
Austen’s books in some excerpts from Doyle. We ran three-fold cross validation and present the 
results in Figure 9. As can be seen, in both the domains, the relational methods (RFGB and MLN) in all 
the three settings outperform the propositional methods significantly when measuring the weighted AUC-
ROC. This indicates that relational methods were more effective in identifying the anomalous text. This 
result is in line with several previously published works of employing these relational learning 
methods. 

 

(a)                                              (b)                                                         (c) 

Figure 9: Results of the experiments in: (a) Flight Domain and (b) Literature Domain. (c) A 
learned tree in the flight domain
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5 CONCLUSION 

Our research thrusts including developing efficient learning algorithms that can operate on complex 
structured data. To this effect, we pursued research in two directions - that of improving probabilistic 
data bases and developing an effective learning algorithm for probabilistic relational models. We 
focused our application to deep NLP tasks while evaluating and iterating over the learning algorithms. 

In our first direction, we presented the first-of-its-kind learning algorithm for SRL models based on 
functional gradient boosting. The key idea is to consider learning as a series of regression models 
in a stage-wise manner. The advantage of this approach is that we can learn the structure of the models 
and their parameters simultaneously. We showed how to adapt this algorithm for learning multiple 
relational models 

- RDNs, MLNs, relational policies via imitation learning and even transfer learning. We also extended 
the algorithm to learn faithfully in the presence of missing data without making assumptions about 
the data. Finally, we demonstrated across several tasks including few different health care prediction 
problems, natural language processing tasks, transfer learning in relational domains etc. The variety 
of applications clearly show demonstrate the broad applicability and usefulness of the boosting 
approach to learning in relational problems. 

For our second direction, we introduced DeepDive, a data management system to make knowledge base 
construction easier. We described a declarative language and an iterative debugging protocol that a 
user can use to build KBC systems, a set of high-quality KBC systems built with DeepDive, and 
techniques that we developed to make DeepDive scalable and efficient. These techniques optimize 
both batch execution and iterative execution, both of which are necessary, according to our 
experience observing users using DeepDive. With DeepDive, we hope to free domain experts from 
manually constructing knowledge bases, which is often tedious, expensive, and time consuming. 

Our final direction was demonstrating how the two related yet different directions were applied to deep 
NLP tasks with the focus on KBP systems. Our initial results are promising and we shall continue to focus 
on tedious tasks that users are currently performing manually for their research and seek clean ways to 
automate them. 
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pher    Ré. Incremental    knowledge    base    construction    using    DeepDive. PVLDB, 2015.  
Invited to VLDB Journal “Best of VLDB 2015”. 

[39] A. Soni, D. Viswanathan, N. Pachaiyappan, and S. Natarajan. A comparison of weak supervision 
methods for knowledge base construction. In Automated Knowledge Base Construction (AKBC) 
Workshop at NAACL, 2016. 

[40] Srikrishna Sridhar, Stephen J. Wright, Christopher Ré, Ji Liu, Victor Bittorf, and Ce Zhang. An 
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unified analysis of hogwild-style algorithms. In Advances in Neural Information Processing 
Systems (NIPS) December 7-12, 2015, Montreal, Quebec, Canada, pages 2674–2682, 2015. 

17. Christopher De Sa, Ce Zhang, Kunle Olukotun, and Christopher Ré. Rapidly mixing gibbs 
sampling for a class of factor graphs using hierarchy width. In Advances in Neural Information 
Processing Systems 28: Annual Conference on Neural Information Processing Systems 2015, 
December 7-12, 2015, Montreal, Quebec, Canada, pages 3097–3105, 2015. 



 
Approved for Public Release; Distribution Unlimited.  

34 

 

18. Mahmoud Abo Khamis, Hung Q. Ngo, Christopher Ré, and Atri Rudra. Joins via geometric 
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	1 SUMMARY
	The key research accomplishments out of the DEFT cooperative agreement are three fold:
	1. Development of an efficient learning algorithm for relational probabilistic models: Historically, Artificial Intelligence has used either the logical approach (to address structured problems) or the statistical approach (to handle uncertainty). Rec...
	2. Development of the state-of-the-art data management system for automatic knowledge base construction: One key challenge in building a high-quality knowledge base construction (KBC) system is that developers must often deal with data that are both d...
	3. Design, implementation, and evaluation of algorithms for several deep language understanding tasks such as knowledge-based population and anomaly detection: The basic scientific research pursued under this cooperative agreement were aimed at solvin...
	In the subsequent sections, we present the accomplishments in detail and provide empirical support for our algorithms. Finally, we will conclude by listing all the papers/manuscripts and book published as a result of funding from this cooperative agre...

