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Case Study of Model-Based
Inversion of the Angle Beam
Ultrasonic Response From
Composite Impact Damage
The U.S. Air Force seeks to improve lifecycle management of composite structures. Non-
destructive characterization of damage is a key input to this framework. One approach to
characterization is model-based inversion of ultrasound inspection data; however, the
computational expense of simulating the response from damage represents a major hur-
dle for practicality. A surrogate forward model with greater computational efficiency and
sufficient accuracy is, therefore, critical to enable damage characterization via model-
based inversion. In this work, a surrogate model based on Gaussian process regression
(GPR) is developed on the chirplet decomposition of the simulated quasi-shear scatter
from delamination-like features that form a shadowed region within a representative
composite layup. The surrogate model is called in the solution of the inverse problem for
the position of the hidden delamination, which is achieved with <0.5% error in <20 min
on a workstation computer for two unique test cases. These results demonstrate that solv-
ing the inverse problem from the ultrasonic response is tractable for composite impact
damage with hidden delaminations. [DOI: 10.1115/1.4040233]

1 Introduction

The increasing use of polymer–matrix composites within Air
Force structures has fueled a growing demand for improved life-
cycle management of these materials [1]. The Air Force Aircraft
Structural Integrity Program guidelines for metallics provide the
template for this improvement, where validated damage progres-
sion models enable tolerance to assumed defects for an acceptable
measure of risk [2]. Composites damage progression models are
sensitive to the geometric complexity of typical damage modes.
Consequently, nondestructive evaluation (NDE) techniques are
needed to volumetrically represent damage for improved lifecycle
management.

Currently viable composite NDE methods include X-ray-
computed tomography (XCT) and ultrasound. XCT scans volu-
metrically reconstruct internal damage, making it an obvious path
for feature characterization. Nevertheless, XCT cannot be used in
situ as a single-sided inspection and generally requires additional
safety precautions. By contrast, normal incidence longitudinal
wave ultrasound can detect the presence of delaminations and
matrix cracking in a single-sided inspection (Fig. 1(a)). However,
it is incapable of insonifying the hidden damaged region under the
top delamination layers (Fig. 1(b)). A novel angle beam shear
wave method addresses this limitation by using direct and back-
wall reflected quasi-shear waves to inspect for hidden ply delami-
nations and matrix cracks [3,4]. This approach builds on prior
work on polar backscatter ultrasonic techniques [5–8]. In this
way, additional information from hidden damage features can be
captured and processed to characterize the damage producing the
observed response. It should be noted that phased array trans-
ducers (either in a normal incidence or angle beam shear configu-
ration) may provide additional information; however, for the
purposes of this work, the simplest sensing approach (single

element, pulse-echo inspection) was selected based on the com-
plexity of the material and internal damage.

One challenge with this angle beam ultrasonic inspection tech-
nique is resolving the multiple signals scattered from delamination
edges at different depths. Manual interpretation of the paths for
each signal is complicated, as the scattered signals interact with
the composite panel surfaces and neighboring delaminations.
Model-based inversion is proposed to address this challenge. This
approach uses nonlinear least-squares based optimization to esti-
mate the parameters of a physics-based forward model by mini-
mizing an objective function defined as the squared residual
between the model output and the observed response. Prior work
has considered flaw reconstructions with ultrasonic NDE in aniso-
tropic materials [9–13]. Other efforts have examined the use of
multipath signals for characterizing the location of scatterers
[14–17]. For example, Hutt and Simonetti used a strongly scatter-
ing planar interface as a mirror to look behind the object to
achieve complete reconstruction [17]. Some studies have investi-
gated the identification of multiply diffracted ultrasonic waves
from point scatterers, although many of them have focused on
medical ultrasound applications [18,19]. Most approaches out-
lined within the literature have leveraged approximate models like
ray theory for improving reconstruction. The proposed solution
builds on prior work using numerical solutions of parameterized
models to invert the damage state [20–22]. The specific problem
of inverting the location of multiple impact damage discontinu-
ities in a thin composite panel has not been addressed to date. In
this work, a simplified case study was investigated to demonstrate
the model-based inversion approach.

