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1 SUMMARY 
This Final Report summarizes the research conducted in the course of DARPA PPAML program, which was 
focused on enabling the use of discriminative solvers to solve discriminative tasks specified in probabilistic 
programs. The research produced two complementary methods of constructive discriminative solvers: model-
driven and data-driven ones: 
• Generative models: a novel framework for most accurate computation of key statistical elements of
model-driven problems (such as conditional probability, regression, etc.) 
• Discriminative models: a novel framework for capturing domain knowledge in the form of features
and kernels for standard data-driven problems (solved in LUPI approaches). 
These achievements are described in in this report and in 9 papers published in the course of DARPA PPAML 
program. 

2 INTRODUCTION 

As explained in Introduction, the focus of our project is to enable the use of discriminative solvers to solve 
discriminative tasks specified in probabilistic programs. We refer to the system that we will research and 
develop as DIscriminative LEarning for GENerative Tasks (DILEGENT). We achieve this by focusing on 
two complementary methods of constructive discriminative solvers: model-driven and data-driven ones. 
Conceptually, we illustrate them in Figure 1. For both methods, our goal is to create a decision rule (lower 
right corner in Figure 1) based on training data (lower left corner in Figure 1). In model-driven approach, the 
path to that decision rule consists of two conceptual steps (building a probabilistic model and using it to create 
a decision rule – upper part of Figure 1), whereas in data-driven approach, that path consists of one direct step 
(lower part of Figure 1). Both approaches have known advantages and disadvantages, as explained next. 

Figure 1. Model-Driven and Data-Driven Approaches. 



APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 
2 

The model-driven approach is based on the assumption that the general underlying model is specified, and 
the only tasks that have to be executed sequentially are (1) to estimate parameters of the model, and (2) to 
construct the decision function based on completely specified model. This is a well-established approach with 
a variety of mathematical and programming tools available. However, the actual system structure and 
underlying probabilistic distributions may differ from the simplified model, and the target parameters may be 
difficult to estimate accurately due to insufficient data, poor diversity of models, ill-posed problems etc. Our 
goal is to bring some ideas developed in the data-driven approach to improve its performance. 

The data-driven approach does not rely on specific models; instead, it is focused on finding the best decision 
function directly. Since it has one conceptual step instead of two sequential steps used by model-driven 
approach, it typically deliver better performance (in terms of accuracy / error rate, robustness, etc.). However, 
by doing that, potentially valuable domain knowledge information, which justifies our other goal of bringing 
some ideas developed in model-driven approach to improve its performance. 

The potential applications of both approaches enhanced in the project include improved performance of a 
variety of key statistical / machine learning mechanisms, such as Classification, Regression, Ensemble, 
Recommendation, Ranking, Missing data, Multiple conflicting decisions, Imbalanced data, etc. 

The key enabling technology for model-driven approach is a scalable algorithm for solving underlying ill-
posed (unstable) integral equations for conditional probability by restricting their solutions to monotonic 
functions thus converting them into well-posed (stable) ones. The key enabling technology for data-driven 
approach is a method of encoding knowledge (such as privileged information, structure information, etc.) into 
additional features before applying standard machine learning algorithms. 

As a result of development and testing these technologies in model-driven approach, we implemented 
conditional probability estimation techniques that produce accurate data-based solutions with improved 
accuracy by 35% over SoA (standard ensemble methods). Correspondingly, in data-driven approach, we 
implemented techniques for encoding model-based information into features with improved performance by 
40% over SoA (standard SVM and neural networks). 

3 METHODS, ASSUMPTIONS AND PROCEDURES 

In this section, we present our results on both model-driven and data-driven approaches. 

3.1 Model-Driven Approach 

Conditional probability is one of central concepts in computational decision making. Indeed, from a decision 
involves making a choice from a set of possible choices based on input information, for example, in an image 
classification problem, a label is assigned to a given image by analyzing its pixels. If a decision involves 
probabilistic classification, it is crucial to be able not only to map the observed data into one of the pre-
determined classes, but to do so with varying degrees of confidence.  
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Current discriminative methods are mostly developed for accurately outputting values (categories, numerical, 
ordinal values, etc.) as their decisions. This is because they are designed to directly minimize the risk of 
incorrect values (misclassification, regression value, etc.). They do achieve a good performance at this task 
because predicting values, say 0 or 1 in classification, turns out to be a simpler task than predicting conditional 
probability of a particular value. To address the need of predicting conditional probability, these methods 
employ an ad-hoc post-processing step where the output of the classical discriminative methods is mapped to 
conditional probabilities. This is both inefficient and erroneous. It is inefficient because it is a multistep 
process. It is erroneous because the output of the first step, the decision-making step, reduces a multi-
dimensional input to a single dimensional output which means there is information loss and there may not be 
sufficient information to correctly estimate the conditional probability from a single dimensional input.  

The ability to accurately and efficiently output conditional probabilities is a natural first step in advancing 
discriminative methods to answer queries in probabilistic programs by employing them as solvers of 
probabilistic programs. So, we conducted research on a novel fundamental approach to estimating conditional 
probabilities; within the framework of discriminative learning, these probabilities translate into probabilistic 
classification, i.e., the set of probabilities assigned to possible classifications of any given data point. Our 
approach aims at providing better estimates of conditional probabilities and is suitable for a wide range of 
problems in decision theory and machine learning.  

In our papers [1] [2] [3], we focused on main targets of statistical inference theory is estimation (from the 
data) of specific models of random events, namely:  

1. conditional probability function;
2. conditional density function;
3. regression function;
4. density ratio function.

These models can be represented in the following manner. Let 𝐹𝐹(𝑥𝑥) be a cumulative distribution function of 
random variable 𝑥𝑥. We call non-negative function 𝑝𝑝(𝑥𝑥) the probability density function if 

� 𝑝𝑝
𝑥𝑥

−∞
(𝑥𝑥∗)𝑑𝑑𝑥𝑥∗ = 𝐹𝐹(𝑥𝑥)  (1) 

Similarly, let 𝐹𝐹(𝑥𝑥,𝑦𝑦) be the joint probability distribution function of variables 𝑥𝑥 and 𝑦𝑦. We call non-negative 
𝑝𝑝(𝑥𝑥,𝑦𝑦) the joint probability density function of two variables 𝑥𝑥 and 𝑦𝑦 if 

� � 𝑝𝑝
𝑥𝑥

−∞

𝑦𝑦

−∞
(𝑥𝑥∗,𝑦𝑦∗)𝑑𝑑𝑥𝑥∗𝑑𝑑𝑦𝑦∗ = 𝐹𝐹(𝑥𝑥,𝑦𝑦).  (2) 

Let 𝑝𝑝(𝑥𝑥,𝑦𝑦) and 𝑝𝑝(𝑥𝑥) be probability density functions for pairs (𝑥𝑥,𝑦𝑦) and vectors 𝑥𝑥. Suppose that 𝑝𝑝(𝑥𝑥) > 0. 
The function  

𝑝𝑝(𝑦𝑦|𝑥𝑥) =
𝑝𝑝(𝑥𝑥,𝑦𝑦)
𝑝𝑝(𝑥𝑥)  (3) 

is called the Conditional Density Function. It defines, for any fixed 𝑥𝑥 = 𝑥𝑥0, the probability density function 
𝑝𝑝(𝑦𝑦|𝑥𝑥 = 𝑥𝑥0) of random value 𝑦𝑦 ∈ 𝑅𝑅1. The estimation of the conditional density function from data  

(𝑦𝑦1,𝑋𝑋1), . . . , (𝑦𝑦ℓ,𝑋𝑋ℓ)  (4) 

is the most difficult problem in our list of statistical inference problems. 
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Along with estimation of the conditional density function, the important problem is to estimate the so-called 
Conditional Probability Function. Let variable 𝑦𝑦 be discrete, say, 𝑦𝑦 ∈ {0,1}. The function defined by the ratio 

𝑝𝑝(𝑦𝑦 = 1|𝑥𝑥) =
𝑝𝑝(𝑥𝑥,𝑦𝑦 = 1)

𝑝𝑝(𝑥𝑥) ,    𝑝𝑝(𝑥𝑥) > 0  (5) 

is called Conditional Probability Function. For any given vector 𝑥𝑥 = 𝑥𝑥0, this function defines the probability 
that 𝑦𝑦 is equal to one; correspondingly, 𝑝𝑝(𝑦𝑦 = 0|𝑥𝑥 = 𝑥𝑥0) = 1 − 𝑝𝑝(𝑦𝑦 = 1|𝑥𝑥 = 𝑥𝑥0). The problem is to estimate 
the conditional probability function, given data (5) where 𝑦𝑦 ∈ {0,1}.  

Estimation of the conditional density function is a difficult problem; a much easier problem is the problem of 
estimating the so-called Regression Function (conditional expectation of the variable 𝑦𝑦):  

𝑟𝑟(𝑥𝑥) = �𝑦𝑦 𝑝𝑝(𝑦𝑦|𝑥𝑥)𝑑𝑑𝑑𝑑,    (6) 

which defines expected value 𝑦𝑦 ∈ 𝑅𝑅1 for a given vector 𝑥𝑥.  
We also consider a problem, which is important for applications: estimating the ratio of two probability 
densities. Let 𝑝𝑝num(𝑥𝑥) and 𝑝𝑝den(𝑥𝑥) > 0 be two different density functions (subscripts num and den 
correspond to numerator and denominator of the density ratio). Our goal is to estimate the function  

𝑅𝑅(𝑥𝑥) = 𝑝𝑝𝑛𝑛𝑛𝑛𝑛𝑛(𝑥𝑥)
𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑(𝑥𝑥)  (7) 

given iid data 
𝑋𝑋1, . . . ,𝑋𝑋ℓden ,  (8) 

distributed according to 𝑝𝑝den(𝑥𝑥), and iid data 
𝑋𝑋′1, . . . ,𝑋𝑋′ℓnum ,  (9) 

distributed according to 𝑝𝑝num(𝑥𝑥). 

Next, we describe our direct settings for these four statistical inference problems. 

By definition, conditional density 𝑝𝑝(𝑦𝑦|𝑥𝑥) is the ratio of two densities 

𝑝𝑝(𝑦𝑦|𝑥𝑥) =
𝑝𝑝(𝑥𝑥,𝑦𝑦)
𝑝𝑝(𝑥𝑥) ,    𝑝𝑝(𝑥𝑥) > 0  (10) 

or, equivalently, 
𝑝𝑝(𝑦𝑦|𝑥𝑥)𝑝𝑝(𝑥𝑥) = 𝑝𝑝(𝑥𝑥,𝑦𝑦). (11) 

This expression leads to the following equivalent one:  

��𝜃𝜃 (𝑦𝑦 − 𝑦𝑦′)𝜃𝜃(𝑥𝑥 − 𝑥𝑥′)𝑓𝑓(𝑥𝑥′,𝑦𝑦′)𝑑𝑑𝑑𝑑(𝑥𝑥′)𝑑𝑑𝑦𝑦′ = 𝐹𝐹(𝑥𝑥,𝑦𝑦)  (12) 

where 𝑓𝑓(𝑥𝑥,𝑦𝑦) = 𝑝𝑝(𝑦𝑦|𝑥𝑥), function 𝐹𝐹(𝑥𝑥) is the cumulative distribution function of 𝑥𝑥 and 𝐹𝐹(𝑥𝑥,𝑦𝑦) is the joint 
cumulative distribution function of 𝑥𝑥 and 𝑦𝑦.  
Therefore, our setting of the condition density estimation problem is as follows:  

• Find the solution of the above integral equation in the set of nonnegative functions 𝑓𝑓(𝑥𝑥, 𝑦𝑦) =
𝑝𝑝(𝑦𝑦|𝑥𝑥) when the cumulative probability distribution functions 𝐹𝐹(𝑥𝑥,𝑦𝑦) and 𝐹𝐹(𝑥𝑥) are unknown but iid 
data  

(𝑦𝑦1,𝑋𝑋1), . . . , (𝑦𝑦ℓ,𝑋𝑋ℓ)  (13) 
are given.  

In order to solve this problem, we use empirical estimates 

𝐹𝐹ℓ(𝑥𝑥,𝑦𝑦) =
1
ℓ
�𝜃𝜃
ℓ

𝑖𝑖=1

(𝑦𝑦 − 𝑦𝑦𝑖𝑖)𝜃𝜃(𝑥𝑥 − 𝑋𝑋𝑖𝑖),  (14) 
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 𝐹𝐹ℓ(𝑥𝑥) =
1
ℓ
�𝜃𝜃
ℓ

𝑖𝑖=1

(𝑥𝑥 − 𝑋𝑋𝑖𝑖)                                                            (15) 

of the unknown cumulative distribution functions 𝐹𝐹(𝑥𝑥,𝑦𝑦) and 𝐹𝐹(𝑥𝑥). Therefore, we have to solve an integral 
equation where not only its right-hand side is defined approximately (we can only deal with 𝐹𝐹ℓ(𝑥𝑥,𝑦𝑦) instead 
of 𝐹𝐹(𝑥𝑥,𝑦𝑦)), but also the data-based approximation  

𝐴𝐴ℓ𝑓𝑓(𝑥𝑥,𝑦𝑦) = ��𝜃𝜃 (𝑦𝑦 − 𝑦𝑦′)𝜃𝜃(𝑥𝑥 − 𝑥𝑥′)𝑓𝑓(𝑥𝑥′,𝑦𝑦′)𝑑𝑑𝑦𝑦′𝑑𝑑𝐹𝐹ℓ(𝑥𝑥′)  (16) 

is used instead of the exact integral operator 

𝐴𝐴𝐴𝐴(𝑥𝑥, 𝑦𝑦) = ��𝜃𝜃 (𝑦𝑦 − 𝑦𝑦′)𝜃𝜃(𝑥𝑥 − 𝑥𝑥′)𝑓𝑓(𝑥𝑥′,𝑦𝑦′)𝑑𝑑𝑦𝑦′𝑑𝑑𝑑𝑑(𝑢𝑢′).  (17) 

Taking into account empirical estimates 𝐹𝐹ℓ(𝑥𝑥,𝑦𝑦) and 𝐹𝐹ℓ(𝑥𝑥), our goal is thus to find the solution of 
approximately defined equation  

�𝜃𝜃
ℓ

𝑖𝑖=1

(𝑥𝑥 − 𝑋𝑋𝑖𝑖)� 𝑓𝑓
𝑦𝑦

−∞
(𝑋𝑋𝑖𝑖,𝑦𝑦′)𝑑𝑑𝑦𝑦′ ≈

1
ℓ
�𝜃𝜃
ℓ

𝑖𝑖=1

(𝑦𝑦 − 𝑦𝑦𝑖𝑖)𝜃𝜃(𝑥𝑥 − 𝑋𝑋𝑖𝑖).  (18) 

According to the definition of conditional probability, 
∫ 𝑝𝑝∞
−∞ (𝑦𝑦|𝑥𝑥)𝑑𝑑𝑑𝑑 = 1,    ∀𝑥𝑥 ∈ 𝑋𝑋. (19) 

Therefore, the solution of our equation has to satisfy the constraint 𝑓𝑓(𝑥𝑥,𝑦𝑦) ≥ 0 and the constraint 

∫ 𝑓𝑓∞
−∞ (𝑦𝑦′, 𝑥𝑥)𝑑𝑑𝑦𝑦′ = 1,    ∀𝑥𝑥 ∈ 𝑋𝑋. (20) 

We call this setting the direct constructive setting since it is based on direct definition of conditional density 
function above and uses theoretically justified approximations 𝐹𝐹ℓ(𝑥𝑥,𝑦𝑦) and 𝐹𝐹ℓ(𝑥𝑥) of the corresponding 
unknown functions. In other words, direct constructive approach that we developed consists of replacing the 
unknown cumulative distribution functions we use their empirical approximations  

𝐹𝐹ℓ(𝑥𝑥) = 1
ℓ
∑ 𝜃𝜃ℓ
𝑖𝑖=1 (𝑥𝑥 − 𝑋𝑋𝑖𝑖), (21) 