	2  INTRODUCTION
	We consider a three-pronged approach to deep exploration and filtering of text. The first is development of a set of scalable state-of-the-art learning algorithms that are capable of learning generalized probabilistic logic rules from noisy, incomplet...
	In this report, we organize and present our accomplishments (the approaches and their intuitive, theoretical and empirical ramifications) from, the Deep Exploration and Filtering of Text (DEFT) cooperative agreement into 3 main focus areas or research...

	3 METHODS, ASSUMPTIONS AND PROCEDURES
	3.1 Effective Statistical Relational Learning
	3.1.1 Motivation
	Statistical Relational Learning (SRL) studies the combination of relational learning (e.g. inductive logic programming) and statistical machine learning. By combining the power of logic and probability, such approaches can perform robust and accurate ...
	While statistical relational models are indeed highly attractive due to their compactness and comprehensibility, learning them is typically much more demanding than learning propositional ones. Most of these methods essentially use first-order logic t...
	Parameter learning reduced the amount of effort needed from the expert and potentially improved the accuracy of the model (by relying on data to correct mistakes made by experts), but also increased the computational time. For some domains, the struct...
	Although structure learning reduces the expert’s effort, it can be computationally intensive due to the large space of possible structures while including parameter learning as a sub-task. Figure 1 shows this trade-off between the computation cost and...
	1For instance, when learning to predict if someone (say x) is popular, it is possible to use the predicate Friends in several ways. Some possible ways are Friends(x,y), Friends(y,x), Friends(x,“Erdos”) and Friends(“Erdos”,x). Of course, the constant “...
	So, is scaling up learning of SRL models insurmountable? No, as we will argue here. Typical SRL approaches seek to learn a single best SRL model. However, if learning a single best and easy-to-interpret model is difficult, we should maybe stop acting ...
	This is a sensible idea since finding many rough rules of thumb of how to change a model can be a lot easier than finding a single model.