2 Materials and Methods

The geometry of impact damage within a composite is depend-
ent on the size, shape, and velocity of the impactor; the interaction
of the deforming impactor with the shape and orientation of the
structure; and the current mechanical state of the material as a
function of as-manufactured properties, internal defects, thermo-
mechanical degradation, and environment. These variables result
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in asymmetric, highly irregular damage contours. Bench-top
impact tests on laboratory coupons can control some of these vari-
ables, albeit with little reduction in the geometric complexity of
the damage.

A simple representative problem, estimation of the location of a
hidden delamination beneath a top delamination, was considered
to reduce geometric complexity to a level suitable for a feasibility
study. Two cases are presented in Fig. 2: in case 1, the lower (hid-
den) delamination was fixed in z with the x-position iterated
through nine values; in case 2, the lower delamination was fixed
in x with the z-position iterated through eight values.

The parameters for the study follow existing specimens and lab-
oratory testing conditions [23]. A 3.2 mm thick, 24 ply IM7/977-3
composite panel of [�45 deg/90 deg/45 deg/0 deg]3 s layup with
simplified delamination-like features was considered. The simu-
lated ultrasonic transducer was 6.35 mm in diameter, with a center
frequency of 5 MHz and a focal length of 19.05 mm. The angle of
incidence was set to 24 deg, near the first critical angle of the
homogenized composite (�27 deg) such that the incident beam
was refracted into quasi-shear modes at the front-wall. The simu-
lated delaminations were each 12.7 mm long. Their locations did
not directly coincide with ply interfaces but did not exceed a mini-
mum of a single ply separation in the z-direction. These cases pro-
vide an elegant demonstration of the proposed method of solving
the inverse problem while leaving room for follow-on studies

addressing the challenges of a much larger set of pertinent
parameters.

3 Calculation

3.1 Forward Model and Need for Surrogate Representa-
tion. The efficiency of model-based inversion is proportional to
the well-posedness of the problem and inversely proportional to
the cost of each forward model iterate. Two computational
tools—CIVA FIDEL 2D and PZFlex—are tailored for ultrasound
simulation of composite materials [24–26]. CIVA FIDEL 2D cou-
ples semi-analytical beam calculations with a finite difference
time domain (FDTD) solver acting on a user-specified region to
model two-dimensional (2D) wave propagation for simple geome-
tries and boundary conditions [27,28]. Comparatively, PZFlex
uses finite element analysis with an optimized explicit solver to
simulate 2D or three-dimensional wave propagation on any geom-
etry with complex boundary conditions. Both tools can simulate a
spatially dense B-scan response from thin delamination-like fea-
tures in a representative composite material within several hours;
however, typical inverse problems often require hundreds of
model calls. For a 2D ultrasonic inspection scenario, solution
times would range from days to weeks. When the physics-based
model is computationally expensive, a surrogate will often be
developed that sacrifices some accuracy for a decrease in

Fig. 2 Schematics of surrogate model demonstration cases 1
(a) and 2 (b). The transducer is 6.35 mm in diameter, with a cen-
ter frequency of 5 MHz and a 19.05 mm focal length. Delamina-
tion features are 12.7 mm long. The diagramed scan path is not
to scale: (a) hidden delamination varying in x-direction, fixed z
at z 5 2 mm and (b) hidden delamination varying in z-direction,
fixed x at x 5 1.2 mm.

Fig. 1 Impact delamination in a composite coupon. Amplitude
and time-of-flight data describes the complexity of composite
impact damage and hidden delamination regions invisible to a
normal incidence longitudinal wave single-sided inspection: (a)
normal incidence C-Scan of impact damage with visible petal-
shaped delaminations based on amplitude data and (b) repre-
sentation of a hidden region (white) in a delamination field
(black) based on time-of-flight data.
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computational expense [29]. The need for an efficient surrogate
forward model is evident for the ultrasound inverse problem; thus,
CIVA was chosen for surrogate model development based on its
greater computational efficiency, the dimensionality of the sce-
nario, and previous validation work [4].

Previous work demonstrated the feasibility of an ultrasound
surrogate model for the case of a single delamination placed in
four unique z-positions [30]. In this work, a similar model is
developed on the more challenging case of a hidden delamination.
Model development began with selection of the representative

Fig. 3 Chirplet representation of an example B-scan. (a) The original B-scan from CIVA. (b) The chirplet reconstruction of
the B-scan. (c) The residual between the original B-scan and the reconstruction. The color bar represents the amplitude of
the response in (a) and (b) and the amplitude of the residual in (c) [34].

