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Abstract
Network connections have been shown to be correlated with structural or external attributes

of the network vertices in a variety of cases. Given the prevalence of this phenomenon net-

work scientists have developed metrics to quantify its extent. In particular, the assortativity

coefficient is used to capture the level of correlation between a single-dimensional attribute

(categorical or scalar) of the network nodes and the observed connections, i.e., the edges.

Nevertheless, in many cases a multi-dimensional, i.e., vector feature of the nodes is of inter-

est. Similar attributes can describe complex behavioral patterns (e.g., mobility) of the net-

work entities. To date little attention has been given to this setting and there has not been a

general and formal treatment of this problem. In this study we develop a metric, the vector

assortativity index (VA-index for short), based on network randomization and (empirical)

statistical hypothesis testing that is able to quantify the assortativity patterns of a network

with respect to a vector attribute. Our extensive experimental results on synthetic network

data show that the VA-index outperforms a baseline extension of the assortativity coeffi-

cient, which has been used in the literature to cope with similar cases. Furthermore, the VA-

index can be calibrated (in terms of parameters) fairly easy, while its benefits increase with

the (co-)variance of the vector elements, where the baseline systematically over(under)esti-

mate the true mixing patterns of the network.

Introduction
Assortativity mixing is a network phenomenon that describes the tendency of nodes to attach
to others with similar characteristics. The mixing patterns are important in complex network
theory since they can have many implications depending on the type of network examined. For
instance, degree assortativity, that is, assortativity with respect to the node degree, is closely
related with the resilience of a network to targeted attacks [1]. In the realm of social networks
assortativity mixing with respect to external nodal attributes, usually termed as homophily [2],
can reveal important information for the mechanisms that lead to friendship creation. As an
illustrative example, studies of high school friendships have revealed a high degree of
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homophily with respect to the students’ race [3, 4], i.e., students tend to be friends with other
students of the same race. The same tendency can be found in sexual relationship networks [5],
while the marriage relationships exhibit assortativity mixing with respect to the age as well [6].
Spatial homophily, i.e., mixing with respect to locations visited by friends, has also been identi-
fied in social networks [7]. In the latter case, where a mutable attribute is examined, assortativ-
ity mixing can also be a sign of social influence, i.e., people first become friends—potentially
due to irrelevant to the attribute examined reasons—and then they align their behavior with
regards to the examined attribute. Of course, negative assortativity mixing, i.e., heterophily,
can also be observed. For example, the sexual relationship social network is disassortative with
regards to the gender of the nodes. The extent of this phenomenon has lead to the integration
of mixing patterns into generative network growth models [8, 9], while algorithms for recover-
ing the underlying network connections exploit homophily as well [10, 11].

The central idea behind quantifying assortativity patterns in a network is to compare the
number of edges that connect nodes of similar type with the expected number of these connec-
tions if the latter were picked at random. For example, if every node i is associated with a scalar
value xi (e.g., its age), we can compute the normalized covariance of the values xi and xj at the
ends of an edge {i, j} and then the assortativity coefficient r is given by [1, 6]:

r ¼
P

ij Aij � kikj
2m

� �
xixj

P
ij kidij � kikj

2m

� �
xixj

ð1Þ

whereA is the adjacency matrix of the network, ki is the degree of node i,m is the number of
edges in the network and δij is the Kronecker’s delta. The values of r are bounded between [−1, 1]
—in practice the minimum value is −1� rmin< 0 depending on the number of different node
types [6]—and hence, allows for relative comparison between different networks and/or attri-
butes. An alternative approach that can be used to quantify the levels of homophily is to include
the attribute under examination (i.e., xi) as a regressor in a model for network relations [12]. This
will allow us to evaluate the statistical significance of specific variables in the formation of the net-
work. This approach is different in the sense that while it can provide us with an estimation of the
statistical importance of the corresponding attribute in the network formation it does not provide
us with a fine-grained view. In particular, the regression coefficient is not bounded within a spe-
cific range and hence, direct inter-network and/or inter-attribute comparisons can be challenging.