𝐹𝐹ℓ(𝑥𝑥,𝑦𝑦 = 1) = 𝑝𝑝ℓ𝐹𝐹ℓ(𝑥𝑥|𝑦𝑦 = 1) =
1
ℓ
�𝑦𝑦𝑖𝑖

ℓ

𝑖𝑖=1

𝜃𝜃(𝑥𝑥 − 𝑋𝑋𝑖𝑖),                                        (22) 

where 𝑝𝑝ℓ is the ratio of the number of examples with 𝑦𝑦 = 1 to the total number ℓ of the observations. These 
empirical approximations are then used as a replacement of original functions in the corresponding integral 
equations and solving the resulting systems by regularization approach and minimization of discrepancy 
between right-hand side and left-hand sides  

Therefore, one has to solve our original integral equation with approximately defined right-hand side and 
approximately defined operator   

𝐴𝐴ℓ𝑓𝑓(𝑥𝑥) = 1
ℓ
∑ 𝜃𝜃ℓ
𝑖𝑖=1 (𝑥𝑥 − 𝑋𝑋𝑖𝑖)𝑓𝑓(𝑋𝑋𝑖𝑖). (23) 

Since the probability takes values between 0 and 1, our solution has to satisfy the bounds 
0 ≤ 𝑓𝑓(𝑥𝑥) ≤ 1,    ∀𝑥𝑥 ∈ 𝑋𝑋.  (24) 

Also, 
∫𝑓𝑓 (𝑥𝑥)𝑑𝑑𝑑𝑑(𝑥𝑥) = 𝑝𝑝(𝑦𝑦 = 1), (25) 

where 𝑝𝑝(𝑦𝑦 = 1) is the probability of 𝑦𝑦 = 1.  
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By definition, regression is the conditional mathematical expectation 
𝑟𝑟(𝑥𝑥) = ∫ 𝑦𝑦 𝑝𝑝(𝑦𝑦|𝑥𝑥)𝑑𝑑𝑑𝑑 = ∫ 𝑦𝑦 𝑝𝑝(𝑥𝑥,𝑦𝑦)

𝑝𝑝(𝑥𝑥) 𝑑𝑑𝑑𝑑.    (26) 
This can be rewritten in the form 

𝑟𝑟(𝑥𝑥)𝑝𝑝(𝑥𝑥) = ∫𝑦𝑦 𝑝𝑝(𝑥𝑥,𝑦𝑦)𝑑𝑑𝑑𝑑. (27) 

Thus we obtain the equivalent equation  

�𝜃𝜃 (𝑥𝑥 − 𝑥𝑥′)𝑟𝑟(𝑥𝑥′)𝑑𝑑𝑑𝑑(𝑥𝑥′) = �𝜃𝜃 (𝑥𝑥 − 𝑥𝑥′)�𝑦𝑦 𝑑𝑑𝑑𝑑(𝑥𝑥′,𝑦𝑦′).  (28) 

Therefore, the direct constructive setting of regression estimation problem is as follows: 

In a given set of functions 𝑟𝑟(𝑥𝑥), find the solution of integral equation (6) if cumulative probability distribution 
functions 𝐹𝐹(𝑥𝑥, 𝑦𝑦) and 𝐹𝐹(𝑥𝑥) are unknown but iid data (𝑦𝑦1,𝑋𝑋1), . . . , (𝑦𝑦ℓ,𝑋𝑋ℓ) are given. 

As before, instead of these functions, we use their empirical estimates. That is, we construct the approximation 

𝐴𝐴ℓ𝑟𝑟(𝑥𝑥) =
1
ℓ
�𝜃𝜃
ℓ

𝑖𝑖=1

(𝑥𝑥 − 𝑋𝑋𝑖𝑖)𝑟𝑟(𝑋𝑋𝑖𝑖)  (29) 

instead of the actual operator, and the approximation of the right-hand side 

𝐹𝐹ℓ(𝑥𝑥) =
1
ℓ
�𝑦𝑦𝑗𝑗

ℓ

𝑗𝑗=1

𝜃𝜃�𝑥𝑥 − 𝑋𝑋𝑗𝑗�  (30) 

instead of the actual right-hand side in the above integral equation, based on the observation data 
(𝑦𝑦1,𝑋𝑋1), . . . , (𝑦𝑦ℓ,𝑋𝑋ℓ),     𝑦𝑦 ∈ 𝑅𝑅1,   𝑥𝑥 ∈ 𝑋𝑋.  (31) 

Let 𝐹𝐹num(𝑥𝑥) and 𝐹𝐹den(𝑥𝑥) be two different cumulative distribution functions defined on 𝑋𝑋 ⊂ 𝑅𝑅𝑑𝑑 and let 
𝑝𝑝num(𝑥𝑥) and 𝑝𝑝den(𝑥𝑥) be the corresponding density functions. Suppose that 𝑝𝑝den(𝑥𝑥) > 0, 𝑥𝑥 ∈ 𝑋𝑋. Consider the 
ratio of two densities:  

𝑅𝑅(𝑥𝑥) = 𝑝𝑝𝑛𝑛𝑛𝑛𝑛𝑛(𝑥𝑥)
𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑(𝑥𝑥)

.    (32) 
The problem is to estimate the ratio 𝑅𝑅(𝑥𝑥) when densities are unknown, but iid data 

𝑋𝑋1, . . . ,𝑋𝑋ℓden ∼ 𝐹𝐹den(𝑥𝑥),  (33) 

generated according to 𝐹𝐹den(𝑥𝑥), and iid data 
𝑋𝑋′1, . . . ,𝑋𝑋′ℓnum ∼ 𝐹𝐹num(𝑥𝑥),  (34) 

generated according to 𝐹𝐹num(𝑥𝑥), are given.  
As before, we introduce the constructive setting of this problem: solve the integral equation 

�𝜃𝜃 (𝑥𝑥 − 𝑢𝑢)𝑅𝑅(𝑢𝑢)𝑑𝑑𝐹𝐹den(𝑢𝑢) = 𝐹𝐹num(𝑥𝑥)  (35) 

when cumulative distribution functions 𝐹𝐹den(𝑥𝑥) and 𝐹𝐹num(𝑥𝑥) are unknown, but the data drawn from these 
distributions are given. As before, we approximate the unknown cumulative distribution functions 𝐹𝐹num(𝑥𝑥) 
and 𝐹𝐹den(𝑥𝑥) using empirical distribution functions  
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𝐹𝐹ℓnum(𝑥𝑥) =
1

ℓ𝑛𝑛𝑛𝑛𝑛𝑛
� 𝜃𝜃
ℓnum

𝑗𝑗=1

�𝑥𝑥 − 𝑋𝑋′𝑗𝑗�  (36) 

for 𝐹𝐹num(𝑥𝑥), and 

𝐹𝐹ℓden(𝑥𝑥) =
1

ℓ𝑑𝑑𝑑𝑑𝑑𝑑
� 𝜃𝜃
ℓden

𝑗𝑗=1

�𝑥𝑥 − 𝑋𝑋𝑗𝑗�  (37) 

for 𝐹𝐹den(𝑥𝑥).  
Since 𝑅𝑅(𝑥𝑥) ≥ 0 and lim

𝑥𝑥→∞
𝐹𝐹num (𝑥𝑥) = 1, our solution has to satisfy the constraints 

𝑅𝑅(𝑥𝑥) ≥ 0,    ∀𝑥𝑥 ∈ 𝑋𝑋,  (38) 

�𝑅𝑅 (𝑥𝑥)𝑑𝑑𝐹𝐹den(𝑥𝑥) = 1.  (39) 

Therefore, all main empirical inference problems described above (conditional probability, regression, density 
ratio) can be represented via (multidimensional) Fredholm integral equation of the first kind with 
approximately defined elements. Although approximations converge to the true functions, these problems are 
computationally difficult due to their ill-posed nature. Thus they require rigorous solutions. Various statistical 
methods exist for solving these inference problems. Our goal is to find general rigorous solutions that take 
into account all the available characteristics of the problems. 

We now present a general form for all statistical inference problems. 

Consider the multidimensional Fredholm integral equation 

�𝜃𝜃 (𝑧𝑧 − 𝑧𝑧′)𝑓𝑓(𝑧𝑧′)𝑑𝑑𝐹𝐹𝐴𝐴(𝑧𝑧′) = 𝐹𝐹𝐵𝐵(𝑧𝑧),  (40) 

where the kernel of operator equation is defined by the step function 𝜃𝜃(𝑧𝑧 − 𝑧𝑧′), the cumulative distribution 
functions 𝐹𝐹𝐴𝐴(𝑧𝑧) and 𝐹𝐹𝐵𝐵(𝑧𝑧) are unknown but the corresponding iid data  

𝑍𝑍1, . . . ,𝑍𝑍ℓ𝐴𝐴 ∼ 𝐹𝐹𝐴𝐴(𝑧𝑧)  (41) 

𝑍𝑍1, . . . ,𝑍𝑍ℓ𝐵𝐵 ∼ 𝐹𝐹𝐵𝐵(𝑧𝑧)  (42) 
are given. In the different inference problems, the elements 𝑓𝑓(𝑧𝑧),𝐹𝐹𝐴𝐴(𝑧𝑧),𝐹𝐹𝐵𝐵(𝑧𝑧) of the equation have different 
meanings:  

• In the problem of conditional density estimation, vector 𝑧𝑧 is the pair (𝑥𝑥,𝑦𝑦), the solution 𝑓𝑓(𝑧𝑧)
is 𝑝𝑝(𝑦𝑦|𝑥𝑥), the cumulative distribution function 𝐹𝐹𝐴𝐴(𝑧𝑧) is 𝐹𝐹(𝑥𝑥) and the cumulative distribution function 
𝐹𝐹𝐵𝐵(𝑧𝑧) is 𝐹𝐹(𝑥𝑥,𝑦𝑦).  
• In the problem of conditional probability 𝑝𝑝(𝑦𝑦 = 1|𝑥𝑥) estimation, vector 𝑧𝑧 is 𝑥𝑥, the solution
𝑓𝑓(𝑧𝑧) is 𝑝𝑝(𝑦𝑦 = 1|𝑥𝑥), the cumulative distribution function 𝐹𝐹𝐴𝐴(𝑧𝑧) is 𝐹𝐹(𝑥𝑥), the cumulative distribution 
function 𝐹𝐹𝐵𝐵(𝑧𝑧) is 𝐹𝐹(𝑥𝑥|𝑦𝑦 = 1)𝑝𝑝(𝑦𝑦 = 1), where 𝑝𝑝(𝑦𝑦 = 1) is the probability of class 𝑦𝑦 = 1.  
• In the problem of density ratio estimation, the vector 𝑧𝑧 is 𝑥𝑥, the solution 𝑓𝑓(𝑧𝑧) is
𝑝𝑝𝑛𝑛𝑛𝑛𝑛𝑛(𝑥𝑥)/𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑(𝑥𝑥), the cumulative function 𝐹𝐹𝐴𝐴(𝑧𝑧) is 𝐹𝐹𝑛𝑛𝑛𝑛𝑛𝑛(𝑥𝑥), the cumulative function 𝐹𝐹𝐵𝐵(𝑧𝑧) is 
𝐹𝐹𝑑𝑑𝑑𝑑𝑑𝑑(𝑥𝑥).  
• In the problem of regression 𝑅𝑅(𝑥𝑥) = ∫𝑦𝑦 𝑝𝑝(𝑦𝑦|𝑥𝑥)𝑑𝑑𝑑𝑑 estimation, the vector 𝑧𝑧 is (𝑥𝑥,𝑦𝑦), where
𝑦𝑦 ≥ 0, the solution 𝑓𝑓(𝑧𝑧) is 𝑦𝑦�−1𝑅𝑅(𝑥𝑥),  (𝑅𝑅(𝑥𝑥) = ∫𝑦𝑦 𝑝𝑝(𝑦𝑦|𝑥𝑥)𝑑𝑑𝑑𝑑), the cumulative function 𝐹𝐹𝐴𝐴(𝑧𝑧) is 𝐹𝐹(𝑥𝑥), 
the cumulative function 𝐹𝐹𝐵𝐵(𝑧𝑧) is 𝑦𝑦�−1 ∫ 𝜃𝜃 (𝑥𝑥′ − 𝑥𝑥′)𝑦𝑦′𝑑𝑑𝑑𝑑(𝑥𝑥′,𝑦𝑦′).  
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Since statistical inference problems have the same kernel of the integral equations (i.e., the step-function) and 
the same right-hand side (i.e., the cumulative distribution function), it allows us to develop a common standard 
method for solving all inference problems.  

As a result, we have developed [1] [2] [3] the fundamental approach for generative models that allows for 
most accurate estimation of the key statistical quantities. The approach has been tested on a number of 
synthetic examples, consistently delivering performance that exceeds that of standard methods. 

Figure 2 illustrates both classical method and DILEGENT method applied to the same problem of estimating 
the conditional probability (true conditional probability is shown as blue line, and its estimate – as black line) 
based on one-dimensional samples of two classes (shown as red and green markers around horizontal axis), 
consisting of 48, 96, 192 and 384 elements. Our novel approach is shown in the right column in Figure 2, 
while the classical approach is shown in the left column.  

As Figure 2 illustrates, with the increase of training sample size (from 48 to 384) the resulting approximations 
converge to the true conditional probability converge, but our approach does it faster and more accurately 
than the classical approach. 

In the context of SVM, the conditional probability of SVM outputs can be further analyzed in the following 
manner. As Platt [4] observed, the smaller is the (negative) score si for vector zi, the closer is the conditional
probability P(y=1|si) to zero and, the larger is the (positive) score si, the closer is the conditional probability
P(y=1|si) to one. Platt introduced a method for mapping SVM scores into values of conditional probability
based on two hypotheses, a general one and a special one.  

The general hypothesis: Conditional probability function p(y=1|s) is a monotonic function of variable s.  
The special hypothesis: Conditional probability function can be approximated well with sigmoid functions 
with two parameters:  

P(y=1|s)= 
1

1+exp{−As+B},   A,B∈R1.                                    (43)

Using the maximum likelihood technique, [4] introduced effective methods to estimate both parameters 
A,B (see [5]).  
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Figure 2. Model-Driven and Data-Driven Approximations of Conditional Probability. 

Platt’s approach was shown to be useful for calibration of SVM scores. Nevertheless, this method has certain 
drawbacks: even if the conditional probability function for SVM is monotonically increasing, it does not 
necessarily have the form of a two-parametric sigmoid function. It is easy to construct examples where 
suggested sigmoid function does not approximate well the desired monotonic conditional probability function. 

The one-dimensional problem mentioned in the previous paragraph has the following form: given pairs 
(values si of SVM scores and corresponding classifications yi)

(s1,y1),…,(sℓ,yℓ), (44) 

find an accurate approximation of the monotonic conditional probability function p(y=1|s). Further, we 
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describe a technique for construction of a monotonic approximation of the desired function. This 
approximation provides a more accurate estimate than the one based on sigmoid functions. We also consider 
a more general (and more important) problem than this one-dimensional one. Suppose we have d different 
SVMs, solving the same classification problem. Also, suppose that the probability of class y=1 given scores 
s=(s1,…,sd)  of d SVMs is a multidimensional monotonic conditional probability function: for any 
coordinate k and any fixed values of the other coordinates (s1,…,sk−1,sk+1,...sd) , the higher is the value of 
score sk, the higher is the probability P(y=1|s). 

The goal is to find a method for estimation of the monotonic conditional probability function P(y=1|s) for 
multidimensional vectors s=(s1,…,sd) ; that is, to combine, in a single probability value, the results of 
multiple (namely, d) SVMs. We show that estimating conditional probability function in a set of monotonic 
functions has a significant advantage over estimating conditional probability function in a general, non-
monotonic set of functions: it forms a well-posed problem rather than an  ill-posed problem. 