Fig. 4 Hidden delamination simulations for nine hidden delamination x-positions. The x-position range was selected to ensure
that the delamination was hidden but not so far from the tip of the topmost delamination that indications from the hidden
delamination were no longer visible. The color bar describes the amplitude of the response: (a) x 5 0.8 mm, (b) x 5 1.0 mm, (c)
x 5 1.2 mm, (d) x 5 1.4 mm, (e) x 5 1.6 mm, (f) x 5 1.8 mm, (g) x 5 2.0 mm, (h) x 5 2.2 mm, and (i) x 5 2.4 mm.
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Fig. 5 Gaussian chirplet parameters and GPR estimates for case 1. Open circles are parameters from CIVA and
closed circles are parameter estimates. (a) and (c) vary smoothly, while (e) and (f) exhibit strong variation. (a)
Reflection 1 amplitude, (b) reflection 2 bandwidth, (c) reflection 1 time of arrival, (d) reflection 2 center frequency,
(e) reflection 8 phase, and (f) reflection 3 chirp rate.
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problem, which was modeled in CIVA FIDEL 2D for a sparse set
of design points containing the inverse solution. Chirplet decom-
position was applied to each simulated B-scan; then, the surrogate
model was constructed by interpolating on the chirplet parameter
space via Gaussian process regression (GPR). The resulting fits
formed the surrogate model used to solve the inverse problem for
the ultrasonic response from a hidden delamination with an
unknown x- or z-position.

3.2 B-Scan Simulation. Several assumptions were made for
the simulation. First, it was assumed that the composite was flat
and parallel, which is valid for a simulation-based study but likely
invalid for real composite panels. Second, it was assumed that
delaminations could be modeled as discontinuities with zero
thickness parallel to the plies. While acceptable for a simulation-
based study, real delamination morphologies should be incorpo-
rated to validate this assumption. Finally, it was assumed that
water is present on the backside of the composite. This assump-
tion would hold true for a real panel scanned via immersion ultra-
sound; however, an air back-wall is more likely for real inspection
scenarios.

The model consisted of a water path to simulate an immersion-
based inspection, the plies forming the composite panel, and
delamination features. Because of the FIDEL package, the plies
were modeled individually (the composite was not homogenized).
For these boundary conditions, a 2D FDTD region was set to sur-
round the near edges of the delaminations and the composite panel
boundaries. The FDTD solution region moves with the scanned
probe, so the lateral extent was set to a large size (20 mm) in order
to include both direct and full skip interactions with the far-wall.
Perfectly matched layers were also applied to the lateral bounda-
ries to help control fictitious signals from the model domain
edges. A mesh resolution was fixed to 1/20th of the center fre-
quency wavelength. Additional details of the formulation can be
found in published literature [27,28]. B-scan images were

generated by scanning the transducer over a 6 mm path across the
top of the composite in 0.1 mm increments with a constant water
path of 17 mm. Simulations were performed on a HP computer
with two 12-core hyperthreaded processers (48 compute cores) at
2.5 GHz clock speed and 98 GB of RAM. Each B-scan required
�360 min of simulation time. An example simulated B-scan for a
single delamination located at 1.0 mm in depth from the top sur-
face is shown in Fig. 3(a). In this case, the largest signal is a direct
diffraction from the delamination edge. Signals later in time corre-
spond to the multiple paths for diffracted responses interacting
with the top or bottom surfaces of the composite. Half-skips
involve a single reflection off of the back-wall surface, while full-
skips involve two reflections off of the back-wall. These signals
shift in time and space according to the position of the delamina-
tion edge.