	3.1.2 Research Accomplishments
	An important advancement in our research thrust is triggered by the insight that finding many rough rules of thumb of how to change our probabilistic relational models locally can be a lot easier than finding a single, highly accurate local model. Con...
	The key idea in this line of work is to represent each conditional distribution as a set of relational regression trees (RRT), Figure 2 and Figure 3 illustrate an example of RRT. Figure 2 shows a relational functional gradient boosting. Relational Fun...
	To learn this set of RRTs for each conditional distribution, the learning approach was adapted based on the gradient boosting technique and was called relational functional-gradient boosting (RFGB). Assume that the training examples are of the form (x...
	Then the goal is to fit a model P (y|x) ∝ eψ(y,x).
	The key idea is to compute the gradient (weight) for each example separately and fit a regression tree over all the weighted examples. This set of local gradients will approximate the global gradient.
	The functional gradient of each example (xi, yi) w.r.t likelihood (ψ(yi = 1; xi)) is
	∂ log P (yi; xi)      =  I(yi=1;  xi) − P(yi= 1; xi)  (1)
	∂ψ(yi = 1; xi)
	where I is the indicator function that is 1 if yi = 1 and 0 otherwise. The expression is simply the adjustment required to match the predicted probability with the true label of the example. If the example is positive and the predicted probability is ...
	Each RRT can be viewed as defining several new feature combinations, each corresponding to one of the paths from the root to a leaf. The resulting potential functions from all these different RRTs still have the form of a linear combination of feature...
	The benefits of a boosted learning approach are manifold.
	 First, being a nonparametric approach the number of parameters grows with the number of training episodes. In turn, interactions among random variables are introduced only as needed, so that the potentially large search space is not explicitly consi...
	 Second, such an algorithm is fast and straightforward to implement. Existing off-the-shelf regression learners can be used to deal with propositional, continuous, and relational domains in a unified way.
	 Third, it learns the structure and parameters simultaneously, which is an attractive feature as learning probabilistic relational models is computationally quite expensive.
	For an implementation as well as further material on how to use it, we refer to http://pages.cs.wisc.edu/˜tushar/rdnboost/index.html.
	While originally developed for relational dependency networks, this work was later extended to learning MLNs by simply optimizing the pseudo-likelihood.
	1
	2
	3
	3.1
	3.1.1
	3.1.2
	Handling hidden data. Inspired by the success of structural EM on propositional graphical models and the success of boosting in learning SRL models, we developed an EM algorithm for functional-gradient boosting (FGB). We derive and present the update ...
	Let us denote the observed data using X and the hidden data using Y. Also, let us use 1 and 0 to represent true and false respectively. Given a training set with missing data, the goal is to maximize the log likelihood of the observed groundings. We a...
	£(ψ) ≡ log P (X = x|ψ)             Likelihood (£) of observed data x
	= log ∑ P (x; y|ψ)                Marginalize over hidden data instantiations
	y€ Y
	Assume ψ! is our current estimate of the best model based on the log-likelihood function. We will derive gradient steps to find ψ that has a higher log-likelihood than ψ!. We then set the ψ obtained via these gradient steps as the new ψ! and iterative...
	We present the high-level overview of our RFGB-EM (Relational Functional Gradient Boosting - EM) approach in Figure 4. Similar to EM approaches that we explained earlier, we sample the states for the hidden groundings based on our current model in the...
	In figure 4, the Shaded nodes indicate variables with unknown assignments, while the white (or black) nodes are assigned true (or false) values. The input data has observed (indicated by X) and hidden (indicated by Y) groundings. We sample |W| assignm...
	Handling imbalanced data. We extended the framework to handle is misclassification costs on imbalanced class distributions where over-sampling or under-sampling do not work due to overfitting. Imbalanced class distributions have remained a significant...
	For instance, consider Friends(x,y). If x and y can take 1000 values each, this relation can have 1M different grounded facts, while only a fraction of them will be true in the world. We defined a cost function,
	c(xi) = α I(yi = 1 ∧y = 0) + βI(yi = 0 ∧y = 1),
	where I(yi = 1 ∧y = 0) is 1 for false negatives
	and I(yi = 0 ∧y = 1) is 1 for false positives.
	Intuitively, c(xi) = α when a positive example is misclassified,
	while c(xi) = β when a negative example is misclassified.
	Now, the gradients were derived and the learning was performed as earlier. Our results showed that the proposed method was robust to handling severe class imbalance in a principled manner [42].
	Learning from advice. Our framework is also capable of treating human as more than a mere labeler. To this effect, we developed a framework capable of handling preferences as advice. We aim to learn a model that has higher probabilities for examples t...
	i.e., s = {si | B, F f-- label(si)}, where
	B is the background knowledge and F is the advice constraint.
	The learned model should have a higher probability for the label that satisfies the advice than the probability of the label that violates the advice, i.e.,
	∀si ∈ s, P (l + (si)) ≥ P (l − (si)).
	We propose to incorporate this advice into RFGB by modifying the objective function to include a cost,
	MLL(x, y) = ∑   log ,,𝑒-𝜓(𝑥𝑖; 𝑦)).-cost,xi, ψ.+∑,𝑒-𝜓(𝑥𝑖; 𝑦!)..        (3)
	More details of this work can be seen in our AAAI paper [33]. This work was later applied to the task of medical relation extraction from text [32].
	Learning from one-class data. To solve the problem of learning with examples from one class, techniques such as Support Vector Machines (SVMs), nearest-neighbors and clustering have been proposed. These methods rely on a distance measure between the e...
	Relational examples can be viewed as examples with infinite dimensions (since there are infinite first- order rules where each rule can be used to create a boolean feature). The key idea of our approach is to select relevant dimensions from these infi...
	Efficient SRL using relational databases. Statistical Relational Learning approaches learn accurate models from noisy structured data but combining probabilities to model noise and first order logic to model the relational structure. The limitations o...
	Scaling via approximation in Relational Models.  Inference in statistical relational models is computationally expensive since full instantiation of first order theories is exponentially large. Lifted inference tries to alleviate this problem by perfo...
	Learning via Domain Adaptation/Transfer. Sophisticated machine learning models allow for effective and accurate learning from large amounts of data. With limited dataset sizes, however, accurate modeling is difficult. The advent of transfer learning t...
	Relational Deep models. Connectionist approaches, including Restricted Boltzman Machines (RBM), have become increasingly popular for learning probability distributions due to their expressive power which has let to their success in varied tasks such a...
	The key idea behind our proposed formalism is to construct relational features via random walks (inspired by the Path Ranking Algorithm) on the relational schema (object/entity classes and relations between them) and using the support for such feature...


