Hardening Logic Encryption against Key Extraction Attacks
with Circuit Camouflage

Bryan J. Wang, Lap Wai Chow, James P. Baukus, and Ronald P. Cocchi
SypherMedia International, Inc.
5455 Garden Grove Blvd, Suite 300, Westminster, CA 92683

Abstract: Conventional logic encryption has been shown
to be weak against key extraction attacks from reverse
engineers. However, with the presence of camouflaged
logic gates, an adversary is fundamentally unable to use an
extracted netlist to back-trace observed outputs and
determine the state of key data bits at key-gate inputs.
Circuit camouflage hardens logic encryption and provides
independent protection as well.

Keywords: circuit camouflage; hardware obfuscation;
logic encryption; camouflage; obfuscation; SAT; key
extraction; reverse engineering; security; trusted electronics

Introduction

Integrated Circuit (IC) designs are vulnerable to IP theft
from reverse engineering, unauthorized cloning and over-
production, and device corruption due to Trojan insertion.
The risks to the IC industry have been steadily increasing
as reverse engineering capabilities increase, and as
worldwide IC production capabilities consolidate into a
small number of foreign entities.

Logic encryption, also called logic obfuscation, is a
hardware obfuscation technology that modifies a circuit so
that it operates correctly only when a set of newly-
introduced key-data inputs is correctly applied. The key is
known only to the original circuit designers and can be
programmed into the device’s non-volatile storage such as
one-time-programmable OTP memory at a secure facility
after manufacture. Without the key data, unauthorized
devices manufactured by the IC fabricator or by a third
party will not function correctly. [1]

Circuit camouflage is hardware obfuscation technology that
prevents reverse engineering of a fabricated device by
utilizing a relatively small number of camouflaged gates in
the design. A camouflaged cell or gate is a logic gate that
appears to have one function based on image analysis of
the cell layout, but in fact performs a different function.
The camouflaged gates appear identical to the library
standard cells used throughout the AISC, so it is not readily
apparent to a reverse engineer which cells are regular cells
and which are camouflaged cells [4-5].

A method to achieve highly effective protection can be
achieved through use of camouflaged gates in conjunction
with logic encryption. Use of camouflaged gates in
conjunction with logic encryption protects logic encryption
key data against known key extraction attacks.

422

Additionally, use of camouflaged gates provides an
additional, independent level of security against attackers
who are not in possession of the production mask data. If
the encryption key is compromised, all camouflaged cells
must still be correctly identified and modeled before the
circuit can be modeled and duplicated.

Security Threats to Logic Encryption

It has been shown that key data in a conventional logic
encryption scheme can be determined from the circuit
design in linear time with respect to the key length by
applying input vectors to an unlocked fabricated device,
observing device outputs, and using satisfiability checking
(SAT) software to infer the logic encryption key from the
observations and the gate-level netlist [2]. Conventional
logic encryption is also vulnerable to other attack models
[3]. However, an accurate gate-level netlist of the device is
required to perform any attack of this class because the
state of a device’s internal key-gate nodes must be inferred
from its primary outputs. When a number of the device’s
logic gates are obfuscated with circuit camouflage
technology, this type of attack becomes much more
difficult because a reverse engineer cannot extract a gate-
level netlist whose function matches that of the fabricated
device. Therefore, it is highly desirable to utilize
camouflaged cells in a logic encryption implementation.
Camouflaged gates may be used in the logic encryption
network as key-gates, control logic, or glue logic, and they
may also be used in the core logic of the fabricated circuit
itself.

Use of Appropriate Camouflaged Logic Cells

The term “circuit camouflage” has been used in
publications and in the industry to describe a variety of
hardware obfuscation technologies, not all of which will
have the desired effect of hardening logic encryption
implementations against key extraction attacks. An
effective camouflage implementation must hide both the
locations and the functions of the camouflaged cells. Two
effective implementations, Camouflaged Foundry Logic
Cells and a Fully Camouflaged Circuit, are discussed
below. An attacker faces the computationally infeasible
problem of considering multiple possible logic functions
for every gate in the design when analyzing either of these
camouflage implementations.