3.3 Chirplet Decomposition. It is nontrivial to produce B-
scans via the physics-based forward model given the nature of the
shifting transient signals with varying delamination position and
the size of the simulated B-scans results (61 scan steps� 1350
time steps� 80k data points). To reduce the dimensionality of for-
ward model results, individual A-scans were represented as a lin-
ear combination of Gaussian chirplets [31]. The Gaussian chirplet
is defined as

f tð Þ ¼ b exp �a1 t� sð Þ2
� �

cos 2pfc t� sð Þ þ /þ a2 t� sð Þ2
� �

(1)

where b is the amplitude of the Gaussian envelope, a1 is the band-
width of the Gaussian envelope, s is the time of arrival of the
response, fc is the center frequency, / is the phase angle, and a2 is
the chirp rate. The chirp rate, a2, captures the variation of fre-
quency with respect to time and represents a substantial improve-
ment over a wavelet-based approach. The chirplet has been shown

Fig. 6 Comparison of CIVA and surrogate model B-scans: (a)–(c) x 5 1.2 mm and (d)–(f) x 5 2.0 mm. (a) and (d) depict the
original CIVA B-scan, (b) and (e) depict the chirplet reconstruction of the B-scan, and (c) and (f) depict the residual between
the CIVA B-scan and the chirplet reconstruction. The residual is a mixture of untracked reflections and incomplete chirplet
fitting and is everywhere low. (a) CIVA B-scan, x 5 1.2 mm, (b) chirplet reconstruction, x 5 1.2 mm, (c) residual, x 5 1.2 mm, (d)
CIVA B-scan, x 5 2.0 mm, (e) chirplet reconstruction, x 5 2.0 mm, and (f) residual, x 5 2.0 mm.
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to model individual ultrasonic reflections as a sparse, energy pre-
serving representation of the data without any a priori information
on the expected response [31]. The chirplet parameters can be
estimated from the analytic signal and further refined using a
Gauss–Newton algorithm [32]. In the chirplet decomposition
algorithm suggested in Refs. [31–33], chirplets are fit successively
to individual A-scans until a reconstruction error tolerance is
reached. The method used here differs slightly; rather than faith-
fully reconstructing each A-scan, chirplets only reproduced reflec-
tions in the B-scan that represented responses from a
delamination. This was achieved by screening out reflections from
the front-wall and back-wall of the composite—the remaining
reflections were visually segmented and fitted. The surrogate
model predicts how these individual reflections change with the
position of the hidden delamination. Chirplet decomposition
reduces the number of parameters needed to represent the B-scan
to 6

PN
j¼1 nj, where N is the total number of distinct reflections,

and nj is the number of transducer positions containing a signal
from the jth reflection. As an example, Fig. 3 depicts a B-scan
containing �80k samples, while the chirplet reconstruction is
defined by �360 chirplet parameters [34].

3.4 Gaussian Process Regression. Techniques such as splin-
ing, support vector machines, and GPR were considered for use as
a surrogate for the physics-based forward model. Gaussian pro-
cess regression, also known as kriging, was chosen as the meta-
model for its efficiency, robustness, and flexibility, and has a
history of use as a metamodel [35–37]. A type of supervised

learning, GPR generates input–output mappings from the training
data. The estimation of the function value f at a test point u is
described by

f uð Þ ¼ l uð Þ þ cT
u Cþ r2

nI
� ��1

y� lðsÞð Þ (2)

The assumed mean function, l, describes the general trend of the
data. Both the covariance vector cu between the test point(s) u and
the sample points s and the covariance matrix C between the sam-
ple points s depend on the assumed covariance function. In the
previous formulation, the known responses y recorded at the sam-
ple points s are assumed to be the sum of the unknown latent func-
tion values f(s) and independent, identically distributed Gaussian
noise with variance rn

2. For this application, the inputs s are given
by the transducer location and x- or z-position of the delamination,
while the outputs y are the value of the chirplet parameter b, a1, s,
fc, /, or a2. For the case of simulation data, the variance rn

2 is
assumed to be zero. The outputs f are the estimates of the chirplet
parameters for the transducer locations at intermediate x- or z-
positions of the hidden delamination.