While metrics for quantifying the assortativity mixing with respect to enumerative or scalar
attributes have been developed, formal treatment of mixing patterns for vector nodal attributes
has not received much of attention [13]. Nevertheless vector attributes appear in a variety of
settings. In directed networks, the full degree information for a node is represented through a
two-dimensional vector each element of which represents the in and out degree. Hence, if we
do not want to lose the direction information, the degree assortativity needs to consider a vec-
tor rather than a scalar attribute [14]. Vector attributes can also describe behavioral aspect of
nodes in social networks. For instance, the urban mobility of a city-dweller can be described
through a vector each element of which captures the different types of locations he visits. Simi-
larly, reviewers/buyers on electronic markets such as Amazon can be associated with a vector
that captures their behavior with regards to the types of objects they are reviewing/buying. Fur-
thermore, the analysis of composite networks that consist of multiple types of nodes and/or
edges, requires novel metrics even for the simple scenario of the degree assortativity. In this set-
ting, the degree of a node is not a single number anymore, but rather a vector based on the dif-
ferent types of edges attached to the node. Hence, formally put in this work we are interested in
the following problem:

Quantifying Assortativity Patterns in Networks with Multidimensional Nodal Attributes

PLOS ONE | DOI:10.1371/journal.pone.0146188 January 27, 2016 2 / 13



Problem 1 Given a network G ¼ ðV; EÞ (jVj ¼ n and jEj ¼ m), where node v 2 V is associ-
ated with a vector xv 2 <q estimate the assortativity r 2 [−1, 1] of G with regards to vectors xi,
i 2 V.

As alluded to above, the requirement that r 2 [−1, 1] will allow us to directly compare the
assortativity of different networks and/or different attributes. While recent studies have
dealt with specific instances of Problem 1 the literature is still missing a formal metric that is
generally applicable and can then be adopted to specific cases. For instance, Foster et al. [14]
define 4 different types of degree assortativity in a directed network in order to account for
the two different degree types (i.e., in and out). Block and Grund [15] examine the network
dynamics of a friendship network when individuals have an increasing number of attributes
in common. They utilize stochastic actor-oriented models and they show that there appears
to be a diminishing effect with the number of common attributes. However, their approach
is applicable only to longitudinal and directed network data. In a slightly different direction,
Sánchez et al. [16] develop a method for the statistical selection of congruent subspaces, i.e.,
multivariate subspaces that have high dependency with the network structure. They further
show that their method enhances outlier detection. Pelechrinis [17] recently developed a
generic method that can provide an answer to Problem 1 in its generic form. Nevertheless,
the proposed method is based on clustering the vector attributes of the network nodes.
Given that clustering is known to be an ill-posed problem, at least under certain axiomatic
frameworks [18, 19], selecting an appropriate clustering algorithm for all cases might be
hard if not impossible and hence, the practical applicability of this work is limited. Despite
the aforementioned efforts for tackling directly the multi-dimensional assortativity, the
majority of the literature that deals with similar problems treats every element of the vector
feature in isolation (e.g., [20, 21]). A similar approach will also for our baseline metric for
comparison.

In this work we introduce a novel network metric, which we call VA-index, for quantify-
ing the multi-dimensional assortativity. In a nutshell, our metric is based on network randomi-
zation and empirical hypothesis testing (see Materials and Methods). We evaluate our method
by utilizing synthetic network datasets and comparing it with a baseline metric from existing
literature (see Results). Finally, we discuss the significance and the implications of the proposed
metric (see Discussion).

Materials and Methods
In order to solve Problem 1 we develop VA-index, whose computation combines network
randomization with statistical hypothesis testing. In a nutshell, the intuition of our approach is
based on comparing the pairwise average similarity of the vector attributes x of connected
nodes in G with the one expected if connections were made at random. The distribution for the
randomly expected average similarity can be estimated through Monte Carlo simulations of
network randomizations. The latter can be either fully random (i.e., Erdős-Rènyi random net-
works [22]) or control for specific network properties such as the degree distribution (e.g., con-
figuration model [25]) and/or even for external properties (e.g., home location of users in a
social network). We further perform a hypothesis test to evaluate the statistical significance of
any difference observed, while we transform the observed effect size to a value bounded
between [−1, 1] through the standardized mean difference. In more detail VA-index compu-
tation comprises of the following steps:

Step 1.We first calculate the average pairwise similarity of connected nodes in G with
respect to the attribute vectors x. Given a pair of nodes v, u 2 V connected in G, with attribute
vectors xv and xu their similarity is ξ(xv, xu), where ξ is a similarity measure in <q. Then the
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average pairwise similarity of connected nodes in G is:

�xG ¼
P

ðv;uÞ2E xðxv;xuÞ
m

ð2Þ

Step 2. At this step we bootstrap through Monte Carlo simulations the estimation of the
average pairwise similarity of connected nodes if these connections were made at random,
�xrand . In particular, we re-shuffle allm edges of G uniformly—or controlling for other parame-
ters—at random and generate B randomized network structures (S1 Text). For each of the ran-
domized networks i we calculate the average pairwise similarity of (randomly) connected

nodes, �x i. Hence, we get a sample X ¼ f�x ij1 � i � Bg, which essentially provides us with an

estimate for the probability distribution of �xrand , f ð�xrandÞ.
Step 3. At this step we will examine where �xG lays with respect to f ð�xrandÞ in order to identify

whether there is positive, negative or randommixing in the network with respect to vector

attributes x. More specifically, we will examine the quantile of f ð�xrandÞ that includes the value
of �xG . For example, in Fig 1 we present the probability distribution f ð�xrandÞ along with the 95%

Fig 1. Decision boundaries for positive, negative or randommixing in the network. If the average similarity of connected nodes in the network �xG falls in
the top 2.5% quantile of fð�x randÞ (e.g., green line) we can conclude—at the significance level of α = 0.05—that the network is positively mixed. Similarly, if �xG

falls in the bottom 2.5% quantile of fð�x randÞ (e.g., red line) the network is negatively mixed. Otherwise (e.g., orange line) we cannot reject the hypothesis that
the network is randomly mixed with respect to x.

doi:10.1371/journal.pone.0146188.g001
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confidence interval for �xrand (as computed from the B randomized networks). There are now

three possibilities for �xG :

• �xG falls in the bottom 2.5% quantile of f ð�xrandÞ. In this case the average similarity of con-
nected nodes in G is significantly smaller (at the significance level of α = 0.05) than what we
would have expected if connections were made at random. Hence, G is negatively mixed with
respect to x.

• �xG falls in the top 2.5% quantile of f ð�xrandÞ. In this case the average similarity of connected
nodes in G is significantly larger (at the significance level of α = 0.05) than what we would have
expected if connections were made at random. Hence, G is positively mixed with respect to x.

• �xG falls falls within the 95% confidence interval of f ð�xrandÞ. In this case we cannot reject (at
the significance level of α = 0.05) the hypothesis that G is randomly mixed with respect to x.

Note that the above process is essentially the result of the following hypothesis test:

H0 : �xrand ¼ �xG ð3Þ

H1 : �xrand 6¼ �xG ð4Þ

We would like to emphasize here that we do not perform a t-test (or any other standardized,
off-the-shelf, hypothesis test), since we can directly estimate the empirical probability distribu-

tion f ð�xrandÞ from the Monte Carlo simulations and hence, obtain an empirical p-value (alter-
natively the corresponding confidence intervals).

Step 4. At this final step we quantify the levels of assortativity mixing in the network by

comparing �xG , with the mean of the sample X,mX. In particular, we first calculate the standard-
ized mean difference as follows:

d ¼
�xG �mX

srand

ð5Þ

where σrand is the expected standard deviation of the pairwise similarity in the randomized net-
work, which can be calculated through the repeated randomizations. Then we transform this
standardized difference to a value bounded between -1 and 1, which is our final VA-index α,
through the following transformation:

a ¼ dffiffiffiffiffiffiffiffiffiffiffiffi
d2 þ �

p ð6Þ

The final output is the VA-index α from step 4 as well as the empirical p-value for this
index (at the significance level α = 0.05) obtained through step 3. Note here that, by choosing
different quantiles in step 3, we can perform the same test at a different significance level. Fur-
thermore, the value of � used in Eq (6) will be an evaluation parameter of the VA-index. Fig 2
summarizes the above steps.