Distribution A: Approved for public release; distribution unlimited.

Camouflaged Foundry Logic Cells: Camouflaged logic
cells can be designed to mimic foundry library cells. An
ASIC would be constructed primarily with foundry library
cells, interspersed with a small number of camouflaged
foundry cells. The layouts of camouflaged foundry cells
are nearly identical to layouts of their reference foundry
cells, such that an attacker cannot readily differentiate
between a “normal” cell and a camouflaged cell. Each
camouflaged logic cell performs a different logical function
than its reference foundry logic cell.

Camouflaged Logic Cell
with Alternate Function

Foundry AND2 Logic Cell

Figure 1. Camouflaged foundry logic cells resemble foundry
logic cells but perform an alternate function. For each cell,
the left image shows its Metal1 layout and the right image

shows Poly, Contact and Active.

Fully Camouflaged Circuit: An ASIC, or a significant
portion thereof, can be comprised entirely of camouflaged
cells. In such a circuit, the layout appears to be a sea of
transistors wherein individual cell functions are not
discernable with modern reverse engineering techniques
[5]. The camouflaged cells are not designed to mimic the
physical designs of a pre-existing foundry library, but
instead are designed to appear virtually indistinguishable
from one another.

il

Figure 2. Camouflaged NOR2 gate (left) and NAND3 gate
(right) from a fully camouflaged circuit, Active layer

Hardening Logic
Extraction Attacks
Logic encryption is highly resistant to brute force attack
because the key length of a logic encryption
implementation can be arbitrarily long. With at 2" possible
key combinations, brute force attack quickly becomes
impractical. However, as stated previously, conventional
logic encryption has been shown to be weak against a class
of attacks that are aimed at inferring the logic encryption
key data using an unlocked fabricated device.

Encryption against Key

423

Threat Model: The capabilities of the attacker can be
summarized as follows:

1. The attacker has tools to reverse engineer an IC, such
as a SEM, and image processing software.

2. The attacker possesses at least two unlocked devices,
one for delayering and imaging and another to be used
as a golden reference for application of input vectors.

3. The attacker cannot readily differentiate between a
camouflaged cell and a regular cell (if camouflaged
foundry cells are used) OR the attacker cannot readily
determine the function of any camouflaged gate in the
design (if the circuit is fully camouflaged).

Description of Key Extraction Attack: The class of
published attacks against logic encryption can be
summarized as follows. Note that a gate-level netlist is a
necessary component of this class of attack.

1. The attacker obtains two unlocked devices, often
purchased on the open market.

2. The attacker extracts the gate-level netlist of the first
unlocked device using modern reverse-engineering
techniques.

3. The attacker, using analysis software and the extracted
gate-level netlist, develops one or more device input
vectors with the goal of determining one or more key
bits, which are observable at key-gate input nodes.

4. The attacker applies the input vectors from step 3 to
the second unlocked device and observes the device
outputs.

5. The attacker, using analysis software and the device’s
gate-level netlist, attempts to infer one or more key bits
using the results obtained in step 4.

6. The attacker repeats steps 3-5 until all key bits have
been determined.

The use of circuit camouflage technology in the device
prevents extraction of an accurate gate-level netlist of the
device. This introduces a number of functional
discrepancies between the attacker’s gate-level netlist and
unlocked device, which greatly complicates the attack
procedure. The number of functional discrepancies is
proportional to the number of camouflaged gates used in
the circuit. Since modern reverse-engineering techniques
cannot effectively differentiate a camouflaged gate from a
normal gate, the attacker is unable to readily determine
either the locations or the number of functional
discrepancies. Without an accurate gate-level netlist with
which to analyze the device’s behavior, it is not possible to
determine the key-data from inferring the state of key-gate
input nodes.