The decision rule for a two-class pattern recognition problem can be obtained using the estimated 
conditional probability function P(y=1|s) as  

y=Θ 



P(y=1|s)− 

1
2 . (45) 

It is important to note that, in classical machine learning literature, there are ensemble methods that 
combine several rules (see [6], [7], [8]). The difference between ensemble rules and synergy rules is in the 
following:  

1) Ensemble rule is a result of structural combination (such as voting or weighted aggregation) of
several classification rules. 

2) Synergy rule defines the optimal solution to the problem of combining several scores of monotonic
rules. It is based on effective methods of conditional probability estimation in the set of monotonic 
functions.  

3) Synergy rule is constructed only for monotonic rules (such as SVM) in contrast to ensemble rule
which combines any rules. Synergy is the property of monotonicity of the solution. 

Our goal is to minimize conditional probability in the set of monotonically increasing functions. We do 
this by using expansion of desired function on kernels that generate splines with infinite number of knots 
(INK-spline) of degree zero. The reason we use these kernels is that they enable an efficient and 
straightforward construction of multidimensional monotonic functions; it is possible that some other kernels 
might be used for that purpose as well. 

According to the definition in the one-dimensional case, splines of degree r with m knots are defined by 
the expansion (here, we assume that 0≤x≤1)  

S(x|r,m)= ∑
s=0

r
 csx

s+ ∑
k=0

m
ek(x−ak)

r
+, (46) 

where 

(x−ak)
r
+= 




 
(x−ak)

rif x−ak≥0
0  otherwise 

(47) 
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We generalize this representation using infinite number of knots: 

S∞(x)= ∑
s=0

r
csx

s+ ⌡⌠
0

∞
g(τ)(x−τ)r

+dτ. (48) 

Following the approach from [9], [10], we define the kernel with infinite number of knots (INK-spline) of 
degree r for expansion of the function of one variable x≥0 in the form  

Kr(xi,xj)= ⌡⌠
0

∞
(xi−τ)r

+(xj−τ)r
+ dτ= ∑

k=0

r Ck
r

2r−k+1[min{xi,xj}]2d−k+1|xi−xj|
k (49) 

(here we modified the definition of INK-kernel from [10] by omitting its polynomial portion). 

For r=0, the INK-spline kernel has the form 

K0(xi,xj)=min{xi,xj}; (50) 

for r=1, the INK-spline kernel has the form 

K1(xi,xj)= 
1
3 ( )min{xi,xj}

3

+ 
1
2 ( )min{xi,xj}

2

|xi−xj|. (51) 

In the multidimensional case, the INK-spline of degree r is defined as 

Kr(xi,xj)= ∏
k=1

d
Kr(x

k
i ,x

k
j ),   x=(x1,…,xd). (52) 

In order to find a monotonic solution, we use our method for estimating conditional probability function with 
INK-spline kernel of degree zero with additional ℓ monotonicity constraints. That is, we have to minimize 
the functional  

W=(KΛ+b1ℓ)TV(KΛ+b1ℓ)−2(KΛ+b1ℓ)TVY+γℓΛTKΛ (53) 

(here coordinates of vector Y are  𝑦𝑦𝑖𝑖 ∈ {−1, +1} subject to ℓ+1 inequality constraints 
Λ𝑇𝑇𝜏𝜏(0) ≥ 0,Λ𝑇𝑇𝜏𝜏�𝑥𝑥𝑗𝑗� ≥ 0, 𝑗𝑗 = 1, … , 𝑙𝑙 (54) 

Let x≥0. Then, in order to construct the conditional probability in the set of non-negative monotonic functions 
bounded by the value 1, we have to enforce the constraint P(y=1|x)≤1. Thus, taking into account nonnegativity 
and monotonicity constraints, we add the constraint  

ΛTK(x=1)+b=ΛT⃗x+b≤1, (55) 

where ⃗x=(x1,...xℓ)T. Using L2-norm SVM for estimating monotonic conditional probability function, we
minimize the functional  

W(Λ)=ΛTKKΛ−2ΛTKY+γℓΛTKΛ, (56) 

with coordinates of Y are in [0,1] subject to ℓ+2 inequality constraints described above. In multidimensional 
case, where we can assume (by proper normalization) that 𝐻𝐻 ∈ [0,1]𝑑𝑑. We consider the solution of the 
equation in the form  
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f(x)= ∑
i=1

ℓ
 αiK(xi,x)+b, (57) 

where the kernel generating d-dimensional INK-spline of degree zero has the multiplicative form 

K(xi,x)= ∏
k=1

d
 min(xk

i ,x
k). (58) 

Along with functions defined by (multiplicative) INK-spline kernels of degree zero that can construct 
approximations to monotonic functions, we consider functions defined by the additive kernel (which is a 
sum of one-dimensional kernels)  

f(x)= ∑
i=1

ℓ
 ∑

k=1

d
 αk

i min(xk
i ,x

k)+b. (59) 

In order to find d×ℓ coefficients 𝛼𝛼𝑖𝑖𝑘𝑘of expansion in estimating conditional probability function in the direct 
setting, we minimize the functional  

R(Λ1,...Λd,b)= 










 ∑
k=1

d
KkΛk+b1ℓ

T

V 










 ∑
k=1

d
 KkΛk+b1ℓ −

(60) 

2 










 ∑
k=1

d
 KkΛk+b1ℓ

T

VY+γ ∑
k=1

d
 (ΛT

kKkΛk)

subject to d×(ℓ+1) inequality constraints 

∂f(xj;α)

∂xk = ∑
i=1

ℓ
αk

i Θ(xk
i −xk

j )=ΛT
kτ(xk

j )≥0;   j=1;…;ℓ;  k=1;…;d;

∂f(⃗0;α)
∂xk = ∑

i=1

ℓ
αk

i =ΛT
kτ(⃗0k)≥0;   k=1;…;d;

(61) 

where we have denoted by Λk the ℓ-dimensional vector of 𝛼𝛼𝑖𝑖𝑘𝑘 = �𝛼𝛼1𝑘𝑘, … ,𝛼𝛼𝑙𝑙𝑘𝑘�,𝑘𝑘 = 1, … ,𝑑𝑑  , by Kk the (ℓ×ℓ)-

dimensional matrix of elements Kk(x
k
i ,x

k
j )=min(xk

i ,x
k
j ), and by 𝜏𝜏�𝑥𝑥𝑗𝑗𝑘𝑘� = (Θ�𝑥𝑥1𝑘𝑘 − 𝑥𝑥𝑗𝑗𝑘𝑘�, … ,Θ�𝑥𝑥𝑙𝑙𝑘𝑘 − 𝑥𝑥𝑗𝑗𝑘𝑘�)𝑇𝑇 , 𝑗𝑗 =

1, … , 𝑙𝑙, 𝑘𝑘 = 1, … ,𝑑𝑑 we have denoted the d×ℓ vectors of dimensionality ℓ. 
Let vector x=(x1,…,xd)  have bounded coordinates 

0≤xk≤ck, k=1,…,,d . (62) 
Since conditional probability does not exceed 1, we need one more constraint P(y=1|c1,…,cd)≤1 . That

is, we have to add the constraint 

∑
k=1

d
 ΛT

kXk+b≤1, (63) 
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where we have denoted Xk=(xk
1,…,xk

ℓ)T . A function satisfying the described conditions is monotonic.
In order to estimate a multidimensional monotonic function using multiplicative kernel, one has to solve a 
quadratic optimization problem of order ℓ subject to N=ℓd inequality constraints. 

With additive kernel, one has to estimate d×(ℓ+1) parameters under d×(ℓ+1) constraints. To decrease the 
computation amount:  

1. One can replace V-matrix with I-matrix.

2. For additive kernel, one can estimate multidimensional conditional probability function in the

restricted set of functions where α
t
i=αi, for some or for all t.

3. One can consider linear structure of the solution using d one-dimensional estimates of conditional
probability P(y=1|st) obtained by solving one-dimensional estimation problems and then approximate
the multidimensional conditional probability function as

P(y=1|s1,…,sd)= ∑
t=1

d
βtP(y=1|st), (64) 

where its weights βt≥0,  ∑ βi=1  are computed by solving an d-dimensional quadratic optimization
problem under d+1 constraints. That optimization problem is formulated as follows: minimize the 
functional  

BTPVPB−2BTPVY+γBTB (65) 
subject to the constraints 

B≥0,  BT1ℓ=1, (66) 

where we have denoted by B vector of coefficients B=(β1,…,βd)T , by P the (d×ℓ)-dimensional
matrix 𝑃𝑃 = 𝑝𝑝(𝑥𝑥𝑖𝑖𝑡𝑡), 𝑡𝑡 = 1, … , 𝑑𝑑; 𝑖𝑖 = 1, … , 𝑙𝑙. 

. 
We now construct several examples of synergy rules for SVMs where we use the same training set both 

for constructing SVM rules 𝑠𝑠𝑘𝑘 = 𝑠𝑠𝑡𝑡(𝑥𝑥), 𝑡𝑡 = 1, . . ,𝑑𝑑 for estimating the conditional probability 
P(y=1|s1,…,sd) .

Suppose that our rules were constructed using different SVM kernels Kt(x,y)  and the same training set
(𝑥𝑥1,𝑦𝑦1), … , (𝑥𝑥𝑙𝑙 ,𝑦𝑦𝑙𝑙) (67) 

and let  𝑠𝑠1𝑡𝑡 , … , 𝑙𝑙𝑗𝑗𝑡𝑡, 𝑡𝑡 = 1, … , 𝑑𝑑 be the scores st=ft(x) obtained using vectors x.
Note that these scores are statistically different from the scores obtained using ℓ elements of test set 

(support vectors s* are biased: in the separable case, all |s*|=1). Therefore, it is reasonable to use scores 
obtained in the procedure of k-fold cross-validation for estimating parameters of SVM algorithm. 

Also, note that while individual components of the same d-dimensional vector St=(st
1,…,st

d)  are
interdependent, the vectors St themselves are not (they are i.i.d), so the general theory developed in the 
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previous sections is applicable here for computing conditional probabilities. 

We now consider several examples of synergy of d SVM rules obtained under different circumstances: 

1. Synergy of d rules obtained using the same training data but different kernels.

2. Synergy of d rulse obtained using different training data but the same kernel.

3. Synergy of d classes classification problem using d one versus the rest of the rules.

First, we show that the accuracy of classification using synergy of SVM rules that use different kernels can 
be much higher than the accuracy of a rule based on any kernel. The idea of using several SVMs as ensemble 
SVM (such as [11]) was used in the past for providing improved classification performance; however, these 
approaches did not leverage the main monotonicity property of SVM. The effect of synergy, which is 
estimated by the number of additional training examples in training data required to achieve comparable to 
synergy level of accuracy, can be significant. 

We selected the following 9 calibration data sets from UCI Machine Learning Repository [12]: Covertype, 
Adult, Tic-tac-toe, Diabetes, Australian, Spambase, MONK’s-1, MONK’s-2, and Bank marketing. Our 
selection of these specific data sets was driven by the desire to ensure statistical reliability of targeted 
estimates, which translated into availability of relatively large test data set (containing at least 150 samples). 
Specific breakdowns for the corresponding training and test sets are listed in Table 1. For each of these 9 data 
sets, we constructed 10 random realizations of training and test data sets; for each of these 10 realizations, we 
trained three SVMs with different kernels: with RBF kernel, with INK-Spline kernel, and with linear kernel. 
The averaged test errors of the constructed SVMs are listed in Table 2. 

Table 1. Calibration Data Sets from UCI Machine Learning Repository. 
Data set Training Test Features 

Covertype 300 3000 54 
Adult 300 26147 123 

Tic-tac-toe 300 658 27 
Diabetes 576 192 8 

Australian 517 173 14 
Spambase 300 4301 57 

MONK’s-1 124 432 6 
MONK’s-2 169 432 6 

Bank 300 4221 16 

Constructed SVMs provide binary classifications y and scores s. Additional performance improvements 
are possible by intelligent leveraging of the results of these classifications. 

We compared our approach with the baseline method of voting on classification results of all three 
classifications obtained from three different kernels (since we had odd number of kernels, we did not need 
any tie-breaking in that vote). The first column of Table 2 shows the averaged test errors of that voting 
approach. 

The second column of Table 2 shows the averaged test errors of our synergy approach. Specifically, the 
data in the second column are based on constructing a 3-dimensional monotonic conditional probability 
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function from RKHS associated with additive kernel, on triples of SVM scores s. In this column, we assigned 
the classification labels y based on the sign of the difference between 3-dimensional conditional probability 
and the threshold value 1/2. 

The last column of Table 2 contains relative performance gain (i.e., relative decrease of error rate) 
delivered by the proposed synergy approach over the benchmark voting algorithm. 

Table 2. Synergy of SVMs with RBF, INK-Spline, and Linear Kernels. 
 Data set Voting Synergy Gain 
 Covertype 27.83% 28.96% -4.05% 
 Adult 20.07% 19.08% 4.93% 
 Tic-tac-toe 1.95% 1.75% 10.16% 
 Diabetes 24.53% 23.39% 4.67% 
 Australian 12.02% 12.54% -4.33% 
 Spambase 8.96% 8.44% 5.80% 
 MONK’s-1 22.80% 20.16% 11.57% 
 MONK’s-2 19.31% 16.23% 15.95% 
 Bank 12.79% 11.73% 8.29% 

The results demonstrate the consistent performance advantage of synergy approach over its empirical 
alternative in most of the cases (for 7 data sets out of 9); for some data sets this advantage is relatively small, 
but for others it is substantial (in relative terms). 

This substantial performance improvement of synergy can be also viewed as a viable alternative to brute 
force approaches relying on accumulation of (big) data. Indeed, for the already considered Adult data set, we 
compared results of our synergy approach on a training data set consisting of 300 samples to an alternative 
approach relying on training SVM algorithms on larger training data sets. Specifically, we trained SVMs with 
RBF kernel and INK-Spline kernel on Adult data sets containing 1,000 and 3,000 samples. The results, shown 
in Table 3, suggest that synergy of two rules, even on training data set of limited size, can be better that 
straightforward SVMs on training data sets of much larger sizes (in this example, equivalent to the increase 
of training sample by more than a factor of 10). 

Table 3. Synergy Versus Training Size Increase: Ensemble. 
 Training size 300 1000 3000 
  RBF 20.95% 19.21% 18.49% 
 INK-Spline 19.77% 18.72% 18.38% 
 Synergy 17.92% - - 

Suppose now we are dealing with “big data” situation, where the number L of elements in the training data 
set  

(x1,y1),...,(xL,yL), (68) 

is large. Consider the SVM method that uses a universal kernel. A universal kernel (for example, RBF) can 
approximate well any bounded continuous function. Generally speaking, with the increase of size ℓ of training 
data, the expected error rate of the obtained SVM rule monotonically converges to the Bayesian rule (here the 
expectation is taken both over the rules obtained from different training data of the same size ℓ and over test 
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data). The typical learning curve shows the dependence of that expected error rate on the size ℓ of training 
data as a hyperbola-looking curve consisting of two parts: the beginning of the curve, where the error rate 
falls steeply with the increase of ℓ, and the tail of the curve, where the error rate slowly converges to the 
Bayesian solution. Suppose that the transition from the “steeply falling” part of the curve to the “slowly 
decreasing” part of the curve (sometimes referred to as the “knee” of the curve) occurs for some ℓ*. Assuming 
that large number L in is greater than ℓ*, we partition the training data into J subsets containing ℓ elements 
each (here L=Jℓ and ℓ>ℓ* as well). On each of these J disjoint training subsets we construct its own SVM rule 
(independent of other rules). For each of these SVM rules, we construct its own one-dimensional monotonic 
conditional probability function Pt(y=1|st), t=1,…,J . 

Then, using these J one-dimensional monotonic condition probability functions, we construct the J-
dimensional (s=(s1,...,sJ) ) conditional probability function as follows:  

Psyn(y=1|s)= 
1
J ∑

t=1

J
Pt(y=1|st). (69) 

The Synergy decision rule in this case has the form 

y=Θ 



Psyn(y=1|s)− 

1
2 . (70) 

Note that above conditional probability function forms an unbiased estimate of the values of learning curve 
describing conditional probability for training data of (different) size ℓ. Since the training data for different t 
are independent, the averaging of J conditional probability values decreases the variance of resulting 
conditional probability by a factor of J. In this approach, by choosing an appropriate value of ℓ, one can 
optimally solve the bias-variance dilemma. 