Development of the GPR model begins with selection of the
mean and covariance function. Both are assumed to be stationary.
Example functions tested for fitting are presented for the mean
(Eq. (3)) and covariance (Eq. (4))

l uð Þ ¼ c
ao þ a1uþ Lþ anun

� �
(3)

Fig. 7 CIVA B-scan (a), inverse solution (b), surrogate model evaluated at the inverse solution (c), and
the residual in decibels (d). The inverse solution has an error of 0.22%, and the surrogate model at the
inverse solution compares very well with the CIVA B-scan. (a) CIVA B-scan for x 5 1.3 mm, (b) inverse
solution for 50 initial guesses over 20 iterations, (c) surrogate model evaluated at x 5 1.297 mm, and (d)
residual in decibels.
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k si; sjð Þ ¼
exp �ksi � sjk2=l
� �

exp �ksi � sjk2
2=2l2

� �
8<
:

9=
; (4)

In Eq. (3), u are the test point(s), c is a constant, ai are polynomial
coefficients, and n is the order of the term. In Eq. (4), s are the
sample points and jj jj2 denotes the Euclidean distance. The
parameter l describes how rapidly the correlation between samples
decreases and is a hyperparameter of the GPR model optimized
via leave-one-out cross validation on the input data; thus, the
value of l varies between parameters and reflections [38]. Selec-
tion of the mean and covariance functions is often guided by
physics-based expectations of the response; however, mathemati-
cally rigorous model selection techniques such as the Akaike
information criterion (AIC, Eq. (5)) can be applied

AIC ¼ � 2=Nð ÞE log lik½ � þ 2d=Nð Þ (5)

The AIC rewards model accuracy (the first term, where N is the
number of samples) while penalizing complexity (the second
term, where d is the number of model parameters), with better

models producing more highly negative values [39]. For this
work, the response from each parameter was fit with every combi-
nation of the selected mean and covariance functions, with the
combination producing the lowest AIC selected as the optimal set
for that parameter. The surrogate model results from the best per-
forming mean and covariance function combination with an opti-
mized hyperparameter l. An input vector u is developed for each
intermediate x- or z-position of the hidden delamination and
applied to the GPR model. The output of the model is the estimate
of the selected parameter for a given reflection.

4 Results and Discussion

4.1 Case 1: x-Varying, z-Fixed. For this demonstration, the
z-position of the lower delamination was fixed at 2 mm from the
upper delamination, while x ranged from 0.8 mm to 2.4 mm in
nine steps from the leftmost edge of the upper delamination. This
range was selected due to the evident variations in reflection posi-
tion and intensity at each delamination position. Changes between
B-scans diminish drastically beyond x¼ 2.4 mm, resulting in
regions where unique solutions to the inverse problem

Fig. 8 Hidden delamination simulations for eight second-delamination z-positions. The z-position range was selected to ensure
that the second delamination was hidden but not so close to the topmost delamination that the reflections fully merge and
become indistinguishable. The color bar describes the amplitude of the response: (a) z 5 1.1 mm, (b) z 5 1.3 mm, (c) z 5 1.5 mm,
(d) z 5 1.7 mm, (e) z 5 1.9 mm, (f) z 5 2.1 mm, (g) z 5 2.3 mm, and (h) z 5 2.5 mm.
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hypothetically do not exist. The temporospatial translations of
nine reflections were tracked across each B-scan. These reflections
were selected in order of decreasing amplitude, with the bounds
of each reflection governed by the envelope of the chirplet in the
time dimension and the threshold for fitting a chirplet to an
observed signal in the spatial direction. The B-scans used for
building the surrogate model are presented in Fig. 4. Tracked
reflections generally maintain their original shape as the hidden
delamination varies from x¼ 0.8 mm to x¼ 1.4 mm, although the
strength of the response from later reflections begins to diminish.
From x¼ 1.4 to x¼ 2.0 more reflections appear, while those later
in time continue to decrease in amplitude. Finally, later reflections
diminish to the point where their amplitude is below the threshold
for chirplet fitting between x¼ 2.0 and x¼ 2.4.

Sample data were drawn from Gaussian chirplet parameters for
a given delamination x-position. Three mean basis functions (con-
stant, linear, and quadratic) (Eq. (3)) and two covariance basis
functions (Eq. (4)) were competed for each parameter fit using the
AIC. In general, the Gaussian covariance function provided the
most accurate representation of the observed data. The optimal
mean function varied from parameter to parameter, although less
sensitivity to the mean function was observed. To demonstrate the
surrogate model for case 1, selected Gaussian chirplet parameters
and the GPR model fits from the nine reflections for x¼ 1.3 mm
are presented in Fig. 5. Several of the parameters vary smoothly
across a given reflection (e.g., amplitude and time of arrival, Figs.
5(a) and 5(c), respectively), although few parameters are uni-
formly smooth across all reflections (e.g., reflection eight phase
and reflection three chirp rate, Figs. 5(e) and 5(f), respectively).
As the quality of the chirplet representation is most sensitive to
the amplitude and time of arrival of the signal, the smoothness of
the response from these parameters is highly encouraging for
accurate representation of an intermediate B-scan location.