In a conventional circuit with logic encryption shown
below, an attacker extracts a gate-level netlist from a
fabricated device. When inputs are applied to the fabricated
device and outputs are observed, key data can be inferred

through application of Boolean logic on an extracted
netlist, shown by Rajendran et al.[3]

Figure 3. Inferring key bits K1 and K2 through application of
Boolean logic.

In a camouflaged circuit with logic encryption shown
below (Figure 4), an attacker extracts an erroneous gate-
level netlist (Figure 5) from a fabricated device. When
inputs are applied to the fabricated device and outputs are
observed, functional mismatches between observed and
simulated outputs will indicate to the attacker that the
extracted netlist is incorrect. Key data cannot be inferred
through application of Boolean logic on the erroneous
netlist until all netlist errors have been resolved.

Figure 4. Netlist of a fabricated circuit with camouflaged
logic gates KG1 and G4. The layouts of the camouflaged
gates suggest different functions than their actual functions.

Figure 5. The erroneous netlist extracted from the
fabricated device in Figure 4.

424

Analysis of Camouflaged Logic Encryption

One can quantify the additional protection offered by
circuit camouflage to a logic encryption system by utilizing
the fact that camouflaged logic cells follow the same design
principles as other CMOS cell designs.

Complexity of Camouflaged Logic Functions: The number
of inputs and transistors in a camouflaged cell puts an
upper boundary on the complexity of the logic function that
it can implement. When applied to camouflaged foundry
logic cells, this typically means that a Camo cell could
perform logic functions that are equal in complexity or less
complex than their non-camouflaged cell that they mimic.
The physical design of the foundry logic cell may place
additional constraints on which logic functions are practical
to implement.

When applied to a fully camouflaged circuit, one can
potentially determine the number of possible logic
functions for a given Camo gate based on its number of
inputs and number of transistors, as one could do for any
CMOS logic gate. However, due to the difficulty of
determining cell boundaries in a circuit with such an
extremely regular layout of transistors, it is unlikely that an
attacker can do this. Assuming that the attacker finds a
method to reliably identify cell boundaries, the problem he
faces is of equal or greater complexity than that of
analyzing and identifying camouflaged foundry logic cells.

Analysis of an Example Circuit: Analysis of an example
camouflaged circuit designed with a foundry logic library is
used to quantify the complexity of attacking a camouflaged
logic encryption implementation. Table 1 below shows an
example of possible camouflaged logic functions for a
selection of common one and two-input foundry logic
gates. The physical designs of some foundry logic cells
may preclude some Camo functions from being realized
without significantly altering the layout of the cell.

When the alternate Camo function utilizes fewer pins than
the foundry logic gate, the camo logic function may be
realized in several ways by utilizing different input pins.
For example, an apparent NAND2 gate layout that is
camouflaged to perform an inverter function may invert
either pin A or pin B, for two possible inversion functions.
The number of possible camouflaged functions increases
very quickly for logic gates with three or more inputs. For
any gate, it is possible to create a camouflaged gate that has
an alternate Camo function of static VDD or VSS. For
brevity, this analysis has been limited to a selection of one
and two-input gates.

Table 1. Possible alternate camouflaged logic functions
for selected one and two-input logic gates in an example
foundry logic cell library

Physical Possible Alternate Camo Functions
Appearance
XOR2 11 (XNOR2, AND2, NAND2, NOR2, OR2,
INV A, INV B, BUF A, BUF B, VDD, VSS)
XNOR2 11 (XOR2, AND2, NAND2, NOR2, OR2,
INV A, INV B, BUF A, BUF B, VDD, VSS)
AND2 9 (OR2, NAND2, NOR2, INV A, INV B,
BUF A, BUF B, VDD, VSS)
OR?2 9 (AND2, NAND2, NOR2, INV A, INV B,
BUF A, BUF B, VDD, VSS)
7 (NOR2, INV A, INV B, BUF A, BUF B,
NAND2 VDD, VSS)
7 (NAND2, INV A, INV B, BUF A, BUF B,
NOR2 VDD, VSS)
BUF 3 (INV, VDD, VSS)
INV 2 (VDD, VSS)