In order to evaluate the above method we will rely on synthetic network data for which we
know the ground truth with regards to the mixing patterns (S2 Text). However, prior to pre-
senting our evaluations we would like to emphasize on the fact that while the VA-index is
inspired by the assortativity coefficient, it is not a direct generalization of it in higher dimen-
sion. Both metrics’ key idea is comparing features of the real network (i.e., number of edges
between nodes with similar attributes in the case of assortativity coefficient and the average

Quantifying Assortativity Patterns in Networks with Multidimensional Nodal Attributes

PLOS ONE | DOI:10.1371/journal.pone.0146188 January 27, 2016 5 / 13



similarity of connected nodes for VA-index) with a randomized version of it. Note here that,
the assortativity coefficient is based on comparisons with the Erdős-Rènyi random graph
model, while the VA-index can adopt other randomized generative models as well. For an
appropriate choice of similarity metric and normalization (step 4), the VA-index can poten-
tially recover the assortativity coefficient exactly. In particular, given that the assortativity coef-
ficient is normalized using the maximum possible modularity (denominator of Eq (1)), we
would need to normalize the VA-index with the maximum possible average similarity that

Fig 2. The computation of VA-index in a nutshell. VA-index involves network randomization and empirical hypothesis testing for quantifying the
assortativity of a network with respect to a mutli-dimensional nodal attribute.

doi:10.1371/journal.pone.0146188.g002
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can be observed in the network analyzed. The latter is extremely hard—if not intractable—to
obtain analytically in the general case, while it is computationally expensive to compute it
through Monte Carlo simulations.

Results
We compare our system with a baseline extension of the assortativity coefficient. In particular,
we calculate the assortativity coefficient ri for each element i of x. Our baseline assortativity is
then given by:

rbase ¼
Xq

i¼1
ri

q
ð7Þ

Given that in our synthetic data we know the actual assortativity patterns of the network our
evaluation metric is the Root Mean Square Error (RMSE) of the assortativity values obtained
from the VA-index and the baseline. More specifically, we will compare the RMSE of the VA-
index and the baseline, while we will also examine the sensitivity of the VA-index with
respect to parameters such as the similarity metric ξ used and the value of � in Eq (5).

Sensitivity to � and ξ

We begin by evaluating the performance of the VA-index with respect to the choice of � and
ξ. In particular, we consider three different similarity functions, namely cosine similarity, cor-
relation similarity and a Euclidean distance-based similarity (S3 Text). Fig 3 depicts our results
as a function of the value of � in Eq (5).

As we can see the performance is very similar regardless of the specific similarity metric
used. Furthermore, the RMSE error is much lower compared to the baseline for a wide range of
values of �. These results imply that the VA-index is not sensitive to the choice of ξ and �,
even though a suggested configuration appears to be the cosine similarity with a value of � = 1.

Comparison with the baseline
We now compare the VA-index α with the baseline assortativity coefficient rbase and evaluate
the performance based on different levels of variance s, correlation c and density δ of S (S2
Text). The left part of Fig 4 depicts the results with regards to variance s, while all the VA-
index results presented are obtained with cosine distance and � = 1. As we can see for low lev-
els of variance, the two methods perform equally well. However, with an increase in the vari-
ance of the elements of the nodal vector attribute x, the VA-index clearly outperforms the
baseline with respect to the achieved RMSE. An increased variance at the vector elements leads
the baseline coefficient to systematically make erroneous estimations for each dimension,
which add-up at the end. In contrast, the VA-index considers all the elements of the vector
simultaneously and hence, alleviates these problems. Similarly, our method outperforms the
baseline metric regardless of the correlation between the elements of x or the fraction of non-
zero off-the-diagonal elements of S.

Next we compare the absolute errors made by the VA-index and the baseline. In particu-
lar, with rtrue,ν being the true assortativity of network ν, rbase,ν being the assortativity obtained
from the baseline method and αν being the VA-index, we calculate:

Den ¼ jrtrue;n � anj � jrtrue;n � rbase;nj ð8Þ

A value of Δeν < 0 implies that the VA-index can better recover the ground truth assorta-
tivity of a network. Hence, for every synthetic network we create we calculate Δe and perform a
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Fig 3. Sensitivity of our metric with respect to ξ and �. The proposed VA-index outperforms the baseline extension of assortativity coefficient.
Furthermore, it does not appear sensitive to the choice of � (Eq (5)) and/or similarity metric.