Fitted parameters were used to reconstruct the B-scan for test
positions of x¼ 1.2 mm and x¼ 2.0 mm as presented in Figs.

6(a)–6(c) and 6(d)–6(f), respectively. The quality of the surrogate
was judged by the residual between the simulated B-scan for that
delamination location and the estimated B-scan. Construction of
the B-scan from the surrogate model took 52 ms. As the nine
tracked reflections were selected based in order of decreasing
amplitude, the residual for both cases is dominated by low-
amplitude reflections; however, some response from tracked
reflections (most notably the residual arising from the first, largest
reflection) was not fully modeled by the chirplet fits.

The true performance of the surrogate model is measured by its
ability to rapidly and accurately invert a B-scan with a delamina-
tion in an unknown position. This was tested by first simulating a
CIVA B-scan for an intermediate point in the surrogate model
(lower delamination positioned at x¼ 1.3 mm). Next, an optimiza-
tion algorithm was applied to minimize the residual sum-of-
squares between the supplied B-scan and that generated by the
surrogate model. As reflections may appear or disappear as the x-
position of the hidden delamination is changed, an algorithm that
handles discontinuities in the search space was required. The dif-
ferential evolution (DE) algorithm was, thus, selected [40].

The CIVA B-scan, initial guesses and final solution of the DE
algorithm, surrogate model evaluated at the final solution, and the
residual in decibels are presented in Figs. 7(a)–7(d), respectively.

Twenty iterations of the DE algorithm were evaluated using 50
initial points covering the possible solution space, resulting in a
final solution of x¼ 1.297 mm. This result has an error of 0.22%
with a runtime of �18 min on a standard workstation. Visually,
the B-scan reconstructed for x¼ 1.297 mm appears nearly indis-
tinguishable from the CIVA B-scan at x¼ 1.3 mm, further demon-
strating the quality of the inversion.

4.2 Case 2: z-Varying, x-Fixed. For case 2, the x-position of
the lower delamination was fixed at 1.2 mm from the leftmost
edge of the upper delamination, while z ranged from 1.1 mm to

Fig. 9 Comparison of CIVA and surrogate model B-scans, (a)–(c) z 5 1.3 mm and (d)–(f) z 5 2.1 mm. (a) and (d) depict the origi-
nal CIVA B-scan, (b) and (e) depict the chirplet reconstruction of the B-scan, and (c) and (f) depict the residual between the CIVA
B-scan and the chirplet reconstruction. The residual is a mixture of untracked reflections and incomplete chirplet fitting and is
everywhere low: (a) CIVA B-scan, z 5 1.3 mm, (b) chirplet reconstruction, z 5 1.3 mm, (c) residual, z 5 1.3 mm, (d) CIVA B-scan,
z 5 2.1 mm, (e) chirplet reconstruction, z 5 2.1 mm, and (f) residual, z 5 2.1 mm.
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2.5 mm from the upper delamination in eight steps. As before, the
range of hidden delamination z-positions was chosen to ensure
distinct variations in the intensity and position of the tracked
reflections. The temporospatial translations of nine reflections
were tracked across each B-scan. Reflections were selected in
order of decreasing amplitude, with the bounds of each reflection
governed by the envelope of the chirplet in the time dimension
and the threshold for fitting a chirplet to an observed signal in the
spatial direction. The B-scans developed for the surrogate model
are presented in Fig. 8. As the hidden delamination moves from
z¼ 1.1 mm to z¼ 1.5 mm, the reflections around 27 ls increase in
size and complexity, although the general shape of the response
remains mostly constant. Complex reflections beyond 25 ls
appear and shift with the z-position of the hidden delamination
from z¼ 1.5 mm to z¼ 2.1 mm.