When faced with the possibility that the device under
analysis contains camouflaged logic cells, an attacker must
consider alternate functions for each gate in the design.
Figure 6 below shows the example circuit from Figure 5,
with logic gates replaced by boxes representing the number
of possible functions for consideration. The number of
possible functions for a given logic gate is the number of
possible alternate functions from Table 1 plus 1, the
apparent function of the gate.

2
C

KG1

H— G2 (12)

8)

G1
13 —— (8)

=
G5

—H 0 [—o
G4
(8)
67
5 —— (8 - j (10)
6— 1 (@ o2

(12)
K2 ’7

— 02

Figure 6. Possible logic functions to consider when
resolving functional differences between the extracted
netlist (Figure 5) and the fabricated device.

To arrive at the total number of possible configurations for
the 9-gate netlist in Figure 6, one would multiply together
the number of possible functions for each gate. In this
example the number of configuraitons would be 5.9%10’
(8*8*8*8*12*12*10*10). This far exceeds the total
number of possible input patterns, even considering the key
inputs (6 input bits plus 2 key bits allows for 2°, or 64
possible input combinations). It would be easier for the
attacker to analyze the device as a black box with brute
force.

Power, Area, and Delay Overheads: Overhead for power
and area are highly design dependent. For an

425

implementation using camouflaged foundry logic cells,
camouflaged cells have similar power, area, and delay
characteristics to the reference foundry library. Non-
switching circuitry, such as a gate with a static output, is an
area and static power overhead. Partially non-switching
circuitry, such as an inverter that is designed to look like a
NAND gate, is also an area and static power overhead
because one is using a larger footprint than necessary to
perform a given logic function. However, camouflaged
gates whose actual function is of the same complexity as its
apparent function do not incur an area overhead. Highly
effective levels of circuit camouflage can be attained with
1-5% extraneous circuitry. Camouflaged cell timing is
highly layout-dependent. Some camouflaged cells will have
similar timing characteristics to their foundry counterparts,
and some may be slower. If critical paths are avoided when
placing camouflaged cells, there is effectively no timing
penalty.

For a fully camouflaged circuit, one is comparing
camouflaged versus non-camouflaged standard cell
libraries at a given technology node. Since camouflaged
cell design techniques don’t inherently impose power, area,
or timing penalties, it’s not possible to generalize these
overheads. However, when comparing a fully camouflaged
circuit against an implementation using camouflaged
foundry logic cells, the fully camouflaged circuit needs no
extraneous circuitry because every logic gate is already
camouflaged.

Conclusions

Use of camouflaged gates in a design containing logic
encryption is an effective means to harden the circuit
against circuit analyses that would lead to extraction of
logic encryption key data, as well as providing an
independent layer of security against reverse engineering.

References

1. Roy,J.A., Koushanfar, F., and Markov, L.L., “Ending
Piracy of Integrated Circuits”, Design, Automation,
and Test in Europe, 2008.

2. Subramanyan, P., Ray, S., and Malik, S., “Evaluating
the Security of Logic Encryption Algorithms”,
Hardware Oriented Security and Trust, 2015.

3. RajendranJ., Pino, Y., Sinanoglu, O., Karri, R.,
“Security Analysis of Logic Obfuscation”,
Proceedings of the 49" Annual Design Automation
Conference, 2012.

4. “Circuit Camouflage Technology, SMI IP Protection
and Anti-Tamper Technologies”, www.smi.tv/
SMI SypherMedia Library Intro.pdf.

5. Cocchi, R., Baukus, P., Chow, L.W., Wang, B.,
“Circuit Camouflage for Hardware IP Protection”,
Proceedings of the 51° Annual Design Automation
Conference, 2014.