To illustrate this approach, we again used Adult data set. Specifically, we trained SVMs with RBF kernel 
on Adult data sets containing 900, 1,000 and 3,000 samples. For the first of these samples (containing 900 
elements), we also executed the following procedure: we split it into three subsets containing 300 elements 
each, trained RBF SVM on each of them, and then constructed two combined decision rules: (1) voting on 
the labels of three auxiliary SVMs, and (2) synergy of three SVMs as described in this section. The results, 
shown in Table 4, suggest that Synergy of rules on disjoint data sets can be better that straightforward SVMs 
on training data sets of much larger sizes (in this example, equivalent to the increase of training sample by a 
factor of 3). 

Table 4. Synergy Versus Training Size Increase: Bagging. 
 Training size 300 300 300 900 1000 3000 
  RBF SVM 20.77% 19.06% 21.40% 20.01% 19.21% 18.49% 
Voting on 3 subsets N/A N/A N/A 19.44% - - 
Synergy on 3 subsets N/A N/A N/A 18.52% - - 

Comparison of Table 3 and Table 4 suggests that synergy of SVMs with different SVM kernels obtained 
on the same data set may be more beneficial (equivalent to ten-fold increase of training sample size) than the 
synergy of SVMs with the same kernel obtained on different subsets of that data set (equivalent to three-fold 
increase of training sample size). 
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Thus it is reasonable to assume that, for big data set, Synergy of SVM rules obtained on different training 
data and Synergy of SVM rules with different kernels can be unified to create an even more accurate synergy 
rule. This unification can be implemented in the following manner. 

Consider d kernels Kr(x,x'), k=1,…,d . For each of these kernels, we 
construct the corresponding condition probability function 

Psyn(y=1|s(r))= 
1
J ∑

t=1

J
Pt(y=1|st(r)), (71) 

where we have denoted by Pt(y=1|st(r)) the conditional probability function estimated for the rule with kernel

Kr(x,x')  and for the jth subset of training data with the fixed t. Let introduce the vector p=(p1,...,pr)  where

pr=Psyn(y=1|s(r)),   r=1,…,d. (72) 

Using these vectors, we estimate the corresponding d-dimensional conditional probability function 
Psyn(y=1|p)=Psyn(y=1|p1,...,pd)                                         (73)

The resulting double reinforced Synergy rule has the form  

y=Θ 



Psyn(y=1|p)− 

1
2 . (74) 

We now consider for multi-class classification – an important problem in pattern recognition. In contrast to 
methods for constructing two-class classification rules, which have solid statistical justifications, existing 
methods for constructing d>2 class classification rules are based on heuristics. 

One of the most popular heuristics, one versus rest (OVR), suggests first to solve the following d two-
class classification problems: in problem number k (where k=1,…,d), the examples of class k are considered 
as examples of the first class and examples of the all other classes 1,…,(k−1),(k+1),…,d are considered as the 
second class. Using OVR approach, one constructs d different two-class classification rules  

y=Θ(fk(x))    k=1,…,d. (75) 

The new object x* is assigned to the class k, where kth rule provides the maximum score for x*:

k=argmax{s1
*,…,sd

*},   where   st
*=ft(x*). (76) 

This method of d-class classification is not based on a clear statistical foundation. Another common heuristics 
called one versus one (OVO): it suggests to solve C2

d two-class classification problems separating all possible

pairs of classes. To classify a new object x*, one uses a voting scheme based on the obtained C2
d rules.

Here we implement the following multi-class classification procedure. For every k (where k=1,…,d), we 
solve the corresponding OVR SVM problem, for which all the elements with the original label k are marked 
with y=1, while all the other elements are marked with y=0. Upon solving all these d problems, we can, for 
any given vector x and any class k, compute its score sk(x) provided by the kth SVM rule. After that, we merge
the scores of these auxiliary SVM rules following the approach described in our paper [13]. 
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We compared our synergy approach with the standard OVR approach for the data sets Vehicle, Waveform, 
and Cardiotocography from UCI Machine Learning Repository [12]. Training and test sets were selected 
randomly from these data sets; the number of elements in each are shown in Table 5; the table also shows the 
error rates achieved by OVR and synergy algorithm, along with relative performance gain obtained with our 
approach. The results confirm the viability of our framework. 
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Table 5. Synergy for Multi-Class Classificaion. 
 Data set Classes Features Training Test OVR Synerg

y 
Gain 

 Vehicle 4 18 709 236 17.45% 14.15% 18.91% 
 Waveform 3 40 200 4800 20.10% 18.31% 8.90% 
 Cardiotocography 3 21 300 1826 15.83% 12.05% 23.87% 

Thus, we showed that: 

1. Scores s=(s1,…,sd)  of several monotonic classifiers (for example, SVMs) that solve the same pattern
recognition problem can be transformed into multi-dimensional monotonic conditional probability functions 
P(y|s) (probability of class y given scores s). 

2. There exists an effective algorithm for such transformation.
3. Classification rules obtained on the basis of constructed conditional probability functions significantly

improve performance, especially in multi-class classification cases. 

3.2 Data-Driven Approach 

In this section, we focus on the standard general binary classification problem setting. In this problem, there 
is training set consisting of L samples, each being an N-dimensional vector that belongs to one of two classes, 
positive and negative, traditionally labeled as -1 and +1. For this setting, a decision rule has to be learned on 
the given set of L vectors, which can then be applied for classification of any arbitrary N-dimensional vector 
into one of two classes, -1 or +1 with minimum possible error rate (in other words, with minimum possible 
probability of misclassification, i.e., assignment of the wrong class label to the vector). SVM is the current 
best-in-class algorithm for solving this type of problem.  

We explored the applicability of the current feature construction approach to a special area of discriminative 
learning (Figure 3) – Learning Using Privileged Information (LUPI), which essentially relies on two distinct 
classes of features (standard and privileged). The developed approach (in our papers [14] [15] [16] [17] [18]) 
of leveraging derived features was successfully carried over to the area of Learning using Privileged 
Information (LUPI) by using the regression mechanism of generating derived features (the one we originally 
proposed using for SVM) for approximating the privileged features in LUPI using standard ones.  
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Figure 3. Novel Framework for Learning Using Privileged Information. 

By using these approach, we were capable to capture some of the information contained in the privileged 
features and, by expressing it through standard features in the form of regression, we opened a new possibility 
of solving LUPI problems not just by controlling similarity between vectors (as was done before), but by 
information transfer from the space of privileged features to the space of standard ones. Even more 
importantly, this information transfer method essentially converts LUPI in a special form of SVM, thus 
completely resolving the main computational issue of scalability that was the key disadvantage of LUPI up 
until now. Indeed, current LUPI is only capable of handling about 300 training example in a reasonable time, 
whereas, with the new DILEGENT approach, we were able to process a sample size containing 2000 vectors 
(representing pixel data for image classification) without any computational problems.  

In another example, using set of of pre-processed video snapshots of a terrain, one has to separate pictures 
with specific targets on it (class +1) from pictures where there are no such targets (class -1). The original 
videos were made using aerial cameras of different resolutions: a low resolution camera with wide view 
(capable to cover large areas quickly) and a high resolution camera with narrow view (covering smaller areas 
and thus unsuitable for fast coverage of terrain). The goal was to make judgements about presence or absence 
of targets using wide view camera that could quickly span large surface areas. The narrow view camera could 
be used during training phase for zooming in the areas where target presence was suspected, but it was not to 
be used during actual operation of the monitoring system, i.e., during test phase. Thus, the wide view camera 
with low resolution corresponds to standard information, whereas the narrow view camera with high 
resolution corresponds to privileged information. 

Modern data analysis problems require construction of decision rules that operate in high dimensional spaces. 
Thus, in order to obtain good decision rules, one has to train learning algorithms using a huge number of 
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examples (tens or hundreds of thousands). According to the statistical learning theory [19] [20], which 
provides precise estimates of the convergence of learning algorithms, even the best state-of-the-art learning 
algorithms such as Support Vector Machines (SVM) will require plenty of training examples and computation 
time. At the same time, we know that humans can learn well from a small number of training examples. This 
gap in learning performance between humans and machines has been a persistent challenge from the very 
beginning of the computer era. 

Learning Using Privileged Information (LUPI) was introduced first as an idea in [20] and subsequently 
realized in several versions of SVM+ algorithms, generalizing SVM with different degrees of implementation 
complexity [21] [22]. The idea of LUPI is to improve classification accuracy with small training datasets by 
fusing the training data with additional features, which are not present in the testing data. These features can 
come from an entirely different sensor modality. An example would be the utilization of medical records 
accompanying X-ray images of existing patients to better classify X-ray images of new patients who have not 
yet been diagnosed.  

In the wide area aerial video exploitation scenario, which is the application considered by this contribution, 
the additional features come from high resolution videos or still imagery coincident with the training data. 
These additional data help reduce the number of data samples required to train accurate models of class 
distributions, which is important in dynamic environments.   

As a development of LUPI, recent paper [9] introduced the concept of intelligent learning, based on the ideas 
of knowledge transfer, which allows to further improve classifier performance. Improved scalability is 
achieved by casting the problem within the SVM framework, for which multiple efficient algorithms are 
already implemented on most platforms; the improvement in flexibility is achieved by the ability to utilize a 
variety of methods within the knowledge transfer framework.  

Next, we formulate, based on the general framework we developed in our papers [14] [15] [16] [17] [18], two 
specific types of knowledge transfer algorithms: privileged feature regression and privileged clustering. We 
further consider a combination of several knowledge transfer models in ensemble type learning. We compare 
the performance, measured in misclassification error rate and execution time, of both types of LUPI 
algorithms with the original SVM+ algorithm. We apply the algorithms to a wide area aerial video exploitation 
problem, where the privileged information represents more expensive and/or higher quality sensor 
information available for training data, but not for testing data. Using the Minor Area Motion Imagery 
(MAMI) dataset recently collected by Air Force Research Laboratory (Freeman, 2014), we demonstrate that 
knowledge transfer approach to LUPI provides consistently better performance than the original SVM+ 
approach. Using an ensemble of several knowledge transfer algorithms, the error rate is reduced by up to 
25%. We also demonstrate a significant computational speedup, making LUPI algorithm as scalable as the 
standard SVM. 
The traditional machine learning paradigm is formulated as follows. Given a set of training examples, and a 
parameterized collection of decision functions, find the function that approximates the unknown decision rule 
in the best possible way [9] [20]. Formally, for a binary classification problem, we are given 𝐿𝐿 training vectors 

𝑋𝑋1,𝑋𝑋2, … ,𝑋𝑋𝐿𝐿 ∈ 𝑅𝑅𝑁𝑁 , 
and the corresponding labels 𝑦𝑦1,𝑦𝑦2, … ,𝑦𝑦𝐿𝐿 ∈ {−1, +1}. 

In SVM approach, some kernel 𝐾𝐾(𝑋𝑋𝑖𝑖,𝑋𝑋𝑗𝑗) is selected in the space 𝑅𝑅𝑁𝑁. Then, for positive penalty parameters 
C1,C2,…,CL, (usually equal to the same number C normalized by the ratio of positive or negative labels in the 
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training sample, respectively) a quadratic optimization problem is solved in  order to find the values of 
parameters α1,α2,…,αL  that maximize the following functional 

∑ 𝛼𝛼𝑖𝑖𝑖𝑖 − 1
2
∑ 𝑦𝑦𝑖𝑖𝑦𝑦𝑗𝑗𝛼𝛼𝑖𝑖𝛼𝛼𝑗𝑗𝐾𝐾�𝑋𝑋𝑖𝑖,𝑋𝑋𝑗𝑗�𝑖𝑖𝑖𝑖                                                      (77)

subject to constraints 

∑ 𝛼𝛼𝑖𝑖𝑦𝑦𝑖𝑖𝑖𝑖 = 0, 0 ≤ 𝛼𝛼𝑖𝑖 ≤ 𝐶𝐶𝑖𝑖, 𝑖𝑖 = 1, … , 𝐿𝐿 (78)   

The parameters α1,α2,…,αL are used to construct the decision function 

𝑓𝑓(𝑧𝑧) = 𝑠𝑠𝑠𝑠𝑠𝑠 ��𝛼𝛼𝑖𝑖𝑦𝑦𝑖𝑖𝐾𝐾(𝑋𝑋𝑖𝑖, 𝑧𝑧)
𝑖𝑖

+ 𝐵𝐵�   (79) 

The offset B is computed for some training index 𝑗𝑗, such that 0 ≤ 𝛼𝛼𝑗𝑗 ≤ 𝐶𝐶𝑗𝑗 

𝐵𝐵 = 𝑦𝑦𝑗𝑗 �1 −�𝑦𝑦𝑖𝑖𝑦𝑦𝑗𝑗𝛼𝛼𝑖𝑖𝐾𝐾�𝑋𝑋𝑖𝑖,𝑋𝑋𝑗𝑗�
𝑖𝑖𝑖𝑖

�                                                      (80) 

The parameters C1,C2,…,CL and the kernel parameters of the SVM algorithm are usually optimized by 
executing cross-validation over some grid in the parameter space. 

The LUPI paradigm can be described as learning with a teacher. In the classical model of learning described 
above, the teacher supplies the set of labels, and his/her role is trivial. In the LUPI model, the teacher supplies 
students with non-trivial additional information in various forms, such as images, explanations, metaphors, 
etc. This additional information is present only during the training stage (when the teacher is available), and 
will not be present during the test stage (when the teacher is not available).  

Formally, LUPI approach is described as follows: at the training stage, we have L standard vectors 

𝑋𝑋1,𝑋𝑋2, … ,𝑋𝑋𝐿𝐿 ∈ 𝑅𝑅𝑁𝑁,  (81) 

and, corresponding to them, L privileged vectors 

𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝐿𝐿 ∈ 𝑅𝑅𝑀𝑀  (82) 

and 𝐿𝐿 labels 
𝑦𝑦1,𝑦𝑦2, … ,𝑦𝑦𝐿𝐿 ∈ {−1, +1}. (83) 

The decision rule has to operate only on the standard N-dimensional space 𝑅𝑅𝑁𝑁, as the test vectors belong to 
that space, and no privileged information will be available.  

