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through strain, the hole spin coherence here lasts only as 
long as the optical lifetime of about 1 ns. Samples that 
inject a single hole into the QD can be used to take full 
advantage of the hole spin coherence of 1 s. Further 
enhancement of the response to strain and coherence time 
should also be possible using the entangled states of 
coupled QDs in similar structures. 

We anticipate that this research will enable a new class of 
precision sensors based on solid state artificial atoms 
integrated into semiconductor devices that are engineered 
to be sensitive to one aspect of the environment. High 
sensitivity to mechanical motion is relevant to a number of 
DOD interests, including accelerometry for inertial 
navigation, and gravity gradiometry for detecting shielded 
nuclear materials. This research also has the potential to 
revolutionize the growing field of coupling quantum 
systems to macroscopic systems for fundamental science 
and improved functionality. 
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