	3.2 DeepDive Developments
	Our development of DeepDive has proceeded as a series of iterations of application, technique, and abstraction. Applications from domain scientists provide the motivation and prioritize a series of core computer science challenges; these challenges be...
	3.2.1 Application and Quality: PaleoDeepDive
	Paleontology is based on the description of fossils. Unfortunately, most fossil data are buried in journal articles published over the past four centuries. To make these data usable by paleontologists, nearly two decades ago, a team of more than 300 s...
	3.2
	3.3
	3.3.1
	Rule-based vs. Inference-based Systems. State-of-the-art KBC researches are usually conducted along one of two different lines—those based on hard rules and those based on statistical inference. We conducted studies [29, 30] to investigate the impact ...
	Directly Supervised vs. Distantly Supervised Systems. As our study about inference-based KBC systems reveals, for an inference system to be able to make decisions about the quality of features, it is important to have a large set of training examples....
	Single-modality vs. Multi-modality Systems. The above studies formed the basis for building the first version of PaleoDeepDive, which extracts information from sources such as text and tables separately. However, this first prototype had a less than s...
	Discussion With this engine and the series of study on quality, for all fossil-related relations in Paleo- BioDB, PaleoDeepDive achieves comparable, and sometimes better, quality than human volunteers [34] and forms the foundation of another dozen of ...

	3.2.2 Performance and Scalability: Scalable Statistical Inference and Learning
	The array of studies shown above demonstrate the necessity for a scalable and efficient engine that can conduct joint statistical inference and learning. Compared with a traditional relational workload, one key difference of a statistical workload, as...
	3.3.2
	3.3.3
	Scalable Statistical Inference with Gibbs Sampling. As statistical inference is often #P-hard in general, one workhorse approximate algorithm is Gibbs sampling. We conducted a study [48] on running Gibbs sampling over data that does not fit in the mai...
	Performant Main-memory Statistical Analytics. We then conducted a study on how to speed up the execution of inference inside the main-memory buffer. The need for this type of research is also relevant to an industrial trend; today, even small organiza...

	3.2.3 Abstraction and Usability: Iterative Feature Engineering
	The above studies, along with our other work in systems [13, 31] and collaborative work in theory [7, 8, 40, 50], forms the cornerstone of an efficient DeepDive engine. One remaining challenge is determining what abstraction and interface DeepDive sho...
	3.3.4
	Iterative Feature Selection. Feature selection is the process of selecting a set of features that will be used to build a statistical model—a process that is widely regarded as the most critical step of statistical analytics. We found that [46] featur...
	Iterative Feature Engineering. The workload of developing a KBC system is often more complicated than just feature selection. In most applications built with DeepDive, we have seen a spectrum of changes that can be made during the development—quality ...