The original algorithm implementing the LUPI paradigm, SVM+, was designed as a generalization of the 
SVM algorithm [21] [22]. In SVM+, two kernels K(Xi,Xj) and k(xi,xj) are selected respectively in the standard 
space RN and the privileged space RM. Then, for a fixed positive structural parameters κ and γ and positive 
penalty parameters C1,C2,…,CL, SVM+ solves quadratic programming problem of finding the parameters 
α1,α2,…,αL  and δ1,δ2,…, δL that maximize the functional 

�𝛼𝛼𝑖𝑖
𝑖𝑖

−
1
2
�𝑦𝑦𝑖𝑖𝑦𝑦𝑗𝑗𝛼𝛼𝑖𝑖𝛼𝛼𝑗𝑗𝐾𝐾�𝑋𝑋𝑖𝑖,𝑋𝑋𝑗𝑗�
𝑖𝑖𝑖𝑖

 (84) 
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−
1

2𝛾𝛾
�𝑦𝑦𝑖𝑖𝑦𝑦𝑗𝑗(𝛼𝛼𝑖𝑖 − 𝛿𝛿𝑖𝑖)�𝛼𝛼𝑗𝑗 − 𝛿𝛿𝑗𝑗�𝑘𝑘�𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑗𝑗�,
𝑖𝑖𝑖𝑖

 

subject to constraints 

�𝛼𝛼𝑖𝑖𝑦𝑦𝑖𝑖
𝑖𝑖

= 0, 

�𝛿𝛿𝑖𝑖
𝑖𝑖

= �𝛼𝛼𝑖𝑖
𝑖𝑖

, 0 ≤ 𝛼𝛼𝑖𝑖 ≤ 𝜅𝜅𝐶𝐶𝑖𝑖, 0 ≤ 𝛿𝛿𝑖𝑖 ≤ 𝐶𝐶𝑖𝑖, 

𝑖𝑖 = 1, … , 𝐿𝐿 

(85) 

There are other versions of SVM+ with similar performance characteristics. The version used in this report is 
based on [17]. The parameters are used to construct the decision function  

𝑓𝑓(𝑧𝑧) = 𝑠𝑠𝑠𝑠𝑠𝑠(∑ 𝛼𝛼𝑖𝑖𝑦𝑦𝑖𝑖𝐾𝐾(𝑋𝑋𝑖𝑖, 𝑧𝑧)𝑖𝑖 + 𝐵𝐵) (86) 

where the offset B is computed for some index 𝑗𝑗, such that 0 ≤ 𝛼𝛼𝑗𝑗 ≤ 𝐶𝐶𝑗𝑗 and 0 ≤ 𝛿𝛿𝑗𝑗 ≤ 𝐶𝐶𝑗𝑗: 

𝐵𝐵 = 𝑦𝑦𝑗𝑗 �1 −�𝑦𝑦𝑖𝑖𝑦𝑦𝑗𝑗𝛼𝛼𝑖𝑖𝐾𝐾�𝑋𝑋𝑖𝑖,𝑋𝑋𝑗𝑗�
𝑖𝑖𝑖𝑖

− 𝛾𝛾�𝑦𝑦𝑖𝑖𝑦𝑦𝑗𝑗(𝛼𝛼𝑖𝑖 − 𝛿𝛿𝑖𝑖)𝑘𝑘�𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑗𝑗�
𝑖𝑖𝑖𝑖

�   (87) 

The parameters C1,C2,…,CL, κ,γ and kernel parameters of the SVM+ algorithm are optimized by grid search 
over the parameter space similar to the SVM algorithm. 

With the growth of the number of training examples, the LUPI approach converges to the optimal solution 
much faster than the classical approaches. As a result, LUPI can require significantly fewer training examples 
than classical approaches to achieve the same level of performance. In some cases, LUPI can achieve the 
same performance by training with √𝐿𝐿examples where the classical approach uses 𝐿𝐿 examples – requiring, 
for example, only 320 examples instead of 100,000 examples required by the classical learning algorithms. 
LUPI approach has been already successfully applied to a diverse set of problems from multiple disciplines 
[23] [24] [25]. 

While delivering performance results that were previously impossible to achieve within the standard machine 
learning paradigm, the key problem with existing LUPI implementations, such as SVM+  [21] [22], was their 
limited scalability: since the core matrix in the quadratic programming implementation of SVM+ is poorly 
conditioned and SVM+ requires more parameters to tune, the practical limit of training sample size was about 
200 examples (for larger samples, algorithms required days and weeks to converge). Although specially 
designed spline kernels [10] allowed increasing that sample size to 300-350 examples, the scalability problem 
remained the main obstacle for much wider applications of LUPI.  

To reiterate, there are several factors that make SVM+ more computationally expensive: 
i. The quadratic optimization problem associated with SVM+ is twice the size of the one associated with

SVM and is more complex, and so it takes more time to solve; 
ii. SVM+ has four free parameters - twice the number of free parameters in the SVM algorithm. Tuning

four parameters requires more computations.  
iii. The core matrix in the quadratic optimization problem is usually ill-conditioned, which significantly

slows down the quadratic optimization process. 
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All these factors, taken together, define the practical limit of training sample size for the SVM+ algorithm at 
about 200-300 examples.  

Recently, the concept of LUPI was theoretically expanded to include more general knowledge transfer 
mechanisms [14] [15] [16] allowing to transfer knowledge from the space of privileged information (space of 
Teacher's explanations) to the space where decision rule is constructed. 

We now formulate a specific algorithm [17] implementing knowledge transfer via regression of privileged 
features. Here, we consider two versions of the privileged regression approach: one that uses linear ridge 
regression for approximating privileged features, and another one that uses kernel regression with RBF 
functions. In both versions, regularization parameters (and for non-linear regression, the Gaussian parameter 
of RBF function) are selected using 2-fold cross validation. 

Consider a training set consisting of 𝐿𝐿 standard vectors 𝑋𝑋1,𝑋𝑋2, … ,𝑋𝑋𝐿𝐿 ∈ 𝑅𝑅𝑁𝑁and corresponding to them 𝐿𝐿 
privileged vectors 𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝐿𝐿 ∈ 𝑅𝑅𝑀𝑀 . We assume that each of the vectors 𝑋𝑋𝑖𝑖 is labeled with 𝑦𝑦𝑖𝑖 ∈ {−1, +1}. 
In matrix form (where the subscripts denote vector indices and superscripts denote vector elements), the 
training set has the form 

�
𝑦𝑦1 𝑋𝑋11 𝑋𝑋12 … 𝑋𝑋1𝑁𝑁 𝑥𝑥11 𝑥𝑥12 … 𝑥𝑥1𝑀𝑀

𝑦𝑦2 𝑋𝑋21 𝑋𝑋22 … 𝑋𝑋2𝑁𝑁 𝑥𝑥21 𝑥𝑥22 … 𝑥𝑥2𝑀𝑀…
𝑦𝑦𝐿𝐿

…
𝑋𝑋𝐿𝐿1

…
𝑋𝑋𝐿𝐿2

…
…

…
𝑋𝑋𝐿𝐿𝑁𝑁 𝑥𝑥𝐿𝐿1 𝑥𝑥𝐿𝐿2 … 𝑥𝑥𝐿𝐿𝑀𝑀

� (88) 

We now describe the way knowledge transfer LUPI algorithm works for this training set if the parameters of 
the desired SVM classification decision rule are already known; if they are not known, the parameter search 
is executed as described further. 

Train-1. For each 𝑗𝑗 = 1,2, … . ,𝑀𝑀, do the following. Using N-dimensional vectors 𝑋𝑋1,𝑋𝑋2, … ,𝑋𝑋𝐿𝐿  as 
explanatory variables and corresponding scalar values 𝑥𝑥1

𝑗𝑗 , 𝑥𝑥2
𝑗𝑗 , … , 𝑥𝑥𝐿𝐿

𝑗𝑗as response variables, construct a (linear
or nonlinear) regression function 𝜑𝜑𝑗𝑗 so that  

𝜑𝜑𝑗𝑗(𝑋𝑋11,𝑋𝑋12, … ,𝑋𝑋1𝑁𝑁) = 𝑧𝑧1
𝑗𝑗 ≈  𝑥𝑥1

𝑗𝑗 ,
𝜑𝜑𝑗𝑗(𝑋𝑋21,𝑋𝑋22, … ,𝑋𝑋2𝑁𝑁) = 𝑧𝑧2

𝑗𝑗 ≈  𝑥𝑥2
𝑗𝑗 , (89) 

…      …    … 
𝜑𝜑𝑗𝑗(𝑋𝑋𝐿𝐿1,𝑋𝑋𝐿𝐿2, … ,𝑋𝑋𝐿𝐿𝑁𝑁) = 𝑧𝑧𝐿𝐿

𝑗𝑗 ≈  𝑥𝑥𝐿𝐿
𝑗𝑗

Train-2. Use the values 𝑧𝑧𝑖𝑖
𝑗𝑗 (where 𝑗𝑗 = 1,2, … . ,𝑀𝑀 and = 1,2, … . , 𝐿𝐿 ) constructed in the previous step to

augment the vectors 𝑋𝑋1,𝑋𝑋2, … ,𝑋𝑋𝐿𝐿 from 𝑁𝑁-dimensional space 𝑅𝑅𝑁𝑁 to form vectors 𝑍𝑍1,𝑍𝑍2, … ,𝑍𝑍𝐿𝐿from (𝑁𝑁 + 𝑀𝑀)-
dimensional space 𝑅𝑅𝑁𝑁+𝑀𝑀; these vectors have the matrix form 

𝑍𝑍1𝑇𝑇 = (𝑋𝑋11 𝑋𝑋12 … 𝑋𝑋1𝑁𝑁 𝑧𝑧11 𝑧𝑧12 … 𝑧𝑧1𝑀𝑀), 
𝑍𝑍2𝑇𝑇 = (𝑋𝑋21 𝑋𝑋22 … 𝑋𝑋2𝑁𝑁 𝑧𝑧21 𝑧𝑧22 … 𝑧𝑧2𝑀𝑀),                                        (90) 

…            …             … 
       𝑍𝑍𝐿𝐿𝑇𝑇 = (𝑋𝑋𝐿𝐿1 𝑋𝑋𝐿𝐿2 … 𝑋𝑋𝐿𝐿𝑁𝑁 𝑧𝑧𝐿𝐿1 𝑧𝑧𝐿𝐿2 … 𝑧𝑧𝐿𝐿𝑀𝑀). 

As a result, for each 𝑖𝑖 = 1,2, … . , 𝐿𝐿, the first N elements of vector 𝑍𝑍𝑖𝑖 constitute standard vector 𝑋𝑋𝑖𝑖, while 
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the last M elements of vector 𝑍𝑍𝑖𝑖 constitute regression-based approximations (𝑧𝑧𝑖𝑖1 𝑧𝑧𝑖𝑖2 … 𝑧𝑧𝑖𝑖𝑀𝑀) to privileged 
vector 𝑥𝑥𝑖𝑖.  

Train-3. Create the new (augmented) training set with vectors 𝑍𝑍1,𝑍𝑍2, … ,𝑍𝑍𝐿𝐿 and corresponding labels
𝑦𝑦,𝑦𝑦2, … ,𝑦𝑦𝐿𝐿; in matrix form, the augmented training set has the form 

�
𝑦𝑦1 𝑋𝑋11 𝑋𝑋12 … 𝑋𝑋1𝑁𝑁 𝑧𝑧11 𝑧𝑧12 … 𝑧𝑧1𝑀𝑀

𝑦𝑦2 𝑋𝑋21 𝑋𝑋22 … 𝑋𝑋2𝑁𝑁 𝑧𝑧21 𝑧𝑧22 … 𝑧𝑧2𝑀𝑀…
𝑦𝑦𝐿𝐿

…
𝑋𝑋𝐿𝐿1

…
𝑋𝑋𝐿𝐿2

…
…

…
𝑋𝑋𝐿𝐿𝑁𝑁 𝑧𝑧𝐿𝐿1 𝑧𝑧𝐿𝐿2 … 𝑧𝑧𝐿𝐿𝑀𝑀

�. (91) 

Train-4. Train an SVM algorithm with known parameters on vectors 𝑍𝑍1,𝑍𝑍2, … ,𝑍𝑍𝐿𝐿 from (𝑁𝑁 + 𝑀𝑀)-
dimensional space 𝑅𝑅𝑁𝑁+𝑀𝑀 and construct the corresponding classification decision function 𝐹𝐹, which, when 
applied to any (𝑁𝑁 + 𝑀𝑀)-dimensional vector 𝑍𝑍, produces the classification output 𝑌𝑌 = 𝐹𝐹(Z), where 𝑌𝑌 ∈
{−1, +1}. Otherwise, if the parameters are unknown, carry out SVM parameter search as described further in 
sub-section C. 

The designed classification decision algorithm 𝐹𝐹 can now be applied to any standard vector 𝑋𝑋 from 𝑁𝑁-
dimensional space 𝑅𝑅𝑁𝑁 in following manner. 

Test-1. Using already constructed (during training) M regressions 𝜑𝜑1, … ,𝜑𝜑𝑀𝑀, construct M scalar values 

𝑧𝑧1 = 𝜑𝜑1(𝑋𝑋), 𝑧𝑧2 = 𝜑𝜑2(𝑋𝑋), … , 𝑧𝑧𝑀𝑀 = 𝜑𝜑𝑀𝑀(𝑋𝑋) (92) 

Test-2. Construct (𝑁𝑁 + 𝑀𝑀)-dimensional vector Z by concatenating these M scalar values with 𝑁𝑁-
dimensional vector 𝑋𝑋: 

𝑍𝑍 = (𝑋𝑋1 𝑋𝑋2 … 𝑋𝑋𝑁𝑁 𝑧𝑧1 𝑧𝑧2 … 𝑧𝑧𝑀𝑀)  (93) 

Test-3. Apply classification decision algorithm 𝐹𝐹 to the constructed (𝑁𝑁 + 𝑀𝑀)-dimensional vector Z and 
obtain the classification label 𝑌𝑌 = 𝐹𝐹(Z), where 𝑌𝑌 ∈ {−1, +1}. This label 𝑌𝑌 is the desired classification of 
standard 𝑁𝑁-dimensional vector 𝑋𝑋.  

In other words, the designed (N+M)-dimensional decision rule is used for any test N-dimensional test vector 
Z in three steps: (1) from already constructed (at training stage) M multivariate regressions, compute M 
approximations to missing privileged features, (2) concatenate the N-dimensional test vector Z with these M 
approximations, and (3) apply the decision rule to the resulting (N+M)-dimensional augmented test vector. 
The full feature space thus combines the original features and the new features from a domain knowledge 
(similar to [1] [26] [27], where domain knowledge is represented by the privileged feature space. 

As already mentioned, the training procedure described above is applicable if the parameters of the desired 
SVM classification decision rule are already known (for instance, for SVM with RBF kernel there are SVM 
penalty parameter 𝐶𝐶 and Gaussian parameter 𝛾𝛾). If they are not known (which is usually the case), they are 
selected using grid search over a pre-defined set of parameter vectors 𝑞𝑞. In case of SVM with RBF kernel, 
this set is 2-dimensional. In general, we assume that this set consists of 𝑃𝑃 vectors {𝑞𝑞1,𝑞𝑞2, … , 𝑞𝑞𝑃𝑃}. The search 
is performed in the following way (for simplicity, we describe it in the case of 6-fold cross-validation). 

Param-1. The training set X is randomly partitioned into six subsets 𝑋𝑋1,𝑋𝑋2, … ,𝑋𝑋6 of approximately equal 
size.  

Param-2. For each 𝑖𝑖 = 1,2 … . ,𝑃𝑃, the cross-validation error rate 𝐸𝐸𝑖𝑖of the algorithm with parameter vector 
𝑞𝑞𝑖𝑖 is computed in the following way . 
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Param-2-1. For each 𝑘𝑘 = 1,2 … . ,6, the following operation is executed. 
Param-2-1-1. Auxiliary sets 𝑋𝑋𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 and 𝑋𝑋𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 are formed: 𝑋𝑋𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 is the 𝑘𝑘𝑡𝑡ℎ of sets 𝑋𝑋1,𝑋𝑋2, … ,𝑋𝑋6, and 𝑋𝑋𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡is 

the union of the other five subsets.  
Param-2-1-2. Apply steps Train-1, Train-2, Train-3, Train-4 to 𝑋𝑋𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡to compute the classification 

decision function 𝐹𝐹𝑖𝑖𝑖𝑖.  
Param-2-1-3. Apply the classification decision function 𝐹𝐹𝑖𝑖𝑖𝑖 to 𝑋𝑋𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡according to Test-1, Test-2, Test-3 

and compute the resulting classification error rate 𝐸𝐸𝑖𝑖𝑖𝑖.  
Param-2-2. Compute the average 𝐸𝐸𝑖𝑖 of six error rates 𝐸𝐸𝑖𝑖1,𝐸𝐸𝑖𝑖2, … ,𝐸𝐸𝑖𝑖6. 
Param-3. Among all 𝑖𝑖 = 1,2 … . ,𝑃𝑃, select the parameter vector 𝑞𝑞𝑖𝑖 corresponding to the smallest error rate 

𝐸𝐸𝑖𝑖. 
 
In terms of scalability, it is clear that both linear and nonlinear versions of LUPI knowledge transfer 
algorithms avoid the main problem of SVM+: while the additional step of calculating M multivariate 
regressions takes some time, the regression is performed only once during the whole grid search, and, most 
importantly, the augmented training data are then processed by standard scalable SVM implementations. 
 