doi:10.1371/journal.pone.0146188.g003

Fig 4. Comparison of the VA-indexwith the baseline extension of assortativity coefficient. The VA-index outperforms the baseline metric in all
cases, irrespective of x’s elements variance, correlation and the density δ of Σ. Nevertheless, for low variance the baseline performs almost equally as good
with respect to the RMSE.

doi:10.1371/journal.pone.0146188.g004
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two-sided t-test for the mean value of Δe, where the null hypothesis is μΔe = 0, i.e., the two
methods provide on average the same absolute error. If the null hypothesis is rejected, then the
sign of μΔe will inform us which method provides smaller absolute error on average. Our results
indicate that for all the three different similarity metrics we examined, μΔe < 0, with a p –
value< 0.01. Table 1 further depicts our results split based on the variance and correlation of
the vector elements and the density of S. More specifically, we present the mean value of Δe as
well as the corresponding significance level. As we can see the VA-index always outperforms
the baseline, except for the case of small variance where μΔe > 0. However, in these cases the
absolute value of μΔe is very small (close to 0) and one order of magnitude smaller compared to
that for the rest of the cases where the VA-index outperforms the baseline. Furthermore, the
significance levels of this difference are also smaller compared to the rest of the cases. Hence,
we can conclude that our results imply that the VA-index is able to better recover the true
assortativity of the network compared to a baseline extension of the assortativity coefficient.

Bias and Variance of the VA-index

Finally we examine the bias and the variance of the VA-index as an estimator.
Definition 0.1 Consider the real-valued statistic U for estimating a real number θ 2 <.

Then, we define as the bias of the estimator U, bias(U), the difference between this estimator’s
expected value and the true value of the parameter being estimated, i.e.,

biasðUÞ ¼ EðU � yÞ ¼ EðUÞ � y ð9Þ

Based on the above definition, an unbiased estimator is one whose expected value is equal to
the true value being estimated. An unbiased estimator is clearly a desired property. However,
the variance of the estimator is another property whose value has implications on the quality of

the estimation. With the mean square error of the estimator beingmseðUÞ ¼ E½ðU � yÞ2�, we
have for the variance, var(U):

mseðUÞ ¼ varðUÞ þ bias2ðUÞ ð10Þ

Ideally we would like to have an unbiased estimator with small variance (i.e., small mean
square error). However, this is not always possible and hence, we evaluate the performance of
the VA-index with respect to the bias and variance as a function of its parameter �. In partic-
ular, we generate 100 synthetic network topologies. We choose the Euclidean-based similarity
metric to compute the corresponding VA-index, since this is the worst-case setting that gives
the largest error (Fig 3). In order to be able to compute the empirical bias and variance of VA-

Table 1. Mean differenceΔeν between the absolute error of our method and the baseline. The significance codes correspond to the two-sample t-test: 0
‘***’ 0.01 ‘**’ 0.05 ‘*’ 0.1 ‘.’ 1 ‘’. Low, medium and high density correspond to δ 2 [0, 0.2], δ 2 [0.4, 0.6] and δ 2 [0.8, 1] respectively.

Dataset ξ Low Medium High

Variance Cosine 0.0120*** -0.0691*** -0.0254***

Euclidean 0.0067** -0.0523*** -0.0228***

Correlation 0.0064** -0.0649*** -0.0254***

Correlation Cosine -0.0278*** -0.0267*** -0.0280***

Euclidean -0.0228*** -0.0230*** -0.0249***

Correlation -0.0267*** -0.0287*** -0.0316***

Density Cosine -0.02312*** -0.0282*** -0.0312***

Euclidean -0.0217*** -0.0262*** -0.0228***

Correlation -0.0267*** -0.0295*** -0.0311***

doi:10.1371/journal.pone.0146188.t001

Quantifying Assortativity Patterns in Networks with Multidimensional Nodal Attributes

PLOS ONE | DOI:10.1371/journal.pone.0146188 January 27, 2016 9 / 13



index we perform this estimation 50 times (through 50 different applications of the bootstrap
process) for each topology and value of �. Fig 5 depicts our results. As we can see both the bias
and variance of the VA-index are small (in absolute values). However, in the range (1, 2) for
� we see that the variance is “minimized”, while in the range (0, 1) the bias exhibits a small
absolute value (as compared to the one in the range (1, 2)). Taking into consideration both the
bias and the variance of the VA-index, values close to � = 1 appear to be appropriate for mini-
mizing the mean square error all together, similar to what we identified above in Fig 3.