Fitted parameters were used to reconstruct the B-scan for test
positions of z¼ 1.3 mm and z¼ 2.1 mm as presented in Figs.
9(a)–9(c) and 9(d)–9(f), respectively. The quality of the surrogate
was judged by the residual between the simulated B-scan for that
delamination location and the estimated B-scan.

Construction of the B-scan from the surrogate model took
61 ms. As in case 1, the residual is dominated by low amplitude
reflections or incomplete fitting of the primary reflection.

To test this case, a CIVA B-scan was generated for the lower
delamination positioned at z¼ 2.2 mm. The CIVA B-scan, initial
guesses and final solution of the DE algorithm, surrogate model
evaluated at the inverse solution, and residual in decibels are pre-
sented in Figs. 10(a)–10(d), respectively. The DE algorithm was

again used with 20 iterations on 50 initial points covering the pos-
sible solution space. An inverse solution of z¼ 2.191 was found.
This result has error of 0.41% with a runtime of �14 min on a
standard workstation. As observed in case 1, the B-scan recon-
structed for z¼ 2.191 mm appears nearly indistinguishable from
the CIVA B-scan at z¼ 2.2 mm, further demonstrating the quality
of the inversion.

5 Conclusions

The ultrasonic response from a composite material with embed-
ded delamination-like features was simulated for two test cases.
Gaussian chirplets were fit to selected reflections within the simu-
lated B-scans. Chirplet parameters and the position of the shifting
coordinate (x or z) were used to develop GPR surrogate models.
These models were used to estimate the unknown position of the
hidden delamination for each test case. The unknown positions
were rapidly estimated to within <0.5% of the actual value, dem-
onstrating that an efficient surrogate model can be developed on
ultrasound simulations and that inversion of the ultrasonic
response from delamination-like features is tractable for compos-
ite impact damage with hidden delaminations.

Practical application begins with an initial model of the mate-
rial instantiated with the general shape of the delamination field
based on a priori knowledge of relevant parameters (impact
energy, layup, etc.). B-scans for permutations of this field would
be generated, decomposed by the chirplet transform, and parame-
terized with Kriging to produce a surrogate model. The residual

Fig. 10 CIVA B-scan (a), inverse solution (b), surrogate model evaluated at the inverse solution (c), and the resid-
ual in decibels (d). The inverse solution has an error of 0.41%, and the surrogate model at the inverse solution com-
pares very well with the CIVA B-scan. (a) CIVA B-scan for z 5 2.2 mm, (b) inverse solution for 50 initial guesses over
20 iterations, (c) surrogate model evaluated at z 5 2.191 mm, and (d) residual in decibels.
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between the parameterized model and the B-scan of the actual
damage would be minimized, resulting in damage features match-
ing those within the real composite structure.

Several challenges drive future work. First, chirplet decomposi-
tion relies on accurately mapping distinct reflections within the B-
scan. While some degree of separation between responses is
imposed by layup and ply thickness, the proximity of damage fea-
tures often results in merged reflections. The current mapping
approach requires user interpretation of the total response, which
only compounds the challenge of selecting reflections to fit within
the surrogate model. Algorithmic identification of individual
reflections is, thus, crucial to enabling the inverse solution for
complex damage morphologies. Second, the inverse problem was
demonstrated for design points where reflections from the hidden
delamination remain within the B-scan. These indications vanish
as the hidden feature becomes further occluded by the upper
delamination. Successive positions of the hidden delamination
will eventually result in the same observed response, resulting in
nonunique solutions to the inverse problem. Better methods of
insonifying the hidden region is thereby critical to extending the
range of tractable design cases. Third, experimental noise and var-
iability from factors such as probe misalignment, water path, and
transducer representation (e.g., dimensions/properties of the mod-
eled piezoelectric crystal, backing material, or lens) are antici-
pated to impact the quality of the inverse solution. Parameter
sensitivity studies will be employed to understand the impact of
these sources of uncertainty. Finally, the techniques developed
within this work could be extended to other relevant composite
damage features, including fiber breakage and matrix cracking.
Each feature type dominates failure for specific composite config-
urations, rendering them equally important in predicting the
remaining loading cycles survivable by the damaged component.
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