In terms of performance, it is important to gauge it properly. Assuming that the quality of the designed LUPI 
solution is A (i.e., its error rate is A%), we can compare it with the quality of two standard learning solutions: 
 

(1)  Only standard features are used, i.e., SVM in N-dimensional space. 
(2)  Both standard and privileged features are used, i.e., SVM on (N+M)-dimensional space. 
 
The solution (1) corresponds to the pre-LUPI situation when privileged features may exist, but they are 

discarded since there is no mechanism to take them into account. The solution (2) is the ideal situation, when 
all privileged features do not disappear during the test phase, but instead remain as standard features. 
Assuming that the solution (1) has quality B (i.e., its error rate is B%), while the solution (2) has quality C 
(i.e., its error rate is C%), we can generally expect that C<A<B. Indeed, C should be the smallest one among 
the three, since all privileged features are actually standard, so the power of SVM solution can be used to its 
fullest. Also, B should be the largest one among the three since it corresponds to pre-LUPI situation of 
classical learning, where all privileged features are ignored. So the quality of our LUPI solution, being 
“sandwiched” between C and B, can be naturally evaluated by measuring how much progress LUPI could 
make within the performance gap B–C. Thus, the metric (B–A)/(B–C) can be used to assess the relative quality 
of the LUPI solution. 

 
Note that if gap B–C is small, it means that privileged information is not particularly relevant (its knowledge 
in solution (2) does not improve much the quality of solution (1)), then it’s probably hopeless to apply LUPI 
anyway – there is no space for improvement for that. Given our experience, it is probably safe to start looking 
for LUPI solution if the gap B–C is at least 1.5-2 times larger than C. The improvement metric (B–A)/(B–C) 
of about 20-30% or more would then constitute success of LUPI approach. 
 
The MAMI classification dataset [28] is based on mover extraction from airborne wide area imagery collected 
by AFRL. The goal of the classifier is to improve dismount detection in low-resolution motion imagery. As 
described, for instance, in [29], dismount tracking is the concept of tracking a person either by direct 
observation or indirectly by inference, such as determining where the person was when exiting direct view. 
Dismount tracking is an important security application in that a nominated person can be tracked through 
various activities to predict and mitigate harmful actions, establish intent, and determine social group 
association [29]. In its native resolution, the MAMI imagery has dismounts of 20-pixel height, while imagery 



APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 
   27 

downsampled to 1/8th resolution has 2-3 pixel high dismounts. Motion imagery is generated at about 15 Hz. 
The data were collected by multiple cameras with different resolutions.  
 
We used test data from June 26, 2013. These images are centered on a grassy area where a picnic is taking 
place. There are dozens of people milling, walking, running, sitting, and playing volleyball and other games. 
There are also some scripted dismount activities and parked and moving vehicles. Most dismounts are taken 
from the picnic area which was in Camera 4's Field of View (FOV), see Figure 4. Some dismounts are also 
in the parking lots, and near roads and paths. Most false alarms are from outside the picnic area, especially in 
the Camera 3 FOV, which points below Camera 4. False alarms were caused by parallax, trees, poles, 
buildings, vehicles, reflections, image noise, and registration errors. 
 
To test the LUPI algorithms, we used the images at native and reduced resolutions. Low-resolution 1/Nth 
images were formed by averaging the intensities of NxN blocks of pixels into one pixel and then interpolating 
the reduced image back to the original resolution. We grouped images into sequences, each representing 10-
15 seconds of data. For each sequence, we designated a target area, where we expected to find multiple 
dismounts, and a false alarm area, where we expect to see few or no dismounts. We registered the images in 
a sequence and extracted tracklets.  
 
We built a background model and used differences between the images and the background models to detect   
mover candidates. Detections from the frames of sequences are linked together to form tracks. We tuned the 
tracker at each resolution to have 70-90% Probability of Detection (PD) on the true dismount samples. We 
describe the detected mover candidates by a set of features and use LUPI techniques to separate the true 
movers from false alarms. 

 

 
 

Figure 4. Dismounts Detected in MAMI Data. 

 
We built the following features for each detected mover: 45 object-level features (including blob, kinematic, 
track, fraction of frames in which this mover was detected, mean of length measurements for this mover, 
divided by standard deviation, eccentricity of best fit ellipse, standard deviation of orientation measurements 
over all frames, median of the mean pixel values for each observation of this mover, etc.), 20 activity-level 
features (turns, accelerations, starts, stops, etc.), 64 SURF features, and 4 Gradient features, for a total of 113 
features.  
 
We selected 14 of these features (such as area, eccentricity) as reasonably robust to be used as the standard 
features to be used in the design classifier, while we use all features at the full resolution as the privileged 
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space. We constructed the dataset consisting of 856 objects described by 127 features – 14 standard and 113 
privileged.  567 objects were labeled as positive class (dismounts), and 289 – as negative (false alarms). We 
extracted 567 positive and 289 negative samples from the MAMI data. In each experiment, we used a set of 
30 randomly sampled sets of training size L= 80, 160, 320, 640, from which we formed balanced training sets 
with equal number of objects NT=27, 54, 108, 216 of each of 2 classes to construct a classifier. For each 
training set, we used K random partitions in 80% training, 20% tuning to optimize parameters of each of the 
algorithms. Remaining objects that were not selected in training set form holdout set. So we have 30 pairs of 
training and holdout sets. 

We optimized the baseline SVM over the grid C = 0.1,1,10, 𝛾𝛾 = 2−6, 2−4, 2−2, 1, 22, 24, 26 , using K = 10; 
SVM regression over the grid C = 0.1,1,10, 𝛾𝛾 = 0.1, 1, 10; LPC Linear over 1 to 5 clusters separately for 
positive and negative classes and C=0.1,1,10. LPC Gauss used fixed parameters: 3 and 2 clusters respectively 

for positive and negative classes, C=1, 𝛾𝛾 = � 2
𝑁𝑁𝑇𝑇(𝑁𝑁𝑇𝑇−1)

∑ �𝑋𝑋𝑖𝑖 − 𝑋𝑋𝑗𝑗�
2

𝑖𝑖<𝑗𝑗 �
1/2

, where 𝑋𝑋𝑖𝑖,𝑋𝑋𝑗𝑗objects from training
set. Parameters for each training set were optimized for the case of NT=27 and same values used for large 
training samples. 

We tested performance as weighted average error on the 30 holdout sets. The obtained results suggest the 
following conclusions: 

i. LUPI-regression algorithm consistently outperforms the baseline;
ii. LPC algorithm on average outperforms the baseline;

iii. Scalability problem of LUPI SVM+ was confirmed again for samples larger than 200-300 elements,
as we can see from the entry 23391 for L=640 in Table I, which corresponds to 16 days of optimization;

These observations demonstrate that general knowledge transfer approach in LUPI paradigm can be 
implemented in scalable algorithms successfully leveraging privileged information by various means. The 
results also demonstrate the value of fusing multiple mechanisms of knowledge transfer within the LUPI 
paradigm. Thus we have formulated and implemented two new closely related classification algorithms within 
the recently introduced approach of knowledge transfer in LUPI. Both algorithms successfully resolve the 
scalability problem of previous LUPI approaches and allow for diverse and scalable leveraging of privileged 
information in classification problems. We verified the proposed approaches using dismount detection problem 
in AFRL MAMI airborne data and demonstrate that efficacy of the proposed algorithms, both in terms of their 
performance and scalability.  

In order to explore privileged information and knowledge transfer in more detail, we considered the following 
approach. 

Let us suppose that Intelligent Teacher has some knowledge about the solution of a specific pattern 
recognition problem and would like to transfer this knowledge to Student. For example, Teacher can reliably 
recognize cancer in biopsy images (in a pixel space X) and would like to transfer this skill to Student. 

Formally, this means that Teacher has some function y=f0(x) that distinguishes cancer (f0(x)=+1 for cancer
and f0(x)=−1 for non-cancer) in the pixel space X. Unfortunately, Teacher does not know this function
explicitly (it only exists as a neural net in Teacher’s brain), so how can Teacher transfer this construction to 
Student? Below, we describe a possible mechanism for solving this problem; we call this mechanism 
knowledge transfer. 
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Suppose that Teacher believes in some theoretical model on which the knowledge of Teacher is based. For 
cancer model, he or she believes that it is a result of uncontrolled multiplication of the cancer cells (cells of 
type B) which replace normal cells (cells of type A). Looking at a biopsy image, Teacher tries to generate 
privileged information that reflects his or her belief in development of such a process; Teacher can describe 
the image as:  

 Aggressive proliferation of cells of type B into cells of type A.  
If there are no signs of cancer activity, Teacher may use the description  

 Absence of any dynamics in the standard picture.  

In uncertain cases, Teacher may write  
 There exist small clusters of abnormal cells of unclear origin.  

In other words, Teacher uses a specialized language that is appropriate for description x
*
i  of cancer 

development employing the model he believes in. Using this language, Teacher supplies Student with 

privileged information x
*
i  for the image xi by generating training triplets  

(x1,x
*
1,y1),…,(xℓ,x

*
ℓ,yℓ).                                               (94) 

The first two elements of these triplets are descriptions of an image in two languages: in language X (vectors 

xi in pixel space), and in language X* (vectors x
*
i  in the space of privileged information), developed for 

Teacher’s understanding of cancer model. 
 

Note that the language of pixel space is universal (it can be used for description of many different visual 
objects; for example, in the pixel space, one can distinguish between male and female faces), while the 
language used for describing privileged information is very specialized: it reflects just a model of cancer 
development. This has an important consequence: the set of admissible functions in the general space X has 
to be rich (has large VC dimension), while the set of admissible functions in the specialized space X* may be 
not rich (has small VC dimension). 

 
One can consider two related pattern recognition problems using triplets:  
 
1. The problem of constructing a rule y=f(x) for classification of biopsy in the pixel space X using data  

(x1,y1),…,(xℓ,yℓ).                                                                     (95) 

2. The problem of constructing a rule y=f*(x*) for classification of biopsy in the space X* using data  

(x
*
1,y1),…,(x

*
ℓ,yℓ).                                                   (96) 

Suppose that language X* is so good that it allows to create a rule y=f
*
ℓ(x*) that classifies vectors x* 

corresponding to vectors x with higher accuracy. 
 

Since the VC dimension of the admissible rules in the specialized space X* is much smaller than the VC 
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dimension of the admissible rules in the universal space X and since the number of examples ℓ is the same in 

both cases, the bounds on error rate for the rule y=f
*
ℓ(x*) in X* will be better (according to VC theory, the

guaranteed bound on accuracy of the chosen rule depends only on two factors: frequency of errors on the 
training set and VC dimension of the admissible set of functions.) than those for the rule y=fℓ(x) in X. That is,

generally speaking, the classification rule y=f
*
ℓ(x*) will be more accurate than classification rule y=fℓ(x).

As a result, the following question of “knowledge transfer” arises: how one can use the knowledge of the 

rule y=f
*
ℓ(x*) in space X* to improve the accuracy of the desired rule y=fℓ(x) in space X? We now address this

question when both described problems are solved with neural networks. 

Consider three elements of knowledge representation used in Artificial Intelligence: 
1. Fundamental elements of knowledge.
2. Frames (fragments) of the knowledge.

3. Structural connections of the frames (fragments) in the knowledge.

We call the fundamental elements of the knowledge a limited number of elements (functions) in X* that can

approximate well the classification rule y=f
*
ℓ(x*); then knowledge transfer is about approximation of those

fundamental elements. We now illustrate this concept for SVMs and neural networks. 

In order to describe methods of knowledge transfer for SVM, consider the following three-level structure: 

1. Level IX: the input vectors x=(x1,…,xn)∈X .

2. Level IZ: the result of transformation of the vectors x into vectors z=(K(x1,x),…,K(xℓ,x))∈Z , 
where K is the kernel function for SVM. 

3. Level IY: the linear threshold indicator function 1 y=Θ(aTz(x)−b) in space Z.

Thus the structures of SVM rules in spaces X and X* can be described as

X: ( )IX⟶IZ⟶IY      and     X*:  
IX

*
⟶IZ

*
⟶IY

*
. (97) 

To transfer the knowledge about the rule 

y=f(x*,α
*
ℓ)−b*= ∑

i=1

ℓ
α

*
i K*(x

*
i ,x*)−b* (98) 

in space X* to the rule

1 Neural Network with one hidden layer has the same structure; as SVM, it is a universal learning machine. 



APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 
   31 

y=f(x,αℓ)−b= ∑
i=1

ℓ
 αiK(xi,x)−b                                                (99) 

obtained in space X, one can use several strategies. Below we consider three of them. 

1. A-mapping of privileged information: X*⟶X. In this scheme, the goal is to transfer information that 

exists in level IX
*
 of SVM in space X* to level IX of SVM in space X. In order to do this, one maps 

vectors x∈X into vectors x*∈X* by transforming space X obtaining vectors  x  =Ax and then constructs 

SVM in the transform space  X  . Scheme (A) of information transfer can be thus described as  

(A):     ( )IX*
⟶IX ⟶IZ⟶IY                                                    (100) 

In this scheme, in order to find the transformation Ax of vectors x=(x1,…,xn)T∈X  into vectors 
Ax=(φ1(x),…,φm(x))T  that minimizes the functional  

R(A)=minA ⌡⌠ |x*−Ax|2p(x*,x)dx*dx,                                    (101) 

we look for the minimum  

R(φ)= ∑
k=1

n
 minφk

 ⌡⌠ (x*k−φk(x))2p(x*k,x)dx*kdx,                                   (102) 

where p(x*k|x) is the marginal conditional probability of coordinate x*k given vector x, and m functions 
φk(x) are defined by m regressions  

φk(x)= ⌡⌠ x*kp(x*k|x)dx*k,   k=1,…,m.                  (103) 

We construct approximations to functions φk(x) by solving m regression estimation problems based 
on data  

(x*k
1 ,x1),…,(x*k

ℓ ,xℓ)),   k=1,…,m.            (104) 

In order to find these approximations, we Structural Risk Minimization principle [19] in the set of 
functions that belong to the Reproducing Kernel Hilbert Space (RKHS) associated with some kernel, 
that is, by minimizing the regularized functional  

 

R(φk)=minφk
 ∑
i=1

ℓ
 (x*k

i −φk(xi))
2+γ<φk(x),φk(x)>,    k=1,…,m. (105) 

The obtained approximations to the regressions φk(x) define our transformation. In this scheme, we 

first transform the input space  X  =AX and then train SVM in the transformed space.  

 2. B-mapping of privileged information: Z*⟶X. In this scheme, the goal is to transfer information 

that exists in level IZ
*
 of SVM in space X* to level IX of SVM in space X. In order do this, one maps 

vectors x∈X to vectors z*∈Z* by transforming space X and obtaining vectors  x  =Bx∈  X   and then 
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constructs SVM in the transformed input space. Scheme (B) of information transfer can be thus 
described as  

(B):      
IX

*
⟶IZ

*
,⟶IX⟶IZ⟶IY                                        (106) 

or, in its simplified form, as  

(B'):      
IX

*
⟶IZ

*
⟶IX⟶IY.                                             (107) 

The transformation of input space in this scheme is based on solving the following t regression 
estimation problems (t is the dimension of vector  

z*=(K(x*
1,x*),…,K(x*

t ,x*)T) ,                                             (108) 
i.e., the number of support vectors in SVM solution for space X*): given data  

(K(x*
k,x

*
1),x1),…,(K(x*

k,x
*
ℓ),xℓ),   k=1,…,t, (109) 

find the regression functions  

φk(x)= ⌡⌠ K(x*
k,x*)p(x*|x)dx*,   k=1,…,t.                 (110) 

As already desrcibed above for A-mapping, one can find such approximation in the RKHS associated 
with some kernel function. The obtained approximations φ1(x),…,φm(x)  define our 
transformation: in general scheme, we construct SVM rule in the transformed space; in simplified 
scheme, we construct linear SVM rule in the transformed space  X  .  