Application of VA-index on quantifying mobility assortativity patterns
Next we turn our attention to a real network dataset, and in particular, a dataset from a location-
based social network (LBSN), namely, Gowalla, provided to us by Scellato et al. [23]. An LSBN
consists of two components; (i) the social component that resembles any other digital social net-
work, where users are connected based on “friendship” relations, and, (ii) the location component,
which describes the mobility of the users based on their voluntary sharing of their whereabouts
(through check-ins). Our dataset consists of 10,097,713 check-ins performed by 183,709 users in
1,470,727 distinct venues. Furthermore, there are 765,871 edges in the social (friendship) network.

Based on the above, every user u in this type of networks can be associated with a vector cu
that captures the places he has visited. In particular, the ith element of the vector is equal to the
number of check-ins that u has in location/venue i. An important question that arises then is
“What are the assortativity patterns of this network with respect to the mobility trails of the
users?”. The answer to this question has implications for the underlying spatial homophily of this
network [7, 24]. For answering this question we rely on the VA-index, where we use the cosine
similarity as our similarity metric. In particular, the similarity between users u and v is defined as:

xu;v ¼
cu � cv

jjcujj2jjcvjj2
ð11Þ

Fig 5. The bias and the variance of the VA-index. Both the bias and the variance of the VA-index have small absolute values. However, values around
� = 1 appear to provide the best performance with regards to minimizing the mean square error of the estimator.

doi:10.1371/journal.pone.0146188.g005
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For our randomization we will consider two scenarios. First, we completely randomize the
edges in the network, essentially sampling the G(n,m) Erdős-Rènyi random graph ensemble.
Nevertheless, this will lead to an underestimation of the average pairwise similarity since the
vast majority of (randomly selected) pairs will inevitably live in long distances and hence, the
chances of having common venues visited will be small. Therefore, we will also perform a ran-
domization where we will control for the distribution of the home-location distance of friends
in the real network. Table 2 presents the computed average similarities for the real network as
well as the 95% confidence interval from 100 instances of the two randomization processes. As
we can notice the average pairwise similarity in the real network is significantly higher as com-
pared to the one for the randomized networks. In particular, the average similarity in the real
network is higher than the upper bound of the 95% confidence interval for both cases. It is also
interesting to observe that the average similarity for the pure random graph network model is
also significantly smaller as compared to the one in which we control for the home-location
distance distribution of connected nodes.

We can then compute the VA-index, which is equal to 0.94 (p-value< 0.05), if we con-
sider the pure ER network model as our baseline, and 0.31 (p-value< 0.05), if we control for
the home-location distribution in our randomized baseline. As we can see the selection of the
baseline (randomization) model is really important and is application specific. For example, in
the scenario examined it is clear (for the reasons aforementioned) that the ER model overesti-
mates the observed mixing patterns in the network.

Discussion
In this work we design an assortativity metric, VA-index α, for multi-attributed networks.
Our evaluations on synthetic data show that our metric can identify the mixing patterns of the
network and outperforms a baseline extension of the assortativity coefficient. We believe that
our work will not only trigger more research on this largely ignored to date topic but it will also
drive the development of related metrics for composite networks. The latter can be thought of
as multidimensional networks with multiple types of edges and nodes. In such networks a
direct application of metrics developed for traditional (unimodal) networks will lead to a large
information loss [26]. For example, as alluded to above, when there are multiple types of edges
attached to a node, the degree of a node is not a scalar number but a vector that describes the
number of different types of edges attached to the node. Hence, using the assortativity coeffi-
cient to calculate the degree mixing of this network will ignore significant amount of informa-
tion. Nevertheless, the VA-index will be able to take into consideration the various types of
degree simultaneously and hence, provide a more accurate view of the degree assortativity in
composite networks.
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Table 2. There is a clear positive assortativity mixing with regards to the mobility trails of Gowalla
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