	3.3 Deep NLP Tasks
	We now describe our deep NLP tasks that we have addressed in the past three years.
	3.3.1 Applications and Challenges
	Knowledge base construction (KBC) is the process of populating a knowledge base with facts extracted from unstructured data sources such as text, tabular data expressed in text and in structured forms, and even maps and figures. In sample-based scienc...
	In parallel, KBC has attracted interest from industry [10,51] and academia [3–5,9,14,18,24,28,36,37,41, 43]. To understand the common patterns in KBC systems, we are actively collaborating with scientists from a diverse set of domains, including geolo...
	PaleoDB and PaleoDeepDive Paleontology is based on the description and biological classification of fossils, an enterprise that has been recorded in and an untold number of scientific publications over the past four centuries. One central task for pal...
	This provided an ideal test bed for our KBC research. In particular, we constructed a prototype called PaleoDeepDive [35] that takes in PDF documents. This prototype attacks challenges in optical character recognition, natural language processing, inf...
	Beyond Paleontology The success of PaleoDeepDive motivates a series of other KBC applications in a diverse set of domains including both natural and social sciences. Although these applications focus on very different types of KBs, they are usually bu...
	Human-Trafficking MEMEX is a DARPA program that explores how next generation search and extraction systems can help with real-world use cases. The initial application is the fight against human trafficking. In this application, the input is a portion ...
	Medical Genetics The body of literature in life sciences has been growing at an accelerating speed, to the extent that it has been unrealistic for scientists to perform research solely based on reading and/or keyword search. Numerous manually-curated ...
	Pharmacogenomics Understanding the interactions of chemicals in the body is key for drug discovery. However, the majority of this data resides in the biomedical literature and cannot be easily accessed. The Pharmacogenomics Knowledgebase is a high qua...
	TAC-KBP TAC-KBP is a NIST-sponsored research competition where the task is to extract common properties of people and organizations (e.g., age, birthplace, spouses, and shareholders) from a 1.3 million newswire and web documents – this task is also te...

	3.3.2 Dependency Networks for KBP
	Our Approach: We present our system for KBP slot filling based on probabilistic logic formalisms and present the different components of the system. Specifically, we employ Relational Dependency Networks, a formalism that has been successfully used fo...
	We provide a comprehensive comparison of various settings such as joint learning vs learning of individual relations, use of weak supervision vs gold standard labels, using expert advice vs only learning from data, etc. These questions are extremely i...
	• Our RDN framework is competitive, and often superior, to state-of-the-art systems for KBP slot filling.
	• RDNs successfully incorporate various types of features, including advice, joint learning, and word2vec features.
	• Ours is the first KBP system to leverage knowledge-based weak supervision – a logic-based framework that we have previously shown to be complementary and often superior to distant supervision.
	Some of the results such as human advice being useful in many relations and joint learning being beneficial in the cases where the relations are correlated among themselves are on the expected lines. However, some surprising observations include the f...
	Given a training corpus of raw text documents, our learning algorithm (Figure 5) first converts these documents into a set of facts (i.e., features) that are encoded in first order logic (FOL). Raw text is processed using the Stanford CoreNLP Toolkit2...
	2 http://stanfordnlp.github.io/CoreNLP
	In addition to the structured features from the output of Stanford toolkit, we also use deeper features based on word2vec as input to our learning system. Standard NLP features tend to treat words as individual objects, ignoring links between words th...
	We generated features from word vectors by finding words with high similarity in the embedded space. That is, we used word vectors by considering relations of the following form:
	isCosSimilar(wordA, relationB, threshold), if a word has a high cosine similarity to any keyword (e.g., “father”) for a particular relation (e.g., parent). We set the modes such that the first argument to isCosSimilar is a ‘-’ (i.e., existing) variabl...
	One difficulty with the KBP task is that very few documents come labeled as gold standard labels, and further annotation is prohibitively expensive beyond a few hundred documents. This is problematic for discriminative learning algorithms, like the RD...
	3 http://nlp.standford.du/projects/glove/
	4 https://code.google.com/p/word2vec/
	An alternative approach, knowledge-based weak supervision is based on previous work [27, 39] with the following insight: labels are typically created by “domain experts” who annotate the labels carefully, and who typically employ some inherent rules i...
	For the KBP task, some rules that we used are shown in Table 1. Table 1 is a sample of knowledge-based rules for weak supervision. The first value defines a weight or confidence in the accuracy of the rule. The target relation appears at the end of ea...
	To this effect, we encode the domain expert’s knowledge in the form of first-order logic rules with accompanying weights to indicate the expert’s confidence. We use the probabilistic logic formalism Markov Logic Networks to perform inference on unlabe...
	5As the structure and weights are predefined by the expert, learning is not needed for our MLN