 3. C-mapping of privileged information: IZ*
⟶IZ. In this scheme, the goal is to transfer information 

that exists in the level IZ
*
 of SVM in space X* to the level IZ of SVM in space X. In order to do this, 

one maps t-dimensional vectors z∈Z (t is the number of support vectors of the SVM rule obtained in 
space X) into t*-dimensional vectors z*∈Z* (t* is the number of support vectors of the SVM rule 
obtained in space X*) constructing vectors of the form  z  =Cz∈  Z  . Every coordinate k in Z space 

defines similarity K(xk,x) between support vector xk and vector x∈X, while every coordinate k* in Z* 

space defines similarity K*(x
*
k,x*) between support vector x

*
k and vector x*∈X*, where x and x* are 

connected through p(x*|x). Scheme (C) of information transfer can be described as  

(C):     ( )IX*
⟶IZ*

⟶ ( )IX⟶IZ ⟶IY.                                               (111) 

Our goal is to approximate the similarity function K*(x*
k,x*),k=1,…,t*  between support 

vector x*
k of SVM solution in space X* and vector x*∈X* using t similarity functions 

K(x1,x),…,K(xt,x)  defined by SVM solution in space X for the pairs (x,x*)  generated by 

p(x*|x). Let x1,…,xt  be the support vectors of SVM solution in space X and let x*
1,…,x

*
t*  be the 

support vectors of SVM solution in space X*, where t and t* are the numbers of support vectors in 
SVM solutions obtained in spaces X and X*, respectively. The SVM rule of the space X has the form  
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f(x,α)= ∑
i=1

t
 αiK(xi,x)+b,                                          (112) 

and SVM rule in space X* has the form  

f*(x*,α*)= ∑
i=1

t*

 α*
i K*(x*

i ,x*)+b*.                                             (113) 

In order to achieve our goal, we approximate the functions K*(x*
k,x*),k=1,…,t*  with the 

regression functions  

φk(x)= ⌡⌠ K(x*
k,x*)p(x*|x)dx*,   k=1,…,t*.              (114) 

For each k=1,…,t* , we construct the approximation to φk(x) by using the data  

(K*(x*
k,x

*
1),z1),…,(K*(x*

k,x
*
ℓ),zℓ),   k=1,…,t*, (115) 

where zi= ( )K(x1,xi),…,K(xt,xi) ∈Z  is t-dimensional vector. Let space 

 Z  =(φ1(x),…,φt(x))  be the result of transformation of space Z. After that, we construct 

linear SVM in space  Z  .  

One can construct many different schemes of knowledge transformation from space X* to space X (as well 
as schemes of combining knowledge existing in both spaces) based on described approaches. 

 
In particular, in all three described mappings A–C, one may also concatenate the constructed knowledge 

transferred features with those already available from space X and solve SVM on this augmented set; 
constructed knowledge transferred features could be subject to feature selection in order to improve the 
classification performance; for C-mapping, one could construct regression functions only to those functions 
K*(x*

i ,x*) that correspond to “significant” weights αi; if linear regression functions are used for C-mapping, 
their positive versions could be explored as more relevant, etc. Note that C-mapping requires executing two 
versions of SVM: one for standard space, and one for privileged one. 

 
Knowledge transfer in Neural Networks is analogous to the one used for knowledge transfer in SVMs. As in 
the case of SVM described above, one constructs and trains two neural networks: one network in space X and 
another network in space X*. To simplify the notations, we assume that both networks have the same 
architecture containing s layers. Let input vector x∈X define the first layer IX(0) of neural network in space X; 
this vector is transferred into vector z1∈Z(1) in the next layer of the trained network, and layers 
IZ(k), k=2,....,s−1  provide subsequent transformations zk∈Z(k). As in SVM, the last layer 
is the linear indicator function y=Θ((as,zs)−b) (or its sigmoid approximation). The structure of Neural Network 
in space X is  

X:   IZ(0) ⟶IZ(1)⟶ ⋅ ⋅ ⋅ ⟶ IY.                                                  (116) 

and the structure of Neural Network in space X* is  

X*:  IZ*
(0) ⟶IZ*

(1)⟶ ⋅ ⋅ ⋅ ⟶ IY.                                               (117) 
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The simple scheme of knowledge transfer from network in space X* to network in space X can be 
described as follows: information accumulated into first k layers of network trained in space X* is 
transferred into m-th layer of network in space X:  

( )IZ*
(0)→⋅⋅⋅→IZ*

(k) → ( )IZ(0)→⋅⋅⋅→IZ(m) →I(m+1)→⋅⋅⋅→IY, (118) 

which forms the operator  z(k)  =Az(m) that transforms vectors z(m) from neural network in space X into 
vectors z*(k) of neural network in space X*. 

The new neural network contains three parts: 

1. The first part of the network contains first m layers of trained network in space X; we denote it
N(0,m). This network performs transformation z(m)=N(0,m)x(0).

2. The second part of the network contains operator A that transforms vectors z(m) in vectors
 z(k)  =Az(m). 

3. The third part of the networks is the part of the network in space X* starting from level (k+1), free
parameters of which have to be learned; we denote it N*(k,s) . Vectors  z(k)   are the input of this
part of network, and classifiers are the output.

The scheme of such combined networks is 

A { }N(0,m) ⟶N*(k,s), (119) 

where N(0,m) is fixed (does not have free parameters), while N*(k,s)  contains free parameters. Therefore 
operator A transforms knowledge about neural network in X*. 

In order to find this operator based on two trained networks, one uses the same techniques of regression 
estimation as in the case of SVM. Let z*(k)=(z*1(k)....,z*s*

(k))  be vectors produced on the level IZ*
(k) by 

the network trained in space X*, and let z(m)=(z1(m)....,zs(m))  be vectors produced on the level IZ(k) by 
the network trained in space X. 

Consider pairs 

(x1,x
*
1),…,(xℓ.x

*
ℓ) (120) 

from the training triplets. Let 

z1(m),…,zℓ(m) (121) 

be vectors produced by m-th layer of neural networks corresponding to vectors x and let 

z*
1(k),…,z*

ℓ(k) (122) 

be vectors 

z*
i (k)=(z*1

1 (k),…,z*s*
(k)) (123) 
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produced by k-th layer of neural networks corresponding to vectors x*. In order to construct mapping 
operator A as in SVM case, we estimate s* regression functions x*t(k)=φt(x(m)) using data  

(x*t
1 ,x1(m)),…,(x*t

ℓ ,xℓ(m)),   t=1,…,s*. (124) 

Therefore operator A transforms vectors x(m) into vectors  

Ax(m)=(φ1(x(m),…,φs*(x(m)).                               (125) 

For neural network that contains more than one hidden layer, one can transfer knowledge from network in 
X* using more than one operator Aj, j=1,…,p  by sequentially constructing several transformations 
between different layers of network in X*. 
 
Thus we described three key approaches for mapping of privileged information for knowledge transfer. In 
this section, we present scalable algorithms for one of them, namely A-mapping, based on multivariate 
regressions of privileged features as functions of decision variables; we also illustrate the algorithms’ 
performance and their properties on several examples. 
 

In order to illustrate this version of knowledge transfer LUPI, we explored the synthetic dataset derived 
from dataset “Parkinsons” in UCI Machine Learning Repository. Since none of 22 features of “Parkinsons” 
dataset is privileged, we created several artificial scenarios emulating the presence of privileged information 
in that dataset. Specifically, we ordered “Parkinsons” features according to the values of their mutual 
information (with first features having the lowest mutual information, while the last features having the largest 
one). Then, for several values of parameter k, we treated the last k features as privileged ones, while first 22−k 
features being treated as decision ones. Since our ordering was based on mutual information, these 
experiments corresponded to privileged spaces of various dimensions and various relevance levels for 
classification. For each considered value of k, we generated 20 pairs of training and test subsets, containing, 
respectively 75% and 25% of elements of the “Parkinsons” dataset. For each of these pairs, we considered 
the following four types of classification scenarios for both SVM (with RBF kernel) and ANN algorithms: 

 
1. SVM and ANN on 22−k decision features;  
2.  Knowledge transfer LUPI (linear) based on constructing k multiple linear regressions from 22−k 

decision features to each of k privileged ones, replacing the corresponding values in privileged vectors 
with their regressed approximations, and then training SVM and ANN on the augmented dataset 
consisting of 22 features;  

3.  Knowledge transfer LUPI (non-linear) based on constructing k non-linear (in the class of RBF 
functions) regressions from 22−k decision features to each of k privileged ones, replacing the 
corresponding values in privileged vectors with their regressed approximations, and then training SVM 
and ANN on the augmented dataset consisting of 22 features;  

4. SVM and ANN on all 22 features.  

 

For each scenario, the algorithms were trained in the following way: 
SVM. Two parameters for RBF kernels, namely SVM penalty parameter C and RBF kernel parameter γ, were 
selected using 6-fold cross-validation error rate over the two-dimensional grid of both parameters C and γ. In 
that grid, log2(C) ranged of from −5 to +5 with step 0.5, and log2(γ) ranged +6 to −6 with step 0.5 (thus the 
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whole grid consisted of 21×25=525 pairs of tested parameters C and γ). 
ANN. Neural networks were trained using MathworksTM Matlab Neural Network ToolboxTM with the same 
default parameters such as using hyperbolic tangent sigmoid as activation function, applying Levenberg-
Marquardt backpropagation training algorithm and selecting the ratio for training:validation:test as 70:15:15 
for early stopping on cross-entropy, etc. For each N-dimensional input, the architecture of ANN was 
selected [with several hidden layers (from one to five) with the number of neurons in it ranging from 5 to 100 
(a separate ANN was trained for each of these architecture choices final architecture was then selected based 
on the best performance). Note that we do not claim that these particular architecture choices for SVM and 
ANN are optimal; our point is to demonstrate the significant potential of LUPI improvement with different 
classification methods, whether these methods are optimal or not. 

The averaged (over 20 realizations) error rates for these scenarios are shown in Table 6 (for SVM) and in 
Table 7 (for ANN). The collected results show that performance of SVM (and its LUPI modifications) is 
better than that of ANN (and its LUPI modifications). They also show that both linear and nonlinear versions 
of Knowledge Transfer LUPI improve the performance of SVM and ANN on decision inputs (often 
significantly, in relative terms) in all of the considered scenarios. Note that both versions are just examples of 
knowledge transfer and other mappings (especially if relevant domain knowledge is available) could be 
leveraged. 
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Table 6. Performance of SVM and LUPI on Modified “Parkinsons” Example. 

 k SVM on LUPI LUPI SVM on LUPI gain LUPI gain 
 decision features (linear) (nonlinear) all features (linear) (nonlinear) 
 12 13.26% 9.18% 11.32% 6.63% 61.55% 29.25% 
 11 13.52% 10.66% 12.70% 6.63% 41.49% 11.85% 
 10 13.16% 10.00% 12.19% 6.63% 48.45% 14.85% 
 9 12.70% 8.67% 10.76% 6.63% 66.41% 31.95% 
 8 12.81% 8.52% 10.76% 6.63% 69.44% 33.07% 
 7 14.49% 11.07% 13.16% 6.63% 43.51% 16.88% 
 6 13.78% 11.17% 12.35% 6.63% 36.43% 20.01% 
 5 10.56% 8.98% 9.49% 6.63% 40.27% 27.28% 
 4 11.22% 10.36% 10.10% 6.63% 18.88% 24.42% 
 3 12.04% 9.59% 9.44% 6.63% 45.28% 48.13% 
 2 8.47% 7.55% 7.04% 6.63% 49.99% 77.76% 

 
Table 7. Performance of ANN and LUPI on Modified “Parkinsons” Example. 

 
 K ANN on LUPI LUPI ANn on LUPI 

gain 
LUPI gain 

 decision features (linear) (nonlinear) all features (linear) (nonlinear) 
 12 19.49% 16.43% 15.46% 8.01% 26.66% 35.11% 
 11 19.44% 15.20% 15.56% 8.01% 37.05% 33.93% 
 10 21.33% 14.64% 15.66% 8.01% 50.18% 42.52% 
 9 20.66% 12.70% 13.72% 8.01% 62.90% 54.83% 
 8 20.26% 12.04% 13.98% 8.01% 67.08% 51.25% 
 7 18.57% 13.01% 15.05% 8.01% 52.65% 33.33% 
 6 20.20% 13.83% 13.93% 8.01% 52.29% 51.45% 
 5 16.84% 11.63% 11.27% 8.01% 58.96% 63.00% 
 4 17.35% 12.45% 12.50% 8.01% 52.46% 51.91% 
 3 12.14% 11.48% 11.48% 8.01% 16.05% 16.05% 
 2 10.97% 10.25% 10.25% 8.01% 24.13% 24.15% 

 
Numerically, the error rates of LUPI are between the corresponding SVM or ANN constructed on decision 

features and on all features. In other words, if the error rate of the algorithm on decision features is B, while 
the error rate of the algorithm on all features is C, the error rate A of LUPI satisfies the bounds C<A<B. So 
one can evaluate the efficiency of LUPI approach by computing the metric (B−A)/(B−C), which describes 
how much of the performance gap B−C can be recovered by LUPI. For SVM, this metric varies between 12% 
and 78%; for ANN, this metric varies between 16% and 67%. Generally, in realistic examples, the typical 
value for this LUPI efficiency metric is in the ballpark of 35%. Also note that if the gap B−C is small compared 
to C, it means that the privileged information is not particularly relevant; in that case, it is likely hopeless to 
apply LUPI anyway: there is little space for improvement for that. It is probably safe to start looking for LUPI 
solution if the gap B−C is at least 1.5−2 times larger than C. 

 
We have also implemented C-mapping for SVM for the already described datasets using the same setting 

as for A-mapping, with the following modifications instead of constructing regressions to privileged features, 
we constructed (positive linear or nonlinear kernel) regressions to functions K*(x*

i ,x*) with subsequent 
selection of top 40 or them, in terms of their relevance to the label, as was determined by RandomForest 
method.  
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The averaged (over 20 realizations) error rates for these scenarios are shown in Table 8. The collected 
results show that both linear and nonlinear versions of Knowledge Transfer LUPI with C-mapping improve 
the performance of SVM on decision inputs (often significantly, in relative terms) in all of the considered 
scenarios. 

 
Table 8. Performance of SVM and LUPI on Modified “Parkinsons” Example. 

 k SVM on LUPI LUPI SVM on LUPI 
gain 

LUPI gain 

 decision 
features 

(linear) (nonlinear
) 

all features (linear) (nonlinear
) 

 12 13.26% 9.59% 9.59% 6.63% 53.35% 55.35% 
 11 13.52% 9.79% 10.10% 6.63% 54.14% 49.64% 
 10 13.16% 11.22% 9.79% 6.63% 29.71% 51.61% 
 9 12.70% 10.30% 10.51% 6.63% 39.54% 36.08% 
 8 12.81% 10.20% 10.20% 6.63% 42.23% 42.23% 
 7 14.49% 9.49% 11.53% 6.63% 63.61% 37.66% 
 6 13.78% 10.71% 11.94% 6.63% 42.94% 25.73% 
 5 10.56% 9.18% 10.20% 6.63% 35.11% 9.16% 
 4 11.22% 8.26% 10.30% 6.63% 64.49% 20.04% 
 3 12.04% 9.08% 10.41% 6.63% 54.71% 30.13% 
 2 8.47% 7.57% 8.18% 6.63% 48.91% 15.76% 

 
In this paper, we described several properties of privileged information including its role in machine 
learning, its structure, and its applications. We extended the existing knowledge transfer research in the area 
of privileged information (initially considered for SVM) to neural networks and presented a scalable 
algorithmic framework, which has the same scalability properties as current implementations. The described 
framework is the first step in the proposed direction, and its further improvements (especially concerning 
alternative methods of knowledge transfer) will be the subject of future work. 
 
3.3 Software for LUPI 
 
The current distribution software for knowledge transfer LUPI consists of the files  

1) priv_predict.py 
2) std_predict.py 
3) lupi_predict.py 
4) SVMstd.py 
5) SVMpriv.py 
6) SVMlupi.py 
7) test_error.py 
8) partition.py 
9) experiment.py 
10) mamiStd.py 
11) mamiLupi.py 

and the folders 
1) data 
2) models 
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In order to run this software, Anaconda has to be installed, which could be done via 
https://docs.continuum.io/anaconda/install. Once Anaconda is installed, the scripts could be used as follows. 
First, train and test datasets can be created using the partition.py script: 
 

python partition.py  
 

which will create train and test datasets for the features X and the labels y. Options of the script can be used 
to choose the features and label files, the test size and other parameter. If no options are passed to the script, 
default options are used and both files are saved in ./data/partitions/.  Standard SVM is trained by typing the 
command 
 

python SVMstd.py 
 

This command will save several files in the ./models/ directory; these files are the models that are needed for 
prediction. After that, labels for the test file (saved as ./data/partitions/X_test.data) can be obtained by typing 
the command 
 
  python std_predict.py  
 

which will create a file in ./prediction with the predicted labels, saved as prediction.data. The prediction error 
then can be computed by comparison to the real labels (which are saved as./data/partitions/y_test.data) by 
typing the command: 
 

python test_error.py  
 

The same procedure can be repeated for Privileged SVM as    
python partition.py --featFile ./data/priv.data 
python SVMpriv.py  
python priv_predict.py 
python test_error.py 
 

Finally, knowledge transfer LUPI SVM can be executed as follows (assuming, for this example, that the first 
14 features in the dataset are standard, while other features are privileged): 
 

python partition.py --featFile ./data/priv.data --lupi 14 
python SVMlupi.py  
python lupi_predict.py 
python test_error.py 
 

The options of the described scripts are as follows. 
partition.py  

• featFile: path to the features file. This file should contain only the features, not the labels. If the file is 
intended to be used with LUPI, then the standard features should appear first followed by the 
privileged ones. Default: ./data/std.data 

• labelFile: path to the label file. It is assumed that the n-th line contains the label of the n-th line of 
features in the featFile. The labels are typically represented by 1 and 0 but in general any two integers 
can be used instead.  Default: ./data/labels.data 

https://docs.continuum.io/anaconda/install
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• testSize: defines the integer size of the test set. For example, if the number 25 is passed, it will save 
25 random data points for the test dataset and put the remaining data points into the training set. 
Default allocates 25% of the data to the test set. 

• seed: random seed to decide the train/test split, it should be an integer. Default is 0. 
• outputFile: path to the directory in which the train/test datasets will be saved. Default is 

./data/partitions 
• lupi: used to indicate that the data are intended for LUPI approach, in which case the train set will 

contain both standard and privileged features, but the test set will contain only standard ones. If used 
it expects an integer to indicate how many standard features there are (which are assumed to appear 
first in the featFile). For example, it the number 5 is passed, it assumes that the data folder has at least 
6 columns and the first 5 ones are standard. Default is not to use LUPI approach.  

 
SVMstd.py  

• nJobs: number of processors to be used. Expects a positive integer and assumes the machine has that 
many processors. Default is 1. 

• seed: random seed to decide the cross-validation split, it should be an integer. Default is 0. 
• kernel: the choice of SVM kernel. It can be either `linear’ or `rbf’. When passed as an argument the 

corresponding word has to be present, e.g. --kernel linear.  Default is ‘rbf’. 
• C_range: defines the range of values for the penalty parameter C of the SVM; C needs to be a positive 

number. This option allows the user to pass 3 float numbers: minimum C , maximum C and step. 
These will be used to construct the following interval: [2^(minC), 2^(maxC)] in steps of 2^(step), not 
including 2^(maxC). To pass in the values separate them by space, e.g. --C_range 1 2 0.1 ,  Default: 
-5 5.5 .5   

• gamma_range: defines the range of values for the gamma parameter of the SVM, when rbf kernel is 
selected. This is the width of the kernel function. Typically one gives to the machine a range of values 
that gamma can take and the machine does cross-validation to figure out which value has the best 
generalization performance. This option allows the user to pass 3 float numbers: minimum gamma , 
maximum gamma and step. These will be used to construct the following interval: [1/ [2 
[2^(min_gamma)]^2, 1/ [2 [2^(max_gamma)]^2] in steps of 1/ [2 [2^(step)]^2], not including 1/ [2 
[2^(max_gamma)]^2]. To pass in the values separate them by space, e.g. --gamma_range 1 2 0.1 ,  
Default: -6 5.5 .5   

 
SVMpriv.py – same as SVMstd.py 
SVMlupi.py  - same as SVMstd.py plus the following options:  
 

• lupiRegr: the kind of regression for reconstructing the privileged features at test time. This can be any 
of ‘linear, ridge, svr’, where linear is standard linear regression, ridge is a kernel ridge non-linear 
regression, and svr is a support vector regression (also non-linear). Both non-linear regressions need 
to find optimal parameters during training and hence take a longer time to train. Both use an rbf kernel. 
When passing an argument, the corresponding word has to be typed, e.g. --lupiRegr linear.   Default: 
ridge 

• nStdFeat: number of standard features present, it expects a positive integer. Default: 14 
 

std_predict.py  -  saves the prediction at ./predictions/prediction.data  
priv_predict.py  -  same as std_predict.py 
lupi_predict.py  -  same as std_predict.py 
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For the same MAMI set described above, we now describe how to compare LUPI SVM versus Standard 
SVM. Using the contents of the folder we can run side by side SVM standard and LUPI SVM sufficiently 
many times to achieve reliable results when we aggregate our findings. For this we provide 50 partitions of 
the MAMI dataset and two scripts that can automate the experiment. We would like to see the difference 
between Standard and LUPI as we vary the size of the training sample. Hence we include in our folder 4 
subfolders named mami80, mami160, mami320, and mami640. Each contains data partitioned in train and 
test. Mami80 contains 50 random pairs of train/test sets, where the train sets have size 54 and test sets have 
size 802. These numbers are determined by the maximum size of data with balanced class labels if we start 
with 80 (or 160/320/640) random samples. The remaining data points are put in the test set. Similarly 
mami160 has a 108/748 split, mami320 has a 216/640 split, and mami640 has a 432/424 split.  
 
These ready partitioned data allow us to run experiments and compare Standard and LUPI SVM for different 
training sizes of 54, 108, 216 and 432 data points.  
 
To run these experiments, we used the mamiStd.py script as follows, to see the performance of the SVM 
Standard algorithm:  
 

 python mamiStd.py --nJobs 2 --trainSize 80  
 

where nJobs tell the computer to use 2 processors and trainSize tells it to run the experiment for size 52. 
Similarly we can run the experiments for the rest of the train size. The output of the algorithm is the average 
test error across the 50 experiments.  
 
To run the corresponding experiments for LUPI use mamiLupi.py script as follows:  
 

 python mamiLupi.py --nJobs 2 --trainSize 80  
 

where nJobs tell the computer to use 2 processors and trainSize tells it to run the experiment for size 52. 
Similarly we can run the experiments for the rest of the train size. The output of the algorithm is the average 
test error across the 50 experiments.  
 
We have provided a special script that can automate the different steps of a full train/test cycle. The 
experiment.py script can be used to run a number of experiments on any dataset and get the average test error. 
Such repetitive experiments are necessary in order to get better approximation of the true test error for a 
learner. Below we explain the option features for the experiment script. 
 
experiment.py  

• featFile: path to the features file. This should contain only the features, not the labels. If it’s intended 
to be used with LUPI, then the standard features should appear first followed by the privileged. 
Default: ./data/std.data 

• labelFile: path to label file. It’s assumed that the n-th line contains the label of the n-th line of features 
in the featFile. The labels are typically represented by 1 and 0 but in general any two integers can be 
used instead.  Default: ./data/labels.data 

• testSize: defines the size of the test set, as an integer. If the number 25 is passed, it will save 25 random 
data points for test and put the rest of the data points in the train set. Default: gives 25% of the data to 
the test set 
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• lupi: used to indicate that the data are intended for a LUPI procedure, in which case the train set will 
contain standard and privileged features, but the test will contain only standard. If used it expects an 
integer to indicate how many standard features there are (which are assumed to appear first in the 
featFile). If the number 5 is passed, it is assumed that the data folder has at least 6 columns and the 
first 5 are standard. Default: assumes lupi is not being done.  

• nJobs: number of processors to be used. Expects a positive integer and assume the machine has that 
many processors. Default: 1 

• kernel: the choice of SVM kernel. It can be either `linear’ or `rbf’. When passed as an argument, the 
corresponding word has to be type, e.g. --kernel linear.  Default: rbf 

• C_range: defines the range of values for the C parameter of the SVM. This is the tolerance of error 
when constructing the classification boundary. C needs to be a positive number, but typically one 
gives to the machine a range of values that C can take and the machine does cross-validation to figure 
out which value has the best generalization performance. This option allows the user to pass 3 float 
numbers: minimum C , maximum C and step. These will be used to construct the following interval: 
[2^(minC), 2^(maxC)] in steps of 2^(step), not including 2^(maxC). To pass in the values separate 
them by space, e.g. --C_range 1 2 0.1 ,  Default: -5 5.5 .5   

• gamma_range: defines the range of values for the gamma parameter of the SVM, when rbf kernel is 
selected. This is the width of the kernel function. Typically one gives to the machine a range of values 
that gamma can take and the machine does cross-validation to figure out which value has the best 
generalization performance. This option allows the user to pass 3 float numbers: minimum gamma , 
maximum gamma and step. These will be used to construct the following interval: [1/ [2 
[2^(min_gamma)]^2, 1/ [2 [2^(max_gamma)]^2] in steps of 1/ [2 [2^(step)]^2], not including 1/ [2 
[2^(max_gamma)]^2]. To pass in the values separate them by space, e.g. --gamma_range 1 2 0.1 ,  
Default: -6 5.5 .5   

• lupiRegr: (used only together with lupi option) the kind of regression for reconstructing the privileged 
features at test time. This can be any of ‘linear, ridge, svr’, where linear is standard linear regression, 
ridge is a kernel ridge non-linear regression, and svr is a support vector regression (also non-linear). 
Both non-linear regressions need to find optimal parameters during training and hence take a longer 
time to train. Both use an rbf kernel. When passed as an argument, the corresponding word has to be 
typed, e.g. --lupiRegr linear.   Default: ridge 
 

Here we explain how to use this software on a different dataset. The most important thing is to save the data 
in the appropriate format. Then direct the scripts have to be directed to the saved datasets. The format of the 
data has to be following:  
 
Features file - a csv file that contains columns of data, where each column is a feature. If some of these 
features are designated as Standard features, for LUPI purposes, then these Standard features should appear 
first, followed by the rest of the features, which will be assumed to be privileged. For example we have 
provided two different such files in the data folder and. We have saved as priv.data all the mami dataset with 
the first 14 features being the standard features, in ./data/priv.data. We have also saved just the standard 
features as a separate folder in ./data/std.data 
 
Labels file: a csv that contains line separated integers that represent the class labels of each examples from 
the features file (in the same order).  
 
Once the two files are saved, say features.data and labels.data he partition.py script has to be pointed to these 
two files to be split into train and test set as follows: 
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python partition.py --featFile <path to features.data> --labelFile <path to labels.data>  
More options can be included, such as the test size or whether the data are supposed to be used with LUPI (in 
which case, the option --lupi <number of standard features> should be used). Once train and test partitions 
are saved, SVMs can be trained on these data using the same instructions as before.  
 
 

4 RESULTS AND DISCUSSIONS 
 
As described in the previous section, we proposed and developed a novel framework for most accurate 
computation of key statistical elements of model-driven problems (such as conditional probability, regression, 
etc.). The proposed rigorous approach avoids the constraints of traditional model-driven approaches; instead, 
the problem of computing the corresponding statistical quantities is formulated according to its definition, 
which involves the corresponding Fredholm integral equation. This ill-posed equation, upon replacing 
unknown quantities with their data-driven empirical approximations, are converted to the corresponding 
quadratic programming problems, which could be solved with standard solvers. Additional domain 
knowledge components could be encoded as constraints for these quadratic programming problems. 
 
This framework was developed in the course of PPAML program and described in detail in our publications 
[1] [2] [3]. The results, described in these papers, demonstrate the viability of the proposed approach and 
superior performance as compared to classical methods.  
 
For more narrow, but very important class of problems, where the assumption of the monotonicity of the 
results is essential (a typical classifier, such as SVM or ANN, satisfies this assumption), additional Synergy 
methodology was developed. This methodology is based on a rigorous approach of merging results of 
different decisions (classifiers) in the most accurate way. It was developed in the course of PPAML program 
and described in detail in [13]. It is applicable to ensemble methods (merging outputs of different classifiers), 
bagging (merging outputs of classifiers trained on different subsets of the original training set), parameter 
selection (merging outputs of classifiers trained on different areas of the parameter space), etc. Performance 
improvements, achieved by the propose mechanisms, have been varying up to 35% improvement of accuracy 
over SoA (standard ensemble methods).  
 
As described in the previous section, we developed a solid and scalable mechanism for capturing domain 
knowledge in the form of features and kernels for standard data-driven problems. This mechanism was 
implemented for learning using privileged information. The implemented techniques for encoding model-
based information into features with improved performance by 40% over SoA (standard SVM and neural 
networks). We have also developed LUPI implementation in Python and released it as open source code. 
 
More details about the outlined methods and approaches can be found in the following nine publications that 
were published based on results of our research in DARPA PPAML program: 
 

(1) V.Vapnik, I.Braga, R.Izmailov, Constructive Setting for Problems of Density Ratio Estimation, 
Statistical Analysis and Data Mining, vol. 8, no. 3, June 2015, pp. 137-146. 

(2) V.Vapnik, R.Izmailov, Statistical Inference Problems and Their Rigorous Solutions, in Statistical 
Learning and Data Sciences, A.Gammerman, V.Vovk, H.Papadopulos (Eds). Lecture Notes in 
Artificial Intelligence 9047. Proceedings of Third International Symposium, SLDS. London, 
Springer, 2015, pp.33-71. 
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(3) V.Vapnik, R.Izmailov, V-Matrix Method of Solving Statistical Inference Problems, Journal of 
Machine Learning Research, 16:1683-1730, 2015. 

(4) V.Vapnik, R.Izmailov, Synergy of Monotonic Rules, Journal of Machine Learning Research, 17:1-
33, 2016. 

(5) V.Vapnik, R.Izmailov, Learning Using Privileged Information: Similarity Control and Knowledge 
Transfer, Journal of Machine Learning Research, 16:2023-2049, 2015. 

(6) V.Vapnik, R.Izmailov, Learning with Intelligent Teacher: Similarity Control and Knowledge 
Transfer, in Statistical Learning and Data Sciences, A.Gammerman, V.Vovk, H.Papadopulos (Eds). 
Lecture Notes in Artificial Intelligence 9047. Proceedings of Third International Symposium, SLDS. 
London, Springer, 2015, pp.3-32. 

(7) V.Vapnik, R.Izmailov, Learning with Intelligent Teacher, in Lecture Notes in Artificial Intelligence 
9653. Proceedings of 5th International Symposium, COPA 2016. Springer, 2016.  

(8) R.Ilin, R.Izmailov, Y.Goncharov, S.Streltsov, Fusion of Privileged Features for Efficient Classifier 
Training, 19th International Conference on Information Fusion,  pp.1-8, 2016. 

(9) V.Vapnik, R.Izmailov, “Knowledge Transfer in SVM and Neural Networks”, Annals of 
Mathematics and Artificial Intelligence, 1-17, 2017. 

5 CONCLUSIONS 

We have successfully developed two complementary techniques to standard machine learning approaches 
(model-driven and data-driven) by concentrating on their drawbacks and addressing them with advantages of 
the complementary approach. Specifically, we developed novel data-driven techniques for improving model-
driven approach, and, conversely, novel model-driven techniques for improving data-driven approach. Both 
developments are implemented as scalable algorithms, and published in nine papers in academic journals and 
conferences.  
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