	3.3.3 Extracting Medical Relations from Text
	While there is a plethora of research on detecting Adverse Drug Events (ADEs) from clinical data, there are not many methods that can validate the output of these algorithms except for manually scanning through the ADEs. In this case, the burden is on...
	More precisely, given a set of ADE pairs (drug-event pairs), we build upon an NLP pipeline to rank the ADE pairs based on the proof found in the literature. Our system first searches for PubMed abstracts that are relevant to the current set of ADE pai...
	The drug and event pairs come from Observational Medical Outcomes Partnership 6 2010 ground truth, a manually curated database. To facilitate evaluation and comparison of methods and databases, OMOP established a common data model so that disparate da...
	Since this OMOP data includes very few positive examples (10 to be precise), we investigated other positive examples found in the literature to increase the training set. Our final dataset that we built contains 39 positive and 1482 negative examples ...
	6 http://omop.org/

	3.3.4 Anomaly Detection from Text
	We consider a supervised approach to identifying anomalies in text. Our definition of anomaly also follows the standard definition of “deviating from normal (expected) situations”.  We are interested in document classification, i.e., identifying docum...
	We made a few key contributions in this work [20]: (1) we show that using domain knowledge can substantially improve the detection of anomalies in text and (2) we also show that simply looking at syntactic features can greatly reduce the predictive pe...



	4 RESULTS AND DISCUSSION
	We discuss our results and findings based the focus areas of research and our methods and approaches that we enumerate above.

	4
	4.1 Effective SRL via advice
	Figure 6 presents some sample results of learning from advice in a segmentation task and on standard SRL domains with high class imbalance. The results clearly demonstrate that our advice-based approach learns effectively better models even on not jus...
	Figure 7 illustrates the success of our advice-based SRL framework on a real-world task of predicting Adverse Drug Events (ADEs) from text, specifically medical abstracts. We defer the detailed discussion about the ADE results to a later stage. Except...

	4.2 DeepDive and Deep NLP
	PaleoDB & PaleoDeepDive Some statistics about our prototype PaleoDeepDive process are shown in Figure 8. As part of the validation of this system, we performed a double-blind experiment to assess the quality of the system versus the PaleoDB. We found ...
	Dependency Networks for KBP For the experimental evaluation of the Knowledge Base Population (KBP) task via our dependency network approach we considered 14 specific relations from two categories, person and organization from the TAC KBP competition. ...
	All results presented are obtained from 5 different runs of the train and test sets to provide more robust estimates of accuracy. We consider three standard metrics – area under the ROC curve, F-1 score and the recall at a certain precision. We chose ...
	Our system performs comparably, and often better than the state-of-the-art RelationFactory system (Table 3 located in the conclusions section of this report). In particular, our method outperforms RelationFactory in AUC ROC across all relations. Recal...
	Extracting medical relations from text The results for extracting medical relations from text (specifically ADEs) are presented in figure 7 above. The first three graphs present the results of using only data and employing standard relational learning...
	We investigated the differences between our predictions and the OMOP ground truth to understand whether our method was truly effective. One key example where our method predicted an ADE pair to be positive, but OMOP labeled it as a negative ADE pair w...
	Bisphosphonates have several important toxicities: acute renal failure, worsening renal function, reduced bone mineralization, and osteomalacia.
	This suggests that our method (1) is able to find some evidence to support its prediction and (2) is capable of incorporating novel medical findings. We refer to our paper for more details on our system [32].
	Anomaly Detection To evaluate our approach for anomaly detection from text we chose our first domain as the identification of anomalous flight incidents from text. We created a dataset consisting of 45 news articles reporting different flight incident...
	(a)                                              (b)                                                         (c)


	5 CONCLUSION
	Our research thrusts including developing efficient learning algorithms that can operate on complex structured data. To this effect, we pursued research in two directions - that of improving probabilistic data bases and developing an effective learnin...
	In our first direction, we presented the first-of-its-kind learning algorithm for SRL models based on functional gradient boosting. The key idea is to consider learning as a series of regression models in a stage-wise manner. The advantage of this app...
	- RDNs, MLNs, relational policies via imitation learning and even transfer learning. We also extended the algorithm to learn faithfully in the presence of missing data without making assumptions about the data. Finally, we demonstrated across several ...
	For our second direction, we introduced DeepDive, a data management system to make knowledge base construction easier. We described a declarative language and an iterative debugging protocol that a user can use to build KBC systems, a set of high-qual...
	Our final direction was demonstrating how the two related yet different directions were applied to deep NLP tasks with the focus on KBP systems. Our initial results are promising and we shall continue to focus on tedious tasks that users are currently...
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